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This thesis is concerned with experiments done by D.C. Ralph and R.A. Buhrman

[RB92,Ralph93] at Cornell University on zero-bias anomalies in conductance sig-

nals through metal nanoconstrictions. They have suggested that their data is in

accord with the assumption that conduction electrons interact with two-level tun-

neling systems in the constriction region according to the non-magnetic 2-channel

Kondo model.

We quantitatively analyze their data within the theoretical framework of the

2-channel Kondo model, in the regime of very low temperatures (T ) and voltages

(V ). This regime is governed by the strong-coupling T = V = 0 fixed point of

the 2-channel Kondo model, at which the exact conformal field theory solution

of Affleck and Ludwig [AL93] applies.

Near the strong-coupling fixed point, the conductance G(V, T ) is predicted

[RLvDB94] to obey the following scaling relation:

G(V, T ) −G(0, T )

Tα
= B [Γ(Ax) − 1] .



Here Γ(x) is a universal scaling function, and the universal exponent α is pre-

dicted to have the value α = 1
2
. We show that the data of Ralph and Buhrman

indeed obey the above scaling relation, with α = 0.5 ± 0.05; this we take as

strong evidence that their samples can plausibly be described by a simple one-

dimensional 2-channel Kondo model.

The bulk of this thesis is concerned with analytically calculating Γ(x), which

is a “fingerprint” of the 2-channel Kondo problem, in order to compare it to

experiment.

Conceptually new is our treatment of non-equilibrium effects: we show that

Hershfield’s formulation of non-equilibrium problems [Hers93] can be combined

with Affleck and Ludwig’s conformal field theory approach to deal with the V 6= 0

situation.

When our results for Γ(x) are combined with recent numerical (NCA) re-

sults [HKH94] for the same model, good quantitative agreement with the data

is obtained, indicating that the 2-channel Kondo model is in accord with all ex-

perimental facts . However, the theoretical justification for the model employed

here has recently been called into question [MF95,WAM95], indicating that more

theoretical work is needed before the experiment can be regarded as completely

understood.

The thesis contains six lengthy appendices, intended as a pedagogical intro-

duction to Affleck and Ludwig’s conformal field theory solution of the Kondo

problem.



Biographical Sketch

The author was born in 1967 in Bloemfontein, South Africa, where he spent the

first 23 years of his life. He obtained a B.Sc. degree in Physics and Mathematics

(1987) at the University of the Orange Free State, and a B.Sc. honours (1988)

and M.Sc. (1990) degrees in Theoretical Physics from the University of Stellen-

bosch. The next five years were spent in the United States, where he obtained

his Ph.D degree in Theoretical Physics at Cornell University in August 1995. He

is currently a post-doc with the group of Prof. G. Schön in Karlsruhe, Germany.

iii



Für meine Eltern, und Karin

iv



Acknowledgments

I would like to sincerely thank Prof. Vinay Ambegaokar for agreeing to be my

thesis supervisor, and for the way in which he approached this task. His ability

to recognize an experimental phenomenon as interesting and worthy of theoret-

ical study long before it is understood in any detail has served me beyond all

expectations: the thesis topic that he suggested to me required a detailed anal-

ysis of a recent experiment and intensive interactions with experimentalists, as

well as learning and applying theoretical techniques of an unexpected variety and

sophistication; in short, it was a “dream topic”. I am particularly grateful for the

freedom he allowed me to learn and apply conformal field theory to the present

problem, despite the fact that “the real world is three-dimensional”, but at the

same time for his persistent reminders, when my detours into abstract field theory

threatened to become a goal unto themselves, that the ultimate goal should be

to understand the phenomenon in the lab. His credo, “follow the phenomenon”,

has made a lasting impression on me.

Apart from the very many hours he devoted to discussions of our research (in

particular, trying by example to develop my underdeveloped physical intuition) he

has also helped me significantly in a number of non-thesis related ways, including

financial support for conferences, and helping to keep my duties as a teaching

v



assistant light. Finally, I greatly profited from his German connection: I am very

grateful for his help in arranging visits at several German universities early in

1994, which ultimately lead to my current position as a post-doc in Karlsruhe.

Of the five most memorable dinners I have enjoyed in Ithaca over the last few

years, Vinay’s wife Saga has been responsible for at least four; I thank them both

for their hospitality in this regard!

I owe many sincere thanks to Prof. Andreas Ludwig, who during the last two

years has in effect taken on the role of a second thesis advisor to me. His successful

prediction that the experiment studied here should show scaling behavior, and

that this could be studied quantitatively using his conformal field theory solution

of the Kondo problem, lies at the heart of this thesis. I am very thankful for his

offer to collaborate with him to pursue his ideas, and for the large amounts of

time and money (financing a substantial number of visits to Princeton) that he

invested in this collaboration. I would never have been able to learn the requisite

conformal field theory without his detailed and patient explanations (that often

lasted until long after midnight!). His ability to find a way around, or if necessary

cut right through the most formidable technical complications has impressed me

deeply, and played a major role in working out the ideas presented in this thesis.

I thank my experimental colleagues Dan Ralph and Prof. Bob Buhrman for

performing such an exciting experiment, and for their patience in explaining to

a theorist the intricacies of the real world. Dan has particularly impressed me

with his attention to detail, both experimental and theoretical (on more than

one occasion, I learned some theory from him!), and with the care in which he

weighed every single word in the paper we wrote together. To me, he is the

vi



personification of the “ideal experimental collaborator”.

My colleagues Matthias Hettler, Hans Kroha and Selman Hershfield deserve

many thanks for studying the model employed in this thesis with a different

method. Without their results, which are in quantitative agreement with ex-

periment and play an important part in the interpretation presented here, our

arguments would loose half their force. I particularly thank them for their per-

mission to use unpublished figures of their results in my thesis.

The research reported here was partially supported by the MRL Program of

the National Science Foundation, Award No. DMR-9121654, and Award No.

DMR-9407245 of the National Science Foundation.

I would like to thank Prof. Chris Henley for supervising my work on the quan-

tum tunneling of spin systems during the academic year 1992-1993; I found this

research very exciting and rewarding, and particularly profited from his tireless

efforts to improve the readability of the two papers we wrote together. I am also

grateful that he agreed to serve on my committee, gave me an A-exam question

directly relevant to my research, and for the care with which he read my thesis.

Likewise, I would like to thank Prof. Jeevak Parpia for serving on my commit-

tee, posing an A-exam question related to my research, and involving me in one

of his projects as well. Thanks also go to Professors A. LeClair and R. Buhrman

for reading my thesis and attending my B-exam.

I am very grateful to Prof. Gerd Schön for very graciously giving me complete

freedom to write the appendices to my thesis in Karlsruhe after leaving Cornell,

even though the need for this exercise might have seemed mysterious to any

observer (including, at times, the author).

vii



I have benefited from discussions with a large number of physicists, including

N. Wingreen, D. Fisher and M. Moustakas, whose recent criticism of our work has

made matters even more interesting than they seemed; A. Zawadowski, who spent

an entire Sunday afternoon answering my endless questions about his model; P.

W. Anderson, C. Bruder, S. Coppersmith, T. Costi, K. Dahmen U. Eckern, V.

Elser, B. Halperin, K. Ingersent, B. Janko, B. Jones, Y. Kanter, Y. Kondev, R.

Konik, A. LeClair, D. Mermin, B. Roberts, A. Rosch, R. Smith, G. Schön, J.
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Chapter 1

Introduction and Overview

The work described in this thesis is an attempt to understand certain zero-bias

anomalies (ZBA) that were investigated by Dan Ralph and Robert Buhrman

[RB92] in the course of their studies of the I-V curves of metallic point contacts.

Taking up a suggestion put forth by Ralph and Buhrman, we ascribe the observed

anomalies to the scattering of non-equilibrium conduction electrons off degenerate

two-level systems, with which they interact according to the non-magnetic 2-

channel Kondo model of Zawadowski [VZ83]. Therefore, in this thesis we develop

the theory for a (weakly) non-equilibrium 2-channel Kondo problem and apply it

to experiment. Combining our results with recent numerical results by Hettler,

Kroha and Hershfield [HKH94], we conclude that the 2-channel Kondo model

is in qualitative and quantitative agreement with all experimental facts, though

some questions regarding the theoretical justification for the model remain.

An outline of the thesis itself, and suggestions for “how to read this thesis if

you are interested in . . . ”, are given in section 1.6. Let us first outline the main

train of thought that underlies this thesis.

1
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1.1 Statement of the Experimental Problem

Ralph and Buhrman have developed a new technique which allows them to probe

individual processes that occur on an atomic scale inside metals. They fabricate

so-called nanoconstrictions, i.e. metal constrictions of diameters as small as 3 nm

(see Fig. 2.1) and study the current I through the constriction as a function of

voltage (V ), temperature (T ) and magnetic field (H). Since their constrictions

are so small, they are able to detect electron scattering due to individual impuri-

ties or defects in the constriction. The energy dependence of the scattering rate

can be extracted from the voltage dependence of the resistance. Thus, they essen-

tially have developed a very-low-energy electron microscope, capable of energy-

analyzing electron scattering from single defects within a metal, with which they

have already discovered several new and unexpected phenomena [Ralph93].

The particular application of this versatile toy that attracted our interest

was in the study of the zero-bias anomalies found for rather clean constrictions.

These anomalies showed logarithmic T - and V - dependencies reminiscent of the

magnetic Kondo effect. However, Ralph and Buhrman could demonstrate that

their devices contained not magnetic impurities but structural defects, such as

two-level systems (TLS). It was shown by Zawadowski [Zaw80,VZ83] that the

interaction of conduction electrons with TLSs can be described by the so-called

non-magnetic 2-channel Kondo model , which also gives rise to Kondo logarithms.

Therefore Ralph and Buhrman proposed that their zero-bias anomalies were due

to the non-magnetic 2-channel Kondo scattering of conduction electrons off a

small number of TLSs in the constriction.

We set ourselves the task of developing the picture proposed by Ralph and
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Buhrman into a theory that could make quantitative predictions, testable against

experiment. Specifically, we decided to calculate the I-V curve, assuming non-

magnetic 2-channel Kondo scattering and drawing upon the vast existing litera-

ture on the Kondo problem.

1.2 So what’s so new about 2-channel Kondo

physics?

The Kondo problem, of course, has enjoyed 30 years of unceasing theoretical

attention from theorists as a prototypical quantum impurity problem. Some of

the most recent advances were made by Affleck and Ludwig (AL). In a by now

lengthy series of papers [Aff90,AL91a,AL91b,AL91c,AL91d,AL92a,AL92b,AL93,

AL94,Lud94a,Lud94b,ML95], they developed an exact conformal field theory

(CFT) solution for the T = 0 fixed point. Amongst many other quantities, it

allows the exact analytic calculation of all equilibrium Green’s functions in the

regime (T ≪ TK) governed by the T = 0 fixed point.

Moreover, AL showed that in the T ≪ TK regime the 2-channel Kondo model

(and other multi-channel versions) display unusual and exotic non-Fermi liquid

properties: the presence of a quantum impurity leads to a separation of charge,

spin, and flavor degrees of freedom for the conduction electrons, which leads to

non-Fermi liquid behavior for various quantities such as the conductivity, suscep-

tibility, specific heat, etc. (It is this non-Fermi liquid behavior that is responsible

for the current strong theoretical interest in multi-channel Kondo models, since

various tenuous connections to the unusual normal-state properties of high-Tc su-

perconductivity materials have been suggested [CJJ89,EK92,GVR93].) However,
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prior to 1993, no convincing experimental realization of the 2-channel Kondo

model was known (though some heavy-fermion compounds were under investiga-

tion as possible candidates [Cox87,SML91,AT91]), and hence the exotic phenom-

ena that were predicted were yet to be observed.

In the spring of 1993, Andreas Ludwig became involved in our project. He sug-

gested to us that if one assumed that some of the TLSs were practically degenerate

(with a level splitting of ∆ < 1K), then a regime of lowest temperatures (T < 5K)

and voltages (V < 5meV) explored in the Ralph-Buhrman experiment might in

fact fall in the regime dominated by the T = 0 fixed point of the 2-channel Kondo

problem. If correct, this would imply that his exact T = 0 solution was directly

applicable to the experiment; Ralph and Buhrman would have found the first un-

ambiguous experimental realization of a 2-channel Kondo model, and observed

some of its associated exotic behavior; their zero-bias anomaly would be elevated

from being a mere anomaly to a beautiful experimental realization of some very

exotic theory. The stakes had clearly been raised considerably!

1.3 Scaling Prediction for Conductance

Drawing on his experience with his exact solution, Ludwig immediately made

a strong, testable prediction. He predicted that in the regime T ≪ TK and

V ≪ TK , and assuming degenerate TLSs, the conductance G(V, T ) should obey

a scaling relation of the following form:

G(V, T ) −G(0, T )

Tα
= F (eV/kBT ) (1.1)

where F (x) is a sample-dependent scaling function. In the 2-channel Kondo

problem, the universal scaling exponent α is predicted to have the non-Fermi-
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liquid value α = 1
2
. Moreover, by scaling out non-universal constants, it should

be possible to extract a universal scaling curve Γ(x) from F (x).

It turned out that the data of Ralph and Buhrman indeed obey the above

scaling relation, with α = 0.5±0.05, in remarkably good agreement with Ludwig’s

prediction; furthermore, Γ(x) was indeed the same for all three samples studied

in detail. We took this as strong evidence that their samples can plausibly be

described by the simplest possible one-dimensional 2-channel Kondo model (since

Ludwig’s prediction was based on such a model).

However, it is quite conceivable that other theories could also reproduce this

scaling behavior, in particular since an exponent of α = 1
2

is not all that un-

common in condensed matter physics. Indeed, an alternative theory that ac-

complishes this but is based not on Kondo physics but the physics of disorder,

has recently been proposed [WAM95] (although we believe it contradicts other

important experimental facts, see section 2.4, page 30).

Therefore we decided to calculate the universal scaling function Γ(x), and

compare it to experiment. This curve is a fingerprint of the 2-channel Kondo

problem, and being universal, should be independent of the details of the sample.

If agreement were found, the case in favor of the 2-channel Kondo problem would

be considerably strengthened. A different (non-Kondo) theory is expected to give

a different scaling curve.

1.4 The Non-Equilibrium Problem

The conceptually new aspect of our work is that we need a non-equilibrium

theory to describe the non-equilibrium situation found in Ralph and Buhrman’s
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experiments, whereas the exact conformal field theory solution of AL applies to

the equilibrium situation. Thus the conceptual challenge that we had to address

(and that is of general interest, beyond that of the present application), was:

how does one approach a strongly interacting non-equilibrium problem of which

the equilibrium solution is known exactly?

We were not able to find a general, exact solution to the particular non-

equilibrium generalization of the 2-channel Kondo problem relevant to the exper-

imental situation (though another, related non-equilibrium model can be solved

exactly [SH95a]). However, we argue that for our purposes this is not necessary:

if one assumes that the experiments are in the regime V ≪ TK , i.e. the “weakly

non-equilibrium regime”, it suffices to extract information for this regime from

the exact equilibrium solution of AL. “Truly non-equilibrium” effects need only

be treated in perturbation theory in V/TK .

A description of the “weakly non-equilibrium regime” is achieved by drawing

on a recent reformulation of non-equilibrium statistical mechanics by Hershfield

[Hers93]. Hershfield showed that certain non-equilibrium problems become much

simpler, formally resembling equilibrium, when formulated in the language of

scattering states. We show that (to zeroth order in V/TK) these scattering states

can be extracted from the exact theory of AL for the equilibrium problem. In-

serting the scattering states into Hershfield’s formalism thus yielded a natural

description of the “weakly non-equilibrium regime”.

Within this formulation, the final calculation of the scaling curve Γ(x) actually

turned out to be extremely straightforward: the scaling function is given by
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[eq. (9.26)]

Γ(v) = −γ−1
o

∫
dxΓ̃e (x+ v/(2γ1)) [−∂xfo(x)] , (1.2)

where v ≡ eV/T , x = ε/T , fo(x) = 1/(ex + 1), γ0, γ1 are normalization constants

and the function T 1/2Γ̃e(ε/T ) is given by a correction δΣR(ω) to the retarded

electron self-energy that had already been calculated in complete detail in [AL93].

Thus, no challenging new calculations were required. The challenge was mainly

the conceptual one of how to best approach a strongly interacting problem out

of equilibrium.

1.5 Results and Prognosis

The result of our calculation at first seemed somewhat disappointing: the calcu-

lated Γ(x) curve does not agree with the experimental one (see Fig. 9.6).

However, it was pointed out by Hettler, Kroha and Hershfield [HKH94], who

have studied the same model using numerical (NCA) techniques and whose results

are in good agreement with ours, that theory and experiment can nevertheless

be reconciled: they suggest that the experiment is in fact not in the pure scaling

regime as we had assumed it would be. By incorporating corrections of order

T/TK (≃ 0.08 for the lowest T in the experiment), which we had to neglect in

our calculation, they achieve good agreement with experiment, using only one

adjustable parameter, namely TK.

Thus, the main conclusion reached in this thesis is that the 2-channel Kondo

model can satisfactorily account for all known experimental facts, both qualitative

and quantitative.

Nevertheless, some open questions remain. Very recently, the theoretical jus-
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tification for the 2-channel Kondo model has been criticised. Wingreen, Altshuler

and Meir [WAM95] argue that the the presence of static disorder could lead to

a significant splitting ∆ between the two states of the TLS, and Moustakas and

Fisher [MF95] argue that a previously undiscovered relevant operator exists near

the fixed point. Both these claims would make it rather unlikely for the system to

flow to the T = 0 fixed point that is invoked in this thesis to explain the scaling

properties of the data.

Therefore, we are faced with the peculiar situation of having a model that

beautifully accounts for all experimental facts, but is on somewhat shaky the-

oretical grounds. In my opinion, this uncertain state of affairs should be an

incentive for further theoretical and experimental work.

1.6 Outline of Thesis

In chapter 2 we present all experimental facts relevant to the Ralph-Buhrman

experiment, and perform a detailed scaling analysis of the data in chapter 3. In

chapter 4 we introduce Zawadowski’s non-magnetic Kondo model. Chapter 5 is

the heart of the thesis: it shows how one can describe non-equilibrium transport

through the nanoconstriction by Hershfield’s Y -operator method, and how AL’s

CFT can be used to calculate the necessary scattering states. This is done in

chapter 9, where the scaling curve obtained from CFT is compared with that from

Hettler, Kroha and Hershfield’s numerical NCA calculations and experiment. A

summary and conclusions can be found in chapter 10.

Chapters 6 to 8 and appendices A to F contain a detailed and extensive intro-

duction to Affleck and Ludwig’s CFT solution of the Kondo problem, aimed at a
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reader with no or very little background in conformal field theory, but interested

in mastering the necessary technicalities.

Chapter 6 works through a toy problem, namely the scattering of two species

of spinless fermions off a scalar potential, using the same techniques as those

used by AL for the Kondo problem, in order to illustrate these techniques in the

simplest possible setting.

Chapters 7 and 8 explain AL’s approach to the Kondo problem with as lit-

tle recourse to CFT as possible – a reader familiar with elementary Sugawara

technology (derived in detail in appendix A) should be able to follow almost

everything in these chapters.

In an extensive set of six appendices, we attempt to provide (almost) all the

technical details needed elsewhere. Appendix A uses nothing but Wick’s theorem

to derive the Sugawara technology necessary for chapters 6 and 7. Appendix B

summarizes (without derivation, since they can be found in many reviews) those

basic elements of bulk CFT field theory needed for AL’s work. Assuming knowl-

edge of appendix B, in appendix C we attempt to derive in quite some detail

all elements of Cardy’s boundary conformal field theory needed by AL (since to

our knowledge, no detailed review of this exists). In appendix D we illustrate

these methods by showing how AL calculated the highly non-trivial four-point

function 〈ψLψ†
LψRψ

†
R〉, a calculation needed to check whether the all-important

T 1/2 really does show up in the theory. Appendix E summarizes some elements

of bosonization, that are used in appendix F to show how AL’s theory can also

be reformulated in terms of free bosons.

A few suggestions for readers with various interests:
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How to read this thesis if you are interested in

• experimental details: read chapters 2 and 3, and the final comparison of

theory and experiment in section 9.6;

• the non-equilibrium 2-channel Kondo problem (without CFT):

read chapters 4 (in particular section 4.4), 5 and 9;

• an introduction to AL’s theory with (almost) no CFT: read, in that

order, appendix A, chapters 7 and 8; for a more technical discussion of a

simpler toy problem, also read chapter 6 before chapter 7, or at least the

summary in section 6.6;

• a detailed introduction to all relevant technicalities of AL’s the-

ory: read, in that order, appendix A, chapters 6, 7 and 8, and appendices C

and D, consulting appendix B where necessary;

• a bosonic formulation of AL’s theory: read appendices E and F —

some familiarity with appendix D may be necessary.

A comment on notation: we in general take h̄ ≡ 1, kB ≡ 1 and vF ≡ 1. In

chapter 3, however, we display kB explicitly, because the figures were plotted in

corresponding units.



Chapter 2

The Experiment

This chapter contains a presentation of experimental facts, and we attempt to

keep it as free from theoretical baggage as possible. The only theory presented

is the theory of point contact spectroscopy (section 2.2), needed to understand

what kind of spectroscopic information can be extracted from analyzing the non-

linear conductance G(V ). Apart from that, we deal mainly with matters of device

characterization and data analysis and interpretation.

The chapter is organized as follows: In section 2.1 we describe the fabrication

and characterization of nanoconstrictions. Section 2.2 deals with the theory of

point contact spectroscopy. In section 2.3 we summarize the main experimental

facts associated with the zero-bias anomaly (ZBA). Section 2.4 describes Ralph

and Buhrman’s arguments for ruling out a number of possible explanations for

the ZBA and proposing the 2-channel Kondo picture of conduction electrons

interacting with TLSs. In section 2.5 we present just enough of a discussion of

the interaction of conduction electrons with TLS in metals to be able to draw the

analogy with the 2-channel Kondo model. Finally, in section 2.6 we describe in

11
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Figure 2.1 Cross-sectional schematic of a metal nanoconstriction. The hole at
the lower edge of the Si3N4 is so small that this region completely dominates the
resistance of the device.

more detail the physical picture that Ralph and Buhrman have pieced together

for what actually occurs inside the nanoconstrictions.

All of this chapter is based on the thesis of Dan Ralph, from which I quote

extensively (often verbatim), and to which the reader is referred for a much more

extensive and thorough discussion.

2.1 The Nanoconstriction

Dan Ralph has done a great variety of experiments with his nanoconstrictions,

most of which differ slightly from each other in details of sample fabrication, etc.

We just describe the details relevant to nanoconstrictions with structural defects.

A schematic cross-sectional view of a typical nanoconstriction is shown in

Fig. 2.1. The device is made in a sandwich structure. The middle layer is an

insulating Si3N4 membrane. This contains in one spot a bowl-shaped hole, which

just breaks through the lower edge of the membrane to form a very narrow open-

ing, as small as 3 nm in diameter. The narrow neck at the lower opening in the

Si3N4 membrane is so small that this region completely dominates the resistance,
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measured between the top and bottom of the structure. Only metal within a dis-

tance equal to a few constriction diameters from the narrowest region contributes

significantly to the resistance signal. This means that the device may be used

as a kind of microscope. The small physical size of the structure serves to focus

electrons so that only atoms in a very small region contribute to the resistance,

and the resistance is sensitive to scattering from single defects in the constriction

region.

To fabricate the devices, electron beam lithography and reactive ion etching

are used to form the bowl-shaped hole in a Si3N4 membrane. The secrets for

making a bowl-shaped hole that just breaks through the Si3N4 membrane (which

is essential to obtaining a nano-hole), are described in [Ralph93, section 2.2]. In

ultra-high vacuum (< 2 × 10−10 torr) and at room temperature the membrane

is then rotated to expose both sides while evaporating metal to fill the hole to

form the metal constriction and coat both sides of the membrane. A layer of at

least 2000 Å of metal is deposited on both sides of the membrane to form clean,

continuous films. In the devices studied in this thesis, the metal was always

Cu, but similar phenomena have been seen in aluminum, silver and platinum

constrictions.

Usually a large number of holes is made in the same Si3N4 membrane before

evaporation. After evaporation, the membrane is manually disassembled along

break lines to separate the different devices. Thus, devices are mass-produced,

and then checked for suitability as nanoconstrictions, by measuring their re-

sistance (which should preferably be large). One membrane usually produces

20-30% useful devices, with resistance greater than 5 Ω.
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Finally, to obtain devices with structural defects such as TLSs, the devices

have to be cooled to cryogenic temperatures within several hours after they are

formed by evaporation, before all structural defects can anneal away.

The devices are physically quite robust [Ralph93, p.16]. For example, for

samples that are not cooled soon after evaporation, the resistance may wander

up or down slightly within the first day after an evaporation, indicating that the

metal in the device may anneal or relax at room temperature, but after that the

devices are generally stable for years. They may be dropped on the floor without

harm, and they almost always survive thermal cycling to helium temperatures.

Conductance measurements are performed by 4-point measurements on current-

biased samples1, using standard lock-in amplifier or DC techniques [Ralph93,

p.255].

2.2 Point Contact Spectroscopy

One of the most important characteristics of nanoconstrictions (also called point

contacts in the literature to be cited in this section), is that the voltage depen-

dence of the conductance may be related directly to the energy dependence of

the electron relaxation rate τ−1(ε− µ), within the device, e.g.

G(V ) = Go − eKτ−1(eV ) , (2.1)

for phonon scattering, allowing one to do spectroscopy. In this section we explain

how this comes about for ballistic constrictions, i.e. constrictions through which

the electrons travel ballistically along semi-classical, straight line paths between

1To be explicit: a voltage source is connected in series with a large resistor, thus forming
a current source that sends a current of specified magnitude I through the sample. Then the
corresponding voltage across the sample is measured as a function of I.
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collisions with defects or the walls of the constriction. Transport through the

constriction can then be described using a Boltzmann formalism. This was first

worked out in [KSO77,OKS77]; I found the most careful treatment to be [KOS77],

and the best review in [JvGW80]. A more up-to-date review is [DJW89].

Two conditions have to be met for a constriction to be in the ballistic regime.

Firstly, it must be possible to neglect effects due to the diffraction of electron

waves, i.e. one needs 1/kF ≪ a, where a = constriction radius. Secondly, the

constriction must be rather clean (as opposed to disordered): an electron should

just scatter off impurities once or twice while traversing the hole. One therefore

needs a≪ l, where l is the electron mean free path.

Ralph and Buhrman work with devices with a of order 2-8 nm [as determined

from TEM studies and from the Sharvin formula for the resistance, eq. (2.11)].

For clean devices for which all structural defects have annealed away, l ∼ 200 nm

(as determined from the residual bulk resistivity). For devices containing struc-

tural defects, l is reduced to about l ∼ 40 nm (as estimated from a reduction in

the phonon peak amplitude, see page 23), which is still about twice the constric-

tion diameter [Ralph93, p.258]. Thus the constrictions can be assumed to be in

the ballistic regime.

2.2.1 Boltzmann Equation and Sharvin Resistance

To set up a Boltzmann description of transport through the constriction we follow

the presentation of [JvGW80, section 4], where more details may be found. The

constriction geometry is modeled as an open, circular hole of radius a in the

otherwise non-conducting, infinitely thin x-y plane (representing the insulating

membrane) which separates two metallic half-spaces (the two leads, R/L for z >
<
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0). The current through the constriction is given by the integral of the current

density over the area of the hole:

I =
∫

hole
dxdy jz(x, y, 0) . (2.2)

For semi-classical electrons, a position ~r and momentum ~k label can be attached

to each electron. Correspondingly, one can define an electron distribution func-

tion f~k(~r) (see Fig. 2.2), in terms of which the current density per unit volume

at point ~r is:

~j(~r) =
2e

Vol

∑

~k

~v~kf~k(~r) (2.3)

(where Vol = volume). The task at hand is therefore to find the distribution

function f~k(~r). It is determined by the Boltzmann equation

~v~k · ~∇rf~k(~r) + (e/h̄) ~E · ~∇kf~k(~r) =

(
∂f~k(~r)

∂t

)

coll

; (2.4)

the right hand side (defined in eq. (2.12) below) describes collisions off defects,

phonons, etc. This is supplemented by the charge-neutrality condition

2e
∑

~k

[f~k(~r) − fo(ε~k − µ)] = 0 , fo(ε) ≡
1

eβε + 1
. (2.5)

Here ε~k ≡ k2/2m is the kinetic energy and µ ≡ k2
F/2m the equilibrium chemical

potential. The total electron energy is written as

E~k(~r) ≡ ε~k + eφ(~r) (2.6)

where eφ(~r) is the electrostatic potential energy, which defines the bottom of the

conduction band (eφ(~r) ≡ 0 for V = 0). If a bias, V = −|V |, is applied across

the device, the leads are at different chemical potentials (say µ ± eV/2 for R/L
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leads);2 this condition is implemented as a boundary condition on eφ(~r):

eφ(z = ±∞) ≡ ±eV/2 . (2.7)

Eqs. (2.4), (2.5) and (2.7) are solved iteratively by making the Ansatz

f~k(~r) ≡ f
(0)
~k

(~r) + f
(1)
~k

(~r) φ(~r) ≡ φ(0)(~r) + φ(1)(~r) , (2.8)

where f
(0)
~k

(~r) is defined to be the solution of these equations in the absence of

any collisions, i.e. with
(
∂f
∂t

)

coll
≡ 0. The backscattering correction f

(1)
~k

(~r) is then

calculated iteratively by using f
(1)
~k

(~r) in the LHS of eq. (2.4) and f
(0)
~k

(~r) in its

RHS, etc.

The result for f
(0)
~k

(~r) at T = 0 is shown in Fig. 2.2. This figure is a position-

momentum space hybrid, showing the momentum-space distribution function

f
(0)
~k

with its origin drawn at the position ~r to which it corresponds. One can

understand it almost without calculation, simply by realizing that in the absence

of collisions, electrons will maintain a constant total energy E~k. Thus, an electron

injected from z = ±∞ in the R/L lead with total energy E~k(z = ±∞) = ε~k ±

eV/2, will accelerate or decelerate as its potential energy changes from eφ(±∞) =

±eV/2 to eφ(∓∞) = ∓eV/2 while it traverses the hole, in such a way that

ε~k + eφ(~r) = E~k(~r) = constant.

The key feature in Fig. 2.2 is that the distribution of occupied electron states

in momentum space, at any point ~r in the vicinity of a ballistic constriction, is

highly anisotropic and consists of two sectors, denoted by (+) and (−). The (±)

sector contains the momenta of all electrons that originate from the ±V/2 side

(i.e. R/L side) of the device and can reach ~r along ballistic straight-line paths,

2Sign-conventions: following [JvGW80], we take e = −|e|, V = −|V |, so that eV > 0. Then
electrons flow from right to left, and the current to the right is positive.
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Figure 2.2 [JvGW80, Fig. 7]: The T = 0 electron distribution function f
(0)
~k

(~r)
[calculated by neglecting the collision term in eq. (2.7)] shown (a) at the hole
and (b) at two points near the hole. The picture is a position-momentum space

hybrid, showing the momentum-space distribution function f
(0)
~k

with its origin
drawn at the position ~r to which it corresponds. A finite temperature simply
smears out the edges of the two (R/L) Fermi seas.

including paths that traverse the hole (the bending of paths due to the electric

field is of order eV/εF and hence negligible). At a given point ~r, the momentum

states in the (±) sectors are filled up to a maximum energy of E~k(~r) = µ± V/2,

because of energy conservation along trajectories. Thus, for ~k in the (±) sector,

one finds

f
(0)
~k∈(±)

(~r) = fo
[
E~k(~r) − µ∓ eV/2

]
= fo

[
ε~k −

(
µ± eV/2 − eφ(0)(~r)

)]
(2.9)

To zeroth order in the collision term, the electrostatic potential energy can be

found by inserting eq. (2.9) into the charge neutrality condition eq. (2.5). The

result is

eφ(0)(~r) = sign(z) 1
2
eV [1 − Ω(~r)/(2π)] , (2.10)

where Ω(~r) is the solid angle at which the hole is seen at position r. Since

Ω(~r) → 0 as soon as |~r| ≫ a, we see that eφ(0)(~r) changes smoothly from −eV/2
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Figure 2.3 [JvGW80, Fig. 6]: The electrostatic potential energy eφ(0)(~r), which
defines the bottom of the conduction band, near a point contact with radius a,
shown along the z-axis. eφ(0)(~r) changes smoothly from −eV/2 to +eV/2 within
a few radii a from the hole.

to +eV/2 within a few constriction radii a from the hole, as shown in Fig. 2.3.

Using these results for f (0) and φ(0) it is easy to calculate the so-called Sharvin

resistance, i.e. the “geometrical” resistance that is due solely to the presence of

a constriction and independent of the electron mean free path l. From eq. (2.2)

one finds [using eφ(0)(x, y, 0) = 0, N(ε) = density of state per spin, eV ≪ εF and

being careful with angular integrals]:

Io = πa22e
∫
dε~kρo

∫

kz>0
dΩ~k|v~k| cos θ~k

[
fo(εk−µ+ 1

2
eV ) − fo(εk−µ− 1

2
eV )

]

Io = πa2|e|vF )
(

1
2
eV ρo/V ol

)
. (2.11)

Here ρo/V ol = mkF
2π2h̄2 is the density of states per spin per unit volume. This

result is so simple that it explains itself: a current proportional to eV arises

simply because near the Fermi surface there are more electrons moving to the

left than to the right (hence the - sign), each carrying a current evF , the difference

in number being 21
2

1
2
N(εF )eV (2 for two spin directions, 1

2
from the restriction

kz > 0, and 1
2

from the angular integration over vz).

The Sharvin formula is used routinely to estimate the area of a nanoconstric-
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tion from a measurement of its resistance.

It is worth emphasizing that the electrostatic potential energy eφ(~r) plays only

an indirect role when it comes to calculating low-energy (i.e. T/εF , V/εF ≪ 1)

transport properties.3 The reason is simply that the only role of eφ(~r) is to define

the bottom of the conduction band , and hence cause acceleration and deceleration

of electrons to maintain E~k(~r) = E. Low-energy transport properties, however,

are determined by what happens at the top of the conduction band, in particular

by the sharply anisotropic features characterized in Fig. 2.2 and eq. (2.9). This is

illustrated by the derivation of the Sharvin formula, where it was the anisotropy

in f
(0)
~k

(z = 0) that was crucial [see eq. (2.9)].

We emphasize this conclusion by stating for future reference:

The key non-equilibrium feature of point contacts: at each point near the point

contact, one has effectively two Fermi seas, one consisting (roughly speaking) of

L-movers, injected from the R lead with Fermi energy µ + eV/2, the other of

R-movers, injected from the left lead with Fermi energy εF − eV/2.

Any simplified description of non-equilibrium transport through point contacts

(such as that used in later chapters) must capture this simple physical picture.

[Unfortunately, this also complicates Kondo physics tremendously, as we shall see

later.]

3When interested in non-equilibrium transport, it is not sufficient to simply couple a current
to a vector potential,

∫
d~r ~j · ~A, where ~A satisfies ~E ≡= − 1

c∂t
~A = −~∇rφ. This simply does

not do full justice to the non-equilibrium aspects introduced by having two distinct R/L Fermi
surfaces at µ± eV/2 (which took me six months to appreciate fully).
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2.2.2 Backscattering Corrections to Current

The corrections (∆I) to the current through a point contact due to the scattering

processes (e.g. off phonons or defects) are negative. This is because electrons that

have already traveled through the hole can be scattered back to where they came

from. Such scattering processes are incorporated in the collision term in eq. (2.4),

which has the general form

(
∂f~k(~r)

∂t

)

coll

≡ V ol−1
∑

~k′

[
Γ(~k′ → ~k;~r)f

(0)
~k′

(~r)
(
1 − f

(0)
~k

(~r)
)

−Γ(~k → ~k′;~r)f
(0)
~k

(~r)
(
1 − f

(0)
~k′

(~r)
)]

, (2.12)

The correction to the current due to scattering is found from the contribution

of f
(1)
~k

(~r) to eq. (2.2), namely

∆I =
2e

V ol

∫

hole
dxdy

∑

~k

~v~kf
(1)
~k

(x, y, 0)

=
2e

V ol

∫

hole
dxdy

∑

~k

~v~k

∫ 0

−∞

ds

|v~k|

(
∂f~k(~rs)

∂t

)

coll

. (2.13)

To understand the second line, note that f
(1)
~k

(x, y, 0) is the correction to f
(0)
~k

(x, y, 0)

due to all (single-)scattering processes that an electron could have undergone

on its way from ±∞ to (x, y, 0). Hence f
(1)
~k

(x, y, 0) is given by the integral of
(
∂f~k(~rs)

∂t

)

coll
along all straight-line paths [parameterized by s in eq. (2.13)] parallel

to ~k that end at point (x, y, 0). (This is Chamber’s method of trajectories; for

details, see [JvGW80, section 4.3].)

2.2.3 Phonon Scattering

Consider scattering off phonons, at T = 0. Then Γ(~k′ → ~k;~r) has two prop-

erties that simplify matters significantly: Firstly, it depends only on ∆ε ≡
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ε
kε eV

phonon

kε
kε

eV

phonon

k

(b)(a)

Figure 2.4 A single-phonon backscattering process in (a) momentum and (b)
energy space, where a phonon of energy εk′ − εk is emitted spontaneously.

Ek(~r) − Ek′(~r) (which means that all φ(~r)-dependence drops out), being pro-

portional to an electron-phonon interaction function α2Fp(∆ε) (which is related

to the well-known Eliashberg function). Secondly, it is spatially homogeneous

(~r-independent), because phonons are distributed uniformly in space.

It turns out that the backscattering correction at T = 0 is [JvGW80, eq.(4.40)]:

∆I(eV ) = −K

|e|
∫ eV

0
dε′

∫ ε′

0
d∆εα

2Fp(∆ε) , K =
4e2m2vFa

3

3πh̄4 . (2.14)

Roughly speaking, at each point along a trajectory, one has to evaluate the

probability for inelastic processes of the type shown in Fig. 2.4; since the Pauli

principle has to be respected, the upper and lower limits of the relevant energy

integral are as in eq. (2.14).

The corresponding correction to the differential conductance is simply

∆G ≡ −d∆I(V )

dV
= −Kτ−1(eV ) , (2.15)

where τ−1(ε′) ≡ ∫ ε′
0 d∆εα

2Fp(∆ε) is the relaxation rate for an electron at energy

ε′ above the Fermi surface. Thus, due to phonon-backscattering processes, the

conductance of any point contact has a marked dip at voltages large enough to

excite phonons [V > 5 meV for Cu, see Fig. 2.5(a)].



23

Furthermore, d2I
d(eV )2

is proportional to α2Fp(eV ), which can thus be measured

directly from, it turns out,

α2Fp(eV ) = − 3

32
√

2

h̄2k2
F

em

(
Re2

h

)
R
d2I(V )

dV 2
(2.16)

=
5.8

R1/2

dR(V )

dV
, (2.17)

for Cu, where R = dV/dI is in units of Ω and V is in mV. The function on

the right hand side of eq. (2.17) is called the point contact spectrum (PCS). For

any clean, ballistic Cu point contact, it should be a universal function [namely

α2Fp(eV )], and indeed measurements of it agree with other determinations of

α2Fp. However, the amplitude of the phonon-induced peaks is reduced dramat-

ically if there is significant elastic scattering due to defects or impurities in the

constriction region, as has been modeled theoretically [YS86] and demonstrated

experimentally [LYSN80]. Therefore, comparing the PCS of a given point contact

to the reference PCS of a clean point contact provides an important and reliable

tool for determining whether the point contact is clean or not. (We emphasize

this fact, because for our later analysis it will be extremely important to know

reliably that the devices of interest to us are in fact very clean.)

2.2.4 Defect scattering

For voltages below the phonon threshold (V < 5mV for Cu), non-linearities in

G(V ) are due to scattering off defects, which we discuss next.

Consider a set of defects at positions ~Ri; furthermore, consider the case (ap-

plicable to scattering off degenerate Kondo impurities, for example) that the

scattering rate is isotropic and elastic but depends, in the equilibrium case, on
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the distance from the Fermi surface, because of many-body effects:

Γ(~k′ → ~k;~r) ∝
∑

i

δ(~r − ~Ri)δ(ε~k − ε~k′) τ
−1
(
ε~k′ − µ

)
. (2.18)

In general, when a voltage is applied and the Fermi surfaces are distorted as in

Fig. 2.2, τ−1(ε~k′ − µ) can become V -dependent. If V is small enough, however,

such V -dependent corrections to τ−1(ε~k′ − µ) can be neglected (for Kondo im-

purities, this requires eV/TK ≪ 1, where TK is the Kondo temperature). We

shall call this case, which is the only one considered in this thesis, the weakly

non-equilibrium regime. In this regime, using eqs. (2.18) and (2.9) in (eq. (2.13)),

one finds that the current involves a sum over impurities:

∆I =
K̃

|e|
∫
dε′k

{
∑

i

biτ
−1(ε′k − µ) (2.19)

×
[
fo
(
ε′k + eφ(0)(~ri) − µ+ eV/2

)
− fo

(
ε′k + eφ(0)(~ri) − µ− eV/2

)]}

=
h̄K̃

|e|
∫
dω

[
∑

i

biτ
−1
(
h̄ω − eφ(0)(~ri)

)] [
fo(h̄ω + eV/2) − fo(h̄ω − eV/2)

]

(To obtain the second line, we wrote h̄ω ≡ ε′k + eφ(0)(~ri) − µ.) Here K̃ =

e2τ(0)/h, the bi are (unknown) dimensionless constants of order unity that char-

acterize how much an impurity contributes to the backscattering current, and

depend on the position of the i-th impurity relative to the hole. The main

complication, though, is the ~ri-dependence in the Fermi functions, which enters

eq. (2.19) through eφ(0)(~ri). To deal with this, use eq. (2.10) to define “effective

voltages” V a±i by writing

1
2
eV ± eφ(0)(~ri) ≡ 1

2
eV a±i , a±i ≡ 1 ± sign(z)[1 − Ω(~ri)/(2π)] . (2.20)

The backscattering correction to the conductance, ∆G(V ) ≡ −d∆I
dV

, then is (after
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differentiating and then making shifts h̄ω → h̄ω ± eV/2)

∆G(V ) = −K̃
∫
dω[−∂ωfo(h̄ω)]

∑

i

bi
1
2

[
τ−1(h̄ω − 1

2
eV a+

i ) + τ−1(h̄ω − 1
2
eV a−i )

]
,

(2.21)

Thus, the contribution of the i-th impurity to ∆G(V ) depends on position-

dependent effective voltages V a±i . The reason is that τ−1 was assumed to depend

on the (energy)-distance from the Fermi surface [εk′ − µ = Ek′ − µ − eφ(0)(~r)];

for an electron traveling at constant total energy Ek′ , this distance changes with

position, since eφ(0)(~r) changes with position.

However, we know that the conductance is dominated by what happens in

the immediate vicinity of the hole; in other words, the bi will be much larger

for impurities close to the hole (for which eφ(0)(~ri) ≃ 0 and a±i ≃ 1) than for

those further away (for which eφ(0)(~ri) ≃ ±eV/2 and a±i 6= 1). Thus the effect of

eφ(0)(~ri) 6= 0 terms should not be too disruptive.

Nevertheless, the position-dependence of the impurities has muddied the wa-

ters somewhat compared to the case of phonon scattering, and this should be

borne in mind when comparing experiment to theory.

2.3 The Zero-Bias Anomaly: Experimental

Facts

In this section we summarize in brief all the experimental facts relevant to the

zero-bias anomaly. Our interpretation of these facts is postponed to later sections,

where some of them will be elaborated upon more fully, and most of the figures

quoted below can be found.

The basic phenomenon to be studied is illustrated by the upper conductance
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Figure 2.5 A typical conductance curve for a constriction containing structural
defects: (a) The upper curve, showing a dip in conductance at V = 0 and volt-
age-symmetric spikes, is the differential conductance for an unannealed Cu sample
at 4.2 K. The lower curve shows the conductance of the same device at 4.2 K,
after annealing at room temperature for 2 days. The curves are not artificially
offset; annealing changes the overall conductance of the device by less than 0.5%.
(b) Dashed line: PCS for the device before anneal at 2 K. Solid line: PCS after
anneal.
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curve in Fig. 2.5. The essential features are the following: Firstly, a drop in the

conductance for |V | > 10 mV, due to the excitation of phonons, which is well

understood (see section 2.2). Secondly, sharp voltage-symmetric conductance

spikes at somewhat larger voltages, called conductance transitions by Ralph and

Buhrman. They are described at length, from an experimental point of view,

in [RB95]. However, their detailed origins are as yet a total mystery (though

Ralph and Buhrman argue in [RB95] that they probably have the same origin as

the zero-bias anomalies, and probably signify the sharp, sudden, “switching off”

of whatever had been giving rise to the zero-bias anomaly). They will not be

discussed at all in this thesis. Thirdly, the conductance has a voltage-symmetric

dip in the conductance near V = 0, the so-called zero-bias anomaly. This thesis

is concerned exclusively with the regime V < 5 mV and the zero-bias anomaly.

The zero-bias anomaly (ZBA) has the following properties:

(P1) Cooling: It is found only in samples that are cooled to cryogenic tempera-

tures within hours after being formed by evaporation. It is found in about

50% of such samples, and in a variety of materials, such as Al, Ag, Pt and

Cu, which was the material used most often.

(P2) Amplitude: The amplitude of the ZBA [G(V = 0) − Gmax] varies from

sample to sample, from a fraction of e2/h to as large as 60e2/h.

(P3) Annealing: After annealing at room temperature for several days, the ZBA

and conductance spikes disappear, and the conductance curve looks like

that of a completely clean point contact (see lower curve in Fig. 2.5, and

Fig. 2.6). Nevertheless, annealing changes the total conductance by less

than 1%.
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(P4) Phonon spectra: The magnitudes of the phonon peaks in the PCS for the

unannealed device are only about 15% smaller than for the annealed de-

vice [see Fig. 2.5(b)], for which the phonon peaks have the magnitudes

corresponding to a clean, ballistic point contact (refer to the discussion on

page 23). From this one can estimate that the mean free path of the unan-

nealed sample is still greater than 30 nm, implying a rather clean, ballistic

constriction.

(P5) Effect of disorder: If static disorder is intentionally introduced into a nano-

constriction (by adding 1% or more of impurity atoms such as Au to the

Cu during evaporation), the the zero-bias conductance dip and conduc-

tance spikes disappear completely (see Fig. 2.7). When a strongly disor-

dered region is created near the constriction (by electromigration: a high

bias (100-500 mV) is applied at low temperatures so that Cu atoms are

moved around), the conductance shows no ZBA either, but instead small-

amplitude, aperiodic (in V ) conductance fluctuations at low voltage due to

quantum interference (see Fig. 2.8).

(P6) Magnetic field: When a magnetic field (of up to 6 T) is applied, the ampli-

tude of the conductance dip decreases, see Fig. 2.9(b), in other words the

magnetoconductance is positive. However, the dip undergoes no Zeeman-

splitting, in constrast to the Zeeman splitting that is found for devices

intentionally doped with magnetic impurities such as Mn [see Fig. 2.9(a)].

The magnetoconductance seems to depend roughly linearly on |H| at fixed

T and V = 0: G(H,T ) ∝ |H| (see Fig. 3.11), but not enough data is

currently available to establish this beyond doubt.



29

(P7) Logarithms: For V and T not too small and H = 0, there are (admittedly

rather small) regimes in which the conductance goes like log V at fixed T ,

and log T at V = 0, see Fig. 2.10.

(P8) V, T scaling: As a function of V and T at H = 0, the conductance obeys

the following scaling relation if both V and T are small enough, but for

arbitrary ratio V/T :

G(V, T ) −G(0, T )

Tα
= F (V/T ) , (2.22)

where α = 0.5 ± 0.05 and F (x) ∝ x1/2 as x → ∞. This relation allows a

large number of data curves to be collapsed onto a single, sample-dependent

scaling curve, [e.g. see Figs. 3.3 and 3.4(a)].

(P9) Universality: By scaling out sample-dependent constants, it is possible to

extract from F (x) a “universal” scaling function Γ(x), shown in Fig. 3.10(b).

Γ(x) is universal in the sense that it is indistinguishable for all three devices

for which a scaling analysis was carried out (they are called sample 1,2 and

3 below).

Any theory that purports to explain the zero-bias anomaly must be consistent

with all of the above experimental facts.

2.4 Eliminating various possibilities

In this section we present the arguments by which Ralph and Buhrman eliminate

all the obvious candidate causes for the ZBA that come to mind.

Since the ZBAs only occur in samples that are cooled shortly after evaporation

(P1), and since ZBAs anneal away at room temperature (P2), one concludes that
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Figure 2.6 Differential conductance versus voltage at 4.2 K for a Cu sample which
underwent repeated thermal cycling. The time sequence runs from the bottom
curve to the top. Curves are artificially offset. The first 2 excursions were to
77 K, the next 5 to room temperature.

they must be due to structural defects or disorder that can anneal away at high

temperatures. However, only a small amount of such disorder can be present,

for two reasons: Firstly, annealing changes the total conductance by less than

1% (P3) indicating that the unannealed device could not have been strongly

disordered to begin with. Secondly, comparison of the phonon peaks in the PCS

spectra of annealed and unannealed samples indicate that in the unannealed

devices the mean free path l is still greater than 30 nm, implying a rather clean,

ballistic constriction (P4).

Could the anomalies be due to static disorder? For example, both weak

localization due to disorder [Berg84] and disorder-enhanced electron-electron in-

teractions [LR85] could be considered candidate mechanisms to explain the de-

creased conductance near V = 0. In fact, Wingreen, Altshuler and Meir (WAM)

[WAM95] have recently strongly advocated the latter possibility: they pointed

out that strong static disorder (mean free path l ≃ 3nm) give rise to a depression

δN(ε− εF ) ∝ T 1/2Γ
(
ε−εF
T

)
in the density of states near the Fermi surface, which
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Figure 2.7 (a) Differential conductance and (b) PCS curve for a Cu sample in-
tentionally doped with 6 % Au. Static impurities reduce the electronic mean free
path but completely eliminate the zero-bias anomaly of interest to us.
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Figure 2.8 (a) Differential conductance at 1.8 K for a Cu device in which disorder
has been created by electromigration (which means that a high bias (100-500 mV)
has been applied at low temperatures so that Cu atoms moved around). (b)
Phonon spectrum for this device, averaged over 25 different defect configurations
(for details, see Fig. 4.3 of [Ralph93]).
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Figure 2.9 Conductance signals for 500 ppm magnetic Mn impurities in Cu at
100 mK, showing Zeeman splitting in an applied magnetic field. (b) The zero-bias
signals from the unannealed metal samples exhibit no Zeeman splitting, demon-
strating that they are not due to a magnetic impurity.
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Figure 2.10 (a) V -dependence of the differential conductance for B = 0 and
T = 100 mK. (b) T -dependence of the conductance for B = 0 and V = 0.
Straight lines illustrate regions of logarithmic V and T dependencies.
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explains the scaling property (P8), and in fact quantitatively reproduces the scal-

ing curve F (x) of eq. (2.22) (see [WAM95, Fig.1]). However, Ralph and Buhrman

have several arguments that rule out scenarios due to disorder [Ralph93, section

6.6.1]:

1. According to (P5), upon the intentional introduction of static disorder (by

coevaporation of 1 % or more of impurity atoms such as Au with the Cu)

the ZBAs are not enhanced, as one would have expected if the anomalies

had been due to static disorder, but disappear completely. If one increases

the disorder even more, using for example electromigration, all one finds

are small-amplitude, aperiodic conductance fluctuations at low voltage due

to quantum interference.

2. Signals due to weak localization or disorder-enhanced electron-electron scat-

tering are limited to amplitudes of order 1e2/h (except in the inapplicable

case of a long 1-dimensional wire); they cannot account for ZBAs with

amplitudes as large as 10’s of e2/h (P2).

3. As already argued above, the electronic mean free path l is not short, but

> 30 nm, even in the unannealed samples. In other words, the devices really

are rather clean; whatever amount of disorder is present, it is doubtful that

this could be enough for weak localization or disorder-enhanced electron-

electron scattering to be important.

4. Property (P3), namely the disappearence of the zero-bias anomalies under

annealing, might be interpreted to imply that static disorder has annealed

away. If the bowl of the nano-constriction had been filled with a disor-
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dered region with disorder as strong as suggested by WAM, and if all this

disorder is assumed to disappear under annealing, then a simple Drude-

model estimate of the disorder-induced resistance shows that the overall

resistance should change by tens of percents. However, under such anneal-

ing, the overall amplitude of the effect does not change by more than 1 or

2% [RLvDB95].

If not static disorder, what else? A clue may be found from Fig. 2.10, which

shows that there are (admittedly rather small) regimes in which the conductance

goes like log V at fixed T , and log T at V = 0. This is reminiscent of the magnetic

Kondo effect, where the resistance increases as log T with decreasing T (as long as

T > TK). However, there are several arguments that rule out magnetic impurities

as the source of the anomalies:

1. An effect due to magnetic impurities would not anneal away at higher tem-

peratures (P3).

2. If the magnetic Kondo effect were at work, a magnetic field (P6) would cause

a well-known Zeeman splitting in the zero-bias conductance dip. In fact,

a Zeeman splitting has been observed in nanoconstrictions intentionally

doped with the magnetic impurity Mn [Ralph93, section 5.2], as shown in

Fig. 2.9(a). However, in the devices under present consideration, a Zeeman

splitting has never been observed, although a magnetic field does decrease

the amplitude of the conductance dip somewhat, see Fig. 2.10(a).

3. For a magnetic Kondo effect, the anomaly would behave like ∆G ∝ T 2,

∆G ∝ V 2 for very small T and V [GW78]. However, as will be demon-
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strated in detail in chapter 3, the conductance obeys instead the scaling

form eq. (2.22), which implies ∆G ∝ T 1/2, ∆G ∝ V 1/2.

However, one does not necessarily need magnetic impurities to get a Kondo

effect. Zawadowski [Zaw80,VZ83] showed that in a metal, the interaction of

conduction electrons with certain type of structural defects, namely a two-level

systems (TLSs), can be described by the so-called non-magnetic or orbital Kondo

model , which also results in a logarithmic T and V dependence for the conduc-

tance (as long as T, eV > TK). Zawadowski’s model was later shown to be

equivalent to the 2-channel Kondo model [MG86]. This led Ralph and Buhrman

to propose in 1992 the following scenario:

The 2-channel Kondo picture:

The ZBAs are due to structural defects, namely TLSs, that interact with conduc-

tion electrons according to the non-magnetic 2-channel Kondo model.

As will be seen later, the following assumptions are also needed: To account for

the size of the signals, one needs several, sometimes tens of TLS in the constric-

tion. Moreover, their asymmetry energies ∆ [see eq. (2.23)] have to be very small

(∆ < 1K), and interactions between the various TLSs must be negligible.

This proposal is described at length in subsequent sections. Let us end this

section by remarking that in his thesis, Dan Ralph has also considered and ruled

out [Ralph93, section 6.6] as causes for the observed ZBAs a number of other

mechanisms: charge traps in the Si3Ni4 membrane, electronic surface states or

quasi-localized states within the metal, defect rearrangement, mechanical insta-

bilities, superconducting phases and heating effects (see footnote on p. 56 for

ruling out heating).
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2.5 TLSs in metals

The term two-level system refers to an atom or group of atoms that can hop

between two different positions inside a material (more correctly, it should be

called a tunneling center , since in general it can have more than two energy levels,

see section 4.2). Its behavior is governed by a double well potential, generically

depicted in Fig. 2.11, with asymmetry energy ∆. If the energy barrier between

the two wells is low enough to allow tunneling between them, with a tunneling

matrix element ∆o, the system is known as a two-level tunneling system (TLS).

If all relevant energies are much smaller than that of the first excited states in the

double well (with energy on the order of the Debye frequency), the Hilbert space

of the TLS can be truncated to consist of only the lowest two, near-degenerate

states (this restriction is relaxed in section 4.2). Thus, the TLS can be described

in terms of an (Ising) spin variable (described by Pauli matrices τ i below and

often called impurity pseudospin), with Hamiltonian

HTLS = 1
2




∆ ∆o

∆o −∆


 = 1

2
(∆τ z + ∆oτ

x) . (2.23)

The concept of the TLS was first introduced to explain the low-temperature

thermal and acoustic properties of amorphous solids or glasses [AHV72,Phil72], in

which they occur because some groups of atoms are likely to have more than one

accessible low-energy configuration, due to the disordered arrangement of atoms.

Their concentration is roughly 10−5 to 10−4 per atom, with a wide distribution of

energy splittings and tunneling times [Phil81,HR86,Phil87], and the interesting

properties arise from the coupling of TLSs to phonons.
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k’

∆

k

Figure 2.11 A generic two-level-system, with (bare) energy asymmetry ∆ and
tunneling rate ∆0. An electron-assisted tunneling event is depicted: an electron
scatters of the TLS and induces the atom to tunnel.

However TLSs are also known to exist in polychrystalline metals, with concen-

trations only a factor of 25-100 less than in fully amorphous materials [EKP92].

In such materials, the microscopic origin of TLSs is probably due to the movement

of atoms along grain boundaries or due to the motion of dislocation segments.

How does the presence of conduction electrons influences a TLS? The TLS-

electron interaction is usually modeled by

Hint =
∑

~k~k′


V

o
~k~k′




1 0

0 1


 + V z

~k~k′




1 0

0 −1


 + V x

~k~k′




0 1

1 0





 c

†
~kσ
c~k′σ

=
∑

~k~k′

∑

i=0,z,x

c†~kσ

[
V i
~k~k′τ

i
]
c~k′σ . (2.24)

where c†~kσ creates an electron with momentum ~k and spin σ. The terms V oσo and

V zσz describe diagonal scattering events in which the TLS-atoms do not tunnel

between wells. The term V xσx (first written down by Zawadowski [Zaw80]),

describes so-called electron-assisted tunneling processes; during these, electron

scattering does lead to tunneling, and hence the associated bare matrix elements
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are much smaller than for diagonal scattering: V x/V z ≃ 10−3.

In certain parts of the parameterspace (one needs “fast” TLSs, see section 2.6),

the TLS-electron interaction can lead to complicated many-body effects, since the

TLS allows the conduction electrons to effectively interact with each other: when

one electron flips the TLS, the next electron knows about this.

The properties of this model will be discussed extensively in chapter 4. For

now, note that its generic behavior can be understood by noting the analogy to

the magnetic Kondo model, where a magnetic impurity (spin 1
2
, described by ~S)

interacts with conduction electrons through

HKondo =
∑

~k~k′

c†~kσ

[
σiσσ′Si

]
c~k′σ′ . (2.25)

In both cases one has a dynamic defect with two spin states (magnetic spin

up/down, or TLS in left or right well), whose coupling to conduction electrons

can cause scattering-induced spin-flips for the defect.

It has been shown [VZ83,MG86] that as the temperature is lowered, the

coupling constant V x and an analogous V y grow to values comparable to V z, and

the TLS-electron model renormalizes to an isotropic 2-channel Kondo model. The

2 channels are the Pauli spin up and down (σ =↑, ↓) of the conduction electrons,

which are not flipped by the interaction (2.24). Hence, the small-T behavior

of the TLS-electron system can be understood in terms of that of the 2-channel

Kondo model (see chapter 4 for details).

Since the 2-channel Kondo model has been studied extensively, this means

that some powerful predictions for the small-T , small-V behavior of the conduc-

tance in Ralph and Buhrman’s nanoconstrictions can be made. They are the

subject of chapter 3.
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2.6 TLSs in nanoconstrictions

In this section we discuss in some detail the physical picture that Dan Ralph has

pieced together [Ralph93] for what actually occurs inside his nanoconstrictions.

We believe, and try to convey this belief to the reader, that the rather numerous

assumptions that need to be made about the TLSs to make the 2-channel Kondo

picture work, are all reasonable, given the lack of information on the microscopic

details about what is really going on in the nanoconstrictions.

Direct Observation of two-level systems: It is a well-established experimental

fact that two-level systems can occur in metal nanoconstrictions, and can influ-

ence the conductance. Ralls and Buhrman [RB88,RRB89] have observed slow,

time-resolved fluctuations of the conductance between several discrete values (see

Fig. 2.12). They ascribe these fluctuations to slow two-level systems [called two-

level fluctuators (TLF)] in the constriction region that hop between their two

wells; the conductance fluctuates (by an amount of order e2/h), depending on

which well they are in. These kind of signals occur in well-annealed devices in

a range of temperatures and voltages where the TLF-motion occurs due to ther-

mally activated hopping “over” the barrier, not tunneling through the barrier,

i.e. they are “slow” two-level systems (hopping rates τ−1 < 108s−1 [CZ95]) with

large inter-well barriers.

The two-level systems that are proposed to give rise to the zero-bias anomaly

in the unannealed devices are, in contrast, “fast” TLSs with small inter-well bar-

riers, through which tunneling can occur (at rates 108s−1 < τ−1 < 1012s−1).

However, these defects presumably have the same microscopic nature as the slow

fluctuators, being composed of atoms or small groups of atoms which move be-
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Figure 2.12 Resistance vs. time in copper nanobridges [RB88] for T < 150 K
showing several types of behavior. Fluctuations studied range from 0.005% to
0.2% of the total resistance. Time scales are somewhat arbitrary, as they depend
on the temperature at which the fluctuation is observed. (a) A single TLF. (b)
Two independent TLF’s. (c) Amplitude modulation. Notice that the amplitude
of the small TLF is larger when the large TLF is down than when it is up. (d)
Frequency modulation of one TLF by another.

tween two metastable configurations. Therefore, Ralph and Buhrman suggest

[RB92], [Ralph93, p. 265] that before annealing, each constriction may contain

some fast, low-barrier tunneling states of the kind that cause a zero-bias anomaly;

annealing would then tend to leave the sample only with two-level systems having

high potential barriers, so that only slow, thermally activated transitions of the

kind seen by Ralls et al. occur.

How many TLS? The maximum amplitude of the ZBA [G(V = 0) − Gmax]

varies from sample to sample, from a fraction of e2/h to as large as 70e2/h. This

indicates that more than one TLS is probably contributing to the conductance.

Assuming that a TLS composed of a single atom will not produce a scattering

cross-section larger than approximately 8π/kF , one can estimate from eq. (2.21)

its contribution to the conductance to be at most ∼ 4e2/h [Ralph93, p.276].

To account for the largest signals, more than 10 such 1-atom TLSs would have

to contribute to the signal. However, since a real TLS may well involve the
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simultaneous small motion of tens of atoms, the corresponding signal per defect

may well be substantially larger, and the required number of multi-atom TLSs

smaller. Nevertheless, we shall see later in chapter 4 that even if many channels

scatter off a single defect, only two pseudo-spin channels eventually dominate

the low-energy physics. Therefore, we probably do need to assume a substantial

number of TLSs in the constriction to explain the size of the signals.

It would not be unreasonable to expect tens of defects in the constriction

region [Ralph93, p.277]: for example, the 6.4Ω constriction studied in [RB92]

has a diameter of ∼ 13 nm [estimated via the Sharvin formula eq. (2.11)], and

there are 105 Cu atoms within a sphere of this diameter about the constriction.

Assuming ∼10 active TLSs to account for a ZBA of ∼ 70e2/h, their density is

therefore roughly of order 10−4/atom, about the same as estimates for the total

density of TLSs in glassy systems.

Dislocation kinks: What could the microscopic nature of the TLSs be in the

present case? Transmission electron microscopy studies of silicon constrictions

with a similar geometry indicate that dislocation networks may form in the con-

striction region during fabrication [Theo91]. Thus, dislocation kinks could act

as TLSs. This would explain property (P5), namely that the addition of even

small (1 %) concentrations of impurities completely eliminates the ZBAs: the

impurities would act as pinning sites for the dislocation kinks, disrupting their

fluctuations between two equivalent positions (see also [RB95, p.3564]).

Asymmetry energy ∆: It will be argued in section 3.4 (and was mentioned on

p.37) that for the 2-channel Kondo picture to make sense, the asymmetry energy

∆ of all the active TLSs has to be ∆
<∼ 1 K, which is a rather small splitting.
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However, dislocation segments in a rather crystalline material would probably

move in a rather symmetric environment, due to the surrounding crystal lattice.

This might be one reason why TLSs with such small ∆s are apparently possible

(see also the autoselection argument below).

It is worth noting that tunneling centers with very small splittings have in fact

been observed in polychrystalline Bi films. Zimmerman et al. [GZC92,ZGH91]

were able to measure directly the parameters of a single slow-tunneling TLS

(i.e. of the kind studied by Ralls and Buhrman), and found values as small as

∆ = 0.08 K [with coupling strengths ρoJ ≃ 0.7 (=
√

2α there)]. Unfortunately,

since these were slow tunneling centers, and the samples were strongly disordered,

it is not clear that the samples of Ralph and Buhrman (fast tunneling, clean

constriction) necessarily will have the same parameters. Nevertheless, the fact

that tunneling centers with very small splittings do exist in some systems is

encouraging.

Finally, it should be mentioned that Wingreen, Altshuler and Meir have re-

cently argued [WAM95] that such splittings can not occur at all in a disordered

material if the TLS-electron coupling has the large values that apply to the over-

screened 2-channel Kondo fixed point. Their arguments, which I do not find

entirely convincing, are presented in section 4.3.

Interactions between TLSs: In principle, TLSs should interact with each other,

due to the strain fields caused around them, and the change in electron density

around them. In fact, Ralls and Buhrman [RB88] have directly observed the

modulation of the conductance signal from one TLSs due to the motion of another

[see Fig. 2.12(c) and (d)]. Unfortunately, very little is known about the strength
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of the interactions between TLSs in systems such as those of Ralph and Buhrman.

The scaling analysis presented in chapter 3 requires interactions to be negligi-

ble (because it assumes Kondo scattering off each individual impurity as though

the others were not present). The success of the scaling analysis implies that

interactions only set in at very low temperatures. Of course, it would be nice to

have some independent way to estimate whether this is a reasonable assumption.

Autoselection: By now it should be evident that a TLS is required to have

some rather special properties in order to contribute to a ZBA. Nevertheless,

ZBAs are seen rather frequently. This might be due to the fact that experiment

autoselects only “interesting” TLS. Those with inappropriate parameters (too

large ∆, too strongly interacting with each other, etc.), simply do not flow to the

strong-coupling 2-channel Kondo fixed point. Hence they do not give rise to an

interesting T - and V -dependence, and only contribute to the boring background

signal. The ZBA arises only from those TLS which happen to have parameters

appropriate for scaling to the strong-coupling 2-channel Kondo fixed point.

Universality: At present, the 2-channel Kondo picture seems to be the only

one that is consistent with all the experimental facts that have been accumulated.

We shall therefore henceforth assume that the 2-channel Kondo picture as the

orrect and appropriate one, and try to extract more quantitative predictions from

it, for direct comparison with experiment. Indeed, some powerful predictions

are possible, as we shall see in chapter 3. These predictions are based on the

assumption that the experiment is in the universal scaling regime of the T = 0

fixed point of the 2-channel Kondo picture. It is important to emphasize that

this means that the predictions are universal, i.e. independent of which particular
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realization of the 2-channel Kondo model one has in mind. It does not matter

whether the TLS is a dislocation kink (as proposed above) or something else, as

long as it is governed by a 2-channel Kondo model in the universal scaling regime.



Chapter 3

Scaling Analysis

In this chapter we carry out a scaling analysis of the conductance G(V, T ) in the

absence of a magnetic field, and demonstrate that it obeys the scaling relation

eq. (2.22) of (P8):

G(V, T ) −G(0, T )

Tα
= F (eV/kBT ) , (3.1)

with α = 0.5 ± 0.05. This is simply an experimental fact, independent of any

theoretical interpretation.1 Nevertheless, this relation was predicted (before its

experimental verification) by Andreas Ludwig on the basis of his conformal field

theory (CFT) solution of the 2-channel Kondo model, and we shall present our

analysis within this framework.

Section 3.1 gives a general scaling argument and a back-of-the-envelope cal-

culation to motivate Ludwig’s scaling Ansatz for the conductance G(V, T ). Sec-

tion 3.2 presents a scaling analysis of the data, verifying that the data indeed

1Indeed, an explanation completely different from our’s has recently been proposed by
Wingreen et al. [WAM95]. They attribute the ZBA to disorder-enhanced electron-electron
interactions, but in our opinion their explanation is at odds with some of the other experimen-
tal facts, in particular (P5) on page 28, as was argued on page 30.

47
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does obeys Ludwig’s scaling Ansatz. In section 3.3 we discuss the magnetic field

dependence of the conductance, and in section 3.4 we obtain an experimental

upper bound on the asymmetry energy ∆. Finally, we summarize the results of

this chapter in section 3.5.

3.1 Ludwig’s Scaling Ansatz

The 2-channel Kondo model is known [NB80] to flow to a non-trivial, non-Fermi-

liquid fixed point at T = 0. This fixed point governs the physics in the so-called

small-T , small-V regime, which is defined by the conditions T ≪ TK, eV ≪ kBTK,

where TK is the Kondo temperature (the characteristic energy scale in the problem

below which perturbation theory breaks down). Affleck and Ludwig have solved

the k-channel Kondo problem exactly at T = 0, using conformal field theory

[AL93].

In the spring of 1993, Andreas Ludwig suggested that in the regime of smallest

T and V in the Ralph-Buhrman experiment the TLSs that contribute to the zero-

bias anomaly are all in the scaling regime of the T = 0 fixed point of the 2-channel

Kondo model. Based on this suggestion he predicted that the conductance should

obey the scaling relation eq. (3.1), with α = 1
2
.

3.1.1 Ludwig’s original argument

Ludwig’s argument leading to eq. (3.1), as originally presented in [RLvDB94], is

as follows: Consider first the conductance signal Gi(V, T ) due to a single TLS

(labeled by the index i) with T ≪ T iK , eV ≪ kBT
i
K , ∆i = 0, but arbitrary ratio

eV/kBT . According to the general theory of critical phenomena, one expects that

physical quantities will obey scaling relations in the neighborhood of any fixed
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point.2 For the conductance in the present case, a natural scaling Ansatz is:

Gi(V, T ) = Gi(0, 0) +BiT
α Γ

(
AieV

(kBT )α/β

)
. (3.2)

The parameters Ai and Bi are non-universal, positive constants, analogous to

the a±i and bi of eq. (2.21), which may vary, for instance, as a function of the

distance between the TLS and the narrowest point of the constriction. However,

the function Γ(v) should be a universal function, a fingerprint of the 2-channel

Kondo model that is the same for any microscopic realization thereof. It must

have the asymptotic form Γ(v) ∝ vβ as v → ∞, so that G(V, T ) is independent

of T for eV ≫ kBT . Due to the arbitrariness of Ai and Bi, we are free to use the

normalization conventions that

Γ(0) ≡ 1 , Γ(v) vs. vβ has slope=1 as vβ → ∞ . (3.3)

Now, if V is small enough, its only effect will be to create a slightly non-

equilibrium electron distribution in the leads. In particular, effects that directly

affect the impurity itself, like V -dependent strains, or the “polarization” of the

TLS in one well due to the non-equilibrium electron distribution, etc. can then

be neglected. In this case, which we shall call the weakly non-equilibrium regime,

V only enters in the Fermi functions of the leads, in the form [eβ(ε−eV/2) + 1]−1,

i.e. in the combination eV/kBT , implying α = β.

For a constriction with several defects, the conductance signal will be additive,

i.e. (now using α=β):

G(V, T ) = G(0, 0) + Tα
∑

i

Bi Γ
(
AieV

kBT

)
. (3.4)

2This is discussed in detail in chapter 8.
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Subtracting G(0, T ) from this to eliminate G(0, 0) then immediately gives the

scaling relation eq. (3.1); F (v) is non-universal, since it depends on the Ai and

Bi.

This is as far as general scaling arguments will take one; a specific theory is

needed to predict α. To this end, Ludwig proposed an analogy with the con-

ductivity of a bulk metal containing 2-channel Kondo impurities. There the bulk

conductivity σ(T ) is determined, via the Kubo formula,

σ(T ) = 2
e2

3m2

∫ d3p

(2π)3

[
−∂εpfo

]
~p 2τ(εp) , (3.5)

by the elastic scattering life-time τ−1(ω) = −2Im ΣR(ω) , where ω ≡ εp − µ, and

ΣR(ω) is the retarded electron self-energy. Affleck and Ludwig have calculated

ΣR(ω) exactly, using CFT, and found that τ−1 has the following scaling form for

T ≪ TK:

τ−1(ω) ≡ −2ImΣR(ω) = τ−1
o + b̃ T 1/2 Γ̃(ω/T ) . (3.6)

Here b̃ is a non-universal (positive) constant and Γ̃(x) a universal function (given

in [AL93, eq.(3.50)] and eq. (8.38)]), with the properties G̃amma(x) < 0, Γ̃(x) =

Γ̃(−x), Γ̃(x) ∝ x1/2 as x→ ∞, (the proportionality constant being negative).

It follows immediately from the Kubo formula that the bulk conductivity has

the form

σ(T ) = σo +
(
T

TK

)1/2

σ1 . (3.7)

The power law T 1/2 is a signature of the non-Fermi-liquid nature of the T = 0

fixed point. For a Fermi liquid, one would have had T 2.

By analogy with the bulk case, Ludwig proposed that the bulk conductivity

exponent α = 1
2

should also apply to the conductance in the nanoconstriction

geometry, i.e. in eq. (3.2) one should also have α = 1
2
.
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3.1.2 Back-of-the-envelope calculation of Γ(v)

The above argument by analogy with the bulk conductivity has since been turned

into a calculation tailored to the nanoconstriction geometry, which is presented in

chapter 9. It turns out that the main idea can be summarized on the proverbial

back of an envelope, if one is willing to gloss over some important subtleties:

The change in conductance due to back-scattering off defects in a nanocon-

striction is given by eq. (2.21). The main difference between a bulk metal and a

nanoconstriction is that the latter represents a decidedly non-equilibrium situa-

tion. However, in the weakly non-equilibrium regime, i.e. if the voltage is small

enough, it is a reasonable guess (which is verified in later chapters) that the scat-

tering rate of electrons off a TLS in the nanoconstriction is not all that different

as when the TLS are in the bulk (provided one ignores interactions between dif-

ferent TLSs, which we always do). Hence, let us boldly use3 the equilibrium form

for τ−1, namely eq. (3.6), in eq. (2.21) for ∆G, thus obtaining:

G(V, T ) = G(0, 0)− K̃b̃T 1/2
∫
dω[−∂ωfo(ω)]

∑

i

bi
1
2

[
Γ̃(ω− 1

2
eV a+

i ) + Γ̃(ω+ 1
2
eV a−i )

]

(3.8)

Now write ω/kBT ≡ x, eV/kBT ≡ v, fo(v) ≡ [ev +1]−1, and define a (universal)

function Γ(v) by:

γoΓ(γ1v) ≡ −
∫
dx[−∂xfo(x)]Γ̃(x+ v/2) . (3.9)

Here γo and γ1 are universal (positive) constants, chosen such that Γ(v) is nor-

malized as in eq. (3.3). Using the property Γ̃(x) = Γ̃(−x) in the first term of

3The justification for this assumption is explained in section 9.3, page 250.
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eq. (3.8), we find

G(V, T ) = G(0, 0) + T 1/2
∑

i

(K̃b̃biγo)
1
2

[
Γ(a+

i γ1v) + Γ(a−i γ1v)
]
. (3.10)

Eq. (3.10) is precisely of the form eq. (3.4), and thus, assuming eq. (3.6) for τ−1(ω)

as given, we have found a “derivation” for Ludwig’s scaling Ansatz.4 Moreover,

this little calculation has furnished us with an expression, namely eq. (3.9), for the

universal scaling function Γ(v), in terms of the exactly known universal function

Γ̃(x).

This, in a nutshell, is all there is to the scaling prediction. The reader not

interested in the technicalities of CFT and non-equilibrium quantum statistical

mechanics can, with sigh of relief, disregard all subsequent chapters without fear

of missing out on anything but mathematical physics. The origin of T 1/2 and

of the scaling relations, and the calculation of Γ̃(ω), of course, will then forever

remain a mystery to her.

3.2 Scaling Analysis of Experimental Data

In this section we present a careful scaling analysis of the experimental data. The

analysis was done by Dan Ralph, in close collaboration with Andreas Ludwig and

myself. I thank Dan Ralph for his kind permission to directly quote (indicated

by “ ”) substantial portions of the text, and all the figures, from section 6.4.2 of

his thesis for the present section.

4Note though that eq. (3.2) is actually a little too simplistic, since in eq. (3.10) each defect
gives rise to two terms with different a+

i and a−i . Note also that K̃, bi, γo are by definition

all positive constants. However, it turns out that the sign of b̃ is not determined by CFT (see
[AL93, after eq. (3.64)]). To explain the observed increase of G(V, T ) relative to G(V, 0) as T
is increased, we have to choose b̃ > 0.
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“In general, the zero-bias signals always have the sign corresponding to a

decrease in conductance at low T and low V . The signals are temperature-

dependent, growing larger in amplitude with decreasing temperature. As a sam-

ple is cooled, the temperature at which the zero-bias features become measurable

varies from sample to sample, ranging from 10 K to 100 mK. The amplitude of

the signals may also vary over a large range, from less than 1 e2/h to as much as

70 e2/h at 100 mK.”

3.2.1 First Test of T 1/2 and V 1/2 Behavior

“Fig. 3.1 shows the temperature dependence of the V = 0 conductance for 4

different samples on semi-log and T 1/2 scales. Fig. 3.2 displays the voltage de-

pendence of the differential conductance for 3 of the samples at 100 mK (the

fourth was not measured to such low temperatures). At high T and V , the con-

ductance is approximately logarithmic. The range of logarithmic behavior varies

from sample to sample, but may extend almost a decade in V or T . As T or V is

lowered, the conductance on the semi-log plots crosses over from a logarithmic to

a slower dependence. Crossover temperatures for these samples are in the range

of a few K, while crossover voltages are a few tenths of mV.”

At lower T and V , both the V and T behavior may be accurately described

by a square root dependence.5 This is in agreement with the scaling relation

eq. (3.4) and the prediction α = 1
2
, which give (using eq. (3.3)):

G(0, T ) = G(0, 0) +BΣT
1/2 , BΣ ≡

∑

i

Bi ; (3.11)

5“The size of deviations from T 1/2 behavior in Figs. 3.1(b) (1 part in 3000) is consistent with
the magnitude of amplifier drift in these measurements, as they were performed over several
days. The V -dependent measurements are less subjective to such drift problems, as they are
taken over a much shorter time span.”
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Figure 3.1 Temperature dependence of the V = 0 conductance for 4 unannealed
Cu samples, plotted on (a) a semi-log scale and (b) versus T 1/2. The values of
the conductance for the different samples, extrapolated to T = 0 as shown are
for sample #1: 2829 e2/h, sample #2: 3973 e2/h, sample #3: 30.8 e2/h, and
sample #4: approximately 2810 e2/h.
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Figure 3.2 Voltage dependence of the differential conductance at T = 100 mK for
some of the same samples as in Fig. 3.1.
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G(V, To) = const+ Fo (eV/kB)1/2 at fixed To ≪ eV/kB . (3.12)

Values for BΣ and Fo can be obtained from straight-line fits in Figs. 3.1(b) and

Figs. 3.2(b), and are listed in table 3.1.

However, “the data is such that, at this stage of the analysis, other functional

forms cannot be ruled out. At low V , the voltage dependence could be consis-

tent with power laws ranging from V 0.25 to V 0.75. Much more stringent tests of

the theory are provided by the tests of the scaling properties of the V and T

dependence of the conductance,” which are described in the next section.

3.2.2 Scaling Collapse

The most stringent test of the exponent α of the conductance signals is provided

by the scaling properties of the combined V and T dependence of G(V, T ). It is

convenient to rewrite the scaling Ansatz eq. (3.4) to eliminate G(0, 0), which is

not measured directly:

G(V, T ) −G(0, T )

Tα
=
∑

i

Bi [Γ(Aiv) − 1] ≡ F (v) , (3.13)

where v = eV/kBT . To check this relation, one should plot the left hand side vs.

v. Provided that one has chosen the correct value of α, the low-T curves for a

given sample should all collapse, with no further adjustment of free parameters,

onto the sample-specific scaling curve F (v) vs. v. Furthermore, when F (v) is

plotted vs. vα, the resulting curve is expected be linear for large vα. By adjusting

α to obtain the best possible collapse, one can determine α from the data quite

accurately. 2-channel Kondo theory, of course, predicts α = 1
2
.

The raw data for the differential conductance G(V, T ) of sample #1 is shown6

6“For eV much greater than kBT , the conductance curves approach each other, but do
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in Fig. 3.3, for T ranging from 100 mK to 5.7 K. “After rescaling as in eq. (3.13)

and plotting the left-hand side vs. v, these data have the form shown in Fig. 3.4(a).

The data at low V and low T collapse remarkably well onto one curve. Further-

more, F (v) vs. vα has linear asymptote as v → ∞ [Fig. 3.4(b)], illustrating

eq. (3.12).

The lowest curves in the figure, which deviate from scaling, correspond to

the highest temperatures. These deviations from scaling at high V and T are

expected, since if either V or T becomes too large (≥ TK), the scaling Ansatz is

expected to break down. We estimate TK as that T for which the rescaled data

already deviate from the scaling curve at eV/kBT ≤ 1. This gives TK ≥ 5 K for

the defects of sample 1.

The quality of the scaling provides an exacting test of the exponent in the

scaling Ansatz. Substitution of T 0.4 or T 0.6 for T 1/2 in eq. (3.13) produces a clear

worsening of the collapse of the data. Fig. 3.5 and 3.6 show the poor collapse of

the data for exponents other than α = 1
2
.

As a more quantitative measure of the quality of scaling, we define the pa-

rameter D(α), which is the mean square deviation from the average scaling curve

F̄ (v) ≡ 1
N

∑N
k=1 Fk(v) (where k labels the different experimental curves), inte-

grated over small values of v = eV/kBT (< vmax):

D(α) ≡ 1
N

N∑

k=1

∫ vmax

−vmax
dv
[
Fk(v) − F̄ (v)

]2
. (3.14)

not cross, in the range of voltages that are displayed. This demonstrates that the voltage
dependence of the conductance is not purely a heating effect. If the only effect of an applied
voltage were to cause the sample to heat, the currents through the sample at different T would
converge at high V (because V would determine the effective temperature). This would require
that the differential conductance curves at different T would cross, in order that the area under
the curves would be equal at high V . This does not occur in the range of V displayed in
Fig. 3.3.”
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Figure 3.3 Voltage dependence of the differential conductance for sample #1 of
3.1, plotted for temperatures ranging from 100 mK (bottom curve) to 5.7 K (top
curve).
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Figure 3.4 (a) The data of Fig. 3.3 for sample #1, rescaled according to eq. (3.13)
and plotted vs. v = eV/kBT . The low-temperature, low-voltage data collapse
onto a single curve, with deviations when the voltage exceeds 1 mV. (b) When
plotted against v1/2, the resulting scaling curve is linear for large v1/2, in agree-
ment with eq. (3.12) .
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Figure 3.5 Attempts at rescaling the data of Fig. 3.3 for sample #1, using tem-
perature exponents of 0.3 and 0.4, showing that the collapse of the data does not
work as well as for an exponent of 0.5.
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Figure 3.6 Attempts at rescaling the data of Fig. 3.3 for sample #1, using tem-
perature exponents of 0.6 and 0.7, showing that these do not collapse the data
as well as 0.5 either.
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D(α) = 0 would signify perfect scaling. Taking the 5 lowest T (≤ 1.4 K), and

vmax = 8 (these are the data which a priori would be expected to be most

accurately within the scaling regime, since they are closest to the T = 0 fixed

point), one obtains Fig. 3.7(a). Evidently the best scaling of the data requires

α = 0.48 ± 0.05 (the estimated uncertainty of ±0.05 comes from the uncertainty

in the exact minimum in the curve in Fig. 3.7(a)). This is in good agreement

with the CFT prediction of α = 1
2
.

We have also tested the more general scaling form of Eq. (3.2), and have

observed scaling for 0.2 < α < 0.8, with (β−0.5) ≈ (α−0.5)/2, with best scaling

for α = 0.5 ± 0.05. But as argued earlier on page 49, one expects α = β on

general grounds.

The scaling Ansatz has also been tested on two other Cu samples. The

rescaled data for sample 2 (Fig. 3.8) collapse well onto a single curve at low

V and T , for α = 0.52 ± 0.05 [Fig. 3.7(b)] and with TK ≥ 3.5 K. At high V

and high T the non-universal conductance spikes, discussed previously [RB92,

Ralph93,RB95], are visible. The data for sample #3 do not seem to collapse as

well (Fig. 3.9) (illustrating how impressively accurate by comparison the scaling

is for samples #1 and #2). However, we suggest that this sample in fact dis-

plays two separate sets of scaling curves (see arrows), one for T ≤ 0.4 K and

one for 0.6 K ≤ T ≤ 5 K, with interpolating curves in between. This could be

due to defects with a distribution of TK’s, some having TK ≃ 0.4 K and others

having TK ≥ 5 K. The second (higher-T ) set of curves do not collapse onto each

other as well as the first, presumably because there is still some (approximately

logarithmic) contribution from the TK ≃ 0.4 K defects.
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Figure 3.7 The deviation parameter D(α) of eq. (3.14), which quantifies the
quality of scaling, for (a) sample #1 and (b) sample #2. The minimum of D(α)
defines the value of α that gives the best scaling, giving α = 0.48 ± 0.05 for
sample #1 and α = 0.52 ± 0.05 for sample #2.
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Figure 3.8 Differential conductance data for sample #2 of Fig. 3.1, at tempera-
tures from 200 mK to 5.7 K, rescaled according to eq. (3.13). The low-voltage,
low-temperature data collapse well onto one curve.
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Figure 3.9 Differential conductance data for sample #3 of Fig. 3.1, at temper-
atures from 50 mK to 7.6 K. The data do not collapse onto one curve for this
sample, possibly due to the existence of TLSs with Kondo temperatures in (rather
than above) the temperature range of the measurement.
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“A somewhat complimentary estimate for the highest Kondo temperatures of

the TLSs in these samples comes from the temperature at which the zero-bias

signals first become visible as the samples are cooled. For all 3 samples featured

here, this value is approximately 10 K.

“The magnitudes of the Kondo temperatures, being in the few K range, are

rather large relative to the earliest theoretical predictions of 0.01-0.1 K [VZ83,

ZV92]. However, they are not out of line with more recent speculations that

virtual excitations to higher-lying energy levels in the double-well potential of a

TLS may increase the Kondo temperature above previous estimates, to around

1-10 K” [ZZ94a].

3.2.3 Universality

If for any sample all the Ai in Eq. (3.13) were equal, one could directly extract

the universal scaling curve from the data. The curve obtained by plotting

G(V, T ) −G(0, T )

BΣT 1/2
vs. (AeV/kBT )1/2 , (3.15)

with A determined by the requirement that the asymptotic slope be equal to

1 (compare eq. (3.3)), would be identical to the universal curve [Γ(x) − 1] vs.

x1/2. Such plots are shown in Fig. 3.10(b). The fact that the scaling curves for

all three samples are indistinguishable indicates that the distribution of Ai’s in

each sample is quite narrow, and is a measure of the universality of the observed

behavior.

To make possible quantitative comparisons of the data with the CFT pre-

diction of eq. (3.9), we now proceed to extract from the data the value of one

universal (sample-independent) constant and an upper bound on another (es-
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Figure 3.10 Representative conductance curves which lie along the scaling curves
for each of the 3 samples in Fig. 3.4, Fig. 3.8 and Fig. 3.9. For sample #1, the
curve corresponds to T=1.1 K, for sample #2 1.4 K, and for sample #3 250 mK.
These curves were chosen because they had the best signal-to-noise ratio for
each sample, for those lying along the scaling curve. (a) The y-axis is scaled
by the value of BΣ determined from the temperature dependence of the V = 0
conductance for each sample (values listed in Table 6.1). (b) In addition, the
x-axis scaled with a number ai for each sample. The scaling curves for all three
samples seem to lie on one universal curve.
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sentially Taylor coefficients of Γ(v)). The procedure by which we extract these

parameters is independent of the possible distribution of Ai’s and Bi’s.

Consider the sample-specific scaling function F (v) defined in Eq. (3.13). By

construction, F (0) = 0, and if F (v) is symmetric and analytic at v = 0 (as

the data suggest) one also has F ′(0) = 0. The second derivative, F ′′(0) =

Γ′′(0)
∑
iBiA

2
i , may be measured directly from the low eV/kBT portion of the

scaling curve.

Next, consider the regime v ≫ 1. As argued earlier, here Γ(v) ≃ vβ, and since

β=α=1/2, with our normalization conventions eq. (3.3) we can write, asymptot-

ically

Γ(v) − 1 ≡ v1/2 + Γ1 +O(v−1/2) . (3.16)

It follows from Eq. (3.13) that

F (v) = v1/2F0 + F1 +O(v−1/2) , (3.17)

where F0 ≡
∑
iBiA

1/2
i and F1 ≡ Γ1BΣ. Values for F0 and F1 may be determined

from the conductance data by plotting F versus (eV/kBT )1/2 and fitting the data

for large (eV/kBT )1/2 to a straight line. For samples 1 and 2 we fit between

(eV/kBT )1/2=2 and 3, and for sample 3 (using only the curves below 250 mK)

between 2 and 2.5. Values for F ′′(0), F0, and F1 are listed in Table 3.1. The

uncertainties listed are standard deviations of values determined at different T

within the scaling regime for each sample.

From these quantities, we obtain an experimental determination of the uni-

versal number Γ1 = F1/BΣ and an upper bound on the universal number Γ′′(0):

F ′′(0)B3
Σ

F 4
0

=
Γ′′(0) [

∑
iBiA

2
i ]B

3
Σ[∑

iBiA
1/2
i

]4 ≥ Γ′′(0) . (3.18)
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Table 3.1 Measured parameters of the scaling functions for the Kondo signals
in 3 Cu samples. BΣ, F ′′(0), Fo and F1 have units K−1e2/h, and Γ1 and
F ′′(0)B3

Σ

F 4
0

≥ Γ′′(0) are dimensionless.

# BΣ F ′′(0) F0 F1 Γ1 = F1

BΣ

F ′′(0)B3
Σ

F 4
0

1 7.8± 0.2 0.55± 0.04 4.2± 0.3 –5.7± 0.9 –0.73± 0.11 0.8± 0.3

2 25.2± 0.7 1.03± 0.09 12.8± 0.8 –19.7± 1.5 –0.78± 0.06 0.6± 0.2

3 10.3± 0.4 0.82± 0.06 6.0± 0.6 –7.7± 1.6 –0.75± 0.16 0.7± 0.3

Values for Γ1 and this ratio are listed in Table 3.1 and are consistent among all 3

samples.

3.3 Magnetic Field Dependence

Since the electron-TLS interaction is non-magnetic, it is not entirely obvious in

what way a magnetic field (H) couples to the system. However, at least two

possibilities come to mind, both of which drive the system away from the fixed

point, but not in precisely the same manner. Firstly, due to Pauli paramagnetism,

a magnetic field breaks channel symmetry (recall that the channel index i labels

Pauli spin ↑, ↓), since it causes a net magnetic moment M = µ2
0HN(εF ) [Ziman,

eq, (10.11)]. Secondly, it has been argued theoretically [AS89] and demonstrated

experimentally [ZGH91,GZC92] that the asymmetry energy of a TLS is a random

function7 of the magnetic field, ∆ = ∆(H). The reason is, roughly, that ∆

depends on the difference δρ in the local electron density at the two minima of

the TLS potential; due to quantum interference effects, δρ can change in a random

7It may be, though, that this effect occurs only for strongly disordered systems, such as
those studied in [ZGH91,GZC92], where there is a large amount of impurity scattering, but not
in clean systems. In this case it would not apply to the present experiment, and the analysis
below would not be applicable.
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way when H is changed, so that ∆ depends on H too. Thus in general ∆(H) is

a non-monotonic, random function of H. However, for a TLS that started out

with ∆ ≃ 0, ∆ will in general increase as H is turned on (see [ZGH91, Fig. 4]).

A magnetic field will affect the conductance via its effect on the self-energy

[since τ−1(ω) = −2Im ΣR(ω)]. For small values of H and ∆, the distance in the

(T,H,∆) parameter space that the system has been displaced away from the

(T,H,∆) = (0, 0, 0) fixed point due to channel anisotropy (CA) and asymmetry

energy (AE), is proportional to H and ∆, respectively. Now, it can be shown

that both channel anisotropy and asymmetry energy (which corresponds to a local

magnetic field h = ∆ in the language of the magnetic Kondo problem) are, in the

RG sense, relevant perturbations with scaling dimensions 1
2

(see eqs. (3.15) and

(3.19) of [AL92b], or [CZ95, section 3.4.1 (e)]). That means that the self-energy

and hence τ−1 is a function of
(

H2

kBTECA

)
and

(
∆2

kBTEAE

)
, where ECA and EAE are

constants that set the energy scales for channel anisotropy and asymmetry energy

to become important:8

τ−1(ω,H,∆, T ) = τ−1
o + b̃T 1/2Γ̃

(
ω

T
,

H2

kBTECA

,
∆2

kBTEAE

)
. (3.19)

Since τ−1 must be T -independent in the limit T → 0, we must have asymptoti-

cally:

Γ̃(x, y, z) ∼ y1/2 for x, z <∼ 1, and y → ∞ ; (3.20)

Γ̃(x, y, z) ∼ z1/2 for x, y <∼ 1, and z → ∞ . (3.21)

8This can be proved using finite-size scaling arguments: for a system of fermions, all fields
must be anti-periodic, with period β = 1/kBT , in the imaginary time direction, i.e. they live
on a strip of width L ≡ β. Therefore the limit T → 0 corresponds to the customary L−1 → 0
in finite-size scaling arguments, i.e. T is a relevant perturbation with scaling dimension 1 (see
section 8.4).
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Using these results in eq. (3.9) for Γ(v) and eq. (3.10), we can make the following

predictions, at V = 0 and in the limit T → 0:

If the channel anisotropy effect of H dominates the asymmetry energy effect

(i.e. ECA ≪ EEA), but H is still small enough that one is close to the 2-channel

fixed point, then at V = 0, and in the limit T → 0,

G(H,T ) −G(0, 0) ∝ |H| . (3.22)

On the other hand, if the effects of a change in asymmetry energy ∆(H) with

H dominate the channel anisotropy effect, (i.e. EEA ≪ ECA), then

G(H,T ) −G(0, 0) ∝
∑

i

B̃i|∆i(H)| . (3.23)

In the latter case, the detailed H-dependence is essentially unknown, since noth-

ing is known about the random functions ∆i(H), apart from the fact that they

probably increase with |H| for small H.

Unfortunately, in the absence of a microscopic model for the TLSs, it seems

impossible to predict from first principles which of the 2 effects will dominate

the other. The experimental H-dependence is shown in Fig. 3.11, which shows

the non-analyticity at H = 0 predicted by eq. (3.22), suggesting that channel

anisotropy effects are dominant at small H. On the other hand, the non-universal

non-monotonic features seen at large H for sample #2 (which is also the one

containing the conductance spikes), could possibly be due to the non-monotonic

features of ∆(H) becoming important at large H. Thus, while it would be an

exaggeration to claim that the 2-channel Kondo model correctly “predicts” the

observed H-dependence, it evidently is possible to accommodate the observed

H-dependence within the 2-channel Kondo phenomenology.
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Figure 3.11 Magnetic field dependence of the V=0 conductance for the 3 unan-
nealed Cu samples at 100 mK. (a) Absolute magnetoconductance. (b) Magneto-
conductance scaled by the value of BΣ for each sample. (c) Magnetoconductance
relative to the change in conductance between 100 mK and 6 K. An applied mag-
netic field alters, but does not eliminate, the zero-bias conductance signal due to
TLSs.



73

If H is made large enough, the polarization of the Fermi sea will become so

strong that one channel of conduction electrons (the one with higher Zeeman

energy) will decouple from the impurity altogether, and the system will cross

over to the one-channel Kondo fixed point, at which the conductance T -exponent

is α = 2. In this scenario, the conductance, at fixed, large H, should obey the

scaling relation eq. (3.13), with α = 2 [AL93, eq. (D29)]. Dan Ralph performed

such a V, T scaling analysis for sample #2 at fixed H = 6 T (Fig. 3.12). The

data do not collapse with α = 1
2

and also not with α = 2, meaning that the

system is neither at the 2-channel fixed point nor at the 1-channel fixed point. A

reasonable collapse is obtained for α = 0.3 [Fig. 3.12(b)]. This might mean that

the data in Fig. 3.12 correspond to some complicated crossover regime, between

the limits of 1-channel and 2-channel behavior. Alternatively, since H = 6 T is a

very large field, and for sample #2 non-monotonic features, that are presumably

non-universal, have already set in at fields as small as 1 T, the 6 T data might

simply be in the non-universal regime at which no scaling should be expected.

It would be interesting to perform a V, T scaling analysis for a set of small

H-fields, between 0 and 1 T, which are presumably still in the universal regime.

This would allow a systematic analysis of the flow away from the 2-channel Kondo

fixed point as a function of H. Unfortunately the experiments were done 2 years

ahead of the theory, and hence not enough data is available to carry through such

an analysis.

If one assumes channel anisotropy to be the dominant effect ofH, then in prin-

ciple it should be possible to calculate exactly, using Bethe-Ansatz techniques,

the cross-over scaling function G(H,T ) from the 2-channel to the 1-channel fixed
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Figure 3.12 (a) Differential conductance at 6 Tesla for sample #2 of Fig. 3.1,
rescaled according to eq. (3.13), for temperatures from 100 mK to 1.1 K. The
data no longer collapse onto one curve, indicating that at high fields the system is
no longer governed by the T = 0 fixed point of the two-channel kondo model. (b)
The low-temperature data collapse reasonably well for a temperature exponent
of 0.3. The curve which does not collapse corresponds to 1.1 K.
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point [Lud95]. This would be a very interesting theoretical challenge, since such

cross-over functions are in general hard to calculate. However, the theorist set-

ting out to calculate this cross-over function should be aware of the uncertainty

as to which effect, channel anisotropy or energy asymmetry, dominates in the

actual experiment (in particular since non-monotonic behavior is observed for

G(H) in some samples). Unfortunately, this uncertainty may somewhat limit the

applicability to experiment of such a calculation.

3.4 Asymmetry energy ∆

The analysis of the previous section enables us to estimate an upper bound on the

asymmetry energy ∆ (at H=0) in our samples. Our scaling analysis (at H=0)

assumes that ∆2

TEAE
is small enough that the scaling form eq. (3.19) is essentially

independent of this argument. This implies that ∆2

TEAE
<∼ 1, i.e. T >∼

∆2

TK
, where we

have assumed that EAE ≃ TK (since at H=0 and V ≪ TK, the only characteristic

energy scale in the problem is TK).

The fact that the data for samples 1 and 2 show pure (T/TK)1/2 scaling

for 0.4 K < T < TK implies that any non-zero ∆ must be rather small: for

TK ≈ 5 K, good scaling down to 0.4 K implies ∆2

TK
< 0.4 K and hence ∆< 1.4 K.

We suggest that the defects that are selected by (i.e. dominate) our transport

measurements are those with a strong V, T -dependence. Such TLSs must have

significant tunneling amplitudes, and hence cannot have large ∆ [Zaw80, (b)

p.1599–1600]. Also, the microscopic origin of our TLSs, likely dislocations in

clean metal, may well produce lower asymmetry energies than for TLSs in glassy

materials. A longer discussion of the likelihood of finding TLSs with ∆
<∼ 1 K in
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a nanoconstriction may be found in section 2.6 on page 43.

3.5 Summary

We have shown in this chapter that V, T scaling of the conductance G(V, T ), with

a T -exponent α = 1
2
, is an established experimental fact. We have argued that

this scaling behavior can be understood naturally within the phenomenology of

the T = 0 fixed point of 2-channel Kondo model. Breakdown of scaling for larger

T and V values is explained too, since for these the system is no longer fine-

tuned to be close to the T = 0 fixed point, so that scaling is spoiled. Estimates

of TK in the range 1-5 K, which is reasonable, were obtained. The magnetic field

dependence for small H can also be understood within this framework, though

an unambiguous scaling analysis has not been possible, due to lack of data, and it

remains an open question whether it is channel anisotropy or asymmetry energy

effects that are dominant. Finally, a rather small but in our opinion reasonable

upper bound for the asymmetry energy ∆ <∼ 1 K has been obtained.

We hope to have persuaded the reader that the 2-channel Kondo model, at its

T = 0 fixed point, is in rather good agreement with the observed phenomenology,

and that quantitative calculations based on this model are therefore warranted.

The remainder of this thesis is devoted to a quantitative calculation of the scaling

function Γ(v), to be compared with the experimental curve in Fig. 3.10(b). The

final result is shown in 9, Fig. 9.6.

The theoretical framework needed to perform this calculation, namely confor-

mal field theory, may seem rather formidable to the uninitiated reader. Some may

have their doubts whether it is sensible to apply such elaborate theoretical tools
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to the present experimental system, given the lack of microscopic information

about it. Our attitude is: once a model has been deemed worthy of careful con-

sideration, and in the present chapter we have tried to argue that the 2-channel

Kondo model certainly qualifies, one should fearlessly employ whatever tools nec-

essary, be they ever so involved, to extract from it quantitative predictions. In

particular when interested, as we are, in universal properties close to a critical

point, microscopic details should not matter.



Chapter 4

The Non-Magnetic Kondo

Problem

The goal of this chapter is to describe the orbital (non-magnetic) Kondo model

of Zawadowski and coworkers [Zaw80,BVZ82,VZ83,VZ85,VZZ86,VZZ88,Zar93,

ZZ94a,ZZ94b,Zar95], that describes the interaction of a tunneling center (TC)

with conduction electrons in a metal. As an introduction, in section 4.1 we define

the multi-channel (magnetic) Kondo model of Nozières and Blandin [NB80] and

discuss the physical picture developed by Nozières for the T → 0 regime. Section

4.2 is devoted to Zawadowski’s model. In particular, we outline in some detail the

poor man’s scaling RG analysis that determines the nature of the RG flow away

from the weak-coupling regime. In section 4.3, we briefly discuss and comment on

some recent criticism of this model by [WAM95] and [MF95]. Finally, in section

4.4 we discuss the complications that occur when considering a non-equilibrium

version of the orbital Kondo model.

78
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The main result of this chapter is that the non-magnetic Kondo model flows to

an isotropic, 2-channel Kondo fixed point, described by the effective Hamiltonian

Heff
int of eq. (4.23). The non-equilibrium version (4.27) of this Hamiltonian is used

in chapter 9 as starting point [see eq. (9.6)] for our calculation of the conductance

through Ralph and Buhrman’s nanoconstrictions.

4.1 The Multi-channel Kondo Model

In this section, we define the magnetic multi-channel Kondo model of Nozières

and Blandin and discuss the physical picture developed by Nozières for the T → 0

regime. The material can be found in any number of reviews, see e.g. the book

by Hewson [Hew93], or [Lud94a, p. 359].

4.1.1 Definition of the Model

The magnetic multi-channel Kondo problem was introduced by Nozières and

Blandin [NB80]. They consider the general case of a spin-s magnetic impurity,

coupled anti-ferromagnetically to k degenerate bands (called channels or flavors)

of electrons in an SU(2)(spin) ×SU(k)(flavor) invariant way. In the so-called weak-

coupling limit , where perturbation theory holds, the Hamiltonian is defined as

H =
∑

pαi

εpc
†
pαicpαi + λK

∑

pp′

∑

αα′i

c†pαi
1
2
~σαα′cp′α′i · ~S , (λK > 0) . (4.1)

Here the operators ~S ≡ b†a
~Sabbb describe the local spin-s impurity, where [SA, SB]ab

= iεABCSCab and |a〉 = b†a|0〉 (for a ∈ [−s, . . .+ s]) are the 2s+ 1 spin states of the

magnetic impurity. Electrons are described by the second-quantized operators

c†pαi, where p is the magnitude of its momentum, α, β = ± labels the electron
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spin1, and i = 1, . . . , k labels the k channels. Note that H is diagonal in channel

indices, which are therefore “spectator” indices.

In Nozières and Blandin’s original work they considered an impurity with an-

gular momentum l, to which only electrons with angular momentum l, described

by the operators c†plm,α can couple. The channel index i then corresponds to

ml ∈ [−l, . . .+ l], i.e. there are k = 2l+ 1 channels. However, more generally, the

channel index i can correspond to any quantum number in which the interaction

is diagonal.

Kondo became famous for showing that the second-order vertex correction

[see Fig. 4.4(a)], calculated in perturbation theory in λK, depends on log T/D,

where D is the band-width and T the temperature [Kon64], [Hew93, section 2.4].

This means that as T is lowered below a characteristic cross-over temperature

TK, called the Kondo temperature, perturbation theory breaks down, because

log T/D becomes so large that the expansion coefficient in the perturbation series

is no longer small.

The break-down of perturbation theory indicates that complicated many-body

physics is at work: the interaction with a dynamical impurity, whose spin can

flip, implies that the electrons are no longer independent: (very) loosely speaking,

when an electron interacts with the impurity and flips its spin, the next electron

notices that the spin has flipped, and hence is affected by the previous electron,

leading to an effective electron-electron interaction.

Subsequent work by Anderson and coworkers [And70,YA70,AYH70] and Wil-

1In this section we use the terminology that is appropriate to the magnetic multi-channel
Kondo problem, i.e. “spin” (α, β) refers to the Pauli spin that couples to the magnetic impurity.
In later sections (and chapter 9) the notation α, β for the pseudo-spin index (that couples to
the dynamic impurity) and i for the channel index (the spectator) will be maintained, but the
physical quantum numbers that these indices are associated with will be different.
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(c)

(singlet)

s=1, k=2 s=3/2, k=2, s’=1/2,  s’=0 s=1/2, k=2,  s’=1/2

(a) (b)

Figure 4.1 (a) Completely screened Kondo problem (s = k/2): k conduction
electrons of the same spin form an inert singlet (s′ = 0) with the impurity spin.
(b) Underscreened Kondo problem (s > k/2): k electrons of the same spin can-
not completely compensate the spin of the local impurity of spin s: a residual
unscreended spin of s′ = s− k/2 remains, which is coupled ferromagnetically to
the remaining conduction electrons. (c) Overscreened Kondo problem (s < k/2):
k electrons overcompensate the spin s of the impurity. An overscreened object
of spin s′ = k/2 − s remains, which is coupled anti -ferromagnetically to the
remaining conduction electrons.

son [Wil75] has shown that the regime T < TK can be understood within the

framework of the renormalization group: the presence of log T/D-terms implies

that the effective coupling constant grows as one renormalizes to smaller tem-

peratures, and flows out of the weak-coupling λK ≪ 1 regime. For example, for

k = 1, it was shown that λK → ∞ as T → 0, i.e. the problem flows towards the

so-called strong-coupling fixed point.

4.1.2 Nozières’ Physical Picture at Strong Coupling

In general, depending on the values of s and k, the coupling can flow to one of

three qualitatively different fixed points, called completely screened (s = k/2),

under-screened (s > k/2) and over-screened (s < k/2) [shown in Fig. 4.1, with

flow diagrams given in Fig. 4.2]. Nozières has developed a very simple intuitive

picture for these fixed points [Noz74,Noz75,Noz78,NB80]. We now briefly summa-

rize his arguments, which have been completely confirmed by detailed numerical
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Figure 4.2 Flow-diagrams for the Kondo coupling constant for (a) the completely
screened (s = k/2) and under-screened (s > k/2) cases, and (b) the over-screened
case (s < k/2).

renormalization group calculations [Wil75,KWW80,CLN80,PC91,AL92b].

First consider the case s = k/2 (complete screening), in which case λK → ∞.

Because λK is becomes large, the state in which 〈Hint〉 is minimized is strongly

favored. Hence, k conduction electrons “get trapped” at the origin, coupled

together to a total spin of k/2, to form a singlet (s′ = 0) with the impurity spin

[Fig. 4.1(a)]. Being a singlet, this new composite object at the origin is no longer

a dynamical object, but simply an “inert lump”, which may be visualized as a

bound state consisting of the impurity and a screening cloud of k electrons. Since

the remaining conduction electrons cannot occupy the origin (that would break

the singlet and cost a large energy of order λK → ∞), the inert singlet acts as

an infinitely repulsive, non-magnetic scattering potential, which merely causes a

phase-shift when other electrons scatter off it. The fact that this scattering is

non-magnetic implies that λK = ∞ is a stable fixed point, at which the physics
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is simple. Nozières has shown [Noz74] that it can be described by a Fermi liquid

theory.

Consider next the case s > k/2 (underscreening). Because of the Pauli prin-

ciple, the largest spin that can be formed by conduction electrons at the origin is

k/2, which is too small to be coupled to a singlet with s. Hence, an (unscreened)

free impurity spin of size s′ = s−k/2 remains [Fig. 4.1(b)]. The effective interac-

tion between the remaining conduction electrons and this unscreened remaining

spin s′ can be shown to be ferromagnetic (roughly speaking, if s is up then s′

is up, and the conduction sea also has net spin up (of size k/2), since k/2 spin

down electrons have been coupled to the original spin s up). Since ferromagnetic

couplings are known to be irrelevant, λK = ∞ is a stable fixed point in this case

too, and the physics is again simple.

Finally, consider s < k/2 (overscreening). As λK becomes large, the impurity

(say of spin up) will at first attempt to capture k conduction electrons (of spin

down), forming an overscreened composite object of spin s′ = k/2 − s (down)

[Fig. 4.1(c)]. It cannot capture less than k electrons at a time, since that would

break channel symmetry, which was taken to be an exact bulk symmetry of the

system and cannot be broken in the bulk by a single local impurity. Having spin

s′, this composite object is not inert but still dynamical. It forms another Kondo

problem with the remaining conduction electrons, with a coupling that is again

anti -ferromagnetic (roughly speaking, if s is up then then s′ is down, but the

conduction sea has net spin up [of size k/2]). Hence, similar to the λK = 0 fixed

point, the λK = ∞ fixed point is also unstable. Since both λK = 0 and λK = ∞

are unstable, there must be a stable fixed point in between, at some intermediate
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value2 of the coupling (first identified by Nozières and Blandin in the limit of

a large number of bands (k → ∞) but with s kept fixed). This is called the

over-screened (or sometimes also strong-coupling) fixed point. Using an analogy

due to Wilson, it may be visualized as an onion of ever-increasing size, the layers

of which correspond to layers of conduction electrons of alternating spins, each

layer trying (unsuccessfully) to screen the dynamical composite object within.

The physics at this fixed point is highly non-trivial, and cannot be described

by a Fermi liquid theory – it exhibits so-called non-Fermi-liquid -like behavior.

For example, exact values of some thermodynamic exponents at finite values

of s < k/2 have been obtained by the Bethe Ansatz [AD84,WT85], exhibiting

non-Fermi-liquid critical exponents unlike those found for the underscreened or

completely screened cases. The CFT solution of AL gives a complete descrip-

tion of this fixed point, enabling one to compute all thermodynamic quantities

and Green’s functions exactly (their methods of course also work for the under-

and completely screened cases [Aff90,AL91a], although the details are somewhat

different). The transport coefficients, too, show anomalous non-Fermi-liquid be-

havior. For example, for k = 2, AL showed that the conductivity at very low

temperatures behaves as σ(T ) = σo + BTα, with α = 1/2. In contrast, for a

Fermi liquid, one always has α = 2, as was indeed found by Noziéres [Noz74] for

the case k = 1.

The rest of this chapter is devoted to showing that a two-level system inter-

acting with conduction electrons can be described, at low temperatures, by the

2-channel Kondo problem, and should hence display non-Fermi-liquid properties.

2It turns out that λ∗K = 2
2+k , see just before eq. (7.35).
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4.2 The Non-Magnetic Kondo Problem

The theory of a tunneling center (TC) [simply called a two-level system (TLS) in

the other chapters of this thesis] interacting with metallic conduction electrons

within the framework of the non-magnetic or orbital Kondo model, is due to

Zawadowski and coworkers. Zawadowski proposed his model in [Zaw80], subse-

quently developed it with his coworkers in [BVZ82,VZ83,VZ85,VZZ86,VZZ88],

and rather recently, together with Zaránd, introduced some important refine-

ments [Zar93,ZZ94a,ZZ94b,Zar95]. This work has been reviewed in [ZV92],

and an exhaustive review is currently being written by Zawadowski and Cox

[CZ95]. Our discussion mainly follows the recent papers by Zaránd and Zawad-

owski [ZZ94a,ZZ94b] and Zaránd [Zar95].

4.2.1 General Considerations

Consider a tunneling center in a metal, i.e. an atom or group of atoms that can

hop between two different positions inside the metal, modelled by a double-well

potential [see Fig. 2.11, page 39, and Fig. 4.3]. At low enough temperatures

and if the barrier is sufficiently high, hopping over the barrier through thermal

activation becomes negligible. However, if the separation between the wells is

sufficiently small, the atom can still move between them by tunneling.

If the tunneling is slow (hopping rates τ−1 < 108s−1 [CZ95]), the atom is

coupled only to the density fluctuations of the electron sea, which can be described

by a bosonic heat bath [YA84,HMG84]. The tunneling is then mainly incoherent,

and the only effect of the electron bath is then to “screen” the tunneling center:

an electron screening cloud builds up around the center and moves adiabatically
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with it, which leads to a reduced tunneling rate due to the non-perfect overlap

of the two screening clouds corresponding to the two positions of the tunneling

center.

We are interested only in the case where the tunneling is fast (at rates

108s−1 < τ−1 < 1012s−1 [CZ95]), so that the energy corresponding to the tunnel-

ing rate, determined by the uncertainty principle, is in the range 1 mK to 10 K.

(If the tunneling is “ultra-fast” (τ−1 > 1012s−1), the energy splitting ∆ = E2−E1

between the lowest two eigenstates due to tunneling becomes too large (> 10K)

and the interesting dynamics is frozen out.) Moreover, the TC-electron coupling

is assumed strong enough that in addition to screening, electron density fluctu-

ations can directly induce transitions between the wells: they can either induce

direct tunneling through the barrier (electron-assisted tunneling), or excite the

atom to an excited state from where it can decay to the other well (electron-

assisted hopping over the barrier).

In this scenario, the interaction of the conduction electrons with the dynam-

ical impurity is analogous to the Kondo interaction with magnetic impurities, in

that the impurity undergoes electron-induced “spin-flip” transitions, leading to

complicated many-body physics. In fact, it is shown below that at low tempera-

tures, the model renormalizes to an isotropic 2-channel Kondo problem: two of

the orbital (angular momentum) indices of the electrons play the role of pseudo-

spin indices, coupled to the impurity, whereas their Pauli spins ↑ and ↓, which

are not flipped by the interaction, become the “spectator” channel indices of the

2-channel Kondo problem. [An interpretation of the electronic pseudospin index

is given after eq. (4.23).]
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Hence, a strongly correlated Kondo-type ground state develops, characterized

by logarithmic T -dependences for T > TK, and non-Fermi liquid behavior for T ≪

TK. Of course, the flow toward the isotropic 2-channel Kondo model only happens

provided that all relevant perturbations that would drive the system away from

this fixed point are negligbly small – this is an implicit assumption made in the

subsequent development, that will be critically discussed in section 4.3.

4.2.2 Definition of the Non-Magnetic Kondo Model

We describe the most general version [ZZ94a,ZZ94b] of Zawadowski’s model for

a heavy particle moving in a double-well potential and interacting with a band

of conduction electrons. The Hamiltonian is the sum of three terms:

H = HTC +Hel +Hint . (4.2)

The first term describes the motion of the heavy particle in the double well, in

the absence of electrons [see Fig. 2.11 and Fig. 4.3]:

HTC =
∑

a

Eab
†
aba . (4.3)

This problem is considered to be already solved: the energies Ea (E1 < E2 < . . .)

are the exact eigenenergies of the exact eigenstates |Ψa〉 = b†a|0〉 of the TC,

with corresponding wave-functions ϕa(~R). The spectrum will contain two nearly-

degenerate energies E1 and E2, split by an amount ∆ = E2−E1, corresponding to

even and odd linear combinations of the lowest-lying eigenstates of each separate

well; the remaining energies, collectively denoted by Eex, correspond to excited

states in the well, with Eex−E2 typically on the order of the Debye temperature

of the metal, i.e. several hundred Kelvin.
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Figure 4.3 A symmetrical square double well potential (heavy line), and the
wave-functions for the states |r〉, |l〉 and the first excited state |Ψ3〉. We show
a square well to illustrate the parameters chosen by Zaránd and Zawadowski for
their model calculations [ZZ94b]. The choices most favorable for obtaining a
large Kondo temperature were [ZZ94a, Table I]: a = 0.1Å, α = 2.5; the choices
VB = 494 K or 740 K then gave E3 = 245 K or 456 K, and TK = 2.76 K or
3.19 K, respectively. The effective couplings vx, vy and vz, all equal to vK at the
2-channel fixed point [see eq. (4.23)], are then on the order of vK ≃ 0.1−0.2 . The
parameter that most strongly influences TK is α, because it affects the overlap
between the states |r, l〉, and |Ψ3〉.Even though the barrier is very high relative to
the other energy scales, Kondo temperatures in experimentally accessible ranges
result.
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The free-electron band is described by

Hel =
∑

~pi

ε~pc
†
~pic~pi , (4.4)

where ε~p is the energy, measured from the Fermi energy εF , of an conduction

electron with momentum ~p and Pauli spin i (we use the index i because this will

turn out to be the channel index). For simplicity, the electron energies are usually

assumed to lie within a band of width 2D, symmetric about εF , with constant

density of states ρo per spin.

The TC-electron interaction is described by a pseudo-potential U(~R − ~r),

which describes the change in energy of the heavy atom at position ~R due to

electronic density fluctuations at position ~r, and is assumed to depend only on

the relative coordinate ~R− ~r:

Hint =
∑

~p~p′

∑

aa′i

V a,a′

~p,~p′ c
†
~pic~p′i b

†
aba′ , (4.5)

where the coupling constants V a,a′

~p,~p′ are given in terms of the Fourier transform

U(~p) of U(~R) by[Zar93]

V a,a′

~p,~p′ = U(~p− ~p′)
∫
d~R ei(~p−~p

′)·~Rϕ∗
a(~R)ϕa′(~R) . (4.6)

We are interested in the regime where ∆ ≪ T ≪ Eex ≪ D. Hence we take

∆ ≃ 0, i.e. consider a symmetrical double well with a two-fold degenerate ground

state. (Experimental arguments in favor of this assumption in the case of the

Ralph-Buhrman experiment are given on page 43 and in sections section 3.4;

criticism of the assumption is discussed in section 4.3). It is then convenient to

make a change of basis from the exact symmetrical and anti-symmetrical ground

states |Ψ1〉 and |Ψ2〉 to the right and left states |r〉 and |l〉 = 1√
2
(|Ψ1〉 ± |Ψ2〉).
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Note that, since a non-zero bare tunneling matrix element (∆0) between the

wells always leads to a splitting E1−E2 ≃ ∆o, we are also implicitly assuming that

∆o ≪ T . This means that direct tunneling events are very unlikely, raising the

question of whether Kondo-physics will occur at all.3 However, the inclusion of

excited states in the model overcomes this potential problem as follows [ZZ94a,

ZZ94b]: a careful estimate of the coupling constants [Zar93] in terms of the

overlap integrals (4.6) has shown that

|V r,l| ≃ 10−3|V l,l − V r,r| , |V l,ex| ≃ |V r,ex| ≃ |V l,l − V r,r| . (4.7)

The first relation reflects the fact that direct electron-assisted tunneling, para-

meterized by |V r,l|, is proportional to the bare tunneling rate ∆o and hence very

small. However, the matrix elements for electron-assisted transistions to excited

states, parametrized by |V l,ex| and |V r,ex|, are of the same order of magnitude as

for the usual “screening term” |V l,l − V r,r| [this is because the overlap integrals

in (4.6) are larger for ϕexϕr,(l) than for ϕrϕl, since the excited state wave-function

spreads over both wells (see Fig. 4.3)]. Although the amplitudes for such processes

are proportional to the factor 1/Eex (which is small, since Eex is large), Zaránd

and Zawadowski showed that such terms also grow under scaling [see eq. (4.11)

below], and eventually lead to a renormalized model which has sufficiently large

effective tunneling amplitudes to display Kondo physics.

3This was a serious limitation of Zawadowski’s original model, which did not include excited
states: to give non-trivial many-body physic (i.e. a sufficiently large Kondo energy TK), the
bare tunneling rate ∆o could not be too small; yet at the same time, the model only flows to
the interesting non-Fermi liquid fixed point if E1 −E2 ≪ T . This would have required a rather
delicate and perhaps questionable fine-tuning of parameters. This problem has been overcome
by including excited states in the model [ZZ94a,ZZ94b], as explained above.
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Figure 4.4 (a) The second-order vertex corrections that contribute to eq. (4.8) and
generate the leading order scaling equation (4.11). (b) The impurity self-energy
correction and the third-order next-to-leading-logarithmic vertex correction that
generate the subleading terms in the second-order scaling equation (4.17). (Note
that subleading diagrams that are generated by the leading-order scaling relation
derived from the diagrams in (a) have to be omitted.) Dashed and solid lines
denote impurity and electron Green’s functions, respectively.

4.2.3 Poor Man’s Scaling RG

The interaction vertex, calculated second order in perturbation theory from to

the diagrams in Fig. 4.4(a), is given by the following expression:

Γa,b~p~p′ = V a,b
~p,~p′ +

∫ dΩq̂

4π

∑

c

ρo

∫ D

−D
dε~q × (4.8)

[
V a,c
~p,~q V

c,b
~q,~p′

1 − fq
εp′+Eb − (εq+Ec)

− V a,c
~q,~p′V

c,b
~p,~q

f~q
εp′+Eb − (−εq+εp′+εp+Ec)

]

= V a,b
p̂,p̂′ +

∫ dΩq̂

4π

∑

c

ρo ln [max{Eb, Ec, T, εp, εp′}/D]
[
V a,c
p̂,q̂ V

c,b
q̂,p̂′ − V c,b

p̂,q̂ V
a,c
q̂,p̂′

]
,

where in the second line it was assumed that the couplings only depend on the

direction p̂ of ~p (the dependence on |~p| is negligible sufficiently close to the Fermi

surface), and only the logarithmic terms were retained.

Note the occurence of the “commutator”
[
V a,c
p̂,q̂ V

c,b
q̂,p̂′ − V c,b

p̂,q̂ V
a,c
q̂,p̂′

]
; the fact that
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this is in general non-zero, due to the non-trivial angular dependence of the

coupling constants, is crucial for the presence of logarithmic corrections (and is

the reason why this model is sometimes called a non-commutative model).

One proceeds by introducing a new set of dimensionless couplings va,bαα′ in

terms of an orthogonal set of angular functions fα(p̂) (e.g. fα(p̂) =
√

4πYlm(p̂),

but any set of orthogonal angular functions will do):

va,bαα′ = ρo

∫ dΩp̂

4π

∫ dΩp̂′

4π
f ∗
α(p̂)V

a,b
p̂,p̂′fα′(p̂′) . (4.9)

In terms of these eq. (4.8) takes the form:

Γa,bαα′ = va,bαα′ +
∑

c,β

ln [max{Eb, Ec, T, εpεp′}/D]
[
va,cαβv

c,b
βα′ − vc,bαβv

a,c
βα′

]
. (4.10)

Now Anderson’s poor man’s scaling RG [And70] is implemented (very nicely

explained in [CZ95, sections 3.2.2]): particle or hole excitations with large en-

ergy values do not directly participate in real physical processes; their only effect

occurs through virtual excitions of the low-energy states to intermediate high-

energy states. Hence such processes may be taken into account by introducing

renormalized coupling parameters, which sum up all the virtual processes be-

tween a new, slightly smaller cut-off D′ and the original D. In other words, all

virtual processes between the energies D′ and D are integrated out and their

contributions incorportated in new, D′-dependent coupling constants. This pro-

cedure is repeated for smaller and smaller D′ until D′ becomes on the order of

max{Ec, T, εp′}.

Concretely, this is done by writing va,bαα′ = va,bαα′(x), where x = ln(D′/D) and

x-dependence of the coupling constants is determined by the requirement that

the interaction vertex be invariant under poor man’s scaling, i.e. ∂xΓ
a,b
αα′ = 0. By
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eq. (4.10), this leads to the following leading-order scaling equation:

∂xv
a,b(x) =

∑

c

θ(D′ − Ec)[v
a,c(x), vc,b(x)] , (4.11)

where we have adopted the matrix notation va,bαα′ ≡ va,b. [The significance of

θ(D′ − Ec) is explained in section 4.2.7.] This equation, to be solved with the

boundary condition va,b(0) = (va,b)bare, determines the nature of the RG flow

away from the weak-coupling limit.

In the following two sections we outline the results obtained by Zawadowski

and co-workers concerning the nature of the fixed point that the Hamiltonian

flows towards as it scales out of the weak-coupling region. However, the argu-

ments that are to follow all have a somewhat heuristic character: since they are

based on scaling equations that were derived in the weak-coupling limit, based

on perturbation theory in the coupling constants, in principle they cease to be

strictly valid as soon as one scales into strong-coupling regions of parameter space.

(The only method that gives quantitatively reliable results for the cross-over re-

gion is Wilson’s numerical NRG [Wil75,KWW80,CLN80,AL92b,PC91].) Many

of the results obtained below are therefore of mainly qualitative value, and not

expected to be quantitatively accurate.

4.2.4 Scaling to 2-D Subspace

Let us for the moment consider the model without any excited TC states, i.e. with

∑
c =

∑
r,l (as was done in the first papers [Zaw80,BVZ82,VZ83]), postponing the

more general case to section 4.2.7. In this case, the coupling constants va,b(x) can

be expanded in terms of Pauli matrices in the 2-dimensional space of the TC:

va,bαα′(x) =
3∑

A=0

ṽAαα′(x)σAa,b , a, b = l, r , (4.12)
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where A = (0, 1, 2, 3) = (0, x, y, z) and σ0
AB ≡ δAB. The vz term is called the

screening term, and characterizes the difference in scattering amplitudes for pro-

cesses in which an electron scatters from the atom in the right or left well without

inducing a transition to the other well. The vx and vy terms are called electron-

assisted tunneling terms, and describe the amplitude for processes in which the

scattering of an electron induces the TC to make a transition to the other well.

According to eq. (4.7), ṽx ≃ ṽy ≪ ṽz. If one chooses the wave-functions of

the TC to be real, and time-reversal invariance requires ṽy = 0 (see [VZ83, (a),

eq.(2.11)]).

The problem is now formally analogous to a (very anisotropic) magnetic

Kondo problem in which a spin-1
2

impurity is coupled to a conduction electron

with very large pseudo-spin (since α takes on a large number of values). How-

ever, Vladár and Zawadowski (VZ) have shown [VZ83, (a), section III.C] that

(with realistic choices of the initial parameters) the problem always scales to

a 2-dimensional subspace in the electron’s α-index, so that the electrons have

pseudo-spin Se = 1
2

(this happens indepedent of the signs of the initial couplings,

see section 4.2.5). Their argument goes as follows:

In the notation of eq. (4.12), the scaling equation (4.11) takes the form [VZ83,

p.1573, eq.(3.3)]

∂vA

∂x
= −2i

∑

BC

εABC vBvC . (4.13)

Since ṽx ≪ ṽz and ṽy = 0, eq. (4.13) can be linearized in vx and vy. VZ

solved the linearized equations in a basis in α-space in which ṽzαβ(0) is diagonal

[ṽzαβ(0) = δαβ ṽ
z
α(0)], and obtained the following solution [VZ83, p.1576, eq.3.17]:

ṽzαβ(x) = δαβ ṽ
z
α(0) (4.14)
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ṽxαβ(x) = ṽxαβ(0) cosh 2x
[
ṽzβ(0) − ṽzα(0)

]
, (4.15)

ṽyαβ(x) = iṽxαβ(0) sinh 2x
[
ṽzβ(0) − ṽzα(0)

]
. (4.16)

Barring unforeseen degeneracies in the matrix ṽz, this shows that the two ele-

ments of ṽz which produce the largest difference |ṽzβ(0)− ṽzα(0)| will generate the

most rapid growth in the corresponding couplings ṽxαβ(x) and ṽyαβ(x). In fact,

since this growth is exponentially fast, any couplings with only slightly smaller

|ṽzβ(0)− ṽzα(0)| will grow much slower and hence decouple. Thus, we conclude that

according the the leading-order scaling equations, the system always renormalizes

to a 2-D subspace in which the electrons have pseudo-spin Se = 1
2
.

The argument just presented is not quite waterproof, though. Firstly, it

depends on the assumption of extreme initial anisotropy in the couplings, and

secondly, it is based only on the leading-order scaling equations. As one scales

towards larger couplings, sub-leading terms in the scaling equations can conceiv-

ably become important. Zaránd has investigated this issue by including next-to-

leading-order logarithmic terms [generated by the diagrams in Fig. 4.4(b)] in the

scaling equations, which turn out to be [Zar95, eq.(2.6)]:

∂xv
A = −2i

∑

BC

εABCvBvC − 2Nf

∑

B 6=A

[
vATr[(vB)2] − vBTr[vAvB]

]
(4.17)

Note that the number of channels, Nf (equal to 2 for the case of interest), shows

up here for the first time in the next-to-leading order, since each electron loop

[see Fig. 4.4(b)] carries a factor Nf . Performing a careful analysis of the stability

of the various fixed points that occur, he concluded that the above-mentioned

Se = 1
2

fixed point is the only stable fixed point in of these equations. Since

this result is independent of the value of Nf and the number of orbital channels
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considered, and his analysis is exact in the limit Nf → ∞, one would expect

his results to also be valid for Nf = 2. (However, no completely rigorous proof

exists yet for this expectation; in particular, his analysis assumes ∆ = 0, and the

case ∆ 6= 0 is substantially more complicated, see [VZ83, (b), section III]. For

another, symmetry-based argument in favor of Se = 1
2
, see [CZ95, section 3.3.2

(iii)].)

4.2.5 The fixed point is Pseudo-Spin Isotropic

Next we show, following [Zar95, section III], that the Se = 1
2

fixed point is actually

isotropic in pseudo-spin space.

The last term in eq. (4.17) can be eliminated from the fixed-point analysis by

making a suitable orthogonal transformation vA → ∑
B OABv

B. Therefore, it is

sufficient to consider the first two terms on the right-hand side of eq. (4.17). At

the fixed point, where ∂xv
A = 0, we have

∑

BC

εABCvBvC = iNfvA
∑

B 6=A
Tr[(vB)2] . (4.18)

Multiplying by vA and taking the trace, one obtains the three relations

iNfα
A(αB + αC) = β , where {A,B,C} = {x, y, z} (cyclically) , (4.19)

where we have defined αA ≡ Tr[(vA)2] and β ≡ Tr(vAvBvC − vCvBvA). This

immediately implies one of two possibilities: either at least two of the αA’s are

zero, which is the trivial (commutative) case without electron-assisted tunneling

(vx = vy = 0); or else they are all equal:

αA = αB = αC = α . (4.20)
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Figure 4.5 Scaling trajectories of the matrix norms αA ≡ Tr[(vA)2] (A = x, y, z),
calculated numerically for the case Nf = 3. All three norms tend to the same
value, in accord with eq. (4.20). Consult [Zar95], from which this figure was
taken, for details regarding the initial parameters used.

The latter case is the one of present interest. The conclusion that the couplings

are all equal (i.e. the effective Hamiltonian isotropic) was checked numerically by

Zaránd [Zar95, Fig.4], and is illustrated in Fig. 4.5.

What is the matrix structure of the vA’s? Introducing the notation JA =

1
2Nfα

vA, eqs. (4.18) and (4.20) imply that the JA satisfy the SU(2) Lie algebra,

[JA, JB] = iεABCJC , (4.21)

which means that they must be a direct sum of irreducible SU(2) representations:

JA =
n∑

⊕k=1

SA(k) . (4.22)

According to the analysis of Zaránd mentioned in the previous section, only

a single subspace Se = 1
2

in this sum corresponds to a stable fixed point (all

the others correspond to unstable fixed points), in the vicinity of which we can

therefore write JAαα′ = 1
2
σAαα′ .
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4.2.6 Effective Hamiltonian

After a rotation in α-space to line up the quantization axis of the pseudospins of

the impurity and the electrons, the effective Hamiltonian to which (4.5) renor-

malizes can be written as:

Heff

int =
ρovK
Vol

∫
dεp

∫
dεp′

∑

αα′=1,2

∑

aa′=1,2

∑

i=↑,↓

(
c†pαi

1
2
~σαα′cp′α′i

) (
b†a

1
2
~σaa′ba′

)
,

(4.23)

Here Vol is the volume (inserted for dimensional reasons) and vK is the magnitude

of the effective TC-electron coupling (and estimated to be of order vK ≃ 0.1−0.2

[ZZ94a, Table 1]). This is the main result of the RG analysis: The effective

Hamiltonian has exactly the form of the isotropic, magnetic 2-channel Kondo

problem; the two surviving orbital indices α = 1, 2 play the role of pseudo-spin

indices and the Pauli spin indices i =↑, ↓ the role of channel indices. When, in

subsequent chapters, we apply Affleck and Ludwig’s conformal field theory results

on the 2-channel Kondo model to TC-physics, the effective Hamiltonian Heff
int will

always be regarded as the starting point.

It is tempting to propose the following physical interpretation of the effective

Hamiltonian (it is given in this form by [MF95], and can be viewed as complimen-

tary to Zawadowski’s picture of electron-induced tunneling). A charged impurity

in a metal will be screened by a screening cloud of electrons, which can be thought

of as part of the “dressed” impurity. If the impurity is a tunneling center, it will

drag along its tightly bound screening cloud as it tunnels between the wells. In

doing so, it will redistribute the low-energy excitations near the Fermi surface.

In particular, it will likely interact most strongly with two spherical waves of

low-energy electrons, “centered” on the two impurity positions in well 1 and 2
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[VZ83, p.1575], with which one can associated a pseudospin index α = 1, 2. Now,

when the impurity tunnels from well 1 to 2, low-energy electrons around well 2

(with α = 2) will move in the opposite direction to well 1, to compensate the

movement of electronic charge bound up in the screening cloud that moved with

the impurity from well 1 to 2, and thereby to decrease the orthogonality between

the pre- and post-hop configurations. Thus, a flip in the impurity pseudospin is

always accompanied by a flip in electron pseudospin, as in eq. (4.23).

In two very recent papers [MF95], Moustakas and Fisher have used this in-

terpretation as a starting point for a related but not quite equivalent description

of the TC-electron system (to be mentioned again in section 4.3).

We conclude this section with a number of miscellaneous comments:

The fact that one always scales towards an isotropic effective Hamiltonian

is rather remarkable (though in accord with the conformal field theory results

that show that anisotropy is an irrelevant perturbation [AL92b, eq.(3.17)]): the

initial extreme anisotropy of the couplings is dynamically removed, and a SU(2)

symmetry emerges that is not present in the original problem!

Note that the initial signs of the anisotropic coupling constants did not matter

in the above arguments. A more careful argument [CZ95, section 3.3.2 (ii)] shows

that the flow toward this fixed point indeed occurs irrespective of the initial signs

of the coupling constants.

Relevant perturbations: When the initial splitting ∆ is non-zero, the 2-nd

order RG is considerably more complicated [VZ83, (b), section III]. The result

is that ∆ gets normalized downward by about two orders of magnitude [VZ83,

(b), Fig.3]. However, as emphasized in [CZ95, section 3.4.1 (c)], the splitting ∆
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is nevertheless a relevant perturbation: it can be shown to scale downward much

slower than the bandwidth D′, so that ∆(D′)/D′ grows as D′ is lowered.

By analyzing the stability of the fixed point equations against a perturbation

that breaks channel symmetry, it can likewise be shown that channel anisotropy

is a relevant perturbation [CZ95, section 3.4.1 (c)].

Kondo temperature: The Kondo temperature is the cross-over temperature at

which the couplings begin to grow rapidly. It can be estimated from an approxi-

mate solution of the second order scaling equation (4.17).4 The result found for

TK by VZ [VZ83, p.1590, eq.(4.11)] is

TK = D [vx(0)vz(0)]1/2
(
vx(0)

4vz(0)

) 1
4vz(0)

. (4.24)

Note that the factor [vx(0)vz(0)]1/2 is absent5 if one estimates TK only from

the leading-order scaling equation (4.11) [VZ83, p.1577, eq.(4.11)]. Since the

bare vx(0) ≪ 1, this factor causes a substantial suppression of TK (by about

two orders of magnitude), if one simply inserts vx(0) into eq. (4.24), leading to

pessimistically small values of TK ≃ 0.01 − 0.1 K [ZZ94a,ZZ94b]. However, the

inclusion of excited states remedy this problem, in that excited states renormalize

vx to larger values by about two orders of magnitude (see below).

4.2.7 The Role of Excited States

Let us now return to the more general problem where the excited states with

energies Eex are not neglected from the beginning.

4Since TK is only a statement about the onset of rapid growth of coupling constants, the
value obtained from scaling equations derived by perturbation theory is expected to give ap-
proximately the correct scale even though the scaling equations themselves become invalid when
the couplings become too large [Wil75].

5The presence of the prefactor to the exponent in (4.24) is of course a well-known feature of
second-order scaling, see e.g. [Hew93, eq.(3.47)].
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The first important consequence of including excited states in the model has

already been discussed in section 4.2.2: electron-assisted hopping transitions be-

tween the two wells via excited states allow Kondo physics to occur even if the

barrier is so large that direct and electron-assisted tunneling through the bar-

rier is negligible (i.e. ∆o ≃ 0). This is good news, since the energy splitting

∆ = E1 − E2 is limited from below by ∆o, but simultaneously ∆ (being a rele-

vant perturbation) needs to be very small if scaling to the 2-channel fixed point

is to take place.

Secondly, in the presence of excited states, poor man’s scaling towards strong-

coupling, based on eq. (4.11), has to proceed in several steps: the excited state

|Ψc〉 only contributes as long as the effective bandwidth D′ is larger than Ec, as

is made explicit by the θ(D′ −Ec) in eq. (4.11). As soon as D′ < Ec, the excited

state decouples.

Assuming that the presence of excited states does not affect the result found

in section 4.2.4, namely that the effective Hamiltonian scales towards a 2-D sub-

space in which the electrons have pseudo-spin Se = 1
2
, Zaránd and Zawadowski

[ZZ94a,ZZ94b] have analyzed the successive freezing out of excited states. They

concluded that when D′ becomes smaller than the smallest excited-state energy

E3, one ends up with a TC of formally exactly the same nature as the one dis-

cussed in sections 4.2.4 and 4.2.5, but with renormalized couplings.

The renormalized couplings turn out to be still small, which means that the

perturbative scaling analysis of sections 4.2.4 and 4.2.5 still applies; however,

vx and vy are renormalized upward by a factor of up to 50 from their bare

values (which were three orders of magnitude smaller than vz see eq. (4.7)). This
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has very important consequences for the Kondo temperature eq. (4.24), which

strongly depends on vx: with realistic choices of parameters (given in the caption

to Fig. 4.3) the Kondo temperature turns out to be about 2 orders of magnitude

larger with than without excited states in the model, and Kondo temperatures

in the experimentally relevant range of 1 to 3 K were obtained [ZZ94b, table II].

To summarize: the inclusion of excited states in the model leads to more

favorable estimates of the important parameters ∆o (can be zero) and TK (larger);

but since the excited states eventually decouple for small enough effective band-

widths, they do not affect the flow toward the 2-channel Kondo fixed point in

any essential way.

4.3 Recent Criticism of the 2-Channel Kondo

Scenario

Very recently, the claim that the non-magnetic Kondo problem will renormalize

to the 2-channel Kondo model at sufficiently low temperatures, has been criticized

in two separate papers [WAM95,MF95]. We describe the points of contention,

and our attitude to them, below.

4.3.1 Large ∆ due to Static Impurities

Wingreen, Altshuler and Meir have recently argued [WAM95] that TC with very

small splittings (∆ < 1K) can not occur at all in a disordered material if the TLS-

electron coupling has the large values that apply to the over-screened 2-channel

Kondo fixed point. Their argument goes as follows:

Ordinary elastic scattering of electrons off other defects in the system will

cause Friedel oscillations (wavelength 1/kF ) in the electron density (see e.g.
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[KV60]). This in turn will cause a typical splitting ∆̄ of a TLS, because the

depth of each well is affected by the local electron density, which differs from well

to well if there are strong density fluctuations. (In the language of the magnetic

Kondo problem, the Friedel oscillations produce a random “magnetic field” at

the impurity site).

Although the random contributions to the splitting from the various static

impurities will cancel to a large extent, WAM argued that there will nevertheless

be a residual typical splitting, ∆̄. The crucial question is: how large is this typical

splitting?

By doing simple 2nd-order perturbation theory in the coupling between the

electrons and static impurities to estimate the magnitude in the resulting electron

density fluctuations between the neigbouring wells, WAM produced the estimate6

∆̄ ≃ εFv
√
kFℓ , (4.25)

where ℓ is the mean free path (a measure of the concetration of static impurities)

and vK the effective TLS-electron coupling strength in eq. (4.23). Moreover,

WAM, predict zero probability to find zero splitting.

Since according to eq. (4.25) ∆̄ is proportional to εF , it is typically a rather

large number, quite independent of the detailed values for the parameters one

uses. WAM found a value of ∆ ≃ 100K by using l ≃ 30Å and employing the

strong-coupling value vK ≃ 0.1 appropriate for the 2-channel Kondo fixed point

(see caption of Fig. 4.3; this number also follows using a Kondo temperature of

about 4K in the standard formula vK = log(kBTK/ǫF ) obtained from the leading-

order scaling equations.)

6Cox has reproduced this result [Cox95] by a simple calculation analogous to the one by
which one obtains the RKKY interaction between two magnetic impurities.
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Since 100 K is a huge energy scale compared to all other scales of interest,

WAM argued that the 2-channel Kondo physics evoked in this thesis to explain

the Ralph-Buhrman experiment would never occur. Instead, they proposed an

alternative explanation of the experiment based on disorder-enhanced electron

interactions. The latter suggestion, which we believe contradicts several experi-

mental facts [RLvDB95], is critically discussed section 2.4. Here we briefly com-

ment on their estimate of ∆̄, following [RLvDB95].

We believe that WAM are correct in pointing out that the interaction of a

two-level tunneling system (TLS) with elastically-scattered electron waves can

act to increase the energy splitting, ∆, of the TLS. However, we suggest that

their method of estimating the average ∆̄ is oversimplified, and that the result,

∼ 100 K, may be a considerable overestimate.7

As explained in the preceding sections, large TLS-electron couplings are pro-

duced at low temperatures only after renormalizing smaller high-T bare cou-

plings. The WAM estimate of ∆ attempts to simply use a large low-T value of

the coupling to determine the effects of elastic scattering in isolation, and this is

done without considering possible counteracting effects that might favor smaller

splittings. Instead, we believe that the mechanism desribed by WAM should be

included from the beginning in the renormalization analysis. An extra term, in-

cluding the effects of static disorder, should be added to the Hamiltonian, and

then an RG analysis should be performed to determine self-consistently how the

couplings, ∆, and the electronic energy evolve together at low T . While the effect

7This result seems particularly suspect in the light of the fact that TLS-splittings as small as
∆ = 0.08K have been directly measured in strongly disordered bismuth films [GZC92,ZGH91],
even though the effective electron-TLS coupling was large [v ≃ 0.7 (=

√
2α there)]; see page 44.

Unfortunately, the bismuth experiments studied slow tunneling centers, whereas here we are
dealing with fast ones, and it is not clear which properties of the one carry over to the other.



105

proposed by WAM may act to increase ∆ at low T , other effects in the scaling

analysis [VZ83] act to decrease ∆ strongly [compare the comments on page 99],

and may therefore prevent any growth of ∆ during renormalization and favor

instead the formation of TLSs with ∆ ≃ 0.

Futhermore, it was pointed out to us by A. Moustakas that WAM’s use of εF

in eq. (4.25) might be suspect: in this formula, εF plays the role of an effecitve

bandwith D, but as one flows to strong coupling, the effective bandwidth is

renormalized to D′, which eventually becomes replaced by V or T ≪ εF . This

argument underscores the need to carefully investigate the effect pointed out by

WAM within an RG framework.

Finally, with regard to the interpretation of the experiments put forth in this

thesis, we point out the following:

Firstly, WAM’s prediction of large average splittings ∆̄ assumes sufficient

disorder to create strong density fluctuations. However, the samples of Ralph

and Buhrman are believed to be rather clean and crystalline, with long mean free

paths (l > 30 nm, see 35). Therefore, it is incorrect to view the constrictions

as strongly disordered. — Scattering off the walls of the constriction could have

an effect similar to static impurities; however, an explanation that has to evoke

scattering off the walls cannot account for the fact that the zero-bias anomalies

disappear when the system is heated and recooled (point (P3) in section 2.3).

Secondly, WAM’s estimate only concerns the typical splitting ∆. [They do

claim that the probability for zero splitting is zero; however (in the absence of

published details of their calculation) this seems rather unnatural for any effect

that is the sum of many random contributions; for example, it contradicts the



106

standard picture of TLS in glasses, in which TLS are assumed to have a broad,

almost flat distribution of splittings [AHV72,Phil72]]. However, as emphasized

in [RLvDB94] and on page 45, the conductance measurements probably are not

sensitive to the “typical” TLSs. Instead, within the 2-channel Kondo picture a

conductance measurement is preferentially sensitive to TLSs with small ∆, as

only these TLSs will produce large V -dependent signals. Therefore, even if on

average the splitting ∆̄ is rather large, such impurities only contribute to the

background signal, and we believe it is not unreasonable to propose that a small

number of them do have sufficiently small splittings to give rise to the anomalous

behavior.

4.3.2 Another Relevant Operator

Very recently, the theoretical justification for the non-magnetic Kondo model

proposed by Zawadowski has been questioned by Moustakas and Fisher (MF)

[MF95]. Reexamining a degenerate two-level system interacting with conduction

electrons, they argued that the model (4.5) and (4.6) used by Zawadowski is

incomplete, because it neglects subleading terms in the TLS-electron interaction

that have the same symmetries as the leading terms.

These subleading terms are initially small when the coupling is small, and

moreover are RG irrelevant. Therefore, neglecting them is perfectly valid for

the purpose for which Zawadoski constructed his model, namely estimating the

Kondo temperature at which the leading terms in Hint begin to grow. However,

such subleading terms can become important when investigating the nature of

the fixed point towards which the system flows under renormalization. MF show

that when combined in certain ways, they generate an extra relevant operator,
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not present in Zawadowski’s analysis, which in general prevents the system from

flowing to the T = 0 fixed point. Therefore, unless a fine-tuning of parameters

miraculously causes this relevant operator to vanish, it will eventually always

become large, and the system will never reach the T = 0 fixed point.

What is the nature of the terms neglected by Zawdowski? Formally, he esti-

mates the electron-assited tunneling terms by expanding the WKB exponent for

tunneling through the barrier in powers of the barrier potential V = Vo + δV ,

where δV is the fluctuation in this potential due to fluctuations δρ in the elec-

tron density. However, he keeps only leading terms in δV , whereas MF argue

that sub-leading terms should also be kept, because they can give rise to terms

that grow rapidly when the coupling constants (and hence δV too) begin to grow

rapidly.

MF set up their model in a somewhat different way than Zawadowski. In

their model, electron-assisted tunneling processes are viewed as follows: the TLS

(together with its dressing cloud of electrons) hops from well 1 to well 2, and

at the same time one or two electrons hop from well 2 to well 1. This, they

argue, will happen because such electron-hopping events lower the total amount

of electron charge that gets shifted during the tunneling process and hence help

to decrease the orthogonality between the initial and final electron states. In

this language, Zawadowski’s electron-assisted tunneling term corresponds to the

hopping of a single electron, and the terms which he neglected correspond to the

simultaneous hopping of two electrons.

In our opinion, the work of MF points out a serious problem with the as-

sumption that the system will flow to the T = 0 fixed point. However, in the
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same spirit as that adopted when arguing that the experiment self-selects only

impurities with very small splittings, one could argue that it also only selects

impurities for which this extra relevant operator happens to be very small.

4.4 The Non-Equilibrium Orbital Kondo

Problem

In this section we take a preliminary look at the orbital Kondo problem out of

equilibrium. The purpose of this excercise is to develop some intuitition for the

complications that arise when V 6= 0. The most important result is that the

flow to the 2-channel fixed point is not disrupted, as long as V < TK, and that

the physics in this regime is governed by the T = 0, V = 0 fixed point of the

2-channel Kondo model. We also cite some instructive results derived by Gan for

the case of large channel number [Gan94], for later comparison with Affleck and

Ludwig’s CFT results.

4.4.1 Definition of the Non-Equilibrium Model

We shall use the same model as that to be employed in chapter 9 [see eq. (9.6)

and table 9.1], where the assumptions made below are motivated in more detail.

We envision a single (degenerate) TC at the center of the nanoconstriction (see

Fig. 2.2). The electrons incident towards the constriction from the right and left

leads will be called L- and R-movers, respectively (although the angle of incidence

can of course be arbitrary), and will be distinguished by an additional species

index σ = (+,−) = (L,R). For convenience we also introduce the collective

notation ν ≡ (p, σ, α, i) for the electron’s quantum numbers of momentum p,

L/R-mover σ, pseudospin α (orbital index) and Pauli spin i (channel index).
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Now, intuitively speaking, the regime of low energies should still be described

by a Hamiltonian of the form eq. (4.23): there should still be two pseudospin

channels of conduction electrons, consisting of electron waves “centered” at the

minima of the two wells of the TLS,8 that couple most strongly to the TC at

low temperatures. As in the equilibrium case, they will give rise to an effective

2-channel Kondo interaction, with pseudospin Se = 1
2
. However, they are built

from both L- and R-movers,9 and in the nanoconstriction geometry one has to

distinguish between these (since they originate from different baths), and between

forward and backward scattering (since these contribute with different signs to the

current). During a scattering event, an electron can be scattered either backward

or forward (σ does or does not change); simultaneously, the impurity can either

tunnel or not, and correspondingly the electronic pseudospin either flips or does

not flip the TC (α does or does not change).

To describe this situation, we therefore adopt the following Hamiltonian:

H = Ho +Heff
int , Ho =

∑

ν

ενc
†
νcν , (4.26)

where
∑
ν ≡ ρo

∫
dεν

∑
σαi with interaction given by

Heff
int =

1

Volρo

∑

νa,ν′a′
c†νb

†
a

(
H1

aa′
νν′

)
cν′ba′ , where H1

aa′
νν′ ≡ vKVσσ′

(
1
2
~σαα′ · 1

2
~σaa′

)
,

(4.27)

This is just eq. (4.23), but with an extra factor Vσσ′ ≡ 1
2

(
1
1

1
1

)

σσ′ . This factor

ensures that during scattering events a L-mover can be scattered into either a L-

or a R-mover, at the same time as its pseudo-spin index α and that of the TC

8These waves will not be spherical, due to the presence constriction, but probably rather
shaped like p-orbitals.

9Loosely speaking, waves that in a bulk situtation were associated with the pseudospin
index α now have to be divided into L,α and R,α components, depending on the direction of
propagation of the component.
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do or do not flip. That the simple form of Vσσ′ used here is sufficiently general is

explained on page 245; note that it ensures that H1
aa′
νν′ is actually independent of

σ, σ′, which is a major simplification.

The L- and R-movers that are incident on the TC originate from the R- and

L leads, which are at chemical potentials µ+ 1
2
eV and µ− 1

2
eV respectively (see

Fig. 2.2). Therefore,

〈c†νcν′〉 = fσν (εν)δνν′ =
δνν′

eβ(εν−µν) + 1
, where µν ≡ σν

1
2
eV , (4.28)

i.e. µ± = ±1
2
eV for L/R-movers, respectively.

The backscattering current ∆I (to the right), i.e. the negative contribution

to I (which flows to the left) due to the scattering events of H1, is given quite

generally by

∆I =
K̃ρob

|e|
∫
dεν

∫
dεν′

(
fR(εν′)(1 − fL(εν))Γ(εν′ , R → εν , L) (4.29)

− fL(εν)(1 − fR(εν′))Γ(εν , L→ εν′ , R)
)
, (4.30)

where here σν = L and σν′ = R, and

Γ(εν′ , R → εν , L) = 2π/h̄ δ(εν′ − εν) ρ
−2
o

1
2

∑

αia,α′i′a′
|Γaa′νν′|2 . (4.31)

In writing down eq. (4.29), the fact that the Fermi functions do not depend on

the indices that appear in the sums
∑
αia,α′i′a′ has been exploited to pull them

out to the front. The factor 1
2

in eq. (4.31) is due to an average over the initial

states of the TC, and T aa
′

νν′ is the generalization of the interaction vertex Γaa
′

ηη′ of

Eq. (4.10) to all orders of perturbation theory. The factor K̃ ≡ e2τ(0)/h (τ(ε)

is defined below) is included in Eq. (4.29) for dimensional reasons, and b is a

dimensionless, geometric constant (compare section 2.2.4).
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Now, since H1
aa′
νν′ is independent of the indices σ, σ′, the same is true for |Γaa′νν′|2,

so that it follows immediately that10

Γ(εν′ , R → εν , L) = Γ(εν , L→ εν′ , R) ≡ 1
2
Γ(εν′ → εν) . (4.32)

Exploiting eq. (4.32) and the δ(εν′−εν) function in Γ(ν ′ → ν), the backscattering

current can be simplified to

∆I =
K̃

|e|
∫
dεν′ [fR(εν′) − fL(εν′)]

1
2

∑

α′,i′

1

τν′(εν′)
, (4.33)

where the scattering rate 1
τν′ (εν′ )

for a particle with quantum numbers ν ′ is defined

by

1

τν′(εν′)
≡ ρ−2

o

∑

ν

2π/h̄δ(εν′−εν)1
2

∑

aa′
|T aa′νν′ |2 = (2/ρo)

∑

αi

2π/h̄1
2

∑

aa′
|T aa′νν′ |2 (4.34)

4.4.2 Poor Man’s Scaling unaffected by V

Consider the interaction vertex Γaa
′

νν′ in the poor man’s scaling approach, as in

section 4.2.3. The only difference from the equilibrium case discussed there (apart

from the extra index σ) is that here the Fermi functions in the intermediate states

in eq. (4.8) are V -dependent , see eq. (4.28). In principle, this is a considerable

complication, since one now has to keep track of two different kinds of Fermi

functions, fL and fR.

Fortunately, though, the poor man’s scaling equations are not affected by this

complication. Since they are derived by adjusting the cut-off from D to D′, which

are both ≫ V, T , they are independent of V for the same reason as that they are

independent of T . In other words, the scaling equations for V 6= 0 are the same

10The factor 1
2 is because Γ(εν′ → εν) = Γ(εν′ , R→ εν , L) + Γ(εν′ , R→ εν , R).
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as for V = 0. Thus, we arrive at the important conclusion that the initial RG

flow is unaffected by V 6= 0.

Eventually, the RG flow is cut off by either V or T , whichever is larger;

however, if both are ≪ TK, the RG flow will terminate in the close vicinity of the

T = 0, V = 0 fixed point, even if V 6= 0. Thus we obtain the second important

conclusion that for V ≪ TK, which we will call the weakly non-equilibrium

regime, the low-energy physics is governed by the same fixed point as for V = 0.

Actually, the preceding argument has to be refined a little. It is shown in

section 9.4 that V 6= 0 introduces is a marginally relevant perturbation to the

fixed point Hamiltonian (proportional to V/TK). Therefore, even if V ≪ TK,

if T/V is made sufficiently small the system will eventually flow away from the

T = 0, V = 0 fixed point (at a crossover temperature T ∗
V , say). However, since this

perturbation is marginal, it only grows logarithmically slowly as T is decreased,

so that T ∗
V will be very small. Therefore, there should exist a rather large regime

in which one can have both V, T ≪ TK and T > T ∗
V , and this regime is governed

by the 2-channel Kondo, T = 0, V = 0 fixed point.

The above two conclusions are the justification for the strategy followed in

subsequent chapters, namely to apply conformal field theory, which is an equilib-

rium theory, governed by the T = 0, V = 0 fixed point, to the Ralph-Buhrman

experiment, which is non-equilibrium, but has V < TK in the scaling regime [see

the discussions in sections 5.1 (point 3) and section 5.4.5].

The poor man’s scaling argument also shows, however, that the effective

Hamiltonian that the system renormalizes to is V -dependent if V > T . The

reason is simply that when one has scaled down to D′ = V > T , one has to
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replace D′ by V in the effective interaction vertex. This complication (which will

influence the argumentation in section 5.4.5) reflects the presence of the marginal

operator mentioned above. However, the complication disappears in the regime

V ≪ TK and T > T ∗
V , where the V -dependence becomes negligible.

4.4.3 Gan’s Results for Large Channel Number

As a check on the CFT calculation of the backscattering current to be performed

in chapter 9, we briefly cite some results obtained by Gan [Gan94] for the isotropic

k-channel Kondo model in the limit of a large number of channels, k → ∞.

In the limit k → ∞, the poor man’s scaling approach becomes exact. The

reason is that (for the isotropic model) the over-screened fixed point occurs when

the coupling constant has the special value v∗ = 2
2+k

[see eq. (7.35)], which → 0

as k → ∞. Thus, in this limit one never scales into a “strong-coupling” regime,

and the perturbative expressions from which the scaling equations are derived

retain their validity throughout. Thus, in the limit k → ∞, results from the poor

man’s scaling approach should agree with exact results from CFT, which serves

as a useful check on both methods. Gan calculated the imaginary part of the

electron self-energy, ΣI(ω,D, g), perturbatively11 to order k−4, and was able to

reproduce exact results to order k−2. (We cite only the lowest relevant terms.)

In order to apply Gan’s calculation to the model defined by eq. (4.27), one first

has to diagonalize Vσσ′ by the unitary transformation12 cpσαi ≡ 1√
2

(
1
1

1
−1

)

σσ̄
c̄pσ̄αi.

Since the eigenvalues of Vσσ′ are 1 and 0, one set of channels in the new basis

11Since the coupling constant v ∼ 1/k, and closed electron loops get a factor k, Gan had to
include up to 8-th order diagrams!

12The fact that the Fermi functions associated with the states that are mixed by this trans-
formation are not equal, fL 6= fR, does not matter, since the poor man’s scaling equations for
V 6= 0 are the same as for V = 0, as emphasized in section 4.4.2.
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decouples (with ᾱ=odd, say) and we have the conventional 2-channel Kondo

problem in the ᾱ=even channel (see section 9.2 for details), to which Gan’s

results can be applied.

Gan obtained the following expression for the self-energy at T = 0, V = 0, to

next-to-leading logarithmic order (below, c1, c2 . . . are constants):

ΣI(ω,D, v) = c1 v
2
[
1 − 2v ln(ω/D) + v2k ln(ω/D)

]
. (4.35)

The requirement that this be invariant under band-width rescaling reads

(∂x + β(v)∂v) ΣI(ω,D′, v) = 0, where β(v) ≡ ∂xv(x) , (4.36)

and x = ln(D′/D). This implies β(v) = −v2 + 1
2
kv3, so that the fixed point

condition β(v∗) = 0 gives v∗ = 2/k, which agrees to order O(k−1) with the exact

result v∗ = 2
2+k

[see eq. (7.35)]. Solving the second of eqs. (4.36) for v(x), with

the boundary condition v(0) = v gives, for v(x) close to v∗,

v(x) = v∗ − c2

(
D′

TK

)∆

, where TK = Dvk/2e−1/v , (4.37)

and ∆ = 2/k. Finally, use this result in ΣI(ω,D, v) = ΣI(ω,D′, v(x)), and choose

D′ = ω so that the logarithms lnω/D′ in eq. (4.35) are zero, to obtain:

ΣI(ω,D, v) = c1v
2(x) = c1(v

∗)2

[
1 − 2c2

v∗

(
ω

TK

)∆
]
. (4.38)

This is the desired result. Since 1
τ(ω)

= −2ΣI(ω), it can be used13 in eq. (4.33)

to obtain asymptotic expressions for the backscattering conductance ∆G(V, T ) =

13It has to be admitted that some “fudging”, typical of the poor man’s scaling approach, is
involved in doing this: the scaling relations were derived under the assumption ω ≫ V, T ∼ 0
(without which they are intractable). However, in the integral (4.33) this condition is not
satisfied. Therefore, the answers obtained by such an approach only hold with logarithmic
accuracy (in which lnω and ln 2ω are treated as “equal”).
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∂V ∆I(V, T ). One readily obtains

∆G(V, 0) ∝ V ∆ and ∆G(0, T ) ∝ T∆ . (4.39)

The corresponding expressions that we shall obtain in chapter 9 from our CFT

approach have the same form, but with ∆ = 2
2+k

, see eq. (9.28). (Actually, in

chapter 9 we always use k = 2, and hence ∆ = 1
2

in eq. (9.28).) This reduces to

2/k as k → ∞, which is a useful check on the methods developed in subsequent

chapters.



Chapter 5

Scattering State Theory

In chapter 2, section 2.2, we presented the standard theory [KSO77,OKS77,

KOS77,JvGW80] of transport through ballistic nanoconstrictions, which employs

a semi-classical Boltzmann equation for the distribution function f~k(~r). In chap-

ter 3, we demonstrated that the conductance data obey a scaling relation in

accord with conformal field theory predictions for the T = 0 fixed point of the

2-channel Kondo model, and extracted from the data a universal scaling curve

Γ(v). Our ultimate goal is to calculate Γ(v). We therefore need a formulation

of transport through a nanoconstriction that meets two requirements: Firstly,

it must apply to the weakly non-equilibrium regime, i.e. must go beyond linear

response; and secondly, it must be tailor-made for a direct application of results

from CFT.

The central idea of the approach by which we achieve this is as follows:

We adopt Hershfield’s Y -operator approach [Hers93], which formulates a non-

equilibrium problem in terms of scattering states, and obtain these scattering

states from Affleck and Ludwig’s CFT solution of the 2-channel Kondo problem.

116
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The present chapter lays the groundwork for this scheme, by describing the

basics of the scattering state approach, and Hershfield’s Y -operator formalism.

Only elementary quantum mechanics is needed. Our main goal is to find an ex-

pression for the current in terms of scattering states [eq. (5.52)], and a formula

expressing these scattering states in terms of an exactly known Green’s func-

tion [eq. (5.60)]. The application of AL’s CFT to find these scattering states is

presented in chapters 7 and 8.

In section 5.1 we outline the proposed scattering state strategy in more de-

tail. In sections 5.2 to 5.3 we develop a rather general (i.e. model-independent)

description of nanoconstriction scattering states for the equilibrium situation.

Section 5.4 considers the non-equilibrium case V 6= 0, with particular empha-

sis on the Y -operator formulation developed by Hershfield. In sections 5.5 and

5.6 we reexpress the problem as a 2-D field theory, and arrive at an expression,

eq. (5.52), for the current in terms of scattering states. Section 5.7 shows how

these scattering states can be extracted from a Green’s function. In section 5.8

we illustrate the formalism by discussing a simple example, that of 2 species of

spinless electrons scattering off a scalar potential.

5.1 General Strategy

Consider a free Hamiltonian Ho with a set of “free” eigenstates {|εη〉o}. If a scat-

tering term Hscat is turned on adiabatically, the {|εη〉o} will adiabatically develop

into a new set of states, {|εη〉}, which are eigenstates of the full Hamiltonian,

H = Ho +Hscat. These are called the scattering states (SSs) of H.

Hershfield has shown recently [Hers93] that non-equilibrium problems, even
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strongly interacting ones, become in principle very simple when formulated in

terms of SSs, provided these are known. In terms of SSs, a non-equilibrium prob-

lem can be cast in a form that is formally equivalent to an equilibrium problem.

In particular, it is not necessary to resort to the usual non-equilibrium calcula-

tional tools, such as the Keldysh technique, which become very complicated for

strongly interacting systems.

However, for Hershfield’s formulation to be useful, one needs to know the

SSs explicitly. Our new proposition is that the SSs can be extracted from Affleck

and Ludwig’s CFT solution of the equilibrium 2-channel Kondo problem. It is

then straightforward to insert these SS into Hershfield’s non-equilibrium theory

to calculate the non-equilibrium conductance, from which the scaling function

Γ(v) will be extracted.

In making this proposition, we immediately have to address three obvious

concerns:

1. Does CFT make sense for a nanoconstriction?

After all, CFT is a field theory in 1+1 dimensions, based on an infinite sym-

metry group, that of all conformal transformations. A nanoconstriction exists

in 3+1 dimensions, and does not even have left-right symmetry. How can the

former possibly apply to the latter, even in the absence of any impurity and in

equilibrium?

The key to this riddle is to formulate the problem (without impurity and at

V = 0) not in real space, where it is intractable (because of the complicated

geometry of the nanoconstriction), but in energy space, where it becomes simple

at low enough energy scales (see section 5.5). The point is that all one needs
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in order to arrive at a CFT of free fermions is a set of one-dimensional, gap-

less excitations with linear dispersion relation and hence a constant density of

states. Now, no matter how complicated the constriction geometry, gapless ex-

citations are always provided by the geometrical scattering states (GSS) of the

nanoconstriction. These are simply the single-particle states {|ε, η〉o = c†oεη|0〉}

that correspond to the complete set of solutions {Φo
ε,η(~x)} of the free Schrödinger

equation in the constriction geometry. The requisite one-dimensionality of the

excitations is provided by the constriction itself, which allows one to classify all

excitations as either left-moving or right-moving. A linear dispersion relation

and constant density of states come for free if we are close enough to the Fermi

surface. A (conformally invariant) (1+1)-dimensional field theory can then be

constructed by Fourier-transforming, ψη(τ, ix) ≡
∫
dε e−iεx coεη(τ), see eq. (5.30).

Thus the geometrical scattering states can be used in a natural way to con-

struct a (1+1)-dimensional field theory of free fermions. Next we postulate, solely

on the basis of the observed phenomena (in particular, the observed T 1/2 scal-

ing behavior), that these interact with TLSs via a 2-channel Kondo interaction.1

Switching on such an interaction with an impurity maps the original geometrical

scattering states into a new set of impurity scattering states {|ε, η〉} [see eq. (5.9)].

We shall show that these can be extracted from AL’s exact CFT solution of the

2-channel Kondo problem [see eqs. (5.60) and (5.59)]. In other words, once the

1Of course, historically things happened in exactly the opposite order, as described in the
introduction: first Ralph and Buhrman suggested that 2-channel Kondo physics is at work
[RB92], (on the basis of log V and log T behavior for G and the disappearance of the effect upon
annealing, which indicated that structural disorder was important); then Ludwig predicted T 1/2

scaling behavior; and subsequent analysis of the data indeed showed this behavior. Nevertheless,
since other explanations should not be ruled out a priori, in constructing the argument above
the logic is: “The experiment shows a list of properties, including T 1/2 scaling; which model
can reproduce them all? Let us try the 2-channel Kondo model and see how well it does in
reproducing the scaling curve quantitatively.”
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theory has been defined in energy space, CFT is simply a fancy way of extracting

its properties.

At this point, the second concern arises:

2. Do scattering states make sense for a dynamical impurity problem?

After all, a dynamical impurity is constantly flipping its spin. Can one even

define scattering states for such a problem? Would the scattering states not have

to “flip along” with the impurity, in some way or other?2

However, as is explained in great length in chapter 7, section 7.4.1, in the

conformal field theory formulation of the overscreened fixed point, the impurity

completely disappears from the formulation: it is absorbed in the definition of

a new spin current spin current, ~J (x) ≡ ~JL(ix) + 2πδ(x)~S, see eq. (7.36) – this

is the technical way of expressing the loose statement “the impurity is screened

by conduction eletrons”. In terms of the new currents ~J , the Hamiltonian takes

the form of a free Hamiltonian, for which one can meaningfully define scattering

states. These scattering states can be extracted from exactly known two-point

functions (which, in a sense, can be viewed Green’s functions for which the im-

purity has been “integrated out”).

The third concern is possibly the most serious:

3. Does is it make sense to extract SSs, to be used in a non-equilibrium problem,

from an equilibrium theory such as CFT?

After all, it is obvious that in general the SSs must depend on V in some way

or other: it is known [MWL93,WM94] that in the “extremely non-equilibrium

regime” defined by V ≫ TK, the density of states no longer shows a single Kondo

2I thank P. Wölfle for pointing out this potential concern to me.
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peak at the Fermi energy µ of the equilibrium bath, as it did for V = 0, but

instead two separate Kondo peaks at µ± 1
2
eV , the separate Fermi energies of the

two baths.3 This is clearly illustrated in Fig. 9.3(b) in chapter 9, obtained by

[HKH95]. Thus, the low-T physics for the case V ≫ TK clearly is different from

that of V = 0.

However, the scaling regime of the Ralph-Buhrman experiments correspond

to the opposite limit, V ≪ TK, which defines what will be termed the weakly

non-equilibrium regime. In this limit the physics is governed by the V = 0 fixed

point: since the width of the equilibrium Kondo peak in the density of states is

∼ TK [Hew93, eq.(5.22)], for V ≪ TK the above-mentioned peak-splitting effects

are not yet important. Intuitively speaking, by simple “continuity” there must

exist a regime in which V is so small that the actual SSs are indistinguishable

from the V = 0 scattering states, because the V -dependent corrections, of order

V/TK (since TK is the only energy scale in the problem) are negligible. [Indeed, in

Fig. 9.3(b), the Kondo peak shows no signs of splitting for eV < TK.] Clearly, in

this regime it is valid to extract the SSs from an equilibrium theory such as CFT.

Corrections in V/TK can always be calculated later, if desired [in the framework

of the AL theory, this is done by adding operators proportional to V/TK to the

fixed point Hamiltonian (see section 9.4)].

The fact that for small enough V the physics does not differ significantly

from that at V = 0 also follows from a poor man’s scaling argument: it is easy to

show [see section 4.4.2] that the poor man’s scaling RG equations are completely

independent of V (for the same reason as that they are independent of T , namely

3This result was obtained in [MWL93,WM94] using the NCA method to study an Anderson
model out of equilibrium.
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that the bandwidthD is ≫ V, T ). Therefore, the RG flow is initially unaffected by

V 6= 0. Of course the RG flow is eventually cut off by either V or T , whichever is

larger; however, if both are ≪ TK, the RG flow will terminate in the close vicinity

of the T = 0, V = 0 fixed point, even if V 6= 0. Thus it makes sense to use AL’s

equilibrium theory for this fixed point to calculate the SSs.

5.2 Geometrical Scattering States

In this section we formulate the problem in terms of geometrical scattering states.

Consider the problem of free electrons moving ballistically through a nanocon-

striction. Ultimately, we have to include 2-channel Kondo scattering off TLSs in

our model. For the moment, however, consider such 2-channel Kondo scatter-

ing to be switched off. The electrons scatter only off static impurities and the

insulating material.

In principle, we have to solve the Schrödinger equation for free electrons and

some random static impurities, with boundary conditions that all electron wave-

functions vanish on the metal-insulator boundary. Evidently, this is an intractable

problem.4 Nevertheless, in principle there exists a complete set of single-particle

solutions to the Schrödinger equation, {Φo
εη(~x)}. They are labeled by a continu-

ous eigenenergy ε (measured relative to the Fermi energy), and a set of discrete

quantum numbers, denoted collectively by η ≡ (ση, α, i). In this chapter, the

indices i and α will be called channel indices: i =↑, ↓ is the Pauli electron spin,

and α is a discrete index associated with the “non-radial” variables, depending

on the coordinate system used. α roughly corresponds to the index α introduced

4Even if one ignores scattering off static impurities, and describes the nanoconstriction as
a circular hole in a flat, insulating sheet, the resulting problem of wave diffraction through a
circular aperture is notoriously difficult to solve [Som54,Born64,Jack75].
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in chapter 4, eq. (4.9) (and in chapter 9 will become a pseudospin index). For

example, in spherical (r, θ, φ), cylindrical (z, ρ, φ) or Cartesian (x, y, z) coordi-

nates (with origin ~x = ~0 at the center of the hole), α would label complicated

linear combinations of angular harmonics Yl,m(θ, φ), or Bessel functions B(ρ, φ),

or transverse standing waves ei(kmx+kny), respectively, whereas the “radial” co-

ordinate would be r, z and z, respectively. Finally, ση = (+,−) = (L,R), the

species index, denotes the direction of propagation of the incident wave: left-

moving waves incident from z = +∞ in the right lead towards the left have

ση = L = +; those incident from z = −∞ in the left lead towards the right have

ση = R = −. The asymptotic behavior of the incident (or transmitted) parts of

such a wave-function Φo
εη(~x) will roughly be (in spherical coordinates) e−ikr/r (or

eikr/r) as r → ∞.

The single-particle eigenstates {|ε, η〉o = c†oεη|0〉} (where |0〉 = vacuum) of the

free Hamiltonian corresponding to these wave-functions will be called geomet-

rical scattering states, since they are determined solely by the geometry of the

nanoconstriction. We shall use them as a basis of “free” states in terms of which

to formulate the scattering of electrons off impurities in the nanoconstriction.

Measuring all energies relative to the equilibrium Fermi energy, for each η,

the T = 0 Fermi sea is filled up to ε = 0. Since ε is continuous, for each η we

thus have a channel of gapless excitations. The transport physics is governed by

excitations with ε of order T from the Fermi surface. For T small enough (≪ µ),

we may thus take the density of states in the η-channel to be energy-independent,

Nη(ε) = Nη(0) [to order O(T/µ)]. Consequently, such density of states factors

can be absorbed into matrix elements [see eq. (5.2)] and the normalization of the
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c†oεη’s, for which we take

{coεη, c†oεη} = δηη′δ(ε− ε′) . (5.1)

Hence no explicit Nη(0)’s appear in the energy integrals below. Also, energy

integrals will be taken from −∞ to +∞, since they are cut off by T in any case.5

With these conventions, any operator Ô may be expressed in second-quantized

form as:

Ô =
∑

ηη′

∫
dε
∫
dε′ o〈εη|O|ε′η′〉o c†oεηcoε′η′ , (5.2)

In particular, the free Hamiltonian is diagonal:

Ho =
∑

η

∫
dε ε c†oεηcoεη , (5.3)

The operator for the current (to the left, say) can be written as

I = (evF )
∑

ηη′

∫
dε
∫
dε′ 〈εη|I|ε′η′〉 c†oεηcoε′η′ . (5.4)

What will the coefficients 〈εη|I|ε′η′〉 look like? In general, the current does not

have to be strictly diagonal in η; in spherical coordinates, for example, it certainly

has off-diagonal elements. However, roughly speaking, the current to the left is

the difference between the number of left-moving and right-moving transmitted

electrons, and hence the largest contribution will come from terms diagonal in η.

Thus we write

〈εη|I|ε′η′〉 =
1

vFh
σηTηδηη′δ(ε− ε′) , (5.5)

where the ση = ± in front ensures that L/R-movers are counted with opposite

signs, and we have neglected the ε-dependence of the “geometrical transmission

5Strictly speaking, the
∫
dε integrals have to be cut-off,

∫ Λ

−Λ
dε, at an energy Λ satisfying

T ≪ Λ ≪ µ. However, when interested in low-T physics, we may take Λ → ∞ in integrals such
as in eq. (5.2), since the corrections thereby neglected are of order O(T/Λ).
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coefficients” Tη. Since a typical “open” channel has conductance of about 1 e2/h,

we expect Tη ≃ 1 for transmitting channels, and Tη ≃ 0 for reflecting channels.

For a device with conductance of about 4000 e2/h, about 4000 channels will be

“open” (i.e. transmitting electrons through the hole), while the others will be

closed (reflecting).

Suppose a device has an observed ZBA with maximum amplitude of about

10 e2/h. This means that about 10 of the transmitting channels interact strongly

with defects, which induce a non-trivial energy- and temperature dependence in

their transmission coefficients. We write the corresponding scattering potential

generically as

Hscat =
∑

ηη′

∫
dεdε′c†oεηVηη′(ε, ε

′)coε′η′ , (5.6)

For Kondo impurities, Vηη′ has additional 2 × 2 matrix structure corresponding

to the dynamics of the impurity; however, in the present chapter this need not

be made explicit.

5.3 Impurity Scattering States

The so-called impurity scattering states are defined to be the set of states {|εη〉 ≡

c†εη|0〉} into which the geometrical scattering states {|εη〉o} “develop” when Hscat

is turned on adiabatically, and which diagonalize the full Hamiltonian H:

H ≡ Ho +Hscat =
∑

η

∫
dεεc†εηcεη . (5.7)
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Since both sets of states span the same Hilbert space, they are related by a

unitary transformation,6 Uη′η(ε
′, ε) ≡ o〈ε′η′|εη〉:

|εη〉 =
∑

η′

∫
dε′ |ε′η′〉oUη′η(ε′, ε) , (5.8)

cεη =
∑

η′

∫
dε′ U †

ηη′(εε
′)coε′η′ ; (5.9)

δηη′δ(ε− ε′) =
∑

η̄

∫
dε̄ U †

ηη̄(ε, ε̄)Uη̄η′(ε̄, ε
′) . (5.10)

Note that Uη′η(ε
′, ε) is not quite the same as the usual scattering matrix Sηη′(ε

′, ε),

defined by |εη〉(+) ≡ ∑
η′
∫
dε′|εη′〉(−)Sη′η(ε

′, ε) [Merz70, eq. (19.48)] (in that lan-

guage |εη〉(+) corresponds to our |εη〉). Sη′η(ε′ε) maps two sets of eigenstates of

the full Hamiltonian onto each other, namely “incoming” states {|εη′〉(−)} onto

“outgoing” ones {|εη〉(+)}. In contrast, Uη′η(ε
′, ε) maps eigenstates {|ε′η′〉o} of

Ho onto “outgoing” eigenstates {|εη〉} of H.

Since the scattering state operators diagonalize H, their equilibrium thermal

expectation values are extremely simple:

〈c†εη(τ)cε′η′(τ ′)〉 = δηη′δ(ε− ε′)eε(τ−τ
′)fo(ε) , (5.11)

where fo(ε) = 1
eβε+1

is the equilibrium Fermi function.

The task at hand, therefore, is to find the {cεη} in terms of the {coεη}. The

standard textbook approach is to observe that

Ho|εη〉o = ε|εη〉o and (Ho +Hscat) |εη〉 = ε|εη〉 (5.12)
6It was pointed out to us by A. Stern that the argument below seems to make an implicit

assumption that the scattering states can be written as a sum of single-particle states; for
a many-body problem such as the Kondo problem, in which particle-hole excitations can be
created upon scattering, this might not seem quite appropriate. However, it is known that
the scattering matrix for free particles incident on a Kondo impurity is unitary, if the Hilbert
space is appropriately enlarged to include “spinor-electrons” (see section 7.5.2 and appendix F).
Thus, when applying the formalism below to the Kondo problem in later sections, the unitary
transformation in eq. (5.8) is understood to act in this enlarged Hilbert space.
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imply

|εη〉 = |εη〉o +
1

ε−Ho + iα
Hscat|εη〉 (5.13)

as can be verified by acting on the left-hand-side with (ε − Ho). This is the

Lippmann-Schwinger equation for |εη〉, see e.g. [Merz70, eq. (19.20)] or [Sak85,

eq. (7.1.6)]. When iterated, eq. (5.13) evidently gives |εη〉 in terms of |εη〉, i.e. it

gives a perturbative expression for the operator Uη′η(ε
′, ε) in eq. (5.8).

However, for any Kondo problem perturbation theory is known to break down

at low T , so that we have to adopt a different approach. Fortunately, for the 2-

channel Kondo problem we have the exact field-theoretic solution of AL at our

disposal, which gives exact expression for all Green’s functions. Therefore, in

section 5.5 we shall transcribe the present problem into a 2-dimensional field

theory, and show in section 5.7 how Uη′η(ε
′, ε) can be extracted from an exactly

known Green’s function [see eqs. (5.59) and (5.60)].

Before turning to field theory, though, we explain in the next section Hersh-

field’s Y -operator approach to non-equilibrium problems, in which the usefulness

of scattering states becomes dramatically clear.

5.4 The Non-Equilibrium Case

In this section, we describe how to incorporate a non-zero voltage into the prob-

lem. First we scetch in section 5.4.1 the physical situation that applies to a

non-equilibrium nanoconstriction without backscattering. Then we explain how

the non-equilibrium problem in the presence of backscattering can be treated in

terms of Hershfield’s formulation of non-equilibrium quantum statistical mechan-

ics.
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5.4.1 The Non-Equilibrium Nanoconstriction without
Backscattering

Suppose Hscat = 0, and turn on a voltage, so that the right and left leads have

chemical potentials µ + eV/2 and µ − eV/2, respectively. As discussed in sec-

tion 2.2.1, this causes a gradual drop in the electrostatical potential eφ(~r) (i.e.

the bottom of the conduction band) across the nanoconstriction (see Fig. 2.3),

from +eV/2 on the right to −eV/2 on the left. Consequently L- (or R-) moving

electrons traveling at total constant energy E are accelerated (or decelerated) as

they approach the constriction. The details of their motion might be complicated,

but the result is simple (see page 20): At each point near the point contact, one

has effectively two Fermi seas, one consisting (roughly speaking) of L-movers,

injected from the R lead with Fermi energy µ + eV/2, the other of R-movers,

injected from the left lead with Fermi energy µ− eV/2 (Fig. 2.2).

Thus, the essence of the non-equilibrium nature of the problem will be cap-

tured correctly if we adopt the following simplified picture: ignore the spatial

variation of the electrostatic potential eφ(~r) altogether, and simply consider two

leads (R/L) with chemical potentials µ ± 1
2
eV , that inject L/R-moving ballistic

electrons into each other.

Formally, this means that in the absence of any scattering potential, thermal

weighting is done with the following density matrix ρo(V ):

〈O〉 ≡ Trρo(V )O

Trρo(V )
, where ρo(V ) ≡ e−β[Ho−Yo(V )] , (5.14)

and the weighting operator Yo is defined as

Yo(V ) ≡ 1
2
eV (NL −NR) = 1

2
eV

∑

η

ση

∫
dε c†oεηcoεη . (5.15)
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Here NL and NR denote the total number of L- and R-moving electrons (recall

that ση = (+,−) for (L,R)-movers).

The task at hand is to now incorporate the effect of backscattering at the

center of the constriction due to Hscat.

5.4.2 The Kadanoff-Baym Ansatz for V 6= 0

Let us formulate the problem in general terms: we are confronted with a non-

equilibrium problem whose dynamics is described by a Hamiltonian H = Ho+H1,

whereas the statistical (thermal weighting) properties are governed by heat baths

at chemical potentials µ±eV/2. H1 contains all many-body interactions and scat-

tering terms between baths [in our case there are no many-body interactions, and

H1 = Hscat.] The heat baths are assumed infinitely large and hence “indepen-

dent and unperturbed”, in the sense that their thermal distribution properties

are not perturbed when a small number of particles are transferred from one to

the other. A well-known example of such a system consists of two heat-baths, L

and R, separated by a tunnel barrier, and H1 contains a tunneling Hamiltonian

Htun that transfers L- and R particles between the two baths, which are otherwise

disconnected (apart from a battery of course, to maintain a steady state). In our

present system, where the two baths are a bath of L-movers and one of R-movers,

Hscat plays the role of Htun, which converts the L- to R-movers and vice versa.

In our case, the physical left and right leads are of course not disconnected, in

contrast to the typical tunnel barrier case, and particles freely pass from one lead

into the other, with or without scattering. However, we assume that the leads

are large enough that none of these processes disturb the equilibrium in each of

them, in the sense that each still has a definite well-defined chemical potential,
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which governs the distribution of electrons injected towards the lead.

How does one calculate thermal averages for such a system? The main com-

plication that has to be confronted is that the number of particles in each bath

is not conserved, in that [NL,R, H1] 6= 0. Therefore, any attempt to simply re-

place ρo(V ) in eq. (5.14) by e−β(H−Yo) will (apart from lacking first-principles

justification) quickly run into problems: since [H,Yo] 6= 0, many of the standard

properties of equilibrium Green’s functions (e.g. G(τ + β) = ±G(τ)), no longer

hold.

Kadanoff and Baym have shown how such a general problem is to be dealt

with [KB62, eq.(6.20)]: Thermal weighting has to be done at some early time

to → −∞, at which all interactions H1 are switched off, and then H1 is adi-

abatically turned on [H1(t) ≡ H1e
αt, with α → 0+] while the system is time-

evolved to the time t of interest. Concretely, in taking the thermal trace, one

uses the thermal weighting factors e−β[Eo− 1
2
eV (NL−NR)]n appropriate to a trace

∑
n〈n, to| |n, to〉 taken at some early time to → −∞; the actual trace, however,

is taken between the time-evolved versions of these states |n, t〉 = U(t, to)|n, to〉,

where U = e−iH(t−to) is the Heisenberg time-evolution operator:7

〈O(t)〉V ≡
∑
n e

−β[Eo− 1
2
eV (NL−NR)]n〈n, t|O|n, t〉

∑
n e

−β[Eo− 1
2
eV (NL−NR)]n

=
Tr ρo(V, to)U

†(t, to)OU(t, to)

Tr ρo(V, to)
,

(5.16)

where in the second equality the trace is taken between the states |n, to〉. This

is the defining prescription for taking non-equilibrium expectation values in the

presence of interactions.

Since steady-state expectation values of a single operator are time-independent,

7No time-ordered exponential is needed here, because H is assumed to be time-independent.



131

t is here just a dummy variable, and is often taken to be 0.

5.4.3 Recovering Standard Results for V = 0

Of course, for V = 0 the prescription (5.16) has to reduce to the standard equi-

librium prescription:8

〈O〉V=0 ≡
Trρ(0, to)O

Trρ(0, to)
, where ρ(0, to) ≡ e−βH . (5.17)

To show that this is indeed the case is actually not completely trivial, though

intuitively plausible (it is done explicitly in [Hers93]). Adopting the interaction

representation with respect to H1, in which

U(t, to) = e−iHo(t−to)UI(t) , with UI(t) = Te
−i
∫ t
to
dt′H1I(t

′)
, (5.18)

one expands eq. (5.16) in powers of H1I, and compares the resulting perturbation

expansion to that obtained by expanding eq. (5.17) in powers of H1I. If one

assumes that a physical relaxation process exists that causes correlation functions

to decay in time, so that

lim
to→−∞

Tr ρo(0, to)BI(to)CI(t)

Tr ρo(0, to)
=

Tr ρo(0, to)B

Tr ρo(0, to)

Tr ρo(0, to)C

Tr ρo(0, to)
, (5.19)

then one can set the convergence factor α = 0, since its only role was to regulate

the t0 → −∞ limit, and terms of the form (5.19) arise from the lower limit of

the
∫ t
to
dt′ integrals. They turn out to exactly cancel the terms that arise from an

expansion of the denominator in eq. (5.17), and the perturbation expansions of

eqs. (5.16) and (5.17) indeed turn out to be the same.

Eq. (5.17) is of course the starting point for familiar equilibrium statistical

mechanics. One of its most useful features is that the thermal weighting factor

8The second argument to in ρ(0, to) is superfluous; it is retained here only for the sake of
notational consistency with the V 6= 0 case.
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e−βH and the dynamical time-evolution factor U(t, to) = e−iH(t−to) commute;

Green’s functions therefore have the periodicity property G(τ + β) = ±G(τ),

which makes it convenient to formulate perturbation expansions in H1 along the

negative imaginary axis, t = −iτ ∈ [0,−iβ].

5.4.4 Hershfield’s Formulation of the case V 6= 0

If V 6= 0 so that eq. (5.16) and not eq. (5.17) is the starting point, there are

no obvious periodicity properties along the imaginary time axis, and the con-

ventional approach, due to Keldysh, is to formulate perturbation expansions in

H1 along the real axis [Kel64,RS86]. The various diagrammatic techniques that

have been devised are simply ways of doing the real-time integrals
∫ t
to
dt′ that

result from the expansion of U(t, to). However, for our purposes such expansions

are inconvenient: firstly, perturbation expansions have limited use in the Kondo

problem, and secondly, we would in the end like to apply Affleck and Ludwig’s

non-perturbative CFT results.

Hershfield has recently shown that eq. (5.16) can be rewritten in a way that

exactly meets our needs (what follows is a simplified version of his arguments):

By using the cyclical property of the trace to pull U(t, to) to the front, eq. (5.16)

can be written as

〈O(t)〉V ≡ Trρ(V, t)O

Trρ(V, t)
, (5.20)

where

ρ(V, t)

Trρ(V, t)
≡ U(t, to)ρo(V, to)U

†(t, to)

Trρo(V, to)
(5.21)

ρ(V, t) ≡ e−β[H−Y (V,t)] , (5.22)

The formal definition (5.21) makes it clear that ρ(V, t) is the density operator
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that ρo(V, to) develops into as the interaction is switched on and the system

time-evolves from to to t, with appropriately changing normalization. Eq. (5.22),

purposefully written in a form resembling that of ρo(V, to) in eq. (5.14), defines

the operator Y .

What are the properties of ρ(V, t)? To gain some intuition, we shall glibly

pretend that the denominators in eq. (5.21) are equal [which they are not quite —

for a more careful but also more technical treatment of the denominators, relying

on the relaxation assumption of eq. (5.19), refer to [Hers93]]. The definition

eq. (5.21) then implies that ρ(V, t) satisfies the following differential equation in

the interaction picture:9

i∂tρI(V, t) = −[ρI(V, t), H1I(t)] (5.23)

By expanding in powers of H1, ρI(V, t) ≡
∑∞
n=0 ρI,n(V, t), and using the fact that

each term in the expansion has time-dependence ρI,n(V, t) = eiHo(t−to) ρI,n(V, t)

e−iHo(t−to)eαt, we find the relation

[ρI,n(V, t), Ho] + iαρIn(V, t) = −[ρI,n−1(V, t), H1I(t)] , (5.24)

which, when summed over n, gives

[ρ(V, t), H] = iα
(
ρo(V, to) − ρ(V, t)

)
. (5.25)

The positive infinitessimal here makes the operator equation well-defined, but

can be taken to zero if a relaxation process is assumed and eq. (5.19) holds

[Hers93]. Therefore we find, reassuringly, that [ρ(V, t), H] = 0, which means that

the density matrix is conserved, as it should be.

9Note the extra − sign that is characteristic of the time-evolution of the density operator
[Sak85, chapter 2].
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In a similar fashion, Hershfield showed that the operator Y defined in eq. (5.22)

can be characterized as follows:

(P) Y is the operator into which Yo evolves as the interactions are turned on

[as is suggested by a comparison of eqs. (5.21) and (5.14)]. It satisfies the

relation

[Y,H] = iα(Yo − Y ) , where α → 0+ , (5.26)

which implies that Y is a conserved quantity.

Using this property [and the relaxation assumption eq. (5.19)], Hershfield showed

explicitly that eq. (5.22), expanded in powers of H1, reproduces the Keldysh

perturbation expansion obtained from the Kadanoff-Baym Ansatz (5.16).

The fact that the Y -operator is a conserved quantity is the great advantage of

the Y -operator approach. It implies that the problem is now formally equivalent

to an equilibrium one, where one has µN (N= total particle number) instead of

Y , and [H,N ] = 0. Once the scattering states have been found, one can therefore

apply the usual methods of equilibrium statistical mechanics,10 using the density

matrix ρ ≡ e−β(H−Y ) and Heisenberg time-development Ô(τ) = eHτ Ôe−Hτ .

The fact that Y evolves from Yo as H1 is turned on implies that Y can be

obtained from Yo by replacing11 the coεη in eq. (5.15) by the scattering-state

10By comparing eq. (5.7) and eq. (5.27), it is clear that Y can actually be shifted away in
ρ = e−β(H−Y ) by defining new energies ε′ ≡ ε − µη associated with cεη, i.e. measuring the
energy of an excitation relative to the Fermi surface of the bath from which it originates. This
brings the weighting factor into a truly equilibrium form, but because cεη(τ) = cεηe

−τ(ε′+µη),
it will produce extra factors of e±τ2µη on some operators that are not diagonal in ση, such as
Hscat. We shall not follow this approach here.

11Note that Y is not simply equal to the Yo of eq. (5.15), rewritten in terms of the scattering-
state basis via eq. (5.9): Y 6= Yo. Y is obtained from Yo not by rewriting the coεη in terms of
the cεη, but by replacing the former by the latter.
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operators cεη into which the latter evolve:

Y ≡ 1
2
eV

∑

η

ση

∫
dε c†εηcεη (6= Yo) . (5.27)

It follows that non-equilibrium thermal expectation values of the cεη’s have the

standard form:

〈c†εη(τ)cε′η′(τ ′)〉 = δηη′δ(ε− ε′)eε(τ−τ
′)f(ε, η). (5.28)

The only difference between this equation and its equilibrium version (5.11) is

that fo(ε) is here replaced by

f(ε, η) ≡ 1

eβ(ε−µη) + 1
= fo(ε− µη) , where µη ≡ σηeV/2 , (5.29)

(i.e. µη = ±eV/2 for scattering states originating from the right or left bath). A

remarkably simple result!

The main message of Hershfield’s Y -operator formalism is that non-equilibrium

problems become simple when formulated in terms of scattering states. The cru-

cial question now becomes: how does one calculate these scattering states for a

complicated, many-body problem?

5.4.5 Applying the Y -Operator Approach to the Kondo
Problem

Although Hershfield derived his Y -operator approach using arguments based on

perturbation theory, he proposed that the formulation that he arrived at can also

be used as starting point for non-perturbative calculations. In other words, if it

is possible to calculate the scattering states non-perturbatively, and to somehow

find an operator Y that is conserved and reduces to Yo when Hscat is turned off,
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one can simply insert these into the density matrix ρ of eq. (5.22), and proceed

to use relations such as eq. (5.28) and (5.29).

How readily this works in practice depends on the details of the problem.

Let us classify a given problem as being of type I if its scattering states are

independent of V and T , and of type II if they do explicitly depend on V and T .

“Sufficiently simple” problems will be of type I. For such problems, one can

proceed in two separate steps:

(1) First find a basis that diagonalizes the Hamiltonian (i.e. the cεη’s), by the

procedure described in section 5.3. By definition, for type I problems this process

is independent of whether the system is in equilibrium or not, because it simply

amounts to finding a convenient basis for one’s Hilbert space (and hence the

scattering states are V -independent).

(2) Thereafter construct the Y -operator and density matrix ρ directly from the

eigenstates of H (not Ho); this means that in doing the thermal weighting in the

baths, one specifies the Boltzmann weights associated with the scattering states

(not the original free states).

This order of steps, namely first finding a convenient basis, then specifying

their thermal weighting, is intuitively plausible: after all, thermal weighting is

nothing but a specification of the occupation probabilities of the eigenstates of

the full Hamiltonian. If one has two leads at different chemical potentials, those

states “originating” from the R/L lead should have Boltzmann weights reflecting

from which lead they originated, since the thermal equilibration that leads to the

Boltzmann factors happens deep inside the leads, before the particles are injected

and scattered by Hscat.
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An example of a problem of type I can be found in [SH95a],12 where Schiller

and Hershfield solve a certain non-equilibrium Kondo problem exactly using

Emery-Kivelson bosonization techniques. The scattering states that they cal-

culate explicitly [SH95b] are V - (and T -) independent. Unfortunately it is not

suitable for our purposes, because it does not give a T 1/2 contribution to the

conductance [see section 9.1, page 242].

On the other hand, “sufficiently complicated” problems will be of type II, and

the Kondo model that we use in chapter 9 falls in this category. In such problems,

because of many-body effects the scattering states depend on the occupation of

other states, and hence become T and V -dependent. Then the low-energy physics

is described by an effective Hamiltonian that is explicitly V - and T -dependent.

That this is the case for a typical Kondo problem follows from poor man’s scaling:

the effective Hamiltonian depends on the rescaled cut-off D′, which has to be

replaced by max(V, T ) at low energies (this is because the logarithms that arise

in perturbation theory will contain log[max(V, T )], because the Fermi functions

for intermediate states also depend on V , see section 4.4.2).

Intuitively speaking, the Kondo problem is very sensitive to what happens

close to the Fermi surface. If the Fermi surface “splits in two” due to a non-

zero voltage, this must somehow influence matters. Indeed, in the extreme limit

V ≫ TK, the Kondo resonance actually splits in two, as mentioned on page 121,

and illustrated in Fig. 9.3(b) of chapter 9.

Thus, for a type II problem one cannot first diagonalize Heff and then con-

struct Y eff , because Heff depends on V . Instead Heff and Y eff have to be found

12The preprint of [SH95a] inspired the approach proposed below. I would like to thank its
authors for making it available to me prior to its publication.
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simultaneously and self-consistently, a complicated procedure that has never been

attempted so far, to my knowledge (though the non-equilibrium, Keldysh-NCA

calculations of [MWL93,WM94] and [HKH94] can be considered to be an indirect

way of doing this).

However, in the weakly non-equilibrium regime where V ≪ TK, the situation

becomes tractable again. As was argued in section 5.1, page 120, in this regime

the Kondo peaks have not yet begun to split and the V -dependence of the SSs

will only be of order V/TK, and hence negligible. Hence, in this regime we may

use the equilibrium version of the SSs, and calculate corrections in perturbation

theory in V/TK, if desired.

We propose (and that is one new aspect of our work) that for the Kondo

problem, the exact equilibrium scattering states {cεη} can be obtained from con-

formal field theory, by extracting them from an equilibrium Green’s function [see

eq. (5.60)].13 These equilibrium SSs are then to be used in a non-equilibrium ex-

pression for the current. The conductance so obtained will still be non-linear in

V , because the expression for the current contains V -dependent Fermi functions.

The rest of this chapter is devoted to formulating the nanoconstriction prob-

lem as a 2-D conformal field theory, and deriving the relation [eq. (5.60)] that

gives the scattering states in terms of an exactly known Green’s function. The

formalism below is valid for arbitrary V 6= 0 (only in chapter 9, when applying

the formalism to Kondo Green’s functions to obtain Kondo SSs, will we have to

take V = 0).

13As argued above [see page 120], in Affleck and Ludwig’s conformal field theory approach, the
impurity is completely screened (technically, it is absorbed in the spin current) and disappears
from the formulation, so that it is possible to meaningfully speak of scattering states even for
a problem that initially involved a dynamical impurity.
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5.5 Transcription to a 2-D Field Theory

In this section we formulate the problem in terms of a set of 2-dimensional,

second-quantized fields, ψη(τ, ix), one for each channel. They can be expressed

either in terms of geometrical or impurity scattering states [eqs. (5.30) or (5.41)].

If the Green’s function Gηη′ ≡ −〈ψηψ†
η′〉 is known exactly, one can therefore

extract from it a relation between coεη and cεη, and hence find Uη′η(ε
′, ε).

We initially defined all physical operators in terms of coεη’s [eq. (5.2)]. A

natural way to rewrite them in terms of second-quantized fields is to define, for

each channel η, the field ψη(τ, ix) (with x ∈ [−l, l], l → ∞) as a Fourier-integral

over all ε: 14

ψη(ix) ≡
∫ ∞

−∞
dε e−iεx coεη , (5.30)

coεη =
∫ ∞

−∞
dx
2π
eiεxψη(ix) , (5.31)

{ψη(ix), ψ†
η′(ix)} = 2πδηη′δ(x− x′) . (5.32)

Several comments are in order:

1. Note that ψη(ix) is not the usual electron field Ψ(~x), which is constructed

from the (unknown) wave-functions Φo
ε,η(~x) through Ψ(~x) ≡ ∑

η

∫
dεΦo

ε,η(~x)coεη.

Instead, ψη(ix) is best thought of simply as the Fourier transform of coεη, this

being a convenient way of rewriting the problem in field-theoretical language.

Nevertheless, the role of x is strongly analogous to that of the “radial” coordinate

of the actual wave-function Ψεη(~x).

2. If Hscat = 0, then the ψη(ix) are free fields, that have the following three

14As mentioned in footnote 5, the
∫
dε integrals strictly speaking have to be cut-off,

∫ Λ

−Λ
dε,

at an energy Λ satisfying T ≪ Λ ≪ µ, but we take Λ → ∞ (which allows us to invert relations
such as (5.30) straightforwardly).
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properties:

2(a): coεη(τ) = coεηe
−ετ in the Heisenberg picture (in imaginary time, t → −iτ),

implying that ψη(τ, ix) = ψη(u), where u ≡ τ + ix. [The u dependence of free

fields ψη of course also follows from the Heisenberg equation of motion for free

fields, (∂τ + i∂x)ψη = 0.] This is the reason for writing the argument of ψη as

(ix) in eq. (5.30), since the τ dependence of ψη can then simply be obtained by

analytic continuation (ix→ τ + ix).

2(b): By construction, all free fields are “mathematical left-movers”, since upon

continuation to real time, τ → it, they depend only on i(t + x) [the distinction

between physical L- and R-movers is carried in the index ση = ±1]. The reason

for choosing such a construction is explained below, just after eq. (5.39).

2(c): If Hscat = 0, then coεη(τ) = cεη(τ) and hence obeys eq. (5.28). This means

that the free Green’s function Go is given by [see eq. (A.36)]:

Gηη′(u− u′) ≡ −〈Tψη(u)ψ†
η′(u

′)〉 (5.33)

=
−δηη′e−µη′ (u−u

′)

β
π

sin π
β
(u− u′)

T→0−→ −δηη′
u− u′

e−µη′ (u−u
′) . (5.34)

It is straightforward to rewrite any operator Ô, expressed as in eq. (5.2), in terms

of ψη(ix):

Ô =
∑

ηη′

∫
dx
2π

∫
dx′

2π
ψ†
η(ix)Oηη′(x, x

′)ψη′(ix
′) (5.35)

where

Oηη′(x, x
′) ≡

∫
dε
∫
dε′ o〈εη|O|ε′η′〉o e−i(εx−ε

′x′) (5.36)

In particular, the Hamiltonian becomes

H ≡ Ho +Hscat =
∑

ηη′

∫ ∞

−∞
dx
2π
ψ†
η(ix)Hηη′(x)ψη′(ix) , (5.37)

Hηη′(x) ≡ δηη′i∂x + 2πδ(x)Vηη′ . (5.38)



141

We have neglected the energy-dependence of the matrix elements in Hscat, taking

Vηη′(ε, ε
′) ≡ Vηη′ ; this corresponds to assuming a short-range interaction, as is

evident in eq. (5.38).

By simple Fourier transformation, we have hence arrived at a 2-dimensional

field theory, defined by eqs. (5.37) and (5.38). The reason why this (and not a

3+1 dimensional theory) resulted, is essentially that there is only one continuous

quantum number, namely ε, in the problem, with respect to which we can Fourier

transform. This in turn is a result of the constriction geometry, which defines a

definite and unique origin, and consequently a notion of a single “radial” coordi-

nate, r or z, depending on the coordinate system used, to which our x roughly

corresponds.

5.6 Scattering State Wave-Functions

In this section we reexpress the field ψη(ix) in terms of the {cεη}, and derive

a convenient expression for the current, namely eq. (5.52). In the process we

shall naturally be lead to define an important quantity, the scattering amplitude

Ũηη′(ε) for an incoming particle with quantum numbers (ε, η′) to emerge with

quantum numbers (ε, η). This is the quantity that can most easily be extracted

from an exact Green’s function.

The Heisenberg equation for ψη(τ, ix) is

−∂τψη(u) = [ψη(u), H] = Hηη′(x)ψη′(u) (5.39)

Now, we emphasized on page 140, point 2(b), that all our fields (both for ση = L

and R) are mathematical left-movers, incident from x = ∞ and traveling toward

x = −∞. When a scattering term Hscat = Vηη′δ(x) is turned on, the scattered
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’η η

Figure 5.1 A one-dimensional scattering problem: Free fields are incident from
the right, scattered at the origin and outgoing to the left.

fields will be different from free fields only for x < 0. Thus, we have turned our

problem into a one-dimensional scattering problem, with all free fields incident

from the right, and all scattered ones outgoing to the left (see Fig. 5.1). This is

the reason for introducing both L- and R-movers as “mathematical left-movers”.

L-R backscattering is described by the ση 6= ση′ terms in Vηη′ .

It is convenient to express this scattering problem in terms of the {cεη}, since

the full H is diagonal in terms of these. Inserting the inverse of eq. (5.9) into

eq. (5.30) and defining

φε′η′(ix, η) ≡
∫
dεe−iεxUηη′(ε, ε

′) , (5.40)

we find

ψη(τ, ix) =
∑

η′

∫
dε′φε′η′(ix, η)cε′η′(τ) , (5.41)

cε′η′(τ) =
∑

η

∫
dx
2π
φ∗
ε′η′(ix, η)ψη(τ, ix) . (5.42)

The function φε′η′(ix, η) may be thought of as the “wave-function” for the im-

purity scattering state |ε′η′〉:15 it gives the amplitude for an electron, injected in

state |ε′η′〉o, to be found at x with quantum number η. The unitarity (5.10) of

15This interpretation of φε′η′(ix, η) as a wave-function is meant as a mnemonic and should not
be taken literally; as mentioned on page 139, point 1, the actual wave-functions are intractably
complicated.
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Uηη′(ε, ε
′) guarantees orthonormality and completeness of the φε′η′(ix, η)’s:

∑

η̄

∫
dx̄
2π
φ∗
εη(ix̄, η̄)φε′η′(ix̄, η̄) = δηη′δ(ε− ε′) , (5.43)

∑

η̄

∫
dε̄ φ∗

ε̄η̄(ix, η)φε̄η̄(ix
′, η′) = 2π δηη′δ(x− x′) . (5.44)

The advantage of the representation (5.41) of ψη(τ, ix) is that cεη(τ) = cεηe
−τε,

because cεη diagonalizes H [eq. (5.7)]. Therefore the Heisenberg equation (5.39)

reduces to an eigenvalue equation for φε′η′(ix, η):

Hηη̄(x)φε′η′(ix, η̄) = ε′φε′η′(ix, η) . (5.45)

Since the solutions of eq. (5.45) must correspond to the free wave-function e−iε
′x

of the state |ε′η′〉o for all x > 0 (before the scatterer is encountered), they will in

general have the following form: 16

φε′η′(ix, η) ≡ e−iε
′x
[
Ũηη′(ε

′)θ(−x) + δηη′θ(x)
]
. (5.46)

This relation defines the matrix Ũηη′(ε
′), which clearly can be interpreted as a

scattering amplitude, since it specifies the amplitude for an electron incident with

quantum numbers (ε′η′) to emerge with quantum numbers (ε′η).

The relation between the scattering amplitude Ũηη′(ε
′) and the matrix Uηη′(ε, ε

′)

can be found by inserting eq. (5.46) into the inverse of eq. (5.40):

Uηη′(ε, ε
′) =

∫
dx
2π
eiεxφε′η′(ix, η) (5.47)

=
1

2πi

[
Ũηη′(ε

′)

ε− ε′ − iα
− δηη′

ε− ε′ + iα

]
. (5.48)

16In writing eq. (5.46), we have assumed elastic scattering (εin = εout). For a 2-channel
Kondo model this means that we assume that the impurity energy splitting ∆ = 0, so that
electrons cannot exchange energy with the impurity (experimental evidence that ∆ is indeed
small (<∼ 1 K) is presented in section 3.4).
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The unitarity condition eq. (5.10) on Uηη′(ε, ε
′) then immediately implies unitarity

for Ũηη′(ε
′) (the

∫
dε̄ integral can trivially be done by contour methods):

∑

η̄

Ũηη̄(ε
′)Ũ †

η̄η′(ε
′) ≡ δηη′ . (5.49)

The unitarity of Ũηη̄(ε
′) could of course have been anticipated from eq. (5.46):

it ensures that scattering conserves probability, i.e. that
∑
η |φε′η′(ix, η)|2 is the

same for x > 0 and x < 0.

As a consistency check, note that by using 1
ε−iα + 1

ε+iα
= 2πiδ(ε), eq. (5.48)

can be written in the form

Uη′η(ε
′, ε) = δηη′δ(ε

′ − ε) +
1 − Ũη′η(ε)

ε− ε′ + iα
(5.50)

which has the form of (an iterated version of) the Lippmann-Schwinger eq. (5.13).

Using eq. (5.41) and eq. (5.46), any operator written in the form (5.35) can

be expressed in terms of Ũηη′(ε). In particular, the current density becomes

I ≡ lim
l→∞

1
2l
〈Î(τ)〉 = 2πe

h

∑

ηη′

1
2l

∫ l

−l
dx
2π

∑

η̄η̄′

∫
dε̄dε̄′e(τ+ix)(ε̄−ε̄

′)〈c†ε̄η̄cε̄′η̄′〉 (5.51)

×
[
Ũ †
η̄η(ε̄)σηTηŨηη̄′(ε̄

′) θ(−x) + δη̄η̄′ση̄Tη̄θ(x)
]
,

where we used eq. (5.5) in eq. (5.36) to obtain Iηη′(x, x
′) = 2π

vFh
σηTηδηη′δ(x− x′).

Using eq. (5.28), the thermal expectation value of the current density becomes

I = e
h

∑
η̄η

∫
dε̄1

2

[
Ũ †
η̄η(ε̄)σηTηŨηη̄(ε̄) + δη̄ηση̄Tη̄

]
f(ε̄, η̄) (5.52)

The problem of calculating the current has thus been reduced to that of finding

the scattering amplitude Ũηη′(ε).
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5.7 Extracting Ũ from a Green’s Function

We show in this section that Ũηη′(ε) can readily be extracted from the thermal

Green’s function in Matsubara space, Gηη′(ωn;x, x
′), and illustrate this with the

simplest possible example.

5.7.1 General Derivation

First note that the discontinuity at x = 0 of φε′η′(ix, η) [see eq. (5.46)] implies

that ψη(τ, ix), too, is discontinuous at x = 0. Therefore we write it in terms of

two pieces that are separately continuous in their domains of definition, x >
< 0:

ψη(τ, ix) ≡ ψ
η
>
<
(τ, ix) ≡ ψηL/R(τ ± ir) , for x >

< 0; r ≡ |x| , (5.53)

with ψη<(τ, i0−) 6= ψη>(τ, i0+). In the second equality we used the index L/R to

denote mathematical L/R-movers, (since the corresponding fields depend on t±r

when τ → it), thus introducing a notation that is used extensively by Affleck and

Ludwig.

The thermal Green’s function is defined by

Gηη′(τ, ix; τ
′, ix′) ≡ −〈Tψη(τ, ix)ψ†

η′(τ
′, ix′)〉 . (5.54)

For x′ ≡ r′ > 0 and x ≡ −r < 0, it gives the amplitude that an incident η-

electron will emerge from the scattering process with quantum number η′. Using

eqs. (5.41), (5.46) and (5.28), the corresponding Green’s function is found to be

GRL
ηη′ (τ − ir ; τ ′ + ir′) ≡ Gηη′(τ,−ir; τ ′, ir′) (5.55)

= −
∑

η̄η̄′

∫
dε̄ dε̄′ Ũηη̄(ε̄)δη̄′η′ 〈cε̄η̄(τ)cε̄′η̄′(τ ′)〉 e−i(−ε̄r−ε̄

′r′)

= −
∫
dε̄ Ũηη′(ε̄)

e−ε̄[(τ−τ
′)−i(r+r′)]

e−β(ε̄−µη′ ) + 1
. (5.56)
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It can be checked that this function has the periodicity property

GRL

ηη′(τ + β) = −e−µηβGRL

ηη′(τ) , (5.57)

[see, e.g. (5.62) below], which means that its Matsubara transform must be defined

with an extra factor of e−µη′τ (see e.g. [Amb69, p.266, eq.(51)]):

GRL
ηη′ (τ − ir ; τ ′ + ir′) ≡

∑

m

e−i(ωn−iµη′ )τGRL
ηη′ (iωn; r, r

′) , (5.58)

where ωn = 2π(n + 1
2
)/β. Writing the Matsubara transform of eq. (5.56) in

spectral form,

GRL
ηη′ (iωn; r, r

′) ≡
∫ β/2

−β/2
dτei(ωn−iµη′ )τGRL

ηη′ (τ, r; 0, r
′) ≡

∫
dε
2π

ARL
ηη′ (ε; r, r

′)

iωn − (ε− µη′)
,

(5.59)

one finds that Ũηη′(ε) is related as follows to the spectral function ARL
ηη′ (ε; r, r

′):

Ũηη′(ε) = 1
2π
ARL
ηη′ (ε; r, r

′)e−iε(r+r
′) . (5.60)

Thus, if Gηη′ is known exactly (e.g. from AL’s conformal field theory for the 2-

channel Kondo problem), then Ũηη′(ε) can be obtained directly by calculating its

spectral function ARL
ηη′ (ε; r, r

′).

Equations (5.60) and (5.52) are the main results of this chapter, and will be

used in chapter 9 to calculate the scaling curve Γ(v).

5.7.2 Simplest Possible Example

As the simplest possible example, suppose that at T = 0, Gηη′ has the form

GRL
ηη′ (τ − ir, τ ′ + ir′) =

−Ũηη′e−µη′ [τ−τ
′−i(r+r′)]

[τ − τ ′ − i(r + r′)]
, (5.61)
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Figure 5.2 Integration contours useful for performing (a) the
∫
dτ integral in

eq. (5.59); (b) the
∫
dω integral in eq. (5.64).

where Ũηη′ is a constant. (If Ũηη′ = δηη′ , this is the case of free fermions with no

scattering, see eq. (5.34).) This is a case that occurs often in subsequent chapters.

The corresponding T 6= 0 Green’s function then is17:

GRL
ηη′ (τ − ir, τ ′ + ir′) =

−Ũηη′e−µη′ [τ−τ
′−i(r+r′)]

β
π

sin π
β
[τ − τ ′ − i(r + r′)]

. (5.62)

Calculate GRL
ηη′ (iωn; r, r

′) from eq. (5.59). Since the extra factor eµη′τ in eq. (5.59)

ensures that the integrand is periodic in τ , the
∫
dτ integral can readily be done

by contour methods: for ωn
>
< 0, the integral can be closed in the upper (lower)

half-plane of the complex τ plane [see Fig. 5.2(a)]. This is possible because

the portions C±
2 + C±

4 cancel due to the periodicity of the integrand, and the

contributions along C±
3 vanish for ωn

>
< 0 as Im(τ) → ±∞. Thus one obtains

GRL
ηη′ (iωn; r, r

′) = −θ(ωn) 2πi e−(ωn−iµη′ )(r+r′) Ũηη′ . (5.63)

The spectral form for this expression is

GRL
ηη′ (iωn; r, r

′) = Ũηη′
∫ ∞

−∞
dω

eiω(r+r′)

iωn − (ω − iµη′)
, (5.64)

17See eq. (5.33), and for a general argument (for V = 0) describing how to obtain T 6= 0
Green’s functions from T = 0 ones in CFT, see section 8.1, eq. (8.7).
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as follows by closing the
∫
dω integral as in Fig. 5.2(b). Comparing this expression

with eqs. (5.59) and (5.60), we deduce that

Uηη′(ε) = Ũηη′ . (5.65)

Thus, for simple Green’s functions such as eq. (5.61), Uηη′(ε) is energy-independent,

and can be read off directly from eq. (5.61). This will be useful in later chapters.

5.8 Example: 2-species Scalar Scattering

In this section we illustrate18 the formalism developed so far by considering a very

simple scattering problem, namely the scattering of only two species of (spinless)

electrons off a scalar scattering potential. We take η equal to the species index,

η ≡ ση = (L,R) = (+,−) (i.e. η contains no extra channel indices i or n, and

L/R denotes physical L/R movers), and our Hamiltonian [compare eqs. (5.37)

and (5.38)] is:

H =
∑

σ

∫
dx
2π
ψ†
σ(ix)Hσσ′(x)ψσ′(ix′) , (5.66)

Hσσ′(x) ≡ δσσ′i∂x + 2πδ(x)Vσσ′ . (5.67)

Here Vσσ′ is simply a hermitian 2 × 2 matrix representing potential scattering

of the two species into each other (i.e. the impurity is not a dynamical object

with internal degrees of freedom). Since V is Hermitian, we can diagonalize the

scattering term by making a unitary transformation of the form

ψσ ≡ Nσσ′ψσ′ , (5.68)

18This problem is also discussed at length in chapter 6 to illustrate the CFT methods needed
for the Kondo problem.
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with N chosen such that

Hscat =
∑

σσ′
ψ

†
σ(0)

(
NVN−1

)

σσ′ ψσ(0) ≡ ψ
†
σ(0)

(
vo

1
2
δσσ′ + v3

1
2
σ3
σσ′

)
ψσ(0) . (5.69)

Since the scattering term is now diagonal, its only effect on the ψσ-fields can be

to cause a phase shift of the outgoing fields relative to the incident ones:

ψσ<(ix) = Pσσ′ψσ′>(ix) for x < 0 , (5.70)

where Pσσ′ = δσσ′e−i(φo+σφ3) . (5.71)

and the phase shifts φ0 and φ3 are functions of vo and v3 (this is discussed at

length in chapter 6). Rotated back into the ψσ-basis, this phase shift of course

becomes an actual [SU(2)] rotation of the two species into each other:

ψσ<(ix) = Ũσσ′ψσ′>(ix) , (5.72)

where

Ũσσ′ ≡
(
N−1PN

)

σσ′ ≡




T R

−R∗T /T ∗ T


 , [|T |2 + |R|2 ≡ 1] , (5.73)

is a unitary matrix. Comparing eq. (5.72) with eq. (5.46) and eq. (5.41), we see

that Ũσσ′ = Ũσσ′(ε′), i.e. in this simple case Ũ is ε′-independent. Physically, this

rotation of physical L- and R-movers into each other simply reflects the fact that

Hscat causes backscattering: an incoming L-mover has amplitude T to undergo

forward scattering and emerge as a L-mover, and R to be backscattered into a

R-mover (this is how backscattering is possible despite our formulation of both

σ = L and σ = R as mathematical L-movers, for which both the transmitted

(T ) and reflected (R) parts of ψσ live at x < 0).
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As a concrete example, we give the matrices N and Ũ corresponding to a very

simple case. If Vσσ′ ≡ 1
2
(voδσσ′ + v1σ

x
σσ′), then

N = 1√
2




1 1

1 −1


 and Ũ = e−iφo




cosφ3 −i sinφ3

−i sinφ3 cosφ3


 . (5.74)

To calculate the current, insert eq. (5.73) into eq. (5.52), and for simplicity

assume Tη = 1 for the geometrical transmission coefficients. One readily finds

[using eq. (5.29) for the second line]:

I = e
h

∑

σ̄

∫
dε̄ |T |2 σ̄ f(ε̄, σ̄) (5.75)

= e2

h
|T |2V . (5.76)

As expected, the conductance G ≡ ∂V I = e2

h
|T |2 is reduced from its custom-

ary value for a single channel in the absence of scattering, namely e2

h
, by the

transmission coefficient squared |T |2.

Eq. (5.75) can also be used to illustrate that the conductance assumes a V/T

scaling form if the transmission coefficient T is energy dependent. Assume that

for some reason the T in eq. (5.75) depends on the distance from the Fermi

surface, and can be expanded as |T |2 ≡ Ao + (ε/εF )A1 + (ε/εF )
2A2 + . . . Then

the conductance G = ∂V I is readily found to be

G(V, T ) = e2

h

∫
dε
(
Ao + (ε/εF )A1 + (ε/εF )

2A2 + . . .
)

×(−1
2
) [∂εfo(ε− eV/2) + ∂εfo(ε− eV/2)] (5.77)

= e2

h

[
Ao + A2

π2

3

(
T

εF

)2
(

1 + 3
4π2

(
eV

T

)2
)]

. (5.78)

This has the scaling form G(V, T ) = G(0, 0)+BT 2Γ(v), where Γ(v) =
(
1 + 3

4π2 v
2
)

is a universal function, and v ≡ eV/T .
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In the 2-channel Kondo case, a scaling form for the conductance will arise

in a similar fashion, namely from an energy-dependence in the transmission

coefficient, the non-trivial difference being that there we shall find |T (ε)|2 =

Ao + A1T
1/2Γ̃(ε/T ) [compare eqs. (3.6) and (9.12)]. This will be demonstrated

in chapter 9, for which one needs to understand the main features of Affleck and

Ludwig’s CFT solution of the 2-channel Kondo problem. The following several

chapters are therefore devoted to an introduction to the Kondo problem, and in

particular its CFT solution.



Chapter 6

Scalar Scattering as a Boundary

Conformal Field Theory

This chapter serves a purely pedagogical purpose. We introduce the reader to

elements of Cardy’s boundary conformal field theory that were used by Affleck

and Ludwig in their solution of the Kondo problem. Instead of directly starting

with the AL theory, we discuss here a far simpler case, namely the calculation

of the Green’s function GRL for the scattering of two species of spinless fermions

off a diagonal scalar scatterer at the origin. This problem, already solved in

section 5.8, is so simple that it certainly does not need the elaborate treatment

to be presented here. However, we hope that due to the very simplicity of this

problem the reader will be able to follow the (rather) technical details below with

reasonable ease. We have attempted to make the presentation as self-contained

as possible; however, if need be, the reader is encouraged to consult appendix C

for a general discussion of the techniques used here.

Our discussion of the Kondo problem will then proceed mainly by analogy to
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the arguments presented in this chapter. The reader not interested in technical

details can skip to the summary in section 6.6, and then proceed to chapter 7.

The problem to be studied here arose in section 5.8 in the study of the scat-

tering of two species of spinless electrons, ψα, with α = (+,−), off a scalar

potential 2πδ(x)Vαα′ .1 A rotation to new fields, ψ
α ≡ Nαα′ψα

′
was made in order

to diagonalize Vαα′ . It is the resulting problem, defined by [see eqs. (5.66) and

(5.69)]

H =
∑

α

∫
dx
2π
ψ

†α
(x)Hαα′(x)ψ

α′
(x′) , (6.1)

Hαα′(x) ≡ δαα′i∂x + 2πδ(x)
(
vo

1
2
δαα′ + v3

1
2
σ3
αα′

)
. (6.2)

that we shall study in this chapter.

We argued in section 5.8 that the only effect of a diagonal scattering potential

can be to cause a phase shift of the outgoing fields relative to the incident ones:

ψ
α

<(ix) = e−i(φo+αφ3)ψ
α′

> (ix) for x < 0 . (6.3)

However, we did not explain in section 5.8 how to calculate the phase shifts φo

and φ3 in terms of the parameters vo and v3. In this chapter we discuss three

increasingly elaborate ways of doing this calculation [resulting in eqs. (6.38),

(6.47)].

The main idea is the following: The scatterer at x = 0 can be thought to

induce a specific boundary condition on the fermion fields at x = 0 (in a way

to be made precise below). The simplest way to characterize this boundary

condition is to analyze the finite-size spectrum of the theory, or equivalently, the

1Upper and lower indices, ψα and ψα, are used interchangeably in this thesis, and have the
same meaning.
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partition function. When the scattering interaction is switched on, the finite-

size spectrum and the partition function are modified in a very particular way,

from which one can deduce the resulting effective boundary condition on ψα(x)

at x = 0, which indeed turns out to have the form of eq. (6.3).

The chapter is organized as follows. In section 6.1 we analyze the finite-size

spectrum of a free theory: we separate spin and charge degrees of freedom by

rewriting the Hamiltonian in a U (c)(1)×U (s)(1) Sugawara form. In section 6.2 we

explain how the impurity term can be “absorbed” by making a shift in the U(1)

currents Jo and J3. Section 6.3 shows how the fermion phase shift φo + αφ3 can

be obtained from this shift in the U(1) currents. In section 6.4 we tackle the real

technicalities of boundary conformal field theory, and show how this phase shift

can also be derived using Cardy’s methods to calculate the Green’s function GRL.

Finally, in section 6.5 we consider a special value of the coupling constant at which

the full U(1) × SU(2) symmetry of the free problem reemerges, and discuss the

consequences of this additional symmetry. A summary of the strategy followed

in order to calculate the Green’s function GRL by Cardy’s methods is given in

section 6.6.

It will be assumed that the reader is familiar with the contents of appendix A

for sections 6.1, appendix E for section 6.3, and appendix C (mainly section C.4.2)

for sections 6.4 and 6.5. If this is not the case, at least a cursory glance through

these appendices at this stage is highly recommended.



155

6.1 U (c)(1) × U (s)(1) Bosonization of Free Theory

In this section we recall some elementary facts of the abelian bosonization of two

species of spinless, left-moving fermions (more details can be found in appendix A,

sections A.6 and A.7).

There are two equivalent Abelian bosonization schemes possible, which we

denote by U ↑ × U ↓ (up-down scheme) and U (c) × U (s) (charge-spin scheme). We

have to use the latter scheme, since it is the one that is compatible with the

symmetry of our interaction eq. (6.2). However, we start our discussion by stating

some basic facts of the up-down scheme, since this allows a natural derivation of

the so-called “gluing condition” [see eq. (6.19)] that is an essential ingredient in

the charge-spin scheme.

First a comment about terminology: in the up-down scheme, we call the

species index α =↑, ↓, “up-down” merely for convenience; our original electrons

were spinless, and α originally indicated physical L- and R-movers. Similarly,

in the charge-spin scheme, “spin” does not mean Pauli spin, but simply half the

difference between the number of ↑ and ↓ electrons [see eq. (6.11)].

Throughout, we take all fields to be defined on a line x ∈ [−l, l], with anti-

periodic boundary conditions for the fermion fields:2

ψα(il) = −ψα(−il) . (6.4)

Furthermore, we consider finite temperatures, T 6= 0, and hence work on the

imaginary time-axis, t = −iτ , τ ∈ [0, β], with ψα(0) = −ψα(β).

2In appendix A, we take x ∈ [0, l]; therefore, remember to replace l → 2l when using formulas
from the appendix A here.
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In the up-down scheme, one introduces the currents J↑(↓) and their Fourier

components through:

Jα(ix) ≡ : ψ
α†

(ix)ψ
α
(ix) : (α =↑, ↓, not summed) ; (6.5)

Jαm ≡
∫ l

−l
dx
2π
eiπmx/lJα(ix) . (6.6)

In terms of these, the Hamiltonian takes the following Sugawara form [see eq. (A.53)]:

Ho = H↑ +H↓ =
∫ l

−l
dx
2π

1
2

[
: J↑J↑ : + : J↓J↓ :

]
. (6.7)

As shown in appendix A, the eigenstates of Ho can be arranged into direct prod-

ucts of ↑ and ↓ towers, labeled by (Q↑, Q↓). All states in the (Q↑, Q↓) tower by

definition have the same number of α-electrons, namely Qα (∈ Z) (the T = 0

Fermi sea has (Q↑, Q↓) = (0, 0) by definition); in other words, all states in the

tower satisfy

J↑(↓)
o |Q↑, d↑;Q↓, d↓〉↑↓ = Q↑(↓)|Q↑, d↑;Q↓, d↓〉↑↓ , (6.8)

where {d↑, d↓} labels the states of an orthonormal basis in the tower.

The energy of a typical state in the (Q↑, Q↓) tower has the form

EQ↑Q↓ − E00 = π
l

[(
1
2
Q↑2 +m↑

)
+
(

1
2
Q↓2 +m↓

)]
, (mα ∈ Z) . (6.9)

The partition function in this basis has a particularly simple form (see sec-

tion A.4):

Zo = Tr e−βHo = η−2(q)
∑

Q↑,Q↓∈Z
q

1
2 [Q↑2+Q↓2] where q ≡ e−πβ/l . (6.10)

The sum over the charge towers is explicit; the sum over the excited states

(descendants) in each tower has already been done and gives rise to the factor

η−1 ≡ q−1/24 1∏∞
n=1

(1−qn)
per tower (see eq. (A.41)).
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Now let us rewrite the above in terms of the charge and spin [U (c) × U (s)]

currents Jo and J3, defined as follows:

Jo(ix) ≡ 1
2

(
J↑ + J↓

)
=

∑
α

1
2

: ψ
α†

(ix)ψ
α
(ix) : ;

J3(ix) ≡ 1
2

(
J↑ − J↓

)
=

∑
αα′

1
2

: ψ
α†

(ix)σ3
αα′ψ

α′
(ix) : .

(6.11)

[Note that we have adopted a somewhat unconventional normalization for J0

(usually the 1
2

is omitted, see e.g. eq. (A.74), with N=2); this we do purely for the

sake of notational convenience, since many of our formulas then are symmetrical

under 0 ↔ 3, and can be written in terms of an index a = 0, 3.] In terms of these

currents, the Hamiltonian eq. (6.7) clearly becomes

Ho = Ho
o +H3

o =
∫ l

−l
dx
2π

[
: JoJo : + : J3J3 :

]
. (6.12)

The discussion of the spectrum of Ho that follows below parallels that of ap-

pendix A. However, there we bosonize according to the U(1) × SU(2) scheme,

which means that there we work with three spin currents, Ja, (a = 1, 2, 3), in-

stead of just J3. This means that the states in the spectrum are grouped together

in a different way than below (into U(1)-charge and SU(2)-spin towers, instead

of U (c) × U (s)-towers). Nevertheless, the spectra are of course the same. This

can be seen by comparing eqs. (A.81) to (A.83) (with N = 2) to eq. (6.12), and

realizing that for SU(2), :J1J1 :=:J2J2 :=:J3J3 : (as can be verified directly from

eq. (A.78)).

The structure of the spectrum can be determined by studying the commuta-

tion relations of the Fourier components Jam and Lam of Ja(ix) and : JaJa : (ix)

(a, b = 0, 3 in all subsequent formulas):

Ja(ix) ≡ π
l

∑

m∈Z
e−iπmx/lJam ; Jam ≡

∫ l

−l
dx
2π
eiπmx/lJa(ix) ; (6.13)
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π
l
Lam ≡

∫ l

−l
dx
2π
eiπmx/l

[
: JaJa : (ix) +

(
π
l

)2
ca
24

]
= π

l

∑

n∈Z

∗
∗J

a
nJ

a
m−n

∗
∗ . (6.14)

[Here ca is the central charge, with the usual value ca = 1 for each bosonic

current.] In terms of these, the Hamiltonians Ha
o are

Ha
o ≡ π

l

[
− ca

24
+ Lo

]
= π

l

[
− ca

24
+
∑

n∈Z

∗
∗J

a
nJ

a
−n

∗
∗

]
, (for a = 0, 3) , (6.15)

and the following commutation relations, which we list for future reference, hold:3

[Lan, L
b
m] =

[
(n−m)Lan+m + ca

12
(n3 − n)δn+m,0

]
δab ;

[Lan, J
b
m] = −mJan+mδab ;

[Jan, J
b
m] = 1

2
nδn+m,0δab .

(6.16)

From these one can deduce (see appendix A, page 298) that the spectrum is

organized into direct products of “charge” and “spin” towers, labeled by charge

and spin quantum numbers (Q0, Q3). These are half the total number of electrons

in the tower and half the difference between them, since [by eq. (6.11)] they are

related to (Q↑, Q↓) through

Qo ≡ 1
2
(Q↑ +Q↓) ≡ co + so , Q3 ≡ 1

2
(Q↑ −Q↓) ≡ c3 + s3 , (6.17)

where Qa ∈ Z/2, sa ∈ Z , ca = 0, 1
2
. (6.18)

Note that we wrote Qa in terms of an integer part sa and a “remainder”, ca =

0, 1
2
. Since Q↑ and Q↓ are integers, it follows immediately that c0 = c3. This

relation is formalized by introducing a set of numbers, {nc0c30 }, known as the

gluing condition, that are either zero or one, and given here simply by

ncoc3o = δcoc3 . (6.19)

3For a = 3, they can be found from eq. (A.89), with a = b = 3; those for a = 0 are identical
to those for a = 3.
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The gluing condition specifies which combination of charge and spin towers can

occur together in a free-fermion theory. The need for such a condition arises, for-

mally, because our Hilbert space is a direct product of charge and spin subspaces,

and thus also contains unphysical states [e.g. pure “chargons” or “spinons”, for

which (Qo, Q3) = (1
2
, 0) or (0, 1

2
)]. These are unphysical, since adding or remov-

ing one electron always changes both Qo and Q3 by 1
2
, and the T = 0 Fermi sea

has (Qo, Q3) = (0, 0). Any physical (i.e. free-fermion) state must always have

c0 = c3, and the gluing condition formalizes this requirement.

All states in the (Qo, Q3)-th tower satisfy

Jao |Qo, do;Q3, d3〉03 = Qa|Qo, d0;Q3, d3〉03 , (6.20)

and [from eq. (6.15)] the energy of a typical such state is

EQ0Q3 − E00 = π
l

[
(Q2

0 +mo) + (Q2
3 +m3)

]
, (ma ∈ Z) . (6.21)

When calculating the partition function in this basis, one has to be careful to

take the trace only over physical states allowed by the gluing condition:

Zo =
∑

Qo,Q3∈Z/2

∑

{do,d3}
ncoc3o 〈Qo, do;Q3, d3|e−β[H

o
o+H3

o ]|Qo, do;Q3, d3〉 (6.22)

= η−2(q)
∑

Qo,Q3∈Z/2
ncoc3o q[Q

2
o+Q

2
3] (6.23)

Eq. (6.22) also follows directly from eq. (6.10) by just redoing the sum on (Q↑, Q↓)

in terms of (Q0, Q3).

6.2 Absorbing the Interaction

Let us now turn on the scattering term of eq. (5.67) (our discussion will follow

that of Callan et al. [CKLM94, section 4]). As a result of our judicious choice of
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the charge-spin bosonization scheme, it has an extremely simple form in terms of

the U (c)(1) × U (s)(1) currents:4

Hscat ≡ Ho
scat +H3

scat = voJ
o(0) + v3J

3(0) , (6.24)

= π
l

∑

m

[
voJ

o
m + v3J

3
m

]
. (6.25)

Next, note that one can formally absorb the scattering terms by simply “com-

pleting the square”: Let us introduce new currents,

J a(ix) ≡ Ja(ix) + 1
2
va2πδ(x) ; (6.26)

J a
m ≡

∫ l

−l
dx
2π
eiπmx/lJ a(ix) = Jam + 1

2
va . (6.27)

In terms of these the full Hamiltonian has the same form as a free Hamiltonian

[compare with eq. (6.15)]:

Ha ≡ Ha
o +Ha

scat =
∫ l
−l
dx
2π

: J aJ a : (ix) ;

= π
l

[
− ca

24
+
∑
n∈Z

∗
∗J a

nJ a
−n

∗
∗
]
.

(6.28)

The impurity has “disappeared”, or been “absorbed”.

Now, we know from eq. (5.53) that in the presence of a scatterer, the fields

ψ
α
(ix) and hence the old currents Ja(ix) are non-analytic at the origin: Ja<(τ, i0−) 6=

Ja>(τ, i0+). In contrast, the new J a(ix)’s are analytic at x = 0:

J a
<(τ + i0−) = J a

>(τ + i0+) . (6.29)

The reason is simply that the full Hamiltonian Ha looks like a free Hamiltonian

when expressed in terms of J a’s. This implies immediately (e.g. from Heisen-

4There are some subtleties involved in writing down eq. (6.24): Since we know from eq. (5.46)
that the presence of a scatterer causes discontinuities in the fermion fields at x = 0, we have
to define what is meant by ψα(x = 0). This issue was discussed by Polchinsky and Thorlacius
[PT94, sec.3], who argued that the prescription ψα(0) ≡ 1

2 (ψα(0−) + ψα(0+)) is equivalent to
using eq. (6.24).
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berg equations of motion) that the J a’s will behave like free currents, which are

analytic functions of τ + ix for all τ and x.

Since the J a’s behave like free currents, it is straightforward to analyze the

spectrum of the full H: introduce the Fourier components Lam of : J aJ a : in

analogy with eq. (6.14), then it follows immediately that the Lam and J a
n ’s obey

commutation relations that are identical to those of the the original Lam and Jan’s

(for a free theory), namely eq. (6.16). Hence, the structure of the spectrum (i.e.

the organization into towers, and the spacing and degeneracy of energy levels

within the towers) must also be identical to that of a free theory. (This is a

strong statement, and illustrates the power of the algebraic approach!) The only

but crucial difference is in the allowed values of the U(1) charges (i.e. eigenvalues

of J a
0 ): from eq. (6.20) and eq. (6.27) we conclude that

J a
o |Qo;Q3〉03 = (Qa + 1

2
va)|Qo;Q3〉03 . (6.30)

Hence, the scatterer shifts the allowed charges: Qa → Qa + 1
2
va.

This is its only effect on the spectrum. Since the level spacings and degenera-

cies in each tower remain unaffected, it follows immediately from eq. (6.23) that

the partition function in the presence of a scatterer is:

Z = η−2(q)
∑

Qo,Q3∈Z/2
ncoc3o q

[
(Qo+ 1

2
vo)

2
+(Q3+ 1

2
v3)

2
]

. (6.31)

A beautifully simple result!

The shift in the currents thus allows us to find the spectrum and partition

function very straightforwardly. In the next two sections, we show how it also

gives the fermion phase shifts φ0 + αφ3.

Before addressing that issue, however, one more comment on our bosonization

approach is in order. Strictly speaking, the Sugawara form eq. (6.12), which for
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free fields is an identity, has to be modified as soon as one switches on an interac-

tion: an additional term, which we denote by δHo, should occur on the right-hand

side of eq. (6.12). To understand this statement, recall [from appendix A] that

the Sugawara form was derived using the point-splitting prescription

: A(u)B(u) : ≡ lim
δ→0

[
A(u+ δ)B(u) − 〈A(u+ δ)B(u)〉

]
, (6.32)

which requires one to subtract off point-split expectation values. However, these

are strictly speaking expectation values of the fully interacting fields, not the

free fields, if one considers the interaction turned on. In particular, the result

limδ→0〈ψα†(τ, x+ δ)ψα(τ, x)〉 = δαα′
iδ

, needed to derive equations like (6.12) [e.g.,

see derivation of eq. (A.83)], holds only for free fields. Using the results of sec-

tion 5.8, in particular eq. (6.3), it can easily be shown that additional contribu-

tions to this expectation value arise when one evaluates it in the presence of an

interaction, though these extra terms are non-singular in δ [i.e. O(1) or O(δ)].

The extra terms δĤo can be calculated explicitly in this way; however, we

shall here follow the usual practice of neglecting them, with the argument that

they represent irrelevant terms (in the renormalization group sense) that vanish

as T → 0. Nevertheless, it is worth noting that in the presence of a voltage,

such terms can also depend on V , since then the subtracted 〈A(u + δ)B(u)〉 in

eq. (6.32) can be V -dependent.

6.3 Phase Shift via Bosonization of Fermion

Fields

The simplest way to find the fermion phase shift φ0+αφ3 of eq. (6.3) is to express

the fermion fields in terms of two boson fields, X0 and X3, using the standard
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bosonization formula [see eq. (E.25) for notational details]:

ψ
α
(ix) = aα :e

−i 1√
2
[Xo(ix)+αX3(ix)]

: . (6.33)

In terms of the Xa’s, the currents take the form

Jo(ix) ≡ ∑
α

1
2

: ψ
α†

(ix)ψ
α
(ix) : = 1√

2
:∂xX

o(ix) : ;

J1(ix) ≡ ∑
αα′ : ψ

α†
(ix)1

2
σ2
αα′ψ

α′
(ix) : = a3 : sin

√
2X3(ix) : ;

J2(ix) ≡ ∑
αα′ : ψ

α†
(ix)1

2
σ2
αα′ψ

α′
(ix) : = −a3 : cos

√
2X3(ix) : ;

J3(ix) ≡ ∑
αα′ : ψ

α†
(ix)1

2
σ3
αα′ψ

α′
(ix) : = 1√

2
:∂xX

3(ix) : .

(6.34)

For future reference, we have also displayed the off-diagonal currents J1 and J2

that we have not needed so far. [The three currents J1, J2 and J3 are called

SU(2) currents, since they are the Nöther currents for the SU(2) spin symmetry

of the free theory.] Similarly, the new currents J a can be represented as

J a(ix) ≡ 1√
2
∂xX a(ix) , (for a = 0, 3) , (6.35)

where X a are boson fields that are analytic at x = 0, X a
<(τ + i0−) = X a

>(τ + i0+)

[since the J a’s are analytic at x = 0, recall eq. (6.29)].

Now insert eqs. (6.35) and (6.34) into eq. (6.26), and integrate, with boundary

condition J a(ix) = Ja<(ix) for x > 0 [since the incident part of the new current

should not differ from the old one; compare the θ(x) term in eq. (5.46)]. This

gives the following relation between Xa and X a:

Xa(ix) = X a(ix) + vaπ
√

2 θ(−x) , for all x , (6.36)

and in particular

Xa
<(ix) = X a(ix) + vaπ

√
2 = Xa

>(ix) + vaπ
√

2 , for x < 0 . (6.37)
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Inserting eq. (6.37) into eq. (6.33) then gives

ψ
α

<(ix) =:e
−i 1√

2
[Xo
<(ix)+αX3

<(ix)]
: = e−iπ(vo+αv3)ψ

α

>(ix) (6.38)

from which we read off the desired phase shift in eq. (6.3), namely φ0 + αφ3 =

π(vo + αv3).

For future reference, note also that eq. (6.37), inserted into eq. (6.34), gives

Jo<(ix) = 1√
2

:∂xX
o
>(ix) : = Jo>(ix) ,

J1
<(ix) = a3 : sin

(√
2X3

>(ix) + 2πv3

)
: 6= J1

>(ix) ,

J2
<(ix) = −a3 : cos

(√
2X3

>(ix) + 2πv3

)
: 6= J2

>(ix) ,

J3
<(ix) = 1√

2
:∂xX

3
>(ix) : = J3

>(ix)

(6.39)

These relations reflect the fact that the interaction breaks the U(1)×SU(2) Kac-

Moody symmetry of the bulk theory down to U (c)(1) × U (s)(1): we find that the

L,R components of the SU(2) currents J1 and J2 are unequal at the boundary

(x = 0), Ja>(i0+) 6= Ja<(i0−) for a = 1, 2; in the language of appendix C [see

eq. (C.2)] this implies that the boundary is not SU(2) invariant. However, the

boundary is U (c)(1) × U (s)(1) invariant (since Ja>(τ + i0+) = Ja<(τ + i0−) for

a = 0, 3); of course, we knew this all along, since the boundary term does not

break the U (c)(1) × U (s)(1) symmetry.

6.4 Phase Shift via Boundary States

In section 6.3 we found the fermion phase shift directly by exploiting a bosonized

representation for the fermion fields. Unfortunately, this simple procedure does

not work for the Kondo problem. Hence we shall now rederive it by using the

techniques of boundary conformal field theory due to Cardy [Car84a,Car84b,
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Car86a,Car86a,Car87,Car89,CL91] to calculate the Green’s function GRL. These

are the techniques used by Affleck and Ludwig in solving the Kondo problem. We

shall attempt to outline the essential ingredients of their approach by treating

the present simple problem in considerable detail. Our presentation is modeled

on that given by Affleck and Ludwig in appendix F of [AL94], and also draws

on [CKLM94]. The general strategy is summarized section 6.6, which might be

worth a glance before proceeding.

Before delving into details, we begin by summarizing some essential ingredi-

ents of Cardy’s approach. (More details on the general philosophy of Cardy’s

approach, and some of the technicalities, can be found in appendix C.)

To cast our theory in the form of a boundary conformal theory, we shall

henceforth adopt Cardy’s terminology. Write

u ≡ τ + ix ≡





z ≡ τ + ir for x > 0 ,

z̄ ≡ τ − ir for x < 0 ,
(6.40)

where r ≡ |x|. Then define [comparing with eq. (5.53)]:

ψ
α
(τ + ix) ≡ ψ

α
>
<
(τ + ix) ≡ ψ

α

L/R(τ ± ir) for x ≡ ±r >
< 0 .

Ja(τ + ix) ≡ Ja>
<
(τ + ix) ≡ JaL/R(τ ± ir) for x ≡ ±r >

< 0 .
(6.41)

The incident and outgoing fields and currents are henceforth to be called left-

and right-movers, respectively.5 Since 0 < r < l, all fields are defined on a

strip of width l in the upper half of the τ + ir plane, with ψ
α

L(z) depending on

z ≡ τ + ir and ψ
α

R(z̄) on z̄ = τ − ir. At zero temperature, the length of the strip

is infinite, τ ∈ [−∞,∞]. At finite temperatures (the case were are interested in),

5As explained in section 5.7, these are “mathematical” L- and R-movers, not to be confused
with physical L- and R-movers, which are distinguished from each other by a separate index
(e.g. αη in chapter 5.)
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the fermion fields are anti-periodic on an interval τ ∈ [0, β], which means that

this strip gets bent around into a cylinder of circumference β [see Fig. 6.1].

The boundary conditions on these fields at r = 0 and l are as follows: In

eq. (6.4), we agreed to take anti-periodic boundary conditions on the fermion

fields at x = ±l, which translates into ψαL(τ + il) = −ψαR(τ − il). This will be

called the “free boundary condition at r = l”, and denoted by F− (the subscript

– denotes anti-periodicity). In the absence of any scattering terms, we know that

ψα>(τ + i0+) = ψα<(τ − i0+), i.e. ψαL(τ) = ψαR(τ). This is called the “free boundary

condition at r = 0”, and denoted by F . However, in the presence of a scatterer

at r = 0 the behavior of ψα< = ψαR gets modified (by a phase shift, as we happen

to know). This is formalized by saying that the boundary interaction induces a

new r = 0 boundary condition, denoted by B, on the fields.

To summarize, the basic geometry on which our fields live is that of a cylinder

of circumference β and length l, with boundary conditions F−F (for free fields)

or F−B (with scatterer) at r = l and r = 0, respectively (see Fig. 6.1, taken from

[AL94, App. F]).

Cardy’s approach requires all boundary conditions to be conformally invariant

under conformal transformations that “leave the boundary invariant” (i.e. map

the boundary onto itself [Car84b]). In the present case, we know that the scat-

tering term also has a U (c)(1) × U (s)(1) symmetry (a so-called Kac-Moody (KM)

symmetry), which means that both boundaries are KM invariant (see eqs. (6.69)

and (6.70) for the mathematical expression of this fact).

We are interested in the two-point functions of the fermion fields ψ
α

L/R and

currents JaL/R. These are examples of so-called chiral primary fields of scaling
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l

-l

0

HF B

r

τ
τ∼

τr∼

F

B

P

free boundary

Kondo boundary

r

H

τ∼

Figure 6.1 The partition function Z on a cylinder of circumference β and length
l, with Kac-Moody invariant boundary conditions B and F− at r = 0 and l
respectively, can be written in two different ways: 1) Using the HamiltonianHF−B

generating translations in the τ -direction; 2) After relabeling space and time
coordinates as in eq. (6.62), using the Hamiltonian HP , generating translations
in the τ̃ = −r direction. The equivalence of the two descriptions leads to the
Cardy formula, eq. (6.74).
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dimension 1
2

and 1 respectively (chiral, since they only depend on z or z; see

appendix B for questions of CFT terminology). Cardy has shown [Car84b, section

4], [CL91] that for the present geometry, the two-point functions of any chiral

primary operator Oi with scaling dimension xi have the following for at T = 0:6

−GLL

i (z1, z2) = 〈OiL(z1)O
†
iL(z2)〉bound =

1

(z1 − z2)2x
; (6.42)

−GRR

i (z̄1, z̄2) = 〈OiR(z̄1)O
†
iR(z̄2)〉bound =

1

(z̄1 − z̄2)2x
; (6.43)

−GRL

i (z̄1, z2) = 〈OiR(z̄1)O
†
iL(z2)〉bound =

ŨB(Oi)

(z̄1 − z2)2x
. (6.44)

Note that the L-L and R-R Green’s functions are exactly the same as for a

free theory; note in particular that they are translationally invariant (depending

only on r1 − r2). Therefore, their amplitudes are fixed by the requirement that

they coincide with the bulk normalization, which is set to = 1 (this is because

when one takes the limit r1 → ∞, r2 → ∞ at fixed r1 − r2, one has to recover

free Green’s functions, because the effects of the boundary cannot extend to ∞

[AL94, p.556]).

The GRL
i Green’s function, on the other hand, depends on r1 + r2 and hence

is not translationally invariant. Its amplitude ŨB(Oi) depends on the particular

boundary interaction (or boundary condition). Cardy has shown [Car89] that to

each boundary condition B allowed by conformal symmetry, one can associate

a boundary state |B〉 in the Hilbert space of the bulk Hamiltonian (called the

“closed-string” Hilbert space in the present context, as explained below). Simi-

larly, to each primary operator Oi can be assigned a state |Oi〉 in the same Hilbert

6These Green’s functions are defined in the so-called “closed string” picture, a concept
introduced and explained below. It is sufficient to calculate them at T = 0, because the T 6= 0
form can be obtained from that at T = 0 by a straightforward conformal transformation,
described in section 8.1.
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space. Using conformal mappings, it can be shown [CL91, eq.(6)] that the am-

plitude ŨB(Oi) in eq. (6.44) is given simply by the following ratio of “boundary

matrix elements”:

ŨB(Oi) = 〈Oi|B〉/〈1 |B〉 , (6.45)

Here 1 denotes the identity operator.

Our aim in this section is to calculate ŨB(Oi) for the fermion fields and cur-

rents. We shall find [see eq. (6.77)] the result

ŨB(ψ
α
) = eiπ(v0+αv3) ; ŨB(J±) = e±i2πv3 ; ŨB(J3) = 1 , (6.46)

where J± ≡ J1 ± iJ2. Inserted into eq. (6.44) and recalling definition (6.41),

this is in agreement with eq. (6.38) for the fermion fields, and eqs. (6.39) for the

currents. In particular

−GRL

αα′(z̄1, z2) ≡ 〈ψαR(z̄1)ψ
α′†
L (z2)〉 =

eiπ(v0+αv3)δαα
′

(z̄1 − z2)
. (6.47)

This illustrates how the desired phase shifts can be obtained from knowledge of

the boundary state |B〉, and hence GRL.

What is this boundary state? Cardy pointed out [Car86a] that in 2-D confor-

mal field theories it should be possible to calculate the partition function in two

equivalent ways. The first is just the standard one, namely:

Z ≡ Tre−βHF−B (6.48)

HereHF−B is the usual Hamiltonian that generates translations in the τ -direction;

the subscripts remind us of the fact that this Hamiltonian “knows” about the

boundary conditions F− and B, since it is an integral (indicated by a heavy line
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in fig. 6.1) of the Hamiltonian densities HL and HR from r = 0 (on the boundary)

to l:

HF−B =
∫ l

0

dr
2π

[HL(τ + ir) + HR(τ − ir)] (independent of τ) . (6.49)

The Hilbert space on which HF−B acts is called the open string Hilbert space by

string theorists, because the boundary conditions on the fields at r = 0 and r = l

are not simply periodic or anti-periodic.

We have already calculated the partition function of eq. (6.48) explicitly,

including the effects of the interaction, in section 6.2, eq. (6.31).

The second way of calculating Z exploits the fact that for a “Lorentz”-

invariant theory (i.e. one with linear dispersion, where all fields depend only

on τ± ix), one can exchange the role of space and time [see eq. (6.62)], and quan-

tize all operators along lines of constant r in the τ + ir plane, called the closed

string picture, instead of the usual way of quantizing along lines of constant τ

(the open string picture). Thus, one can also calculate the partition in the closed

string picture by making the following Ansatz:

Z ≡ 〈F−|e−lH̃P− |B〉 . (6.50)

Here H̃P− is a purely bulk Hamiltonian, that generates translations in the space

direction [see eq. (6.64)]:

H̃P− =
∫ β

0

dτ
2π

[HoL(τ + ir) + HoR(τ − ir)] (independent of τ) . (6.51)

The Hilbert space upon which H̃P− acts is called the closed string Hilbert space

(and is different from the open string Hilbert space on which HF−B acts, as ex-

plained below). The bulk fermion fields have anti-periodic boundary conditions
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between τ = 0, β, hence the subscript P− (this is also the reason for the nomen-

clature “closed” string picture).

Note that since H̃P− is an integral of the free Hamiltonian densities HoL and

HoR from τ = 0 to τ = β for arbitrary r(6= 0), it cannot “know” anything

about what happens at the boundaries at r = 0, l (see fig. 6.1). This is the

chief advantage of the open string picture: there is no impurity term in the

Hamiltonian. Instead, one may think of the impurity as having been “integrated

out”,7 and information about the effects of the impurity, i.e. about the boundary

condition B, is encoded in the so-called boundary state |B〉. Similarly, |F−〉 is a

boundary state that encodes the trivial boundary condition eq. (6.4) at r = l. |B〉

and |F−〉 are basically infinite sums [to mimic a trace, see eq. (6.71)] over all states

in the closed string Hilbert space on which H̃P− acts, with coefficients determined

by the requirement that the two ways of calculating the partition function give

the same result. The detailed properties of |F−〉 and |B〉 will become clear in the

course of the calculation (see also appendix C).

Loosely speaking, |B〉 (|F−〉) determines how L- (R-) moving fields, incident

on the boundary at r = 0 (r = l), are reflected into R- (L-) moving fields.

Whereas the reflection at r = l is trivial, merely representing the trivial bound-

ary condition eq. (6.4), the reflection at r = 0 can be decidedly non-trivial,

because it represents the effect of the boundary interaction on the fermions (see

the discussion after eq. (6.71) for a “physical” interpretation of |B〉).

Let us now get down to business and go through the required calculation.

7The phrase “integrating out the impurity” is borrowed here from the Kondo problem, where
the impurity is a dynamic degree of freedom that indeed has to be integrated out. For a static
(i.e. non-dynamic) impurity one does not really need to integrate out anything, and we use this
phrase here merely to indicate that H̃P−

does not contain an explicit H̃scat term.
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It turns out that we actually need the extended (“grand-canonical”) partition

function,8 defined by

Z(θ0, θ3) ≡ (6.52)

∑

Qo,Q3∈Z/2
ncoc3o

∑

{do,d3}
〈Qo, do;Q3, d3|

∏

a=0,3

e−β[H
a
o+Ha

scat−θa(Jao+ 1
2
va)]|Qo, do;Q3, d3〉

= η−2(q)
∑

Qo,Q3∈Z/2
ncoc3o

∏

a=0,3

[
q(Qa+

1
2
va)2eβθa(Qa+

1
2
va)
]
, (6.53)

where q ≡ e−πβ/l. Here we have introduced extra “fugacities” (θo, θ3), keeping

track of constants of the motion other than the energy. The second equality was

obtained by analogy with eq. (6.31), and using eq. (6.20) for the fugacity terms.

Now, the boundary-state expression for Z, eq. (6.50), which needs to be com-

pared to eq. (6.53), is expressed in terms of q̃. Therefore, it is necessary to rewrite

eq. (6.53) in terms of the parameter q̃ ≡ e4πl/β instead of q = e−πβ/l. To do this,

proceed as follows:

It is useful to break up the double summation in eq. (6.53), which is con-

strained by the gluing condition ncoc3o , by writing
∑
Qa∈Z/2 =

∑
ca=0, 1

2

∑
sa∈Z .

Then eq. (6.53) becomes:

Z(θ0, θ3) =
∑

co,c3=0, 1
2

ncoc3o

∑

so,s3∈Z

∏

a=0,3

[
q(ca+sa)2eβ(θa−πva/l)(ca+sa)

η2(q)
e−

πβ
l

(v2a/4−θaval/2π)

]
.

(6.54)

The
∑
sa∈Z sums can be written in terms of so-called non-specialized U(1) char-

acters, defined by

χ(c)

2c (q, y) ≡ η−1(q)
∑

s∈Z
q(c+s)2e2y(c+s) , c = 0, 1

2
. (6.55)

8One needs to use the extended partition function whenever the spectrum is “degenerate”
(i.e. there are different primary states with the same energy), because the characters of degen-
erate primary states are not linearly independent [see page 177].
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These are basically extended partition functions, but constrained to one of the

two allowed values of c = 0, 1
2
. Using y = 1

2
β(θa − πva/l), we thus get

Z(θ0, θ3) =
∑

co,c3=0, 1
2

ncoc3o

∏

a=0,3

[
e−

πβ
l

(v2a/4−θaval/2π) χ(c)

2ca

(
q, 1

2
β(θa−πva/l)

)]
(6.56)

Now, the U(1) characters have the following useful mathematical property, known

as a modular transformation, when rewritten in terms of q̃:

χ(c)

2c (q, y) = q̃−( y
2π )

2 ∑

c̃=0, 1
2

S(c)

cc̃ χ
(c)

2c̃ (q̃,−i2ly/β) q̃ ≡ e4πl/β (6.57)

where S(c)

cc̃ ≡ 1√
2
ei4πcc̃ = 1√

2

(
1
1

1
−1

)

cc̃
(6.58)

It is easy to check this by simply using the Poisson resummation formula

∑

k∈Z
e−(ak2+bk+c) =

√
π
a
e

(
b2

4a
−c
)
∑

m∈Z
e−

1
a
(π2m2+iπmb) (6.59)

and the property η(q) =
√

2l/β η(q̃) (see [Gins87, eq. 7.33]). Eq. (6.57) tells

us that χ(c)

2c (q, y) can be written as a linear combination of χ(c)

2c̃ (q̃,−i2ly/β)’s,

where the coefficients are given by the so-called modular S-matrix, S(c)

cc̃ (which

has nothing do with the physical S-matrix of scattering theory). (For some more

comments about modular transformations, see [Gins87, section 7.3].)

Using eq. (6.57) in eq. (6.56), we obtain

Z(θ0, θ3) =
∑

co,c3=0, 1
2

ncoc3o

∏

a=0,3


q̃−( θaβ

4π
)2
∑

c̃=0, 1
2

S(c)

cac̃a χ
(c)

2c̃a

(
q̃, i(−lθa+πva)

)



= η−2(q̃)
∑

co,c3=0, 1
2

ncoc3o

∏

a=0,3


q̃−( θaβ

4π
)2
∑

Q̃a∈Z/2
S(c)

cac̃a q̃
Q̃2
aei2(−lθa+πva)Q̃a


 (6.60)

where we have recombined the sums
∑
c̃a,sa =

∑
Q̃a

in the last step. The result is

the desired expression for Z(θ0, θ3) as a function of q̃.
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We now turn to the task of recalculating Z(θ0, θ3) in terms of boundary states.

The general strategy for this procedure is described in appendix C, section C.4.2,

with which the reader is assumed to be familiar. The starting point is the fol-

lowing Ansatz (a generalization of eq. (6.50)):

Z(θ0, θ3) ≡ q̃−( β
4π

)2(θ20+θ23)〈F−|
∏

a=0,3

e−l[(H̃
a
oL+H̃a

oR)+θai(J̃aoL−J̃aoR)]|B〉 , (6.61)

[We have included a (for our purposes uninteresting) factor q̃−( β
4π

)2(θ20+θ23), arising

from the vacuum fluctuations of the operators e−ilθa(J̃
a
oL−J̃aoR); see [AL94, eq.(F.8)].]

In the boundary-state description, the role of space and time coordinates have

been interchanged, by introducing new coordinates (τ̃ , r̃), defined by

r̃ = τ , τ̃ = −r . (6.62)

This is nothing but a conformal transformation, z̃ ≡ iz. Thus, the operators

H̃a and J̃a0 in eq. (6.61), which are quantized along lines of constant τ̃ in the

τ̃ + ir̃)-plane, are related as follows to the Ha and Ja0 of eq. (6.52):

JaL(τ + ir) = iJ̃aL(τ̃ + ir̃) , JaR(τ − ir) = −iJ̃aR(τ̃ − ir̃) ; (6.63)

βHa
o =

∫ β

0
dτ
∫ l

0

dr
2π

[Ha
oL(τ + ir) +Ha

oR(τ − ir)] = l(H̃a
oL + H̃a

oR) (6.64)

βJao =
∫ β

0
dτ
∫ l

0

dr
2π

[JaL(τ + ir) + JaR(τ − ir)] = −il
(
J̃aoL − J̃aoR

)
; (6.65)

J̃aoL/R ≡
∫ β

o

dr̃
2π
J̃aL/R(τ̃ ± ir̃) (= independent of τ̃). (6.66)

Note that only H̃a
0 ’s appear here in eq. (6.61), no H̃a

scat: as remarked above, the

reason is that H̃a
0 generates translations in the τ̃ = −r direction and hence knows

nothing about the boundary terms.

The closed-string Hilbert space on which these operators act (not to be con-

fused with the usual open-string Hilbert space on which the Ha and Ja act) has
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the same structure of charge and spin towers as that outlined in section 6.1. The

only additional feature is that we now have both R and L-moving fields, so that

a typical basis state in the closed-string Hilbert space has the following form:

nc̃0c̃3o nc̃
′
0c̃

′
3

o |Q̃0, d̃0; Q̃3, d̃3〉L ⊗ |Q̃′
0, d̃

′
0; Q̃

′
3, d̃

′
3〉R , (6.67)

where Q̃a ≡ c̃a+ s̃a , c̃a ∈ Z, s̃a = 0, 1
2

. Note in particular the presence again of

free-fermion gluing conditions; they are needed to ensure that the closed string

theory describes free fermions, because, as emphasized above, H̃F−P is a bulk,

free-fermion Hamiltonian without any H̃scat.

The energy of a state such as eq. (6.67) has the form

ẼQ̃0Q̃3
− Ẽ00 = 2π

β

[
Q̃2

0 + Q̃2
3 + Q̃′

0
2 + Q̃′

3
2 + m̃

]
, (m̃ ∈ Z) , (6.68)

where the factor 2π
β

arises because the J̃aL/R currents live on a line of length β

(instead of 2l).

Now, as mentioned above, we know that the boundary term is U (c)(1)×U (s)(1)

invariant. Formally, this is reflected in the fact that the L- and R parts of the

corresponding KM currents J0 and J3 become equal at the boundary, as we have

verified explicitly in eqs. (6.39):

JaL(τ + i0+) = JaR(τ − i0+) for a = 0, 3 (6.69)

A similar condition (trivially) holds at r = l, due to the periodic boundary

conditions on the currents. These conditions immediately translate into operator

conditions in the new coordinates:

{∫ β

0
dr̃ei2πnr̃/β

(
J̃aL(ir̃) + J̃aR(−ir̃)

)}
|B〉 = 0 , for n ∈ Z and a = 0, 3 ,

(6.70)
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with a similar equation for |F−〉. Now, it can be shown [Ishi89] that the most

general solution of eq. (6.70) is of the form:

|B〉 =
∑

Q̃0,Q̃3∈Z/2
nc̃0c̃3o B(Q̃0, Q̃3)



∑

{d̃0,d̃3}
|Q̃0, d̃0; Q̃3, d̃3〉L ⊗ |Q̃∗

0, d̃
∗
0; Q̃

∗
3, d̃

∗
3〉R


 , (6.71)

The state |F−〉 has a similar structure. There are two crucial properties here:

Firstly, all states in the same tower (Q̃o, Q̃3) get the same weight (i.e. the coeffi-

cients B(Q̃0, Q̃3) do not depend on the descendant labels {d̃0, d̃3}). Secondly, the

quantum numbers of the R-tower are linked to (and not independent of) those

of the L-tower, which is a direct consequence of eq. (6.70) (∗ denotes complex

conjugation). This linking of the L-R quantum numbers has a “physical” in-

terpretation. It means that the states propagating between the boundaries at

r = 0, l always come in L-R pairs (created from the vacuum by a c†Lc
†
R combi-

nation). Loosely speaking, the wave-function associated with this pair-state can

be thought of as a particular standing wave between the two boundaries, the

coefficient B(Q̃0, Q̃3) giving the amplitude (at r = 0) of the R-moving (reflected)

component of this standing wave relative to the L-moving (inciident) component.

Now we know all the ingredients of eq. (6.61). The next step is to insert into

it a complete set of states of the form (6.67), and simplify. The result is

Z(θo, θ3) = (6.72)

q̃−( β
4π

)2(θ20+θ23)
∑

Q̃0,Q̃3∈Z/2
nc̃0c̃3o

∏

a=0,3


 q̃

Q̃2
ae−i2θalQ̃a

η2(q̃)


·〈F−|Q̃0; Q̃3〉〈Q̃0; Q̃3|B〉 .

Here we have exploited the fact that due to the equal-weight sum over descendants

in |B〉, the matrix element

L〈Q̃0, d̃0; Q̃3, d̃3| ⊗ R〈Q̃′
0, d̃

′
0; Q̃

′
3, d̃

′
3|B〉 ≡ δQ̃∗

0Q̃
′
0
δQ̃∗

3Q̃
′
3
δd̃∗0 d̃′0

δd̃∗3 d̃′3
〈Q̃0; Q̃3|B〉 (6.73)
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is independent of the descendant labels. This allows one to perform the sums

over all states in a given tower, obtaining the familiar η−2 factor. Furthermore,

the δ-functions in eq. (6.73) force all L- and R quantum numbers to be the same

(up to complex conjugation) thus giving the extra 2 in q̃ = e−2·2πl/β.

Now we are ready to compare our two expressions for Z(θo, θ3), namely

eqs. (6.60) and eq. (6.72). Comparing powers of q̃eθa , we deduce that

nc̃0c̃3o 〈F−|Q̃0; Q̃3〉〈Q̃0; Q̃3|B〉 =
∑

c0,c3=0, 1
2

nc0c3o S(c)

c0c̃0 S
(c)

c3c̃3 e
i2π(v0Q̃0+v3Q̃3) (6.74)

This central result is known as a Cardy formula (first derived in [Car89, eq.(18)]).

It determines the boundary matrix elements in terms of known quantities, namely

the modular S-matrix and the gluing condition.

For the present problem, S(c)

c0c̃0 and nc0c3o are so simple that a further simplifi-

cation follows immediately:

∑

c0,c3=0, 1
2

nc0c3o Sc0c̃0Sc3c̃3 = 1
2

(
1 + ei4π( 1

2
c̃0+ 1

2
c̃3)
)

= nc̃0c̃3o . (6.75)

Thus we obtain

nc̃0c̃3o 〈Q̃0; Q̃3|B〉 = nc̃0c̃3o ei2π(v0Q̃0+v3Q̃3) . (6.76)

Here we have exploited the v0 = v3 = 0 version of Cardy’s formula, namely

〈F−|Q̃0; Q̃3〉〈Q̃0Q̃3|F 〉 = 1, to conclude that we may take 〈Q̃0; Q̃3|F−〉 ≡ 1.

All that remains is to find the coefficients ŨB(ψ
α
), ŨB(J±) and ŨB(J3) from

eq. (6.45). To this end, we have to identify the (Q̃0, Q̃3) quantum numbers of

the fields ψ
α
, J± and J3 in the closed string picture (because the correlation

functions of eq. (6.44) are defined in the closed string picture, see footnote 6 on

page 168). Now, the identity operator 1 corresponds to the “vacuum state” (i.e.

the T = 0 Fermi sea), |Q̃0, Q̃3〉 = |0, 0〉. The fermion fields ψ
±

correspond to
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the |1
2
,±1

2
〉 KM primary state, because they have (Q̃↑, Q̃↓) = (1, 0) or (0, 1), and

hence (Q̃0, Q̃3) = (1
2
,±1

2
). The current J3 is diagonal in fermion fields, [J3 = 1

2
:

ψ
1†
ψ

1 −ψ
†2
ψ

2
:], i.e. has the same number of fermions as the vacuum; therefore,

it also has (Q̃0, Q̃3) = (0, 0), which means that it corresponds to a descendant

of the |0, 0〉-vacuum state. The currents J+ = ψ
1†
ψ

2
and J− = ψ

2†
ψ

1
have

(Q̃0, Q̃3) = (0,±1), and are descendants in the (0,±1) KM towers, respectively.

Using this information in eqs. (6.76) and (6.45), we find

ŨB(ψ
α
) = eiπ(v0+αv3) ; ŨB(J±) = e±i2πv3 ; ŨB(J3) = 1 , (6.77)

This, finally, is the result promised above [in eq. (6.46)].

Note that on the right-hand-side of eq. (6.76), the free-fermion gluing con-

ditions reappear. Thus, our calculation has explicitly justified an assumption

that was made when we wrote down eq. (6.67) for the basis states of the Hilbert

space in the closed-string picture, namely that they only occur in free-fermion

combinations, as indicated by the no’s in eq. (6.67).

The preceding presentation might have been painfully detailed; however, the

methods are well worth learning, for they are very powerful, and easily applied to

other theories that have a similar structure. The details need to be digested only

once. Once the exact partition function is known, an aficionado could find the

desired result eq. (6.77) on the proverbial back of an envelope: all he would do is

take one glance at the partition function, written in the form of eq. (6.53), look

up the relevant modular transformation properties of the appropriate characters

[eq. (6.57)] to arrive at eq. (6.60), and then directly read off Cardy’s formula

eq. (6.74).

The generalization of these methods to the Kondo problem will indeed be very
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straightforward, as will be explained in chapter 7. However, in that context the

role of symmetries is much more important than can be gleaned from the present

example. Therefore, in the next section, we shall discuss a special value of the

coupling constants, namely v0 = 0 and v3 = 1, at which the theory suddenly

has a larger symmetry, U (c) × SU(2). We shall exploit this to redo the above

calculation more efficiently, and in closer analogy to the Kondo problem.

Before proceeding, however, let us briefly remark that for the present problem

there actually exists a short-cut to obtaining |B〉. The boundary terms Ha
scat that

appear in eq. (6.52), but not in eq. (6.61), may be thought of as acting on a free

boundary state |F+〉 at r = 0, to produce |B〉 (compare [CKLM94, eq.(2.23)]):

|B〉 ≡
∏

a=0,3

[
e−
∫ β
0
dτvaJaL(τ+i0)

]
|F+〉 =

∏

a=0,3

[
ei2πvaJ̃

a
oL(τ̃=0)

]
|F+〉 . (6.78)

For the second equality we used eq. (6.65). Now, |F+〉 has the structure of

eq. (6.71), with all coefficients F (Q̃0, Q̃3) = 1. Therefore eq. (6.76) immediately

follows, since J̃aoL|Q̃0; Q̃3〉L = Q̃a|Q̃0; Q̃3〉L. Unfortunately, this simple trick does

not generalize to the more complicated case in which the boundary operator

involves a Kondo impurity.

6.5 Restoration of SU(2)-symmetry at v3 = 1

In this section, we examine the case that the coupling constant v3 has the special

values v3 = 1. We shall call this the “strong-coupling fixed point”, in analogy with

terminology used for the Kondo problem. It turns out that at this point the SU(2)

symmetry (in the spin sector) that the free theory possesses is restored. This has

two important consequences: Firstly, the spectrum turns out to look exactly
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like that of a free theory, but with a modified gluing condition [see eq. (6.79)].

Secondly, the boundary state |B〉 now also has to respect this SU(2) symmetry.

These two facts allow one to calculate the boundary-state matrix elements more

efficiently (using the same ideas as those developed above, but exploiting the

additional SU(2) symmetry). Moreover, they illustrate quite explicitly in a simple

setting the ideas that are also at the heart of Affleck and Ludwig’s solution of the

Kondo model: namely the (in their case dynamical) restoration of the original

symmetry of the free theory at the strong-coupling fixed point, accompanied by

a modified gluing condition.

For simplicity, we shall take v0 = 0 in this section, but (with some obvious

changes) the entire discussion holds also for arbitrary v0 (since apart from the

gluing condition, the charge and spin sectors are decoupled).

Why is v3 = 1 special? At this value, we note two facts: Firstly, we learn

from eq. (6.27), with m = 0, that the boundary interaction shifts the charges by

exactly 1
2
: c3 = 0 is simply replaced by c3 = 1

2
, and c3 = 1

2
by c3 = 0. Thus, the

spectrum is essentially that of a free theory, but with modified gluing condition,

namely:

nc0c3∗ ≡





1 if co 6= c3 ,

0 if co = c3 ,
(6.79)

We shall call this the “strong-coupling” gluing condition.

Secondly, we see from eq. (6.76) that 〈Q0, Q3|B〉 = ei2πc3 , (since ei2πs3 = 1); in

other words, the s3-dependence of these matrix elements disappears completely,

which means that all the descendants in a tower get the same phase. This is a

hint that at the strong-coupling fixed point the system has more symmetry than

at other values of v3. In what follows, we describe how the modification of the
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gluing condition and the emergence of a larger symmetry are related, and how

these features can be exploited to compute |B〉, which also has more symmetry,

more efficiently.

To illustrate the significance of the new gluing condition, we reconsider the

partition function Z(θ0, θ3). For the special choice v0 = 0, v1 = 1 (indicated by

the subscript 1 on Z∗), eq. (6.53) can be rewritten as follows:

Z∗(θ0, θ3)η
−2(q)

∑

Qo,Q3∈Z/2
ncoc3o q[Q

2
0+(Q3+ 1

2
)2]eβ[θ0Q0+θ3(Q3+ 1

2
)]

= η−2(q)
∑

Qo,Q3∈Z/2
ncoc3∗ q(Q2

0+Q2
3)eβ(θ0Q0+θ3Q3) (6.80)

=
∑

Qo,Q3∈Z/2
ncoc3∗

∑

{do,d3}
〈Qo, do;Q3, d3|

∏

a=0,3

e−β(Ha
o−θaJao )|Qo,do;Q3,d3〉 (6.81)

Compare eq. (6.81) with eq. (6.53): in eq. (6.53), the partition function is ex-

pressed in terms of the full Hamiltonian H3
o+H

3
scat, and the trace is taken over the

free-electron subspace (characterized by the free-fermion gluing condition ncoc3o )

of the tensor product of the charge and spin Hilbert spaces. In eq. (6.81), the

partition function is expressed in terms of only the free Hamiltonian Ho, but now

the trace is over a different subspace of the full Hilbert space, characterized by

the strong-coupling gluing condition ncoc3∗ .

Thus we come to the following remarkable conclusion: at the strong-coupling

fixed point, the boundary condition is completely characterized by the strong-

coupling gluing condition ncoc3∗ ; no further information is needed beyond these

numbers.

Now, the free Hamiltonian Ho has a larger symmetry than the U (c)(1)×U (s)(1)

symmetry that we have been exploiting so far. It is also invariant under U (c) ×

SU(2) transformations of the form ψα → eiφoRSU(2)

αα′ . The fact that at the strong-
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coupling fixed point the partition function can again be expressed purely in terms

of Ho means that this larger symmetry must somehow be hidden in Z∗ too. In

fact, it should be possible to exploit this larger symmetry to calculate Z∗ and |B〉

more efficiently. We now describe how this works.

Consider the interaction switched off for the moment. As described in ap-

pendix A (section A.7), the free Hamiltonian can also be written in a Sug-

awara form that reflects its U(1) × SU(2) symmetry [eq. (A.83)]. In terms of

the U(1) and SU(2) Nöther currents J0 and ~J defined in eq. (6.34), one finds [see

eqs. (A.81) and (A.83), with J0-normalization differing by 1
2
],

Ho = H (c)

o +H (s)

o =
∫ l

−l
dx
2π

[
: JoJo : +1

3
: ~J ~J3 :

]
, (6.82)

with spectrum given by eq. (A.94):

EQ0j − E00 = 2π
l

[(
Q2

0 +mc
)

+

(
j(j + 1)

3
+ms

)]
. (6.83)

The spectrum is arranged into towers labeled by a charge and a spin quantum

number, (Q0, j) [section A.7.2]. Here the charge, Q0 ∈ Z/2, is the same quantum

number as that used above. However, the spin j is restricted to the values j = 0, 1
2
,

and plays the role of c3 (and not Q3). The tower (Q0, j) can be thought of as

a combination, into a single tower, of all (Q0, Q3) towers with the same c3 = j:

(Q0, j) = {(Q0, j + s3), s3 ∈ Z}. The reason for combining all these towers

together is that they are related to each other by SU(2) symmetry, in the sense

that SU(2) transformations mix all their states together. For more discussion,

see appendix A, page 300.

Since j plays the role of c3, the free-fermion gluing condition eq. (6.19) for glu-

ing charge and spin towers together is simply nc0j0 = δcoj [where 2c0 = Q mod(1)].
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In terms of the |Q0, j〉 basis, the free-fermion partition function of eq. (6.23)

can also be rewritten in the equivalent form

Zo(θ0, θ3) =
∑

Qo∈Z/2

∑

j=0, 1
2

ncojo χ(c)

2c0(q, βθ0/2) χ(s)

j (q, βθ3) (6.84)

Here χ(s)

j are the so-called non-specialized SU(2)1 characters, defined by

χ(s)

j (q, βθ3) ≡
∑

{rj}
〈j, rj|e

−β
(
H

(s)
o −θ3J3

0

)

|j, rj〉 . (6.85)

Since the states |j, dj〉 span the same Hilbert space as the states {|j + s3, d3〉},

it follows (by comparing eq. (6.84) to eq. (6.23)) that the following character

identity holds:

χ(c)

2j (q, βθ/2) = χ(s)

j (q, βθ) . (6.86)

Let us now switch the interaction back on, with v0 = 0 and v3 = 1, and

reexamine the partition function Z∗. By writing eq. (6.80) in terms of χ(c)’s

[defined in eq. (6.55)], and then using eq. (6.86), it immediately follows that Z∗

can also be written as

Z∗(θ0, θ3) =
∑

c0j=0, 1
2

ncoj∗ χ(c)

2c0(q, βθ0/2) χ(s)

j (q, βθ3) . (6.87)

The fact that the partition function can be expressed in terms of SU(2)1 charac-

ters is quite startling – it implies that despite the presence of a boundary inter-

action that seems to break SU(2) symmetry, this symmetry somehow reemerges

at v3 = 1.

The reason for the reemergence of this SU(2) symmetry can be understood

as follows: note from eq. (6.39) that at v3 = 1, J0 and also all three the SU(2)

Nöther currents become analytic at the boundary:

JaL(0) = JaR(0) , for a = 0, 1, 2, 3 . (6.88)
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But this is exactly the condition that guarantees that the boundary will be

U (c)(1)×SU(2) invariant; therefore, both bulk and boundary are U (c)(1)×SU(2)

invariant, and the effect of the boundary interaction cannot be anything more

than to simply modify the gluing conditions.

Since we intend to compare Z∗ to a closed-string expression depending on q̃

below [eq. (6.93)], let us rewrite Z∗ in terms of q̃. This is done using the modular

transformation properties of χ(c) and χ(s), given by eq. (6.57) and

χ(s)

j (q, y) = q̃−( y
4π )

2 ∑

j̃=0, 1
2

S(s)

jj̃
χ(s)

j̃
(q̃,−i2ly/β) , (6.89)

where S(s)

jj̃
≡ 1√

2
sin

(
(2j + 1)(2j̃ + 1)π/4

)
= 1√

2

(
1
1

1
−1

)

jj̃
(6.90)

(see eqs. (F.21) and (3.5) of [AL94]). Thus, eq. (6.87) can also be written as:

Z∗(θo, θ3) = q̃−( β
4π

)2(θ20+θ23)
∑

co,j=0, 1
2

nc0j∗
∑

c̃o,j̃=0, 1
2

S(c)

cc̃0S
(s)

jj̃
χ(c)

2c̃0(q̃,−iθ0l) χ
(s)

j̃
(q̃,−i2θ3l) .

(6.91)

Now turn to the closed string picture. The U (c)(1) × SU(2) symmetry of

the boundary can be exploited to calculate |B〉 in a “more efficient” way: the

boundary condition (6.88) on the currents translates in the |Q0, j〉 basis into

conditions on |B〉 and |F−〉 that have precisely the form of eq. (6.70), but now

holding for a = 0, 1, 2, 3 (instead of just a = 0, 3). This implies that |B〉 and |F−〉

can be constructed from Ishibashi states that respect U (c)(1)×SU(2) symmetry:

|B〉 =
∑

Q̃0∈Z/2

∑

j̃=0, 1
2

nc̃0c̃3o B(Q̃0, j)



∑

{d̃0,r̃j}
|Q̃0, d̃0; j̃, r̃j〉L ⊗ |Q̃∗

0, d̃
∗
0; j̃

∗, r̃∗j 〉R


 . (6.92)

The difference from eq. (6.71) is that now B(Q̃0, j̃ + s̃0) ≡ B(Q̃0, j̃) for all s̃3 ∈

Z, i.e. the additional SU(2) symmetry has constrained an infinite number of

B-coefficients to all have the same value (this is why the calculation is “more
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efficient”). Consequently, the partition function, expressed in terms of |F−〉 and

|B〉, is

Z∗(θo, θ3) = (6.93)

q̃−( β
4π

)2(θ20+θ23)
∑

Q̃0∈Z/2

∑

j̃=0, 1
2

nc̃0j̃∗ χ(c)

2c̃0(q̃,−iθ0l) χ(s)

j̃
(q̃,−i2θ3l) · 〈F−|Q̃0; j̃〉〈Q̃0; j̃|B〉 .

Since the products of non-specialized characters are linearly independent, we

can equate their coefficients in eqs. (6.91) and (6.93), to obtain the following

Cardy formula:

nc̃0j̃o 〈F−|Q̃0; j̃〉〈Q̃0j̃|B〉 =
∑
c0,j=0, 1

2
nc0j∗ S(c)

c0c̃0 S
(s)

jj̃
= nc̃0j̃o (−1)j̃ . (6.94)

Thus we find, remarkably, that the boundary matrix elements are given purely in

terms of the strong-coupling gluing conditions and modular S-matrix elements! It

turns out that an entirely analogous statement holds for the Kondo effect (which

is the reason why we discussed the v3 = 1 case in so much detail).

The last equality in eq. (6.94) follows from simply inserting eqs. (6.58), (6.79)

and (6.90), and is in agreement with eq. (6.76). Since fermion fields correspond

to |Q0, j〉 = |1
2
, 1

2
〉, and the currents J0 and J± to (KM descendants of ) |0, 0〉

and |0, 1〉 we immediately recover eq. (6.77) too.

Note again how the strong-coupling gluing conditions n∗ in the open string

expression (the middle expression) in eq. (6.94) emerge as free-fermion gluing

conditions in the closed string expressions (the left- and right expressions) of

eq. (6.94). It turns out that this is a general phenomenon: whenever the effect

of some boundary interaction can completely be described, in the open string

picture, by merely changing the gluing condition from no for free fermions to a
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modified gluing condition n∗, then in the closed string picture, the free-fermion

gluing condition no reemerges.9 In particular, this also happens in the Kondo

problem [see eq. (7.64)].

6.6 Summary

Let us take a step back and summarize the procedure by which the boundary

interaction was treated and the Green’s function GRL was found in this chapter.

The general framework for the calculation rests on the equivalence of two

different ways of viewing the theory:

(a) Open string picture: The system is quantized on lines of constant τ in the

upper half of the τ+ir plane. Besides the bulk-fermion term Ho, the Hamil-

tonian also contains a scattering term Hscat, which explicitly represents the

effects of the impurity. This impurity term can be absorbed by making

appropriate shifts in the currents. At the strong-coupling fixed point, this

shift is equivalent to a change from a free-fermion to a strong-coupling

gluing condition (no → n∗).

(b) Closed string picture: The system is quantized on lines of constant r. The

Hamiltonian contains only a bulk, free-fermion term HF−P . The impurity

has been effectively “integrated out”, and its effects are encoded in the

boundary state |B〉, which determines how free L-moving fields are reflected

into free R-moving fields at r = 0.

Since the closed string picture is a theory in which the impurity has been

effectively “integrated out” and one is left with a theory of free fermions being

9Technically, this is a consequence of the Verlinde formula [Ver88].
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reflected off a boundary, it provides a description that, once |B〉 is known, is in

many ways simpler than the open string picture. This is why Green’s functions

are best calculated in the closed string picture. For the Kondo problem, where

the impurity is dynamical, this simplification of effectively having integrated out

the impurity will be even more signicant; Kondo Green’s functions in the closed

string picture indeed represent correlation functions in which the impurity degrees

of freedom have been traced out already.

The boundary state |B〉 is determined by requiring the open and closed string

partition functions to be the same, and once known, immediately gives GRL. Be-

low we summarize the steps involved in the form of a cook-book recipe, formulated

in a way that also applies to Affleck and Ludwig’s solution of the Kondo problem,

discussed in chapter 7:

Recipe for Calculating GRL:

1. Start with a free Hamiltonian H0, which has a certain symmetry G[=

U (c)(1) × SU(2)].

2. The impurity at the origin breaks this down to a smaller symmetry Gi[=

U (c)(1) × U (s)(1)]. Therefore, choose a bosonization scheme which is com-

patible with this smaller symmetry [namely the charge-spin scheme].

3. Find the free-fermion gluing condition no [eq. (6.19)], the finite-size spec-

trum [eq. (6.21)] and the free-fermion partition function Zo(q) [eq. (6.23)].

4. Absorb the impurity completely by making appropriate shifts in the cur-

rents [eq. (6.26)].
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5. Calculate the new partition function Z(q) exactly in terms of the new cur-

rents, in the open string picture [eq. (6.31)], and make a modular transfor-

mation, thus replacing q by q̃, to obtain Z(q̃) [eq. (6.60)].

6. Alternatively, in the closed string picture, express the partition function

Z(q̃) as an expectation value [eq. (6.72)] between two boundary states,

〈F−| and |B〉, which respect the (smaller) symmetry [U (c)(1) × U (s)(1)] .

7. Equate the two expressions for Z(q̃), and read off Cardy’s formula [eq. (6.74)]

for the boundary matrix elements 〈Q̃0; Q̃3|B〉.

At Strong-Coupling Fixed Point:

8. At the so-called strong-coupling fixed point (v0 = 0, v3 = 1), the original

symmetry G reemerges. This implies that the only effect of the scatterer is

to change the free-fermion gluing conditions no to strong-coupling ones, n∗

[eq. (6.79)].

9. Exploit this restored symmetry to express the partition function Z∗(q) in

terms of G-characters and the strong-coupling gluing conditions [eq. (6.87)],

and modular transform to get Z∗(q̃) [eq. (6.91)].

10. Since |B〉 also respects the restored symmetry, find an expression for Z∗(q̃)

in terms of 〈F−|, |B〉 and U (c)(1) × SU(2) [eq. (6.93)].

11. Compare the two expressions for Z∗(q̃) to deduce Cardy’s formula [eq. (6.94)].

We find the remarkable result that at the strong-coupling fixed point, Cardy’s

formula gives the boundary matrix elements purely in terms of the strong-

coupling gluing condition and modular S-matrix elements.
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12. The boundary-state matrix elements [〈Q̃0; Q̃3|B〉] directly give the Green’s

function GRL [eq. (6.47)], and hence the transmission matrix elements Ũ

that determine the scattering states [eq. (5.60)].

The strategy for solving the Kondo problem at its strong-coupling fixed point,

and in particular for finding the scattering states, is of an entirely analogous na-

ture: at this point, the full symmetry of the original free Hamiltonian reemerges.

The impurity spin disappears altogether, and the only trace it leaves behind is

a modified gluing condition. Thus, most of the above steps can be repeated for

the Kondo problem at its strong-coupling fixed point [see chapter 7]. Not sur-

prisingly, therefore, the boundary state matrix elements are given by a Cardy

formula [eq. (7.61)] that has precisely the structure of eq. (6.94) above.

Due to the simplicity of the present problem, we were able to demonstrate the

reemergence of the U (c)(1) × SU(2) at the strong-coupling fixed point explicitly

[e.g. by proving that JaL(τ) = JaR(τ) for a = 0, 1, 2, 3, eq. (6.88)]. For the Kondo

problem, such a direct demonstration of the reemergence of the full symmetry

of H0 seems not to be possible. Therefore, the reemergence of this symmetry,

accompanied by new strong-coupling gluing conditions, is stated as a hypoth-

esis. The consequences of this hypothesis are then worked out, and compared

with other well-established results, obtained using Wilson’s numerical renormal-

ization group approach and the Bethe Ansatz. The agreement is excellent and

exact, respectively, and serves as a posteriori validification of the strong-coupling

hypothesis.



Chapter 7

CFT treatment of k-channel

Kondo problem

In this chapter we describe some of the main aspects of the conformal field theory

(CFT) solution to the over-screened1 k-channel Kondo problem developed by Af-

fleck and Ludwig (AL) [Aff90,AL91a,AL91b,AL91c,AL91d,AL92a,AL92b,AL93,

AL94,Lud94a,Lud94b,ML95]. It is impossible to give a comprehensive account

of their work in the space of one chapter. Instead, we shall restrict our attention

to the calculation of the simplest non-trivial Green’s function in the theory,

GRL(z̄, z′) ≡ −〈ψR(z̄)ψ†
L(z

′)〉 , (7.1)

which, according to eqs. (5.52) and (5.60), is needed for the nanoconstriction cur-

rent. Nevertheless, even this calculation, presented in [AL93], requires thorough

familiarity with substantial parts of AL’s theory.

This chapter is intended as an introduction to AL’s theory that is accessible

1The completely screened and under-screened Kondo problems can be solved by the same
methods but many of the details are different [Aff90,AL91a].
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to a reader not thoroughly familiar with CFT, but willing to learn what is needed

along the way.2 Our presentation is not self-contained, but should be viewed as a

“road map” to the papers of AL; therefore, particularly at the beginning of each

section, we shall provide detailed references, including specific page and eqation

numbers, for the reader interested in the finer details. Some technicalities are

also discussed in the appendices.

The strategy followed in this chapter is roughly the same as that of the previ-

ous chapter. It is organized as follows. In section 7.1, we present the mapping of

the (3+1)-D k-channel Kondo problem theory to an effective (1+1)-D field the-

ory, whose properties in the weak-coupling regime are discussed in section 7.2.

Section 7.3 shows how the free theory can be written in a Sugawara form, which is

essential for understanding the absorption of the impurity spin at strong-coupling,

discussed in section 7.4. Finally, in section 7.5, we implement the recipe for cal-

culating GRL presented in chapter 6, page 188, points 8 to 12, for calculating

the Kondo Green’s function GRL at T = 0. The T 6= calculation is reserved for

chapter 8.

7.1 Mapping to a 2-D Field Theory

[AL91b], appendix A; [Lud94a], section 2.1; [AL94], appendix A.

The k-channel Kondo problem of Nozières and Blandin [NB80] has been in-

troduced in section 4.1. It describes a spin-s magnetic impurity, coupled anti-

2I found that most of what I needed to know about “basic” CFT was contained in just
the two seminal papers [BPZ84,KZ84], and Ginsparg’s excellent review [Gins87]. For a concise
summary, see [GW86, section 3] or my section B.1. In addition, familiarity with Cardy’s
boundary CFT is also essential [Car84a,Car84b,Car86a,Car86b,Car89,CL91]; an introduction
to this material can be found in C.
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ferromagnetically to k degenerate bands (called channels or flavors) of electrons

in an SU(2)(spin) × SU(k)(flavor) invariant way. Written in position space, the

Hamiltonian density (4.1) in the so-called weak-coupling limit takes the form

H = Ψ†αi(~x)

(
−∇2

2m

)
Ψαi(~x) + λKδ

3(~x)Ψ†αi(~x)1
2
~σβαΨβi(~x) · ~S . (7.2)

Here the operators ~S describes the local spin-s impurity, with [Si, Sj] = iεijkSk.

Electrons are described by three-dimensional non-relativistic fermion fields Ψαi(~x),

where α, β = ± labels the electron spin3, and i = 1, . . . , k labels the k channels.

Note that H is diagonal in channel indices.

Nozières arguments about the nature of the fixed points were discussed in

chapter 4.

The Hamiltonian clearly has a radial symmetry about the origin, hence it is

convenient to expand Ψαi(~x) in spherical harmonics about the origin:4

Ψαi(~x) = ψαi(r) + higher harmonics ; (7.3)

Since the δ(~x)-interaction has “zero” range, it only couples to ψαi(r), the angu-

lar momentum l = 0 part (“s-wave-projected” part) of Ψαi(~x). Thus one has

effectively a one-dimensional (radial) problem in terms of ψαi(r), with two Fermi

points, at |k| = kF , for incident and outgoing radial waves. To describe the

universal low-temperature, large-distance physics, it is sufficient to linearize the

3Following AL, we shall use in this chapter the terminology that is appropriate to the
magnetic multi-channel Kondo problem, i.e. “spin” (α, β) refers to the Pauli spin that couples
to the magnetic impurity. In later chapters, the index that couples to the dynamic impurity
will still be called a “spin” (or sometimes “pseudospin”) index and denoted by α, β, but it will
not always be the Pauli spin.

4The mapping from a 3- to a 1-dimensional problem is worked out in detail in Appendix A
of [AL94], whose sign-conventions for e∓ikF rψL/R(ir) we use; see also Appendix A of [AL91b]
and section 2 of [Lud94a] where the sign conventions are slightly different – but all that really
matters are the signs in ±i∂r in eq. (7.7).
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dispersion relation about these points (ε~k = k2/2m = vF |k|). Thus one writes

ψαi(r) ∝
[
−e−ikF rψLαi(ir) + e+ikF rψRαi(ir)

]
. (7.4)

where the radial fields ψL/R(ir) (called L/R movers on the positive r-axis) are

composed of low-energy incoming/outgoing radial excitations about the Fermi

sea,

ψL/Rαi(ir) ≡
∫ Λ

−Λ
dke∓ikrcoαi(kF + k) (7.5)

[co(k) creates a radial wave with radial momentum k ≡ |k|, and Λ is a cut-off

satisfying T ≪ vFΛ ≪ εF ]. The radial multi-channel Kondo problem is then

defined, in the weak-coupling limit, by the following Hamiltonian:

H(λK) = Ho + HK , (7.6)

Ho ≡ vF

∫ ∞

0

dr
2π

[
ψαi†L (ir)i∂rψLαi(ir) − ψαi†R (ir)i∂rψRαi(ir)

]
, (7.7)

HK(λK) ≡ vFλK ~S · 1
2

(
ψαi†L (0) + ψαi†R (0)

)(
1
2
~σα
β
)

1
2
(ψLβi(0) + ψRβi(0)) (7.8)

The normalization employed by AL is

{ψαi†X (ir), ψX′βj(ir
′)} = 2πδXX′δαβδ

i
jδ(r − r′) (X,X ′ = L,R); . (7.9)

The Hilbert space on which H acts is a tensor product of free fermion states and

the (2s+ 1) states of the impurity spin.

This problem can be viewed as a 2-dimensional field theory in the complex

plane. We adopt again the notation of eq. (6.40):

u ≡ τ + ix ≡





z ≡ τ + ir for x > 0 ,

z̄ ≡ τ − ir for x < 0 ,
(7.10)
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where r ≡ |x|, and τ(= it) is the imaginary time. Also, write ∂z ≡ 1
2
(∂τ − i∂r),

∂z̄ ≡ 1
2
(∂τ + i∂r). The Heisenberg equations of motion for r 6= 0 are

∂z̄ψLαi(τ, ir) = 0 , ∂zψRαi(τ, ir) = 0 , for r 6= 0 . (7.11)

They imply that

ψLαi(τ, ir) = ψLαi(z) , ψRαi(τ, ir) = ψRαi(z̄) , (7.12)

and similarly for ψ†
L(z) and ψ†

R(z̄). Thus, ψL(z) is an analytic function of u in the

upper half of the complex u-plane (where u = z), and ψR(z̄) can be viewed in two

ways, either as an anti-analytic function of u in the upper half of the u-plane, or

as an analytic function of u in the lower half of the u-plane (where u = z̄) [see

Fig. 7.1].

For future reference, let us define the charge, spin and flavor currents, Jo, Ja

and Ib [compare eqs. (A.99) to (A.101)]:

JoL(z) ≡ : ψ†µi
L (z)ψLµi(z) : (7.13)

JaL(z) ≡ : ψ†αi
L (z) 1

2
(σa)α

β ψLβi(z) : (a = x, y, z = 1, 2, 3) (7.14)

IbL(z) ≡ : ψ†αi
L (z)(T b)i

jψLαj(z) : (b = 1, . . . , k2 − 1) . (7.15)

Here : : denotes point-splitting [defined in eq. (A.9)], and the matrices (T b)i
j are

SU(k) generators in the fundamental k×k-dimensional representation [obeying

relations like eqs. (A.72), (A.73), with N → k]. For k = 2, (T b)i
j = 1

2
(σb)i

j.

Right-moving currents JR(z̄) are defined similarly in terms of ψR(z̄). We shall

denote these currents collectively by JXL and JXR , where X denotes o, a or b.

Eq. (7.12) ensures that these currents are conserved for r 6= 0, i.e. ∂z̄J
X(z) = 0,

∂zJ
X(z̄) = 0. They generate so-called G = U(1)×SU(2)k×SU(k)2 Kac-Moody
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Figure 7.1 .

L- and R-moving fields in the complex plane. The boundary is at x = 0. ψL(z) is

an analytic function of u in the upper half of the complex u-plane (where u = z),

and ψR(z̄) can be viewed in two ways, either as an anti-analytic function of u in

the upper half of the u-plane, or as an analytic function of u in the lower half of

the u-plane (where u = z̄).
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gauge transformations, parametrized by infinitesimal analytic functions ωXL (z)

and ωXR (z̄) ≡ [ωXL (z)]∗ through:5

δO(τ, ir) =
∫ l

0

dx′

2π
{ωXL (z′)[JXL (z′), O(τ, ir)] + ωXR (z̄′)[JXR (z̄′), O(τ, ir)]} (7.16)

[see section A.2, especially eq. (A.12) for a discussion of Kac-Moody symmetry

transformations].

7.2 Weak-Coupling Description

[AL91b], section 2.1; [Lud94a], section 2.1.

The behavior of the fields ψL,R and currents JX
L/R at r = 0 is determined by

the presence or absence of a boundary interaction, HK ∝ λKδ(r), which may be

thought of as a boundary condition on the fields at r = 0 (in a sense to be made

precise below). In this section we consider the weak-coupling limit (λK ≪ 1), in

which the boundary condition is trivial [see eq. (7.17)]. However it is highly non-

trivial at the over-screened fixed point to which the system flows when T/TK → 0,

which is discussed in subsequent sections.

7.2.1 Weak-Coupling Boundary Conditions

The weak-coupling limit is applicable if T ≫ TK and λK ≪ 1. One envisions doing

perturbation theory in HK, and hence expresses all quantities, including HK, in

terms of free fields, obeying free Heisenberg equations of motion (with λK = 0).

Then it follows from the 3-D to 1-D mapping [see eq. (7.5)] that ψL(z) and ψR(z̄)

satisfy the following so-called weak-coupling boundary condition at r = 0:

ψLαi(τ + i0) = ψRαi(τ − i0) , (7.17)

5Transformations obeying ωXR (z̄) ≡ [ωXL (z)]∗ can be shown to be sufficiently general. For
details, see appendix C, section C.1.1.
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Since ψL(z) and ψR(z̄) are analytic functions of their arguments and equal to each

other on an open domain (the τ -axis), ψR(z̄) must be the analytic continuation

of ψL(z) to the lower half of the u plane (where x = −r < 0), and hence can be

expressed as

ψRαi(z̄) = ψLαi(z̄) . (7.18)

It follows immediately from their definition that the currents obey a similar

boundary condition,

JXL (τ + i0) = JXR (τ − i0) , (X = o, a, b) , (7.19)

which means that “no current of any type flows accross the boundary” [AL91b,

p. 653]. To borrow a metaphor from electromagnetism, whatever charge JXL (z)

carries towards the boundary is carried away again by JXR (z̄). It follows that

JXR (z̄) must be the analytic continuation of JXL (z) into the lower half-plane:

JXR (z̄) = JXL (z̄) (X = o, a, b) . (7.20)

The boundary condition eq. (7.19) is extremely important, because without it,

the free theory would be G = U(1)×SU(2)× SU(k) Kac-Moody gauge invariant

only “in the bulk” (i.e. for r 6= 0), but not on the boundary (r = 0). The reason

is that surface terms that usually can be neglected when proving the invariance

of the action under symmetry transformations, no longer vanish automatically

in the presence of a boundary [AL91b, p. 653]. It is shown in detail in Ap-

pendix C, section C.1.3, that under spatially varying, analytic, infinitesimal KM

gauge transformation such as eq. (7.16), the action A picks up a surface correction

[see second eq. in section C.1.3]:

δA =
∫ ∞

−∞
dτωXL (τ + i0) [JXL (τ + i0) − JXR (τ − i0)] (7.21)
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Eq. (7.20) ensures that δA = 0, so that “the boundary is also KM invariant”,

and not only the bulk. In general, a boundary CFT is only KM invariant if the

currents that generate KM transformations satisfy JXL = JXR on the boundary.

7.2.2 Weak-Coupling Hamiltonian

The boundary conditions eqs. (7.17) and (7.19) can be used to write ψRαi(z̄) in

terms of ψLαi(z̄), and to rewrite the weak-coupling Hamiltonian in the form:

Ho = vF

∫ ∞

−∞
dx
2π
ψαi†L (ix) i∂x ψLαi(ix) (7.22)

HK = vFλK ~S · ψαi†L (i0)
(

1
2
~σα

β
)
ψLβi(i0) = vFλK ~S · ~JL(i0) . (7.23)

This is the form encountered in chapter 5, eq. (5.37), and to be used in chapter 9.

It demonstrates two important facts:

(i) Instead of considering R- and L-movers in the upper half of of the complex

u = τ + ix plane (x > 0), one can consider L-movers only, but in the full u plane

(x >
< 0);

(ii) In the weak-coupling limit, the effect of the Kondo interaction can be entirely

expressed in terms of a coupling to the left-moving SU(2) current ~JL(ix).

The presence of HK of course modifies the boundary condition eqs. (7.17), as

we know from chapter 5. Therefore, strictly speaking the step of using a weak-

coupling boundary condition to write HK in the form of eq. (7.23) only makes

sense in perturbation theory, where by definition one expresses the interaction in

terms of free fields. In the strong-coupling regime, one has to follow a different

approach. Nevertheless, the weak-coupling form of eqs. (7.22) and (7.23) is very

useful, and will be studied at some length in the next section in order to gain the

intuition needed to eventually write down the strong-coupling solution.
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7.3 Sugawara form for Ho

[AL91b], section 2.1; [Lud94a], section 3.

In this section we write the free Hamiltonian Ho in Sugawara form, discuss the

structure of the finite-size spectrum, and write down an expression for the free-

electron partition function Zo. These are steps 1 to 3 of the program outlined in

section 6.6, and are prerequisites for understanding the strong-coupling solution.

The Sugawara technology used in this section is discussed in detail in Appendix A,

especially section A.8, with which the reader is assumed to be familiar. Here we

merely summarize the main conclusions.

Since we are interested in the finite-size spectrum, we put the system in a

spherical box of radius l, so that ψαiL(ix) lives on a line of length 2l, x ∈ [−l, l].

Hence the weak-coupling form eq. (7.22) for Ho becomes (with vF ≡ 1 henceforth)

Ho =
∫ l

−l
dx
2π
ψαi†L (ix)i∂xψLαi(ix). (7.24)

It is convenient to impose an anti-periodic6. boundary condition on ψαiL(ix), so

that the single-particle eigenenergies of Ho will be of the form E−Eo = π
l
(m+ 1

2
),

with m ∈ Z+ ( Z+ denotes the non-negative integers, and Eo is the energy of the

T = 0 Fermi sea).

Since the impurity couples only to ~JL in HK, i.e. only to the spin degrees of

freedom, it is convenient to write Ho in a form in which charge, spin and flavor

degrees of freedom are separated, and the G = U(1)×SU(2)k×SU(k)2 KM gauge

symmetry becomes explicit. This can be achieved by writing Ho in a Sugawara

form in terms of the currents JoL, J
a
L and IbL of eqs. (7.13) to (7.15. The Sugawara

6This choice of boundary condition is motivated in appendix A, footnote 7.
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form is derived in appendix A and given by eq. (A.102) (with l → 2l, Ñ = 2 and

ctot = 2k):

Ho = Hc +Hs +Hf

=
∫ l

−l
dx
2π

[
1
4k

:JoLJ
o
L : + 1

2+k
:JaLJ

a
L : + 1

k+2
:IbLI

b
L :
]
, (7.25)

= −π
l
ctot
24

+ π
l

∑

n∈Z

[
1
4k

∗
∗J

o
nLJ

o
−nL

∗
∗ + 1

2+k
∗
∗J

a
nLJ

a
−nL

∗
∗ + 1

k+2
∗
∗I
b
nLI

b
−nL

∗
∗
]
,

Here ∗
∗

∗
∗ denotes normal ordering in momentum space [see eq. (A.58)], and the

Fourier modes of current JXL are defined by

JXnL ≡
∫ l

−l
dx
2π
eiπnx/lJXL (ix) ; JXL (ix) ≡ π

l

∑

n∈Z
e−iπnx/lJXnL . (7.26)

Since Hc, Hs and Hf commute, the representation space of the group G, i.e.

the Hilbert space HS(G) on which Ho acts, decomposes into a direct product of

charge, spin and flavor towers, denoted by T (c)

Q , T (s)

j and T (f)
ρ . They are labeled

by (Q, j, ρ), the charge, spin and flavor quantum numbers of the corresponding

primary states. Q ∈ Z are the possible charges of the charge primary states

|Q〉; The spin, j, restricted7 to j = 0, 1/2, . . . , k/2, labels the possible SU(2)

representations according to which the spin primary states |j, jz〉 can transform.

The flavor quantum number ρ labels the SU(k) representations for the flavor

primary states |ρ〉 [for k = 2, ρ ≡ jf= “flavor-spin”, with jf = 0, 1/2, 1]. Thus,

HS(G) can be represented as follows:

HS(G) :=
∑

⊕Q

∑

⊕j

∑

⊕ρ

[
T (c)

Q ⊗ T (s)

j ⊗ T (f)

ρ

]
. (7.27)

The internal structure of these towers (discussed in appendix A, sections A.6.2

and A.7.2), is determined by the commutation relations satisfied by the current

7The important restriction 0 ≤ j ≤ k/2 for SU(2)k is derived in [Gins87, eq.(9.30)].
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modes JXmL [given in eqs. (A.103) to (A.105)]. In particular, the spin current

modes satisfy
[
JanL, J

b
mL

]
= iεabcJ cn+mL + 1

2
knδabδn+m,0 , (7.28)

known as the SU(2)k (SU(2)-level-k) Kac-Moody algebra.

The energy eigenvalues for a state with charge, spin and flavor quantum num-

bers (Q, j, ρ) are given by [eq. (A.108)]

EQjρ − Eooo = π
l

[(
Q2

4k
+mc

)
+

(
j(j + 1)

2 + k
+ms

)
+

(
Cf (ρ)

k + 2
+mf

)]
(7.29)

where (mc,ms,mf ) are non-negative integers characterizing the energy levels

within each tower (the level of the KM descendants). Cf (ρ) is the quadratic

Casimir eigenvalue in the flavor sector; for k = 2, one has Cf (ρ) = jf (jf + 1).

However, we know that in a free-electron theory with anti-periodic boundary

conditions and single-particle eigenenergies E − Eo = π
l
(m + 1

2
) [with m ∈ Z+],

all eigenenergies must be of the form [eq. (A.70)]

EQjρ − Eooo =





2π
l
m for Q = even ,

2π
l
(m+ 1

2
) for Q = odd ,

with m ∈ Z+ , (7.30)

The spectrum of eq. (7.29) clearly contains many eigenvalues that are not of this

form. The reason is that in breaking up Ho into charge, spin and flavor degrees

of freedom, we have embedded the free-electron Hilbert space [HS(λK = 0)] into

the much larger Hilbert space HS(G) ⊃ HS(λK = 0), in which charge, spin and

flavor excitations are independent – we have effectively “unglued” free electrons

into their constituent excitations.

To recover a free-electron theory, these excitations have to be glued back

together to form free electrons. This is done by specifying a free-electron gluing
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condition, i.e. a set of numbers {n(Qjρ)
o }, either 0 or 1, that determine which

combinations of charge, spin and flavor excitations are allowed in a free electron

spectrum [by selecting only those (Q, j, ρ) for which eq. (7.29) is compatible with

eq. (7.30)]. For k = 2, these numbers were derived in section A.8.2 and are

summarized in table A.2.

The structure of the free-electron Hilbert space [HS(λK = 0)] can be thus be

represented symbolically as follows:

HS(λK = 0) :=
∑

⊕Q

∑

⊕j

∑

⊕ρ
n(Qjρ)
o

[
T (c)

Q ⊗ T (s)

j ⊗ T (f)

ρ

]
. (7.31)

This is clearly a subspace of HS(G) of eq. (7.27).

The free-electron partition function Zo is defined as Zo = Tr′ e−βHo , where

the prime on Tr′ indicates that the trace is only over free-electron states. This

condition is enforced by inserting the free-electron gluing condition n(Q,j,ρ)
o into

the sum over states. Since Hc, Hs and Hf commute, the partition function

factorizes:

Zo =
∑

Q,j,ρ

n(Q,j,ρ)
o χ(c)

Q (q) χ(s)

j (q) χ(f)

ρ (q) , where q ≡ e−πβ/l . (7.32)

Here χ(c)

Q (q) [χ(s)

j (q), χ(f)
ρ (q)] is a charge [spin, flavor] character,8 i.e. a partition

function over all states within the single tower labeled byQ [j, ρ]. The dependence

of these quantities on q follows by inspection from the typical form eq. (7.29) of

the eigenenergies.

8(Non-specialized) U(1)-characters are defined in eq. (6.55). See also [AL94], appendix F
[eq. (F.23) and the eq. after (F.5)], and [Gep87, eq. (25)].
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7.4 Over-Screened Fixed Point: λ∗K

If one were interested in doing T ≪ TK physics, one would do weak-coupling

perturbation theory in λK ≪ 1. However, we know that perturbation theory

breaks down for T <∼ TK, and that when T → 0, the system flows to a strong-

coupling fixed point (more specifically, an over-screened fixed point, if s < k/2) at

λ∗K [NB80] that is inaccessible to perturbation theory (see section 4.1). According

to the Kondo lore discussed in section 4.1.2, at the over-screened fixed point

the impurity spin is in a sense “absorbed” by the conduction electrons, and

the electron fields get “renormalized”. The great accomplishment of AL was

to make this mathematically precise: they show how the spin is “absorbed”,

and explicitly construct the new fields into which the old ones “renormalize”.

However, this comes at a cost: there is no continuous interpolation between the

weak-coupling and over-screened theories. The over-screened theory is written

down as an Ansatz, based on an inspired hypothesis, which has to be checked a

posteriori against other methods.

Nevertheless, a priori the over-screened fixed point is known from the work of

Nozières and Blandin to have the following properties [as summarized by [AL91b,

p. 650]]:

1. The theory has global U(1) × SU(2) × SU(k) symmetry, since the Kondo

interaction HK does not break this symmetry of Ho.

2. Far away from the boundary we recover the free electron theory as described

by the free Hamiltonian Ho of eq. (7.24).

3. The entire system, and boundary the bondary in particular, is scale invari-
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ant at λK = λ∗K, since this is a fixed point.

7.4.1 Absorption of the Impurity Spin at λ∗
K

[AL91b], section 2.1, [Lud94a], section 3.

To arrive at the over-screened solution of AL, it is useful to adhere to the

weak-coupling description of section 7.2 a little longer, to gain some intuition for

the effects of HK (our discussion follows [AL91b, section 2.1]; see also [Lud94a],

section 2).

It is clear from eq. (7.23) that the impurity couples only to the spin current

~JL; hence the charge and flavor sectors of the theory are completely unaffected

by HK. The spin part of H takes the following form:

Hs = Hs
o +HK =

∫ l

−l
dx
2π

[
1

2+k
: ~JL · ~JL : + 2πλK ~JL(ix) · ~Sδ(x)

]
(7.33)

= π
l

∑

n∈Z

[
1

2+k
∗
∗ ~JnL · ~J−nL∗∗ + λK ~JnL · ~S

]
. (7.34)

Now consider a special value of the coupling, λ∗K ≡ 2
2+k

(to be identified with

the intermediate-coupling fixed point of Nozières and Blandin). Define a new

(shifted) spin current, ~JL, which may be interpreted as the total spin current of

the combined electron and impurity system, through:

~JnL ≡ ~JnL + ~S (7.35)

~JL(ix) ≡ π
l

∑

n∈Z
e−iπnx/l ~JnL = ~JL(ix) + 2πδ(x)~S . (7.36)

Now “complete the square” and write Hs in terms of ~J :

Hs − const = π
l

∑

n∈Z

1
2+k

∗
∗ ~JnL · ~J−nL

∗
∗ =

∫ l

−l
dx
2π

1
2+k

: ~JL · ~JL : , (7.37)

where const is an (infinite) constant. Thus we see that Hs takes the form of a free

spin Hamiltonian when written in terms of the new currents: Hs[ ~J ] = Ho[ ~J ].
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Now AL made the crucial observation that eq. (7.28) and [Sa, Sb] = iεabsSc

imply that

[J a
nL,J b

mL] = iεabcJ c
n+mL + 1

2
knδabδn+m,0 , (7.38)

i.e. the Fourier modes ~JnL of the shifted spin current obey the same KM SU(2)k

commutation relations [compare eq. (7.28)] as the ~JnL of the old spin current! 9

Consequently the spin current ~J X
L (ix), defined as the Fourier transform of these

modes ~J X
nL, acts as the generator of KM gauge transformations on the combined

electron plus impurity system in the same way as ~JXL (ix) did for the free-electron

system.10

This means that at the over-screened point, the G = U(1) × SU(2) × SU(k)

KM gauge invariance that the free theory had (both in the bulk and on the

boundary), is restored. To see this in detail, we now show that the theory can

completely be brought in the form of a free theory, as follows;

Since the impurity has been completely absorbed andHs has the form of a free

Hamiltonian in terms of ~JL, it follows (e.g. from Heisenberg equations of motion)

that the new spin currents are continuous at x = 0, ~JL(τ + i0+) = ~JL(τ − i0+).

The charge and flavor currents are unaffected by our manipulations in the spin

sector, so if we define for convenience J o
L (ix) ≡ JoL(ix) and IbL(ix) ≡ IbL(ix), all

the J X
L currents obey J X

L (τ + i0−) = J X
L (τ − i0+). Thus, we can reintroduce

right-moving spin currents as in eq. (7.20), by defining

J X

R (z̄) = JL(z̄) , with J X

R (τ − i0+) = J X

L (τ + i0+) , (7.39)

9This is the reason why we need λK = λ∗K . The “square can be completed” for arbitrary

λK , using ~JnL ≡ ~JnL + 1
2 (2 + k)λK ~S, but eq. (7.38) holds only if 1

2 (2 + k)λK = 1.
10It is worth emphasizing the logic here: the fundamental definition of the shifted current

is eq. (7.35), in terms of Fourier modes ~JnL; once these have been found to obey the KM

algebra eq. (7.38), one knows that the currents ~J X
L (ix), constructed from them by Fourier

transformation, will be KM generators in coordinate space.
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and write the over-screened Hamiltonian in the form of L- and R-moving free

Hamiltonians:

H(λ∗K) =
∫ l

0

dr
2π

[HoL(ix) + HoR(ix)] ; , (7.40)

HoL/R(ix) = 1
4k

:J o
L/RJ o

L/R : + 1
2+k

:J a
L/RJ a

L/R : + 1
k+2

:IbL/RIbL/R : (7.41)

In analogy to our discussion for Ho on p. 197, eqs. (7.40) and (7.39) imply

together that H(λ∗K) is invariant, both in the bulk em and on the boundary,

under G = U(1) × SU(2)k × SU(k)2 KM gauge transformations generated by

the currents J X(ix) which act on the combined electron plus impurity system.

Thus, as a direct consequence of the KM commutation relations eq. (7.38), KM

gauge invariance is restored at the over-screened fixed point, in agreement with

requirement 1 on page 203 above.

7.4.2 Over-Screened Gluing Conditions

[AL91b], section 4; [AL92b], section III.B.

Another consequence of eq. (7.38) is that the spin spectrum in the spin sector

again has the form

Ej′ − Eo = π
l

[
j′(j′ + 1)

2 + k
+ms

]
, j′ = 0, 1

2
, . . . , k/2 ; ms ∈ Z+ , (7.42)

because the spectrum is completely determined by the SU(2)k KM algebra. Con-

sequently, the possible eigenenergies at the over-screened fixed point are again

precisely of the form of eq. (7.29).

However, this does not mean that the over-screened spectrum is the same

as the free spectrum, since the gluing condition is not the same. At the over-

screened fixed point one has a new over-screened gluing condition, denoted by a
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set of integers {n(Qjρ)
∗ }, instead of the free-electron gluing condition {nQjρ)o }. It

is in writing down this new over-screened gluing condition that AL had to make

a hypothesis that can not be proven a priori (but has been convincingly verified

a posteriori). We now describe in some detail the argument that leads to their

hypothesis.

The manipulations in section 7.4 may appear to be rather straightforward.

However, eq. (7.35) is more subtle than it appears at first sight, since ~JnL and ~JnL

obey a different algebra than ~S [SU(2)k vs. SU(2)], and correspondingly, ~JL(ix)

and ~JL(ix) are conformal fields, while ~S is a local object. Thus we are adding

apples and oranges to get apples, which clearly needs to be thought through

carefully.

Said differently, the operators in eq. (7.35) act on two different Hilbert spaces.

The Hilbert space HS( ~J + ~S) on which ~JnL + ~S acts can be represented by

HS( ~J + ~S) :=



k/2∑

⊕j=0

T (s)

j


⊗Ds , (7.43)

where Ds represents the (2s + 1)-dimensional impurity Hilbert space. However,

the Hilbert space HS( ~J ) on which ~JnL acts is simply

HS( ~J ) :=




k/2∑

⊕j′=0

T (s)

j′


 , (7.44)

[This is because the ~JnL satisfy the same SU(2)k KM algebra as the ~JnL, so that

the space of possible representations must be the same.] Therefore we have to

speficy how HS( ~J ) and HS( ~J + ~S) are related.

Now, if we restrict our attention to the n = 0 modes, then ~Jo, ~Jo and ~S

are all ordinary angular momentum operators,11 acting on SU(2) representations

11This so is because the ~Jo and ~Jo satisfy the ordinary SU(2) algebra.
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denoted by Dj′ , Dj and Ds, respectively. Eq. (7.35) then simply is the familiar

angular momentum coupling of electron spin ~Jo and impurity spin ~S to form a

total spin ~Jo, governed by the Clebsch-Gordan series

Dj ⊗Ds =
∑

⊕j′
Ñ j′

jsDj′ , (7.45)

where the integers Ñ j′

js indicate which representations can occur in the Clebsch-

Gordan series:

Ñ j′

js =





1 if j′ ∈ {|j − s|, |j − s| + 1, . . . , j + s} ;

0 otherwise .
(7.46)

Similarly, in CFT the direct product of two towers can be decomposed into

a direct sum of towers according to a “conformal Glebsch-Gordan series”, which

is called a fusion rule. Let T (s)

j and T (s)
s be conformal spin towers of spin j and

s, both carrying representations of the SU(2)k KM algebra [eq. (7.28)]. Then

the number of distinct ways in which the spin tower T (s)

j′ of spin j′ occurs in the

decomposition of their direct product,

T (s)

j ⊗ T (s)

s =
k/2∑

⊕j′=0

N j′

jsT
(s)

j′ , (7.47)

is specified by a set of integers, {N j′

js}, given by12

N j′

js =





1 if j′ ∈ {|j − s|, |j − s| + 1, . . . ,min [j + s, k − j − s]} ;

0 otherwise
. (7.48)

12Eq. (7.48)is the fusion rule for specifically the SU(2)k KM algebra. However, any KM alge-
bra has an associated “conformal Clebsch-Gordan series” or fusion rule of the form eq. (7.47).
This fusion rule also acts as a selection rule for OPE coefficients: Let Oj(z) denote a pri-
mary field transforming in the j-representation, and write the OPE of two such fields as

Oj(z)Os(z
′) =

∑
j′ C

j′

js(z
′)Oj′(z

′); then the OPE coefficient functions Cj
′

js(z
′) can be non-zero

only if the corresponding N j′

js 6= 0.
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which constitute the SU(2)k KM fusion rule. Note that in contrast to eq. (7.46),

this fusion rule ensures that no towers with j > k/2 ever occur, as required for

SU(2)k towers [compare footnote 7].

However, the situation at hand corresponds neither to pure angular momen-

tum coupling nor to pure SU(2)k fusion, since in eq. (7.43) T (s)

j is an SU(2)k spin

tower, but Ds an ordinary SU(2) representation; a priori it is not clear what

their direct product is. Likewise, ~J(ix) is a conformal current, ~S an ordinary

angular momentum operator; a priori it is not clear what their sum ~J (ix) really

is. AL cut through this Gordian knot by proposing13 [AL91b, section 4] (see also

[AL92b, III.B] and [Lud94a, p. 19]) the following so-called

Fusion Hypothesis: The “screening or absorption” of an impurity of spin s by k

channels of conduction electrons is technically implemented by replacing each spin

tower T (s)

j by a set of new spin towers {T (s)

j′ } according to the SU(2)k KM fusion

rule:

T (s)

j ⊗Ds :→
k/2∑

⊕j′=0

N j′

jsT
(s)

j′ (7.49)

In other words, “fuse” T (s)

j with the impurity spin s as though Ds were a spin

tower T (s)
s , which it of course is not — this is why this is a hypothesis and not a

derivation.

To be explicit, for k = 2 (i.e. j = 0, 1
2
, 1) and s = 1

2
, the fusion hypothesis

implies the following replacements:

T (s)

0 ⊗D1/2 :→ T (s)

1/2

T (s)

1/2 ⊗D1/2 :→ T (s)

0 ⊕ T (s)

1

T (s)

1 ⊗D1/2 :→ T (s)

1/2

(7.50)

13In this thesis, the fusion hypothesis is discussed only for the overscreened case k/2geqs,
but similar arguments apply to the exactly and underscreened cases, see [Aff90,AL91a].
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(Note the absence of any T (s)

3/2, which would have occured for ordinary SU(2)

coupling.)

The fusion rule hypothesis implies that the structure of the Hilbert space at

over-screening, HS(λ∗K), is to be obtained from that of the free-electron Hilbert

space HS(λK = 0) of eq. (7.31) by applying the replacement eq. (7.49) to

HS(λK = 0) ⊗Ds:

HS(λ∗K) :≡
∑

⊕Q

∑

⊕j′

∑

⊕ρ
n(Qj′ρ)
∗

[
T (c)

Q ⊗ T (s)

j′ ⊗ T (f)

ρ

]
, (7.51)

were

n
(Qj′ρ)
∗ ≡ ∑

j n
(Qjρ)
o N j′

js . (7.52)

The numbers {n(Qj′ρ)
∗ } (either 0 or 1) constitute the over-screened gluing condition

that governs the physics at the over-screened fixed point.

Clearly HS(λ∗K) is a subspace of HS(G, but it is a different subspace than

HS(λK = 0). New non-Fermi-liquid combinations of (Q, j′, ρ) are allowed by

the {n(Qj′ρ)
∗ } that would never occur in a free-electron theory. For example, the

Fermi sea, (0, 0, 0) gets mapped onto a “pure spinon”, (0, 1
2
, 0). As AL phrase

it, the charge-spin-flavor excitations that are confined or bound together to form

free electrons in a free-electron theory, are “deconfined” by the presence of an

impurity, and exotic new non-Fermi-liquid combinations arise.

The over-screened spectrum is given by eq. (7.29), subject to the over-screened

gluing condition {n(Qj′ρ)
∗ }. For k = 2 and s = 1

2
, the new set of primary states, and

their eigenenergies, are listed in table 7.1, which is obtained from from table A.2

by fusion according to eq. (7.50). Clearly, non-Fermi-liquid eigenenergies (e.g.

1
8
, 5

8
) show up in the spectrum. These “anomalous” numbers also govern the

leading powerlaws of many physical quantities, giving rise to non-Fermi-liquid
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exponents14 (see section 7.4.3 for an example).

As should be clear from our discussion, AL’s fusion hypothesis represents

an intuitive leap of faith that, though seemingly plausible, has no rigorous a

priori justification. However, once made, it can and has been tested extensively

against other results. The most direct test is to compare the finite-size spectrum

with numerical renormalizations [CLN80,AL92b]. The agreement is excellent

[Lud94a, table 2], serving as a posteriori confirmation of the validity of the fusion

hypothesis. Further corroborating evidence is listed in [Lud94a, p. 19].

Summary: Let us summarize the over-screened picture that has emerged as

a consequence of the intuitive leap of AL’s fusion hypothesis. The over-screened

fixed point is described by a free Hamiltonian, HoL + HoR, eq. (7.40), composed

of L- and R-moving currents J X
L and J X

R , living in the upper half-plane. The

currents obey the over-screened boundary condition J X
L (τ + i0) = J X

R (τ − i0)

[eq. (7.39)], which means that the system is G = U(1) × SU(2)k × SU(k)2 Kac-

Moody gauge invariant not only in the bulk, but also on the boundary (just as

the free theory was). The Hilbert space is a direct product space of charge, spin

and flavor towers [eq. (7.51)] (without an extra Ds impurity Hilbert space), with

eigenenergies given by eq. (7.29). The only difference from the free theory is that

these towers are glued together by a over-screened gluing condition n
(Qj′jf )
∗ instead

of a free-electron gluing condition n
(Qjjf )
o .

14Eigenenergies are related to power-law exponents, since for every tower (say Tj), the lowest
eigengenergy of the tower, say Ej−Eo, is related to the scaling dimension ∆j of a primary field
φi(u) through Ej −Eo = π

l ∆j [see appendix C, eq. (B.94)], and ∆j appears in the correlation
function 〈φi(u)φ†(u′) = (u− u′)−2∆j .
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Table 7.1 Weak- and over-screened spectra, and boundary operator content for
k = 2, s = 1

2
(from [Lud94a], Tables 1a, 1b & 1c). The left three columns corre-

spond to free fermions and are derived in appendix A [and taken from table A.2].
They show ∆Qjjf ≡ l

π
(EQjjf −E000) for those combinations of primary states for

which n
(Qjjf )
o 6= 0. All other combinations for which n

(Qjjf )
o 6= 0 can be obtained

from the above by letting Q → Q + 4m (m ∈ Z). The middle three columns
show the over-screened spectrum, i.e. ∆Qj′jf ≡ l

π
(EQj′jf −E0 1

2
0) for those combi-

nations of primary fields for which n
(Qj′jf )
∗ 6= 0. These are obtained from the left

columns by fusion according to eq. (7.50). The right three columns show the pri-
mary boundary operator content of the theory, with ∆Qj′′jf ≡ l

π
(EQj′′jf − E000),

obtained from the left columns by double fusion according to eq. (7.53).

Free spectrum Single Fusion Double Fusion

Q j jf ∆Qjjf n0 Q j′ jf ∆Qj′jf n∗ Q j′′ jf ∆Qj′′jf nKK

0 0 0 0 1 0 1
2

0 0 1
{ 0 0 0

0 1 0

0

1
2

1

1

±1 1
2

1
2

1
2

1
{ ±1 0 1

2

±1 1 1
2

1
8

5
8

1

1

±1 1
2

1
2

±1 1
2

1
2

1
2

1
2

1

1

0 1 1 1 1 0 1
2

1 1
2

1
{ 0 0 1

0 1 1

1
2

1

1

1

2 1 0 1 1 2 1
2

0 1
2

1
{ 2 0 0

2 1 0

1
2

1

1

1

2 0 1 1 1 2 1
2

1 1 1
{ 2 0 1

2 1 1

1

3
2

1

1
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7.4.3 Boundary Operator Content

[AL91b, p.681], [Lud94a, appendix A.2]

Though the impurity spin has been formally absorbed, it nevertheless causes

some Green’s functions to behave anomalously when evaluated near r = 0: Con-

sider for example the function G(4) = 〈ψL(z1)ψ
†
L(z2)ψR(z

∗
2)ψ

†
R(z

∗
1)〉. As shown by

AL [AL94, eq.(4.5)] [and in my appendix D, eq. (D.32)], when r1 → 0, r2 → 0,

this function decays with time like |τ1 − τ2|−2∆, where ∆ = 2
2+k

, which is an

anomolous, non-Fermi-liquid exponent (and in fact related to the T
2

2+k behavior

of the conductivity).

This kind of anomalous behavior is analyzed in CFT by introducing the con-

cept of boundary operators (introduced in detail in section C.3). These are oper-

ators Φn(τ) that live only at the boundary, at r = 0. They can have anomalous

scaling dimensions, and govern the behavior of correlation functions close to the

boundary.

For future reference, it will be important to have a list of all possible KM

primary boundary operators, i.e. to know the boundary operator content for

the Kondo problem. Using tricks due to Cardy [Car84b], AL showed [AL91b,

p.681] [Lud94a, eq.(A.14)] that this list can be given in terms of a set of integers,

{n(Qj′′ρ)
KK }, that are obtained from the free-fermion gluing conditions by “double

fusion” [this formula is derived15 in section C.5, see eq. (C.80)]:

n(Qj′′ρ)
KK ≡

∑

j

n(Qjρ)
o N j′

jsN
j′′

j′s . (7.53)

For each n
(Qj′′ρ)
KK 6= 0, a boundary operator with quantum numbers (Q, j′′, ρ) exists

15In section C.5, the double fusion formula is derived for an arbitrary boundary CFT governed
by a fusion principle. Eq. (7.53) follows from eq. (C.80) by applying double fusion in the spin
sector while leaving the charge and flavor sectors unchanged.
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in the theory. For the case k = 2, s = 1
2
, we can obtain these integers by simply

applying the fusion replacements (7.50) a second time to the middle section of

table 7.1. The resulting non-zero n
(Qj′′ρ)
KK are listed on the right side of table 7.1,

together with their scaling dimensions.

7.5 GRL Green’s function at T = 0

In this section we calculate, at T = 0, the GRL Green’s function that we are

ultimately interested in. The T 6= 0 calculation is discussed in chapter 8. The

necessary concepts, namely that of boundary states |K〉 and |F−〉 in the closed

string picture, were introduced in sections 6.4, and our discussion here parallels

that given in section 6.5 and summarized in section 6.6.

We are interested in “impurity-averaged” Green’s functions GRL, in the sense

that the degrees of freedom of the impurity have been traced out,16 so that GRL

only carries electron indices:

GRL

αi
α′i′(z̄, z′) ≡ −〈ψαiR(z̄)ψ†α′i′

L (z′)〉 (7.54)

As emphasized in chapter 6, page 186, such Green’s functions are best calculated

in the closed string picture, in which the impurity does not enter explicitly the

description at all. The ingredients of the closed string picture are simply L- and

R-moving free electron fields ψαiL(z) and ψαiR(z̄), with, even at the over-screened

fixed point, free-fermion gluing conditions n(Qjρ)
o [as emphasized on page 186,

and as shown below, eq. (7.64)]. These fields are incident upon boundaries at

16Loosely speaking, if we label the local impurity states by µ = −s, . . . ,+s, and the electron
quantum numbers by η, then the “impurity-averaged” Green’s function can be thought of as
GRL

ηη′(z̄, z
′) ≡ 1

2s+1

∑
µµ′ GRL

ηµ,η′µ′(z̄, z′), i.e. average over initial and sum over final impurity

states.
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r = 0, l, and their reflection into each other by these boundaries is characterized

by a Kondo boundary state |K〉 at r = 0 and a free boundary state |F−〉 at r = l.

7.5.1 Boundary State Matrix Elements

[AL93], section II; [Lud94a], appendices A, B; [AL94], appenix F.

We now need an important result of boundary CFT, discussed in appendix C,

section C.4.1: Cardy showed that R-L Green’s functions at T = 017 for KM

primary fields Oã(z) with quantum numbers ã ≡ (Q̃, j̃′, ρ̃) and scaling dimension

xã have the form [eq. (C.55)]

−GRL

ãb̃
(z̄, z′) ≡ 〈ORã(z̄)O

†
b̃L

(z′)〉 =
ŨK(ã)δãb̃

(z̄ − z′)2xã
(7.55)

where

ŨK(ã) =
〈ã|K〉
〈1|K〉 . (7.56)

Here |1〉 ≡ |0, 0, 0〉 is the vacuum state, denoted by |0〉 in appendix C. For a free

theory (λK = 0 and a trivial boundary state |F 〉 at r = 0), we have to recover

free, trivial R-L Green’s functions, which means that 〈ã|F 〉/〈1|F 〉 = 1 for all ã.

It follows that ŨK(ã) can be written as

ŨK(ã) =
〈ã|K〉
〈ã|F 〉 .

〈1|F 〉
〈1|K〉 , (7.57)

which can be calculated from a knowledge of 〈ã|K〉/〈ã|F 〉. We now proceed

to calculate this ratio, following [AL93, section II] (or [Lud94a, appendix A.2]).

The general strategy for finding the Kondo boundary state |K〉 is the same as

in chapter 6, page 188, points 8 to 12 (which might be worth a glance at this

17the T 6= 0 form can be obtained from that at T = 0 by a straightforward conformal
transformation, described in section 8.1.
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point). Therefore, we merely outline the argument here. A completely detailed

derivation is given in [AL94, appendix F].

The boundary state |K〉 is determined by equating the partition functions cal-

culated in the open string picture [Z∗(q)] and the closed string picture [Z∗(q̃)].
18

In the open-string picture of section 7.4.2, the only difference between the spec-

trum for λK = λ∗K and 0 is that different gluing conditions, n∗ instead of no,

select which eigenergies in eq. (7.29) are allowed. Therefore, the over-screened

partition function Z∗ has exactly the same form as the free partition function Zo

of eq. (7.32), but with the no replaced by n∗ [compare eq. (6.87)]:

Z∗(q) =
∑

Q,j′,ρ

n(Qj′ρ)
∗ χ(c)

Q (q) χ(s)

j′ (q) χ(f)

ρ (q) , where q ≡ e−πβ/l . (7.58)

Express this in terms of q̃ ≡ e−4πl/β by using the modular transformation prop-

erties [ χa(q) = Sa
ãχã(q̃)] of the characters,19 obtaining [compare eq. (6.91)]:

Z∗(q) =
∑

Q,j′,ρ

∑

Q̃,j̃,ρ̃

n(Qj′ρ)
∗ SQ

Q̃Sj′
j̃Sρ

ρ̃χ(c)

Q̃
(q̃) χ(s)

j̃
(q̃) χ(f)

ρ̃ (q̃) . (7.59)

Alternatively, Z∗(q̃) can be expressed as follows in the closed string picture [com-

pare eqs. (6.61) and (6.93)]:

Z∗(q̃) = 〈F−|e−lH̃P− |K〉

=
∑

Q̃,j̃,ρ̃

n(Qjρ)
o χ(c)

Q̃
(q̃) χ(s)

j̃
(q̃) χ(f)

ρ̃ (q̃) 〈F−|Q̃, j̃, ρ̃〉〈Q̃, j̃, ρ̃|K〉 . (7.60)

Comparing eqs. (7.59) and (7.60),20 we arrive at a Cardy formula for the boundary

18A more careful derivation requires using a “grand-canonical” partition function and non-
specialized characters, as we did in chapter 6. This is done in [AL94, appendix F].

19For example, the modular transformation properties of U(1) and SU(2)1 characters are
given by eqs. (6.57)and (6.89); see also [AL94, eqs. (F.20) - (F.22)], and [Gep87, eq. (25)].

20This step assumes that the characters are linearly independent, which is strictly speaking
only true if one employs non-specialized characters, as in [AL94, appendix F].
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matrix elements [compare eq. (6.94)]:

n(Q̃j̃ρ̃)
o 〈F−|Q̃, j̃, ρ̃〉〈Q̃, j̃, ρ̃|K〉 =

∑

Q,j′,ρ

n(Qj′ρ)
∗ SQ̃QS

j̃
j′S

ρ̃
ρ . (7.61)

Of course, a similar (trivial) relation holds for a free-electron theory (n∗ → no

and |K〉 → |F 〉):

n(Q̃j̃ρ̃)
o 〈F−|Q̃, j̃, ρ̃〉〈Q̃, j̃, ρ̃|F 〉 =

∑

Q,j′,ρ

n(Qj′ρ)
o SQ

Q̃Sj′
j̃Sρ

ρ̃ . (7.62)

To simplify this important result, insert eq. (7.52), which gives n∗ in terms of

the fusion rule coefficients
{
N j′

js

}
, into eq. (7.61). Using a useful mathematical

property, known as Verlinde’s formula [Ver88],

∑

j′
N j′

jsSj′
j = Sj

j̃Ss
j̃/So

j̃ , (7.63)

which expresses the fusion rule coefficients in terms of SU(2)k modular S-matrix

elements, one then finds

n(Q̃j̃ρ̃)
o 〈F−|Q̃, j̃, ρ̃〉〈Q̃, j̃, ρ̃|K〉 =

(
Ss

j̃/So
j̃
) ∑

Q,j,ρ

n(Qjρ)
o SQ

Q̃Sj
j̃Sρ

ρ̃

=
(
Ss

j̃/So
j̃
)
n(Q̃j̃ρ̃)
o 〈F−|Q̃, j̃, ρ̃〉〈Q̃, j̃, ρ̃|F 〉 (7.64)

[using eq. (7.62) for the last line]. Note the emergence of the free-electron gluing

condition no on the right hand side of this result, which illustrates a general

point already emphasized in chapter 6, page 186: whenever the effect of some

boundary interaction can completely be described, in the open string picture,

by merely changing the gluing condition from no for free fermions to a modified

gluing condition n∗, obtained from no through a fusion rule, then in the closed

string picture the free-fermion gluing condition no reemerges, due to the Verlinde

formula, in the Cardy formula for boundary matrix elements. This proves the
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assertion made earlier (page 214) that in the closed string picture, one really

does only have free electrons fields glued by no (and not unusual non-Fermi-liquid

excitations of n∗ that occur in the closed string picture).

It follows from eq. (7.64) that the desired ratio of boundary matrix elements

is

〈Q̃, j̃, ρ̃|K〉
〈Q̃, j̃, ρ̃|F 〉

= Ss
j̃/So

j̃ . (7.65)

Remarkably, these boundary matrix elements differ only by a number given as a

ratio of modular S-matrix elements, which, for SU(2)k, are given by [KP84]

Sjj′ =
√

2/(2 + k) sin
[
π(2j + 1)(2j′ + 1)/(2 + k)

]
. (7.66)

Finally, inserting this result into eq. (7.57), we obtain our final result for the

scattering amplitude:

ŨK(Q̃, j̃, ρ̃) =
〈(̃Q̃, j̃, ρ̃)|K〉

〈1|K〉 =
Ss

j̃

Soj̃
So

0

Ss0
. (7.67)

7.5.2 Unitarity Paradox

Equiped with eqs. (7.67) and (7.55), let us now calculate the desired electron

Green’s function GRL
αi

α′i′(z̄, z′) of eq. (7.54). In the closed string picture, the

indices of the fermion field ψ† are (Q̃, j̃, ρ̃) = (1, 1
2
, ρ̃e) (where for k = 2, ρe = 1

2
),

hence

ŨK(ψ†) =
cos [π(2s+ 1)/(2 + k)]

cos [π/(2 + k)]
. (7.68)

Now, since k ≥ 2s (for the over- of completely screened case we are considering),

we see immediately that |ŨK(ψ†)|2 ≤ 1. This means that the scattering matrix

for scattering of incident L-moving electrons into outgoing R-moving electrons

is not unitary! For the case of interest to us, namely k = 2, s = 1
2
, we find the
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particularly dramatic result that ŨK(ψ) = 0, i.e.

〈ψαiR(z̄)ψ†α′i′
L (z′)〉 = 0 (7.69)

This means that when an incident electron scatters off the impurity, the amplitude

to observe an outgoing electron is strictly zero!

The result that |ŨK(ψ†)|2 ≤ 1 is known as the unitarity paradox . It is a

paradox, since on general grounds, we know that the scattering matrix must be

unitary: when you send in an electron, something must come out, with probability

one when summed over all possible final states.

For k = 2, the resolution of this paradox has very recently been found by

Maldacena and Ludwig (ML) [ML95]. Their work demonstrates in a particularly

striking way the fact that the T = 0 fixed point cannot be understood purely

in terms of free electrons. They showed that the free-electron field ψ†αi is not

the only field in the theory with quantum numbers (Q̃, j̃, ρ̃) = (1, 1
2
, 1

2
). There

is another field, which we shall call a spinor-electron field and denote by S†αi,

which also has (Q̃, j̃, ρ̃) = (1, 1
2
, 1

2
), but cannot exist in a free-fermion theory. ML

showed that (at T = 0)

〈SαiR(z̄)ψ†α′i′
L (z′)〉 =

δα
′

α δ
i′
i

(z̄ − z′)
, (7.70)

which means that an incident L-moving free electron scatters with probability 1

into a outgoing R-moving spinor -electron.

The spinor-electron field has well-defined mathematical properties, which are

summarized in appendix F, where we also attempt to interpret it physically. For

the purposes of our calculation of the current in chapter 9, though, all we need

to know about it are the following two facts:
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1. Spinor-electrons have the same charge, spin and flavor quantum numbers,

hence they carry the same amount of current, evF per quantum.

2. In order to obtain a unitary scattering matrix, the closed-string Hilbert

space, which hitherto had been taken to include only free electron states,

has to be enlarged to also include spinor-electron states.

3. Spinor-electrons are only created upon scattering from the impurity. – The

leads inject only free electrons into the system, and no spinor electrons at

all.

In the notation of chapter 5, we therefore have to include an extra index

a ≡ f/s into our generic index η ≡ (α, i, a), to distinghuish free (a = f) and

spinor- (a = s) electrons from each other. Thus we write

ψη ≡ ψαia =





ψαi if a = f for free electrons ,

Sαi if a = s for spinor-electrons .
(7.71)

[However ψαi (without the extra index a) will always refer to free electrons.]

Thus, eq. (7.70) implies that (at T = 0)

−(GRL)η
η′(z̄, z′) ≡ 〈ψηR(z̄)ψη

′
L (z′)〉 =

δα
α′
δi
i′(σx)a

a′δa′f
(z̄ − z′)

. (7.72)

The δa′f enforces condition 3 above. Evaluating the T = 0 transmsission matrix

Ũη
η′(ε) of eq. (5.60) from eq. (7.72), using eq. (5.59), gives the following result

for the T = 0 scattering matrix:

(ŨoK)η
′
η (ε) = δα

α′
δi
i′(σx)a

a′δa′f (7.73)

This important result will be used in chapter 9, and concludes our discussion of

T = 0 Green’s functions. In the next chapter, we discuss the effect of taking

T 6= 0.



Chapter 8

Finite Temperature Kondo

Green’s Functions

The mechanism through which a change from T = 0 to T 6= 0 manifests itself in

a conformal field theory is through a change in the geometry of the manifold on

which the theory is defined. In order to ensure the requisite (anti)-periodicity of

Green’s functions in the τ direction for T 6= 0, the underlying geometry changes

from being infinite (plane or half-plane) to being finite (cylinder or half-cylinder).

This has two consequences:

1. The form of all Green’s functions changes; this change is rather trivial, since

it can be found by making a conformal transformation that maps the plane

to the cylinder.

2. T -dependent finite-size corrections to the fixed point action occur: S∗(0)
T 6=0−→

S∗(T )+δS(T ). Their effect can be analyzed by using the concepts of finite-

size scaling.
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In section 8.1 we explain the plane-to-cylinder mapping of point 1. The rest

of the chapter is devoted to discussing point 2. In section 8.2 we state the general

renormalization group framework applicable near any critical point, and apply

this in section 8.3 to the T = 0 strong-coupling Kondo problem. In section 8.4

we consider T 6= 0, and show how finite-size scaling arguments1 can be used to

deduce the existence of T -scaling relations in any physical quantity near T = 0,

and apply this in section 8.5 to the T 6= 0 Green’s function GRL that is of interest

to us.

Strictly speaking, it is not necessary to go through a general RG discussion to

find GRL for T 6= 0, since one can simply calculate it directly [AL93]. However,

we feel that a general discussion will help to elucidate the origin of the scaling

relation more clearly than an overly detailed specific calculation.

8.1 Conformal Mapping from Plane to

Cylinder

At T = 0, the underlying geometry is the infinite (or semi-infinite) complex plane:

u = τ + ix, with τ ∈ [−∞,∞] and x ∈ [−∞,∞] (or x ∈ [0,∞]).2 Let us consider

for the moment the infinite plane, without any special boundary at x = 0. Let

Oi(u, ū) be a (Virasoro) primary field of scaling dimension (xi, x̄i). This means,

by definition, that under a conformal transformation ũ = w(u) (where w(u) is an

1For an extensive discussoin of the use of finite-size scaling arguments inthe application of
CFT to lattice models in 2-dimensional statistical mechanics, see [CH93].

2In previous chapters, we considered a finite size in the x direction, x ∈ [0, l]. However, this
was done only as a tool to find the boundary state |B〉 by calculating the finite-size spectrum
and the partition function. If one is interested in calculating Green’s functions, then once |B〉
is known, one always takes l → ∞.
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analytic function) it transforms as follows [see eq. (B.2)]:

ũ = w(u) : Oi(u, ū) =

(
∂ũ

∂u

)xi (∂ ˜̄u

∂ū

)x̄i
Õi(ũ, ˜̄u) . (8.1)

The L- and R-moving fields that we have encountered so far are chiral fields,

depending only on u (or ū), and hence have x̄i = 0 (or xi = 0). Conformal

invariance alone is sufficient to completely determine the form of all two- and

three-point functions of such (Virasoro) primary fields to be [Gins87, eqs. (2.4),

(2.5)]:

〈Oi(u1, ū1)Oj(u2, ū2)〉o =
δijCi

u2xi
12 ū

2x̄i
12

(8.2)

〈Oi(u1, ū1)Oj(u2, ū2)Ok(u3, ū3)〉o =
Cijk

u
∆ijk

12 u
∆jki

23 u
∆kij

13 ū
∆̄ijk

12 ū
∆̄jki

23 ū
∆̄kij

13

(8.3)

where u12 ≡ u1 − u2, xijk ≡ xi + xj − xk, etc. and Ci and Cijk are constants.

Now, for T 6= 0, we know that two-point functions of (fermion) boson fields

become (anti)-periodic in the imaginary time direction, with period β = 1/T .

This means that the geometry changes from the infinite plane (parametrized by

u = τ + ix) to a cylinder of radius β [Fig. 8.1] Choose ũ = τ̃ + ix̃ as coordinates

parametrizing the cylinder, then there is a “seam” on the cylinder, at which

τ̃ = −β/2 and τ̃ = β/2 are identified.

If a theory is conformally invariant, any T 6= 0 Green’s function can be ob-

tained from the corresponding T = 0 one by the following conformal transforma-

tion, which maps the infinite plane (or half-plane) onto the infinitely long cylinder

(or half-cylinder):

u = tan π
β
ũ ,

du

dũ
= π

β
(1 + u2) = π

β
(1 + tan2 π

β
ũ) (8.4)

This maps the τ -axis (r = 0) onto the τ̃ -axis (r̃ = 0), and τ = ±∞ onto

τ̃ = ±β/2. Using eq. (8.1), we can immediately find the form of any T 6= 0
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x~

τ~

τ=−β/2~

τ=β/2~

u= +ix~ ~τ~

T=0/T=0

τ

u= +ixτ

x

(a)

0

(b)

Figure 8.1 (a) At T = 0, the theory is defined on the infinite plane of half-plane,
parametrized by z = τ + ix. (b) At T 6= 0, the theory is defined on the infinite
cylinder or half-cylinder, parametrized by ũ = τ̃ + ix̃. The two geometries are
related through the comformal map: z = tan π

β
ũ.

2-point function of (Virasoro) primary fields from eq. (8.2):

〈Õi(ũ1, ˜̄u1)Õj(ũ2, ˜̄u2)〉T

=

(
∂u1

∂ũ1

)xi(∂ū1

∂ ˜̄u1

)x̄i(∂u2

∂ũ2

)xj(∂ū2

∂ ˜̄u2

)x̄j
〈Oi(u1, ū1)Oj(u2, ū2)〉o (8.5)

= δij

[
π
β
(1 + u2

1)
]xi [π

β
(1 + ū2

1)
]x̄i [π

β
(1 + u2

2)
]xj [π

β
(1 + ū2

2)
]x̄j

u
2xj
12 ū

2x̄j
12

(8.6)

=
δij

s2xi
12 s̄

2x̄j
12

(8.7)

where we have defined s12 ≡ β
π

sin π
β
(ũ1−ũ2), and the fourth line follows from the

third using standard trigonometric identities. Eq. (8.7) agrees with the result

eq. (A.36) found in appendix A by more elementary means. Likewise, for any

T 6= 0 three-point function of (Virasoro) primary fields one finds

〈Õi(ũ1, ˜̄u1)Õj(ũ2, ˜̄u2)Õk(ũ3, ˜̄u3)〉T =
Cijk

s
∆ijk

12 s
∆jki

23 s
∆kij

13 s̄
∆̄ijk

12 s̄
∆̄jki

23 s̄
∆̄kij

13

(8.8)

This result will be used in section 8.5.
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8.2 General RG Framework near T = 0

We have repeatedly stated that the T = 0 strong-coupling Kondo problem is at

a fixed (and hence critical) point. In this and subsequent sections, we explain

how the behavior of the model near its T = 0 fixed point fits into the conceptual

framework of critical phenomena. In particular, we show how the effects of taking

T 6= 0 can be analyzed using concepts of finite size scaling.

Let us introduce the standard terminology of the renormalization group to

analyze the neighborhood of this fixed point. We shall consider the properties of

the action, S =
∫
dxdτL, instead of the Hamiltonian, because the behavior of the

correlation functions that we are interested in is governed by S via a path-integral,

written symbolically as

〈Oi(ui) . . . Oj(uj)〉 =
∫
DOi . . .

∫
DOj

[
e−SOi(ui) . . . Oj(uj)

]
. (8.9)

If we place ourselves sufficiently close to the fixed point in parameter space, the

system is governed by an action of the form

S({λm}) = S∗ +
∑

m

λmδSm . (8.10)

Here S∗ = S({0}) =
∫
dxdτL∗ is the action at the critical point (corresponding to

the Hamiltonian H∗), the parameters λm determine the distance from the critical

point, and the δSm are eigenvectors of the RG transformation: Under an RG

transformation that shrinks all length scales by a factor b > 1, x
RG−→ x = bx̃ (this

notation means that expressions are rewritten by substituting bx̃ for x), we have

λmδSm
RG−→ λ̃mδSm with λ̃m = bαmλm . (8.11)

We shall denote relevant and irrelevant perturbations by superscripts (r) and (i)

where necessary, i.e. α(r)
m > 0, α(i)

m < 0.
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To place the system at the physical critical point, one has to fine-tune the

relevant perturbations to zero (set λ(r)
m = 0, i.e. place the system on the critical

manifold). Under repeated RG transformations, the irrelevant perturbations will

then decrease (λ(i)
m → 0) and the system will flow to S∗. If, however, one starts

with some λ(r)
m 6= 0 (though small), it will grow under RG transformations, and

the system will eventually flow away from S∗.

8.3 Application to T = 0 Kondo problem

How does all this apply to the 2-channel Kondo problem?

The reason why the T = 0 strong-coupling Kondo problem is at a fixed point is

simple:3 it is described by a conformal field theory, which is conformally invariant

at T = 0, and hence scale invariant (since scale transformations are a subset of

conformal transformations). Therefore, it must be exactly at a fixed point.

To be more explicit, we have seen in section 7.4 that the strong-coupling theory

at T = 0 can be described by a conformal field theory in the complex upper half-

plane, defined by the strong-coupling Hamiltonian H∗ of eq. (7.40) (in which we

may take l = ∞ for present purposes), with the currents satisfying the boundary

condition eq. (7.39). This manifestly has the Hamiltonian of a free theory (the

fact that one has to use strong-coupling gluing conditions n
(Qj′ρ)
∗ is inconsequential

here). Hence it is invariant4 under all conformal transformations that preserve

the geometry of the system, i.e. that map the upper half-plane, and in particular

the boundary, onto itself. In particular, it is scale invariant, and hence at a fixed

3Perhaps it would be more accurate to say it the other way round: the reason why the
strong-coupling Kondo problem at T = 0 can be described by a conformal field theory is that
at T = 0, it is at a critical point.

4This is demonstrated explicitly in section A.2, eq. (A.18), in the fermionic representation.
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point. However, as we shall see in the next section, transformations which change

the geometry in a way that introduces a new length scale into the problem (such

as the one that maps the plane onto the cylinder, in which case the new length

scale is the radius of the cylinder), break scale invariance, because of the presence

of this new length scale. Hence, such transformations take the system away from

the fixed point.

The strong-coupling model we have written down may be thought of as a

fine-tuned version of some much more general model. In particular, we have fine-

tuned to zero the temperature T , the magnetic field H, the asymmetry energy ∆

of the impurity,5 and all anisotropies δλaK (a = x, y, z) in the coupling between

local spin and electron spin. It can be shown [AL92b] that the δλaK are irrelevant

perturbations, but H and ∆ are relevant; T is also relevant, in a finite-size scaling

sense, as we shall see.

To make these statements precise, we have to define an RG transformation

for our problem. An RG is designed to drive the system away from criticality by

shrinking all length scales, in an attempt to reduce the correlation length (if it

is not ∞). Thus it involves a rescaling transformation x
RG−→ x = bx̃ with b > 1.

Usually, the step of shrinking length scales is preceded by a coarse-graining step,

designed to eliminate graininess on the smallest length scales in the problem

(which would not bear shrinking).

However, for a conformal field theory, one does not need such a coarse-graining

step, because the system is by definition scale-invariant on all length scales –

it does not have any graininess that needs to be integrated out. Of course, in

5In the magnetic Kondo model, ∆ corresponds to a local magnetic field that only acts on
the impurity
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converting some initial model, defined on a lattice, to a CFT, one has to introduce

a cut-off, in our case the bandwidth ΛvF , which determines the graininess in the

theory. However, we are considering temperatures T ≪ ΛvF and hence neglect

all terms of order T/ΛvF . Therefore correlation functions at a given T ≪ ΛvF

would not notice if we coarse-grained by reducing the cut-off from Λ to Λ̃ during

an RG transformation.

In a conformal field theory, therefore, an RG transformation is extremely

simple. Writing u = τ + ix and ũ = τ̃ + ix̃, it is nothing more than a rescal-

ing coordinate transformation, combined with a corresponding rescaling of all

conformal fields:

u =
RG−→ u = bũ , with b > 1 . (8.12)

Oi(u, ū)
RG−→ Oi(u, ū) = b−(xi+x̄i)Õi(ũ, ˜̄u) . (8.13)

The notation
RG−→ means: rewrite x by substituting bx̃ for it, and Oi(u, ū) by

substituting b−(xi+x̄i)Õi(ũ, ˜̄u) for it. The reason why the fields have to be rescaled

too, is simply that eq. (8.12) is a conformal transformation (albeit an exceedingly

trivial one), under which all conformal fields OiL(u), OiR(ū), have to be rescaled

according to their scaling dimensions xi + x̄i [compare eq. (8.1)] to ensure that

correlation functions are invariant, in the sense of eq. (8.5). Thus, eq. (8.13) is a

relation that is true whenever used inside correlation functions 〈Oi(u) . . .〉.

Now, in a boundary CFT, a perturbation δSm in eq. (8.10) can be either a bulk

or a boundary perturbation. Consider first the case T = 0 for the Kondo problem,

where the boundary (r = 0) is the entire τ axis. A bulk bulk perturbation consists
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of some operator, i.e. some conformal field, integrated over all of the half-plane:

δS(bulk)

m [On(u, ū)] =
∫ ∞

0
dx
∫ ∞

−∞
dτOn(u, ū) (8.14)

However, it can also be a boundary perturbation, depending on a boundary oper-

ator , which by definition is a field Om(τ) that lives only on the boundary. Such

a field transforms as Õm(τ̃) =
(
∂τ
∂τ̃

)xm
Om(τ) under conformal transformations

z̃ = z̃(z) that map the boundary onto itself , i.e. for which τ̃ = τ̃(τ). In this case

the boundary perturbation is simply a single
∫
dτ integral:

δS(bnd)

m [Om(τ)] =
∫ ∞

−∞
dτOm(τ) (8.15)

Applying the RG transformation, eqs. (8.12) and (8.13) to these perturbations

δS(bulk)

m [Om(u, ū)]
RG−→ b2−xm−x̄m

∫ ∞

0
dx̃
∫ ∞

−∞
dτ̃ Õm(ũ, ˜̄u)

= b2−xm−x̄m δS̃(bulk)

m [Õm(ũ, ˜̄u)] (8.16)

δS(bnd)

m [Om(τ)]
RG−→ b1−xm

∫ ∞

−∞
dτ̃ Õn(τ̃) = b1−xmδS̃(bnd)

m [Om(τ)] (8.17)

it follows immediately that the scaling exponents αm in eq. (8.11) are α(bulk)
m = 2−

xm− x̄m for a bulk perturbation, and α(bnd)
m = 1−xm for a boundary perturbation.

Hence, we come to the important conclusion that the RG relevance or not of a

perturbation δSm in the action is determined directly by the scaling dimension xm

of the corresponding field Om(u): a bulk perturbation is relevant if (xm+x̄m) < 2,

and a boundary perturbation is relevant if xm < 1.

8.4 T 6= 0: Finite Size Scaling

We wrote down eqs. (8.14) and (8.15) at T = 0. At finite T 6= 0, an important new

ingredient enters the analysis: as discussed in the previous section, the underlying
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geometry then is the cylinder, with radius β = 1/T , instead of the plane. Thus,

our fields now live on a system of finite size (“L”= β), and the temperature plays

the role of L−1.

Every T = 0 time integral
∫∞
−∞ dτ in the action becomes

∫ β
0 dτ at T 6= 0.

Therefore, the RG coordinate transformation eq. (8.12) involves rewriting β in

terms of a new β̃ = β/b:

∫ β

0
dτ

RG−→ b
∫ β/b

0
dτ̃ ≡ b

∫ β̃

0
dτ̃ , (8.18)

in other words

β
RG−→ β = bβ̃ . (8.19)

This means that the action S is no longer form-invariant under RG-transformations

(even if all λm = 0), since it explicitly depends on β through the upper limit in

∫ β
0 dτ . Likewise, the perturbations δSm about the fixed point also become explic-

itly β-dependent. Thus, for T 6= 0, an explicit T -dependence shows up in all

terms in eq. (8.10), which hence has to be written as

S({λm}, T ) = S∗(T ) +
∑

m

λmδSm(T ) . (8.20)

Eq. (8.19) means that temperature behaves like a relevant perturbation, which

means that it must be fine-tuned (to be very small) by the experimenter in order

to place the system at the physical critical point. If experimentally we place

ourselves close to but not at the fixed point, with T 6= 0, then T will grow under

application of the RG (T̃ > T ), and one will flow away from the fixed point.

Within the above framework, it is now easy to understand the occurence of

scaling relations near T = 0. Consider any physical quantity, G, expressed as

an expectation value of fields, integrated over space and/or time. (As a concrete
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example, consider the Green’s function of eq. (8.26) below.) In general, G will

depend on T and the parameters λm: G = G(λm, T ). Under the RG transforma-

tion of eqs. (8.12) and (8.13), which simply constitutes a rewriting of G in terms

of new variables, we obtain

G({λm}, T )
RG−→ G({λm}, T ) = b−∆G({bαmλm}, bT ) , (8.21)

where ∆ is the scaling dimension of G. Choosing b = T−1, we find the scaling

form

G({λm}, T ) = T∆G({T−αmλm}, 1) . (8.22)

Thus, the existence of scaling forms near T = 0 in the Kondo problem can be

understood in a straight-forward way as a finite-size scaling effect.

8.5 Example: Finite-Size Scaling for the

Green’s Function GRL

[AL93]

In this section and the next, we explain how AL calculated the T 6= 0 correc-

tion to the two-point function GRL [AL93]. This serves as an explicit illustration

of the general finite-size scaling arguments presented in the previous section. The

final result, eqs. (8.36) and (8.38, will be used in chapter 9.

In chapter 7 we found the T = 0 form for GRL to be given by eq. (7.72). To

find its T 6= 0 form, view ψR(z̄), which is an anti-analytic function of z = τ + ir

in the upper half plane, as the analytic continutation of ψL(z) into the lower half

plane, i.e. ψR(z̄) = ψL(z̄), which is an analytic function of z̄ = τ − ir in the lower

half plane (the general theory behind this construction is due to Cardy and is
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reviewed in appendix C, section C.1). Then, using eq. (8.7) with xψ = 1
2
, the

T 6= 0 version of eq. (7.72) is

GRL

o ηη′(z̄, z
′) = −〈ψηR(z̄)ψ†

η′L(z
′)〉 =

−Ũηη′
β
π

sin π
β
(z̄ − z′)

, (8.23)

where z̄ = τ − ir and z′ = τ ′ + ir′, and Ũηη′ is given by eq. (7.73). Now suppose

that λm 6= 0 for one of the boundary perturbations in eq. (8.20), and consider the

correction δGRL
m to this function that arises due to the presence of the boundary

perturbation

λmδSm = λm

∫ β

0
dτ ′Om(τ ′) . (8.24)

where Om(τ ′) is a boundary operator of scaling dimension xm. For the moment

we consider a general boundary operator; later we shall specialize to a particular

case. Thus, write

GRL

ηη′(z̄, z
′) ≡ GRL

o ηη′(z̄, z
′) + δGRL

m ηη′(z̄, z
′) (8.25)

where, doing first-order perturbation theory in λm in eq. (8.9), the correction is

given by

δGRL

m ηη′(z̄, z
′) ≡ 〈ψηR(z̄)

[
λm

∫ β

0
dτ ′′Om(τ ′′)

]
ψ†
η′L(z

′)〉 (8.26)

Henceforth we shall suppress all indices on δGRL
m ηη′ ≡ δG.

For the purposes of chapter 9, we need the transmission coefficient Ũηη′(ǫ),

given in terms of the spectral function ARL
ηη′ (ε; r, r

′) of GRL
ηη′ through eq. (5.60).

Due to the boundary perturbation, Ũηη′(ǫ) will pick up a correction term:

Ũηη′(ǫ) = Ũηη′ +
1

2π
δARL

ηη′(ǫ, r, r
′)e−iǫ(r+r

′). (8.27)

The boundary-term correction to the spectral function, δA, can be found from

the Matsubara transform of δG [compare eq. (5.59), with µη′ = 0, since AL’s GRL
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is an equilibrium Green’s function],

δG(iωn, r, r
′;T ) =

∫ β

0
dτeiωnτδG(τ−ir, ir′) =

∫ dǫ
2π

δA(ǫ, r, r′)

iωn − ǫ
(8.28)

=λm

∫ β

0
dτeiωnτ

∫ β

0
dτ ′′〈ψηR(τ − ir)Om(τ ′′)ψ†

η′L(ir
′)〉 (8.29)

which is therefore the quantity we shall calculate.

Let us first illustrate the finite-size scaling arguments of section 8.4 by showing

that δG(iωn) obeys a scaling form: Rewrite eq. (8.29) in terms of new coordinates

ũ and fields Õ(ũ), related to the old through the RG coordinate transformation

of eqs. (8.12) and (8.13),

z̄ = b˜̄z , r′ = br̃′ , τ ′ = bτ̃ ′ , (8.30)

ψηR(z̄) = b−1/2ψ̃ηR(˜̄u) , ψ†
η′L(ir

′) = b−1/2ψ̃†
η′L(ir̃

′) , Om(τ ′′) = b−xmÕm(τ̃ ′′)

to obtain

δG(ωn, r, r
′;T ) =

[
b1−1/2−1/2

] [
b1−xmλm

]
(8.31)

×
∫ β/b

0
dτ̃eiωnbτ̃

∫ β/b

0
dτ̃ ′′〈ψ̃ηR(τ̃ − ir̃)Õm(τ̃ ′′)ψ̃†

η′L(ir̃
′)〉

= (b1−xm)δG(bωn, r̃, r̃
′; bT ) . (8.32)

Setting b = T−1, which simply means choosing units in which the cylinder has

circumference 1, we obtain the desired scaling form for δG,

δG(ωn, r, r
′;T ) = T (xm−1)δG(ωn/T, rT, r

′T ; 1) (8.33)

in agreement with our general expectations based on eq. (8.22). Moreover, the

scaling function δG(ωn/T, rT, r
′T ; 1) can be calculated from the T = 1 version of

eq. (8.28),

δG(ω̃n, r̃, r̃
′; 1) ≡

∫ 1

0
dτ̃eiω̃nτ̃δG(˜̄z, z̃′)T=1 (8.34)
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where the T = 1 Green’s function of eq. (8.26) needed here is an example of the

finite-T 3-point functions whose general form is given by eq. (8.8) (with xψ = 1
2
,

and provided that Om is Virasoro primary):

δG(˜̄z, z̃′)T=1 =
∫ 1

0
dτ̃ ′′

CK
ψm (π−1 sin π[τ̃ − i(r̃ + r̃′)])

xm−1

(π−1 sin π[τ̃ − τ̃ ′′ − ir̃] π−1 sin π[τ̃ ′′ − ir̃′])
xm (8.35)

where CK
ψm is a constant [corresponding to Cijk in eq. (8.8)].

Eqs. (8.34) and (8.35) completely and exactly determine the scaling func-

tion. Its calculation therefore is merely a matter of doing the two integrals

∫ 1
0 dτ̃e

iω̃nτ̃
∫ 1
0 dτ̃

′′, which is a straight-forward though rather non-trivial exercise

in complex analysis (see [AL93]).

8.6 Leading Irrelevant Correction

Depending on whether xm < 1 or > 1, the boundary perturbation δSm is relevant

or irrelevant, and will grow or die out as the temperature is lowered. To determine

whether a certain perturbation δHm that may be present in the weak-coupling

Hamiltonian (e.g. anisotropic Kondo couplings or an asymmetry splitting ∆ of

the two levels of the impurity), will drive the system away from the fixed point or

not, one must identify the boundary operator Om(τ) that is the “strong-coupling

version” of δHm, and check whether xm
>
< 1.

How does one know which strong-coupling boundary operators Om(τ) corre-

spond to a given weak-coupling δHm? In brief, three steps are involved.

1. Make a list of all possible boundary operators. This has been done in

section 7.4.3, using the general method explained in section C.5.2, and the

resulting list of primary boundary operators is contained in the right part

of table 7.1.
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2. Since the RG cannot generate a strong-coupling operator with a symmetry

different from the one initially present at weak-coupling, pick from this

list the most relevant operator that has the same symmetries as the weak-

coupling perturbation δHm. This symmetry analysis is also straightforward,

and discussed, for the so-called leading irrelevant operator, in section D.5.

[A number of other δHm’s are also discussed in [AL92b].]

3. Check whether the corresponding 3-point function 〈ψROmψ
†
L〉 vanishes iden-

tically or not, i.e. whether the coefficient CK
ψm in eq. (8.35) vanishes identi-

cally or not. This is in general a highly non-trivial question, since its answer

requires the analysis of four-point functions. We introduce the necessary

techniques (due to [CL91]) in appendix C, and show in appendix D how Af-

fleck and Ludwig calculated [AL94] the function 〈ψLψ†
LψRψ

†
R〉. A list of all

boundary operators with xm ≤ 3
2

for which CK
ψm 6= 0 is given in table D.1.

Suppose that all relevant couplings have been fine-tuned to zero. The leading

T 6= 0 correction to G, namely δG(T ), will then arise from the so-called leading

irrelevant operator , i.e. the operator with smallest scaling dimension xm(> 1).

According to eq. (8.33), δG(T ) will be proportional to T (xm−1); all other more

irrelevant perturbations will give corrections to δG proportional to subleading

powers of T .

AL have shown ([AL91b, p. 657], [AL93, eq. (3.26)] and [AL94, eq. (4.6)]) that

for the overscreened k-channel Kondo problem (k/2 > s), the leading irrelevant

operator, which they denote by ~J−1·~φ, is Virasoro primary with scaling dimension

x∆ ≡ 1 + ∆, where ∆ ≡ 2
2+k

. [We recapitulate their argument in appendix D,

section D.5.] Thus, δG ∝ T∆, and for k = 2, we have δG ∝ T 1/2. This, therefore,
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is the origin of the T 1/2 scaling exponent in the 2-channel Kondo problem.

AL have calculated the scaling function of eq. (8.34) corresponding to an in-

sertion of the leading irrelevant operator in complete detail [AL93], by explicitly

performing the integrals in eqs. (8.34) and (8.35) for xm = 1+∆. This calculation

is an impressive display of complex-analysis skills, but is conceptually straight-

forward and will not be repeated here. Instead, we merely cite the final result of

interest to us. After all necessary manipulations have been performed to extract

the spectral function δA of eq. (8.28) from their result [AL93, eq. (3.48)], the

transmission coefficient of eq. (8.27) takes the following form, for k = 2:

Ũηη′(ε, T ) = δαα′δii′ [σ
x
aa′ + δaa′U ] eiφ , (8.36)

where

U(ε, T ) = λ1/2T
1/2Γ̃(ε/T ) . (8.37)

The first term in eq. (8.36) follows from eq. (7.73), and in the second term, the

scaling function Γ̃(x) is given by [AL93, eq. (3.50)]6

Γ̃(x) =

{
3

2
√

2
(2π)∆2 sin(π∆)

∫ 1

0
du[u(−ix)/(2π)u−1/2(1 − u)∆F (u) (8.38)

−Γ(1 + 2∆)

Γ2(1 + ∆)
u(∆−1)(1 − u)−(1+∆)]

}

[F (u) ≡ F (1 + ∆, 1 + ∆, 1;u) is a hypergeometric function.] The
∫
du integral

can be done numerically for any value of x, thus giving us an explicit expression

for the scaling function (the real part of which turns out to be negative definite).

This is the result we were after. It will be used in chapter 9 to calculate the

universal scaling curve Γ(v) that is our ultimate goal. It is interesting to note

6 Writing uix = cosx lnu − i sinx lnu, it follows that the real and imaginary parts of Γ̃(x)
are even and odd in x, respectively.
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that

U(ε, T ) ∝ 2Im
(
ΣR(ε, T ) − ImΣR(ε, 0)

)
= −

(
τ−1(ε, T ) − τ−1(ε, 0)

)
, (8.39)

where δΣR(ε, T ) is the retarded bulk electron self-energy calculated by AL [AL93,

eq. (3.50)], and τ−1(ε, T ) the corresponding scattering rate.

Finally, let us say a few words about relevant perturbations. In [AL92b], it was

shown that a for the 2-channel, s = 1
2

Kondo problem, an impurity asymmetry

energy (AE) with λAE ∝ ∆, and a channel anisotropy (CA) with λCA = H, are

relevant perturbations, with scaling dimensions xAE = 1
2

and xCA = 1
2
. According

to the general scaling relation eq. (8.22), this immediately implies that

δG(T,H,∆) = T 1/2δG
(
1, H/T 1/2,∆/T 1/2

)
. (8.40)

This is the scaling result that was used in section 3.3, eq. (3.19), to analyze the

magnetic field dependence of the conductance.

It should be emphasized that the scaling relation found here is only expected

to hold for T/TK ≪ 1. The reason is that we really are doing perturbation theory

in T . There are of course many other irrelevant operators, that give subleading

corrections in T/TK, which are small relative to the leading one that we have

calculated only if T/TK ≪ 1. However, since each of these enters with a different,

unknown universal prefactor, it is not very meaningful to explicitly calculate

their contributions. For each new term added, one would get one extra unknown

parameter, which one would have to treat as a fitting parameter when comparing

theory to experiment. However, the more fitting parameters, the less meaningful

the comparison.



Chapter 9

Calculation of scaling curve

In this chapter we compute the scaling curve Γ(v) and compare it to the exper-

imental curve of Fig. 3.10(b), and to numerical calculations by Hettler, Kroha

and Hershfield (HKH) [HKH94].

Our strategy is straightforward. We calculate the current I(V, T ) through the

nanoconstriction from the general expression, eq. (5.52) (and eq. (9.1) below),

derived in chapter 5. The main ingredients of this formula are the scattering

amplitudes Ũη̃η(ε). In chapters 7 and 8, we showed how these could be extracted,

for the magnetic 2-channel Kondo problem, from the CFT solution of Affleck

and Ludwig, and found a scaling form [see eq. (8.37)]. In section 9.1 we define

a model that describes non-magnetic 2-channel Kondo scattering, in the sense

proposed by Zawadowski [Zaw80,VZ83] and discussed in chapter 4, and calculate

in section 9.2 the corresponding Ũη̃η(ε)’s from AL’s theory. In section 9.3, these

are inserted into eq. (9.1); the differential conductance, G(V, T ) = ∂V I(V, T ), is

found to obey a scaling relation [see eq. (9.28)], with the scaling function Γ(v)

completely determined by AL’s theory [see eq. (9.26)]. In section 9.4 we show

238
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that in general the scattering amplitudes will have V -dependent corrections, but

argue that these are of order V/TK. Finally, after a few words about the NCA

calculations of HKH in section 9.5, in section 9.6, we compare the CFT result for

the scaling curve with experiment and NCA calculations by Hettler, Kroha and

Hershfield [HKH94].

9.1 The Nanoconstriction 2-Channel Kondo

Model

The general expression for the current through a nanoconstriction derived in

chapter 5, eq. (5.52), is

I = e
h

∑

η̃η

∫
dε1

2

[
Ũ †
ηη̃′(ε)Iη̃′η̃Ũη̃η(ε) + ση̃δη̃η

]
f(ε, η) (9.1)

where for simplicity we have taken the geometrical transmission coefficients Tη̃ =

1, and have written Iη̃′η̃ ≡ ση̃δη̃′η̃. As a reminder, η = (ση, n, i) is a collective index

labeling the various discrete quantum numbers of the electrons (see section 5.2,

page 122): n lables various discrete orbital channels, i =↑, ↓ is the Pauli electron

spin, and the index ση = ± distinguishes physical L-movers (ση = +) from

physical R-movers (ση = +). The right and left leads are at chemical potentials

µ± = µη, with µη = +eV/2 and −eV/2 for the R- and L-leads, respectively. They

inject L-moving and R-moving electrons, with energy ε and quantum number

η, into the system from the right and left, traveling toward the constriction

[Fig. 9.1], weighted according to the distribution function for free electrons in the

corresponding lead,

f(ε, η) = fo(ε− µη) =
1

eβ(ε−µ−η) + 1
. (9.2)
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Figure 9.1 L-and R-moving electrons (ση = ±) are injected towards a nanocon-
striction from right and left leads, that are at chemical potentials µ± = µ±eV/2.
They are scattered by impurities in the nanoconstriction from state η to state η̃
with amplitude Ũη̃η.

Expression eq. (9.1) for the current counts the difference between the number of

L- and R-moving electrons of index η̃, weighting them with ση̃ = ±; the second

term corresponds to incident electrons that have not yet been scattered, the first

to electrons that have been scattered from their initial state η to a final state η̃,

with scattering amplitude Ũη̃η.

Before defining the model we intend to use to describe the electron-TLS scat-

tering, some comments about the properties it should have are in order. The

main feature of the data that we have to account for is the occurence of a scaling

form for the conductance, and in particular, of a scaling exponent T 1/2. As Lud-

wig first pointed out, scaling forms and a scaling exponent T 1/2 appear naturally

in the 2-channel Kondo problem at its T = 0 fixed point: As we saw in chapter 8,

for 2-channel Kondo scattering, the scattering amplitudes extracted from AL’s

theory have the following scaling form [see eqs. (8.36) and (8.36)]:

Ũηη′(ε, T ) = δαα′δii′ [σ
x
aa′ + δaa′U ] eiφ , where U = λT 1/2Γ̃(ε/T ) , (9.3)

where α = ± is the (pseudo)-spin index that couples to the impurity, i = 1, 2
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is a channel index and a = f/s distinguishes “free” from “spinor”-electrons (the

latter had to be introduced to ensure that Ũηη′ is unitary). This is the result we

would wish to employ in eq. (9.1) to obtain a scaling form for I(V, T ).

In the spirit of Zawadowski’s non-magnetic Kondo theory [chapter 4], we

envision now that in general, the many discrete orbital channels, labeled by η,

can be scattered into each other when an electron scatters off a TLS, and that at

the same time, the TLS can change its state (labeled by µ =↑, ↓). A corresponding

Hamiltonian would have matrix elements 〈ηµ|Hscat|η′µ′〉 that are non-zero (but

diagonal in the Pauli spin i, which cannot be flipped by scattering off a TLS)

for a large number of combinations of states 〈η, µ| and |η′µ′〉. As explained in

chapter 4, Zawadowski has shown that such a Hamiltonian gives rise to a non-

magnetic Kondo effect. As the temperature is lowered, the coupling constants

generally grow, and perturbation theory breaks down. Moreover, Zawadowski

has shown [section 4.2.4] that in general, for each value of i =↑, ↓, there will be

two linear combinations of the various η-channels, which we denote by α = 1, 2,

for which the effective coupling constants 〈αi, µ|Hscat|α′i′, µ′〉 grow more rapidly

than for any other combination of channels. (Heuristically, these may be thought

of as electron waves “centered” on the two impurity positions.) Therefore, if the

temperature is small enough, all other channels decouple from the impurity (and

hence merely contribute to the large boring background signal), and one is left

with an effective Hamiltonian with matrix elements [see eq. (4.23)]

〈αi, µ|Hscat|α′i′, µ′〉 = λKδii′
1
2
~σαα · ~Sµµ′ . (9.4)

Thus, one ends up with a 2-channel Kondo problem, α being the pseudospin

and i the channel index, to which the AL theory can be applied if T/TK ≪ 1.
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We have written down an expression that is isotropic in pseudospin space [see

section 4.2.5], because it is known that pseudospin anisotropies are irrelevant

perturbations near the strong-coupling fixed point [AL92b, p. 7924], and hence

negligible for sufficiently small temperatures.

One might hope that eq. (9.3), inserted into eq. (9.1), would immediately

give a scaling contribution to I with scaling exponent T 1/2. However, this is not

true, due to an important subtlety: in eq. (9.3), the leading term in Ũηη′(ε) is

purely off-diagonal in the index a (this is the so-called unitarity paradox), which

means that U †U does not have a term linear in U , and instead U †U = 1 + U2.

Therefore it seems as though the current, being quadratic in Ũ , will not have

a scaling exponent of T 1/2, but of T . This, incidentally, is the reason why the

exactly solvable non-equilibrium Kondo model studied by Schiller and Hershfield

[SH95a] is not useful for our purposes.

The key to resolving this potential problem is contained in AL’s calculation

of the bulk linear response conductivity [AL93], which, using a Kubo formula,

they show to be σ(T ) = σo + σ1(T/TK)1/2. However, they show that the T 1/2

occurs only if one takes into account cross-terms [AL93, eq. (C7)] between scat-

tering channels that undergo Kondo scattering (s-wave scattering in their case)

and channels that only undergo trivial (non-Kondo) scattering (l 6= 0 angular

momentum channels in their case). Thus, a model which is to yield T 1/2 as con-

ductance exponent has to contain cross-terms between Kondo scattering channels

and trivial scattering channels.

The ingredient that is missing in the discussion above is forward and back-

ward scattering between L- and R-movers. As was emphasized in section 4.4.1,
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Table 9.1 Meaning of indices η ≡ (ση, α, i, a) used in non-equilibrium 2-channel
Kondo problem

ση: (L,R) = (+,−) = L/R movers = species index

α: (1, 2) = discrete orbital channels = pseudospin index

i: ↑, ↓ = Pauli spin = channel index

a: f/s = free/spinor-electrons = “unitarity” index

in a nanoconstriction geometry, the two pseudospin channels α = 1, 2 are both

comprised of L- and R-movers, and the Hamiltonian must describe backward and

forward scattering between these in addition to (or simultaneously with) pseu-

dospin scattering [see page 109 for the detailed argument]. As we shall see below,

incorporating this additional L-R scattering automatically leads to a model that

does contain the abovementioned cross-terms. [After taking even and odd linear

combinations of L- and R-moving electrons, it turns out (see section 9.2) that

the even channels undergo Kondo scattering, and the odd channels only trivial

scattering.]

The model that we adopt is defined by the following Hamiltonian (in weak-

coupling language) [compare eq. (4.27)]:

Ho = vF
∑

η

∫ ∞

−∞
dx
2π
ψ†
η(ix)i∂xψη(ix) , (9.5)

Hscat = λKψ
†
σαi(0)

[
Vσσ′ (1

2
~σαα′ · ~S)

]
ψσ′α′i(0) . (9.6)

The meaning of the indices η = {α, τ, σ, (a)} carried by the electron field ψη(x) are

summarized in table 9.1: ση = (L,R) = (+,−), the species index, distinguishes

L- from R-movers; α = (1, 2) is the orbital pseudospin index that Kondo-couples

to the TLS-spin ~S; and i =↑, ↓, the Pauli spin, is a channel index. In addition, we
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shall need below the “unitarity”-index a = f/s that distinguishes free electrons

(a = f) from the “spinor”-electrons (a = s) that can be created upon scattering

off the impurity [see section 7.5.2]. However, since this index is a feature of the

strong-coupling solution, it enters only in the scattering amplitudes Ũη̃η, and is

not needed in writing down the weak-coupling Hamiltonian eq. (9.6) that defines

the model.

The scattering Hamiltonian Hscat describes processes in which the pseudospin

of electrons and TLS can be flipped by (1
2
~σαα′ · ~S), but simultaneously L- and

R-movers can also undergo forward- and backscattering into each other through

Vσσ′ . In general, Vσσ′ can be any Hermitian 2×2 matrix. However, it is actually

sufficient to consider only the very simple case

Vσσ′ = 1
2

(
1
1

1
1

)

σσ′ , (9.7)

for reasons to be explained below. With this choice, our model is equivalent (after

a Schrieffer-Wolf transformation) to a model recently studied by Hettler et. al.

using numerical NCA techniques, with whose results we shall compare our own.

The Hamiltonian introduced above is strictly speaking not a 2-channel Kondo

Hamiltonian, since ση = ± and i =↑, ↓ give four different combinations of indices

that do not Kondo-couple to ~S. However, the equilibrium model can be mapped

onto a 2-channel model by making a unitary transformation,

ψη̄ = Nη̄ηψη , Nη̄η ≡ Nσ̄σδᾱαδīi , (9.8)

chosen such that it diagonalizes Vσσ′ . We shall refer to the fields ψη as L/R fields

and the ψη̄ as even/odd fields, and always put a bar over all indices and matrices

refering to the even/odd basis. For our present choice eq. (9.7) for Vσσ′ , Nσ̄σ is
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given by

Nσ̄σ = 1√
2

(
1
1

1
−1

)

σ̄σ
,

(
NVN−1

)

σ̄σ̄′ ≡ V σ̄σ =
(

1
0

0
0

)

σ̄σ̄′ . (9.9)

Thus Hscat becomes

HK = λk ψ
†
σ̄ᾱī(0)




1
2
~σᾱᾱ′ · ~S 0

0 0




σ̄σ̄′

ψσ̄′ᾱ′ ī(0) . (9.10)

Thus, in the ψη̄ basis, one set of channels, which we shall call the odd channels

(σ̄ = o), completely decouples from the impurity. The other set of channels, which

we shall call the even channels , constitute a true 2-channel Kondo problem, to

which we shall apply AL’s solution.

If one chooses a more general Vσσ′ than eq. (9.7), the odd channel will not

completely decouple, but (barring some accidental degeneracies) the even and

odd channels will always couple to ~S with different strenghts. At low enough

temperatures, the one coupled more weakly can be assumed to decouple com-

pletely (à la Zawadowski [VZ83], see section 4.2.4), leaving again a 2-channel

Kondo problem for the even channel. This is the reason why it is sufficient to

take Vσσ′ as in (9.7), and not necessary to consider the more general case.

9.2 Scattering Amplitudes

We are interested only in the weakly non-equilibrium regime of very small volt-

ages, V/TK ≪ 1. In this regime, it is by definition sufficient to calculate the

scattering states and scattering amplitudes from the equilibrium theory of AL

(see the discussion in section 5.4.5). Hence, the Ũη̃η will be V -independent, and

the only V -dependence enters in the Fermi-functions f(ε, η) of eq. (9.2). V -
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dependent corrections to Ũη̃η can then in principle be calculated in perturbation

theory in V/TK, which will be done in section 9.4.

Since Kondo scattering generates spinor-electrons (see eq. (9.12) below), we

henceforth have to extend our index η to include the index a = f/s, i.e. η =

(ση, α, i, a). However, spinor-electrons are only created upon scattering off the

TLS, and are certainly not injected from the leads. Thus, only free electrons

with a = f are injected by the leads. This requirement will be enforced by

writing f(ε, η) ≡ δaff(ε, η) for the thermal weighting functions that govern how

electrons are injected from the leads.

Since even and odd channels are decoupled in the even/odd basis, the scat-

tering amplitudes, denoted by U η̄η̄′(ε), have the form

U η̄η̄′(ε) = δᾱᾱ′δī̄i′



U

(e)

āā′ 0

0 U
(o)

āā′




σ̄σ̄′

, (9.11)

where U
(e)

and U
(o)

are the scattering amplitudes in the even and odd channels,

respectively. In the even channel, we have 2-channel Kondo scattering, with U
(e)

given by eq. (8.36), but in the odd channel, no scattering takes place at all.

Therefore, we have

U
(e)

āā′ = [σxāā′ + δāā′ U ] eiφe where U(ε, T ) = λT 1/2Γ̃(ε/T ) (9.12)

U
(o)

āā′ = δāā′ , (9.13)

where eiφe is a trivial phase shift that can occur in the Kondo channel in the

absence of particle-hole symmetry (see [AL93, section IV]).

To find the scattering amplitudes Ũη̃η(ε) in the L-R basis in terms of the

U η̄η̄′(ε) in the e/o basis, note that they are derived from the corresponding L-R
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and e/o Greens’s functions through

Ũη̃η(ε) ∝ 〈ψη̃Rψ†
ηL〉 , U η̄η̄′(ε) ∝ 〈ψη̄Rψ

†
η̄′L〉 , (9.14)

hence

Ũη̃η(ε) = N †
η̃η̄U η̄η̄′(ε)Nη̄′η . (9.15)

Inserting eq. (9.15) into eq. (9.1), we can thus write the current as

I = e
h

∑

η

∫
dε1

2
[Pη(ε) + ση ] f(ε, η) (9.16)

where

Pη(ε) ≡
∑

η̃′η̃

(
N †U

†
N
)

ηη̃′
Iη̃′η̃

(
N †UN

)

η̃η
(9.17)

Let us analyze this matrix product index by index. All matrices are diagonal in

α, i, hence the sums
∑
α̃ĩ in Pη are trivial. Next consider matrix multiplication in

the index σ. Using eq. (9.9), we find

(
N †UN

)

σ̃σ
= 1

2




[U
(e)

+ U
(o)

] [U
(e) − U

(o)
]

[U
(e) − U

(o)
] [U

(e)
+ U

(o)
]




σ̃σ

(9.18)

The fact that this has off-diagonal elements in the L/R-basis is extremely im-

portant, because it implies that Pη will have U
†(o)
U

(e)
cross-terms, in spite of the

fact that the current operator Iη̃′η̃ is diagonal. Indeed, eq. (9.17) reduces to1

Pη = σηRe
(
U

†(o)
U

(e)
)
. (9.19)

Now U
(e)

, describing Kondo scattering in the even channel, has a T 1/2 contribu-

tion, but U
(o)

, describing no scattering at all in the odd channel, does not. Thus

we see that this model indeed does contain a T 1/2 (and not T ) contribution to the

1Here we have assumed that the phase shift φe is energy-independent. In general, it can

have an energy-dependence, φe = φ
(0)
e + ε

εF
φ

(1)
e + . . ., but this will be very weak, and only give

rise to subleading corrections in the conductance, i.e. terms of the form T 3/2Γ(1)(V/T ).



248

current, as a direct consequence of e/o cross terms in Pη. Physically, the reason

why this comes about is that the probability of finding a current-carrying particle

with index η̃ after scattering is a square of the sum over all scattering amplitudes

into state η̃. Since we have two sets of transmission channels, e-channels with

Kondo scattering (and T 1/2) and o-channels without, cross terms between these

simply give T 1/2.

Finally, consider the sums
∑
ã=f/s in Pη. As mentioned above, for the “incident

index” η, we have a = f in eq. (9.17), since the leads inject only free electrons, no

spinors. Since all matrices in eq. (9.17) except U
(e)

are proportional to δaa′ , the

only component of U
(e)

āā′ that survives the ã matrix multiplications is U
(e)

ff , giving:

Pη ≡ σηRe
(
U

†(o)
ff U

(e)

ff

)
= σηRe

[
Ueiφe

]
. (9.20)

Hence, the spinor terms [the σxāā′ in eq. (9.12)] in fact do not contribute anything

after all. The reason is that no spinors are created in the odd channel, and since

the current turns out to be composed purely of e-o cross terms, it therefore gets

no contributions from spinors, since those created in the even channel cannot be

contracted against any in the odd channel. However, for choices for Vσσ′ more

general than eq. (9.7), there will be a spinor-contribution in eq. (9.20) too.

9.3 Scaling Form for Conductance

We now have gathered all the ingredients to derive the sought-after scaling form

for the current and conductance. Inserting eq. (9.20) into eq. (9.16) gives:

I = e
h
4
∫
dε1

2

{
Re

[
Ueiφe

]
+ 1

} [
fo(ε−eV/2) − fo(ε+eV/2)

]
, (9.21)
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where the factor 4 comes from
∑
αi and the sum

∑
ση , written out explicitly, gives

the two terms in the last factor. This is of the form

I =
∫
dεg(ε)

[
fo(ε−eV/2) − fo(ε+eV/2)

]
, (9.22)

which means that only the even part ge(ε) ≡ 1
2
[g(ε) + g(−ε)] of the function g(ε)

contributes to the conductance:

G =
∂I

∂V
=
∫
dεge(ε+eV/2) [−∂εfo(ε)] . (9.23)

Now, from eq. (8.37) we know that the real and imaginary parts of U are respec-

tively even and odd in ε (see footnote 6 on page 236):

U = λT 1/2
[
Γ̃e(ε/T ) + iΓ̃o(ε/T )

]
, (9.24)

with Γ̃e/o(x) = ±Γ̃e/o(−x). Thus, G reduces to

G = 2 e
h

[
1 − λγo cosφeT

1/2Γ(γ1eV/T )
]
, (9.25)

Here we have defined the universal scaling function Γ(v) by

γoΓ(γ1v) ≡ −
∫
dxΓ̃e (x+ v/2) [−∂xfo(x)] , (9.26)

where v ≡ eV/T , x = ε/T , fo(x) = 1/(ex + 1), and the − sign has been included

since Γ̃ is negative definite (see page 236). The positive constants γo, γ1 are to

be chosen such that Γ(v) obeys the normalization conditions used in chapter 3

[compare eq. (3.3)]:

Γ(0) ≡ 1 , Γ(v) vs. v
1
2 has slope=1 as v

1
2 → ∞ . (9.27)
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Thus, we have shown that within the present model, the conductance obeys

the scaling relation2

G(V, T ) = Go +BT 1/2Γ(γ1eV/T ) , (9.28)

(B = −2eλγo cosφe/2) with the universal scaling function Γ(v), given by eq. (9.26),

known exactly. This function is the same as that found in section 3.1.2, eq. (3.9),

by a back-of-the-envelope calculation. The reason for this agreement is eq. (8.39),

which relates U(ε, T ) to the bulk scattering rate 1
2
τ−1(ε, T ), and justifies the as-

sumption made in section 3.1.2, namely that the nanoconstriction conductance

will be governed by τ−1(ε, T ).

It should be emphasized that the scaling relation found here is only expected

to hold for T/TK ≪ 1 and eV/TK ≪ 1. The first restriction follows from the fact

that we really are doing perturbation theory in T , as emphasized at the end of

chapter 8, page 237. If T/TK is not ≪ 1, the subleading powers of T/TK that

have been neglected in the calculation of will become important, and will give

deviations from scaling. As argued at the end of chapter 8, page 237, though, it

would not be meaningful to calculate these deviations within our CFT approach.

The reason is that each subleading term that is added introduces one more fit-

ting parameter, leading to more freedom than one would want for a meaningful

comparison of theory and experiment.

2Note that consistency with the sign of the experimental zero-bias anomaly requires B > 0,
i.e. λ cosφe < 0. This is in agreement with AL [AL93, p. 7309], who concluded (for the case
φe = 0) that λ < 0 in the regime where the Kondo coupling constant is below its critical value,
λK < λ∗K , i.e. if one flows towards λ∗K from the weak-coupling regime.
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9.4 V -dependent Corrections to Scattering

Amplitude

In the preceding sections, we used an expression for the scattering amplitudes

[eq. (9.3)] that was obtained from a purely equilibrium theory, namely CFT. They

were thus V -independent. However, as discussed at some length in section 5.4.5,

in principle one expects that the scattering states will have some kind of V -

dependence: when V 6= 0, the “Fermi surface splits in two”, and this must

somehow show up in the scattering amplitudes. In this section, we analyse the

V -dependent corrections to the scattering amplitudes.

In the absence of any kind of scattering, the thermal weighting operator Yo

of eq. (5.15) for the present problem is given by

Yo = 1
2
eV

∑

η

∫ ∞

−∞
dx
2π
ψ†
η(ix)σηψη(ix) , (ση = ± for L/R− movers) . (9.29)

After rotating to the even-odd basis according to eq. (9.8), it takes the form

Yo = 1
2
eV

∑

ᾱī

∫ ∞

−∞
dx
2π

[
ψ

†
eᾱī(ix)ψoᾱī(ix) + ψ

†
oᾱī(ix)ψeᾱī(ix)

]
, (9.30)

since (NσzN−1)σ̄σ̄′ = σxσ̄σ̄′ . This shows that Yo mixes even and odd channels!

Since the CFT solution was formulated only in the even sector, the present model3

3However, related models exist which can be treated exactly by CFT even if V 6= 0, for
example the the model used by Schiller and Hershfield in [SH95b]. There, the pseudo-spin

index is also the L-R index (i.e. the interaction matrix elements are 1
2~σσσ′ · ~S), which means

that

Yo = 1
2eV

∑

αi

∫ ∞

−∞

dx
2πψ

†
αi(ix)σ

z
αα′ψα′i(ix) = eV

∫ ∞

−∞

dx
2πJ

z
s (ix) ,

where ~Js is the spin current. Now, in this case it is easy to find the exact Y -operator in the
presence of the Kondo interaction. Y must both commute with H and reduce to Yo when the
interaction is switched off. This is evidently satisfied by Y = eV

∫∞

−∞
dx
2πJ z

sL, where J z
sL is the

z-component of the new spin current ~Js(ix) = ~Js(ix) + 2πδ(x)~S of eq. (7.36). Thus, in the
combination H − Y that occurs in the density matrix ρ, eV simply plays the role of a bulk

magnetic field in the z-direction, which can be gauged away exactly by a gauge transformation
[AL91b, eq. (3.37)]. Hence in this model, non-equilibrium properties can be calculated exactly
using CFT [vDLA95].
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can not be solved exactly by CFT for V 6= 0.

Nevertheless, we can analyze Yo’s effects in the limit V ≪ TK: Yo breaks a

Ue(1)×Uo(1) symmetry that the equilibrium model possessed. The breaking of a

symmetry will in general allow boundary operators to appear at the fixed point

that had been previously forbidden (for extensive applications of this principle,

see [AL92b, section III.C]). Evidently, the boundary perturbation to the fixed

point action corresponding to Yo will be4 [compare eq. (8.15)]:

δSV ∝ V

TK

∑

ᾱī

∫ β

0
dτ
[
ψ

†
eᾱī(τ)ψoᾱī(τ)) + ψ

†
oᾱī(τ)ψeᾱī(τ)

]
≡ V

TK

∫ β

0
dτJeo(τ) .

(9.31)

Since the “even-odd” current Jeo has scaling dimension 1, δSV has scaling

dimension zero [see eq. (8.17)], and is therefore a marginal perturbation. As

discussed in section 4.4.2, this means that for any V 6= 0, there will exist a

cross-over temperature T ∗
V below which the system flows away from the V = 0,

T = 0 fixed point. However, since this perturbation is marginal, it only grows

logarithmically slowly as T is decreased, so that T ∗
V will be very small. The lack

of deviations from scaling in the data for the low-T regime indicate that T ∗
V is

smaller than the lowest temperatures obtained in the experiment.

How does δSV affect the scattering amplitudes? δSV will simply cause a

4It is easy to check that the operator Jeo is indeed allowed at the boundary: it must be
the product ΦeΦo of boundary operators in the even and odd sectors, with quantum numbers
(Qe, je, fe) = (−Qo, jo, fo) = (±1, 1

2 ,
1
2 ). Φo, which lives on a free boundary, since the odd

sector is free, is simply the free fermion field in the leftmost column of table A.2; Φe must live
on a Kondo boundary; indeed boundary operators with the desired quantum numbers do occur
in the rightmost column of table 7.1, which lists the operators allowed on the Kondo boundary.
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rotation of the e/o indices of the outgoing fields relative to the incident ones by5

Rη̄η̄′(V ) = δᾱᾱ′δī̄i′




cos θV −i sin θV

−i sin θV cos θV




σ̄σ̄′

, where θV ≡ arctan
(
cV

TK

)
.

(9.32)

Here θV is simply a convenient way to parametrize the rotation [CKLM94]. Thus,

the effect of δSV can be incorporated by replacing the scattering amplitude U η̄η̄′(ε)

of eq. (9.11) by Rη̄η̄′′(V )U η̄′′η̄′(ε). Evidently, the final scattering amplitude Ũη̃η(ε)

of eq. (9.15) will now be V -dependent.

It turns out that for the simple form (9.7) used for the backscattering matrix

Vσσ′ , this extra V -dependence “accidentally” cancels out6 in eq. (9.17) for Pη(ε).

However, for more general forms of Vσσ′ , it survives. To lowest order in V/TK,

there will be a contribution to the conductance of the form (V/TK)T 1/2Γ1(V/T ) =

T 3/2Γ2(V/T ). This is therefore a subleading correction to the scaling function of

eq. (9.28). It is of the same order as corrections arising from subleading irrelevant

operators of the equilibrium theory, that we have argued [p. 250] are not worth

while calculating since there are too many independent ones.

9.5 The NCA approach

In the next section, we shall compare our results to recent numerical calculations

by Hettler, Kroha and Hershfield (HKH) [HKH94], who used the non-crossing-

5See, for example, [CKLM94]. At T = 0, one can prove that δSV generates such a rotation by
closing the

∫∞

−∞
dτ integral along an infinite semi-circle in the lower half-plane (this is allowed,

because according to eq. (B.30), Jeo(z) ∼ z−2 → 0 along such a contour); having closed the
contour, δSV has precicely the form (B.14) required for a generator of e/o rotations.

6This can be seen from by replacing U by RU in eq. (9.17) for Pη(ε), and checking that

R
†
NσzN†R = R

†
σxR = σx, which is independent of V because R generates rotations around

the x-axis in the e/o indices. However, if V and N are more complicated than in eqs. (9.7) and
(9.9), the V -dependence will clearly not cancel out.
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approximation (NCA) approach to the Kondo problem. Therefore a few words

about their work are in order here.

9.5.1 Anderson model used for NCA

HKH represent the system by the following infinite-U Anderson Hamiltonian in

a slave boson representation:

H1 =
∑

p,σ,α,i

(εp − µσ)c
†
pσαic

†
pσαi + εd

∑

α

f †
αfα +

∑

p,σ,α,i

Vσ
(
f †
α bicpσαi + H.c.

)
. (9.33)

The first term describes conduction electrons in two leads, σ = (L,R) = (+,−),

separated by a barrier and at chemical potentials µσ = µ+ σ 1
2
eV . The electrons

are labeled by a momentum p, the lead index σ, a pseudospin index α = (1, 2),

and their Pauli spin i = (↑, ↓). The barrier is assumed to contain an impurity

level εd far below the Fermi surface, hybridizing (with matrix elements Vσ, with

VL = VR for our purposes) with the conduction electrons, which can get from one

lead to the other only by hopping via the impurity level. f and b are slave fermion

and slave boson operators, and the physical particle operator on the impurity is

represented by d†αbi, supplemented by the constraint
∑
α f

†
αfα +

∑
i b

†
ibi = 1.

Although this picture of two disconnected leads communicating only via hop-

ping through an impurity level does not directly describe the physical situation

of ballistic transport through a hole accompanied by scattering off two-level sys-

tems, the Hamiltonian (9.33) can be mapped by a Schrieffer-Wolff transformation

onto the more physical one [eq. (9.6)] used in previous sections. It is therefore

in the same universality class and describes the same low-energy physics, pro-

vided that one identifies the impurity-induced “tunneling current” Itun in the

HKH model with the impurity-induced backscattering current ∆I in the actual
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nanoconstriction.

HKH calculate the tunneling current,

Itun(V, T ) =
∫
dωAd(ω)[fo(ω − eV/2) − fo(ω + eV/2)] , (9.34)

where fo(ω) = 1/(eβω + 1), by calculating the impurity spectral function Ad(ω)

using the NCA approximation, generalized to V 6= 0 using Keldysh techniques.

The NCA technique [Bic87] is a self-consistent summation of an infinite set of

selected diagrams (which becomes exact in the limit N → ∞, where N is the

number of values the pseudo-spin quantum number can assume), and in that

sense it is not an “exact” solution of the model. However, it has been shown

[CR93] that for a U(1) × SU(N)s × SU(M)f Kondo model (i.e. M channels of

electrons, each with N possible pseudo-spin values, here we have N = M = 2),

the NCA approach gives leading critical exponents for Ad(ω) identical to those of

conformal field theory for all N and M (with M > 2). Hence the NCA method

can be regarded as a useful interpolation between the high-T regime where any

perturbative scheme works, and the low-T regime where it gives the correct exact

critical exponents. Moreover, when combined with the Keldysh technique, it

deals with the non-equilibrium aspects of the problem in a more direct way than

our CFT approach, and is able to go beyond the weakly non-equilibrium regime

(V ≪ TK).

Therefore, it is certainly meaningful to compare the NCA results of HKH to

ours. CFT serves as a check on how well the NCA does at V = 0 and very low

temperatures, where CFT is exact and NCA only an uncontrolled approximation.

Conversely, if this check confirms the reliability of the NCA method in the low-

energy regime, the latter can be used as a check on our use of CFT for V 6= 0
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Figure 9.2 Here Σ(ω, T ) is the imaginary part of the retarded self-energy for
conduction electrons at V = 0, calculated using CFT and the NCA [HKH95].
For the NCA curves, temperatures are given in units of .001TK. The CFT curve
corresponds to T/TK → 0. The asymmetry in the NCA curves is a result of using
the asymmetric Anderson model. The CFT and lowest-T NCA curves have been
rescaled such that the asymptotic slope of the ω < 0 function is 1, i.e. the CFT
curve corresponds to the function (Γ̃(γ̃1x)/Γ̃(0) − 1) of eq. (8.38), with γ̃1 an
appropriately chosen constant.

situations, where NCA presumably does the more reliable job.

9.5.2 Electron Self-Energy

One would expect that the most direct comparison between CFT and the NCA

could be obtained by comparing [see Fig. 9.2] the retarded self-energy ΣR(ω) for

conduction electrons at V = 0, calculated from the NCA with that from CFT

[essentially the function Γ̃(x) of eqs. (8.38) and (8.39]. However, the usefulness of

this comparison is somewhat diminished by the fact that the NCA self-energy is

not a symmetric function of frequency, which is a result of using the asymmetric

Anderson model. This asymmetry disappears when calculating the conductance,
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because Itun(V ) = Itun(−V ) in eq. (9.34) even if Ad(ω) 6= Ad(ω), meaning that

the zero-bias conductance is the more meaningful quantity to compare (see next

section). Nevertheless, for ω < 0, the CFT and NCA results agree very well

[Fig. 9.2].

9.5.3 Impurity Spectral Function Ad(ω)

Figure 9.3 is very instructive, in that it illustrates what happens to the Kondo

resonance when T or V become > TK, a regime not accessible to CFT. [TK is

defined as the width at half maximum of the V = 0 impurity spectral function

at the lowest calculated T .] For V = 0 [Fig. 9.3(a)], the Kondo peak spreads

out as T is increased, though this spreading only starts to become significant

for T ≃ TK. For T/TK ≃ 0, the Kondo peak splits into two when eV ≫ TK

[Fig. 9.3(b)], (as also found in [WM94] for a related model). However, note that

even for V ≃ TK, this splitting has not yet set in, illustrating that non-equilibrium

effects are not important for eV < TK. This is the main justification for the the

approach followed in the previous sections of calculating the scattering states from

CFT and neglecting their V -dependence (see also the discussion in section 5.1

(point 3), and in section 5.4.5).

9.5.4 NCA Conductance Curves

The NCA results of HKH for the conductance G(V, T ), obtained from eq. (9.34)

and rescaled according to eq. (3.15), are shown in Fig. 9.4(a). The curves are

obtained without any adjustable parameters, since the rescaling of the horizontal

axis (by a constant A to get an asymptotic slope 1) that we employed elsewhere

was not performed here. The experimental data for sample #1 (which has TK ≃
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Figure 9.3 The Kondo resonance in the impurity spectral function Ad(ω), cal-
culated at (a) V = 0 and (b) T/TK = 0.001 using the NCA [HKH95]. For our
purposes the most important feature of this figure is that the Kondo peak does
not start to split for eV < TK.
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Figure 9.4 Scaling plots of the conductance for (a) the NCA calculations of Hettler
et al. [HKH94] and (b) experiment (sample #1). With BΣ determined from the
zero-bias conductance, G(0, T ) = G(0, 0) + BΣT

1/2, [eq. (3.11)], there are no
adjustable parameters. The temperatures in the NCA and experimental plots
are in units of TK and Kelvin, respectively.
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8K) are shown for comparison in Fig. 9.4(b).

The lowest T/TK values in Fig. 9.4(a) show good scaling, in accord with the

CFT prediction. However, for larger T -values, marked deviations from scaling

occur, just as seen in the experimental curves of Fig. 9.4(b). It is one of the

strengths of the NCA method that deviations from scaling are automatically

obtained, without the need for making a systematic expansion in powers of T/TK.

The striking qualitative similarity between the two sets of curves in Fig. 9.4

can be made quantitative by using TK as a fitting parameter: the choice of TK

determines which curves in fig:NCAcurves(a) and (b) are to be associated with

each other. Choosing TK = 8K for sample 1, HKH are able to get “quite good”

[HKH94] simultaneous agreement between a significant number of the individual

experimental data curves and their NCA curves of corresponding temperature.

This is illustrated in Fig. 9.5 [HKH95] for 3 curves from sample # 1. In other

words, by using a single fitting parameter, HKH can obtain good quantitative

agreement between the NCA and experimental conductance curves for a whole set

of curves.

9.6 Comparison with Experimental Curve and

NCA Calulation

In this section we compare the CFT prediction of eq. (9.26) for the universal scal

ing curve Γ(v) to that obtained by HKH via the NCA, and to the experimental

scaling curve of Fig. 3.10(b). For the NCA scaling curve we take the lowest

T/TK calculated by HKH, namely T/TK = 0.003, since for this curve the T/TK

deviations from perfect scaling, which are neglected in the CFT calculation, are
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Figure 9.5 Comparison between NCA theory and experiment for three individual
conductance curves from sample # 1. By using TK as a single fitting parameter
and choosing TK = 8K for sample 1, this kind of agreement is achieved simulta-
neously for a significant number of individual curves [Hettler, private communi-
cation], [HKH95]. The NCA curves shown here correspond to T = 0.3TK = 2.4K,
0.2TK = 1.6K and 0.15TK = 1.2K (NCA curves for the actual experimental tem-
peratures of T = 2.257K, 1.745K and 1.1K were not calculated.)

smallest.

In Fig. 9.6 we show the three experimental scaling curves of Fig. 3.10 (curves

1-3), the CFT prediction for Γ(u) from eq. (9.26) (curve 4), and the NCA result

for Γ(u), for T/TK = 0.003 (curve 5) and T/TK = 0.08 (curve 6). All these curves

have been rescaled into the “maximally normalized form” of eq. (9.27).

We see that the CFT scaling curve does not agree quantitatively with the

experimental curves, but that there is rather good agreement between the CFT

curve and the T/TK = 0.003 NCA result. However, the T/TK = 0.08 NCA curve,
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Figure 9.6 The conductance scaling function Γ(v). Curves 1,2,3 are the experi-
mental curves of Fig. 3.10 (b). Curve 4 is the CFT prediction from eq. (9.26).
Curves 5 and 6 are the NCA results of HKH, with T/TK = 0.003 and 0.08,
respectively. All curves have been rescaled in accordance with eq. (9.26).
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which for TK = 8K corresponds to T = 0.6K, the lowest temperature measured

in the experiment, agrees remarkably well with the experimental scaling curves.

To make these statements quantitative, we compare the values for the univer-

sal constant Γ1, defined as follows from the asymptotic large-v expansion of Γ(v)

[compare eq. (3.16)]:

Γ(v) − 1 ≡ v1/2 + Γ1 +O(v−1/2) . (9.35)

Γ1 is the y-intercept of the asymptotic slope of the curve Γ(v) − 1 vs. v1/2,

extrapolated back to v = 0. It measures “how soon the scaling curve bends

up” towards linear behavior, and is the single parameter that most strongly

characterizes the scaling function (which is otherwise rather featureless). We

find the following values for Γ1:

ΓEXP
1 = −0.75 ± 0.16 , ΓCFT

1 = −1.14 ± 0.10 ,

ΓNCA
1 (0.003) = −1.12 ± 0.10 , ΓNCA

1 (0.08) = −0.74 ± 0.10 .
(9.36)

Hence, the CFT and NCA calculations agree rather well, which inspires confi-

dence in the general reliability of the NCA method at very low energies . The fact

that both disagree by more than 30 % with experiment is explained by the excel-

lent agreement of the T/TK = 0.08 NCA curve with experiment. As first pointed

out by HKH, this simply means that in the experimentally relevant temperature

range, the T/TK-corrections to the universal curve are apparently not neglibible,

in contrast to the assumptions made by the CFT calculation. In other words,

the experimental scaling curve is not the truly universal one, since non-universal

correction-to-scaling terms are important too.

From a theorist’s point of view, this is a somewhat disappointing conclusion,

since for a system about whose microscopic nature so little is known, the only



264

quantities that allow a truly meaningful comparison between theory and exper-

iment are universal quantities, which are independent of the unknown details.

However, disappointing or not, this is the message of Fig. 9.6.

Nevertheless, the good agreement between the CFT and NCA scaling curves,

which confirms the reliability of the NCA method, combined with the good quan-

titative agreement between the NCA and the experimental conductance curves

when TK is used as fitting parameter, allows the main conclusion of this thesis:

• The 2-channel Kondo model is in quantitative agreement with the experi-

mental G(V, T ) data.

However, as was discussed in section 4.3, the theoretical justification for the

simple 2-channel Kondo model used in this thesis has recently been challenged.

Therefore, the Ralph-Buhrman experiments can not be regarded as completely

understood. Rather, the question that remains is: why does the 2-channel Kondo

model seem to describe this experiment so well despite the fact that the theo-

retical derivation of the model is on shaky grounds? In view of the fact that no

alternative explanation for the experiment is known that is in agreement with all

experimental facts, this question worthy of further investigation.



Chapter 10

Summary and Conclusions

10.1 Summary

Let us briefly summarize what has been done in this thesis.

1. Chapters 2 and 3 contain a detailed account of all experimental facts rele-

vant to the Ralph-Buhrman experiment (summarized in points (P1) to (P9)

in section 2.3), with the following conclusions: the zero-bias anomalies dis-

appear under annealing, and hence must be due to structural disorder; they

disappear when static disorder is added, and hence cannot be due to static

disorder – instead they must be due to dynamical impurities; they show no

Zeeman splitting in a magnetic field, and hence must be of non-magnetic

origin; they show V/T scaling with scaling exponent α = 1
2
, and a universal

scaling curve Γ(x) that was identical for all three samples investigated in

detail. These observations lead to the proposal [RB92] that the zero-bias

anomalies are due to degenerate two-level systems, interacting with con-

duction electrons according to the non-magnetic 2-channel Kondo model of

265
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Zawadowski [ZZ94a], introduced in chapter 4. Within this interpretation,

the observed scaling was explained by assuming that the system is in the

vicinity of the T = V = 0 fixed point of the 2-channel Kondo problem.

2. In order to quantitatively investigate the consequences of this proposal, we

decided to analytically calculate the universal scaling curve Γ(x), which is a

fingerprint of the 2-channel Kondo model, using the conformal field theory

solution of Affleck and Ludwig [AL93] for the 2-channel Kondo problem

near T = 0. In order to describe properly the non-equilibrium aspects

of the problem, we adopted Hershfield’s Y -operator formalism [Hers93],

which shows that non-equilibrium problems become formally simple when

formulated in terms of scattering states. We showed in chapter 5 how

Affleck and Ludwig’s conformal field theory solution can be used to obtain

the requisite exact scattering states, provided that one is willing to neglect

their V -dependence (which is of order V/TK in the weakly non-equilibrium

scaling regime of the experiment, and hence indeed negligble).

3. With this method, in chapter 9 the universal scaling curve was calculated

exactly to leading order in T/TK and zeroth order in eV/TK, but for arbi-

trary eV/T . The result does not agree with the experimental scaling curve,

because a careful analysis shows that subleading corrections of order T/TK

are not negligible. However, numerical NCA calculations by Hettler, Kroha

and Hershfield [HKH94], which incorporate such corrections automatically,

are in good quantitative agreement with experiment; they also agree with

CFT in the limit T/TK → 0, which inspires confidence that the NCA is

indeed a reliable tool for describing the low-energy regime of this problem.
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4. Chapters 6 to 8 and appendices A to F contain a detailed and extensive

introduction to Affleck and Ludwig’s CFT solution of the Kondo problem,

aimed at a reader with no or very little background in conformal field theory.

10.2 Conclusions

Let us now briefly summarize our conclusions about the 2-channel Kondo inter-

pretation of Ralph and Buhrman’s zero-bias anomalies.

Ralph and Buhrman have accumulated a large number of experimental facts

about the zero-bias anomaly, summarized in points (P1) to (P9) in chapter 2.

Some of these are qualitative (e.g. the signals disappear upon annealing and the

existance of scaling properties), others are quantitative (e.g. the conductance

exponent α = 1
2

and the shape of the universal scaling curve). To find an inter-

pretation for their data that simultaneously is in reasonable agreement with all

the experimental facts is quite a challenge.

In our opinion, the experimental evidence that the zero-bias anomaly is due

to some kind of structural, dynamical impurities interacting with conduction

electrons is very compelling. The difficult question is to find a reasonable model

that captures the relevant physics. In this thesis, we adopted the 2-channel

Kondo model of Zawadowski, which, at the time this work was started, was

the standard and accepted model for describing 2-level systems interacting with

conduction electrons.

In this thesis, it is demonstrated that the 2-channel Kondo model can satisfac-

torily account for all known experimental facts, both qualitative and quantitative.

In particular, it correctly predicts the scaling exponent T 1/2 that has been con-
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vincingly demonstrated in the data, and a combination of CFT and the NCA

calculations of Hettler, Kroha and Hershfield yield good quantitative agreement

with the G(V, T ) conductance data.

However, very recently the theoretical justification for the 2-channel Kondo

model has come under increased scrutiny [see section 4.3]. The criticism has

mainly been concerned with the question whether in realistic situations the sys-

tem will in fact flow toward the T = 0 fixed point that is invoked in this thesis

to explain the scaling properties of the data.

1. Wingreen, Altshuler and Meir [WAM95] have pointed out that the presence

of static disorder could lead to a significant splitting ∆ between the two

states of the TLS. Since the splitting is a relevant perturbation near the

T = 0 fixed point, this would mean that the system could never flow into

the vicinity of this fixed point. — While we believe that their method of

estimating ∆ is overly crude and their result unrealistically large (namely

∆ = 100K), we do agree that they have pointed out an important effect,

worthy of more careful consideration. Indeed, the assumption that ∆ < 1K

that we have to make in order to explain the experiment is probably the

weakest point in the 2-channel Kondo scenario. Unfortunately, there does

not seem to be an independent way to experimentally determine what values

for ∆ could reasonably be expected.

2. Moustakas and Fisher [MF95] have very recently argued that Zawadowski’s

non-orbital Kondo model is not sufficiently general: they argued that sub-

leading terms in the TLS-electron interaction have to be included, and

show that, even if ∆ = 0, these give rise to an extra relevant perturbation.
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This will prevent flow towards the T = 0 fixed point, unless some coupling

constants are fine-tuned such that this term vanishes.

It should be pointed out that the CFT approach is more vulnerable to these

arguments than the NCA, because the CFT calculation explicitly has to assume

that one is in the vicinity of the fixed point, whereas the NCA calculation needs

to make no such assumptions, and is completely defined once the Hamiltonian

has been written down. Nevertheless, the NCA uses an Anderson Hamiltonian

that is physically unrealistic for the present problem, and draws its justification

only from the argument that its universal low-energy behavior will be the same as

that of the 2-channel Kondo model. Therefore, the NCA approach too implicitly

assumes closeness to the fixed point.

Thus, we seem to be faced with the following situation: the 2-channel Kondo

model qualitatively and quantitatively agrees with all experimental facts, which

cannot be said of any other interpretation of the experiment known to date.

However, the theoretical justification for the model is currently on somewhat

shaky grounds. In our opinion, this should be regarded as an incentive for furhter

theoretical work — perhaps a way around the recently discovered problems can

still be found.

On the experimental side, it would be very helpful to get more “handles” on

the system. Additional measurements on the magnetic field dependence of the

conductance would certainly be welcome. It would be extremely interesting to

know the conductance G(V,H, T ) as a function of all three arguments. However,

as argued in section 3.3, the lack of detailed microscopic understanding for how

a magnetic field couples to the system, and experimental evidence (from other
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systems [GZC92]) that its effect might be of a rather random nature, might place

limits on how much reliable information the magnetic field dependence can yield.

Another handle seems to have been discovered in the second generation of ex-

periments that are currently being done on this system at Cornell by Shashikant

Upadhyay and R.A. Buhrman, who are investigating the same system, but with

superconducting leads. They are studying the dramatic effects that the presence

of a zero-bias anomaly in the normal state has on the system in the supercon-

ducting state.

The insights gleaned from these experiments will certainly be useful. Perhaps,

with more experimental and theoretical work, it will eventually be possible to

establish conclusively what is really giving rise to the zero-bias anomalies inside

these nanoconstrictions!



Appendix A

Sugawara technology

In this appendix we review some aspects of the abelian and non-abelian bosoniza-

tion of a system of N species of spinless, chiral (left-moving) fermions with linear

dispersion relation. Our aim is to derive the Sugawara form of the Hamiltonian

for free fermions [eqs.(A.53), or (A.81) to (A.83), or (A.102)]. Our presenta-

tion follows the beautifully detailed treatment of Ludwig, [Lud94b], which is well

worth reading carefully. Our aim here is to present the important results and

outline their derivation. However, we do not attempt a completely self-contained

treatment here, and refer the reader to Ludwig’s article for some of the more

technical issues.

No knowledge of conformal field theory is presumed – familiarity with Wick’s

theorem suffices.

In section A.1 we define the system to be studied, and in section A.2 discuss

the various global (gauge and scaling) symmetries of the action, as well as their

generalizations to analytic local (Kac-Moody and conformal) symmetries. This

symmetry analysis is really at the heart of all that is to follow, since it explains the

271
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origin of all the structure in the theory that is to be uncovered later. In section A.3

we introduce the notation to be used for analyzing the finite-size spectrum of the

system. In section A.4 we derive the partition function for N species of free chiral

fermions with anti-periodic boundary conditions. In section A.5 we derive the

operator product expansion of two general currents, using nothing but Wick’s

theorem. Section A.6 discusses the [U(1)]N abelian bosonization scheme, section

A.7 the U(1) × SU(N) non-abelian bosonization scheme, and section A.8 the

U(1) × SU(Ñ) × SU(k) non-abelian bosonization scheme for Ñk = N . The

important concept of a gluing condition is also introduced in sections A.7 and

A.8, and illustrated in detail for the cases U(1)×SU(2) and U(1)×SU(2̃)×SU(2).

A.1 Introduction

We consider N species of spinless, chiral (left-moving) fermions ψα(τ, ix), with

and α = 1, . . . , N and x ∈ [−∞,∞]. Right-moving fermions can be treated

in exact analogy to left-moving ones, and hence will not be discussed here (see

[Lud94b] for details). To study the low-energy behavior of such fermions, it

suffices to restrict attention to momenta within a cut-off energy ΛvF from the

left Fermi point, where T ≪ ΛvF ≪ εF . For momenta in the range p ∈ [−pF −

Λ,−pF + Λ], the dispersion relation can be linearized:

εk ≡
p2

2m
− p2

F

2m
≃ vFk . (A.1)

Here k ≡ −(pF + p) is the momentum measured relative to −pF , and the Fermi

level is taken at εk = 0. (Note that our definition for k for our left-movers is

chosen such that k > 0 implies εk > 0, which is the convention that Ludwig uses

for his right-movers.) We set vF ≡ 1 throughout.
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Using the normalization

{ψ†(ix), ψ(iy)} = 2πδ(x− y) , (A.2)

we thus consider the free Hamiltonian

H = vF

∫ ∞

−∞
dx
2π

∑

α

ψα†(τ, ix)i∂xψ
α(τ, ix) . (A.3)

The Heisenberg equations of motions,

(∂τ + i∂x)ψ
α(τ, ix) = 0 , imply ψα(τ, ix) = ψα(z) , (A.4)

where z ≡ τ + ix. Thus, the Heisenberg fields ψα(z) can be obtained from their

Schrödinger cousins ψα(ix) simply by analytic continuation, ix → z ≡ τ + ix,

which is the motivation for writing the argument of the Schrödinger field as ix in

eq. (A.2). Whenever the argument is written as only ix, the Schrödinger picture

will be implied.

The fact that the free fields only depend on z is extremely important, since it

implies invariance of the system under gauge and scale transformations that are

analytic functions of z. In the next section, we discuss these in some detail.

A.2 Lagrangian Description and Symmetries

The symmteries of the system are best analyzed in a Lagrangian description of

the system, which follows from the action (at T = 0)1

S =
∫ ∞

−∞
dτ
∫ ∞

−∞
dx
2π

∑

α

ψα†(τ, ix)∂τψ
α(τ, ix) +

∫ ∞

−∞
dτH(τ) (A.5)

=
∫ ∞

−∞
dτ
∫ ∞

−∞
dx
2π

∑

α

ψα†(τ, ix)2∂z̄ψ
α(τ, ix) , (A.6)

where ∂z̄ = 1
2
(∂τ + i∂x).

1We choose the sign of S such that the weighting factor in path-integral expressions is e−S ,
see e.g. [NO88], eq. (2.66).



274

A.2.1 Global Gauge Symmetries

The action is form-invariant (i.e. S[ψ] = S[ψ̃]) under the following global (i.e.

parametrized by constants) symmetry operations:

1. Global overall abelian U(1) gauge transformations, ψα = eiφψ̃α, i.e. one

overall constant (global) phase change, whose associated conserved current

we denote by Jo.

2. Global abelian U(1)×U(1) . . . U(1) gauge transformation, ψα = eiφαψ̃α, i.e.

individual global phase changes of each species, with associated conserved

currents Jα.

3. Global SU(N) gauge transformations, ψα =
[
eiθ

aTa
]

αα′ ψ̃
α′

, where the ma-

trices T aαα′ (a = 1, . . . , N2−1) are the SU(N) generators in the fundamental

(N×N -dimensional) representation.2 There are N2−1 associated conserved

currents, one for each generator, denoted by Ja.

Using a general notation, let G denote any of the above global gauge groups,

and the matrices TX
αα′ be the corresponding generators in an N×N -dimensional

representation [with X = 1, . . . , dim(G)]. Then the action is invariant under

ψα(z) =
[
e−iθ

XTX
]

αα′ ψ̃
α′

(z) , ψ†α(z) =
[
eiθ

XTX∗]

αα′ ψ̃
α′†(z) , (A.7)

where the θX are real constants, and TX∗ is the complex conjugate of TX (which

is hermitian). This implies via Nöther’s theorem that the currents

JX(z) ≡
N∑

α,α′=1

: ψα†(z)TX

αα′ψα
′
(z) : [X = 1, . . . , dim(G)] . (A.8)

2Some properties of the T aαα′ are summarized in eqs. (A.72)and (A.73).
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are conserved, i.e. satisfy ∂z̄J
X(z) = 0. Here the symbol : : denotes the point-

splitting operation in coordinate space:

: O1(z)O2(z) : ≡ O1(z + δ)O2(z) − 〈O1(z + δ)O2(z)〉 , (A.9)

which is used to subtract off the divergence that arises when two quantized fields

sit at the same point.3 The corresponding conserved charges

QX ≡
∫ ∞

−∞
dx
2π
JX(z) , (A.10)

are time-independent constants, i.e. satisfy ∂τQ
X(τ) = 0. They act as generators

of infinitesimal global gauge transformations through

δψα(z) = ψ̃α(z) − ψα(z) = −iθX[QX, ψα(z)] = iθXTX
αα′ψα

′
(z) ,

δψα†(z) = ψ̃α†(z) − ψα†(z) = −iθX[QX, ψα†(z)] = − iθXTX∗
αα′ψα

′†(z) ,

(A.11)

as can directly be verified using eq. (A.2).

A.2.2 Kac-Moody Gauge Symmetries

Now note the following very important fact, which is a direct consequence of the

linearization of the dispersion relation and hence the appearance of the very sim-

ple derivative ∂z̄ in the action: Whenever the action is invariant under eqs. (A.11),

it is automatically also is invariant under the infinitesimal local but analytical

gauge transformations that are obtained by replacing the constant parameters

3It sometimes happens that 〈O1(z + δ)O2(z)〉 does not subtract off all the divergent terms;
in that case, : O1(z)O2(z) : should still be interpreted as [O1(z+ δ)O2(z) – all divergent terms].
It can be shown (see [Lud94b, section 1.5]) that point-splitting in coordinate space is equivalent
to normal ordering in momentum space.
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θX by spatially varying analytic4 functions θX(z) that are real on the real axis.5

This is an immediate consequence of the fact that if θX(z) is analytic, then the

derivative ∂z̄ in S commutes with θX(z). Thus, S is invariant under the following

generalization of eq. (A.11):

δψα(z) = −i ∫∞−∞
dx′

2π
θX(z′)[JX(z′), ψα(z)] = iθX(z)TX

αα′ψα
′
(z) ,

δψα†(z) = −i ∫∞−∞
dx′

2π
θX(z′)[JX(z′), ψα†(z)] = − iθX(z)TX∗

αα′ψα
′†(z) .

(A.12)

This conclusion is so important that it deserves a general formulation:

To each of the global gauge symmetries of the action there corresponds a local

gauge symmetry, obtained by allowing the parameters of the transformation to

become analytic functions of z, i.e. θX = θX(z). Such transformations leave

the action form-invariant, since the derivative ∂z̄ commutes with any analytic

function [∂z̄φ(z) = φ(z)∂z̄]. The corresponding local analytical gauge symmetries

are called Kac-Moody (KM) gauge symmetries.

Since the space of all analytic functions is infinite-dimensional, there are an

infinite number of independent symmetry transformations, hence an infinite num-

ber of conserved Nöther currents. For example, if we put the system in a box,

x ∈ [0, l], with periodix boundary conditions on the currents JX(ix), then the

θX(z) can be expanded in a Fourier series,

θX(z′) = 2π
l

∑

n∈Z
e2πnz

′/lθXn . (A.13)

4Actually one has to be a little careful: since any analytic function that is not a constant is
unbounded in the full complex plane, an analytic gauge transformation will diverge somewhere
in the complex plane. Therefore one has to restrict attention to a bounded domain D, and
require θX(τ, ix) to be analytic [= θ(z)] inside D, and non-analytic but bounded outside D.
This is discussed in more detail in appendix C.

5This condition, i.e. θX(τ) = [θX(τ)]
∗
, is necessary to ensure that on the real axis, where

z = τ (so that all factors of ix are absent), eq. (A.12) reduces to the standard form (A.11), in
which the θX are real. It implies that θX(z) must be the analytical continuation into the full
complex plane (τ → τ+ix) of some real function θX(τ) (i.e. in the Taylor series θX(z)

∑
n anz

n,
all an are real).
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Each term in this series, inserted into eq. (A.12), corresponds to a conserved

current, whose conserved charge,

JXm(τ) ≡
∫ l

0

dx
2π
e2πmz/lJX(z) , (A.14)

satisfies ∂τJ
X
m(τ) = 0 [see also eq. (A.67)].

The presence of an infinite number of conserved quantities of course allows

one to extract an enormous amount of detailed information from the theory,

and is at the heart of all that follows. For example, this appendix is concerned

with analyzing the structure of the finite-size spectrum in ways that reflect these

infinite symmetries. This is will be done by analysing the algebra satisfied by the

generators {JXm}, which is called a Kac Moody algebra.

A.2.3 Conformal Symmetry

Finally, by inspection, the action is invariant under a global rescaling of coor-

dinates, τ = aτ̃ and x = ax̃, accompanied by a rescaling of fields, ψα(τ, ix) =

a−1/2ψ̃α(τ̃ , ix̃). The simple nature of the derivative ∂z̄ in the action implies that

this symmetry, too, has a local analytic version, namely conformal symmetry (see

[Lud94b, section 2.1]). Make a change of coordinates by writing z = τ + ix as an

arbitrary analytic function of a new variable w = τ̃ + ix̃:

z(w) = τ(w) + ix(w) , [and z̄(w̄) = τ(w̄) − ix(z̄) ] , (A.15)

and define new fermion fields ψ̃α(τ̃ , ix̃), via

ψα(τ, ix) ≡
(
dw

dz

)1/2

ψ̃α (τ̃ , ix̃) , ψ†α(τ, ix) ≡
(
dw

dz

)1/2

ψ̃†α(τ̃ , ix̃) . (A.16)
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In terms of the new coordinates the measure becomes6

dτdx =
∣∣∣ dτ
dτ̃

dx
dx̃

∣∣∣ dτ̃ dx̃ =
∣∣∣ dz
dw

dz̄
dw̄

∣∣∣ dτ̃ dx̃ , (A.17)

and, for analytic transformations such as eq. (A.15), the second determinant

simplifies to dz
dw

dz̄
dw̄

. Therefore, under this transformation, the action of eq.(A.6)

becomes:

S =
∫
dτ̃
∫

dx̃
2π

∑

α

∣∣∣∣∣
dw

dz

∣∣∣∣∣

−2 [
(
dw

dz
)1/2ψ̃†α(τ̃ , ix̃)

dw̄

dz̄
2∂w̄

(
(
dw

dz
)1/2ψ̃α(τ̃ , ix̃)

)]

=
∫
dτ̃
∫

dx̃
2π

∑

α

ψ̃α†(τ̃ , ix̃)2∂w̄ψ̃
α(τ̃ , ix̃) . (A.18)

All derivatives cancel, and the action in terms of the new variables has the same

form as the action eq.(A.6) in terms of the old variables. In other words, the action

(A.6) is invariant under conformal transformations eq. (A.15). Note once again

the importance of the tranformation being conformal: without the requirement

that w(z) be an analytic function of z, one would have had ∂z̄(
dw
dz

)1/2 6= 0, and S

would not have been invariant.

The new equations of motion, ∂w̄ψ̃
α(τ̃ , ix̃), imply that the new fields are again

analytic functions, ψ̃α(τ̃ , ix̃) = ψ̃α(w).

For future reference, let us find the generator for conformal transformations.

Consider an infinitesimal conformal transformation, written in the form

w(z) = z − ε(z) , (A.19)

where ε(z) is small (footnote 4 applies here too). Eq. (A.16) implies that to order

O(ε), the infinitesimal change in ψα(z) is given by

δψα(z) ≡ ψ̃α(z) − ψα(z) =
[

1
2
∂zε(z) + ε(z)∂z

]
ψα(z) . (A.20)

6The second equality follows by using
(
dτ
dx

)
= 1

2

(
1

−i
1
i

) (
dz
dz̄

)
and

(
dτ̃
dx̃

)
= 1

2

(
1

−i
1
i

) (
dw
dw̄

)
to

rewrite the Jacobian determinant in terms of dz, dz̄, dw, dw̄.
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Such infinitesimal conformal transformations on ψα(z) are generated by the so-

called stress-energy tensor T (z),

T (z) = 1
2

:
{[
∂zψ

α†(z)
]
ψα(z) − ψα†(z)∂zψ

α(z)
}

: , (A.21)

through the relation

δψα(z) =
∫ ∞

−∞
dx′

2π
ε(z′)[T (z′), ψα(z)] , (A.22)

as can directly be verified using the anti-commutation relations (A.2).

A.2.4 Discussion

All of the above symmetries have profound implications for the structure of the

theory. These were explored in a systematic fashion in the seminal work of

Belavin, Polyakov and Zamolodchikov [BPZ84] for conformal invariance, and

by Knizhnik and Zamolodchikov [KZ84] for Kac-Moody invariance. They are

summarized in appendix B, and illustrated for free fermions in section B.2 of

that appendix, where the equations of the preceding section will be found to be

specific realizations of a much more general theory.

However, in the present appendix, we do not need these general results. Here

we restrict our attention to the structure of the Hilbert space on which the Hamil-

tonian acts. Formally, whenever the Lagrangian is invariant under some symme-

try, it must be possible to group the eigenstates of H together into subsets that

transform into each other in a well-defined way under symmetry operations: the

Hilbert space must carry a representation of the corresponding symmetry group.

To analyze the structure of the Hilbert space, it is convenient to put the

system in a finite box, x ∈ [0, l], so that the energy levels are quantized and one
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has well-defined eigenstates to work with, and to study the structure of the finite-

size spectrum. At first, this seems like a trivial question: the spectrum consists of

(highly degenerate) energy levels spaced at uniform intervals, ε
n+

1
2

= 2π
l
(n+ 1

2
).

However, we are interested in more detail in the symmetry properties of the

spectrum. We would like to answer the following question: How do the states of

H transform under the symmetry operations that leave the action invariant? In

other words, how can the Hilbert space be organized into representations of some

or other of the above symmetry groups?

The possible representation can be found via algebraic techniques by rewriting

the Hamiltonian in Sugawara form, and studying the commutation relations of the

conserved charges. The various bosonization schemes that exist are simply ways

of rewriting the Hamiltonian in terms of bosonic currents (expressions quadratic

in the ψ’s) in ways that make explicit the various symmetries of H and are

adaptable to the particular symmetries that a given perturbation might have.

A.3 Finite Size System: Definitions

In this section we summarize the definitions we shall use for our analysis of the

finite-size spectrum.

Impose anti-periodic7 boundary conditions in the space direction on the fermion

fields: ψα(τ, x = l) ≡ −ψα(τ, x = 0), so that momenta and energies are quan-

tized at εn+ 1
2
≡ kn+ 1

2
= 2π

l
(n+ 1

2
). Let ψα†

n+ 1
2

create an electron of species α and

7The reason for choosing anti-periodic instead of periodic boundary conditions is to obtain
a non-degenerate ground state, which simplifies the subsequent analysis considerably. With
periodic boundary conditions, εk = 0 is an allowed energy value. Hence the ground state is 2N

fold degenerate, since the εk = 0 state of each of the N species can be either empty or occupied.
This case is discussed in [AL92b, section V].
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momentum kn+ 1
2
. Then the T = 0 Fermi sea is characterized by

ψαn+ 1
2
|0〉 = 0 if εn+ 1

2
> 0, i.e. if n ≥ 0 , (A.23)

ψα†
n+ 1

2

|0〉 = 0 if εn+ 1
2
< 0, i.e. if n < 0 . (A.24)

Normal ordering of operators in momentum space is consequently defined as

follows:

∗
∗ψ

α†
m+ 1

2

ψαn+ 1
2

∗
∗ ≡





ψα†
m+ 1

2

ψα
n+ 1

2

if m 6= n ,

ψα†
m+ 1

2

ψα
m+ 1

2

if m = n ≥ 0 ;

−ψα
m+ 1

2

ψα†
m+ 1

2

if m = n < 0 .

(A.25)

The second-quantized field ψα(ix) in the Schrödinger picture are related to the

ψα†
n+ 1

2

through a Fourier sum:

ψα(ix) = 2π
l

∑

n∈Z
e−i2π(n+ 1

2
)x/lψαn+ 1

2
, (A.26)

ψαn+ 1
2

=
∫ l

0

dx
2π
ei2π(n+ 1

2
)x/lψα(ix) (A.27)

with
∫ l

0

dx
2π
ei2πnx/l = l

2π
δn,0 ,

∑

n∈Z
e−i2πnx/l = lδ(x) , (A.28)

or, in the continuum limit,

2π
l

∑

n∈Z
→
∫
dp , l

2π
δn,n′ → δ(p− p′) . (A.29)

Having chosen the normalization for the canonical anti-commutation relations

as

{ψ†(ix), ψ(iy)} = 2πδ(x− y) {ψ†
n+ 1

2

, ψm+ 1
2
} = l

2π
δn,m , (A.30)

the free Hamiltonian is

H =
∫ l

0

dx
2π

: ψα†(ix) i∂x ψ
α(ix) : (A.31)
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= 2π
l

∑

n∈Z

N∑

α=1

εn+ 1
2

∗
∗ψ

α†
n+ 1

2

ψαn+ 1
2

∗
∗ (A.32)

(A.33)

The time-dependence of the Fourier modes in the Heisenberg picture is simply

ψα
n+ 1

2

(τ) = ψα
n+ 1

2

e
−τε

n+1
2 = ψα

n+ 1
2

e−2πτ(n+ 1
2
)/l. Thus eq. (A.26) implies ψα(τ, ix) =

ψα(z), as we already know from eq. (A.4).

For future reference, let us calculate the free Green’s function at T 6= 0.

Thermal expectation values have their usual form (written in the continuum

limit)

〈ψα†p ψαp 〉 = δαα′δ(p− p′)fεpα , fεpα =
1

eβ(εp−µα) + 1
, (A.34)

(for generality we show its form for µα 6= 0, although we use only µ = 0 in

this appendix). Using this, it is straightforward to obtain the finite-temperature

Green’s function for the fermions:

Gαα′(z − z′) ≡ −〈Tψα(z)ψα′†(z′)〉 (A.35)

= −δαα′

∫
dpe−εp(z−z

′)
[
θ(τ − τ ′)(1 − fεpα) − θ(τ ′ − τ)fεpα

]

= −δαα′
e−µα(z−z′)

β
π

sin π
β
(z − z′)

. (A.36)

The last line can be obtained from standard tables, e.g. [Bate54, p.120, eq.(14)],

or by doing the integral by contour methods.8

A.4 Free Fermion Partition Function

In this section we calculate the partition function for a single species of free, chiral

fermions from first principles, following [Gins87, p.101]. This is an elementary

8Make a shift p′ = p − µα, and close the
∫
dp′ integral along a semi-circle in the lower

(or upper) half-plane for (x − x′) > 0 (or < 0). There are an infinite number of poles at
p′ = 2π(n+ 1

2 )/β; their contributions can be summed up to give sin−1.



283

exercise, but instructive, since it sheds some light on what we can expect to find

from more sophisticated approaches.

We take as Hamiltonian eq. (A.31) with N = 1 (and the index α suppressed).

Since

Q ≡
∫ l

0

dx
2π

: ψ†(ix)ψ(ix) : (A.37)

is the total number of particles relative to the Fermi surface (which has Q = 0),

Q has integer eigenvalues, Q ∈ Z. The set of all eigenstates of H that have the

same Q is called a tower of charge Q and denoted by {|Q, a〉} (with a labelling

the states within the tower). The partition function is sum over all towers:

Z = Tr e−βH ≡
∑

Q∈Z
χQ (A.38)

where χQ ≡
∑

{a}
〈Q, a|e−βH |Q, a〉 (A.39)

χQ, the partition function for the tower with charge Q, is called a character in

group theory language.

The lowest state in the charge-Q tower is called the charge-Q primary state

and denoted by |Q〉. It is the state in which all energy levels up to level Q

are occupied and all higher levels are empty, and hence does not contain any

particle-hole excitations. Hence its energy is

EoQ − Eoo = 2π
l

|Q|∑

j=1

(j − 1
2
) = 2π

l
Q2/2 , (A.40)

(the sum here is only over positive energies, since an electron that is added to

the j-th level above the ground state, or a hole that is created in the j-th level

below the ground state, both have energy 2π
l
(|j| − 1

2
).

The set of all particle-hole excitations that can be created from |Q〉 constitute

the excited states, called descendants, in the tower. At energy EM = 2π
l
M above
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EoQ these states are described by a set of integers k1 ≥ k2 ≥ ...kl ≥ 0, with

∑l
i=1 = M (these numbers specify the levels occupied by the uppermost l particles

in that particular state, starting from the top). The total number of such states

for given M is just the number of partitions P (M) of M , a number that can be

obtained from the generating function

1
∏∞
n=1(1 − qn)

≡
∞∑

M=0

P (M)qM ≡ q1/24η−1(q) , (A.41)

where η(q) is known as the Dedekind function. Defining q ≡ e−2πβ/l, the contri-

bution from the Q-th tower to the partition function is;

χQ =
∞∑

M=0

P (M)e−β(EoQ+2πM/l] =
qQ

2/2e−βEoo
∏∞
n=1(1 − qn)

= η−1(q)qQ
2/2. (A.42)

For the last equality, we used the fact that E00 = −p
l
c
24

, with c=1; this result

can be found using more sophisticated CFT treatments of free fermions (see next

section), where E00 arises as a finite-size correction to the ground state energy

[BCN86,Aff86a].

The partition function itself thus is simply:

Z =
1

η(q)

∞∑

Q=−∞
qQ

2/2 . (A.43)

Using some standard identities [Gins87, eq.(7.13a), (7.29)], it can readily be

checked that this result is identically equal to Z = q−1/24∏∞
n=0

(
1 + q(n+ 1

2
)
)2

,

which is the perhaps more familiar way of summing over all electron and hole

states.

The following features of the above calculation will emerge again in subsequent

sections:

(a) It is possible to classify or group states into towers, each labelled by a (or
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several) quantum number(s) (Q in this case).

(b) In a given tower, the states with the lowest energy are called the primary

states of the tower. All other states in the tower are called descendants, and are

particle-hole excitations created from the primary states.

(c) When calculating the partition function, the contribution from the excited

states (descendants) within any tower simply involves a sum over particle-hole

excitations, and always yields a factor η−1(q).

(d) What remains is a contribution from the primary state(s) of each tower,

summed over all towers (
∑
Q∈Z q

Q2/2 in this case).

Grouping states together into towers is natural in CFT, since (as will be

argued below (see page 293), a conformal transformation reshuffles states within

a tower, but not among different towers; hence, each tower carries an infinite-

dimensional (since arbitrarily high energies are involved) representation of the

conformal algebra, and, in our case, of some KM algebra.

To make these statements explicit, one has to introduce some more technology.

The reward for our extra labors will be that we shall find an algebraic way of

classifying the free-fermion spectrum. Moreover, the method will be generalizable

to the other, less trivial bosonization schemes, and allow us to uncover some less

obvious features of the free fermion spectrum.

A.5 Current OPEs from Wick’s theorem

Aff86b

The general strategy in all subsequent section will be to find the commu-

tation relations obeyed by the conserved charges JXn of one of the Kac-Moody
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gauge symmetries discussed in section A.2, and to analyze the representations

of the resulting algebra. The desired commutation relations can be found in a

straightforward way from those of the ψα
n+ 1

2

. Here we follow a slightly different

strategy. We find the operator product expansion (OPE) of any two currents JA

and JB explicitly, using nothing but the point-splitting prescription and Wick’s

theorem. From these one can then use a general result [eq. (A.62)] to read off the

desired commutation relations. Moreover, the current OPEs allow a direct way

of finding various Sugawara forms for the free Hamiltonian.

Consider again the system of N species of free, chiral fermions ψα introduced

in section A.2. Let Aαα′ be an arbitrary N ×N matrix, and define the current

JA(z) ≡
∑

αα′
: ψα†(z)Aαα′ψα

′
(z) : . (A.44)

Using Wick’s theorem and [from eq. (A.36)]

〈ψα†(z + δ)ψα
′
(z)〉 = 〈ψα(z + δ)ψα

′†(z)〉 =
δαα′

δ
, (A.45)

it is straightforward to evaluate the product of two such currents:

JA(z + δ)JB(z) ≡
∑

αα′ββ′
: ψα†(z + δ)Aαα′ψα

′
(z + δ) : : ψβ†(z)Bββ′ψβ

′
(z) :

=
∑

αα′ββ′
Aαα′Bββ′

[
δαβ′δα′β

δ2
+ : ψα†(z)ψα

′
(z)ψβ†(z)ψβ

′
(z) :

+ 1
δ

(
δα′β : ψα†(z + δ)ψβ

′
(z) : + δαβ′ : ψα

′
(z + δ)ψβ†(z) :

)]
(A.46)

The first and third terms arise from double and single Wick contractions. Note

that terms that arise from contracting operators within the same : : do not

contribute, since they are automatically subtracted by the point-splitting sub-

traction prescription. Now add 0 = (1− 1)1
δ

[
:ψα†(z)(AB −BA)αβψ

β†(z) :
]

and
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rearrange, remembering that fermion fields inside : : anti-commute:

JA(z + δ)JB(z) = 1
δ2

Tr[AB] + 1
δ

[
: ψα†(z)(AB −BA)αα′ψα

′
(z) :

]

+ :
(
∂zψ

α†(z)
)

(AB)αα′ψα
′
(z) : − : ψα†(z)(BA)αα′∂zψ

α′
(z) :

+ : ψα†(z)Aαα′ψα
′
(z)ψβ†(z)Bββ′ψβ

′
(z) : . (A.47)

This result is an example of an OPE, the general form of which is:

A(z1)B(z2) =
C(z2)

(z1 − z2)2
+

D(z2)

(z1 − z2)
+O(1) . . . (A.48)

We have displayed only the leading divergent terms as z1 → z2; O(1) denotes

all terms that remain finite in this limit. An OPE expresses the product of two

operators, in the limit that their arguments approach each other, in terms of a

sum over local operators C(z2), D(z2), etc. Such an OPE is understood to become

a true equation when inserted into any correlation function of other fields Oj(zj)

in the theory under consideration, in the limit where the distance between z1 and

z2 becomes much smaller than the distance between z1 and z2 and the arguments

zj of all the other fields Oj. (For a review of the concept of an OPE see e.g.

[Car87].)

Eq.(A.47) will be very useful in subsequent sections for finding various equiv-

alent expressions for the free-fermion Hamiltonian of eq. (A.31) in terms of ex-

pressions that are quadratic in various currents.

A.6 Abelian Bosonization

A.6.1 Tomonaga form of Hamiltonian

As discussed in section A.2, the action is invariant under phase changes of the

form ψα → eiφαψα. the corresponding N abelian conserved currents Jα(z) and
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charges Qα are:

Jα(z) ≡ : ψα†(z)ψα(z) : (α not summed), (A.49)

Qα ≡
∫ l

0

dx
2π
Jα(z) (α not summed). (A.50)

[i.e. Aββ′ = δαβδαβ′ in eq. (A.44)].

From eq. (A.47) the mutual OPEs of the currents are:

Jα(z + δ)Jα
′
(z) = δαα′

[
1

δ2
+ :

(
∂zψ

α†(z)
)
ψα(z) : − : ψα†(z)∂zψ

α(z) :
]

+ : ψα†(z)ψα(z)ψα
′†(z)ψα

′
(z) : (A.51)

The second term in eq. (A.47) is zero, because A = B. If α = α′, the last is

also zero because the ψ’s anti-commute within the normal ordering symbol, and

ψα(z)ψα(z) = 0, due to Fermi statistics. Consequently, we have the important

result

1
2

: Jα(z)Jα(z) := 1
2

[
:
(
∂zψ

α†(z)
)
ψα(z) : − : ψα†(z)∂zψ

α(z) :
]
, (A.52)

the : : subtracting out the 1
δ2

divergence.

Now note that the Hamiltonian eq. (A.31) may be written in the so-called

Tomonaga form:

H =
N∑

α=1

Hα , Hα =
∫ l

0

dx
2π

1
2

: Jα(ix)Jα(ix) : (A.53)

[Hα, Hα′
] = [Hα, Qα′

] = [Qα, Qα′
] = 0 . (A.54)

This scheme is known as abelian bosonization, because H is written in terms of

the abelian currents Jα. The associated charges Qα are the generators of the

abelian U1(1) × . . . × UN(1) symmetry group of independent phase changes on

each of the N species ψα.
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A.6.2 Algebraic Analysis of Spectrum

Since the Hα and Jα for different α commute, we shall analyze the spectrum

for a given Hα on its own, and hence suppress the index α in this subsection.

Unraveling the structure of the spectrum is straightforward but instructive (we

shall of course rediscover the tower structure introduced in section A.4). We

follow the presentation of [Lud94b, sections 1.7, 1.8].

It is instructive to write H in terms of the Fourier modes of the current J :

J(ix) ≡ 2π
l

∑

m∈Z
e−i2πmx/lJm (A.55)

Jm ≡
∫ l

0

dx
2π
ei2πmx/lJ(ix)

[
= 2π

l

∑

n∈Z

∗
∗ψ

†
n+ 1

2

ψn+m+ 1
2

∗
∗

]
. (A.56)

(These conventions are those of [Lud94b, Appendix]. Also, see [Lud94b, sections

1.5] for a discussion of the subtleties involved in going from point-splitting (: :)

in position space to normal ordering (∗∗
∗
∗) in momentum space.) We see from

eq. (A.56) that Jm is built from an infinite sum of electron-hole excitations.

Moreover, all non-negative Fourier modes m > 0 annihilate the Fermi sea,

Jm|0〉 = 0 ifm > 0 , (A.57)

due to the definition (A.25) of ∗
∗

∗
∗. Thus, normal ordering for the currents can

be defined as follows

∗
∗JmJn

∗
∗ ≡





JmJn if n 6= −m ,

J−nJn if n = −m > 0 ,

JnJ−n if n = −m < 0 .

(A.58)

Next, introduce the so-called stress-energy tensor T , of central importance in
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CFT, because it is the generator of coordinate transformations:9

T (z) ≡ 1
2

: J(z)J(z) : +(2π
l
)2 c

24
, c ≡ 1 . (A.59)

Its Fourier modes are defined through

2π
l
Lm ≡

∫ l

0

dx
2π
ei2πnx/lT (ix) + 2π

l
δm,o

c
24

= 2π
l

∑

n∈Z

1
2
∗
∗JnJm−n

∗
∗ . (A.60)

It follows from the 2nd equation in (A.53) that the Hamiltonian is related to Lo:

H = 2π
l

[
− c

24
+ Lo

]
= 2π

l

[
− c

24
+
∑

n∈Z

1
2
∗
∗JnJ−n

∗
∗

]
. (A.61)

The extra term −2π
l
c
24

in eq. (A.61) arises from a careful treatment of the tran-

sition from point-splitting to normal ordering that occurs when rewriting H in

Fourier space. Adding such a term in the definition (A.59) of the stress-energy

tensor ensures that eqs. (A.60) and (A.61) are consistent (see [Lud94b, section

1.6]). This term turns out to be universal, in the sense that it is independent of

the way one chooses to regularize the theory. Its value is always −2π
l
c
24

, where c,

the so-called central charge, is a parameter of the theory. c = 1 for a theory of

a single species of Dirac fermions, as in the present case of eqs. (A.59) to (A.61)

(and hence ctot = N if one considers all N species of fermions together).

The fact that the magnitude of the finite-size corrections in eqs. (A.59) to

(A.61) depend only on the central chare c, can be used to interpret it as follows:

it characterizes the magnitude of the “response” of the stress-energy tensor and

the ground state energy to imposing a finite size on the system (see [Aff86a] and

[BCN86], and for a nice summary, [CH93], p. 37).

9Note that eq. (A.52) ensures that the definitions eqs. (A.59) and (A.21) are consistent, up
to the constant (2π

l )2 c
24 , which is a finite-size effect that vanishes as l → ∞. However, eq. (A.59)

is a much more general definition of the stress-energy tensor – see [Gins87, section 9.2] for a
general discussion of this construction, which we summarize in appendix B, section B.3.
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The commutation relations of the Jm and Lm are found most easily by using

the following result (proven in [Lud94b, eq.(1.40)]): if two operators A(u1) and

B(u2) depend analytically on their arguments and have the OPE of eq. (A.48),

then their commutation relations in Fourier space are

[An, Bm] = n2π
l
Cn+m +Dn+m , (A.62)

where Am ≡
∫ l

0

dx
2π
ei2πmx/lA(ix) . (A.63)

Using point-splitting techniques such as those illustrated in section A.5, one read-

ily finds the following OPEs:

T (z1)J(z2) =
J(z2)

(z1 − z2)2
+
∂z2J(z2)

(z1 − z2)
+ . . . ; (A.64)

J(z1)J(z2) =
1

(z1 − z2)2
+ . . . . (A.65)

where the . . . denote terms that are regular in the limit z1 → z2. These relations

translate into the following commutation relations for the currents (for the first

of eq. (A.66), a generalization of eq. (A.62) is needed, see [Gins87, eq.(3.8a)]):

[Ln, Lm] = (n−m)Ln+m + c
12

(n3 − n)δn+m,0 ;

[Ln, Jm] = −mJn+m ;

[Jn, Jm] = nδn+m,0 .

(A.66)

The first and third equations define the so-called Virasoro and U(1) Kac-Moody

algebras, respectively [they are a special case (namely k = 1, f = 0, c = 1) of the

general form of these relations, which will be encountered in eq. (A.105)]. They

play a central role in CFT, since very many general properties can be deduced

from them.
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In close analogy to the representation theory of angular momenta, we can

deduce the structure of the spectrum as follows:10 Eq. (A.66a) and (A.66b), with

n = 0, imply that

[H,Lm] = −2π
l
mLm ; [H, Jm] = −2π

l
mJm . (A.67)

This implies that there are an infinite number of conserved quantities, namely11

Jm(τ) ≡ e2πmτ/leτHJme
−τH , all satisfying ∂τJm(τ) = 0. As explained in sec-

tion A.2, this is a consequence of the fact the action is invariant under an infinite

set of Kac-Moody symmetry transformations, generated by the Jm. Furthermore,

eq. (A.67) implies that (for m > 0) the L−m and J−m act as raising operators,

and L+m and J+m as lowering operators (in units of 2π
l
), for the Hamiltonian

H. Furthermore, we find that [Ln, Jo] = [Jn, Jo] = 0, hence all states related to

each other by raising and lowering operations through Ln’s or Jn’s have the same

charge, say Q. For any given Q, there is a so-called “primary state |Q〉 of charge

Q”, which by definition obeys

Jo|Q〉 = Q|Q〉 and Jm|Q〉 = 0 for all m > 0 . (A.68)

Since for m > 0 the Jm = 2π
l

∑
n∈Z

∗
∗ψ

†
n+ 1

2

ψn+m+ 1
2

∗
∗ [see eq. (A.56)] are (energy-)

lowering operators, the second equation of (A.68) implies that |Q〉 has no particle-

hole excitations and hence is the charge-Q state of lowest energy. Thus it is

precisely the primary state of charge Q encountered in section A.4 (compare

with point (b) on p. 285). All descendant (higher-energy) states {|Q, a〉} in the

10For a systematic discussion of the representation theory of the Virasoro algebra, see
[Gins87], section 3.3, or [CH93], chapter 4.

11The extra factor of e2πmτ/l is needed to compensate for the fact that [H,Jm] 6= 0 if m 6= 0;
it also follows naturally from general considerations of Jm(τ) as the conserved charge of a KM
symmetry, see eq. (A.14).
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charge-Q tower can be obtained from the primary state by application of all

possible combinations of (energy-) raising operators Jm (m < 0). Thus they are

essentially particle-hole excitations on |Q〉, and hence their energies are of the

form

EQ − Eo = 2π
l
(Q2/2 +m) , m ∈ Z+ , (A.69)

where Z+ denotes the non-negative integers.

A partition-function sum over the Q-th tower is simply equal to the character

χQ of eq. (A.42). Note that eq. (A.69) implies the general rule

EQ − Eo =





2π
l
m for Q = even ,

2π
l
(m+ 1

2
) for Q = odd ,

with m ∈ Z+ , (A.70)

as one would expect for Q free fermions with energies εn+ 1
2

= 2π
l
(n+ 1

2
).

Since the Ln are the Fourier components of the stress-energy tensor T which

generates coordinate transformations, they play the role of generators of confor-

mal transformations (on the strip of width l that we are considering). (To be

precise, (1 +
∑
n anLn) is the generator of an infinitesimal conformal transforma-

tion characterized by the parameters an.) Now recall that [Lm, Jo] = 0 for all

m. This means that conformal transformations don’t change the charge Q of

a state, i.e. they only mix state within the same tower. In other words, each

tower {|Q, a〉} is an infinite-dimensional representation of the conformal group,

the primary state |Q〉 being the so-called highest weight state from which all

other states in the tower can be generated.

Finally, note that eq. (A.66c), rewritten in position space, implies that

[J(ix), J(iy)] = −i∂xδ(x− y) . (A.71)
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Thus, the current does not commute with itself! This is a consequence of vacuum

fluctuations and is called the Schwinger or chiral anomaly.

Combining the α = 1, . . . , N species at the end, the complete Hilbert space is

a direct product of N copies of the one described above. In particular, a general

primary state will be labelled by N charges, |Q1, . . . , QN〉.

To summarize this section, we have algebraically analyzed the spectrum of N

species of free, chiral fermions, and found that it can be organized into (a direct

product of) conformal towers, labelled by charges Qα, each of which carries a

representation of the conformal group.

For a detailed physical interpretation of the various states in a tower, see

[Lud94b, section 1.8]. For a more systematic discussion of the properties of

towers, primary states and descendants, see [BPZ84] or [Gins87, chapter 3].

A.7 U(1) × SU(N) Non-Abelian Bosonization

Under SU(N) transformations that transform the various species ψα into each

other, the abelian charge towers discussed above do not transform into each other

in a simple way. Finding a classification of the spectrum in terms of SU(N)

multiplets is the subject of this section.

A.7.1 SU(N) currents and OPEs

Let T aαα′ , A = 1, . . . , N2 − 1 denote the generators of SU(N) transformations

in the fundamental (N × N -dimensional) representation, and fabc(N) the SU(N)

structure constants. Using the normalization Tr(T aT b) = 1
2
δab, the following
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properties hold:

[T a, T b] = fabc(N) T
c; Tr(T a) = 0;

N2−1∑

a=1

(T aT a) =
N2 − 1

2N
; (A.72)

N2−1∑

a=1

T aαα′T aββ′ = 1
2

(
δαβ′δα′β − 1

N
δαα′δββ′

)
. (A.73)

[The latter result can be obtained from noting that the left-hand side is an

SU(N)-invariant tensor, and hence necessarily of the form c1δαβ′δβα′ + c2δαα′δββ′ .

The coefficients c1 and c2 are then obtained by enforcing the second and third

equalities listed in eq. (A.72).]

The conserved current Jo and charge Qo associated with total phase trans-

formations (ψα → eiφψα), and Ja, Qa associated with SU(N) transformations

(ψα → (RN)αα′ψα
′
), are constructed as follows:

Jo(z) ≡
N∑

α=1

: ψα†(z)ψα(z) :

[
=

N∑

α=1

Jα
]

(A.74)

Ja(z) ≡
N∑

α,α′=1

: ψα†(z)T aαα′ψα
′
(z) : (a = 1, . . . , N2 − 1) . (A.75)

The corresponding charges are

Qo ≡
∫ l

0

dx
2π
Jo(z) ; Qa ≡

∫ l

0

dx
2π
Ja(z) . (A.76)

Using the properties eq. (A.72) in the general OPE eq. (A.47), one immedi-

ately finds the following OPEs:

Jo(z + δ)Jo(z) = N
δ2

+
∑

α

[
:
(
∂zψ

α†(z)
)
ψα(z) : − : ψα†(z)∂zψ

α(z) :
]

+
∑

αβ

: ψα†(z)ψα(z)ψβ†(z)ψβ(z) : ; (A.77)

Ja(z + δ)Ja
′
(z) =

1
2
δaa

′

δ2
+ 1

δ
faa

′c
(N) J

c(z)
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+
∑

αα′

[
:
(
∂zψ

α†(z)
)

(T aT a
′
)αα′ψα

′
(z) : − : ψα†(z)(T a

′
T a)αα′∂zψ

α′
(z) :

]

+
∑

αα′ββ′
: ψα†(z)T aαα′ψα

′
(z)ψβ†(z)T a

′
ββ′ψβ

′
(z) : . (A.78)

Eq. (A.77) is very similar to eq. (A.51); however, the last term is non-zero even

if a = a′, since ψα(z)ψβ(z) 6= 0 if α 6= β. In eq. (A.78), the non-abelian nature

of the SU(2) currents manifests itself in the 2nd term (which was zero for U(1)

currents).

The OPEs again contain : ψ†∂zψ : terms, hence one can construct the free-

fermion Hamiltonian eq. (A.31) from current bilinears. However, a very partic-

ular linear combination of JoJo and JaJa is needed to eliminate the non-zero

: ψ†ψψ†ψ : terms in eqs. (A.77) and (A.78). Using eq. (A.73) in eq. (A.78) it

follows that

∑

a

: Ja(z)Ja(z) : =

(
N2 − 1

2N

)
∑

α

[
:
(
∂zψ

α†(z)
)
ψα(z) : − : ψα†(z)∂zψ

α(z) :
]

−1
2

(
1 + 1

N

)∑

αα′
: ψα†(z)ψα(z)ψα

′†ψα
′
(z) : , (A.79)

which implies that the needed linear combination is

−
∑

α

: ψα†(z)∂zψ
α(z) := 1

2N
: JoJo : (z) + 1

N+1

∑

a

: JaJa : (z) (A.80)

[compare [AL91b], eq.(2.8), or [KZ84], eq. (4.31)]. Consequently, the free fermion

Hamiltonian (A.31) can be written in the following so-called Sugawara form, in

which a separation of charge and spin degrees of freedom is manifest [Aff86a,

eq.(2.32b)]:

H = Hc +Hs (A.81)

Hc =
∫ l

0

dx
2π

1
2N

:JoJo : (z) (A.82)

Hs =
∫ l

0

dx
2π

1
N+1

∑

a

:JaJa : (z) . (A.83)
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A.7.2 Algebraic Analysis of Spectrum

Since [Hc, Hs] = 0, we can again analyze the spectra of the “charge” and “spin”

Hamiltonians Hc and Hs separately. For Hc, the analysis is identical to that

presented in section A.6.2, and the central charge is again cc = 1. Consequently,

the charge spectrum is organized into charge towers labelled by a charge Q ∈ Z.

The energies within a charge-Q tower are

Ec
Q − Ec

o = 2π
l

[
Q2

2N
+mc

]
, (mc ∈ Z+) , (A.84)

with characters

χcQ = η−1(q)q
Q2

2N . (A.85)

To understand the structure of the spin spectrum, one uses the OPEs of T s

and Ja to calculate the commutation relations of the corresponding Lsn and Jsm.

We adopt definitions analogous to eqs. (A.59), (A.60) and (A.56):

T s(z) ≡ 1
N+1

∑

a

: JaJa : (z) + (2π
l
)2 cs

24
cs ≡ N2−1

N+1
; (A.86)

2π
l
Lsm ≡

∫ l

0

dx
2π
ei2πmx/lT (ix) + 2π

l
δm,o

cs
24

= 2π
l

∑

n∈Z

∑

a

1
1+N

∗
∗J

a
nJ

a
m−n

∗
∗ ;

Jam ≡
∫ l

0

dx
2π
ei2πmx/lJa(ix)

[
= 2π

l

∑

n∈Z

∗
∗ψ

α†
n+ 1

2

T aαα′ψα
′

n+m+ 1
2

∗
∗

]
. (A.87)

Hs = 2π
l

[
− cs

24
+ Lso

]
= 2π

l

[
− cs

24
+
∑

n∈Z

∑

a

1
1+N

∗
∗J

a
nJ

a
−n

∗
∗

]
. (A.88)

Note, however, that the central charge in the spin sector, cs ≡ N2−1
N+1

, is different

from the charge case. Its value can be obtained by being careful about point-

splitting and normal ordering when writing Hs in Fourier space (see [Lud94b,

section 1.6]). A consistency check is always that the central charges of the various

sectors of the theory have to add up to that ofN free fermions: ctot = cc+cs = N .)
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The commutation relations that follow from the OPEs of T s and the Jas are

[Lsn, L
s
m] = (n−m)Lsn+m + cs

12
(n3 − n)δn+m,0 ;

[Lsn, J
a
m] = −mJan+m ;

[Jan, J
b
m] = fabc(N)J

c
n+m + 1

2
nδabδn+m,0 .

(A.89)

Eq. (A.89a) is again the Virasoro algebra, and eq. (A.89c) the so-called SU(N)1

(SU(N)-level-1) Kac-Moody algebra. [The general meaning of “level-1” will be-

come clear in section A.8, where the more general case of SU(n)k is discussed;

eq. (A.89) is a special case of eq. (A.105), with n = N and k = 1.]

Without going into details (which are analogous to those presented in sec-

tion A.6.2), let us consider only the case N = 2, for which the structure constants

are fabc(2) = iεabc. The spectrum is organized into 2 “spin” towers, labelled by a

spin quantum number j = 0, 1
2
. These towers are built upon primary states |j, jz〉

(explicitly: |0, 0, 〉, |1
2
, 1

2
〉 and |1

2
,−1

2
〉), which, by definition, satisfy

3∑

a=1

(Jao J
a
o )|j, jz〉 = j(j + 1)|j, jz〉, j = 0, 1

2
, (A.90)

J3
o |j, jz〉 = jz|j, jz〉 , (|jz| ≤ j) , (A.91)

Lsm|j, jz〉 = Jam|j, jz〉 = 0 for m > 0 . (A.92)

Eqs. (A.90) and (A.91) reflect the fact that the Jao satisfy an ordinary SU(2)

algebra (the restriction j ≤ 1
2

is explained in footnote 12). For m > 0, the Jam

are (energy-) raising operators, as follows from the second eq. (A.87). Therefore

eq. (A.92) states that the primary states don’t contain any particle-hole excita-

tions, so that they are the lowest-energy states in the tower. Descendants are

obtained by acting on |j, jz〉 with the raising operators Jan, n < 0, and can have

arbitrarily large energies and |jz|. The energy of a state in the j-th tower has the
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form

Es
j − Es

o = 2π
l

[
j(j + 1)

3
+ms

]
, (ms ∈ Z+) . (A.93)

A.7.3 Gluing Conditions for U(1) × SU(2)

According to eqs. (A.93) and (A.84), a direct product state |Q,mc; j,m
j〉 has

energy

EQj − Eoo = 2π
l

[(
Q2

4
+mc

)
+

(
j(j + 1)

3
+ms

)]
, (A.94)

with mc,ms ∈ Z+. Note that for general combinations of (Q, j), EQj − Eoo

does not have the general property, specified by eq. (A.70), that a free fermion

spectrum must always have, namely that all eigenenergies are multiples of 2π
l
m
2
,

with m ∈ Z+. The reason is that we have decomposed our free fermions into

charge and spin excitations. By themselves, however, these are unphysical, in

the sense that they can not occur independently in a free fermion theory. To

recover a free fermion spectrum from a Sugawara construction, one has to glue

together charge and spin excitations in such way that the resulting eigenenergies

conform to the free-fermion form of eq. (A.70). This is done by introducing a

so-called gluing condition; this is a set of numbers {nQjo }, which specify which

combinations of charge and spin towers are allowed (nQjo = 1) or not allowed

(nQjo = 0) in a free fermion spectrum. Since j is restricted to j = 0, 1
2
, we find

(by simply inspecting eq. (A.94) for compatibility with eq. (A.70)):

nQjo =





1 if Q = even and j = 0 ;

1 if Q = odd and j = 1
2

;

0 otherwise .

(A.95)
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The physical interpretation of this gluing condition is very simple: whenever one

adds or removes one free fermion from the system, one changes both Q by 1 and

j by 1
2
.

A quicker (if less general) way to derive this rule is as follows: From U(1) ×

U(1) bosonization (eq. (A.53), we know that

H|Q1, Q2〉 = 1
2

(
Q2

1 +Q2
2

)
|Q1, Q2〉 (A.96)

for a primary state with (Q1, Q2) electrons of species (1, 2). Now, define

Q ≡ Q1 +Q2 , j ≡ 1
2
(Q1 −Q2) , (A.97)

which implies

1
2

(
Q2

1 +Q2
2

)
= Q2/4 + j2

[
= Q2/4 + j(j + 1)/3 for j = 0, 1

2

]
. (A.98)

But, since (Q1, Q2) are integers, the gluing condition eq. (A.95) follows directly

from eq. (A.97).

A primary state |Q, j〉 can thus be visualized as follows: If Q is even, it

consists of Q/2 pairs of electrons of opposite species, filling up the lowest Q/2

levels, one pair per level, each pair coupled to spin j = 0 (since no j > 1
2

states

are allowed in the theory, as mentioned above). Hence the total spin of such a

state is j = 0. If Q is odd, one simply adds one more electron at the next unfilled

level, so that the total spin is j = 1
2
.

Finally, let us compare this organization of the spectrum into U(1) × SU(2)

towers with the abelian U(1) × U(1) structure: In the former case there are

∞× 2 towers, in the latter ∞×∞. How did this come about? Note that in the

U(1) × SU(2) scheme, an infinite number of U(1) × U(1) towers are combined
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together into only two multiplets: For any given (Q1 +Q2) = Q= even (or odd),

the |Q, j = 0〉 (or |Q, j = 1
2
〉) tower consists of all combinations of U(1) × U(1)

towers for which Q1 −Q2= even (or odd). The reason why it is possible to thus

combine them is that it is possible to obtain all such states from each other by

acting with Jam (which indeed is the reason why they are grouped into a single

U(1) × SU(2) tower). For a very detailed description of how this happens, see

[Lud94b, section 3.4].

The moral of the story is: if one considers a larger symmetry group, many

more states become related to each other through symmetry operations, and the

Kac-Moody towers are much “larger”.

A.8 U(1) × SU(Ñ) × SU(k) Non-Abelian

Bosonization

In the multi-channel Kondo problem, one needs to employ yet another non-

abelian bosonization scheme. Suppose that the N species of electrons hitherto

considered are labelled by two separate indices, ψα = ψµi, with µ = 1, . . . , Ñ (spin

index) and i = 1, . . . , k (flavor index), with Ñk = N . (In the k-channel Kondo

problem, i is the channel index and µ the spin index, with Ñ = 2.) Then the

free-fermion H of eq. (A.31) is invariant under separate SU(Ñ) transformations

on the µ indices and SU(k) transformations on the k indices. It is useful to em-

ploy a bosonization scheme which preserves these separate symmetries (because

the Kondo interaction breaks the full SU(Ñk) symmetry but not the smaller

SU(Ñ) × SU(k) symmetry). The techniques are identical to the ones outlined

above; we therefore just outline the starting point and state the main results.
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A.8.1 Sugawara form for Ho

Let T aµµ′ and T bij be the generators of SU(Ñ) and SU(k) in their respective fun-

damental representations, obeying relations like eqs. (A.72), (A.73), for SU(N),

with N → Ñ or k, respectively. Define the conserved charge current Jo, Ñ2 − 1

spin currents Ja (a = 1, . . . , Ñ2−1) and k2−1 flavor currents Ib (b = 1, . . . , k2−1),

as follows:

Jo(z) ≡
∑

µi

: ψµi†(z)ψµi(z) :

[
=
∑

α

Jα
]

(A.99)

Ja(z) ≡
∑

µµ′i

: ψµi†(z)T aµµ′ψ
µ′i(z) : (a = 1, . . . , Ñ2 − 1) , (A.100)

Ib(z) ≡
∑

µij

: ψµi†(z)T bijψ
µj(z) : (b = 1, . . . , k2 − 1) , (A.101)

The charge currents have the OPE eq. (A.77). The spin currents Ja have OPEs

that are identical to eq. (A.78), except for the first term, where the trace over i

produces an extra factor of k, to give a leading term of
(
k/2
δ2

)
δaa′ [likewise for the

flavor currents Ib, with leading term
(
Ñ/2
δ2

)
δbb′ ]. This implies immediately that

the Sugawara form for H is [Aff86a, eq.(2.75)]:

H = Hc +Hs +Hf

=
∫ l

0

dx
2π

[
1

2kÑ
:JoJo : + 1

Ñ+k
:JaJa : + 1

k+Ñ
:IbIb :

]
, (A.102)

The coefficients in the second line are determined by the requirement that the

quartic terms : ψ†ψψ†ψ : from the charge, spin and flavor sectors cancel each

other identically.

The Hilbert space decomposes into a direct product of charge, spin and flavor

towers. The spectrum of Hc can be organized into charge towers, labeled by Q ∈

Z, as before. The spin and flavor sectors of the theory can be organized into spin
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and flavor towers, labeled by labels ρs (ρf ) denoting the possible SU(Ñ) [SU(k)]

representations according to which the primary states of the corresponding spin

(flavor) tower can transform. The internal structure of these towers is determined

by the algebra satisfied by the {Jam} and {Ibm}. The OPEs in the spin sector

translates (via eq. (A.62)) into

[Lsn, L
s
m] = (n−m)Lsn+m + cs

12
(n3 − n)δn+m,0 ; (A.103)

[Lsn, J
a
m] = −mJan+m ; (A.104)

[Jan, J
a′
m ] = faa

′c
(Ñ)

J cn+m + 1
2
knδaa

′
δn+m,0 . (A.105)

Eq. (A.105) is known as the SU(Ñ)k (SU(Ñ)-level-k) Kac-Moody algebra (level

k means that each field ψµ that carries a representation of SU(Ñ) has k extra

degrees of freedom, labelled by i, that are spectators under SU(Ñ) transforma-

tions). The [Lsm, J
a
n] and [Lsm, L

s
n] commutation relations are as in eq. (A.89), but

with central charge cs = k(Ñ2−1)

Ñ+k
. Identical relations hold in the flavor sector,

except that Ñ and k are interchanged, so that one obtains an SU(k)Ñ algebra.

As a consistency check, note that the central charges do add up to N as they

must [Aff86a, eq.(2.83)]:

ctot = cc + cs + cf = 1 + k(Ñ2−1)

Ñ+k
+ Ñ(k2−1)

k+Ñ
= kÑ = N .

√
(A.106)

This decomposition of the theory is denoted by

G = U(1) × SU(Ñ)k × SU(k)Ñ (A.107)

A.8.2 The case Ñ = 2, k = 2

Finally, let us consider the case that is relevant to the 2-channel Kondo problem,

namely Ñ = 2, k = 2. Then both spin and flavor towers are governed by a
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SU(2)2 KM algebra. The spin and flavor primary states are denoted by |j, jz〉

and |jf , jfz〉. By definition, the |j, jz〉 satisfy eqs. (A.90) to eq. (A.92) (and

likewise for |jf , jfz〉, with Ja → Ib). However, the allowed spin (and channel)

quantum nubmers are now12 j = 0, 1
2
, 1 (and jf = 0, 1

2
, 1).

The energy eigenvalues for states in a tower with charge, spin and flavor

quantum numbers (Q, j, jf ) are given by

EQjjf − Eooo = 2π
l

[(
Q2

8
+mc

)
+

(
j(j + 1)

4
+ms

)
+

(
jf (jf + 1)

4
+mf

)]
,

(A.108)

with mc,ms,mf ∈ Z+. Of course, to recover a free fermion spectrum, a free-

fermion gluing condition has to be specified, i.e. a set of numbers {n(Q,j,jf )
o },

either 0 or 1, that determine which combinations of charge, spin and flavor ex-

citations satisfy the free-fermion condition eq. (A.70) and hence are allowed in a

free fermion spectrum. Finding these numbers for general values of k and Ñ is

a complicated mathematical problem solved in [ABI90]. For the case k = Ñ = 2

of present interest, however, working out the gluing condition is straightforward

[AL92b, section 5, Table 1]: all we have to do is to analyze for which combi-

nations of (Q, j, jf ) eq. (A.108) is compatible with the free-fermion condition of

eq. (A.70).

First note that when specifiying the gluing condition, Q only needs to be

12In general, for SU(2)k, the allowed values of j are j = 0, 1/2, . . . , k/2. Physically, the
reason why primary states with j > k/2 cannot occur is due to Fermi statistics [GW86, p.514-
515]: to construct a state with j > k/2 and without particle-hole excitations, one has to use
(partially) symmetrized (as opposed to completely antisymmetric) combinations of the avaible
k different flavors of spin 1/2 states, all with the same particle number (else there would be
particle-hole excitations). However, any such combination will vanish identically, since only
completely anti-symmetric combinations of fermion states with identical quantum numbers can
be non-zero. For an explicit illustration of this argument, see [Lud94b, section 3.4]. For an
algebraic proof, see [Gins87], eq.(9.30), or [GW86], p.514-515.
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Table A.1 Eigenenergies (in units of 2π
l
) of charge, spin and flavor primary states.

At the same time, these numbers are also the scaling dimensions of the corre-
sponding quantum fields.

q = Qmod4 : 0 ±1 2 j : 0 1
2

1 jf : 0 1
2

1

1
8
q2 : 0 1

8
1
2

1
4
j(j + 1) : 0 3

16
1
2

1
4
jf (jf + 1) : 0 3

16
1
2

specified up to multiples of 4, i.e. we may write

Q ≡ q + 4n, n ∈ Z, q = −1, 0, 1, 2, (A.109)

since

1
8
Q2 = 1

8
(q + 4n)2 = 1

8
q2 + integer . (A.110)

The values that the various terms in eq. (A.108) can take on are listed in table A.1.

Simple inspection of this table shows that the only combinations (Q, j, jf ) for

which eq. (A.108) is compatible with eq. (A.70), and hence for which n
(Q,j,jf )
o =

1, are those listed in table A.2. The last column indicates generically what

combinations of free fermion operators create from the T = 0 Fermi sea (denoted

by |0〉) the primary state of the corresponding tower. For the lower three rows,

involving two fermion operators, Clebsch-Gordan coefficients are needed (but not

shown) in order to couple the (µµ′) and (ii′) indices together to the corresponding

values of j, jf = 0, 1.
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Table A.2 Free-electron gluing condition for primary fields for k = 2, Ñ = 2.

All other combinations for which n
(Q,j,jf )
o 6= 0 can be obtained from the above

by letting Q → Q + 4m (m ∈ Z). For the lower three rows, involving two
fermion operators, Clebsch-Gordan coefficients are needed (but not shown) in
order to couple the (µµ′) and (ii′) indices together to the corresponding values
of j, jf = 0, 1.

Q j jf
l

2π
(EQjjf − Eooo) n

(Q,j,jf )
o state

0 0 0 0+ 0 + 0 = 0 1 |0〉

+1 1
2

1
2

1
8
+ 3

16
+ 3

16
= 1

2
1 ψµi†1

2

|0〉

−1 1
2

1
2

1
8
+ 3

16
+ 3

16
= 1

2
1 ψµi− 1

2

|0〉

0 1 1 0+ 1
2
+ 1

2
= 1 1 ψµi†1

2

ψµ
′i′

− 1
2

|0〉

2 0 1 1
2
+ 0 + 1

2
= 1 1 ψµi†1

2

ψµ
′i′†

1
2

|0〉

2 1 0 1
2
+ 1

2
+ 0 = 1 1 ψµi†1

2

ψµ
′i′†

1
2

|0〉



Appendix B

Basic Facts of Bulk 2-D

Conformal Field Theory

In this appendix we summarize the axioms of 2-dimensional quantum field the-

ories that are invariant with respect to conformal (Virasoro) and non-abelian

current (Kac-Moody) algebras.

Our reasons for presenting these here, despite not really having used them in

the main part of the thesis, are the following: Firstly, in appendix A we analyzed

in quite some detail the properties of free fermion theories, written in Sugawara

form. However, our presentation was rather pedestrian, intended for a reader

without any background in CFT. In the summary of the main axioms of CFT

that is to follow, in particular in section B.3, the reader will recognize many of

the results found in appendix A, which should give her a feeling for how these

results fit into the general framework of CFT.

Secondly, whereas the methods of appendix A were sufficient to analyze the

spectrum of the Kondo coupling at both weak and strong coupling, they are not

307
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sufficient for calculating Green’s functions. For this purpose, one has to take

recourse to Cardy’s boundary conformal field theory [described in appendix C],

which in turn presupposes knowledge of the concepts summarized below.

Thirdly, by writing down the axioms that are needed for our purposes, and

providing detailed references to where derivations may be found, we hope to

inform the reader as to precicely what is needed in order to understand the

technicalities of Affleck and Ludwig’s treatment of the Kondo problem. Hopefully

this will allow the reader to be more selective when learning this material from

the standard references.

The material to follow was developed in the seminal papers by Belavin,

Polyakov and Zamolodchikov [BPZ84] (on conformal symmetry) and Knizhnik

and Zamolodchikov [KZ84] (on Kac-Moody symmetry). Detailed pedagogical

presentations are given, for example, by Ginsparg [Gins87], Christe and Henkel

[CH93] or Polchinski [Pol94, section 1]. Our summary is essentially plagiarises

that given by Gepner and Witten [GW86, section 3] (which contains a number

of minor typographical errors).

B.1 The Axioms of Bulk 2-D Conformal Field

Theory

[BPZ84], [KZ84], [GW86, section 3], [Gins87], [CH93], [Pol94, section 1].

Consider a field theory in 2 dimensions, consisting of an infinite set of local

fields, {Ai(z, z̄)}, that depend on two complex variables z and z̄, which are kept

as distinct variables.1 The set of fields is assumed to be complete in the following

1To obtain the “physical” section of the theory, one can in the end treat them as complex
conjugates of each other, as we did in eq. (A.15), by setting z = τ+ ix, z̄ ≡ z∗ = τ− ix [BPZ84,
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sense [BPZ84, eq.(1.6)]: it contains the identity operator, Ao = I, as well as all

coordinate derivatives of each field involved. Furthermore, the operator product

expansion of any two fields, Ai(z, z̄) and Aj(z
′, z̄′) can be written in terms of

other local fields Ak(z
′, z̄′):

Ai(z, z̄)Aj(z
′, z̄′) =

∑

k

Cij,k(z − z′, z̄ − z̄′)Ak(z
′, z̄′) , (B.1)

where the structure constants Cij,k are single-valued c-number functions. The

operator algebra eq. (B.1) is assumed to have the associativity property. This

places such stringent constraints on the Cij,k that if the theory has conformal or

Kac-Moody symmetry, these functions can be determined exactly.

The theory is assumed to be invariant under a general analytic (confor-

mal) transformation, in which one makes a change of coordinates from (z, z̄) to

(ξ, ξ̄) = (f(z), f̄(z̄)), and expresses all field A(z, z̄) in terms of new fields Ã(ξ, ξ̄).

Here f and f̄ are any two, generally unrelated, analytic functions. Under such

transformations, a Virasoro primary field is a field that is expressed as follows in

terms of a new field φ̃(ξ, ξ̄):2

φ(z, z̄) =

(
∂f

∂z

)∆φ
(
∂f̄

∂z̄

)∆̄φ

φ̃(ξ, ξ̄) . (B.2)

Here ∆ and ∆̄ denote the left and right dimensions of the field. ∆ + ∆̄ is the

conventional dimension, whereas ∆ − ∆̄ is the spin of the field. [The fields used

p. 335]. Once the physical section has been taken, the notation Ai(z, z̄) may seem redundant,
since then the value of z determines the value of z̄, but it is useful to reserve the notation A(z)
or A(z̄) for fields whose equations of motion make them analytic in z or z̄, respectively.

2We employ the notation of [Lud94a], eq. (1.67), where the “passive” form of the trans-
formation properties of primary fields is given. In many texts, the “active” form φ(z, z̄) →(
∂f
∂z

)∆φ
(
∂f̄
∂z̄

)∆̄φ

φ(ξ, ξ̄) is given, which in a sense corresponds to the inverse of eq. (B.2), with

corresponding sign changes ε→ −ε for the infinitesimal transformations discussed below.
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in the Kondo problem are purely chiral, with ∆̄ = 0 for L-movers and ∆ = 0 for

R-movers.]

The theory is also assumed to possess a symmetry under a certain Lie algebra

G. Under “isospin rotations”, a Kac-Moody primary field ϕ(z, z̄) of the Kac-

Moody algebra is expressed in terms of a new field ϕ̃(ξ, ξ̄) by3

ϕ(z, z̄) = Ω(z)Ω̄(z̄)ϕ̃(z, z̄) , (B.3)

and this is assumed to be a symmetry of the theory. In general Ω(z) and Ω̄(z̄)

may belong to any two representations of the Lie algebra, denoted by R and R̄

respectively. Note that Ω (Ω̄) operates on the left (right) indices of the primary

fields ϕ(z, z̄), which indices take their values in the representation R (R̄). [For

the N species of free fermions of appendix A, the algebra is SU(N), and for

left-moving fermions R is the fundamental representation and R̄ is the singlet

representation; the representations are interchanged for right-moving fermions.]

Note also that Ω and Ω̄ are analytic functions of z and z̄, respectively.

Infinitesimal versions of the above transformations are generated by

ξ = f(z) = z − ε(z) , ξ̄ = f̄(z̄) = z̄ − ε̄(z̄) ; (B.4)

Ω(z) = I − ωata , Ω̄(z̄) = I − ω̄at̄a ; (B.5)

where ε, ε̄, ωa and ω̄a are small, and ta (t̄a) is an antihermitian matrix in the

appropriate representation R (R̄) of the algebra G, with [ta, tb] = fabct
c. Under

3In the original literature [KZ84, GW86] this law is written in the form ϕ(z, z̄) →
Ω(z)ϕ(z, z̄)Ω̄−1(z̄), i.e. the action on right-handed isospin indices occurs from the right. How-
ever, in the applications of interest to us, it is more natural to act on both left and right-handed
isospin indices from the left (see e.g. eqsB.KM and (B.54) below), which leads to minor nota-
tional differences from [KZ84,GW86].
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z1

z C
1

z2
z2

z3

z3

Figure B.1 A contour C that encloses all the points z1, . . . , zn, z̄1, . . . , z̄n of the
correlation function X of eq. (B.10).

such transformations, eqs. (B.2) and (B.3) become

δε,ε̄φ(z, z̄) ≡ φ̃(z, z̄) − φ(z, z̄) (B.6)

=
[
∆φε

′(z) + ε(z)∂z + ∆̄φε̄
′(z̄) + ε̄(z̄)∂z̄

]
φ(z, z̄) ; (B.7)

δω,ω̄ϕ(z, z̄) ≡ ϕ̃(z, z̄) − ϕ(z, z̄) (B.8)

=
[
ωa(z)ta + ω̄a(z̄)t̄a

]
ϕ(z, z̄) . (B.9)

Consider a correlation function of some fields, not necessarily Virasoro or

Kac-Moody primary:

〈X〉 = 〈A1(z1, z̄1) . . . An(zn, z̄n)〉 . (B.10)

Let C be a contour that encloses all the points z1, . . . , zn, z̄1, . . . , z̄n, and let

the conformal transformations ε(z) and ε̄(z̄) be analytic in z and z̄, respectively,

inside C, and arbitrary but small outside C. These transformations are generated

by the left-handed and right-handed components T (z) and T̄ (z̄) of the energy

momentum tensor, which are analytic functions in z and z̄ respectively due to

the conservation laws ∂z̄T (z) = ∂zT̄ (z̄) = 0. The change in 〈X〉 due to such
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conformal transformations is given by45 (for a very nice discussion, see [Pol94,

section 1.2]):

〈δε,ε̄X〉 =
∮

C

dξ
2πi

ε(ξ)〈T (ξ)X〉 −
∮

C

dξ̄
2πi

ε̄(ξ̄)〈T̄ (ξ̄)X〉 . (B.11)

For a single (arbitrary) field A(z, z̄), this implies the transformation law

δε,ε̄A(z, z̄) =
∮

C

dξ
2πi

ε(ξ)T (ξ)A(z, z̄) −
∮

C

dξ̄
2πi

ε̄(ξ̄)T̄ (ξ̄)A(z, z̄) . (B.12)

Likewise, let ωa(z) and ω̄a(z̄) be analytic in z and z̄, respectively, inside C.

The corresponding Kac-Moody transformations are generated by the left and

right isospin currents Ja(z) and J̄a(z̄), which are analytic functions in z and z̄

respectively due to current conservation, ∂z̄J
a(z) = ∂zJ̄

a(z̄) = 0. The change in

〈X〉 due to such KM transformations is given by6

〈δω,ω̄X〉 = −
∮

C

dξ
2πi

ωa(ξ)〈Ja(ξ)X〉 +
∮

C

dξ̄
2πi

ω̄a(ξ̄)〈J̄a(ξ̄)X〉 . (B.13)

For a single (arbitrary) field Aj(z, z̄), with left [right] isospin indices in the rep-

resentations R [R̄] respectively, the currents Ja and J̄a generate Kac-Moody

transformations through

δω,ω̄Aj(z, z̄) = −
∮

C

dξ
2πi

ωa(ξ)Ja(ξ)Aj(z, z̄) +
∮

C

dξ̄
2πi

ω̄a(ξ̄)J̄a(ξ̄)Aj(z, z̄) . (B.14)

In eq. (B.12) the functions ε(z) and ε̄(z̄) are independent, and in (B.14)

the functions ωa(z) and ω̄a(z̄) are independent. This means that the z and z̄

4We use the convention that both the
∮
dξ and

∮
dξ̄ integrations are counterclockwise around

C. This means that
∮
C
dξ
2πi

f(ξ)
ξ−z = f(z), and −

∮
C
dξ̄
2πi

f(ξ̄)

ξ̄−z̄
= f(z̄).

5Eq. (B.11) is derived for free fermions in section B.2. [Gins87], p.18, 19. explains lucidly how
the contour integrals arise from the familiar commutation relations δX = ε[T,X] of eq. (A.22).

6This is the analogue of the familiar relation δX = −ωa[Ja,X] of eq. (A.12). We use sign-
conventions for Ja, J̄a in eq. (B.13) that are opposite to those of [KZ84], eq.(2.7) and [GW86],
eq. (3.15); this choice is made in order to be consistent with the free-fermion representation
of the current operators that is used in the rest of this thesis, namely Ja(z) =:ψ†(z)T aψ(z) :,
with normalization 〈ψ†(ξ)ψ(z)〉 = (ξ − z)−1. Consequently, theWard identity eq. (B.24) and
all related equations differ by a minus sign from those in [KZ84] and [GW86].
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dependences actually separate, so that a field may be thought to “factorize” into

a left- and right-handed component [Lud94a, eq.(6.12)]:

Ai(z, z̄) = AiL(z)AiR(z̄) . (B.15)

To be more precise, all correlation functions are sums of products of left and right

factors [Lud94a, eq.(6.13)]:

〈A1(z1, z̄1) . . . An(zn, z̄n)〉 = (B.16)

∑

(a),(b)

〈A1L(z1) . . . AnL(zn)〉(a)〈A1R(z̄1) . . . AnR(z̄n)〉(b) ·M (a),(b) .

However, a “correlation function” of purely left- or right-handed fields, a so-

called “conformal block”, is in general not completely specified by the fields

themselves, and extra labels (a), (b) are needed. The reason is [KZ84, section 4]

that such a pure L-handed correlation function typically has to satisfy a set of

differential equations, known as the Knizhnik-Zamolodchikov equations, which

have, in general, several independent solutions, labeled by the index (a). The

matrix M in eq. (B.16), which specifies which linear combination of products of

conformal blocks needs to be used, is determined by the requirement that the

left-hand side of eq. (B.16) be single-valued [DF84,BPZ84].

Now consider correlation functions 〈X〉 of Virasoro primary fields, and 〈Y 〉 of

Kac-Moody primary fields:

〈X〉 = 〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉 . (B.17)

〈Y 〉 = 〈ϕ1(z1, z̄n) . . . ϕn(zn, z̄n)〉 . (B.18)

Then, using eq. (B.6) on the left-hand-side of eq. (B.11), and eq. (B.8) on the

left-hand-side of eq. (B.13), we obtain

∮

C

dξ
2πi

ε(ξ)〈T (ξ)X〉 −
∮

C

dξ̄
2πi

ε̄(ξ̄)〈T̄ (ξ̄)X〉
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=
n∑

i=1

[
∆φiε

′(zi) + ε(zi)∂zi + ∆̄φi ε̄
′(z̄i) + ε̄(z̄i)∂z̄i

]
〈X〉 ; (B.19)

−
∮

C

dξ
2πi

ωa(ξ)〈Ja(ξ)Y 〉 +
∮

C

dξ̄
2πi

ω̄a(ξ̄)〈J̄a(ξ̄)Y 〉

=
n∑

i=1

[
ωa(zi)t

a
i + ω̄a(z̄i)t̄

a
i

]
〈Y 〉 . (B.20)

The notation in eq. (B.20) means that tai [t̄ai ] acts on the left [right] isospin indices

of the field ϕi [ϕ̄i] in 〈Y 〉.

Since the functions ε(z) and ε̄(z̄) are independent, and likewise ω(z) and ω̄(z̄)

are independent, the z and z̄ dependences in eqs. (B.19) and (B.20) separate, as

explained above:

∮

C

dξ
2πi

ε(ξ)〈T (ξ)X〉 =
n∑

i=1

[
∆φiε

′(zi) + ε(zi)∂zi
]
〈X〉 ; (B.21)

−
∮

C

dξ
2πi

ωa(ξ)〈Ja(ξ)Y 〉 =
n∑

i=1

ωa(zi)t
a
i 〈Y 〉 , (B.22)

with similar equations for 〈T̄ (ξ̄)X〉 and 〈J̄a(ξ̄)Y 〉. We henceforth do not display

the right-handed expressions in z̄, since they are entirely analogous to the left-

handed ones in z.

Using Cauchy’s theorem to write the right hand sides of these equations as

contour integrals over
∮
Cdξ, and then noting that the resulting equations must

hold for arbitrary ε(ξ) and ωa(ξ), one obtains the Ward identities for correlation

functions of Virasoro and Kac-Moody primary fields, respectively:

〈T (ξ)X〉 =
n∑

i=1

[
∆φi

(ξ − zi)2
+

1

(ξ − zi)
∂zi

]
〈X〉 ; (B.23)

〈Ja(ξ)Y 〉 =
n∑

i=1

− tai
(ξ − zi)

〈Y 〉 , (B.24)

with identical equations for T̄ and J̄a, in terms of ∆̄φ and t̄a. These relations

imply the following operator product expansions of a Virasoro primary field with
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T , and of a Kac-Moody primary field with Ja:

T (ξ)φi(z, z̄) =
∆φi

(ξ − z)2
φi(z, z̄) +

1

(ξ − z)
∂zφi(z, z̄) + . . . (B.25)

Ja(ξ)ϕi(z, z̄) =
− tai

(ξ − z)
ϕi(z, z̄) + . . . , (B.26)

where the . . . represent terms that are regular as ξ → z.

The energy momentum tensor has dimension ∆ = 2 but is not Virasoro

primary; the currents are not Kac-Moody primary, but are Virasoro primary

with dimension ∆ = 1. Their mutual OPE’s are

T (ξ)T (z) =
c/2

(ξ − z)4
+

2

(ξ − z)2
T (z) +

1

(ξ − z)
T ′(z) + . . . ; (B.27)

T (ξ)Ja(z) =
1

(ξ − z)2
Ja(z) +

1

(ξ − z)
Ja′(z) + . . . ; (B.28)

Ja(ξ)J b(z) =
1
2
kδab

(ξ − z)2
+

fabc

(ξ − z)
J c(z) + . . . . (B.29)

The definitions of T and Ja have to be supplemented with the asymptotic con-

ditions7

T (z) ∼ z−4 , Ja(z) ∼ z−2 , as z → ∞ . (B.30)

T (z) and Ja(z) can be expanded in Laurent series:

T (z) =
∞∑

n=−∞
Lnz

−n−2 , Ja(z) =
∞∑

n=−∞
Janz

−n−1 . (B.31)

The Ln and Jan may be though of as maps which act on the space of local fields

through8

LnA(z, z̄) =
∮

C

dξ
2πi

T (ξ)(ξ − z)n+1A(z, z̄) , (B.32)

JanAj(z, z̄) =
∮

C

dξ
2πi

Ja(ξ)(ξ − z)nAj(z, z̄) , (B.33)

7See [KZ84, eq. (2.10)]; an explanation of this condition can be found in [CH93], after
eq. (2.40).

8I believe that the extra taj contained in eq. (B.3.20) of [GW86] and eq. (2.15) of [KZ84]

relative to eq. (B.33) is a typo.
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and due to the Ward identities eqs. (B.12) and (B.14) they generate the conformal

and Kac-Moody transformations on the fields.

Due to eq. (B.27), the Ln obey the Virasoro algebra,

[Ln, Lm] = (n−m)Ln+m + 1
12
c(n3 − n)δn+m,0 , (B.34)

in other words, the fields of the theory constitute a representation of the Virasoro

algebra, where the Virasoro operators act on them as defined in eq. (B.32).

Likewise, eq. (B.29) implies that the Jan satisfy the Kac-Moody algebra (or

current algebra):9

[
Jan, J

b
m

]
= fabsJ cn+m + 1

2
knδabδn+m,0 , (B.35)

[
Jan, J̄

b
m

]
= 0 . (B.36)

If one assumes that a primary field of the Kac-Moody algebra is also a primary

field of the Virasoro algebra [this is true for all Wess-Zumino-Witten theories,

which is sufficiently general for our purposes (see section B.3)], then under Jan

and Ln the fields in the theory transform into one another. In particular, for

Virasoro primary fields one has [from eqs. (B.25)]

Lnφl = 0 for n > 0 , and Loφl = ∆lφl , (B.37)

and for KM primary fields [from (B.26)]:

Janϕl = 0 for n > 0 , and Ja0ϕl = −tal ϕl . (B.38)

By repeatedly applying on a primary field operators from the Virasoro or Kac-

Moody algebra, one obtains new local fields of the general form:

Ja1
−n1

Ja2
−n2

. . . J̄ ā1
−n̄1

J̄ ā2
−n̄2

. . . L−m1L−m2 . . . L̄−m̄1L̄−m̄2 . . . φ(z, z̄) . (B.39)

9These relations were derived in a pedestrian manner in appendix A.
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Mathematically, this field φ(z, z̄) generates a highest-weight representation of

the combined Kac-Moody and Virasoro algebras. The highest-weight vector is

the primary field φ and its weight is (∆, ∆̄) for (Lo, L̄o), and the weights of the

representations (R, R̄) for the Kac-Moody algebra. This is due to the fact that all

the positive operators (those with n > 0) annihilate the primary field [eq. (B.37)].

Every local field in the theory will belong to some unique such highest-weight

representation with a certain primary field sitting at the top. Thus, every field

corresponds to some unique primary one. The Ward identities enable us to ex-

press any correlator of local fields in terms of those of primary fields. One simply

needs to repeatedly apply the Ward identities. It is thus sufficient to focus atten-

tion on the correlators of primary fields, since they contain the full information

about the theory.

The simplest example of relations satisfied by the correlators of primary fields

follows from the general Ward identies of eqs. (B.23) and (B.24). The asymptotic

behavior as z → ∞ of the currents is T (z) → z−4 and Ja(z) → z−2 (this is

understood to be valid when the currents are inside correlators; these relations

follow from the requirement of regularity at infinity). Applying these to the Ward

identities and integrating
∮
dξ around a contour that encloses all the {zi, z̄i}, one

obtains

n∑

i=1

tai 〈ϕ1(z1, z̄1) . . . ϕn(zn, z̄n)〉 = 0 , (B.40)

n∑

i=1

tai
(
zn+1
i ∂zi + (n+1)∆iz

n
i

)
〈ϕ1(z1, z̄1) . . . ϕn(zn, z̄n)〉 = 0 , (B.41)

where n = −1, 0, 1. These equations are the manifestations of invariance with

respect to the subalgebras of projective conformal transformations and of global

gauge transformations. They strongly constrain the correlators of primary fields,
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enabling one to write them in terms of invariants of the algebra G and the projec-

tive transformations. The two- and three-point functions are completely deter-

mined by these equations, up to an overall constant [Gins87, section 2.1]: writing

z12 ≡ z1 − z2 and z̄12 ≡ z̄1 − z̄2

〈φij1 (z1, z̄1)φ
kl
2 (z2, z̄2)〉 =

Aik−oBjl,o

z2∆
12 z̄

2∆̄
12

, (B.42)

for ∆1 = ∆2 = ∆, and ∆̄1 = ∆̄2 = ∆̄, otherwise the correlator vanishes. Also

(using the convention of [Gins87, eq. (2.5)])

〈φij1 (z1, z̄1)φ
kl
2 (z2, z̄2)φ

mn
3 (z3, z̄3)〉 =

Fik,mGjl,n

z∆123
12 z∆231

23 z∆312
13 z̄∆̄123

12 z̄∆̄231
23 z̄∆̄312

13

(B.43)

where ∆abc = ∆a + ∆b − ∆c. The constants A,B, F , and G are proportional to

the appropriate structure constants (Clebsch-Gordan coefficients) of the algebra.

Four-point functions, however, are not so fully determined just by confor-

mal invariance. Invariance under the small conformal group allows the following

general form [Pol70], [Gins87, eq. (2.6)]:

G(4)(zm, z̄m) = g(ξ, ξ̄)
∏

m<n

z−(∆m+∆n)+∆T /3
mn

∏

m<n

z̄−(∆̄m+∆̄n)+∆̄T /3
mn , (B.44)

where ∆T =
∑4
i=n ∆n, ∆̄T =

∑4
i=n ∆̄n, and the cross-ration ξ and its relatives are

defined by:

ξ =
z12z34

z13z24

, 1 − ξ =
z14z23

z13z24

,
ξ

1 − ξ
=
z12z34

z14z23

. (B.45)

In general one cannot say more than that about the correlators, but there are

some very important exceptions in which it is possible to obtain strong constraints

on the correlators. They all stem form the fact that the various fields defined in

eq. (B.39) are not linearly independent even though they formally appear to be
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so. In particular there will be some combinations of (negative) operators from

the Virasoro and Kac-Moody algebras which annihilate a particular primary field.

The fields in eq. (B.39) which formally do not vanish, but in actuality do, are

called null vectors. They play a crucial role both in the representation theory and

in conformal field theory. The vanishing of a null vector implies the vanishing of a

correlator containing it. In view of the Ward identities, this in turn gives rise to a

constraint on the correlators of primary fields – typically, they have to satisfy some

differential equations, such as the Knizhnik-Zamolodhcikov equations. By solving

these differential equations, one can typically obtain exact analytic expressions

for the correlators of primary fields, and hence for all correlators in the theory.

For an exploration of the constraints imposed by null vectors, see [GW86].

B.2 Example: Free Fermions

As an elementary example, we now illustrate how the familiar free fermion theory

of appendix A (at T = 0) fits into the general theoretical framework summarized

in section B.1. (The case of free bosons is beautifully treated by Polchinsky [Pol94,

chapter 1].) In particular, we show from first principles how to derive, from the

free-fermion Lagrangian, the Ward identities (B.19) and (B.20), and the stress-

energy tensor T, T̄ and currents Ja, J̄a that appear therein. While the treatment

below is by far not the most general possible, it is hoped that it will illustrate for

the uninitiated reader the origin of some of the relations in section B.1; moreover,

by acquiring a feeling for these relations via an explicit example, it is hoped that

the reader will be able to appreciate better in which respects Cardy’s boundary

CFT, discussed in appendix C, differs from bulk CFT.
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Consider N species each of free L- and R-moving fermions, ψα(z) and ψ̄α(z̄),

α = 1, . . . , N . The action is

S =
∫
dτdx
2π

[
ψα†(τ, ix)2∂z̄ψ

α(τ, ix) + ψ̄α†(τ, ix)2∂zψ̄
α(τ, ix)

]
, (B.46)

where the integral goes over the complete complex plane, and the fields are nor-

malized such that [see eq. (A.36) with T = µα = 0]

〈ψα(z)ψα†(z′)〉 =
1

z − z′
, 〈ψ̄α(z̄)ψ̄α†(z̄′)〉 =

1

z̄ − z̄′
. (B.47)

Using φi as a shorthand for any of the fields ψαi(zi), ψ
αi†(zi), ψ̄

αi(z̄i) or

ψ̄αi†(z̄i), consider the correlation function

〈X〉 ≡ 〈φi . . . φn〉 ≡
∫
Dφ1 . . .Dφne−S[φi]φi . . . φn , (B.48)

defined as a path integral (with the implicit assumption that th epath integral

can be defined in a way consistent with all symmetries of the system, which is in

general a highly non-trivial matter in the presence of gauge symmetries). Now

consider an infinitesimal transformation, in which the φi are expressed in terms

of new fields φ̃i through

φi ≡ φα(τ, ix) = (1 −Dαα′(τ, ix)) φ̃α′(τ, ix) ≡ (1 −Di)φ̃i , (B.49)

where Di is an infinitesimal (c-number) operator acting on φ̃i. Under this trans-

formation, the action can be rewritten, to leading order in D, as

S[φi] = S[(1 −Di)φ̃i] ≡ S[φ̃i] − δS[φ̃i] . (B.50)

Assuming that the path-integral measure is invariant,
∫Dφ =

∫Dφ̃, the correlation
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function can likewise be rewritten, to leading order in D, as10

〈X〉 ≡ 〈φi . . . φn〉 ≡
∫
Dφ̃1 . . .Dφ̃ne−S[φ̃i](1 + δS[φ̃i])

n∑

i=1

(1 −Di)(φ̃i . . . φ̃n) .

(B.51)

Now, the leading term on the right hand side, 〈X̃〉 ≡ 〈φ̃i . . . φ̃n〉, actually equals

〈X〉, because the actions S[φi] and S[φ̃i] governing the 〈X〉 and 〈X̃〉 correlation

functions have the same functional form in terms of the φi and φ̃i, respectively.

What remains from eq. (B.51) is the identity

〈δS[φi]X〉 =
n∑

i=1

Di〈X〉 , (B.52)

where we have dropped the s̃, because any identity holding for the φ̃i fields must

also hold for the φi’s. [Polchinski [Pol94] shows very nicely how the quantum

version of Nöther’s theorem can be derived from eq. (B.52).] Eq. (B.52) lies

at the heart of eqs. (B.19) and (B.20), which we shall now derive from it by

considering infinitesimal conformal and Kac-Moody transformations.

Under the conformal coordinate transformations ξ = f(z), ξ̄ = f̄(z̄) (f and f̄

arbitrary and unrelated holomorphic and anti-holomorphic functions of z and z̄),

the fermion fields transform according to eq. (B.2), with (∆, ∆̄) = (1/2, 0) for ψ

and ψ†, and (0, 1/2) for ψ̄ and ψ̄†. Under SU(N) Kac-Moody transformations,

they transform according to [using the notation of eq. (A.7)]

ψα(z) =
[
e−iθ

X(z)TX
]

αα′ ψ̃
α′

(z) , ψ†α(z) =
[
eiθ

XTX∗]

αα′ ψ̃
α′†(z) , (B.53)

ψ̄α(z̄) =
[
e−iθ̄

X(z̄)TX
]

αα′
˜̄ψ
α′

(z̄) , ψ̄†α(z) =
[
eiθ̄

X(z̄)TX∗]

αα′
˜̄ψ
α′†

(z̄) , (B.54)

Here θ(z) and θ̄(z̄) are (arbitrary and unrelated) holomorphic and anti-holomorphic

10More generally, if the measure is not invariant, δS should be replaced by the change in (
measure × e−S).
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functions, that are real on the real axis (this condition is explained in footnote 5

of appendix A).

We now want to consider infinitesimal versions of such conformal and Kac-

Moody transformations. However, since every non-constant analytic function

always diverges somewhere in the complex plane, we have to restrict our attention

to a limited domain, A. Let C be a closed contour enclosing all the points zi and

z̄j̄ occuring in 〈X〉, and take A to be the domain enclosed by and including C,

while denoting the rest of the complex plane by A′ [see Fig. B.1]. Then consider

an infinitesimal coordinate transformation of the form

ξ(τ, ix) = z − ε(τ, ix), ξ̄(τ, ix) = z̄ − ε̄(τ, ix) . (B.55)

Likewise, for gauge transformations, take θ(τ, ix) and θ̄(τ, ix) to be infinitesimal.

In the notation of eq. (B.49), namely

ψα(z) = (1 −D(τ, ix))αα′ψ̃α
′
(z) , etc., (B.56)

we obtain from eqs. (B.2) and (B.53):

D
(ε)
αα′(τ, ix) =

[
1
2
∂zε(τ, ix) + ε(τ, ix)∂z

]
δαα′ for ψ and ψ† ; (B.57)

D̄
(ε̄)
αα′(τ, ix) =

[
1
2
∂z̄ ε̄(τ, ix) + ε̄(τ, ix)∂z̄

]
δαα′ for ψ̄ and ψ̄† ; (B.58)

D
(θ)
αα′(τ, ix) = iθX(τ, ix)TX

αα′ for ψ, and
[
D(θ)

]∗
for ψ† ; (B.59)

D̄
(θ̄)
αα′(τ, ix) = iθ̄X(τ, ix)TX

αα′ for ψ̄, and
[
D̄(θ̄)

]∗
for ψ̄† . (B.60)

In the notation of eq. (B.5), we have

ωata = iθXTX for ψ , and (iθXTX)∗ for ψ†,

ω̄at̄a = iθ̄XTX for ψ̄ , and (iθXTX)∗ for ψ̄†.
(B.61)
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Now, since A is bounded, it is possible to choose ε and ε̄ (or ω and ω̄) to be,

for all (τ, ix) ∈ A, both infinitesimal and , respectively, holomorphic and anti-

holomorphic functions of z and z̄. Outside A, i.e. for (τ, ix) ∈ A′, we choose

them to be arbitrary infinitesimal functions that vanish at ∞. In other words,

we assume that D and D̄ satisfy

∂z̄D(τ, ix) = ∂zD̄(τ, ix) = 0 for (τ, ix) ∈ A, and D = D̄ = 0 at ∞ . (B.62)

To find the corresponding δS[φ̃i], substitute eqs. (B.56) into eq. (B.50). Since

the equations of motion are valid inside 〈 〉, only those terms in 〈δS[φ̃i]X̃〉 that

don’t contain any ∂z̄ψ̃(z) (= 0) and ∂z
˜̄ψ(z̄) (= 0) survive, so that we get

〈δS[φ̃i]X̃〉 =
∫
dτdx
2π

{
〈ψ̃α†(z) [2∂z̄Dαα′(τ, ix)] ψ̃α

′
(z)X̃〉 (B.63)

+ 〈 ˜̄ψ
α†

(z̄)
[
2∂zD̄αα′(τ, ix)

]
˜̄ψ
α
(z̄)X̃〉

}
, (B.64)

where ∂z̄ and ∂z act only on D and D̄ respectively. Now comes the crucial

point, which exploits the analiticity of D and D̄: because of eq. (B.62), only

the region outside A, namely A′, makes a non-zero contribution to the integral.

Furthermore, we can exploit the equations of motion to pull ∂z̄ and ∂z out in

front of the expectation values. Dropping the s̃, we get

〈δS[φi]X〉 =
∫

A′
dτdx
2π

{
2∂z̄〈ψα†(z)Dαα′(τ, ix)ψα

′
(z)X〉 (B.65)

+ 2∂z〈ψ̄α†(z̄)D̄αα′(τ, ix)ψ̄α(z̄)X〉
}
, (B.66)

These integrals are of the form

∫

A′
dτdx
2π

[
2∂z̄F + 2∂zF̄

]
=
∫

A′
dτdx
2π

~∂ · ~F = 1
2π

∮

C
d~S · ~F , (B.67)

where ~∂ = (∂τ , ∂x) and ~F = (F + F̄ , iF − iF̄ ). In the last equality we used Gauss’

law to write the area integral over A′ as a contour integral along the boundary
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of A′, namely C. Let (dτ, dx) be the tangent vector to C, whose direction we

choose to be counter-clockwise. Then d~S, the normal vector to C that is oriented

toward the outside of A′ (i.e. inside of C) is given by d~S = (−dx, dτ) (see

Fig. B.1]. Thus, Gauss’ law implies
(
∂τ
∂x

)
→
(
−dx
dτ

)
. To write the contour integral

in terms of complex coordinates, note that

(
2∂z̄
2∂z

)
=
(

1
1

i
−i

) (
∂τ
∂x

)
Gauss−→

(
1
1

i
−i

) (
−dx
dτ

)
=
(

1
1

i
−i

)
1
2

(
i
1
−i

1

) (
dz
dz̄

)
= 1

i

(
−dz
dz̄

)
. (B.68)

which implies that

∫

A′
dτdx
2π

[
∂z̄F + ∂zF̄

]
= −

∮

C

dz
2πi
F +

∮

C

dz̄
2πi
F̄ . (B.69)

Applying this general result to eq. (B.65), we obtain

〈δS[φi]X〉 = −
∮

C

dz
2πi

〈ψα†(z)Dαα′(z)ψα
′
(z)X〉 +

∮

C

dz̄
2πi

〈ψ̄α†(z̄)D̄αα′(z̄)ψ̄α(z̄)X〉 ,

(B.70)

where our notation D(z) and D̄(z̄) makes explicit that, by eq. (B.62), these

functions are holomorphic and anti-holomorphic along (and inside) C.

Finally, substitute the explicit forms of eqs. (B.57) to (B.60) into eq. (B.70);

then eq. (B.52) gives

∮

C

dz
2πi
ε(z)〈T (z)X〉 −

∮

C

dz̄
2πi
ε̄(z̄)〈T̄ (z̄)X〉 =

∑

ij̄

[
D

(ε)
i +D̄

(ε̄)

j̄

]
〈X〉 (B.71)

−
∮

C

dz
2πi
iθX(z)〈JX(z)X〉 +

∮

C

dz̄
2πi
iθ̄X(z̄)〈J̄X(z̄)X〉 =

∑

ij̄

[
D

(θ)
i +D̄

(θ)

j̄

]
〈X〉 (B.72)

where the sums on i and j̄ go over all points zi and z̄j̄ occuring in 〈X〉, and

T (z) ≡ 1
2

:
{[
∂zψ

α†(z)
]
ψα(z) − ψα†(z)∂zψ

α(z)
}

: , (B.73)

JX(z) ≡ : ψα†(z)TX

αα′ψα
′
(z) : . (B.74)

Identical equations give T̄ (z̄) and J̄X(z̄) in terms of ψ̄(z̄) and ∂z̄ψ̄(z̄).
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These are the main results of this section. Eqs. (B.71) and (B.72) correspond

to eqs. (B.19) and (B.20) (with the identifications made in eq. (B.61)), and the

expressions for T and JX that we derived in the process are just eqs. (A.21)

and (A.8) of appendix A. The connection between the contour integrals of

eqs. (B.71) and (B.72) and the canonical commutators of eqs. (A.12) and (A.22)

is explained lucidly in [Gins87], p. 18,19.

As explained in section B.1 (just before eq. (B.23)), the operator product

expansions of T (z)ψ(w) and JX(z)ψ(w) [eqs. (B.25) and (B.26)] follow directly

from eqs. (B.71) and (B.72).

To conclude this section, let us point out that for the present case of free

fermions, all OPEs [also eqs. (B.27) to (B.29)] can actually be derived directly

by simply using Wick’s theorem, as illustrated in section A.5. For example, if in

eq. (A.47) we choose the matrices A,B to be TX, TX′
, then that equation yields

the JXJX
′
OPE of eq. (B.29).

As another example, we consider the OPE of T (z)ψ(w), using eq. (B.47) to

evaluate the Wick contractions:

T (z)ψα(w) = 1
2

:
{[
∂zψ

β†(z)
]
ψβ(z) − ψβ†(z)∂zψ

β(z)
}

: ψα(w) (B.75)

= −1
2
ψα(z)∂z(z − w)−1 + 1

2
(z − w)−1∂zψ

α(z) + . . . (B.76)

=

[
1/2

(z − w)2
+

1

(z − w)
∂z

]
ψα(w) + . . . , (B.77)

where the last line is obtained by Taylor-expanding ψα(z) = ψα(w) + (z −

w)∂wψ
α(w) + . . ..

Finally, let us verify that the central charge for a single species (N = 1) of

chiral Dirac fermions is c = 1, by using Wick’s theroem to calculate the coefficient

c/2 of the (z−w)−4 term in the OPE (B.27) of T (z)T (w). This term arises from
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a double Wick contraction in each of the four terms of T (z)T (w):

T (z)T (w) =
[

1
2

: ∂zψ
†ψ − ψ†∂zψ : (z)

] [
1
2

: ∂wψ
†ψ − ψ†∂wψ : (w)

]
(B.78)

= 1
4

[
(1+1)∂z(z−w)−1∂w(z−w)−1−(1+1)(z−w)−1∂z∂w(z−w)−1

]
+ . . . (B.79)

=
1/2

(z−w)4
+ . . . , (B.80)

which implies that c = 1, as advertized. It is an instructive exercise to use the

same method to obtain the other terms in the TT OPE (B.27).

B.3 Wess-Zumino-Witten theories

[For details, see [KZ84] and [Gins87, chapter 9].]

In the previous section, we have seen that for free fermions, all the results of

section B.1 can be derived by elementary means. This is not the case, however,

for the charge, spin and channel sectors into which free fermions are factorized

in AL’s treatment of the Kondo problem. This is so because the spin, flavor and

channel fields, taken separately, do not obey Wick’s theorem, since each represents

a strongly interacting field theory. Each of the charge, spin and channel sectors

is in fact described by a so-called Wess-Zumino-Witten (WZW) theory. In this

section, we summarize some basic facts about WZW theories, again plagiarizing

[GW86], section 3.

WZW theories can be described axiomatically by imposing the Sugawara form

on the energy-momentum tensor, namely

T (z) = 1
2κ

∑

a

:Ja(z)Ja(z) : , (B.81)

T̄ (z̄) = 1
2κ

∑

a

: J̄a(z̄)J̄a(z̄) : , (B.82)
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where κ is some constant. The Laurent series expansion of this relation is

Ln = 1
2κ

∞∑

−∞

∗
∗J

a
n−kJ

a
k
∗
∗ , (B.83)

where the normal ordering means pushing to the right the “annihilation opera-

tors” Jak with k > 0. Let D be the dimension of the group, and let cv be the

Casimir of the adjoint representation [fabcfabd = cvδcd]. Then the normalization

κ of the stress-energy tensor and the central charge c are given by

κ = 1
2
(cv + k) , c =

kD

cv + k
. (B.84)

In these theories, any field ϕ that is a Kac-Moody primary field is also a Vi-

rasoro primary field. Suppose ϕ transforms in the representation R with Casimir

cϕ [tata = cϕI]. Then the dimension ∆ϕ of ϕ is given by

∆ϕ =
cϕ

cv + k
. (B.85)

For a discussions of the null-vector constraints of the theory, consult [GW86].

As an example, let us apply this to the SU(Ñ)k Kac-Moody algebra that we

encountered in the U(1) × SU(Ñ) × SU(k) bosonization of N = Ñk species of

left-moving (i.e. chiral) free fermions.

The underlying Lie algebra is SU(Ñ), which has dimension D = Ñ2 − 1 and

Casimir cv = Ñ in the adjoint representation. Hence, the normalization factor 2κ

of the stress-energy tensor eq. (B.81) is 2κ = Ñ + k, as we found by pedestrian

means in appedix A [see eq. (A.102)]. The central charge is c = k(Ñ2−1)

Ñ+k
, as stated

(though not derived ) on page 303. Finally, consider Ñ = 2; then the Casimir of

a field ϕj of spin j is cj = j(j + 1), and hence the scaling dimension of this field

is ∆j = j(j+1)
2+k

. This agrees with eq. (7.29), since the scaling dimension ∆ϕ of a
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Virasoro primary field can be read off from the eigenvalue Eϕ of the finite-size

spectrum through Eϕ − Eo = π
l
∆ϕ. This relation is derived in the next section

[see eq. (B.94), with ∆̄ϕ, N̄ = 0, since in appendix A we consider chiral fermions,

and N = 0 for the primary state in the tower].

B.4 Relation between Bulk Scaling Dimensions

and Transfer Matrix on Strip

[Car84a], [Car86a], section 2, [CH93], section 13.1.

There exists a very useful relation, due to Cardy ([Car84a] and [Car86a, sec-

tion 2]), between the scaling dimensions (∆, ∆̄) of Virasoro primary fields φ(z, z̄)

in a bulk conformal field theory, and the eigenvalues of a certain transfer ma-

trix e−HP on a strip of finite width l. Cardy derived this relation by exploiting

a conformal transformation, z = e2πw/l, which maps the plane (parametrized

by z) onto a strip of finite width l (parametrized by w). The 2-point function

〈φ(w, w̄)φ(w′, w̄′)〉 on the strip can then be calculated in two ways: firstly by sim-

ply applying the conformal map to the corresponding two-point function in the

plane, 〈φ(z, z̄)φ(z′, z̄′)〉, and secondly in terms of the transfer matrix on the strip.

Equating the resulting two expressions yields the desired relation, eq. (B.94) be-

low.

We now derive this relation, following [Car86a, section 2]. Parametrize the

full complex plane by z = τ + ix = reiθ. The 2-point correlation function of

any Virasoro primary field φ(z, z̄) with scaling dimensions (∆, ∆̄) is given by

eq. (B.42):

〈φ(z, z̄)φ(z′, z̄′)〉 =
1

(z − z′)2∆(z̄ − z̄′)2∆̄
, (B.86)
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v

u
w=u+iv

x

z= +ixτ
τ

= r eiθ

u

r

θ

2πw/lz=e

HP

v=0

v=l

Figure B.2 The conformal transformation z = e2πw/l maps the plane,
parametrized by z = τ + ix = reiθ onto a strip of width l, parametrized by
w = u + iv, with periodic boundary condition at v = 0, l. HP generates transla-
tions along the strip in the u-direction.

[To simplify our notation, we do not show here explicitly the “isospin indices” of

the field φij shown in eq. (B.42), and in eq. (B.86) have chosen unit normalization

for each component of φij.]

Now make a conformal transformation,

z = f(w) = e2πw/l , (B.87)

which maps the z-plane onto a strip of width l, parametrized by w = u + iv

(Fig. B.2).

This maps circles of constant radius r onto lines of constant u = (l/2π) ln r,

and lines of constant θ onto lines of constant v = (l/2π)θ. In particular, the

“upper side” (“lower side”) of the positive τ -axis, i.e. θ = 0+ (θ = 2π − 0+) is

mapped onto the lower (upper) edge of the strip, v = 0 (v = l); all fields that are

single-valued at θ = 0, 2π in the plane [i.e. have integer (∆, ∆̄)], are periodic at

v = 0, l on the strip.

Now, since φ(z, z̄) is a primary field, it transforms according to eq. (B.2),
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which implies that the correlation function on the strip can be found from that

on the plane (we use s̃ to distinguish strip- from plane fields):

〈φ(w, w̄)φ(w′, w̄′)〉 =

(
∂z

∂w

∂z′

∂w′

)∆(
∂z̄

∂w̄

∂z̄′

∂w̄′

)∆̄

〈φ(z, z̄)φ(z′, z̄′)〉 (B.88)

=
(2π/l)2(∆+∆̄) e2π/l[(w+w′)∆+(w̄+w̄′)∆̄]

(e2πw/l − e2πw′/l)
2∆

(e2πw̄/l − e2πw̄′/l)
2∆̄

(B.89)

= (π/l)2x
[
sinh

π

l
(w − w′)

]−2∆ [
sinh

π

l
(w̄ − w̄′)

]−2∆̄

(B.90)

where x ≡ ∆ + ∆̄ is the scaling dimension of φ, and below we shall also use

s ≡ ∆ − ∆̄, which is its spin. Now set w = u + iv and w′ = u′ + iv′, and, for

u > u′, expand in powers of e−2π(u−u′)/l, to obtain:

〈φ̃(w, w̄)φ̃(w′, w̄′)〉 =
(

2π
l

)2x
∞∑

N,N̄=0

aNaN̄e
−2π/l(x+N+N̄)(u−u′)e−2πi/l(s+N−N̄)(v−v′)

(B.91)

where the coefficients are given by aN = Γ(2∆+N)
Γ(2∆)N !

and āN̄ = Γ(2∆̄+N̄)
Γ(2∆̄)N̄ !

(see [CH93,

eq. (13.2)]).

Alternatively, this correlation function can be evaluated directly, in terms

of the “transfer matrix” e−HP on a strip of width l and length β → ∞. The

terminology “transfer matrix” stems from statistical mechanics. In quantum field

theory, HP is simply the Hamiltonian of the system, which generates translations

along the strip in the positive u-direction, and the subscript P indicates that all

fields with integer (∆, ∆̄) satisfy periodic boundary conditions between the edges

of the strip.11 Thus, regarding u as time variable and v as space variable on the

11Since circles of constant r in the plane are mapped onto lines of constant u on the strip, the
generators of scale transformations (r̃ = rb) on the plane, namely Lo+ L̄o, will be mapped onto

the generator of translations (ũ = u+ bl
2π ) on the strip, namely l

2πHP . Hence HP = 2π
l (L̃o+

˜̄Lo).
See [Car86b, p.216] for a careful proof.
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strip, represent φ̃(u, v) in a Heisenberg representation as

φ̃(w, w̄) = euHP φ̃(v)e−uHP , (B.92)

and write the correlation function as

〈φ̃(w, w̄)φ̃(w′, w̄′)〉 = lim
β→∞

∑
n′k′〈n′k′|e−(β−u)HP φ̃(v)e−(u−u′)HP φ̃(v′)e−u

′HP |n′k′〉
∑
n′k′〈n′k′|e−βHP |n′k′〉

=
∑

nk

〈0|φ̃(v)|nk〉〈nk|φ̃(v′)|0〉e−(En−Eo)(u−u′) (B.93)

Here {|nk〉} denotes a complete set of eigenstates of HP with energy En and

momentum k (both quantized in units of 2π/l because of the periodic boundary

conditions), so that the matrix elements in eq. (B.93) depend on v and v′ as

e−ik(v−v
′). In going from the first to the second line, we inserted a complete set of

such states,
∑
nk |nk〉〈nk|, and took the limit β → ∞, so that only the state with

En′ = Eo survived in the sum
∑
n′k′ . Comparing our two expressions for the strip-

correlation function, eqs. (B.91) and (B.93), we conclude that to each primary

operator of scaling dimensions (∆, ∆̄) in the infinite plane, there corresponds an

infinite number of eigenstates of HP , labeled by (∆, ∆̄, N, N̄), with energy and

momentum

Eφ(N, N̄) − Eo = 2π(∆ + ∆̄ +N + N̄)/l (B.94)

kφ(N, N̄) = 2π(∆ − ∆̄ +N − N̄) . (B.95)

These states together constitute the conformal tower Tφ associated with the Vira-

soro primary field φ̃. The lowest state in the tower, called the primary state, must

be non-degenerate [since e−2πx/l occurs only once in eq. (B.91)]; it has N = N̄ = 0

and is denoted by |φ〉, with

〈0|φ̃(v)|φ〉 = (2π/l)x e−i2πsv/l . (B.96)
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The infinite number of states with N or N̄ 6= 0 are the descendent states in the

tower.

Eq. (B.94) is the desired relation. It allows one to read off from the finite-size

spectrum of HP the scaling dimensions of all Virasoro primary fields in the bulk

theory. In appendix C, section C.5 it is shown that a similar argument allows one

to find all possible boundary operators for a boundary CFT from the finite-size

spectrum of a certain related (but different) Hamiltonian on a strip.

Note that in the limit u− u′ → ∞ one can write eq. (B.91) in the form

〈φ̃(w, w̄)φ̃(w′, w̄′)〉 ∼ e−(u−u′)/ξ (B.97)

where the inverse correlation length is given by

ξ =
l

2πx
. (B.98)

This limit corresponds to two points w and w′ on the strip that are very far apart

in the longitudinal direction (or two points in the plane with radii r − r′ → ∞).

The fact that the correlation length in the longitudinal direction on the strip is

proportional to the system size l in the transverse direction is to be expected,

since a finite system size will always prevent ξ from becoming infinite. What is

remarkable though (and was first pointed out by Cardy [Car84a]), is that the ratio

l/ξ is universal , namely l/ξ = 2πx, and determined by the scaling dimension of

the field φ̃.12

12This is “one of the most important results for the application of conformal invariance to
critical phenomena” [CH93, p. 48]. For a given lattice model, the ratio l/ξ can often readily
be evaluated for various operators using numerical transfer matrix methods; this information
can then be used to identify the conformal field theory corresponding to the lattice model (see
[CH93] for an extensive discussion).
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B.5 T = 0 to T 6= 0 Mapping of Plane to

Cylinder

The Green’s functions for a T 6= 0 theory can be found from those of the corre-

sponding T = 0 CFT by mapping the complex plane onto a cylinder of radius

β = 1/T . This was discussed in some detail in chapter 8, section 8.1. Here we

would merely like to point out that eq. (B.94) of section B.4 can also be derived

via this mapping, since a strip with periodic boundary conditions is topologically

equivalent to a cylinder.

The infinite complex plane, be parametrized by z = τ + ix, is mapped onto

an infinite cylinder, parametrized by z̃ = τ̃ + ix̃, by the conformal transformation

[compare eq. (8.4)]

z = tan π
β
z̃ . (B.99)

Here x̃ parametrizes the longitudinal direction along the cylinder [see Fig. 8.1].

As shown in section 8.1, eq. (B.2) maps the two-point function of eq. (B.42) onto

〈φ̃ij1 (z̃1, ˜̄z1)φ̃
kl
2 (z̃2, ˜̄z2)〉T =

Aik,oBjl,o
[
β
π

sin π
β
(z̃1−z̃2)

]2∆ [β
π

sin π
β
( ˜̄z1−˜̄z2)

]2∆̄ . (B.100)

Now, to rederive eq. (B.94), make the identification z̃ = iw = i(u + iv), i.e.

u = x̃, v = −τ̃ , according to which u becomes the longitudinal parameter on the

cylinder, as in section B.4. Then eq. (B.100) becomes

〈φ̃ij1 (w1, w̄1)φ̃
kl
2 (w2, w̄2)〉T =

Aik,oBjl,o
[
iβ
π

sinh π
β
(w1−w2)

]2∆ [−iβ
π

sinh π
β
(w̄1−w̄2)

]2∆̄ ,

(B.101)

which is analogous to eq. (B.90). This correlation function can also be evaluated

in terms of the Hamiltonian HP that generates translations in the longitudinal (u)
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direction along the cylinder, in a way analogous to eqs. (B.92) and (B.93). The

procedure is the same as that in section B.4, because both there and here periodic

boundary conditions hold between the edges of the strip or around the circum-

ference of the cylinder. Therefore, just as in section B.4, eqs. (B.94) follows, and

so does (B.96).



Appendix C

Cardy’s Boundary Conformal

Field Theory

The development of boundary conformal field theory , in particular CFT in the

upper half-plane with a boundary at Im(z)=0, is mainly due to Cardy [Car84a,

Car84b,Car86a,Car86b,Car87,Car89,CL91]. In this appendix we introduce those

features of Cardy’s boundary CFT, and its generalization to theories that are

invariant under a Kac-Moody current algebra, that are needed in Affleck and

Ludwig’s treatment of the Kondo problem. It is hoped that the presentation

is sufficiently detailed and self-contained that the reader will be able to learn

the material without recourse to Cardy’s papers (though extensive and detailed

references are given throughout).

The appendix is organized as follows. In section C.1, we discuss the corner-

stone of Cardy’s boundary CFT, namely how the R-handed generators T̄ (z∗)

and J̄a(z∗) can be expressed in terms of the analytical continuations of T (z) and

Ja(z) across the boundary, and the consequent elimination of all R-handed in

335
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favor of L-handed fields. In section C.2, this is illustrated by considering in de-

tail the two-point function G(2) = 〈φi(z1, z
∗
1)φi(z2, z

∗
2)〉 and the related four-point

function G(4) = φiL(z1)φiL(z
∗
2)φiR(z

∗
4)φiR(z

∗
3)〉. By considering the boundary limit

of these functions, the concept of boundary operators naturally arises, which we

introduce in section C.3. In section C.4, we introduce the concept of a boundary

state |B〉 and show how it determines the boundary conditions on the theory. We

also derive Cardy’s formula [eq. (C.64)] for the boundary state matrix elements

〈a|B〉, and show, for the case that the boundary condition is determined by a

fusion principle, they can be calculated in terms of modular S-matrix elements

[eq. (C.68)]. Finally, in section C.5 we derive a quick way for determining the

complete boundary operator content of a BCFT in terms of the operator content

of a strip theory, and show how the latter can be derived by “double fusion” if a

fusion principle applies.

C.1 Relation between R- and L-moving fields

in Boundary CFT

[Car84b], section 4, [AL91b], section 2.2

Throughout this section, we assume that the “physical section” of the theory

(see footnote 1 of appendix B) has been taken, in which z = τ + ix, and z̄ = z∗ =

τ−ix. Consider a conformal field theory defined in the semi-infinite upper half of

the complex plane, with a boundary along the real axis. In other words, all fields

Ai(z, z
∗) are defined only for x > 0. The theory is assumed to be conformally

invariant and, for some Lie Group G, Kac-Moody invariant in the bulk and along

the boundary.1

1In [Car84b], section 4, Cardy only considered conformal invariance. However, the extension
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Conformal and KM invariance in the bulk (upper half plane) implies that the

theory has to be formulated in terms of a set of fields Ai(z, z
∗) which have all

the local properties summarized in section B.1 of appendix B. In other words,

they satisfy the transformations laws (B.2) and (B.3), and the OPEs (B.25) to

(B.29). Furthermore, invariance of the bulk implies that under the infinitesimal

conformal and KM transformations of eqs. (B.4) and (B.5), the action is invariant

up to a surface term, δS, which can be written as the sum of two contour integrals

[as illustrated in section B.2 for free fermions, see eq. (B.70)]:

δε,ε∗S =
∮

C+

dξ
2πi

ε(ξ)T (ξ) −
∮

C+

dξ∗

2πi
ε∗(ξ∗)T̄ (ξ∗) ,

δω,ω̄S = −
∮

C+

dξ
2πi

ωa(ξ)Ja(ξ) +
∮

C+

dξ∗

2πi
ω̄a(ξ∗)J̄a(ξ∗) .

(C.1)

Here C+ is a contour enclosing all the points (τi, ixi) at which correlation functions

of fields Ai(zi, z
∗
i ) are calculated, and lies entirely in the upper half-plane. It may

be chosen to have the form shown in Fig. C.1, consisting of a straight portion Cr
+

along the real axis, and a large semi-circle Cs
+.

“Invariance of the boundary” under conformal and KM transformations means,

by definition, that the boundary contribution (due to the Cr
+ portion of the con-

tour C+) to δS vanishes. The conditions under which this happens will be ex-

plored below.

The presence of a boundary at x = 0 implies three additional requirements

on the theory:

(i) Boundary conditions have to be specified for T, T̄ and Ja, J̄a at x = 0.

(ii) Only a restricted class of conformal and KM transformations, namely those

that preserve the geometry and the boundary conditions, can be considered.

of his theory to theories with KM invariance is self-evident, and was scetched, for example, in
[AL91b, section 2.2].
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(iii) A specific boundary condition [in addition to (i)] has to be imposed on

the theory, which determines the behavior of correlation functions close to the

boundary.

In the present section, we discuss (i) and (ii) and their consequences; (iii) is

addressed in section C.2.2 [see eq. (C.30)].

C.1.1 Boundary Conditions on T, T̄ and Ja, J̄a

The boundary condition on T, T̄ and Ja, J̄a that is imposed in all theories of

interest to us is the following [AL91b, p.653]: No energy or current density of

any type may flow across the boundary.2 This is ensured by the requirement that

T (τ) = T̄ (τ) , Ja(τ) = J̄a(τ) , (C.2)

be satisfied along the real axis. Intuitively, since T and Ja [or T̄ and J̄a] depend

on z = τ + ix [or z∗ = τ − ix], which becomes i(t + x) [or i(t − x)] under

τ → it, they carry energy and charge toward [or away from] the boundary. Thus

the boundary conditions (C.2) ensure that as much energy and charge is carried

away from as is carried toward the boundary, so that there is indeed zero flux

across the boundary. More formally, in Cartesian coordinates one has (in the

notation of [Gins87, p.17]) T = 1
4
(Tττ − 2iTxτ + Txx), T̄ = 1

4
(Tττ + 2iTxτ + Txx),

and Ja = Jaτ − iJax , J̄a = Jaτ + iJax . Hence eq. (C.2) implies that at the boundary,

the x-direction energy current density Tτx = 0, and likewise the x-direction charge

current density Jax = 0.

The presence of a boundary further implies that only transformations may be

2It is shown in section C.1.3 that this is a necessary condition for the invariance of the
boundary under restricted conformal and KM transformations of the form of eqs. (C.3) and
(C.4).
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considered that satisfy

ξ∗(τ) = ξ(τ) , (C.3)

ω̄a(τ) = ωa(τ) , (C.4)

along the real axis. We shall call these restricted conformal and KM transforma-

tions. The reasons for these restrictions are as follows:

The condition (C.3) on ξ is necessary to preserve the geometry : it ensures

that the boundary is mapped onto itself (i.e. that ξ(τ) is real).

The condition (C.4) on ωa is necessary to preserve the boundary conditions

(C.2): it ensures that along the boundary, the changes in T, T̄ and J, J̄ are

δω,ω̄T (τ + iα) = δω,ω̄T̄ (τ − iα), δω,ω̄J
a(τ + iα) = δω,ω̄J̄

a(τ − iα) , (C.5)

in the limit α → 0. To see this, calculate for example, δω,ω̄J
a and δω,ω̄J̄

a from

eq. (B.13): set X → Ja or J̄a and use footnote 4 of appendix B and the OPE

(B.29) for JaJ b (and a similar one for J̄aJ̄ b) to evaluate the contour integrals.

One readily finds that

δω,ω̄J
a(τ+iα) = −1

2
k ∂τω

a(τ+iα) − f bac ωa(τ+iα) Ja(τ+iα) (C.6)

δω,ω̄J̄
a(τ−iα) = −1

2
k ∂τ ω̄

a(τ−iα) − f bac ω̄a(τ−iα) J̄a(τ−iα) (C.7)

which implies that eq. (C.4) is necessary to ensure eq. (C.5).

More intuitively, condition (C.4) ensures that along the boundary one makes

the same isospin transformation on the L and R indices of all KM primary fields,

i.e. ΩX(τ) = Ω̄X(τ) in eq. (B.3), so that all boundary conditions between L and

R primary fields will be preserved.3

3However, since J and T are not KM primary, this argument does not apply directly to
them, which is why the argument involving eqs. (C.6) and (C.7) was given above.
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C.1.2 Illustration of Boundary Conditions for Kondo
Problem

Before proceeding with the formal development of the theory, let us recapitulate

the reasons why the boundary conditions eq. (C.2) hold for the Kondo problem.

In the Kondo problem, ψ(z) = ψL(z) and ψ̄(z∗) = ψR(z
∗) describe, respec-

tively, electrons incident and reflected from an impurity at r = 0 (r plays the

role of x here). At zero-coupling (λK = 0), the 3D-1D mapping of chapter 4

ensures that ψL(τ + i0+) = ψR(τ − i0+), which simply means that there is no

electron scattering off the impurity. In this case, the boundary conditions (C.2)

follow immediately from the definitions of T, T̄ and Ja, J̄a, eqs. (B.73) and (B.74).

Hence, by analytical continuation, the zero-coupling theory may be formulated

completely in terms of L-moving fields, as discussed in section 7.2.

Turning on electron scattering off the impurity (λK 6= 0) in general causes

ψL(τ + i0+) 6= ψR(τ − i0+). In particular a discontinuity develops in the spin

current, ~JL(τ + i0+) 6= ~JR(τ + i0+), since due to impurity spin flips, the outgoing

spin current need not be the same as the incident one.

However, at the strong-coupling fixed point, the impurity spin is completely

absorbed, as described in section 7.4.1. In terms of the total spin current

~JL(τ, ix) = ~JL(τ, ix) + 2πδ(x)~S, the theory can be brought in the form of a

free theory [see eq. (7.40)]. Therefore, as a simple consequence of the Heisen-

berg equations of motion, the total spin current is analytic at the boundary,

~JL(τ + i0+) = ~JL(τ − i0+). Thus, the R-moving total spin currents can be rein-

troduced through ~JR(z
∗) ≡ ~JL(z

∗) [see eq. (7.39)], so that for z = z∗ = τ , we

recover eq. (C.2).
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Thus, the boundary conditions (C.2) hold both for the zero-coupling and the

strong-coupling Kondo problem (for a discussion of the strong-coupling boundary

condition in terms of fermion fields (instead of currents), see appendix F).

Finally, to illustrate the need for the condition (C.4) for restricted KM trans-

formations, note that it means the following for free fermions: The KM transfor-

mation laws for fermions are eqs. (B.53) and (B.54), and according to eq. (B.61),

ωa = iθX, ω̄a = iθ̄X. Thus the condition (C.4) implies that θ̄X(τ) = θX(τ),

i.e. along the real axis the same KM transformation has to be made on ψL and

ψR. Clearly, this is a necessary condition if the zero-coupling boundary condition

ψL(τ + i0+) = ψR(τ − i0+), and consequently also ~JL(τ + i0+) = ~JR(τ + i0+), are

to be preserved.

C.1.3 Ward Identities for Boundary CFT

The boundary conditions (C.2) together with the restrictions (C.3) and (C.4)

have profound consequences for the theory. Firstly, they imply that the boundary

is conformally and KM invariant under restricted conformal and KM transfor-

mations. As mentioned above, this means that the boundary contribution (due to

the Cr
+ portion of the contour C+) to the variation δS of the action [see eq. (C.1)]

under such transformations vanishes:

∫

Cr+

dξ
2πi

ε(ξ)T (ξ) −
∫

Cr+

dξ∗

2πi
ε∗(ξ∗)T̄ (ξ∗) =

∫ ∞

−∞
dτ
2πi
ξ(τ)[T (τ) − T̄ (τ)] = 0 ;

−
∫

Cr+

dξ
2πi

ωa(ξ)Ja(ξ) +
∫

Cr+

dξ∗

2πi
ω̄a(ξ∗)J̄a(ξ∗) =

∫ ∞

−∞
dτ
2πi
ωa(τ)[Ja(τ) − J̄a(τ)] = 0 .

We have derived this result as a consequence of the boundary condition (C.2).

Of course, the converse is also true: eq. (C.2) can also be viewed as a necessary

condition for the invariance of the boundary under restricted conformal and KM
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transformations.

Secondly, the boundary conditions (C.2) together with the restrictions (C.3)

and (C.4) imply that the separation of the theory into equations involving only

T, Ja and T̄ , J̄a, respectively, no longer goes through. Instead, since analytic

functions that are equal on an open domain (the real axis) must be analytical

continuations of each other, they imply that

T̄ (z∗) = T (z∗) ,

ξ∗(z∗) = ξ(z∗) ,

J̄a(z∗) = Ja(z∗) ,

ω̄a(z∗) = ωa(z∗) ,

for Im z < 0 ; (C.8)

for Im z < 0 . (C.9)

Thus, T̄ and J̄a can be viewed as the analytic continuations of T and Ja into

the lower half-plane. Furthermore, from eq. (B.31) it follows that L̄n = Ln and

J̄an = Jan, which means that there is only a single Virasoro algebra {Ln} and only

a single KM algebra {Jan} [since the {L̄n} and {J̄an} are no longer independent of

these, as they were in the bulk theory].

In the spirit of eq. (C.8), relabel all points z∗i occuring in a correlation function

〈X〉 = 〈A1(z1, z
∗
1) . . . An(zn, z̄n)〉 as z∗i ≡ z′i, where the z′i all lie in the lower half-

plane, and write 〈X ′〉 = 〈A1(z1, z
′
1) . . . An(zn, z

′
n)〉. Using eqs. (C.8) and (C.9),

the
∮
C+
dξ∗ integrals in eqs. (B.11) and (B.13) may be rewritten as − ∮C∗

+
dξ,

where C∗
+ is the complex conjugate contour of C+, taken in the reverse direction,

lying in the lower half-plane (see Fig. C.1). Thus, eqs. (B.11) and (B.13) become

〈δε,ε∗X ′〉 =
∮

C++C∗
+

dξ
2πi

ε(ξ)〈T (ξ)X ′〉 =
∮

C

dξ
2πi

ε(ξ)〈T (ξ)X ′〉 (C.10)

〈δω,ω̄X ′〉 = −
∮

C++C∗
+

dξ
2πi

ωa(ξ)〈Ja(ξ)X ′〉 =−
∮

C

dξ
2πi

ωa(ξ)〈Ja(ξ)X ′〉(C.11)

For the last equalities, we used the fact that the two straight portions of the
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Figure C.1 Integration contours occuring in Cardy’s boundary approach.

contours C+ and C∗
+ cancel, so that C+ +C∗

+ = C is a large contour enclosing all

the points zi and z′i.

If all the fileds φi in 〈X ′〉 are Virasoro primary, or all fields ϕi in 〈Y ′〉 are

KM primary, we can carry the development a little further, as in section B.1.

〈δε,ε∗X ′〉 and 〈δω,ω̄X ′〉 are also equal to the right hand sides of eqs. (B.19) and

(B.20), which, using eq. (C.9), can be rewritten as

〈δε,ε∗X ′〉 =
n∑

i=1

[
∆φiε

′(zi) + ε(zi)∂zi + ∆̄φiε
′(z′i) + ε(z′i)∂z′i

]
〈X ′〉; (C.12)

〈δω,ω̄Y ′〉 =
n∑

i=1

[
ωa(zi)t

a
i + ωa(z′i)t̄

a
i

]
〈Y ′〉 . (C.13)

Use Cauchy’s theorem to write the right hand sides of these equations as contour

integrals over
∮
Cdξ, equate the results to eqs. (C.10) and (C.11), and note that

the resulting equations must hold for arbitrary ε(ξ) and ωa(ξ). One thus obtains

the Ward identities for correlation functions of Virasoro and Kac-Moody primary

fields, respectively, in the presence of a boundary:

〈T (ξ)φ1(z1, z
′
1) . . .〉 (C.14)

=
n∑

i=1

[
∆φi

(ξ − zi)2
+

1

(ξ − zi)
∂zi +

∆̄φi

(ξ − z′i)
2

+
1

(ξ − z′i)
∂z′i

]
〈φ1(z1, z

′
1) . . .〉
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〈Ja(ξ)ϕ1(z1, z
′
1) . . .〉 =

n∑

i=1

[
− tai

(ξ − zi)
+

− t̄ai
(ξ − z′i)

]
〈ϕ1(z1, z

′
1) . . .〉 . (C.15)

This is to be compared to eqs. (B.23) and (B.24) for the bulk case. Eq. (C.15)

can be converted into a set of differential equations, known as the Knizhnik-

Zamolodchikov equations, (see [KZ84, eq.(4.6)] or [AL94, eq.(B.8)]), whose form

there depends only on bulk properties of the theory (such as bulk OPEs). These

equations completely determine the behavior of 〈ϕ1(z1, z
′
1) . . .〉, up to a small

number of coefficients that depend on the boundary conditions on the theory.

Now, the short-distance OPEs should be independent of the presence of

the boundary, so the rest of the analysis follows through as in the bulk.

Hence we have arrived at the important result that the correlation function

〈φ1(z1, z
∗
1)φ2(z2, z

∗
2) . . . φn(zn, z

∗
n)〉 in the semi-infinite geometry, regarded as a

function of (z1, z2, . . . , zn; z
∗
1 , z

∗
2 , . . . , z

∗
n), satisfies the same differential equation as

does the bulk correlation function 〈φ1(z1, z
∗
1)φ2(z2, z

∗
2) . . . φ2n(z2n, z

∗
2n)〉, regarded

as a function of (z1, z2, . . . , z2n) only.4

This is Cardy’s key conclusion for a boundary CFT: n-point functions in the

presence of a boundary are calculated as though they were bulk 2n-point functions.

Quoting [AL94, p. 559], we have the following recipe: “Replace all R-fields in a

Green’s function in the presence of the boundary by L-fields, evaluated at the

arguments of the R-fields in the lower half complex plane. The R-fields can

be envisioned as sitting at mirror image points in the lower half plane. The

resulting function, containing only L-fields, is a L-chiral function in the entire

complex plane.” Explicitly, in the notation of eqs. (B.15) and (B.16) (see also

4In this statement it is implicit that the left isospin indices of the field φn+i(zn+i, z
∗
n+i) have

the same KM transformation properties as the right isospin indices of the field φi(zi, z
∗
i ), and

that ∆φn+i
= ∆̄φi etc.
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[AL91b, eq.(2.34)], [Lud94a, eq.(6.14)]):

Ai(z, z
∗) = AiL(z)AiR(z

∗) → AiL(z)AiL(z
∗) (C.16)

〈A1(z1, z
∗
1) . . . An(zn, z

∗
n)〉 =

∑

(a)

〈A1L(z1) . . . AnL(zn)A1L(z
∗
1) . . . AnL(z

∗
n)〉(a) ·D(a) .

(C.17)

As in eq. (B.16), the label (a) is needed because the Knizhnik-Zamolodchikov

equations that determine the 2n-point function in general have several inde-

pendent solutions, known as conformal blocks . Note, however, that in gen-

eral it is not true that AiR(z
∗) is simply the analytic continuation of AiL(z

∗
i )

into the lower half-plane, as was the case for T̄ and J̄a. Instead, in general,

AiR(τ − i0+) 6= AiL(τ + i0+), i.e. the field AiL(z), viewed as a L-chiral field

defined in the entire complex plane, is not analytic at the real axis. This is be-

cause of the possibility of non-trivial boundary conditions, as will be discussed

in section C.3.1 (after eq. (C.38)).

C.2 The Boundary 2-Point Function G(2)
s

As an example of the above theory, Cardy considered [Car84b, p.524] the 2-

point function of a Virasoro primary, Kac-Moody singlet, Hermition operator

φi(z, z
∗) = φiL(z)φiL(z

∗) with scaling dimensions (∆i,∆i):

G(2)
s = 〈φi(z1, z

∗
1)φi(z2, z

∗
2)〉 = 〈φiL(z1)φiL(z

∗
1)φiL(z2)φiL(z

∗
2)〉 . (C.18)

We shall discuss this function in some detail, since it can be used to illustrate a

number of important concepts in boundary CFT, and in particular leads natu-

rally to the introduction of boundary operators and boundary operator product

exapansions in section C.3. (Since any KM primary operator is also Virasoro



346

primary, the discussion for operators that are not KM singlets and/or not Her-

mitian is entirely analogous, modulo the appearance of isospin indices and or †’s.

An example is given in our discussion of the Kondo problem, appendix D.)

C.2.1 General Functional Form of G(2)
s

According to the previous section, G(2)
s satisfies the same equation as (the holo-

morphic factor of) the four-point function

G(4) = 〈φi(z1, z
∗
1)φi(z2, z

∗
2)φi(z4, z

∗
4)φi(z3, z

∗
3)〉 (C.19)

in the bulk.5 Invariance under the small conformal group fixes this to have the

form [see eq. (B.44)6]:7

G(4)(z1, z2, z3, z4) =

[
(1 − ξ)−1

z12z43

]2∆i

Fb(ξ) =

[
(1 − η)−1

z14z32

]2∆i

Fb(1 − η) (C.20)

where zij = zi − zj and the cross-ratios ξ and η are defined by

ξ =
z12z43

z13z42

, η = 1 − ξ =
z14z32

z13z42

,
1 − ξ

ξ
=
z14z12

z13z43

. (C.21)

The function Fb(ξ) is determined by a certain set of differential equations, known

as the Knizhnik-Zamolodchikov equations, which is determined by bulk properties

(such as bulk OPEs). According to the above analysis, the 2-point function in

the surface geometry can be obtained from eq. (C.20) by replacing z3 and z4 by

z∗3 = z∗2 and z∗4 = z∗1 , and therefore has the form:

G(2)
s (z1, z

∗
1 ; z2, z

∗
2) =

[
(1 − ξ)−1

|z12|2
]2∆i

Fs(ξ) =

[
(1 − η)−1

4x1x2

]2∆i

Fs(1 − η) (C.22)

5The dummy indices z3 and z4 in eq. (C.19) are written in this order purely for the sake of
being notationally consistent with appendix D, where we need the limit z1 → z∗4 , z2 → z∗3 .

6This follows from eq. (B.44), since ∆m = ∆i for m = 1, . . . , 4, so that∏
m<n z

−(∆m+∆n)+∆T /3
mn = [z12z13z14z23z24z34]

−2∆/3 = [−ξ−1(1 − ξ)2]2∆/3[z13z42]
−2∆.

7Cardy Compare this to [Car84b, eq.(4.11)].
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where now

ξ =
|z1 − z2|2
|z1 − z∗2 |2

, η = 1 − ξ =
4x1x2

|z1 − z∗2 |2
,

1 − ξ

ξ
=

4x1x2

|z1 − z2|2
. (C.23)

The two alternative ways of writing G(2)
s are convenient in the limits ξ → 0+

and η → 0+, respectively. The limit ξ → 0+ is called the bulk limit [see

Fig. C.2(a)] since it corresponds to the case |z12| → 0 relative to all other dis-

tances, or more generally, any limit in which the distances x1 and x2 of z1 and z2

to the boundary become infinite relative to the separation |z1 − z2|, i.e. ξ → 0+,

so that bulk behavior is expected to dominate [see Fig. C.2(a), with z∗3 = z∗2

and z4∗ = z∗1 ]. The limit η → 0+ is called the boundary or surface limit [see

Fig. C.2(b)], since it corresponds to x1 and/or x2 → 0, or more generally, any

limit in which the distances x1 and x2 become small compared to the separation

|z1 − z∗2 | i.e. η → 0+, so that boundary effects are expected to emerge.

The function Fs(ξ) is determined by the same Knizhnik-Zamolodchikov equa-

tions as Fb(ξ). The only difference between G
(4)
b and G(2)

s lies in the different

boundary conditions they must satisfy. These boundary conditions are speci-

fied by specifying the asymptotic behavior of Fs(η) in the limits ξ → 0+ and/or

η → 0+, i.e. the leading coefficients in the expansions

(1 − ξ)−2∆iFs(ξ) =
∑

n

abin ξ
∆b
n for ξ → 0+ ; (C.24)

(1 − ξ)−2∆iFs(1 − η) =
∑

n

asin (η)∆s
n for η → 0+ (C.25)

The superscripts b/s distinguish the bulk from the surface or boundary limit (see

below). Since Fs satisfies the Knizhnik-Zamolodchikov equation, the number of

coefficients a
b/s
in that can be independently specified is limited, and equal to the

number of independent conformal blocks in eq. (C.17). In particular, if sufficiently
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Figure C.2 (a) Bulk and (b) boundary limits for the two-point function G(4)
s =

(z1, z
∗
1 ; z2, z

∗
2).

many bulk coefficients abin are specified to determine Fs completely, all surface

coefficients asin and exponents ∆s
n are automatically determined as well.

C.2.2 Bulk and Boundary Limits of G(4)
s

For the sake of applicability in appendix D, we shall keep z∗3 and z∗4 distinct from

z∗2 and z∗1 for the time being (but still in the lower half-plane), using the notation

z ∗
14 = z1 − z∗4 , etc., and study G4

s(z1, z2, z
∗
3 , z

∗
4) = φiL(z1)φiL(z

∗
2)φiR(z

∗
4)φiR(z

∗
3)〉,

which is given by eq. (C.20) (with Fs instead of Fb). By eqs. (C.24) and (C.25),

the bulk and boundary limits of G(4)
s are:

G(4)
s =





(z12z
∗∗
43)

−2∆i
∑
n a

b
in ξ

∆b
n for ξ → 0 ;

(z ∗
14z

∗
32)

−2∆i
∑
n a

s
in η

∆s
n for η → 0 .

(C.26)

(C.27)

The properties of φi in the bulk strongly constrain the freedom available in

specifying the boundary conditions on Fs and G(4)
s [Car84b, section 4.1.1]. This
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happens via the bulk OPE of φiL(z) with itself, which has the general form

φiL(z1)φiL(z2) =
∑

n

Cii,nφnL(z2)

(z12)2∆i−∆n
. (C.28)

Inserting this into eq. (C.18) one obtains a representation for G(4)
s that is valid

for z1 → z2 and z∗3 → z∗4 , i.e. in the bulk limit [see Fig. C.2(a)]:

G(4)
s =

∑

nn′

Cii,nCii,n′ 〈φnL(z2)φn′L(z
∗
4)〉

(z12)2∆i−∆n (z∗∗43)
2∆i−∆n′

, for ξ → 0+ . (C.29)

The correlation function 〈φnL(z2)φn′L(z
∗
4)〉 occuring here is shown in sec-

tion C.3 to have the form (see eq. (C.38) below),

〈φnL(z)φn′L(z
∗)〉 = δnn′

CB
no

[−i(z2 − z∗4)]
2∆n

, (C.30)

where the coefficient CB
no may be thought of as specifying a boundary condition,

labeled by B, on this function. This implies that in the bulk limit,

G(4)
s = (z12z

∗∗
43)

−2∆i
∑

n

(Cii,n)
2

(
z12z

∗∗
43

−(z ∗
24)

2

)∆n

, for ξ → 0+ , (C.31)

which, when compared with eq. (C.26) (in the limit z1 → z2, z
∗
3 → za4st), imme-

diately gives

abin = (Cii,n)
2CB

no , ∆b
n = 2∆i − ∆n . (C.32)

Now, the coefficients Cii,n in the bulk OPE (C.28) are always independent

of the particular boundary condition imposed at the boundary, and are known

from bulk CFT. (Intuitively speaking, in the limit ξ → 0 in which the bulk OPE

may be used, one is so far away from the boundary relative to z1 − z2 that all

boundary effects become irrelevant). Thus, eq. (C.32) implies that the abin and

∆b
n, and hence the full behavior of Fs(η) and G(4)

s , are completely determined once

the (first few) CB
no have been specified. In other words, “specifying a boundary
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condition” B for a boundary CFT is equivalent to specifying the values of these

coefficients CB
no. In section C.4 it is shown that these CB

no may be specified in a

rather compact form in terms of a certain boundary state |B〉 [see eq. (C.54)].

The leading term in eq. (C.31) corresponds to φo = I, the unit operator,

for which ∆o = 0. Thus in the bulk limit, the leading term in G(4)
s , namely

(z12z
∗∗
43)

−2∆i , does not depend on z∗24 = τ1 − τ2 + i(x1 + x2) (except if CB
no = 0).

This was to be expected, since deep enough in the bulk, translational invariance

should be restored.8

Next consider the boundary limit: Take z∗3 = z∗3 and z∗4 = z∗1 , and suppose

that x1 ≥ x2, so that we can write x1 = x2 + R cos θ, where R = |z1 − z2| and

θ ∈ [0, π/2] is the angle between the normal to the surface and the vector pointing

from z2 to z1. When R → 0+ for fixed (small) x2, the cases θ < π/2 and θ = π/2

correspond to surface-bulk and surface-surface correlation functions, respectively.

Taking the limit R → ∞ and η → 4x1x2

R2 → ∞ in eq. (C.27), and denoting the

leading (smallest) surface exponent by ∆s
ñ, we obtain

G(2)
s =





asiñ(4x2 cos θ)−2∆i+∆s
ñR−(2∆i+∆s

ñ) ∼ R−∆⊥ for θ < π/2 ,

asiñ(4x2x2)
−2∆i+∆s

ñR−2∆s
ñ ∼ R−∆‖ for θ = π/2 .

(C.33)

(C.34)

Hence we identify ∆⊥ = 2∆i + ∆s
ñ and ∆‖ = 2∆s

ñ. The fact that ∆⊥ 6= ∆‖

means that the decay of the 2-point function depends on the direction relative

to the boundary. This is a well-known general feature of critical systems with

boundaries, first found in [BH72], and is discussed at length in, e.g. [Die86].9

8This is simply a manifestation of the linked cluster theorem applied to eq. (C.17), according

to which G
(4)
s = 〈φiL(z1)φiL(z2)〉〈φiL(z∗4)φiL(z

∗
3)〉 = (z12z

∗∗
43 )−2∆i in this limit (see Fig. C.2).

9In the general theory of critical phenomena for semi-infinite systems with a boundary (see
[Die86]), boundary effects such as ∆⊥ 6= ∆‖ occur only if one of the points at which correlation
functions are evaluated is within a correlation length ξ of the boundary. However, systems
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What determines the boundary-limit exponents ∆s
n and coefficients asin? Once

the CB
no have been specified so that G(4)

s is completely determined, the ∆s
n and asin

are also completely determined, and can be found by simply taking the boundary

limit eq. (C.27) of G(4)
s . This can be done in great generality, using very general

(so-called “duality”) properties of the function Fs, as was shown in [CL91, p.277].

Several explicit examples of this procedure, applied to the Kondo problem, can

be found in [AL94], sections 3.3 and 4. In the next section, we give an “inter-

pretation” of the ∆s
n and asin by showing that they also occur in the so-called

boundary OPE that one obtains when taking a field very close to the boundary.

C.3 Boundary Operators

In the previous section we encountered the “cross-boundary” correlation function

〈φnL(z2)φn′L(z
∗
4)〉 of eq. (C.30), an example of a correlation function that contains

arguments “on both sides of the boundary”. The OPE of φnL(zi) with φn′L(z
∗
j )

always involves the limit zi → z∗j (i.e. xi → 0, xj → 0) in which these operators

are evaluated close to the boundary. Therefore, to understand equations such

as eq. (C.30), and more generally, the behavior of fields close the boundary, it

is convenient to introduce the concept of “boundary operators”, to which this

section is devoted.

C.3.1 Basic Properties of Boundary Operators

By definition, a boundary operator is an operator Φ(τ) that lives on the boundary

(a bulk operator evaluated at the boundary is also sometimes referred to as a

with conformal invariance are scale-invariant, and hence have ξ = ∞, so that the effect of the
boundary becomes particularly pronounced and propagetes through the entire system.
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boundary operator). A boundary operator Φk(τ) with scaling dimension ∆k

obeys the conformal transformation law

Φk(τ) =

(
∂f(τ)

∂τ

)∆k

Φ̃k(ξ) , (C.35)

under restricted [see eq. (C.3)] conformal transformations ξ = f(z). Hence

boundary operators have correlation functions (choosing unit normalization)

〈Φk(τ1)Φl(τ2)〉 =
δkl

|τ1 − τ2|2∆k
. (C.36)

Note the occurence of the absolute value, which is explained at the end of sec-

tion C.3.2; it is sometimes paraphrased by saying that “boundary operators have

no statistics” (since the correlation function does not pick up a phase under

exchange of its arguments).

The only boundary operator with non-zero expectation value is the identity

operator, I = Φo, which has scaling dimension ∆o = 0: 〈Φk(τ)〉 = δko.

Boundary operators enter the calculation of correlation functions via so-called

boundary operator product expansions (BOPE), which supplement the usual bulk

OPEs of a bulk CFT. A BOPE is a short-distance expansion which specifies

the short-distance behavior of a given bulk field near the boundary in terms of

boundary operators, and depends on the specific boundary condition imposed

at the boundary, as explained below. Such boundary BOPEs were first written

down (in a non-CFT context) by Diehl and Dietrich [DD81, eq.(IV.6)].

We shall only be interested in the BOPE of Virasoro primary fields φi(z, z
∗)

with scaling dimensions (∆i,∆i) (i.e. spin ∆i − ∆i = 0). Actually, since

φi(z, z
∗) = φiL(z)φiL(z

∗), let us consider the slightly more general OPE of

φiL(z1) with φiL(z
∗
2). Assuming that the boundary respects (restricted) confor-
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mal symmetry, their OPE is necessarily of the form:10

φiL(z1)φiL(z
∗
2) =

∑

k

CB
ik

[−i(z1 − z∗2)]
2∆i−∆k

Φk(τ) . (C.37)

This general form is the only one compatible with scale invariance, since it is the

only one that is form-invariant under z = bz̃, φi(z, z
∗) = b−2∆iφ̃i(z̃, z̃

∗), etc. The

BOPE of φi(z, z
∗) is obtained by simply taking z1 = z2 in eq. (C.37).

Eq. (C.37) immediately implies the result used in eq. (C.30) above, namely

〈φiL(z1)φiL(z
∗
2)〉 =

CB
io

[−i(z1 − z∗2)]
2∆i

. (C.38)

[The δnn′ in eq. (C.30) follows from scale invariance, just as in eq. (B.42).] Con-

trast this with the case in which both arguments lie on the same side of the real

axis, for which (using conventional normalization) one has:11

〈φiL(z1)φiL(z2)〉 =
1

(z1 − z2)2∆i
. (C.39)

The fact that in general (−i)−2∆iCB
io 6= 1 means that 〈φiL(z1)φiL(z

∗
2)〉 is discon-

tinuous as one of its arguments crosses the real axis. This is the reason why

φiL(z
∗) [or more correctly φiR(z

∗)] can not simply be regarded as the analyti-

cal continuation of φiL(z) across the real axis, as was emphasized above [after

eq. (C.17)]. The special case in which 〈φiL(z1)φiL(z2)〉 is analytic across the

boundary is called the free boundary condition, denoted by B = F , in which

case we must have CF
io = (−i)2∆i .

If we take z∗2 = z∗1 in eq. (C.38), we obtain the result that the bulk operator

φi(z, z
∗) has the expectation value 〈φi(z, z∗)〉 = CB

io(2x)
2∆i . Note that due to

10The factor of −i in the denominator, which ensures that the denominator is real in the
limit z1 → z∗2 , is inserted in order to be consistent with the notation used in [CL91, eq.(1)].

11If both arguments z1 and z2 are taken infinitely far away from the boundary, the boundary
can have no influence, and eq. (C.39) must hold. Since the functional form of 〈φiL(z1)φiL(z∗2)〉
is completely determined by conformal invariance, eq. (C.39) must therefore hold for arbitrary
z1 and z2, as long as they are on the same side of the boundary.
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the presence of a boundary, this is not zero if the BOPE contains the identity,

in contrast to a bulk theory, where it is conventional to subtract constants such

that 〈φi〉 = 0 for all operators. Note also that 〈φi(z, z∗)〉 is independent of τ , as

is to be expected by translational invariance along the boundary.

C.3.2 Relation between BOPE and G(4)
s

To find out what determines the BOPE coefficients CB
ik, consider the boundary

limit η → 0 of the function G(4)
s , which has the form (C.27). An alternative

expression for G(4)
s can be found by directly evaluating eq. (C.18) in the limit

z1 → z∗4 , z2 → z∗3 and |z1 − z2| = |τ1 − τ2| → ∞, so that η → 0+ [see Fig. C.2(b)].

Using the BOPE (C.37) twice in eq. (C.18) and then eq. (C.36), one obtains

G(4)
s →

∑

kl

CB
ikC

B
il 〈Φk(τ1)Φl(τ2)〉

(−iz ∗
14)

2∆i−∆k(−iz ∗
23)

2∆i−∆l
=
∑

k

(CB
ik)

2

(z ∗
14z

∗
32)

2∆i−∆k |τ1 − τ2|2∆k
(C.40)

This has exactly the form of eq. (C.27), since η → z ∗
14z

∗
32

(τ1−τ2)2 in this limit, implying

that

(CB

ik)
2 = asik , ∆k = ∆s

k . (C.41)

Thus each term Φk in the BOPE of φLi(z)φLi(z
∗) makes a contribution to the

boundary-limit expression eq. (C.27) for G(4)
s . In particular, the exponents ∆s

k

are simply the scaling dimensions of the boundary operators Φk that occur in the

BOPE of φi(z, z
∗). Conversely, the structure of this BOPE (i.e. the coefficients

CB
ik) is determined by the boundary behavior of the 2-point function. It follows

that only the CB
io are independent coefficients: as argued in the previous sec-

tion, specifying these completely determines G(4), hence asik and ∆s
k, and thus by

eq. (C.41) also asik for k 6= 0.
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This boundary limit also illustrates why eq. (C.36) features an absolute value

|τ2 − τ2|: boundary-boundary 2-point function such as 〈Φk(τ1)Φl(τ2)〉 occur only

when one takes a (double) boundary limit of some multi-point function such as

G(4)
s . In this limit, the only dependence of the multi-point function on (τ1 − τ2)

will be through some cross-ratio such as η, which, in this limit, always contains

only the combination (τ1 − τ2)
2 = |τ1 − τ2|2 . Hence 〈Φk(τ1)Φl(τ2)〉 can also

depend only on |τ2 − τ2|. It can easily be checked that this is also the case for

more general functions than the one discussed here.

C.3.3 Two Examples: 〈ψRψ
†
L
〉 and 〈ψRΦnψ

†
L
〉

As the previous subsection illustrates, BOPEs determine the overall amplitude of

any correlation function that contains operators evaluated at points on opposite

sides of the real axis, i.e. φi(zi) and φj(z
∗
j ), because the OPE of two such operators

is always a BOPE. We give two more examples involving fermion fields, of interest

in chapters 7 and 8. In each, the functional form of a correlation function is

determined by conformal invariance, but its amplitude has to be found using a

BOPE.

(i) Consider the L-R fermion-fermion function −GLR(z1, z
∗
2) = 〈ψL(z1)ψ

†
R(z

∗
2)〉.

According to eq. (C.17), this is given by 〈ψL(z1)ψ
†
L(z

∗
2)〉 and hence, by conformal

invariance [eq. (B.42)], has the functional form c[−i(z1 − z∗2)]
−1. To find the

overall amplitude c, we should use the OPE of ψL(z1)ψ
†
L(z

∗
2) in the limit z1 → z∗2 ,

which must have the form of eq. (C.37), namely

ψL(z1)ψ
†
L(z

∗
2) =

∑

k

CB
ψk

[−i(z1 − z∗2)]
1−∆k

Φk(τ) . (C.42)
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Thus, the amplitude of GLR is c = CB
ψo:

−GLR(z1, z
∗
2) = 〈ψL(z1)ψ

†
R(z

∗
2)〉 =

CB
ψo

−i(z1 − z∗2)
. (C.43)

(ii) Next, consider the insertion of a boundary operator Φn into GLR (as needed in

section 8.5, eq. (8.26)). The functional form of the 3-point function is completely

determined by conformal invariance12 [see eq. (B.43)]:

〈ψL(z1)Φn(τ
′)ψ†

R(z
∗
2)〉 =

c̃

(τ ′ − z1)∆n(τ ′ − z∗2)
∆n [−i(z1 − z∗2)]

1−∆n
. (C.44)

To calculate the overall amplitude c̃, the BOPE (C.42) again has to be used:

Evaluate 〈ψΦψ〉 in the limit z1 → z∗2 (specifically, take τ1 = τ2 and x1 = x2 → 0),

using first eq. (C.42) and then eq. (C.36); this gives c̃ = CB
ψm for the overall

amplitude. To find CB
ψm explicitly, however, is rather cumbersome. As discussed

in the previous subsection, one has to explicitly calculate the 4-point function

〈ψL1ψ
†
L2ψR3ψ

†
R4〉 in terms of CB

ψo, and then take the double boundary limit of

eq. (C.40). AL did this in great detail for the Kondo problem [AL94]. We

present their calculation in detail in appendix D, and derive a list of the first few

Φn (with ∆n ≤ 3
2
) for which CB

ψo 6= 0 in table D.1.

C.4 The Boundary State |B〉

In this section we introduce the concept of a boundary state |B〉, introduced

by Cardy in [Car86b], which represents a very concise way of specifying the

boundary condition for a boundary CFT. We follow the presentation of [CL91].

In section C.4.1 we show how the coefficients of the identity, CB
io, in the BOPE

of φi(z, z
∗) can be calculated in terms of |B〉. In section C.4.2 we derive Cardy’s

12As usual, the extra factor of (−i) in the denominator of eq. (C.44) is inserted for the sake
of convenience, to ensure that no extra overall phase occurs in eq. (C.44).
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formula, which gives matrix elements of |B〉 explicitly in terms of modular S-

matrices, and apply it to the case where the boundary condition is governed by

a fusion principle.

C.4.1 Relation between |B〉 and BOPE coefficients

[CL91]

We have seen in appendix B that there is a 1-1 correspondence between bulk

scaling operators φi(z, z
∗) and the eigenstates of the transfer matrix e−HP of the

theory defined on an infinitely long cylinder of radius β [section B.5] onto which

the plane is mapped by z = tan π
β
iw [eq. (B.99)]. Quoting [CL91], “roughly

speaking, the eigenstate |φi〉 corresponding to φi is the lowest state in the spec-

trum (of HP ) which is allowed to propagate when the operator is placed at minus

infinity on the cylinder”. However, when one starts with a boundary CFT in

the upper half -plane, the corresponding infinite cylinder becomes a semi -infinite

half-cylinder, with a boundary at one end, and the cylinder theory has to be

modified accordingly.

Let B denote the boundary condition imposed at x = 0 of the half-plane

(specifically, the set of coefficients CB
no). Consider again the “finite-temperature”

transformation eq. (B.99) (with z̃ = iw)

z = tan π
β
iw . (C.45)

which maps the upper half-plane, parametrized by z = τ + ix with x ∈ [0,∞],

onto a semi-infinite cylinder of circumference β, parametrized by w = u + iv,

with u ∈ [0,∞] and v ∈ [−β/2, β/2] [see Fig. C.3]. The boundary at x = 0

is mapped onto the circular lower edge of the cylinder at u = 0, so that the
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F

B
HP

z=τ+ix w=u+iv

Kondo boundary

u

v

x

τ u=0

z = tan πi w/β

Figure C.3 The transformation z = tan π
β
iw maps the upper half-plane

(z = τ + ix) onto a semi-infinite cylinder (w = u + iv). The boundary at
x = 0 is mapped onto the lower edge of the cylinder at u = 0.

boundary condition B that holds at x = 0 for the half-plane also holds at u = 0

for the cylinder.

Regard u as the “time-variable” in the longitudinal direction along the cylin-

der. Imagine the cylinder to be canonically quantized along lines of constant u,

and let HP be the Hamiltonian that generates translations in the u-direction.

Then HP contains no information about the boundary condition B, because the

latter acts only at u = 0; in fact, this is the same HP as that in section B.5.

Now consider the field φ̃i(u, v) with scaling dimensions (∆i,∆i) [the ˜ denotes the

cylinder-version of half-plane field φi(τ, x)]. We would like to calculate the cylin-

der expectation value 〈φ̃i(u, v)〉 in terms of the cylinder transfer matrix e−HP , in

analogy to eq. (B.93). In contrast to the bulk case, however, the presence of a

boundary condition at u = 0 has to be accounted for here. This is done replacing
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the traces
∑
n′k′ in eq. (B.93) by the following matrix element [CL91, eq.(2)]:

〈φ̃i(u, v)〉 ≡ lim
l→∞

〈F |e−(l−u)HP φ̃i(v)e
−uHP |B〉

〈F |e−lHP |B〉 (C.46)

Here the so-called boundary states |B〉 and |F 〉 live in the Hilbert space upon

which HP acts. They determine the “initial” and “final” states at u = 0 and u =

l → ∞ of the u-propagation, generated by HP through φ̃(u, v) = euHP φ̃(v)e−uHP

[as in eq. (B.92)]. |B〉 is determined by the boundary condition B, as is made

explicit below, whereas |F 〉 corresponds to a “free” boundary condition at u =

l → ∞, where the effect of the boundary at u = 0 has died out.

Upon taking the limit l → ∞, only the ground state contribution 〈0|e−(l−u)Eo

to 〈F |e−(l−u)HP survives in eq. (C.46), where |0〉 denotes the ground state of HP ,

with eigenenergy Eo. Further, insert a complete set of states between φ̃i(v) and

e−uHP . Of the many eigenstates |φi, N〉 in the conformal tower corresponding to

φ̃i, only the (lowest-energy) primary state |φi〉, with eigenenergy Eφi , will survive

in the limit u→ ∞, so that we get

〈φ̃i(u, v)〉 u→∞−→ e−(l−u)Eo〈0|φ̃i(v)|φi〉〈φi|B〉e−uEφi
e−lEo〈0|B〉 (C.47)

= (2π/iβ)2∆i
〈φi|B〉
〈0|B〉 e

− 2π
β

2∆iu (C.48)

For the last step, we used Eφi − Eo = 2π
β

2∆i [see eq. (B.94)] and 〈0|φ̃i(v)|φi〉 =

(2π/iβ)2∆i [see eq. (B.96), with an extra phase i].13

13As was shown in section B.5, the eqs. (B.96) and (B.94) that were used to obtain eq. (C.48)
follow from mapping a bulk theory on the full complex plane onto an infinite cylinder of
circumference β. The reasons why they also hold for the present case of a boundary theory
in the upper half-plane, mapped onto a boundary theory on a semi-infinite cylinder, are as
follows: Eq. (B.94) is a property of the Hamiltonian HP on a cylinder (of circumference β)
which, as emphasized above, is not influenced by the presence of a boundary. Eq. (B.96) is
a consequence of the normalization of the bulk OPE φ(z1, z

∗
1)φ(z2, z

∗
2) = 1/|z1 − z2|4∆i + . . .,

which also holds for the boundary theory (see last sentence of section B.5). The extra phase i
inserted in (2π/iβ)2∆i relative to Eq. (B.96) corresponds to the extra i occuring in eq. (B.101)
relative to eq. (B.93).
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The matrix elements in eq. (C.48) are of course related to the BOPE coeffi-

cients CB
io introduced in eq. (C.37). This relation may be found by once again

resorting to Cardy’s trick of using the conformal map (C.45) to recalculate the

cylinder expectation value 〈φ̃i(u, v)〉 in terms of the corresponding half-plane

quantity 〈φi(τ, x)〉: Using the conformal transformation law eq. (B.2), we have

〈φ̃i(u, v)〉 =
∣∣∣ ∂z
∂w

∣∣∣
2∆i 〈φi(τ, x)〉 =

∣∣∣ ∂z
∂w

∣∣∣
2∆i CBio

(2x)2∆i
, (C.49)

where eq. (C.38) (with z1 = z2) was used for the last equality. By elementary

trigonometry we have

x = Im(z) =
1
2
sinh 2π

β
u

cosh2 π
β
u cos2 π

β
v + sinh2 π

β
u sin π

β
v

(C.50)

∣∣∣ ∂z
∂w

∣∣∣ =
∣∣∣β
π

cosh2 π
β
w
∣∣∣
−1

=
[
β
π

(
cosh2 π

β
u cos2 π

β
v + sinh2 π

β
u sin π

β
v
)]−1

, (C.51)

so that eq. (C.49) reduces to the simple form

〈φ̃i(u, v)〉 =
CB
io(

β
π

sinh π
β
2u
)2∆i

. (C.52)

Note that this expression has the expected properties of (i) being translationally

invariant around the cylinder (v-independent), and (ii) correctly reproducing the

half-plane form
CBio

(2u)2∆i
in the limit u → 0 (where the curvature of the cylinder

becomes unimportant). On the other hand, by comparing the limit u→ ∞

〈φ̃i(u, v)〉 u→∞−→ (2π/β)2∆ie−
2π
β

2∆iuCB

io , (C.53)

to eq. (C.48), we deduce a simple but important expression for the coefficients

CB
io in terms of boundary state matrix elements [CL91, eq.(6)]:

CB
io

(−i)2∆i
=

〈φi|B〉
〈0|B〉 , (C.54)
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which implies

〈φLi(z1)φRi(z
∗
2)〉 =

1

(z1 − z∗2)
2∆i

〈φi|B〉
〈0|B〉 (C.55)

This important relation is used extensively in chapters 6 and 7.

Since we have argued in section C.2.2 that the CB
io completely determine the

behavior of the 2-point function G(4)
s and all BOPEs, we conclude that this in-

formation in equivalently contained in |B〉. In other words, the boundary matrix

elements occuring in eq. (C.48) contain all information necessary to calculate cor-

relation functions in the presence of a boundary via the cylinder-transfer matrix

approach. Thus, the boundary state |B〉 completely characterizes the boundary

condition B.

C.4.2 The Matrix Elements 〈a|B〉

[Lud94a, appendix A.1], [AL94, appendix F]

In this section we derive an important relation, known as Cardy’s formula,

which relates the matrix elements 〈A|a〉〈a|B〉 to the operator content of a

cyllinder with boundary conditions A and B at its two ends, and periodic bound-

ary conditions around the circumference. This relation can be regarded as con-

straint on the possible values of the matrix elements, that is imposed by modular

invariance of a CFT on a cylinder. Since the argument has been presented in

quite some detail in chapter 6, we shall be rather brief here. The most complete

and detailed derivation that I know of is given in [AL94, appendix F], a more

concise version of which appears in [Lud94a], appendix A.1

Consider the same cylinder, of circumference β, as in the previous section, but

now with a finite length l, and boundary conditions A and B imposed at x = l
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A
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HP HP+

l

-l

0

H

(b)

τ

x

AB

(a)

τ

l

x

Figure C.4 (a) Closed string picture: the system is quantized along lines of con-
stant x, translations in the x direction are generated byHP+H̄P , which is periodic
in the τ -direction. The boundary conditions A and B are encoded in the bound-
ary states |A〉 and |B〉. (b) Open string picture: the system is quantized along
lines of constant τ , translations in the τ -direction are generated by HAB. The
relations T̄ (z∗) = T (z∗) J̄a(z∗) = Ja(z∗) at x = 0 imply that T̄ (z∗) and J̄a(z∗)
can be regarded as the analytic continuations of T (z∗) and Ja(z∗) into a “lower
half-cyinder”. The boundary conditions A and B determine the operator content,
characterized by the integers {naAB}, of the theory in the open string picture.

and x = 0, respectively. Let it be parametrized by z = τ + ix [corresponding to

z = iw = i(u+ iv) in previous section], with τ ∈ [−β/2, β/2] and x ∈ [0, l].

We would like to calculate the partition function ZAB for this system. This

will be done in two ways: firstly, by considering the theory to be quantized along

lines of constant x and secondly along lines of constant τ [Fig. C.4].

This freedom to choose the quantization direction is a consequence of the

Lorentz invariance of CFTs. The resulting two expressions for ZAB must be equal
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(this is obvious from a statistical mechanics point of view; in CFT it is called the

principle of modular invariance on the cylinder). Equating the two expressions

for ZAB then gives Cardy’s formula.

Closed String Picture

Start by considering the theory quantized along lines of constant x, (as in

previous section), with periodic boundary conditions around the circumference

[Fig. C.4(a)]. (This is called the “closed string picture” by string theorists.) For

present purposes it is convenient to regard L- and R-moving fields as both living

in the upper half-plane, as functions of z and z∗. The Hamiltonian that generates

translations in the x-direction is then HP + H̄P . Due to the conformal and KM

invariance of both bulk and boundary, the Hilbert space on which HP + H̄P acts

must carry a representation of the conformal and KM algebras, i.e. it must be a

direct sum of complete conformal towers:

HSP =
∑

⊕a

∑

⊕ā
T a ⊗ T̄ ā , (C.56)

A typical state has the form |a,m〉 ⊗ |a′,m′〉, where m labels descendents within

a tower, and energy E = 2π
β

[∆a +m+ ∆̄a′ +m′].

The boundary conditions A and B are represented by the boundary states

|A〉 and |B〉, which can be shown to have the following structure14

|B〉 =
∑

a

Ba

∑

m

|a,m〉 ⊗ |a,m〉 , (C.57)

(note that the L- and R-sectors are linked in this sum).

14The origin of eq. (C.57) is the fact that conformal invariance of the boundary requires that
T (τ) − T̄ (τ) = 0 and Ja(τ) − J̄a(τ) = 0 at both boundaries [eq. (C.2)]. This implies that the
Fourier components of T − T̄ and Ja − J̄a vanish [see for example eq. (6.70)], which means,
for the cylinder, that for all n, Ln − L̄−n and Jan − J̄a−n must annihilate |A〉 and |B〉. This
condition can be shown [Ishi89] to lead to the requirement that boundary states have the form
eq. (C.57).
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In the closed string picture, the system starts in the initial state |B〉 at “time”

x = 0, and propagates to the final state |F 〉 at x = l. Therefore, the partition

function is:

ZAB = 〈A|e−l(HP+H̄P )|B〉 . (C.58)

Inserting a complete set of states, and exploiting the special structure of

eq. (C.57), this reduces to

ZAB =
∑

ã

〈A|ã〉〈ã|B〉χã(q̃2) , q̃2 = e−4πl/β , (C.59)

where |ã〉 represents a primary state and χã(q̃) =
∑
m〈ã,m|e−lHP |ã,m〉 is the

character for the ã-th (chiral) tower (the q̃2 arises because L- and R-movers both

contribute the same energies).

Open String Picture

Now consider the theory quantized along lines of constant τ (called the “open

string picture” by string theorists) [Fig. C.4(b)]. First note that the conditions

T̄ (z∗) = T (z) and J̄a(z∗) = Ja(z) at the boundary at x = 0 [eq. (C.2)] can be used

to regard T̄ (z∗) and J̄a(z∗) as the analytic continuations of T (z∗) and Ja(∗) into

a “lower half-cylinder” [see eqs. (C.8) and (C.9)]. One therefore has only a single

set of chiral generators T (z) and Ja(z) of conformal and KM transformations,

defined on a cylinder of length 2l, with x ∈ [−l, l], so that the corresponding

Hilbert space will contain only L-states [see eq. (C.60) below]. Moreover, the

condition T̄ (z∗) = T (z) and J̄a(z∗) = Ja(z) at the boundary at x = l implies

that T and Ja are periodic between x = ±l: T (τ − il) = T (τ + il), etc.

Let HAB be the Hamiltonian that generates translations around the cylinder,

in the τ -direction, and HSAB the Hilbert space on which HAB acts. The structure

of HSAB will depend on the boundary conditions A and B imposed at x = l and
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0 of the cylinder.15 Now, since A and B are assumed not to break conformal and

KM invariance, HSAB too must necessarily always decompose into a sum over

complete conformal towers Ta of states:

HSAB =
∑

⊕a
naABTa , (C.60)

where a typical state is |a,m〉 with energy (note the length 2l): E = 2π
2l

[∆a +m].

The set of integers {naAB} characterize the operator content of the theory in the

open string picture. They depend on the boundary condition: different boundary

conditions will allow or forbid different towers to occur. The fact that the {naAB}

must always be integers can be regarded as a constraint on the structure of any

boundary states |A〉 and |B〉 in the closed string picture. Conversely, one can start

by defining a theory with prescribed operator content {naAB} in the open string

picture, and deduce the corresponding |A〉 and |B〉 from there (as shown below);

in other words, a particular boundary condition can be imposed by specifying a

particular set of integers {naAB}. This is in fact the strategy followed in the Kondo

problem, as explained in section 7.4.2.

The partition function in the open string picture will be simply:

ZAB =
∑

a,m

〈a,m|e−βHAB |a,m〉 =
∑

a

naABχa(q) , q ≡ e−πβ/l (C.61)

=
∑

ã

naABS
ã
a χã(q̃

2) . (C.62)

For the second line we exploited a mathematical identity satisfied by the

15Intuitively speaking, this is so because in the constant-τ quantization scheme, every eigen-
state |n〉 of HAB with eigenfunction an(τ, x), is created from the vacuum by an operator of the

form an(τ) =
∫ l
0
dv a∗n(τ, x)φ̃(τ, x), and hence depends on the behavior of the quantum fields

φ̃(u, v) at the edges of the cylinder.
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characters16

χa(q) =
∑

ã

S ã
a χã(q̃

2) . (C.63)

to rewrite χ(q) in terms of χ(q̃). The matrix S ã
a is known as the modular S-

matrix; it depends on the KM symmetry group under consideration, and for

various groups can be looked up in math texts.

Cardy’s Formula and Fusion

Comparing eq. (C.62) with eq. (C.59), we deduce17 a very important result,

called Cardy’s formula:

〈A|ã〉〈ã|B〉 =
∑

ã

naABS
ã
a . (C.64)

This expresses the boundary matrix elements in terms of the boundary operator

content {naAB} in the open string picture, and the modular matrices S ã
a , which are

known. Thus specification of the boundary condition has been narrowed down

to specification of the integers {naAB}.

To write down the {naAB} for a specific physical problem, physical insight

is needed. It turns out that in many cases of interest, including the Kondo

problem, they are given by a so-called “fusion principle”. Consider as given

a trivial, free boundary CFT on the cylinder, characterized by free boundary

conditions at both ends of the cylinder, A = B = F , with given operator content

{naFF} corresponding to a free theory (the {naFF} can be found by elementary

arguments). Then one can define a non-trivial boundary CFT with boundary

16The characters form a representation of the modular group. Eq. (C.63) specifies how they
transform under modular transformations.

17Actually, this step requires the characters to be linearly independent. In case they are
not (as for the Kondo problem), the derivation has to be generalized somewhat: then one has
to calculate a “grand canonical partition function”, in terms of “non-specialized characters”,
which are linearly independent. This is done in [AL94, appendix F], and also in chapter 6, see
eq. (6.52). The result is the same, namely eq. (C.64).
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conditions F at x = l and B at x = 0 by a fusion Ansatz , which defines the

corresponding {naFB} through

naFB =
∑

b

nbFFN
a
bc , (C.65)

HereNa
bc are the conformal fusion rule coefficients that determine which conformal

fields φa can occur in the OPE of φb and φc (hence the {naFB} depend on the

(fixed) indix c). AL solved the Kondo problem by means of such a construction,

as discussed at great length in section 7.4.2 (where the remaining steps of this

section are repeated for the Kondo problem).

It so happens that the fusion rule coefficients and the modular S-matrix are

related by a mathematical identity, known as Verlinde’s formula [Ver88]:

∑

a

Na
bcS

ã
a =

S ã
b S

ã
c

S ã
0

, (C.66)

(where a = 0 denotes the tower built on the identity operator). Eqs. (C.65) and

(C.66) can be used to eliminate naBF from eq. (C.64):

〈ã|B〉 =
1

〈F |ã〉
S ã
c

S ã
0

∑

b

nbFFS
ã
b =

S ã
c

S ã
0

〈ã|F 〉 , (C.67)

where in the second equality we used the Cardy formula for A=B=F to eliminate

nbFF . Now divide this formula by a similar formula, with |ã〉 = |0〉 (corresponding

the identity operator). Since 〈ã|F 〉
〈0|F 〉 = 1 for all ã (this follows from eq. (C.55),

which must reduce to a free Green’s function, i.e. unit normalization, for B=F ),

we find

〈ã|B〉
〈0|B〉 =

S ã
c /S

ã
0

S 0
c /S

0
0

. (C.68)

Thus, if a fusion principle can be invoked to determine the naFB, the boundary

matrix elements, the boundary condition B and consequently the entire boundary

CFT are completely determined.
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C.5 Boundary Operator Content from HBB on

Strip

[Car84a,Car84b]

Sometimes it is convenient to have a quick way of determining the bound-

ary operator content of a theory, i.e. the set of all allowed boundary operators,

without being interested in BOPE coefficients. In this section, we show how this

information can be directly extracted from |B〉.

C.5.1 Mapping Half-Plane to Strip

Consider the semi-infinite upper half-plane, with a certain conformally invariant

boundary condition B imposed at the boundary, the properties of which are

encoded in the boundary state |B〉.

It was shown in section B.4 that for a bulk CFT on the full complex plane,

the bulk operator content could be specified in terms of the finite-size spectrum

of a certain transfer matrix e−HP for a strip with periodic boundary conditions,

by using the transformation z = e2πw/l, to map the plane onto the strip. We now

show that for a boundary CFT, the boundary operator content can be similarly

specified in terms of the finite-size spectrum of a different transfer matrix, e−HBB ,

corresponding to —em a strip for which the boundary condition B is imposed

along both edges.

Parametrizing the half-plane as usual by z = τ + ix, x > 0, consider the

conformal map

z = eπw/l , (C.69)

which maps the half-plane onto a semi-infinite strip, parametrized by w = u+ iv,



369

+ix = r e

x

τ
τ

z= i θ

z = eπw/l

w=u+iv

v

u

θ
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H
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Figure C.5 The conformal transformation z = eπw/l maps the half-plane,
parametrized by z = τ + ix = reiθ and boundary condition B along the real
axis, onto a strip of width l, parametrized by w = u + iv, with the boundary
condition B at both boundaries v = 0, l. The Hamiltonian HBB generates trans-
lations along the strip in the u direction. The operator content on the strip is
characterized by the integers {naBB}, which also determine the boundary operator
content of the half-plane.

with u ∈ [−∞,∞] and v ∈ [0, l] [Fig. C.5].

Since the positive and negative τ -axes are mapped onto the lower (v = 0) and

upper (v = l) edges of the strip, respectively, one has the boundary condition B

along both edges of the strip.

The situation is thus analogous to that in section C.4.2, where we had bound-

ary conditions A and B at two edges of a cylinder, but now we have A = B.

Let HBB be the Hamiltonian that generates translations along the strip in the τ -

direction. Since both boundaries and the bulk are conformally and KM invariant,

the Hilbert space HSBB on which HBB acts will be a direct sum over complete

conformal towers, [analogous to eq. (C.60)]:

HSBB =
∑

⊕a
naBBTa . (C.70)
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The integers naBB, which characterize the strip operator content, are related to

|B〉 through Cardy’s formula C.64, and hence are known if |B〉 has been specified.

The way in which the operator content {naBB} for the strip theory termines

the boundary operator content of the half-plane theory is through the finite-size

spectrum of HBB, which determines the decay of 2-point functions along the strip.

The argument is exactly analogous to the bulk case of section B.4. Let φi(z, z
∗)

be a Virasoro primary field in the half-plane with scaling dimensions (∆i,∆i),

and consider the corresponding 2-point function G̃(2)
s = 〈φ̃i(w1, w

∗
1)φ̃i(w2, w

∗
2)〉 on

the strip. In the limit of a very large separation (u1 − u2) → ∞ along the strip,

it will decay like

G̃(2)
s = 〈φ̃i(w1, w

∗
1)φ̃i(w2, w

∗
2)〉 → e−(Ea−Eo)(u1−u2) , (C.71)

where Ea is the eigenvalue of that primary (i.e. lowest-energy) state |a〉 for which

〈a|φ̃i|0〉 6= 0 [see eq. (B.93)]. However, G̃(2) can also be calculated by using the

conformal map (C.69) from the semi-infinite half-plane [eq. (B.88)]:

G̃(2)
s = 〈φ̃i(w1, w

∗
1)φ̃i(w2, w

∗
2)〉 =

∣∣∣∣∣
∂z1

∂w1

∣∣∣∣∣

2∆i
∣∣∣∣∣
∂z2

∂w2

∣∣∣∣∣

2∆i

〈φi(z1, z
∗
1)φi(z2, z

∗
2)〉 , (C.72)

where in the right-hand side we now have to insert the half-plane 2-point function

G(2)
s calculated in the presence of the boundary, as given by eq. (C.22). However,

instead of repeating in detail the steps analogous to eq. (B.88) to (B.91), a short-

cut is possible here, since in the end only the limit u1 ≫ u2, i.e. |z1| ≫ |z2|, is

needed: Take z1 = r1e
i(π/2−θ) with r1 → ∞ and |θ| < π/2, and z2 = ix2 with

x2 ∼ O(1), so that

R = |z1 − z2| ≃ r1 , eπu1/l = |z1| = r1 ≃ R , eπu2/l = |z2| = x2 . (C.73)
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In this limit, G(2)
s is given by the limiting expression (C.33), which, when inserted

in the right hand side of eq. (C.72), gives

G̃(2)
s ∼ eπ(u1+u2)2∆i/lR−(2∆i+∆s

ñ)x
−(2∆i−∆s

ñ)
2 ∼ e−π(u1−u2)∆s

ñ/l . (C.74)

Comparing with eq. (C.71), we conclude that

Ea − Eo = π
l
∆s
ñ . (C.75)

Now, we already know from section C.3.3 that each boundary exponent ∆s cor-

responds to some boundary operator Φk̃ in the half-plane theory. Hence, to each

primary state |a〉 in the strip Hilbert space HSBB, there corresponds a boundary

operator Φk̃ on the boundary of the half-plane whose scaling dimension is related

through eq. (C.75) to the eigenenergy Ea of |a〉 [likewise, the descendents of |a〉

correspond to τ -derivatives of Φk̃(τ) with scaling dimensions ∆s +N , as can be

verified by considering the subleading terms of eq. (C.74)]. Thus, the integers

{naBB}, which specify all primary states for the strip-geometry, also completely

specify the list of all allowed boundary operators Φk̃, i.e. the boundary operator

content, of the half-plane theory.

C.5.2 {na
BB
} from Double Fusion

Next we need a way to extract the {naBB} from |B〉. If the boundary condition B

has been specified through a fusion principle, as explained in section C.4.2, this

can be done by judicioucly juggling with Cardy and Verlinde’s formulas:

∑

a′
na

′
BBS

ã
a′ = 〈B|ã〉〈ã|B〉 (C.76)

=
(
S ã
c /S

ã
0

)2 〈F |ã〉〈ã|F 〉 (C.77)
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=
(
S ã
c /S

ã
0

)2∑

b

nbFFS
ã
b (C.78)

=
∑

b,d

nbFFN
d
bcN

a′
dcS

ã
a′ . (C.79)

Here the first line is Cardy’s formula (C.64) for A=B, the second follows from

eq. (C.67), the third from Cardy’s formula for A=B = F , and the fourth from

using Verlinde’s formula (C.66) twice. Finally, inverting this result by matrix-

multiplying18 from right by (S−1) aã , we obtain the so-called double fusion formula

[Lud94a, eq.(A.14)]

naBB =
∑

b,d

nbFFN
d
bcN

a
dc . (C.80)

This formula states that if a fusion principle, starting from {naFF}, is used to

specify a boundary condition B (more precisely the operator content {naFB} of the

theory on a cylinder of finite length with boundary conditions F and B at its

edges) then the boundary operator content of the theory at the B-boundary,

characterized by {naBB}, can be obtained by “double fusion”. It gives a convenient

and quick way of deriving a list of all possible boundary operators.

In section 7.4.3 this has been done for the Kondo problem, eq. (C.80) taking

the form of eq. (7.53). Table 7.1 contains a list of all possible KM-primary

boundary operators for the Kondo problem.

18The modular S-matrix is unitary, and hence invertible.
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The Function G(4) = 〈ψLψ†LψRψ†R〉

In this appendix we show explicitly how Affleck and Ludwig calculated the 4-point

function

G(4) = 〈ψLαi(z1)ψ
β̄j̄†
L (z2)ψRβj(z

∗
3)ψ

ᾱī†
R (z∗4)〉 . (D.1)

for the case Ñ = 2, k = 2 and an s = 1/2 impurity that is relevant for the

2-channel Kondo problem. We go through this exercise for two reasons: firstly,

to illustrate the general theory of appendix C with a concrete example; and

secondly, because this calculation is essential to verify that the leading irrelevant

operator ~J−1 ·~φs (that gives rise to the T 1/2 on which the entire thesis hinges!, and

discussed in section D.5), indeed does occur in the boundary operator product

expansion of ψRψ
†
L.

This calculation has already been done in complete detail in a formidable

and remarkably explicit paper by Affleck and Ludwig [AL94] (in this appendix

equations from that paper will be referred to by subscripts AL, e.g. (2.16)AL.

However, that paper is written in great generality, for the case of a Kondo problem

with U(1) × SU(Ñ) × SU(k) symmetry, and all possible 4-fermion correlation

373
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functions are calculated (the one in eq. (D.1) is called a Green’s function “of

Class (c), First type”, and defined on p. 550 of [AL94]). Moreover, the information

relevant to the calculation at hand is spread evenly throughout the entire 64 pages

of [AL94], which makes it difficult to locate unless one has read the entire paper

in detail. It is hoped that by presenting an example of the simplest non-trivial

case, namely Ñ = k = 2, in explicit detail here, the essentials of the calculation

will become more accessible to the reader who does not have the time or interest

to go through the most general calculation.

D.1 G(4) for Free Fermions

For the case of free fermions, i.e. with a trivial, free boundary condition at x = 0,

it is trivial to find G(4): Simply substitute ψR(z
∗) → ψL(z

∗) [Cardy’s recipe

eq. (C.16)] and use the free-fermion, bulk OPE for ψLψ
†
L in the limits z1 → z2,

z3∗ → z∗4 and z1 → z∗4 , z2 → z∗3 . Since the only singular term in the OPE of

ψL(z1)ψ
†(z2) is z−1

12 , we conclude that the only singular terms in G
(4)
F must be

[(2.16)AL]:

G(4)
F =

I1Ĩ1
z12z∗∗34

+
I2Ĩ2
z ∗
14z

∗
23

+ ganal . (D.2)

Here z ∗
14 = z1 − z∗4 , etc, and we introduced the KM-invariant tensors [(2.20)AL]:

(I1)
ᾱβ̄
αβ = δβ̄α δ

ᾱ
β , (I2)

ᾱβ̄
αβ = δᾱα δ

β̄
β , (D.3)

(Ĩ1)
īj̄
ij = δ̃j̄i δ̃

ī
j , (Ĩ2)

īj̄
ij = δ̃ īi δ̃

j̄
j . (D.4)

(We distinguish tensors in the spin and flavor sectors by putting a ˜ on the latter.)

The function ganal has to be analytic in the entire complex plane, and hence a

constant. However, G(4) → 0 as z12 → ∞, hence ganal = 0.
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D.2 General form of G(4)

In this section we discuss the general form of G(4) for any general KM-invariant

boundary condition, denoted by B, specializing to B =F for free or B =K for

Kondo boundary conditions in the next section.

For a general B, G(4) will reduce to the free form of eq. (D.2) only in the

extreme bulk limit, and exhibit unusual, non-Fermi liquid behavior (in the form

of anomalous exponents) in the boundary limit. The key to calculating G(4) in

this general case is to exploit the fact that KM-invariance is respected in both the

bulk and the boundary, so that G(4) can throughout be expressed in KM-invariant

form.

According to table 7.1 (left part) a free fermion field ψ can be thought of as a

triplet of charge, spin and flavor fields, with (Q, j, f) = (−1, 1
2
, 1

2
). Moreover, for

both the free and the over-screened Kondo fixed points, the Hamiltonian can be

written as the sum of three commuting pieces, H = Hc +Hs +Hf . This suggests

that in general, a fermion field operator can be written as a product of a charge,

a spin and a flavor factor [(3.6)AL]:

ψLαi(z) → e
−i
2
φcL(z)gLα(z)hLi(z) , (D.5)

ψRαi(z
∗) → e

−i
2
φcR(z)gRα(z

∗)hRi(z
∗) . (D.6)

For the over-screened fixed point, ψ here is not the usual free-fermion field ψfree,

but is understood to be the field into which the initial free field ψfree renormalizes

as one flows to the fixed point. [In particular, bilinear currents formed from this

field (see eq. (D.21) below) correspond to the analytic currents J X introduced in

section 7.4.1, see eq. (7.39).]
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Let us discuss some of the properties of the charge, spin and flavor fields.

φc(z) = φcL(z) + φcR(z
∗) is a free massless boson field (see appendix E) with

action Sφc = 1
8π

∫∞
−∞dτ

∫∞
0 dx [(∂τφc)

2 +(∂xφc)
2], so that e

i
2
φcL is a Q = −1 charge

field of scaling dimension ∆c = 1
8

(see below).

The spin and flavor sectors are both described in terms of SU(2)s WZW

theories (some properties of which are summarized in section B.3). The spin

sector is described by gα(z), a j = 1
2
, SU(2)2 KM-primary spin field, and the

flavor sector by hi(z) a f = 1
2
, SU(2)2 KM-primary flavor field. j = 1

2
and

f = 1
2

means that under SU(2) transformations in the spin and channel sectors,

gα and hi transform as spin-1
2

fields [just as the fermions of section B.2, compare

eq. (B.56)]:

gα =
(
δβα − iθa(T a)βα

)
g̃β , hi =

(
δji − iθ̃A(T̃A)ji

)
h̃j . (D.7)

Here1 (T a)β̄α = 1
2
(σa)β̄α and (T̃A)j̄i = 1

2
(σA)j̄i are the SU(2) generators, in the spin

and channel sectors, normalized to TrT aT b = 1
2
δab.

Being KM primary, the fields e
−i
2
φcL , gα and hi are also Virasoro primary,

with scaling dimensions ∆c = 1
8
, ∆g = 3

16
and ∆h = 3

16
, respectively,2 which

correctly add up3 to ∆ψ = 1
2

= ∆c + ∆g + ∆h. Finally, we mention that both

g and h have fractional statistics,4 which combine in such a way as to produce

1In this appendix, the notation T β̄α corresponds to Tαβ̄ of the other appendices, i.e. the

lower and upper indices label rows and columns.
2This follows from table 7.1 and eq. (B.94), or, for ∆g, ∆h, directly from eq. (B.85), which

gives ∆j = j(j+1)
2+k = 3

16 for j = 1
2 , k = 2.

3Of course, the scaling dimensions will always (for arbitrary Ñ , k) add up correctly, if one
glues the charge, spin and flavor fields together using free-fermion gluing conditions, since these
are purposefully constructed in such a way as to reproduce the free fermion spectrum. In
particular, the singly occupied free-fermion level has energy 2π

l
1
2 = EQo + Eso + Efo, which

translates, via eq. (B.94), to 1
2 = ∆c + ∆g + ∆h.

4By definition, 〈gα(z1)g
β̄†(z2)〉 ≡ δβ̄α

(z1−z2)1/2
≡ 〈gβ̄†(z1)gα(z2)〉 [Lud95], which implies that
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Fermi statistics for ψ.

Since Hc, Hs and Hf commute, any multi-point correlation function factorizes

[(3.9)AL]:

G(4) = 〈e− i
2
φcL(z1)e

i
2
φcL(z2)e−

i
2
φcL(z∗3 )e

i
2
φcL(z∗4 )〉 (D.8)

×
∑

p,q

〈 ap,q gLα(z1)g
β̄†
L (z2)gLβ(z

∗
3)g

ᾱ†
L (z∗4)〉(p) (D.9)

×〈hLi(z1)h
j̄†
L (z2)hLj(z

∗
3)h

ī†
L (z∗4)〉(q) . (D.10)

Here we have implemented Cardy’s prescription (C.17) of replacing R- by L-

moving fields, evaluated in the lower half-plane. However, eq. (D.8) illustrates

an important subtlety of the “factorization” (D.5): the functions 〈gg†gg†〉(p) and

〈hh†hh†〉(q), the so-called conformal blocks in the spin and flavor sectors, are

determined by the Knizhnik-Zamolodchikov differential equations, which have

two independent solutions, labeled by p (or q) = 1, 2. (There is only one conformal

block for the charge fields.) G(4) is therefore a linear combination of 4 independent

functions . The coefficients ap,q, which determine how the conformal blocks are

“glued together”, depend on the boundary conditions onG(4) [they play the role of

the coefficients abin in eq. (C.26)]. Each boundary condition selects a particular set

of coefficients ap,q (made explicit in eq. (C.32), or eq. (D.27) below); in particular,

the free Green’s function G
(4)
F of eq. (D.2) can also be represented in this way.

Therefore, eq. (D.5) is not a true factorization into independent factors: the

factors have to be glued together in a very specific way, dependent on boundary

gα(z1)g
β̄†(z2) = ±igβ̄†(z2)gα(z1). The best way to keep track of such phases is to extract

the mutual exchange properties of these fields from explicit expressions for their multi-point
correlation functions, since theses are known exactly from [KZ84]. For the present calculation,
where we do work only with a well-defined 4-point function, we therefore need not worry about
the statistics of g and h. For recent developments regarding the statistics of such fields, see
[BLS94].



378

conditions.

The charge conformal block is simply given by

〈e− i
2
φcL(z1)e

i
2
φcL(z2)e−

i
2
φcL(z∗3 )e

i
2
φcL(z∗4 )〉 =

[
(1−ξ)−1

z12z∗∗34

]2∆c

=

[
(1−η)−1

z ∗
14z

∗
23

]2∆c

, (D.11)

where

ξ =
z12z

∗∗
34

z ∗
13z

∗
24

, η = 1 − ξ =
z ∗
14z

∗
23

z ∗
13z

∗
24

. (D.12)

Reason: the charge sector is unaffected by the boundary condition imposed in the

spin sector, and always corresponds to a free theory. Hence, the charge conformal

block must reduce to eq. (D.12), the only expression that is consistent with the

general form (B.44) for a 4-point function and correctly reduces to (z12z
∗∗
34)

−2∆c

and (z ∗
14z

∗
23)

−2∆c in the limits5 z1 → z2, z
∗
3 → z∗4 and z1 → z∗4 , z2 → z∗3 , in which

ξ → 0+ and η → 0+, respectively.

The spin (and flavor) conformal blocks have the following general structure,

(discussed at length in [AL94, app.B]) [(B.4)AL]:

〈gLα(z1)g
β̄†
L (z2)gLβ(z

∗
3)g

ᾱ†
L (z∗4)〉(p) =

[
(1−ξ)−1

z12z∗∗34

]2∆g∑

A=1,2

(IA)ᾱβ̄αβg
(p)
A (ξ) . (D.13)

The prefactor has the same origin [eq. (B.44)] in eq. (D.11), and the tensor

structure
∑
A=1,2 IA is enforced by KM invariance [KZ84, eq.4.4] (I1 and I2 are

the only KM-invariant tensors).

The functions g
(p)
A (ξ) (p = 0, 1; A = 1, 2) are determined completely by the

Knizhnik-Zamolodchikov equations6 [(D.4)AL or (B.8)AL]. To find them explicitly,

5These limits are always understood to be taken in such a way that the ξ or η are real
and positive. For ξ, whose phase can of course be arbitrary, this convention is a matter of
convenience, to avoid having to deal with extra phases. For η, it happens automatically, since
η → 4x1x2

|τ1−τ2|
= real in the limit z1 → z∗4 , z2 → z∗3 .

6For the present case, they are ∂ξ[(1 − ξ)−2∆ggA(ξ)] =
∑
B=1,2

[
PA,B
ξ +

QA,B
ξ−1

]
(1 −



379

some straightforward solving of differential equations is needed, done in [KZ84].

For the case Ñ = k = 2 of present interest, they turn out to be [see after (4.1)AL]:

g
(0)
1 (ξ) = 1

2
(1 − ξ)1/2[ F+(ξ) + F−(ξ)]

ξ→0+

−→ 1

g
(1)
1 (ξ) = 1

2
(1 − ξ)1/2[−F+(ξ) + F−(ξ)]

ξ→0+

−→ −1
2
ξ1/2

g
(0)
2 (ξ) = 1

2
ξ1/2[F+(ξ) − F−(ξ)]

ξ→0+

−→ 1
2
ξ

g
(1)
2 (ξ) = 1

2
ξ1/2[F+(ξ) + F−(ξ)]

ξ→0+

−→ ξ1/2

(D.14)

where7

F±(ξ) = (1 ± ξ1/2)1/2 . (D.15)

The flavor conformal blocks 〈hh†hh†〉(q) have exactly the same structure as

eq. (D.13), and for Ñ = k = 2 we have ∆h = ∆g = 3
16

and h
(p)
A (ξ) = g

(p)
A (ξ).

Inserting eq. (D.11) and eq. (D.13) into eq. (D.8), we obtain

G(4) =
(1−ξ)−1

z12z∗∗34

∑

A,Ã=1,2

∑

p,q=1,2

IAĨÃ ap,q g
(p)
A (ξ) h

(q)

Ã
(ξ) . (D.16)

Clearly G(4) is completely determined once the ap,q have been specified.

D.3 Bulk limit of G(4)

In this section we shall find the coefficients ap,q of eq. (D.16), for both free and

Kondo boundary conditions B = F and K, by exactly the same strategy as that

used to find eq. (C.32) in appendix C. One calculates G(4) in two ways: firstly,

by simply taking the bulk limit ξ → 0+ explicitly in eq. (D.16); and secondly,

ξ)−2∆ggB(ξ), where PA,B = 1
8

(
3 2
0 −1

)
and QA,B = 1

8

(
−1 0

2 3

)
. Knizhnik and Zamolodchikov

have shown [KZ84, section 4] that explicit expressions for general Ñ and k can be given in
terms of hypergeometrical equations, see (B.12)AL.

7The branch cut of the square root is chosen as usual along the negative real axis [AL94,
footnote 51, p.594]. This means that (−ξ)1/2 = e±iπ/2ξ1/2 for Imξ

>
< 0.
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by using considering the limit z1 → z2 and z∗3 → z∗4 [Fig. D.1(a)], in which one

can use the bulk OPEs for ψ(z1)ψ
†(z2) and ψ(z∗3)ψ

†(z∗4) in eq. (D.1), and then

eq. (C.55) to evaluate the resulting cross-boundary (z2 − z∗4) two-point functions.

The latter explicitly depend on the boundary conditions via the known matrix

elements 〈φi|B〉
〈0|B〉 . Equating the two expressions for the bulk limit of G(4) then

uniquely determines the ap,q in terms of the 〈φi|B〉
〈0|B〉 .

D.3.1 Bulk OPE of ψLψ
†
L

In order to proceed, we need the bulk OPE of ψLαi(z1)ψ
β̄j̄†
L (z2). Since in the limit

ξ → 0+ under consideration this OPE is taken asymptotically far away from the

boundary, where all boundary effects have died out, it is in fact the trivial OPE

of free fermions, which may be calculated using Wick’s theorem:

ψLαi(z1)ψ
β̄j̄†
L (z2) =

δβ̄αδ
j̄
i1(z2)

z12

+ : ψLαi(z1)ψ
β̄j̄†
L (z2) : + . . . (D.17)

Now, it is essential to decompose : ψψ† : into SU(2) × SU(2)-invariant form.

A short-cut for finding the necessary Clebsch-Gordan coefficients is to use the

following identities (which follow from eq. (A.73), with T β̄α here ≡ Tαβ̄ there),

(T a)β̄α(T
a)ᾱβ = 1

2

[
(I2)

ᾱβ̄
αβ − 1

2
(I1)

ᾱβ̄
αβ

]

(T̃A)j̄i (T̃
A)īj = 1

2

[
(Ĩ2)

īj̄
ij − 1

2
(Ĩ1)

īj̄
ij

]
,

(D.18)

which imply

(I2)
ᾱβ̄
αβ(Ĩ2)

īj̄
ij =

[
2(T a)β̄α(T

a)ᾱβ + 1
2
(I1)

ᾱβ̄
αβ

] [
2(T̃A)j̄i (T̃

A)īj + 1
2
(Ĩ1)

īj̄
ij

]
(D.19)

Contracting this with − :ψβj†L ψLᾱī : we obtain for eq. (D.17):

ψLαi(z1)ψ
β̄j̄†
L (z2) =

δβ̄αδ
j̄
i1(z2)

z12

−
[
2(T a)β̄α(T̃

A)j̄i O
a,A
L (z2) (D.20)

+ (T a)β̄αδ
j̄
i J a

s (z2) + δβ̄α(T̃
A)j̄i J A

f (z2) + 1
4
δβ̄αδ

j̄
i J o

c (z2)
]
+ O(z12 ,
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Figure D.1 (a) Bulk and (b) boundary limits of the four- point function
G(4) = 〈ψLαi(z1)ψ

β̄j̄†
L (z2)ψRβj(z

∗
3)ψ

ᾱī†
R (z∗4)〉 . G(4) can be expressed as a partic-

ular linear combination of products of conformal block functions, of charge, spin
and flavor fields, as in eq. (D.8), characterized by coefficients ap,q. These can be
determined (see section D.3.2) by considering the bulk limit, shown in (a). The
boundary limit, shown in (b), can be used to determine the boundary operator
product expansion of ψLαi(z1) and ψᾱī†R (z∗4) (see section D.4.1).
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where the charge (Jc), spin (J a
s ), flavor (J A

f ) and “spin-flavor” (Oa,A) currents

are defined by (Nã is the normalization8):

J 0
c (z) = :ψᾱī† ψᾱī : (z) , Nc = 4 ,

J a
s (z) = :ψβī† (T a)ᾱβψᾱī : (z) , Ns = 1 ,

J A
f (z) = :ψᾱj† (T̃A)ījψᾱī : (z) , Nf = 1 ,

Oa,A(z) = 2 :ψβj† (T a)ᾱβ (T̃A)īj ψᾱī : (z) , NO = 1 .

(D.21)

This decomposition of : ψLαi(z1)ψ
β̄j̄†
L (z2) : reflects the fact that since ψ and ψ†

have quantum numbers (Q, j, f) = (±1, 1
2
, 1

2
), : ψψ† : decomposes into 4 pieces,

with quantum numbers (0, 1, 1), (0, 1, 0), (0, 0, 1) and (0, 0, 0) . The charge,

spin and flavor currents are not KM primary,9 since they are KM generators

of U(1)c×SU(2)s×SU(2)f transformations. However, we see from (the left part

of) table 7.1 that a free-fermion theory a (0, 1, 1) KM primary10 field of scaling

dimension ∆1,1 = 1 does occur, which we can therefore identify with Oa,A(z).

Under SU(2)s × SU(2)f transformations, Oa,A transforms in the spin-adjoint,

flavor-adjoint representation.11

D.3.2 Determination of ap,q

Now we are ready to carry through the strategy outlined at the beginning of this

section in order to find the coefficients ap,q, namely to compare two alternative

8For any of these currents J ã
L , the normalization Nã in 〈J ã

L (z1)J ã
L (z2)〉 = Nã

(z1−z2)2
can be

calculated with Wick’s theorem from the right-hand sides of eq. (D.21), using eq. (A.47). For
Oa,A, NO = 1 by construction.

9The currents can be regarded as KM descendents of unity 1, since, by eq. (B.33), we have
J ã(z) = J ã

−11(z).
10Note that the Oa,A(z) are among the KM generators of SU(4) transformations on the four

fields ψαi†. Hence they are not SU(4)-KM primary. However, with respect to the smaller
U(1)c×SU(2)s×SU(2)f symmetry to which SU(4) is broken down for the Kondo problem by
the coupling to an impurity, Oa,A is KM primary.

11Explicitly, using eq. (B.56) in eq. (D.21), it can be checked that Oa,A =[
δac − iθb(T b)ac

] [
δAC − iθ̃B(T̃

B
)AC

]
Õc,C , where (T b)ac = −iεbac and (T̃

B
)AC = −iεBAC .
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expressions for the bulk limit of G(4) to each other. The first part of the strategy

is simple enough: inserting the ξ → 0+ limits of eq. (D.14) into eq. (D.16) (with

g = h) gives:

G(4) ξ→0+

−→ 1

z12z∗∗34

[
I1Ĩ1 a0,0 +

(
I1Ĩ2a0,1 + I2Ĩ1a1,1

)
1
2
ξ1/2 + I2Ĩ2 a1,1 ξ + . . .

]
,

(D.22)

where we displayed only the leading coefficient for each IaĨÃ. [Clearly, the ap,q

play the role of the abin in eq. (C.26).]

For the second part of the strategy, we consider the limit z1 → z2 and

z∗3 → z∗4 [Fig. D.1(a)] and insert the bulk OPE (D.20), and an identical one

for ψRβj(z
∗
3)ψ

ᾱī†
R (z∗4), into eq. (D.1) to obtain the following alternative expression

for G(4), valid in the bulk limit ξ → 0+:

G(4) ξ→0+

−→ I1Ĩ1
z12z∗∗34

+
1

(z ∗
24)

2

[
(I2 −

1

2
I1)(Ĩ2 − 1

2
Ĩ1)

〈Oa,A|B〉
〈0|B〉 (D.23)

+ 1
2
(I2 − 1

2
I1)Ĩ1 + I1

1
2
(Ĩ2 − 1

2
Ĩ1) + 4

16
I1Ĩ1

]
.

Here we have used the identities eq. (D.18) to rewrite the tensor products, and

used the L-R Green’s functions

〈J ã
LY (z2)J ã′

RY (z∗4)〉 =
NY δãã′

(z ∗
24)

2
, for Y = c, s, f, (D.24)

〈Oa,A
L (z2)O

a′,A′
R (z∗4)〉 =

δa,a
′
δA,A

′

(z ∗
24)

2

〈Oa,A|B〉
〈0|B〉 . (D.25)

Eq. (D.24) for the currents Jc, J a
s and J A

f is obtained by analytic continuation

(z4 → z∗4) from the corresponding L-L correlation functions, a procedure that is

valid because all KM currents are analytic at the boundary [see eq. (C.8)]. Oa,A,

on the other hand, is not a U(1)c×SU(2)c×SU(2)f KM current, and hence not

necessarily analytic at the boundary. However, it is KM primary, and hence its

L-R function is given by eq. (C.55), which gives (D.25).
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We see that the only place where the boundary condition B on the theory

enters into G(4) is through the matrix elements 〈Oa,A|B〉
〈0|B〉 . For a free theory (B =

F ) they are equal to 1, since in that case all fields must be analytic at the

boundary. For the Kondo boundary condition (B = K), they can by found by

using eqs. (7.67) and (7.66). Therefore,

〈Oa,A|B〉
〈0|B〉 =





1

S1
1/2

/S1
0

S0
1/2

/S0
0

= −1





= ±1 for B = F/K . (D.26)

Now compare eq. (D.23) with eq. (D.22), our two equivalent expressions for G(4).

Since ξ → z12z∗∗34

(z ∗
24 )2

in this limit, we immediately deduce12 that [this corresponds to

eq. (C.32)]:

a0,0 = 1, a1,0 = a0,1 = 0, a1,1 = 〈Oa,A|B〉
〈0|B〉 = ±1 , for B = F/K . (D.27)

Thus, the goal of determining the ap,q has been achieved, and G(4) is now fully

determined. It has turned out that the sole difference between the free and Kondo

boundary conditions is one little ±1 in eq. (D.27)!! However, this difference has

profound consequences for G(4), in particular in the boundary limit, as we shall

see in section D.4.1.

D.3.3 Explicit Expressions for G(4)

We are now ready to obtain an explicit expression for G(4). By using eqs. (D.27)

and (D.14) in the general expression eq. (D.16) for G(4), straightforward direct

computation gives:

G(4) =
(1−ξ)−1

z12z∗∗34

[
I1Ĩ1

(
g

(0)
1 g

(0)
1 ± g

(1)
1 g

(1)
1

)
+ I2Ĩ2

(
g

(0)
2 g

(0)
2 ± g

(1)
2 g

(1)
2

)

12Note that in eq. (D.23) only the leading terms I1Ĩ1
z12z∗∗34

and I2Ĩ2
(z ∗

24
)2 need to be known to fix the

ap,q’s.The subleading terms in I1Ĩ2, I2Ĩ1 and I1Ĩ1 can be used as a check on the final answer:
indeed, eqs. (D.29) and (D.30) agree to order ξ/(z12z

∗∗
34 ) with eq. (D.23).
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+
(
I1Ĩ2 + I2Ĩ1

) (
g

(0)
1 g

(0)
2 ± g

(1)
2 g

(1)
1

)]
, (D.28)

which simplifies to13

G(4)
F =

1

z12z∗∗34

[
I1Ĩ1 + ξ

1−ξI2Ĩ2
]
, (D.29)

G(4)
K =

(1−ξ)1/2

z12z∗∗34

[
I1Ĩ1 + ξ

1−ξ

(
−I2Ĩ2 + I1Ĩ2 + I2Ĩ1

)]
. (D.30)

These are the final results for G
(4)
F and G

(4)
K , corresponding to free (F ) and (K)

Kondo boundary conditions. Eq. (D.29) for G
(4)
F agrees with eq. (D.2). Eq. (D.30)

for G
(4)
K deserves to admired with due respect for a few moments: exact, explicit

expressions for 4-point functions for a strongly interacting electron system are

rather rare in condensed matter physics! This function clearly has a more complex

structure, with an additional (1 − ξ)1/2 and I1Ĩ2, I2Ĩ1 terms. While they vanish

in the bulk limit ξ → 0, they become extremely important in the boundary limit

η = 1 − ξ → 0, which we discuss next.

D.4 Boundary Limit for G(4)

With explicit expressions for G(4) in hand, the full boundary boundary OPE of

ψLαi(z1)ψ
ᾱī†
R (z∗4) can now be extracted (eq. (D.36) below). This is done (following

the strategy of section C.3.2) by calculating the boundary limit of G(4) in two

ways: firstly, take the boundary limit η → 0 explicitly in eqs. (D.29) and (D.30)

(this gives the coefficients asin in eq. (C.27)); secondly, evaluate G(4) in the limit

z1 → z∗4 , z2 → z∗3 [Fig. D.1(b)] using the boundary OPE of ψLψ
†
R twice in eq. (D.1)

13Note that the square root in eq. (D.30) causes no discontinuities: (1 − ξ)1/2 = η1/2 =(
z ∗

14 z
∗

23

z ∗

13
z ∗

24

)1/2

, and since z1, z2 are in the upper half-plane whereas z∗3 , z∗4 are in the lower half-

plane, the discontinuity in (zi−zj)1/2 that always occurs (at the branch cut of the square root)
when zi is moved right around zj , never occur for η1/2. (AL alway choose the branch cut of
the square root such that 0 < arg(z∗ − z′)∗ < π/2 [AL94, p.577].)
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(as in eq. (C.40)). Comparing the two limiting expressions for G(4) gives the

BOPE coefficients |CB
ψk|2 (as in eq. (C.41)).

D.4.1 Boundary Form of G(4)

The first step of the strategy is straightforward: in terms of η = 1−ξ, eqs. (D.29)

and (D.30) can trivially be rewritten as:

G(4)
F = − 1

z ∗
14z

∗
32

[
δ2δ̃2 + η

1−η

(
4T 2T̃ 2+T 2δ̃2+δ2T̃ 2+ 1

4
δ2δ̃2

)]
(D.31)

G(4)
K = − η1/2

z ∗
14z

∗
32

[
2T 2δ̃2+2δ2T̃ 2 + η

1−η

(
4T 2T̃ 2+T 2δ̃2+δ2T̃ 2+ 1

4
δ2δ̃2

)]
.(D.32)

Here we have rewritten the tensors IAĨÃ in a way more useful for comparison

with eq. (D.42) below, by using the identities (following from eq. (D.18), with

switched indices ᾱ ↔ β̄ and ī↔ j̄ ):

I1Ĩ1 = 4T 2T̃ 2 + T 2δ̃2 + δ2T̃ 2 + 1
4
δ2δ̃2 , I2Ĩ2 = δ2δ̃2 ,

−I2Ĩ2 + I1Ĩ2 + I2Ĩ1 = 2T 2δ̃2 + 2δ2T̃ 2 ,
(D.33)

where

(δ2)ᾱβ̄αβ = δᾱα δ
β̄
β = (I2)

ᾱβ̄
αβ , (T 2)ᾱβ̄αβ = (T a)ᾱα (T a)β̄β ,

(δ̃2)īj̄ij = δ̃ īi δ̃
j̄
j = (Ĩ2)

īj̄
ij , (T̃ 2)īj̄ij = (T̃A)īi (T̃

A)j̄j

. (D.34)

D.4.2 General Form of BOPE of ψLψ
†
R

For the second part of the strategy, we need the BOPE of

ψLαi(z1)ψ
ᾱī†
R (z∗4) = 2(T a)ᾱα(T̃

A)īi
[
ψL1T

aT̃Aψ†
R4∗

]
+ 1

4
δᾱαδ

ī
i

[
ψL1ψ

†
R4∗

]

+ (T a)ᾱαδ
ī
i

[
ψL1T

aψ̃†
R4∗

]
+ δᾱα(T̃A)īi

[
ψL1T̃

Aψ†
R4∗

]
. (D.35)
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*4ψR( )

z1
ψL(

z

)

k
Φ(τ )1

a~Σ
k

Figure D.2 The boundary operator product expansion [see eq. (D.36)] of ψLαi(z1)
and ψᾱī†R (z∗4) in terms of the boundary operators Φã

k(τ1).

where we have used eq. (D.19) (with ᾱ ↔ β̄ and ī ↔ j̄, and contracted with

ψLβ̄j̄ψ
βj†
R ) to make explicit the tensor structure of the OPE. Evidently, it must

have the following general form (see Fig. D.2):

ψLαi(z1)ψ
ᾱī†
R (z∗4) =

∑

k

CB
ψk

(−iz ∗
14)

1−∆k

(
X ã
k

)ᾱī
αi

Φã
k(τ1) , (D.36)

with Hermitian conjugate14

ψRβj(z
∗
3)ψ

β̄j̄†
L (z2) =

∑

k

(CB
ψk)

∗

(iz∗32)
1−∆k

(
X ã
k

)β̄j̄
βj

Φã
k(τ1) . (D.37)

Here Φã
k(τ1) is a (hermitian) boundary operator15 with scaling dimension ∆k and

normalization

〈Φã
kΦ

b̃
k′〉 =

δkk′δ
ãb̃Nk

|τ1 − τ2|2∆k
, (D.38)

and
(
X ã
k

)ᾱī
αi

is one of the four tensors (playing the role of Clebsch-Gordan coeffi-

cients):

(
X ã
k

)ᾱī
αi

= δᾱα δ̃
ī
i , (T a)ᾱα δ̃

ī
i , δᾱα (T̃A)īi , or (T a)ᾱα (T̃A)īi , (D.39)

14Upon taking the Hermitian conjugate, one also has to take z ∗
23 → −z ∗

23 , because z = τ + ix
becomes i(t+x) after a Wick rotation back to real times, i.e. purely imaginary. This is consistent

with “
(

1
z12

)†
” = [ψ(z1)ψ

†(z2)]
† = ψ(z2)ψ

†(z1) = 1
z21

.
15From eq. (D.35) it follows that all boundary operators Φãk(τ1) that occur in combination

with the tensor
(
X ã
k

)ᾱī
αi

in eq. (D.36) must correspond to the operators that occur when taking

the limit z1 → z∗4 in the object ψLβ̄j̄(z1)
(
X ã
k

) β̄j̄
βj

ψβj†R (z∗4), or equivalently, in its hermitian

conjugate −ψβ̄j̄†L (z1)
(
X ã
k

) βj
β̄j̄

ψRβj(z
∗
4) .
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For future reference, their “squares” are [in the notation of eq. (D.34)]:

∑

ã

(
X ã
k

)ᾱī
αi

(
X ã
k

)β̄j̄
βj

= (δ2)ᾱβ̄αβ (δ̃2)īj̄ij , (T 2)ᾱβ̄αβ (δ̃2)īj̄ij , (D.40)

(δ2)ᾱβ̄αβ (T̃ 2)īj̄ij , or (T 2)ᾱβ̄αβ (T̃ 2)īj̄ij . (D.41)

Now, what KM primary fields can potentially occur in ψLψ
†
R ? The only KM

primary fields that can occur in the OPE of two fields with (Q, j, f) = (±1, 1
2
, 1

2
)

must have quantum numbers (0, 0, 0), (0, 1, 0), (0, 0, 1) and (0, 1, 1). Are such

fields allowed on the Kondo boundary? We see from table 7.1 (right part, rows

1,2,5 and 6) that the list of all possible boundary operators for the Kondo bound-

ary indeed does contain four operators with these quantum numbers. They are

denoted by Φã
k = 1, φas , φ

A
fl and Oa,A, respectively [AL94, p.568], and have scaling

dimensions ∆k = 0, 1
2
, 1

2
, 1, with normalization chosen to be Nk = 1 (but Nk 6= 1

for some of their descendents,16 see table D.1). Under SU(2) transformations, φas

and φAf transform in the adjoint (spin-1) representations17 in the spin and flavor

sectors, respectively, analogous to Oa,A. The descendents of these fields, obtained

by acting on them [in a way defined in eq. (B.32)] with a Fourier component of a

current, J ã
−n (n > 0), have scaling dimension ∆k+n, and are also allowed bound-

ary operators. The fields 1, φas , φ
A
f and Oa,A and their first few descendents18 are

listed in table D.1, together with the corresponding ∆k, X
ã
k and Nk.

16The normalization of a descendent operator can be found as follows (see [AL91b], footnote
on p.665): Let 〈|〉 denote the scalar product defined in [BPZ84]), and assume unit normalization
for φas : 〈φas |φbs〉 = δab. Then 〈J a

−1φ
a
s |J b

−1φ
b
s〉 = 〈φas |[J a

+1,J b
−1]|φbs〉 = 〈φas |

(
iεabcJ c + 1

22δab
)
|φbs〉

= 〈φas |iεabciεcbd|φds〉 + 3 = 9. For the third equality we used eq. (A.105), and for the fourth
eq. (B.38), which reads J c|φbs〉 = −(T c)bd|φds〉, where (T c)bd = −iεcbd for the spin-1 represen-
tation of φas , see footnote 17.

17Explicitly, under SU(2) transformations in the spin and channel sectors, we have (com-

pare footnote 11): φas =
[
δac − iθb(T b)ac

]
φ̃cs, where (T b)ac = −iεbac, and similarly φAf =

[
δAC − iθ̃B(T̃

B
)AC

]
φ̃Cf , where (T̃

B
)AC = −iεBAC .

18According to footnote 9, entries 4 to 6 of table D.1 can be regarded as descendents of unity,
1; their normalizations are given in eq. (D.21).
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The fact that a boundary operator can potentially occur in a BOPE certainly

does not mean that it actually does occur. Whether it occurs or not can be

learned from the boundary limit of G(4), to which we now turn.

D.4.3 Determination of BOPE coefficients |CB

ψk|2

To determine the BOPE coefficients |CB
ψk|2, we comparing two equivalent expres-

sions for the boundary limit of G(4): In the limit z1 → z∗4 , z2 → z∗3 [Fig. D.1(b)],

we can use eqs. (D.36) to (D.38) in eq. (D.1) to obtain the following expression

for G(4) in the boundary limit (the overall sign results from ψ2ψ
†
3 = −ψ†

3ψ2):

G(4) η→0+

−→
− ∑

k |CB
ψk|2Nk

∑
ã

(
X ã
k

)ᾱī
αi

(
X ã
k

)β̄j̄
βj

(z ∗
14z

∗
32)

1−∆k |τ1 − τ2|2∆k
(D.42)

Since η → z ∗
14z

∗
32

|τ1−τ2|2 when z1 → z∗4 , z2 → z∗3 , we can directly compare eqs. (D.31)

and (D.32) with eq. (D.42) (using eq. (D.40) in the latter), to read off all the

coefficients |CB
ψk|2. For example, the k=3 term in eq. (D.42) gives

−|CBψ3|2T 2T̃ 2

(z ∗
14z

∗
32)

η.

Comparing this to eqs. (D.31) and (D.32) implies that |CB
ψ3|2 = 4 or 0, for B=F

or K, respectively. The coefficients |CB
ψk|2 obtained in this way for all boundary

operators with ∆k ≤ 3
2

are listed in table D.1, with separate columns for the free

and Kondo cases.

Actually, from the present correlation function 〈ψLψ†
LψRψ

†
R〉, one can not ob-

tain |CB
ψk|2 separately for k=7, 8 and 11,12, but only the combinations:19

|CB

ψ7|2 + |CB

ψ8|2 =





0

1
9×4

, |CB

ψ11|2 + |CB

ψ12|2 =





0

4
, for B = F/K ,

(D.43)

19This is [(4.7)AL], with CB
ψ7 = C/4 and CB

ψ8 = C ′/4. The 1/4 arise since AL introduce the

C and C ′ in the contracted BOPE of ψLαi(z1)ψ
αi†
R (z∗4), see (4.6)AL.
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Table D.1 List of all boundary operators Φã
k(τ1) of dimension ∆k ≤ 3/2 in the

boundary operator product expansion of ψLαi(z1)ψ
ᾱī†
R (z∗4) [see eq. (D.36)] for both

free (F ) and Kondo (K) boundary conditions. The tensors
(
X ã
k

)ᾱī
αi

and their

“squares” [needed in eq. (D.42)] are given explicitly in eqs. (D.39) and (D.40).
The values for |CF

ψk|2 and |CK
ψk|2 are found by comparing (power by power in

η) eq. (D.42) to the boundary limit η → 0+ of the exact expressions (D.31)

and (D.32) for G
(4)
F and G

(4)
K , respectively.

k ∆k Φã
k(τ1)

(
X ã
k

)ᾱī
αi

Nk |CF
ψk|2 |CK

ψk|2

0 0 1 δ δ̃ 1 1 0

1 1
2

φas T a δ̃ 1 0 2

2 1
2

φAf δ T̃A 1 0 2

3 1 Oa,A T aT̃A 1 4 0

4 1 J o
c δδ̃ 4 1

16
0

5 1 J a
s T aδ̃ 1 1 0

6 1 J A
f δT̃A 1 1 0

7 3
2

J a
−1φ

a
s δ δ̃ 9 0 1

72

8 3
2

J A
−1φ

A
f δ δ̃ 9 0 1

72

9 3
2

J o
−1φ

a
s T a δ̃ 1 0 1

10 3
2

J o
−1φ

A
f δ T̃A 1 0 1

11 3
2

J A
−1φ

a
s T a T̃A 1 0 2

12 3
2

J a
−1φ

A
f T a T̃A 1 0 2
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since the Φã
7,Φ

ã
8 (and Φã

11,Φ
ã
12) terms have the same tensor structure. However, by

also considering the correlation function 〈ψLψ†
RψLψ

†
R〉, AL showed by an entirely

analogous calculation that [(4.14)AL]

(
CB

ψ7

)2
+
(
CB

ψ8

)2
= 0 ,

(
CB

ψ11

)2
+
(
CB

ψ12

)2
= 0 , (D.44)

which implies the values20 listed in table D.1:

|CB

ψ7|2 = |CB

ψ8|2 =





0

1
9×8

, |CB

ψ11|2 = |CB

ψ12|2 =





0

2
, for B = F/K .

(D.45)

Thus, we now have succeeded in constructing a complete list of all boundary

operators with ∆k ≤ 3/2 occuring in the BOPE of ψLψ
†
R.

The last two columns of table D.1 illustrate the dramatic difference between

the free and the Kondo cases: none of the boundary operators that occur in the

free case occur in the Kondo case, and vice versa. Although the two theories

become identical in the extreme bulk limit, they are totally “orthogonal” to

each other in the extreme boundary limit! Note in particular the emergence

of anomalous exponents ∆k = 1
2

and 3
2

in the Kondo case, but absent in the

free theory. These are examples of the non-Fermi-liquid exponents for which the

multi-channel Kondo problem is famous. In this calculation they are shown to

arise as a result of boundary operators that occur in the Kondo but not in the

free theory.

Note also that the identity does not occur in the BOPE for Kondo boundary

conditions: CK
ψ0 = 0, which means 〈ψL(z1)ψ

†
R(z

∗
4)〉 = 0. This result was also be

20Using arguments involving the discrete symmetries of time-reversal and charge-conjugation,
AL showed furthermore (see [AL94], p. 586, and in particular footnote 42) that CB

ψ7 and CB
ψ8

differ by a factor i. This factor of i is verified in appendix F, footnotefoot:bosoni, page 417.
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found directly in section 7.5.2 by using eq. (7.67) with j = 1
2
, as explained there

[compare eq. (7.69)]. This means that the amplitude for an incident free electron

to be “scattered from the boundary” into an outgoing free electron is strictly

0!! This is known as the unitarity paradox, whose resolution, due to [ML95], is

sketched in section 7.5.2 and in more detail in appendix F.

D.5 Leading Irrelevant Operator J a
−1 · φas

[AL91b, p.657,682], [AL93, p.7304], [AL94, p.586]

It is important to determine the leading irrelevant boundary operator that

can appear in the effective Hamiltonian at the overscreened fixed point, since it

determines the critical behavior of physical quantities such as the conductivity,

magnetization and specific heat (see chapter 8).

The right part of table table 7.1 gives the list of all possible KM primary

boundary operators that can occur on the Kondo boundary. The leading irrele-

vant boundary operator is the boundary operator with smallest scaling dimension

that has the same symmetries as the initial weak-Hamiltonian (else it cannot be

generated under the RG flow from the weak-coupling limit to the overscreened

fixed point). The isotropic Kondo Hamiltonian of eq. (7.2) studied by AL is a

KM singlet, with quantum numbers (Q, j, f) = (0, 0, 0).

Now, from table 7.1, right part, we see that the only KM primary boundary

operator with these quantum numbers is the identity. Hence the the leading ir-

relevant operator must be a KM descendent. The lowest dimension KM singlets

are, in the notation of table D.1, Φ7 = J a
−1φ

a
s and Φ8 = J̃ A

−1φ
A
f , with scaling
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dimensions21 ∆7 = ∆8 = 3
2

(since, by footnote 2, φas and φAf have scaling dimen-

sions 1
2
).

Furthermore, AL showed that the weak-coupling Hamiltonian is even under

the discrete symmetries of time-reversal (T ) and, assuming particle-hole symme-

try, charge conjugation (C), and hence also under (CT ) [the precise meaning of

these symmetry transformations is defined in eqs. (4.43)AL and (4.44)AL of [AL94]].

They also showed [AL94, p.586] that J a
−1φ

a
s and J̃ A

−1φ
A
s are even and odd under

(CT ), respectively. Therefore, assuming particle-hole symmetry, J̃ A
−1φ

A
s cannot

occur in the effective overscreened Hamiltonian. Thus, AL concluded [AL91b,

p.657] that there is only a single leading irrelevant operator, namely J a
−1φ

a
s , with

scaling dimension 3
2

(and normalization 9, see footnote 16).

The fact that the leading irrelevant operator does occur in the BOPE of

ψRψ
†
L, as verified in section D.4.3 and table D.1, is crucial for the calculation of

the temperature dependence of the self-energy, and hence the bulk conductivity

or point-contact conductance. The reason is that, as shown in [AL93], the leading

T 6= 0 correction to the self-energy is governed by 〈ψRJ a
−1φ

a
sψ

†
L〉; the anomalous,

non-Fermi-liquid T 1/2 scaling behavior of the self-energy arises from the non-

Fermi-liquid scaling dimension of 3
2

of J a
−1φ

a
s , as shown in sections 8.4 and 8.5

[see eq. (8.33)].

For the arguments of those sections, it is assumed that the boundary operators

Φn occuring in 〈ψRΦnψ
†
L〉 is Virasoro primary, since the T 6= 0 version of this

function is calculated by a conformal map of the plane to a cylinder, assuming

21For general Ñ and k, the scaling dimensions are ∆7 = 1 + Ñ
Ñ+k

and ∆8 = 1 + k
Ñ+k

. This

follows because according to eq. (B.85), the scaling dimension of the KM primary fields φas and
φAf are given by ∆φ =

cφ
Ñ+k

, where for the adjoint representations of SU(Ñ) and SU(k), we

have cφ = Ñ and k, respectively.
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that all operators involved are Virasoro primary [compare eq. (8.35)]. Now, J a
−1φ

a
s

is in fact Virasoro primary, though this is not a priori obvious, since it is not KM

primary. To verify this, note that an operator φi is Virasoro primary if it satisfies

[eq. (B.37)] the condition Lsnφi = 0 for all n > 0, which does hold for (J a
−1φ

a
s):

Ls1(J a
−1φ

a
s) =

(
J a

−1L
s

1 + J a
0

)
φas = 0 − (T a)abφ

b
s = 0 . (D.46)

Here eq. (A.104) was used for the first equality, eq. (B.37)22 and eq. (B.38) for

the second and footnote 17 for the third, according to which (T a)ab = −iεaab = 0.

Similarly, Ls1(J a
−1φ

a
s) = 0 for all n > 0.

22Since φas , being KM primary, is Virasoro primary, Ls1φ
a
s = 0.



Appendix E

Free Bosons

In this appendix we give some standard results from the theory of free massless

bosons in two dimensions, that are needed for the bosonization of fermions used

in chapter 6 and appendix F. For a detailed discussion, refer to the lectures by

Shankar [Sha91]; for a more concise and elegant treatment, to those by Polchinski

[Pol94, chapter 1].

E.1 Boson Basics

The Lagrangian action for a free boson on an infinite line (x ∈ [−∞,∞]) is

[Sha91,Pol94] (with normalization ϕhere =
√

4πϕShankar)

S ≡ 1
8π

∫
dτ
∫
dx
[
(∂τϕ(τ, x))2 + (∂xϕ(τ, x))2

]
= − 1

2π

∫
dτ
∫
dxϕ(τ, x)∂z∂z∗ϕ(τ, x) ,

(E.1)

where z = τ + ix and ∂z = 1
2
(∂τ − i∂x). This action leads to the equation of

motion ∂z∂z∗ϕ = 0, implying that ϕ(z, z∗) decomposes into L- and R-moving

components:

ϕ(z, z∗) = ϕL(z) + ϕR(z
∗) . (E.2)

395
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For a line of infinite length, ϕL/R can be expressed in terms of ϕ(τ, x) through

ϕL/R(τ ± ix) = 1
2

[
ϕ(τ, x) ∓

∫ ∞

x
dx′ i∂τϕ(τ, x′)

]
. (E.3)

The canonical equal-time commutation relation for ϕ and its conjugate field

i∂L
∂(∂τϕ)

= i
4π
∂τϕ(τ, x′) is

[ϕ(τ, x), i
4π
∂τϕ(τ, x′)] = i

κ/π

(x− x′)2 + κ2
≃ iδ(x− x′) , (E.4)

where 1/κ is a large ultra-violet cut-off in momentum integrals.1 Eq. (E.4) implies

via eq. (E.3) that

[ϕL(τ + ix), ϕR(τ − ix′)] = iπ (E.5)

[ϕL/R(τ + ix), ϕL/R(τ − ix′)] = ∓i2 lim
κ→o

tan−1

(
x− x′

κ

)

≡ ∓iπε(x− x′) =





0 if x = x′ ,

∓iπ if x >
< x′ .

(E.6)

Eq. (E.5) can be ensured by requiring that [ϕ0L, ϕ0R] = iπ, where ϕ0L (ϕ0R) is

the z- (z∗)-independent part of ϕL(z) (ϕR(z
∗)), the so-called zero-mode.

If one considers bosons on a finite interval, say x ∈ [0, l], the representation

of eq. (E.3) is no longer applicable (and eqs. (E.5) and (E.5) can consequently be

modified). Instead, one has to carefully make mode expansions for ϕL/R, whose

detailed properties depend on the boundary conditions on the fields ϕL/R. [For

detailed examples of boundary-condition-dependent mode expansions, see, e.g.

[GSW87, p.66], [WA94,EA92].]

1The ultra-violet cut-off κ is on the order of the lattice spacing. In CFT, one implicitly takes
α → 0, and the divergences that arise as z → z′ play a central role in the theory, via operator
product expansions.
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The correlation functions for ϕL(z) and ϕR(z
∗) are2

〈ϕL(z1)ϕL(z2)〉 = − ln[(z1 − z2 + κ)/Λ] , (E.7)

〈ϕR(z∗1)ϕR(z∗2)〉 = − ln[(z∗1 − z∗2 + κ)/Λ] , (E.8)

where Λ−1 → 0 is an infra-red cut-off in momentum integrals (discussed in

[GSW87, p.139]), that cancels from all relevant expressions.3

Below we shall consider a number of independent boson fields ϕα, labeled by

an index α, with

〈ϕαϕβ〉 = 0 and [ϕα, ϕβ] = [ϕα, ∂τϕβ] = 0 if α 6= β . (E.9)

E.2 Vertex Operators

The normal-ordered form of an exponential operator is defined as follows:4

:eA : ≡ eA

〈eA〉 =
eA

e
1
2
〈A2〉 , (E.10)

so that 〈:eA :〉 = 1. When manipulating with exponential operators, the following

identities [derived in [Sha91], see eq.(3.22)] are useful:

eAeB = eA+Be[A,B]/2 ; :eA : :eB : = :eA+B : e〈AB〉 . (E.11)

2Actually, eqs. (E.7) and (E.8) hold only modulo additive constants ±iπ. The reason is (see
[GSW87, eq. (3.2.41)] or [Pol94, eq. (1.4.25)]) that they are derived from 〈ϕ(z1, z

∗
1)ϕ(z2, z

∗
2)〉 =

− ln[(z1 − z2 + κ)/Λ] − ln[(z∗1 − z∗2 + κ)/Λ] = 〈(ϕL + ϕR)(ϕL + ϕR)〉. Therefore, the functions
〈ϕLϕL〉 and 〈ϕRϕR〉 can be determined from this only to within the constant 〈ϕLϕR + ϕRϕL〉,
which need not be zero, since [ϕL, ϕR] = iπ 6= 0. However, extra contributions ±iπ in eqs. (E.7)
and (E.8) can be ignored for our purposes: since the infra-red cut-off ln Λ cancels from all
relevant formulae, so will the combination ln Λ ± iπ = ln(Λe±iπ).

3Typically, the cancelation of Λ happens via 〈ϕ(z)ϕ(0)〉−〈ϕ(0)ϕ(0)〉 = ln(z+κ)/κ. However,
we display Λ explicitly because of the role it plays in eq. (E.15) below.

4For a discussion of normal ordering of exponentials, see [Sha91, eq.(3.22)], where eq. (E.11)
is derived, [GSW87, p.89] or the particularly elegant treatment of [Pol94, eq.(1.1.18)].
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The normal-ordered exponential of a free boson is called a vertex operator :5

V
(α)
L,λ (z) ≡ Λ−λ2/2 :eiλϕLα(z) : , V

(α)
R,λ (z∗) ≡ Λ−λ2/2 :eiλϕRα(z∗) : , (E.12)

[the normalization factor Λ−λ2/2 is needed to ensure proper normalization of the

two-point function (E.15) below]. Evidently 〈V (α)
L,λ (z)〉 = δλ,0 in the limit Λ−1 → 0.

Using the second of eq. (E.11) together with eq. (E.7), one finds the following

vertex operator OPEs (note that singular terms occur only for α = β):

V
(α)
L,λ1

(z1) V
(β)
L,λ2

(z2) =
δαβ V

(α)
L,λ1+λ2

(z2)

(z1−z2)−λ1λ2

(
1 + λ1(z1−z2) i∂z2ϕ(z2) + . . .

)
(E.13)

i∂zϕLα(z1) V
(β)
L,λ2

(z2) =
δαβ λ2

z1−z2

V
(β)
L,λ2

(z2) + . . . . (E.14)

It follows that the two-point function

〈V (α)
L,λ1

(z1)V
(β)
L,λ2

(z2)〉 =
δαβΛ

− 1
2
(λ1+λ2)2

(z1 − z2)−λ1λ2
. (E.15)

is non-zero in the limit Λ−1 → 0 only if λ1 + λ2 = 0, which implies its invariance

under ϕ → ϕ + const, as expected. [This is the reason for including the factor

Λ−λ2/2 in the definition (E.12).]

The vertex operator V
(α)
L,λ (z) is a Virasoro primary field, with scaling dimension

λ2/2 (for a proof, see [GSW87, p.89]).

Similar properties hold for right-movers, with L→ R and z → z∗.

E.3 Bosonization of Free Fermions

A single species of spinless, L- and R-moving free fermions (with linear dispersion)

can be expressed in terms of a single species of bosons through vertex operators

5One often sees the form V
(α)
L,λ (z) ≡ κ−λ

2/2eiλϕLα(z), which is equivalent to eq. (E.12),

since 〈eiλϕLα(z)〉 = e
1
2
λ2 lnκ/Λ = (κ/Λ)λ

2/2.
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with λ = ±1: Explicitly, ψL(z) ≡ Λ−1/2 :e−iϕL(z) : and ψR(z
∗) ≡ Λ−1/2 :e−iϕR(z∗) :

(here eqs. (E.5) and (E.11) ensure that ψL and ψR anti-commute). It is evident

from eq. (E.15) that this identification reproduces the correct fermion Green’s

function, including the correct statistics [which can also be checked on an operator

level by using eq. (E.11) in combination with eq. (E.6)].

The same method can be used to bosonize a set of 2N independent fermions

ψLα, α = 1, . . . , 2N , in terms of 2N independent boson fields ϕLα. However,

one has to take care that different species of fermions anti-commute.6 There are

several ways to do this, one of which is to make the bosonization Ansatz

ψLα(z) ≡ aαΛ
−1/2 :e−iϕLα(z) : ψα†L (z) ≡ aαΛ

−1/2 :eiϕLα(z) : , (E.16)

ψRα(z
∗) ≡ aαΛ

−1/2 :e−iϕRα(z∗) : ψα†R (z∗) ≡ aαΛ
−1/2 :eiϕRα(z∗) : ,(E.17)

where the different ϕα commute [as in eq. (E.9)] and we have introduced [Lud95,

ML95] a set of 2N anti-commuting, hermitian constants aα (sometimes called

cocycles in the string theory literature) satisfying

{aα, aβ} = 2δαβ . (E.18)

Since a2
α = 1, all relations involving bilinears of a single fermion species ψα are

unaffected by the aα. The sole role of the aα’s is to ensure that {ψLα, ψLβ} = 0

if α 6= β [recall eq. (E.9)], i.e. to serve as a mnemonic to remind us to include

− signs when permuting fermion fields. The aα’s are otherwise trivial constants,

and for definiteness may be thought of as a set of (hermitian) matrices that realize

the Clifford algebra eq. (E.18).

6This matter is not discussed in the literature that treats the the 2-channel Kondo model
via bosonization [EK92,SG94,SH95a]. However, for our application in appendix F, it will be
important to treat this with care.
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Note that the combination a2N+1 ≡ −(−i)N a1a2 . . . a2N satisfies the relations

{aα, a2N+1} = 0, [aαaβ, a2N+1] = 0, a2
2N+1 = 1 . (E.19)

The third relation (ensured by the phase −(−i)N) implies that one can classify

states as having even or odd “parity” according to their eigenvalues η = ±1 under

a2N+1. Let |0〉η be a ground state with a2N+1|0〉η = η|0〉η. Then a m-fermion

state, |m〉η ≡ (ψ)m
′
(ψ†)m+m′|0〉η, has parity (−)mη. When working on a subspace

of definite m, one may thus make the replacement a2N+1 → (−)mη.

Eq. (E.16) and eq. (E.13) imply the following bosonic expressions for normal-

ordered fermion currents (the first by expanding the exponential in the right-hand

side of eq. (E.13)):

:ψα†L (z)ψLβ(z) : =





: i∂zϕLα(z) : for α = β ,

aαaβ Λ−1 :ei(ϕLα−ϕLβ)(z) : for α 6= β .
(E.20)

Let (TA)βα be any N ×N matrix, and define a corresponding current through:

JAL (z) =:ψα†L (z)(TA)βαψLβ(z) : . (E.21)

Then, using eqs. (E.14) and (E.13), it is instructive to check that the bosonic

expressions (E.20) and (E.16) reproduce7 the OPEs expected from using Wick’s

theorem for fermions [compare eq. (B.26) and (A.47)]:

JA(z1)ψ
γ†
L (z2) =

ψα†L (z2)(T
A) γα

z1 − z2

+ . . . , (E.22)

JA(z1)J
B(z2) =

TrTATB

z1 − z2

+ :ψα†L (z2)
(
[TA, TB]

) β
α
ψLβ(z2) : + . . .(E.23)

where the dots represent terms which are less singular [e.g., in eq. (E.22), a term

ei(ϕLα−ϕLβ+ϕLγ) with γ 6= β, which is less singular because the leading term in

eq. (E.13) is absent for γ 6= β].

7Note that the aα’s play an essential role in ensuring the requisite − signs for forming the
commutator in eq. (E.23).
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As an example (of interest in section 6.3), consider the case of two spinless

fermions fields, α = (1, 2) = (+,−). In this case it is convenient to introduce

linear combinations of the bosons ϕL1 and ϕL2:

X0
L(z) = 1√

2
(ϕL1 + ϕL2)(z) , X3

L(z) = 1√
2
(ϕL1 − ϕL2)(z) . (E.24)

Then we have

ψα(z) = aα Λ−1/2 :e−iϕLα(z) = aα Λ−1/2 :e
−i 1√

2
[X0
L(z)+αX3

L(z)]
: , (E.25)

1
2

∑

α

: ψα†L (z)ψα(z) : = 1√
2

: i∂zX
0(z) :, (E.26)

∑

αα′
: ψα†(z)1

2
σ1
αα′ψα′(z) : = a3 Λ−1 : sin

√
2X3(z) : , (E.27)

∑

αα′
: ψα†(z)1

2
σ2
αα′ψα′(z) : = −a3 Λ−1 : cos

√
2X3(z) : , (E.28)

∑

αα′
: ψα†(z)1

2
σ3
αα′ψα′(z) : = 1√

2
: i∂zX

3(z) : . (E.29)

where a3 = ia1a2. If explicit representations for aα (α = 1, 2, 3) are desired, one

can choose the Pauli matrices: aα = σα, with the “η-parity” ground state |0〉η

being proportional to
(

1
0

)
or
(

0
1

)
for η = 1 or −1, respectively.



Appendix F

Bosonic Description of

Overscreened Fixed Point for

2-channel Kondo Problem

In this appendix we describe how Maldacena and Ludwig [ML95] reformulated

the AL theory for the overscreened fixed point, for k = 2 channels (and Ñ = 2),

in terms of free bosons (!). This approach not only achieved its initial goal of

resolving the unitarity paradox [see section 7.5.2]; in addition, it lead to a very

transparent description of the overscreened fixed point in terms of very simple

boundary conditions satisfied by the free bosons. In particular, the origin of the

anomalous non-Fermi-liquid exponents ∆ = 1
2

becomes very clear [section F.4], as

does the nature of the corresponding boundary operators φas and φAf [section F.6].

The reader not familiar with all the intricacies of AL’s CFT approach is

nevertheless encouraged to read on: the only input from AL’s CFT needed here

are eqs. (F.5) to (F.7). Once these are assumed, the rest follows purely from

402
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applying results from the theory of free bosons. In fact, the approach is similar

in spirit to that used by Emery and Kivelson [EK92] to address the anisotropic

2-channel Kondo problem, although the details are quite different.

As always, our presentation is considerably more pedestrian than that used

in [ML95]. In particular, we avoid the group theoretic arguments by which the

approach was discovered, since a posteriori one can get by without them, and

instead merely describe how it works. In addition, we show explicitly [section F.6]

how the boundary operators φas and φAf , introduced in appendix D, can also be

expressed in terms of the boson fields (a matter addressed only in passing in

[ML95]).

F.1 Statement of the Unitarity Paradox

Let us recall what the “unitarity paradox” is. Consider the fermion field ψ

that the free-fermion field ψfree renormalizes into as one flows towards the over-

screened fixed point. It was shown in section 7.5.2 (and emphasized again at

the end of section D.4.3), that for the Kondo problem, the fermion field ψR(z
∗)

is not simply proportional to the analytic continuation of ψL(z
∗) into the lower

half-plane:

ψR(z
∗) 6= c ψL(z

∗) . (F.1)

Instead, for k = 2, Ñ = 2, one actually finds the dramatic result that their

two-point function vanishes [see eq. (7.69)]:

〈ψαiR(z∗)ψ†α′i′
L (z′)〉 = 0 . (F.2)

This seems to violate unitary: when a free electron scatters off the boundary

(the impurity), the amplitude for a free electron to emerge is zero [if k > 2, the
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amplitude is not zero, but still < 1, compare eq. (7.68)].

The resolution of this paradox by Maldacena and Ludwig (ML) rests on the

following realization: the fact that a free electron does not scatter into a free

electron does not mean that it disappears; according to the dictates of unitary,

it must simply mean that ψαi†L scatters into some other (non-Fermi-liquid) exci-

tation, with the same quantum numbers (Q, jz, fz) = (1, α1
2
, i1

2
), (α, i = ±) that

does not occur in a theory of free fermions, but does in the overscreened Kondo

theory.

Let this other excitation, which we call a spinor-electron (ML simply call it a

“spinor”), be described by a field Sαi†. By definition, this is the field into which

an electron scatters at the boundary, and hence by definition Sαi†R is the analytic

continuation of ψαi†L into the lower half-plane:

Sαi†R (z∗) ≡ ψαi†L (z∗) . (F.3)

The challenge is to find the properties of Sαi†.

Now, although the electron fields ψ†
L and ψ†

R do not obey simple boundary

conditions, bilinear combinations of : ψ†ψ : do: The familiar charge (J o
c ), spin

(J a
s ), flavor (J A

f ) and “spin-flavor” (Oa,A) currents, to be generically denoted by

J ã
Y , are defined by eqs. (D.21) (NY being the normalization):

J 0
c (z) = :ψαi† ψαi : (z) , Nc = 4 ,

J a
s (z) = :ψβi† (T a) αβ ψαi : (z) , Ns = 1 ,

J A
f (z) = :ψαj† (T̃A) ij ψαi : (z) , Nf = 1 ,

Oa,A(z) = 2 :ψβj† (T a) αβ (T̃A) ij ψαi : (z) , NO = 1 .

(F.4)
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They have the L-R two-point functions [eqs. (D.24) and (D.25)],

〈J ã
LY (z1)J ã′

RY (z∗2)〉 =
ηY NY δãã′

(z1−z∗2)2
, (F.5)

ηc = ηs = ηf = −ηO = 1 , (F.6)

which imply that

J ã
RY (z∗) = ηYJ ã

LY (z∗) (F.7)

when acting on the ground state |0〉.

Since eqs. (F.5) to (F.7) completely determine all that follows (and are

the only point at which input from AL’s CFT approach is needed), their ori-

gin is worth recapitulating: For Y = c, s, f , eq. (F.7) stipulates that the

U(1)c×SU(2)s×SU(2)f generators J 0
c , J a

s and J A
f be analytic at the boundary,

which is the condition [eqs. (7.39) or eq. (C.8)] that ensures that the boundary is

U(1)c×SU(2)s×SU(2)f KM-invariant (see section C.1). [This is the fundamen-

tal assumption on which AL’s theory of the over-screened fixed point is based

(see section 7.4.1); it is the technically precise statement of the loose statement

that “the impurity is screened in such a way that the U(1)c × SU(2)s × SU(2)f

symmetry is completely restored.”] The Oa,A’s, however, are not generators of

a KM symmetry and hence not necessarily analytic at the boundary. However,

they are KM primary (see footnote 10 on page 382); hence their boundary con-

ditions are governed by Cardy’s result for L-R functions, eqs. (D.25) and (D.26),

which imply ηO = −1.

The strategy followed by ML is straightforward: they bosonize the fermion-

fields ψαi† in terms of a set of boson fields ϕαi, make a transformation to a new

set of boson fields φY , and then determine what boundary conditions the φY
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fields have to satisfy in order that eqs. (F.7) hold. Once these are known, it is

straightforward to define the spinor-electron field Sαi† in terms of the φY -bosons,

and deduce all its properties.

F.2 Bosonization of ψαi†

We bosonize according to the method outlined in appendix E. Introduce four

independent, commuting, boson fields ϕαi, each with the properties described in

section E.1, and a set of four anti-commuting hermitian constants aαi (sometimes

called cocycles in the string theory literature) satisfying1

{aα, aβ} = 2δαβ , {aα, a5} = 0 , a2
5 = 1 where a5 = a11a21a12a22 .

(F.8)

Then the fermion fields can be represented as:

ψLαi(z) ≡ aαiΛ
−1/2 :e−iϕLαi(z) : ψαi†L (z) ≡ aαiΛ

−1/2 :eiϕLαi(z) : (F.9)

ψRαi(z
∗) ≡ aαiΛ

−1/2 :e−iϕRαi(z
∗) : ψαi†R (z∗) ≡ aαiΛ

−1/2 :eiϕRαi(z
∗) :(F.10)

Henceforth, if we do not display the subscripts L/R and arguments z/z∗ explicitly,

the formulas are understood to apply to both cases. Also, the normal ordering

symbols and the normalization Λ−1/2 will not be displayed, but understood.

According to eqs. (F.4) and the first of (E.20), the following four (commuting)

1An explicit realization of the aαi’s in terms of 4 × 4 matrices is, for example: a11 =(
12

0
0

−12

)
; (a21, a12, a22) ≡ ~a ≡

(
0
i~σ

−i~σ
0

)
, and a5 =

(
0
12

12

0

)
, where 12 =

(
1
0

0
1

)
. A ground

state |0〉η5 with a5-parity of η5 = ±1 then is proportional to

(
1

1
η5
η5

)
.
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currents Jc, J 3
s , J 3

f and O3,3 are linear in the boson fields ϕαi:

1
2
Jc = i∂z

1
2

∑

αi

ϕαi ≡ i∂z φc

J 3
s = i∂z

1
2

∑

αi

(σ3)ααϕαi ≡ i∂z φs

J 3
f = i∂z

1
2

∑

αi

(σ3) iiϕαi ≡ i∂z φf

O3,3 = i∂z
1
2

∑

αi

(σ3)αα (σ3) iiϕαi ≡ i∂z φx

(F.11)

On the right-hand side, we have introduced a new set of boson fields, which we

collectively denote by φY ,

φY ≡




φc

φs

φf

φx




≡ 1
2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1







ϕ11

ϕ21

ϕ12

ϕ22




. (F.12)

Because this transformation is orthogonal, the φY satisfy the same commutation

relations as the ϕαi [compare eq. (E.6)].

[
φY L(τ, x), φY ′R(τ, x

′)
]

= iπ δY Y ′ ,
[
φY L/R(τ, x), φY ′L/R(τ, x

′)
]

= ∓iπε(x− x′) δY Y ′ ,
(F.13)

Thus, they are also mutually independent and commuting, so that eiφY eiφY ′ =

ei(φY +φ′Y ) if Y 6= Y
′.

It turns out to be convenient to express all fields and currents in terms of

these new bosons:


ψ11†

ψ21†

ψ12†

ψ22†




=




a11 e
iϕ11

a21 e
iϕ21

a12 e
iϕ12

a22 e
iϕ22




=




a11 e
i
2
(φc+φs+φf+φx)

a21 e
i
2
(φc−φs+φf−φx)

a12 e
i
2
(φc+φs−φf−φx)

a22 e
i
2
(φc−φs−φf+φx)




, (F.14)

i.e. ψαj† = aαje
i
2
(φc+αφs+jφf+αjφx) (F.15)
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and

J η
s = η a11a21 e

ηiφs
(
eηiφx − a5 e

−ηiφx
)
,

J η
f = η a11a12 e

ηiφf
(
eηiφx + a5 e

−ηiφx
)
,

Oη,3 = η a11a21 e
ηiφs

(
eηiφx + a5 e

−ηiφx
)
,

O3,η = η a11a12 e
ηiφf

(
eηiφx − a5 e

−ηiφx
)
,

Oη,η = 2 η a11a22 e
ηi(φs+φf ) ,

Oη,−η = 2 η a11a22a5 e
ηi(φs−φf ) .

(F.16)

for η = ±, with J η
Y ≡ J 1

Y + ηiJ 2
Y ; e.g. J +

s = :ψ1i†ψ2i : and J −
s =:ψ2i†ψ1i :. Here

the a5’s arise from writing a12a22 = −a11a21a5, a21a22 = a11a12a5 and a12a21 =

a11a22a5. We shall denote a ground state1 with “ a5-parity” eigenvalue of η5 = ±1

by |0〉η5 , i.e. a5|0〉η5 = η5|0〉η5 . The two choices for η5 are equivalent for our

purposes (we continue to display the η5-dependence, though, to verify explicitly

that the value of η5 does not matter).

F.3 Boundary Conditions for the φY Bosons

Now, the boundary conditions (F.7) for J 0
c , J 3

s , J 3
f and O3,3 immediately de-

termine, via eq. (F.11), the following boundary conditions on the corresponding
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boson fields:2

φcR = φcL + ccπ , φsR = φsL + csπ , φfR = φfL + cfπ , φxR = −φxL + cxπ .

(F.17)

The shifts parameterized by the constants cY are allowed, because they do not

affect i∂zφY L/R(τ ± ix) for x 6= 0. The cY ’s are determined by the requirement

that expressions (F.16) should be consistent with the two-point functions (F.5),

or equivalently with the boundary conditions eq. (F.7), when acting on the ground

state |0〉η5 , i.e. when a5 is replaced by η5 in eq. (F.16). Thus, J η
s and J η

f pick up

a factor −η5 and η5 when φx is replaced by −φx. It is readily apparent that these

factors can be neutralized and the relations (F.7) satisfied for all the currents in

(F.16) by choosing the cY such that

eiηπ(cs+η′cx) = −η5, eiηπ(cf+η′cx) = η5, eiηπ(cs+η′cf ) = −1 , for η, η′ = ± .

(F.18)

This can be realized by taking, for example,

cs =
{

1

0
, cf =

{
0

1
, cc = cx = 0 , for η5 =

{
1

−1
(F.19)

(which is the choice made by ML, who also implicitly take η5 = 1). Thus, the

φY boson fields have extremely simple boundary conditions! As a check, ML

2Strictly speaking, the relation φxR(z∗) = −φxL(z∗)+cxπ involves a somewhat sloppy nota-
tion, and the − sign is to be understood as applying only to the z∗-dependent parts of the fields
φxL/R [this is all that is required by the boundary condition i∂z∗φxR = −i∂zφxL]. The − sign
need not apply to the z∗-independent zero-modes φxL,0 and φxR,0. In fact, we shall choose them
to be unaffected by the extra − sign, so that in particular [φxL(τ, x), φxR(τ, x′)] = iπ continues

to hold, as in the second of eqs. (F.13). This is important to ensure that {ψαi†L , ψsR
βj} = 0

continues to hold. – In general, questions of how various fields commute with each other can
be tricky when fields with anomalous scaling dimensions are considered (compare footnote 4 on
page 376), and are best settled by investigating the behavior of an explicitly known correlation

function. That {ψαi†L , ψsR
βj} = 0 follows, for example, from eq. (D.42) for G(4), in which

the overall − sign [needed to get agreement with the general expression (D.32)] arises from

ψL2ψ
†
R3 = −ψ†

R3ψL2 [see the comment above eq. (D.42)].
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calculated [ML95, appendix B] the exact partition function for the system in

terms of these bosons, and found exact agreement with the result they had ob-

tained previously by using the finite-size spectrum obtained through their fusion

hypothesis.

As an aside, note that if one refermionizes by introducing a new set of fermion

fields through ψ̃†
Y ≡ aY e

iψY (this is done, for example, in Emery and Kivelson’s

treatment of the anisotropic 2-channel Kondo problem [EK92,SH95a]), they too

have very simple boundary conditions:

ψ̃cL = ψ̃cR , ψ̃sL = e−iπcs ψ̃sR , ψ̃fL = e−iπcf ψ̃fR , ψ̃xL = e−iπcx ψ̃†
xR . (F.20)

In fact, for the anisotropic 2-channel Kondo problem, the result that ψ̃xL ∝ ψ̃†
xR

was also found by Schiller and Hershfield [SH95b], using the Emery-Kivelson

theory.

F.4 Origin of Non-Fermi-Liquid Exponent

∆ = 1
2

The fact that φxR has a − relative to φxL immediately explains the mysterious

“orthogonality” of ψαj†L (z1) and ψRᾱj̄(z
∗
2) at the boundary: consider the following

OPE,

ψαj†L (z1)ψL/Rᾱj̄(z
∗
2) ∝ e

i
2
(φc+αφs+jφf+αjφx)L(z1) e−

i
2
(φc+ᾱφs+j̄φf±ᾱj̄φx)L(z∗2 )

=
e
i
2 [(φc+αφs+jφf+αjφx)L(z1)−(φc+ᾱφs+j̄φf±ᾱj̄φx)L(z∗2 )]

(z1 − z∗2)
1
4
(1+αᾱ+jj̄±αᾱjj̄) + . . . , (F.21)

where we used eq. (F.15), and the vertex operator OPE (E.13). Whereas for

ψαj†L ψLᾱj̄, one gets the usual leading term δαᾱδ
j
j̄ (z1−z∗2)−1, for ψαj†L ψRᾱj̄ the leading

term is always proportional to (z1 − z∗2)
−1/2, for all combinations of α, ᾱ, j, j̄



411

(actually, it even is (z1 − z∗2)
1/2 for α 6= ᾱ and j 6= j̄). Thus, the − sign in

φxR = −φxL + cxπ is responsible for the fact that identity operator cannot occur

in the BOPE of ψαj†L and ψRᾱj̄.

In addition, we see from this argument that since they all occur together with

(z1 − z∗2)
−1/2 ≡ (z1 − z∗2)

−(1−∆), all the leading operators that do occur in the

BOPE of ψαj†L and ψRᾱj̄ have scaling dimension ∆ = 1
2
, which is precisely the

anomalous non-Fermi-liquid exponent for which the 2-channel Kondo problem

is famous, and which plays such an important role in this thesis. This is the

simplest argument I know of for understanding the origin of the ∆ = 1
2

exponent.

In section F.6, we derive explicit expressions for these boundary operators.

F.5 The Spinor-Electron field Sαi†

With the boundary conditions for the φY -bosons in hand, we are now able to

define in an explicit way a field Sαi† that has the desired property (F.3), namely:

Sαj†[φc, φs, φf , φx] ≡ ψαj†[φc, φs−csπ, φf−cfπ, −φx + cxπ] (F.22)

= e−
i
2
π(αcs+jcf−αjcx)aαje

i
2
(φc+αφs+jαf−αjφx) ,

= −i




a11 e
i
2
(φc+φs+φf−φx)

−η5 a21 e
i
2
(φc−φs+φf+φx)

η5 a12 e
i
2
(φc+φs−φf+φx)

− a22 e
i
2
(φc−φs−φf−φx)




= −i




a11 e
i
2
(φ11+φ21+φ12−φ22)

−η5 a21 e
i
2
(φ11+φ21−φ12+φ22)

η5 a12 e
i
2
(φ11−φ21+φ12−φ22)

− a22 e
i
2
(−φ11+φ21+φ12−φ22)




(F.23)

where for eq. (F.23) we implemented the choices eq. (F.19). The definition (F.22)

is purposefully constructed in such a way that the boson boundary conditions

eq. (F.17) imply the desired relation eq. (F.3), namely

Sαi†R (z∗) = ψαi†L (z∗) , and also Sαi†L (z) = −ψαi†R (z) . (F.24)
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[where SL/R ≡ S[φY L/R], etc.]. Note that when expressed in terms of the original

ϕαi bosons, Sαi†, in contrast to ψαi† [see eq. (F.14)] does not reduce to a simple

form.3 This means that Sαi† cannot be expressed in terms of free fermions (in

a sense, it is a product of “square roots” of fermion fields). Nevertheless, it is

a well-defined object, not any more esoteric than the fields used in Emery and

Kivelson’s approach to the anisotropic 2-channel Kondo problem [EK92].

What are the properties of S†?

Quantum numbers: First and foremost, since the only essential difference between

Sαj† and ψαj† is φx → −φx, they have the same (Q, jz, fz) quantum numbers

[eigenvalues of (J o
c ,J 3

s ,J 3
f ), obtainable via the OPE (E.14)], namely (1, α1

2
, j 1

2
),

with α, j = ± [compare eqs. (F.14) and (F.23)]. Thus Sαj† carries the same units

of charge, spin and flavor as a free fermion (even though in a way that is not

possible in a free fermion theory). This, then, is the key to the resolution to

the unitarity paradox: the free electron simply scatters into a “non-free-electron”

excitation with the same charge, spin and flavor quantum numbers. Merely the

3The second equality in (F.23) is responsible for the name “spinor” that ML chose for

S†. Let ~H ≡ (H1,H2,H3,H4) be four Cartan (i.e. mutually commuting) generators of the
group SU(4) that mixes the components of ψαi† among themselves. A representation in which

the states have ~H-eigenvalues (called “weights”) of the form (1, 0, 0, 0), . . . , (0, 0, 0, 1) is called
a vector representation of SU(4), whereas one with eigenvalues of the form 1

2 (η1, η2, η3, η4),
where ηi = ±1, is called a spinor representation. (Actually, two different spinor representations
are possible, distinguished by η1η2η3η4 = ±1.) If one chooses as Cartan generators the four
currents i∂z(ϕ11, ϕ21, ϕ12, ϕ22), then eqs. (F.14) and (F.23) show that ψ† and S† transform
respectively in the vector and spinor representations (the latter with η1η2η3η4 = −1) of SU(4).
This is why S† was christened a “spinor” by ML (actually, they considered the larger group
SO(8) of transformations of the eight components of (ψαi†, ψαi), which has SU(4) as a sub-
group – a thorough discussion of the properties of SO(8) and related groups can be found
in [Geo82]). — On the other hand, if one chooses as Cartan generators the four currents
~H = i∂z(φc, φs, φf , φx), then eqs. (F.14) and (F.23) show that both ψ† and S† transform in
spinor representations (with η11η21η12η22 = +1 and −1, respectively). This is the underlying
reason for eq. (F.25) below, which shows that S† and ψ† transform (almost) identically under
U(1)c × SU(2)s × S(2)f ; the essential difference between the two, namely φx vs. −φx, only
shows up for the non-U(1)c×SU(2)s×S(2)f transformations of SU(4), namely those generated
by Oa,A.
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i∂zφx quantum number changes, which is not associated with a physically relevant

observable.

Transformation properties: Also of interest are the transformation properties

of S† under U(1)c × SU(2)s × S(2)f transformations. These can be read off,

according to eq. (B.26), from the most singular term of the OPEs of the various

generators J ã
Y R of this group with S†

R. These OPEs can be obtained from those

of J ã
Y L with ψ†

L [given in eq. (E.22)] as follows,4 for Y = s, f :

J ã
RY (z∗1)S

αi†
R (z∗2) = ηãJ ã

LY (z∗1)ψ
αi†
L (z∗2) =

ηãψβj†L (z∗2)(T
ã
Y ) αi

βj

z∗1 − z∗2
=
ηã(T ∗ã

Y )αiβj S
βj†
R (z∗2)

z∗1 − z∗2
(F.25)

where ηã = (η1, η2, η3) = (−1,−1, 1). For the first equality, we used firstly

S†
R = ψ†

L [eq. (F.24)] and secondly the fact that when acting on the subspace

aαi|0〉η5 (applicable for S† and ψ†), eq. (F.7) becomes modified to J ã
RY (z∗) =

ηãηYJ ã
LY (z∗) (with ηs = ηf = 1). The extra factor ηã deserves explanation: the

phase factors eicY π were chosen in such a way that the currents J η
LY and J η

RY (for

η = ±, Y = s, f) are equal at the boundary when acting on the groundstate |0〉η5 ,

where a5 = η5. However, here they act on the subspace aαi|0〉η5 , on which a5

has eigenvalue −η5 [see discussion after eq. (E.19)]. Hence there is an extra −

sign between J ±
Y L and J ±

Y R in eq. (F.16) when acting on this subspace [and hence

too for J 1,2
Y , but not for J 3] which is the reason for the factor ηã in eq. (F.25).

4The result (F.25) can also be checked directly by calculating these OPEs using eqs. (F.16)
and (E.13). For example, consider J−

s = J 1
s − iJ 2

s , for which ηã = −1: writing eqs. (F.16) and
(F.23) in the notation of eqs. (E.12) to (E.14), and setting a5 = −η5, we have:

J−
Rs(z

∗
1)S11†

R (z∗2) = −a11a21V
(s)
−1

(
V

(x)
−1 − a5V

(x)
+1

)

R

(z∗1) (−ia11)
(
V

(c)
1
2

V
(s)
1
2

V
(f)
1
2

V
(x)

− 1
2

)

R

(z∗2)

= −i a21η5
1

[(z∗1−z∗2)
1
2 ]2

(
V

(c)
1
2

V
(s)

− 1
2

V
(f)
1
2

V
(x)
1
2

)

R

(z∗2) + . . . =
−S21†

R (z∗2)

(z∗1−z∗2)
+ . . . ,

which agrees with eq. (F.25), as do all other such calculations.
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For the second equality in eq. (F.25), we used the standard OPE of J ã
Y with ψ†,

namely eq. (E.22), and again S†
R = ψ†

L for the third.

The extra factor of ηã in eq. (F.25) implies that S† does not quite transform

in a “standard” way, but it is easy to construct an object that does: Using the

Pauli-matrix identities

ηaε̃ᾱα(σ
a∗)αβ ε̃

ββ̄ = −(σa) β̄ᾱ where ε̃ᾱα =
(

0
1

1
0

)

ᾱα
, (F.26)

and a similar one for (σa∗)ij, we conclude from eq. (F.25) that the object ε̃ᾱαε̃īiS
αi†

does transform in a standard way:

J a
sR(z

∗
1)
[
ε̃ᾱαε̃īiS

αi†
R (z∗2)

]
= − 1

z∗1−z∗2
(T a) β̄ᾱ

[
ε̃β̄αε̃īiS

αi†
R (z∗2)

]
,

J a
fR(z

∗
1)
[
ε̃ᾱαε̃īiS

αi†
R (z∗2)

]
= − 1

z∗1−z∗2
(T a) j̄ī

[
ε̃ᾱαε̃j̄iS

αi†
R (z∗2)

]
.

(F.27)

Finally, this result allows us to establish how Sαi† can be represented in terms

of the charge, spin and flavor fields eiφc/2, g and h introduced in appendix D,

where, according to eq. (D.5), ψαi† = eiφc/2gα†hi†. We merely have to form a

combination of these fields that has the same U(1)c × SU(2)s × SU(2)f trans-

formation properties as Sαi†. Now, since eiφc/2gᾱhī in fact transforms precisely

according to eq. (F.27), we conclude that Sαi† can be represented as

Sαi† = −i ε̃αβ ε̃ij eiφc/2gβhj . (F.28)

These expressions again illustrate the non-free-fermion nature of Sαi† rather

dramatically. Since g and h are annihilation operators, S↑1† can evidently be

represented as a combination of a “channel-particle” excitation eiφc/2, a “spin

↓-hole” excitation ε̃αᾱgᾱ (which gives it spin ↑) and a “flavor-2 hole” excitation

ε̃īigī (which gives it flavor 1). Such “particle-hole-hole” fields cannot exist in a

theory of free fermions.
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Correlation Functions: Since S† is known explicitly in terms of free bosons, all

correlation functions in which it appears can be calculated. However, a number

of such functions can directly be obtained from the one already calculated in

appendix D, namely

G(4)(z1, z2, z
∗
3 , z

∗
4) ≡ 〈ψLαi(z1)ψ

β̄j̄†
L (z2)ψRβj(z

∗
3)ψ

ᾱī†
R (z∗4)〉 , (F.29)

which, by eq. (F.24), can also be written as

G(4)(z1, z2, z
∗
3 , z

∗
4) = 〈ψLαi(z1)ψ

β̄j̄†
L (z2)SLβj(z

∗
3)S

ᾱī†
L (z∗4)〉 . (F.30)

For example, consider the following function:

G̃(4)(z1, z2, z
∗
3 , z

∗
4) ≡ 〈ψLαi(z1)S

ᾱī†
L (z2)S

β̄j̄†
R (z∗3)ψRβj(z

∗
4)〉 (F.31)

= −〈ψLαi(z1)S
ᾱī†
L (z2)ψ

β̄j̄†
L (z∗3)SLβj(z

∗
4)〉 (F.32)

= −G(4)(z1, z
∗
3 , z

∗
4 , z2) , (F.33)

Here eq. (F.24) was used to obtain the second line, and comparison with eq. (F.30)

yields the third. Thus G̃(4) is completely determined by G(4). In particular, the

bulk limit z1 → z2 for G̃(4)(z1, z2, z
∗
3 , z

∗
4) yields the bulk OPE of ψL(z1) and S†

L(z
∗
2).

This corresponds to the boundary limit z1 → z∗4 for G(4)(z1, z2, z
∗
3 , z

∗
4), which

does not contain the identity operator (see eq. (D.36) and table D.1). Hence,

ψL and S†
L are “orthogonal” in the bulk limit. On the other hand, the boundary

limit z1 → z∗3 for G̃(4)(z1, z2, z
∗
3 , z

∗
4) corresponds to the bulk limit z1 → z2 for

G̃(4)(z1, z2, z
∗
3 , z

∗
4). Since in the latter the OPE of ψL(z1) and ψ†

L(z2) does contain

unity, so does the BOPE of ψL(z1) and S†
R(z

∗
3); this, of course, simply reflects the

requirement (F.3) according to which S†
R was constructed.
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F.6 The Boundary Operators Φa
s and ΦA

f

Having found explicit expressions for ψ†
L and ψ†

R in terms of the φY bosons, it

is straightforward to also express the boundary operators φas(τ) and φAf (τ), in-

troduced in appendix D, in terms of the φY . To avoid confusion with the boson

fields, we denote them here by Φa
s and ΦA

f .

The strategy is simple: by contracting the BOPE (D.36) with (T a)β
β̄
δ jj̄ or

δ β
β̄

(T̃A) jj̄ [or according to footnote 15 on page 387] it follows that the boundary

operators Φa
s and ΦA

f must be given by the leading non-zero terms in the boundary

limit z1 → z∗2 of the following two expressions:

ψβ̄j†L (z1) (T a) β
β̄
ψRβj(z

∗
2) =

−(CK
ψs)

∗

(iz ∗
12)

(1−∆s)
Φa
s(τ1) + . . . , (F.34)

ψβj̄†L (z1)
(
T̃A
) j
j̄
ψRβj(z

∗
2) =

−(CK
ψf )

∗

(iz ∗
12)

(1−∆f )
Φa
f (τ1) + . . . , (F.35)

where the constants CK
ψs and CK

ψf are to be chosen such that Φa
s and ΦA

f are

hermitian and normalized to unity, and ∆s/f are their scaling dimensions.

These expressions can be evaluated by simply inserting into them the explicit

expressions (F.14) for ψ†
L and ψR in terms of the φY L and φY R bosons and using

boundary condition (F.17) to express the φY R’s in terms of the φY L’s. The limit

z1 → z∗2 can then be evaluated with the aid of the vertex operator OPE (E.13).

As shown in eq. (F.21), this always produces a factor (z ∗
12)

− 1
4
(1+1+1−1) = (z ∗

12)
− 1

2

[the all-important change in sign for the fourth exponent from −1
2

to 1
2

is a

consequence of φxR = −φL + cxπ], and implies that ∆s = ∆f = 1
2
, in agreement

with the results of appendix D (see table D.1). One readily finds the following

explicit expressions, where Φ±
Y ≡ Φ1

Y ± iΦ2:
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Φ3
s = p 1√

2

(
eiφxL + η5 e

−iφxL
)
,

Φ+
s = −p η5a11a21

1√
2
(1 − a5η5)e

iφsL ,

Φ−
s = −p a11a21

1√
2
(1 − a5η5)e

−iφsL ,

Φ3
f = ip 1√

2

(
eiφxL − η5 e

−iφxL
)
,

Φ+
f = ip η5a11a12

1√
2
(1 − a5η5)e

iφfL ,

Φ−
f = −ip a11a12

1√
2
(1 − a5η5)e

−iφfL .

(F.36)

The normalization factor 1√
2

that has been inserted implies |CB
ψk|2 = |CB

ψk|2 = 2,

in agreement with table D.1. The phases p and ip have to ensure that Φa
s and

ΦA
f are hermitian,5 and can be chosen, for example, to be p = 1 or i for η5 = 1

or −1.

Note the peculiar fact that Φ±
Y 6= 0 only when acting on a subspace for

which a5 = −η5. This turns out to be an inevitable consequence of the relations

(F.18) [i.e. independent of specific choice (F.19)], which in turn are an inevitable

consequence of the L-R 2-point functions eq. (F.5), as argued after eq. (F.17).

However, for the correlation functions of interest to us, namely 〈ψLψ†
LψRψ

†
R〉 in

appendix D and 〈ψR ~Js · ~Φsψ
†
L〉 in chapter 8, Φã

Y indeed does act on the subspace

aαi|0〉η5 where a5 = −η5, so that this peculiarity is not something to be concerned

about.

The boundary fields Φa
s and ΦA

f should transform as spin-1, flavor-singlet and

spin-singlet, flavor-1 fields, respectively, under SU(2)s×SU(2)f transformations.

This means that they should have the following OPEs with the currents J a
sL and

5Note that the extra factor of i in p vs. ip for Φas and ΦAf implies that CB
ψs and CB

ψf differ

by a factor i, in agreement with footnote 20 on page 391.
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J A
fL:

6

J 3
Y L(z)Φ

±
Y (τ ′) = ±1

z−τ ′Φ
±
Y (τ ′) , J 3

Y L(z)Φ
3
Y (τ ′) = J ±

Y L(z)Φ
±
Y (τ ′) = 0 ,

J ±
Y L(z)Φ

3
Y (τ ′) = ∓1

z−τ ′Φ
±
Y (τ ′) , J ±

Y L(z)Φ
∓
Y (τ ′) = ±2

z−τ ′Φ
3
Y (τ ′) . (F.37)

It can readily be verified (using the method of footnote 4) that for a5 = −η5, the

expressions (F.36) for Φa
Y and (F.16) for J a

Y (using the φY L bosons in the latter)

do indeed give precisely these OPEs, which is a satisfying consistency check.

Finally, note that the descendents
(
J ã

−nYΦã′
Y

)
of the boundary operators can

be obtained just as easily. According to eq. (B.33) (and Cauchy’s theorem), the n-

th descendent is simply the term proportional to (z−τ ′)−(n+1) in the OPE of J ã
Y (z)

with Φã′
Y (τ ′). The most important descendents for the Kondo problem are the

leading irrelevant operators J a
−1sΦ

a
s and J a

−1fΦ
a
f of dimension 3

2
(see section D.5).

From eqs. (F.16), (F.36) and the subleading term in the general vertex operator

OPE (E.13), one readily finds7

(
J a

−1sΦ
a
s

)
(τ) = 3 i∂zφsL Φa

s(τ) = 3 i∂zφsL p
1
2

(
eiφxL + η5 e

−iφxL
)

(τ) ,
(
J A

−1fΦ
A
f

)
(τ) = 3 i∂zφfL Φa

f (τ) = 3 i∂zφfL ip
1
2

(
eiφxL − η5 e

−iφxL
)

(τ) .

(F.38)

Thus, these important operators, too, have simple representations in terms of the

φY boson fields.

In conclusion, it is worth emphasizing that the approach described above

is essentially a reduction of the Kondo problem to a problem of free bosons

6The relations eq. (F.37) follow from eq. (B.26) and the standard relations for the spin-
1 representation of SU(2); alternatively, they can be obtained directly from the general OPE
eq. (A.47) for two bilinear fermionic currents, using the definitions (F.4) for the currents, (F.34)
and (F.35) for Φas and ΦAf , and the property [T a, T b] = iεabcT c.

7Alternatively, one can check that the sum
(
J a
−1sΦ

a
s

)
+
(
J A
−1fΦ

A
f

)
is the leading term in

ψβj†L (z1)ψRβj(z
∗
2) in the limit z1 → z2, in agreement with table D.1, according to which these

are the first operators in the BOPE of ψβ̄j̄†L (z1)ψRβj(z
∗
2) with tensor structure δβ̄βδ

j̄
j .
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with known boundary conditions. This is a very remarkable simplification. All

operators of interest have simple representations in terms of the free bosons, and

hence the problem of calculating correlation functions is reduced to an exercise in

free-boson theory. (In practice, though, such exercises are often most conveniently

dealt with by using conformal methods nevertheless, for example by exploiting

conformal invariance when calculating a 3-point function such as 〈ψR ~Js · ~Φsψ
†
L〉.)
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