Statistical and Biological Physics
print


Breadcrumb Navigation


Content

In this work, we probe a fundamental question in cellular and developmental biology: how do self-organized (Turing) protein patterns evolve with cell growth and achieve robustness in a fluctuating environment? Whereas studies on the effect of noise and boundary growth on cellular metabolism have lead to great advances in the past decade, our understanding of dynamic spatial organization is lagging behind in this context despite its pervasive importance. Essentially, adding geometric perturbations and spatial heterogeneity to the already complex problems of spatio-temporal patterns easily drives them beyond the accessibility of present approaches. more

A critical component of the bacterial cell division machinery is a contractile polymer structure, called Z-ring, which performs cytokinesis. Rather than being a single, closed polymer ring, the Z-ring is composed of multiple, overlapping FtsZ filaments. However, how self-organization into this structure occurs, remains unknown and is subject to extensive research. Recent experiments [1] of FtsZ on a supported lipid membrane have shown that FtsZ polymerizes into curved polymer filaments, which effectively move via treadmilling. These filaments collect into dynamic rings which resemble the Z-ring in size and structure. The effect of chirality and directed motion on the collective dynamics remains, however, poorly understood. more