Statistical and Biological Physics

Breadcrumb Navigation


In this letter we study how topological defects affect the degree of polar and crystalline order in active matter at high densities. To this end, we analyze a generic agent-based model, which accounts for both polar alignment and shorted-ranged repulsive interaction. We show that, while defects still play a decisive role, the emerging defect dynamics and phase behavior differ qualitatively from their equilibrium analogues. In active systems, the non-equilibrium steady states include different types of polycrystalline phases, and an intriguing crystalline phase with quasi-long-range translational order but completely devoid of any topological defects. Moreover, we find that absence of defects and polar order are mutually exclusive features. When alignment forces dominate over repulsive forces, polar states are favored. The resulting collective particle flux makes the system highly susceptible to the spontaneous formation of grain boundaries and thereby repeatedly creates small crystalline patches. These spontaneous fracture-like processes are accompanied by propagating sound waves. In contrast, in systems with strong repulsive forces the formation of a crystalline state precludes the formation of collectively moving clusters. Surprisingly, the phonon modes in this active crystalline state lead to quasi-long-range order but the fluctuations generated by the active particle motion do not create topological defects. more

The expansion of populations is a ubiquitous phenomenon in nature which includes the spreading of advantageous genes or infectious diseases, and dispersal of species into new territory. Recently, single cell studies have revealed that even genetically identical bacterial populations exhibit phenotypic heterogeneity, which is generally regarded as a bet-hedging strategy to maximize survival. For example, Bacillus subtilis can exist in a motile state, where flagella are used for locomotion, and a non-motile state, where flagella are absent. This heterogeneity allows the population to exploit nutrients at its current location and at the same time disperse to new, possibly more favorable, niches. more