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The anomalous thermodynamic properties of the paradigmatic frustrated spin-1/2 triangular-lattice Heisen-
berg antiferromagnet (TLH) has remained an open topic of research over decades, both experimentally
and theoretically. Here, we further the theoretical understanding based on the recently developed, powerful
exponential tensor renormalization group method on cylinders and stripes in a quasi-one-dimensional (1D)
setup, as well as a tensor product operator approach directly in 2D. The observed thermal properties of the
TLH are in excellent agreement with two recent experimental measurements on the virtually ideal TLH material
Ba8CoNb6O24. Remarkably, our numerical simulations reveal two crossover temperature scales, at Tl/J ∼ 0.20
and Th/J ∼ 0.55, with J the Heisenberg exchange coupling, which are also confirmed by a more careful
inspection of the experimental data. We propose that in the intermediate regime between the low-temperature
scale Tl and the higher one Th, the “rotonlike” excitations are activated with a strong chiral component and a
large contribution to thermal entropies. Bearing remarkable resemblance to the renowned roton thermodynamics
in liquid helium, these gapped excitations suppress the incipient 120◦ order that emerges for temperatures
below Tl .
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Introduction. The triangular-lattice Heisenberg (TLH)
model is arguably the most simple prototype of a frustrated
quantum spin system. It has attracted wide attention since An-
derson’s famous proposal of a resonating valence bond (RVB)
spin liquid state [1]. The competition between RVB liquid ver-
sus semiclassical Néel solid states raised great interest. After
decades of research, it is now widely accepted that the TLH
has noncollinear 120◦ order at T = 0, with a spontaneous
magnetization [2], m � 0.205 [3,4]. Nevertheless, the TLH
has long been noticed to possess anomalous thermodynamic
properties [5], in the sense that thermal states down to rather
low-temperature regimes behave more as a system with no
indication of an ordered ground state [6,7].

Bipartite-lattice Heisenberg antiferromagnets (AFs) such
as the square-lattice Heisenberg (SLH) model, develop a
semiclassical magnetic order at T = 0 which is “melted” at
any finite temperature according to the Mermin-Wagner the-
orem [8]. Nevertheless, the ground-state Néel order strongly
influences low-temperature thermodynamics in the so-called
renormalized classical (RC) regime [9,10], where the spin-
spin correlation length ξ increases exponentially as T de-
creases [11–14].

In contrast, the thermodynamics of the TLH strikingly
differs in many respects from that of SLH. Based on
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high-temperature series expansion (HTSE) results, both mod-
els show cV peaks at similar temperatures, Th � 0.55 (TLH)
and Ts � 0.6 (SLH). The SLH enters the RC regime for
T � Ts [11,12], whereas the TLH shows no signature for
incipient order and possesses anomalously large entropies at
temperatures below Th [6].

The classical SLH and TLH models have a similar spin
stiffness ρs, and thus a similar constant, Cξ ∼ ρs, in the
correlation length, ξ ∼ exp (Cξ

T ), as well as in the static struc-

ture factor at the ordering wave vector, S(K ) ∼ exp ( 2Cξ

T ),
with Cξ = 2πρs = 1.571 (SLH) [15] and Cξ = 4πρs = 1.748
(TLH) [5,16,17] in units of spin coupling J . However, the
constant Cξ is significantly renormalized by quantum fluc-
tuations. For the SLH, the constant is reduced by about
30% to Cξ ∼ 1.13, while in the TLH it is reduced by an
order of magnitude down to Cξ ∼ 0.1 [5,6]. The energy scale
ERC ≡ 2Cξ naturally represents the onset of RC behavior and
thus incipient order. Recent sign-blessing bold diagrammatic
Monte Carlo (BDMC) simulations still show that the thermal
states down to the lowest accessible temperatures T = 0.375
“extrapolate” to a disordered ground state via a quantum-to-
classical correspondence [7].

Here, we exploit two renormalization group (RG) tech-
niques based on thermal tensor network states (TNSs)
[18–20]: the exponential tensor RG (XTRG) which we re-
cently introduced based on one-dimensional (1D) matrix
product operators (MPOs) [20], and a tensor product operator
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FIG. 1. Uniform TLH with nearest-neighbor (NN) coupling J =
1 (which thus sets the unit of energy) and lattice spacing a = 1,
with three schematically depicted distinct regimes, separated by two
crossover temperature scales, Tl and Th: an incipient 120◦ ordered
regime for T < Tl (left), a paramagnetic regime for T > Th (right), an
intermediate regime (center), which is explored in detail in this Rapid
Communication. The thick black line indicates the 1D snake order
adopted in the MPO-based XTRG. When the system is wrapped
into a cylinder along the tilted left arrow, this is referred to as
YC geometry. The clockwise oriented circles in the center of the
system indicate chiral operators, χ ≡ 23 · Sa · (Sb × Sc ), acting on
the enclosing triangle of sites (a, b, c) in the order of the arrows,
as used for the calculation of chiral correlations between the triangle
pair A-B.

(TPO) approach [18]. XTRG is employed to simulate the TLH
down to temperatures T < 0.1 on YC W (×L) geometries
(see Fig. 1) up to width W = 6 with default L = 2W , and
open strips [OSW (×L)] with fully open boundary conditions
(OBCs) and default L = W [21].

TLH thermodynamics. In Fig. 2 we present our thermo-
dynamical results from XTRG on cylinder (YC) and open
geometries (OS), as defined earlier. In Fig. 2(a), we ob-
serve from YC5, OS6, and YC6 data that, besides a high-
temperature round peak at Th ∼ 0.55, our YC data exhibit
another peak (shoulder for OS6) at Tl ∼ 0.2. On YCs, the
peak position Tl stays nearly the same when increasing W
from 5 to 6, also consistent with the shoulder in OS6 as
well as in the experimental data. At the same time, the low-
temperature peak becomes slightly weakened, yet towards
the experimental data. When compared to the two virtually
coinciding experimental data sets, YC6, TPO, earlier HTSE
[5], and latest Padé [6,6] data [36] all agree well for T � Th

and reproduce the round peak of cV at Th.
The remarkable agreement of finite-size XTRG with exper-

imental measurements can be ascribed to a short correlation
length ξ � 1 lattice spacing for T � 0.4 [21]. Deviations from
experiments only take place below Tl , suggesting significant
finite-size effects due to larger ξ in that regime. Moreover, we
have checked the dependence of Tl on the cylinder length L
for YC6, and find that the lower peak even gets slightly en-
hanced as L increases. In addition to YC and OS geometries,
simulations on X cylinders also lead to the same scenario [21].

In Fig. 2(b), we present our data on thermal entropy, again
directly juxtaposed with experimental as well as previous
theoretical results. Whereas the YC5 data deviate at T � 0.3
due to finite-size effects, we observe good agreement between
the two experimental data sets with our TPO results down to
Tl , and with W = 6 data (OS6 and YC6) down to the lowest
temperatures in the measurements. Notably, the thermal en-
tropy per site S is about 1/3 of the high-T limit, S∞ = ln 2,

FIG. 2. Simulated thermodynamics in comparison to experimen-
tal measurements, Cui et al. (2018) [37] and Rawl et al. (2017) [36],
as well as earlier numerical results. The YC and OS data are obtained
via XTRG by retaining up to D∗ = 1000 multiplets [D ∼ 4000 U(1)
states], and by a TPO method [21] on infinite lattices, keeping up
to 40 bond states. (a) Specific heat, cV , results benchmarked against
HTSE [5,36] and experimental curves. (b) The thermal entropy S
vs T , together with the reconstructed Schwinger boson mean field
(RSBMF) [38], and “roton” contributions [16]. (c) Uniform magnetic
susceptibility Tχ0 vs T , shown with BDMC data [7]. The left
top inset compares χ0 to Curie-Weiss (CW) χ0 = C/(T + θ ) in a
wide temperature range, where C = 1/4 and θ = 2.06. In the right
bottom inset we further compare various Tχ0 values at T = 0.5.
The magnetic moment per Co is assumed �2μB, with Landé factor
g � 4.13 [37].

at temperatures as low as T � 0.2 where, for comparison,
for SLH S is almost zero at the same temperature [6]. We
emphasize that Fig. 2(b) is a direct comparison without any fit-
ting, since the only parameter J has also been determined and
thus fixed as 1.66 K in the experiments [36,37]. Nevertheless,
since the experimental data of S are determined by integrating
cV /T , starting from the lowest accessible temperature Tx,
systematic vertical shifts for the curves from Refs. [36,37] are
necessary to reach the known large-T limits. This results in the
residual entropies of S(Tx ) = 0.045 and 0.06 at temperatures
Tx = 0.06 and 0.08 K, for Refs. [36,37], respectively. Note
that the large entropy due to quantum frustration at low T
is not properly described in previous theories, e.g., RSBMF
[38,39] as shown in Fig. 2(b).

Figure 2(c) presents our results for the average mag-
netic susceptibility. Both data sets, YC5 and YC6, agree
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quantitatively with the experimental results, as well as HTSE
data [5], from high temperatures down to T � 0.1, well
beyond state-of-the-art BDMC results that reach down to T =
0.375 [7]. In the left top inset of Fig. 2(c), we also include
a Curie-Weiss (CW) fit for T � 1, resulting in the positive
Weiss constant θ ≈ 2J . In the right bottom inset, we compare
the Tχ0 value at T = 0.5, and find the various numerical and
experimental results all agree, up to three significant digits.

Two-temperature scales. As schematically depicted in
Fig. 1, we uncover a two-temperature-scale scenario in the
TLH. This confirms that the 120◦ order plus magnon ex-
citations is not sufficient to describe TLH thermodynamics.
References [40,41] argued that the TLH also has an additional
type of excitations which are gapped, with the minimum of
their quadratic dispersion at finite momentum, and referred
to these as “rotonlike excitations” (RLEs), since their disper-
sions are reminiscent of that known for vortexlike excitations
in He4 [42]. Excitations with this type of dispersion have
recently also been observed in neutron scattering experiments
of TLH materials [43,44]. RLEs evidently play an important
role in the intermediate-temperature regime in Fig. 1, but their
precise nature has not yet been fully elucidated.

RLEs, although missed in the linear spin-wave theory, can
be well captured by including 1/S corrections in calculating
the magnon dispersions [41,45,46] and dynamical correlations
[47,48]. Other proposals have also been put forward to under-
stand RLEs, including the vortex-antivortex excitation [49]
with signatures already in the classical TLH phase diagram
versus finite temperature [50–53], (nearly deconfined) spinon-
antispinon pair [16,40,54], and magnon-interaction-stabilized
excitations [47,55,56].

First, the RLE quadratic band with a finite gap � ∼ 0.55 J
contributes to a very prominent peak in the density of states
around � [16]. This coincides with the high-temperature
scale Th ∼ � here. Therefore a possible connection of RLEs
to the thermodynamic anomaly in TLH has been suggested
earlier [16,46]. Second, the RLEs themselves only start to
significantly contribute to the entropy above Tl [“Roton” entry
in Fig. 2(b), with data taken from Ref. [16]]. This suggests
that the RLEs are activated in the intermediate temperature
regime, i.e., Tl � T � Th. Consequently, the onset of incipient
magnetic order is postponed to a clearly lower tempera-
ture Tl ∼ 0.2, which is remarkably close to previous HTSE
studies, where ERC ∼ 0.2J sets the energy scale of classical
correlation [5] as discussed earlier.

Spin structure factors. In order to shed light into the
spin configurations across the intermediate regime, we turn
to the temperature-dependent static structure factor, S(q) ≡∑

j e−iq·r0 j 〈S0 · S j〉T , where r0 j ≡ r j − r0 with r j the lattice
location of site j, and S(q) ∈ R due to lattice inversion sym-
metry. There are two further high-symmetry points of interest,
q = K and M, as marked in Fig. 3(a). Up to symmetric
reflections, K ≡ ( 2π

3 , 2π√
3

) relates to 120◦ noncollinear order,

whereas M ≡ (0, 2π√
3

) relates to nearest-neighbor (stripe) AF
correlations. The latter have also been related to RLEs which
feature band minima at the M points [40,41,57].

In Figs. 3(a)–3(d) we show the overall landscape of S(q).
With decreasing temperature, S(q) changes from rather fea-
tureless in Fig. 3(a), to showing bright regions in the vicinity

FIG. 3. (a)–(d) Structure factor on YC6 × 12 lattice, i.e., with qy

pointing along the direction of the cylinder, at temperatures T = 5,
0.54, 0.2, and 0.1, respectively, [vertical gray lines in (e)]. (e) S(q)
vs T at momenta q = K and M where the legend holds for both data
sets. (f) SE vs T , where the tilted dashed lines indicate the logarithmic
scaling SE = a ln(β ) + b, where the slopes a seen for the TLH are
similar to that for the SLH (SC6 data). The vertical dashed line labels
the low-temperature scale Tl ∼ 0.2 for TLH and the only temperature
scale Ts ∼ 0.6 for SLH. SC6 × 12 stands for a W = 6, L = 12 square
cylinder, and SE scaling in the Heisenberg chain (length L = 200) is
also plotted as a comparison.

of the six equivalent K points as well as enhanced intensity
at the M points at T ∼ Th in Fig. 3(b). Even at T ∼ Tl in
Fig. 3(c), one can still recognize an enhanced intensity S(M ),
which fades out eventually when T is decreased below Tl in
Fig. 3(d). A quantitative comparison is given in Fig. 3(e).

From Fig. 3(e), we observe that S(K ) increases
monotonously as T decreases. It is featureless around Th,
and eventually saturates at the lowest T due to finite system
size. For T > Tl , S(K ) increases only slowly with decreasing
temperature, and is independent of length L. It therefore
shows no signature of incipient order there. For T < Tl , S(K )
rapidly increases, which eventually saturates with decreasing
T in an L-dependent manner, due to finite-size effects.

Furthermore, we observe from Fig. 3(e) that S(M ) develops
a well-pronounced maximum around Th. The maximum is
already stable with system size, hence can be considered a
feature in the thermodynamic limit. This is consistent with a
picture that RLEs are activated near the M points.

MPO entanglement. The two-energy-scale scenario also
leaves a characteristic trace in the entanglement entropy SE ,
computed at a bond (near the center) of the MPO [20,58,59].
Gapless low-energy excitations in 1+1D conformal field
theory (CFT) can give rise to a logarithmic increase of the
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FIG. 4. Chiral correlations on cylinders, YC5 and YC6 (for YC4,
see Ref. [21]). The inset represents the eigenstates 	 (and 	∗)
of the chiral operator χ (Fig. 1) with nonzero eigenvalues ±√

12.
They have total spin S = 1/2, and hence are superpositions of
configurations with two-site singlet dimers (thick lines) whose signs
are fixed in clockwise order (arrow). Having α = exp(2π i/3), this
demonstrates the chiral nature.

entanglement, SE ∝ − c
3 ln T with c the conformal central

charge [20,60,61]. One can also observe logarithmic SE be-
havior in the 2D SLH model, related to the spontaneous
SU(2) symmetry breaking (at T = 0) [20], as also added for
reference (“SC6” data) in Fig. 3(f).

We find similar behavior of the SE profiles of the TLH
on YC5 and YC6 geometries in Fig. 3(f) down to T =
0.04, with bond dimension D∗ � 1000 multiplets (D ∼ 4D∗
states). Interestingly, the lower-energy scale Tl ∼ 0.2 (vertical
dashed line) signals the onset of logarithmic entanglement
scaling versus T , which, in agreement with Fig. 2(a), already
coincides for W = 5 and 6. For YC5, the window with
logarithmic entanglement is rather narrow, below of which
SE saturates as we already approach the ground state. For
YC6, the entanglement continues to increase down to our
lowest temperature T = 0.03. We associate the logarithmic
SE behavior with the onset of incipient order, which is closely
related to SU(2) symmetry breaking at T = 0 that gives rise,
e.g., to a 1/(N = LW ) level spacing in the low-energy tower
of states [2]. Concomitantly, we also observe a qualitative
change of behaviors in the entanglement spectra at Tl [21].

Scalar chiral correlations. Chiral correlations in the TLH
have raised great interest since the proposal of a Kalmeyer-
Laughlin chiral spin liquid [62]. Intriguingly, recent T = 0
studies on the fermionic triangular-lattice Hubbard model
proposed a chiral intermediate phase versus Coulomb repul-
sion which thus breaks time reversal symmetry [63]. While
debated [64], we take this as a strong motivation to also study
traces of chiral correlations in the TLH at finite T .

In Fig. 4, we present the chiral correlation 〈χiχ j〉 between
two nearest-triangles i, j in the system center, as defined
with Fig. 1. This shows that chiral correlations are weak
in both high- and low-temperature limit, while they become
strong [63] in the intermediate-temperature regime, with a
peak around Tl . Below Tl , the chiral correlations drop strongly,
giving way to the buildup of coplanar incipient order.

Discussion. Our study suggests a tight connection between
RLEs and chiral correlations in the intermediate regime Tl �
T � Th (cf. Fig. 4). In this sense, we speculate that RLEs acti-
vated in the intermediate-temperature regime indicate phase-
coherent rotating dimers, as schematically sketched with
Fig. 4. Given that the complex phase of the dimers “rotates”
by 2π , this suggests a possible link to a topological, vortexlike
nature of the RLEs. Moreover, it resembles Feynman’s notion
of rotons in terms of quantized vortices in He4 [42] via
an exact mapping of TLH to a system of hardcore bosons.
The latter further underlines the striking analogy between the
anomalous thermodynamics of the TLH and the renowned
roton thermodynamics in He4 [65,66].

The low-energy scale Tl can be tuned by deforming the
Hamiltonian, e.g., by altering the level of frustration by adding
a next-nearest J2 coupling to the TLH. We see that increasing
J2 reduces Tl , as well as the height of the corresponding
peak in the specific heat, suggesting that the RLE gap is
decreasing and the influence can thus spread down to even
lower-temperature/energy scales, in consistency with dynam-
ical studies of the J1-J2 TLH [67,68]. In addition, TLH can be
continuously deformed into the SLH, where Tl increases and
eventually merges with Th once sufficiently close to the SLH.
We refer more details to the Supplemental Material [21].

Outlook. A detailed study of the microscopic nature of
RLEs, e.g., via dynamical correlations at finite temperature, is
beyond the scope of the present Rapid Communication, and
is thus left for future research. Further stimulating insights
and possible superfluid analogies are also expected from
an analysis of the interplay of external magnetic fields and
thermal fluctuations in TLH [69,70] with clear experimental
relevance [37].
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