Statistical and Biological Physics

Breadcrumb Navigation


GDI-mediated cell polarization in yeast provides precise spatial and temporal control of Cdc42 signaling

Ben Klünder, Tina Freisinger, Roland Wedlich-Söldner and Erwin Frey

Cell polarization is a fundamental cellular process that defines a single orientation axis within prokaryotic or eukaryotic cells and is a prerequisite for developmental processes such as cell migration, proliferation or differentiation. In the yeast Saccharomyces cerevisiae cell polarization determines the position of a new growth or bud site. Although many studies have focused on identifying polarity regulators and their interactions, the fundamental mechanisms and features of cell polarity still remain controversial.

Here, we develop a detailed mathematical model of diffusion-driven cell polarization, which we verify experimentally. We show that this polarization mechanism provides precise spatial and temporal control of signals, which determine the place of a new growth site. Changes induced by the cell cycle allow simultaneous switch-like regulation of polarization and activation of the GTPase Cdc42, the central polarity regulator which initiates formation of a new bud. This regulation drives direct formation of a unique Cdc42 cluster with characteristic narrowing dynamics and robustly narrow spatial focus. Hence, our analysis reveals fundamental design principles that allow cell polarization to reliably initiate developmental processes at a specific time and place. As the key components of the studied system are conserved among eukaryotes, we expect our findings also to apply to cell polarization in other organisms.