
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

FACULTY OF PHYSICS

New approaches to Numerical Integration in Quantum

Chemistry using Quantics Tensor Cross Interpolation

Neue numerische Integrationsansätze in der

Quantenchemie unter Verwendung von Quantics Tensor

Cross Interpolation

Bachelor’s Thesis

Chair of theoretical solid state physics

Author: Pirmin Finkel

Supervisors:
Prof. Dr. Jan von Delft
Markus Frankenbach

Submission Date: September 13, 2024

Acknowledgments

I would like to express my deepest gratitude to Professor Jan von Delft, whose support
allowed me to undertake and complete this bachelor’s thesis. His guidance and encouragement
throughout the process were invaluable.

My sincere thanks also go to my supervisor, Markus Frankenbach, whose insightful comments
and feedback consistently steered me in the right direction. His dedication and expertise
significantly contributed to the quality of my work. I learned a lot from Markus not only
about physics, but also on the practical aspects of scientific work. He explained me the
structure of density field theory calculations and encouraged me to learn useful text editors
as vim. Further he helped me with technical issues as fixing program bugs, compile packages
or run code on the cluster. This project would not have been possible without him.

Further I would like to thank Philip Haupt and Andreea Filip, who helped me to fix issues
with the pyTCHint code and compile the library properly. Whenever I had questions about
the calculations, they responded quickly and reliable and helped me to understand the
algorithm in all its details.

Also I would like to acknowledge helpful discussions with Marc Ritter, Anxiang Ge, Nepumuk
Ritz, Benedikt Schneider, Marcel Gievers and Mathias Pelz. They constantly gave me
feedback after the micro-updates and suggested solutions to technical problems of any kind.

My thanks also go to Hiroshi Shinaoka, who gave me his insights on the problem at the
tensor4all conference in Vienna. He encouraged me to investigate small details further and
shared his expertise about tensor algorithms.

I am profoundly grateful to my parents for their support and for providing me with the
opportunity to pursue my studies in Physics. Their belief in my abilities and their constant
encouragement have been my greatest motivation.

Lastly, I would like to thank all those who took the time to review my thesis and offer
constructive feedback. Their contributions were essential in refining this work. I want to
especially thank Naomi Brandl and Miriam Keim, who took their time to really dive into the
theory of tensor networks and helped me find a pedagogical way to present the theory. Also
I would like to thank Annika Bewersdorf, who constantly helped me reformulating the thesis
and correcting grammar mistakes.

Thank you all for your support and assistance.

Contents

1 Introduction 1

2 The QTCI algorithm 3

2.1 Input and output of the algorithm . 3

2.1.1 Tensors . 3

2.1.2 Tensor Trains . 4

2.2 Tensor Cross Interpolation . 6

2.2.1 Matrix cross interpolation . 7

2.2.2 Worstcase scaling of TT rank . 8

2.3 Quantics representation . 9

2.4 Integration in TT representation . 11

3 Application of TCI in DFT 15

3.1 Density Functional Theory . 15

3.2 The Gaussian basis . 16

3.3 Approaches to the bottleneck . 22

3.4 Approach 1: compression of orbital indices 22

3.4.1 Compression of full V -tensor . 23

3.4.2 Concept of compression by parts . 24

3.4.3 Visualisation of A and B tensor . 26

3.4.4 Implementation and grid . 28

3.4.5 Results for A . 28

3.4.6 Results for B . 31

3.5 Approach 2: Contraction with electron density 32

3.5.1 Compression of A with fixed indices 33

3.6 Approach 3: Using a non gaussian basis . 34

3.6.1 Grid . 35

3.6.2 Compression results of B with fixed indices 36

3.7 Error Analysis . 37

3.7.1 Error types and dependence in Ngrid 37

3.7.2 Error discussion of V tensor . 40

3.7.3 Statistical error . 41

5

4 Transcorelated methods with TCI 45
4.1 Problem formulation . 45

4.1.1 Theory . 45
4.1.2 Approaches to the bottleneck . 46

4.2 Implementation . 47
4.2.1 Visualisation of integrand . 48

4.3 Error Analysis . 53
4.3.1 Required accuracy . 53
4.3.2 TCI error . 55

4.4 Fixed Compression . 56
4.5 Compression in both variables . 58

5 Conclusion 61

A Zero plateau at r1 = r2 63

Chapter 1

Introduction

Numerical integration of multivariate functions is a computationally very costly operation
and therefore, the bottleneck in calculations in numerous fields of science. Solving Feynman
diagrams for electron phonon models [9] in many body field theory or computing the coulomb
matrix in quantum chemistry [10] are just two examples among many. Alternative approaches
to evaluate integrals numerically thus have many possible applications and allow algorithms,
through a speedup in runtime, to investigate parameter spaces that were previously inaccessi-
ble.

By constructing a tensor from the integrated function with the quantics representation, one
gains access to a class of powerful compression algorithms, which are collectively called ’tensor
cross interpolation’ (TCI). These algorithms decompose the input tensor into a tensor train
(TT). If this tensor train has a low rank structure, further manipulations such as integration
or Fourier transformation can easily be performed and TCI delivers an exponential speedup of
these operations. The construction is rank revealing, terminating at the latest when the rank
of the tensor train reaches the tensor rank. For low rank tensors, an accurate decomposition
can thus be found by evaluating only a small number of grid points. For high rank tensors,
the algorithm converges slowly against a high rank decomposition instead of returning a bad
approximation. Alternatively the maximal bond can be limited, guaranteeing fast results.

The combination of quantics representation and TCI (shortly called QTCI) [6] allows the in-
tegration of multivariate functions with tensor tools. Applications are conceivable everywhere
where heavy numeric computation is required. The field of possible applications contains
physics related topics as denoising in quantum simulations [15] or computational plasma
physics [22], but also includes topics of other sciences, such as financial mathematics [16].
This bachelor thesis aims to explore a small part of this huge space of possible applications.
We choose two integrals that currently represent bottlenecks in quantum chemistry and
investigate whether QTCI could speed up the existing code. This thesis consists of three
main chapters:

• First, we want to introduce the quantics representation and the TCI algorithms. Readers
already familiar with QTCI may skip this part and directly proceed with chapters 3
and 4. In this introductory chapter, we explain the core concepts of the method and
focus on an understanding the algorithm’s input and output.

1

2

• We investigate the applicability of the QTCI algorithm to density functional theory
(DFT) and discuss different approaches to accelerate bottlenecks in the calculation.
Further, we will perform a detailed analysis of the integration error made by QTCI and
present a method to determine suitable input parameters.

• Last but not least, we transfer the achieved insights to a similar problem: the evaluation
of the xcoulomb matrix in transcorrelated methods. We perform the computation with
our QTCI approach and investigate if it is possible to save function evaluations.

Chapter 2

The QTCI algorithm

The QTCI algorithm [6] combines the tensor representation of functions through the quantics
method with the usage of tensor compression algorithms as TCI. Tensor train algorithms and
tools were originally developed in the context of quantum many-body theory. The transfer of
these methods to functions, which can be regarded as a data set corresponding to a specific
grid, opens the door to new compression techniques that can reduce memory requirements
and deliver a new approach to integration. This chapter is meant as an introductory text
to the basics of tensor networks for readers yet unfamiliar with this topic. Readers already
experienced with the concept of tensor trains and TCI may skip this chapter and go directly
to the applications in chapters 3 and 4.

2.1 Input and output of the algorithm

2.1.1 Tensors

TCI algorithms take a tensor as an input and return a tensor train (TT) as an output. A
tensor F is a mathematical object, that has L discrete indices σ1, σ2, . . . , σL. L is called the
degree of the tensor. Each index σℓ can take values from 1 ≤ σℓ ≤ dℓ. In general, dℓ can vary
for different indices, but for this work in most cases, all indices have the same value range,
i.e. d1 = · · · = dL = d. We use the more compact notation for the tensor by summarising all
indices into an indices vector σ = (σ1, . . . , σL). The tensor can now be written as:

Fσ1,...,σL = Fσ .

For each combination of index values, the Tensor returns a value in a given target space (in
our case R or C). A Tensor can therefore be understood as a function

F : D1 × · · · × DL → C
σ 7→ Fσ

where Dℓ = {1, . . . , dℓ} is the value space of the index σℓ with ℓ ∈ {1, . . . ,L}.
A well-known example of a tensor is the Levi-Civita symbol ϵσ1σ2...σn in n dimensions. It is a
tensor of degree L = n and each index can take values σℓ ∈ {1, . . . , n} (in this case we have

3

4

d1 = . . . = dL = n). The tensor elements are defined by:

ϵσ1... σn =


1 if (σ1, . . . , σn) is a even permutation of (1, 2, . . . , n)

−1 if (σ1, . . . , σn) is a uneven permutation of (1, 2, . . . , n)

0 if at least two indices are identical

.

Also one can keep in mind that an n × m matrix is a tensor with degree L = 2 and
d1 = n, d2 = m and vectors in an n-dimensional space are tensors of degree L = 1 and
d1 = n.

Furthermore, a tensor can be notated graphically. Figure 2.1 illustrates this concept. We
write the tensor as a circle (or rectangle) and add a leg for every index of the tensor. We can
also contract a tensor by summing over the same indices

Aσ2 =
∑
σ1

Bσ1σ2Cσ1

EC
= Bσ1σ2Cσ1 . (2.1)

We use the Einstein convention (EC) in the rest of this thesis to shorten the notation. Also,
it is worth noting that unlike in other fields of physics, covariant and contravariant notation
are equivalent and possess no further meaning. Graphically, one can notate the contraction
by connecting two legs representing the same index.

Figure 2.1: Graphical tensor notation. Graphic inspired by [6] figure 1.

2.1.2 Tensor Trains

This subsection is based on [6] pp. 12-13 and delivers a further more pedagogical approach,
by adding a concrete example. Any arbitrary tensor Fσ can be approximated by a tensor
train (TT). A TT is a decomposition of the original tensor that consists of L three-leg tensors
(i.e. tensors of degree three), which are connected by contraction of their link bonds. To
emphasize that a TT is only an approximation, we notate it with a tilde

Fσ ≈ F̃σ =
L∏

ℓ=1

[Mℓ]
σℓ

αℓ−1αℓ
= [M1]

σ1

1α1
[M2]

σ2

α1α2
. . . [ML]

σL
αL−11

. (2.2)

5

F̃σ =

.1σ 2σ
σ

�σ

1 11χ 2χ �χ

1a 2a �a
Lσ

0a La

1M 2M �M LM

Figure 2.2: Tensor train approximation of a general tensor (from [6] pp. 6).

A graphical notation can be seen in figure 2.2. Each three-leg tensor corresponds to one of
the original indices σℓ. This external bond keeps its corresponding dimension dℓ. The internal
bonds αℓ are used to connect the tensor train components and have dimension χℓ, which is
determined by the algorithm. Since the first and the last link bonds are not contracted, they
are just represented by a dummy index of length χ0 = χL = 1. We define the rank χ of a TT
by the largest bond dimension

χ = max
ℓ=1...L−1

χℓ . (2.3)

We obtain only until L − 1 bond indices, since they connect the L three leg tensors.

For any input indices vector σ = (σ1, . . . , σL), the tensor train can be understood as a chain
of matrices that are multiplied. For a fixed σℓ, the three-leg tensor becomes a two-leg tensor,
which is a matrix. We want to illustrate this concept with an example:

Let us regard the following tensor Fσ1σ2σ3 of degree three, where σ1, σ2 ∈ {1, . . . , 7} and
σ3 ∈ {1, 2}:

=

F [:, :, 1]

0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
1 1 1 1 1 1 1
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0



F [:, :, 2]

1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1


.

We used the notation (σℓ, dℓ) with the explicit numerical value for the dimension of this
example. Note that we have d1 = d2 ̸= d3. Further, the notation ’:’ means that all
rows/columns are shown in the graphic. We represent the tensor here by showing its slices.
The tensor has a simple structure, which can be exploited by TCI. The TCI algorithm
decomposes the tensor into a TT:

.

This tensor train would in conclusion, have a rank χ = 3. The three leg tensors are for this
example:

6

M1[1, :, :]

0 0 1
0 1 0
0 1 0
1 0 0
0 1 0
0 1 0
0 0 1



M2[:, :, 1]1 1 1 1 1 1 1
0 0 0 1 0 0 0
0 0 0 1 0 0 0


M2[:, :, 2]−1 −1 −1 −1 −1 −1 −1

0 0 0 −1 0 0 0
1 1 1 0 1 1 1



M3[:, :, 1](
1 1
0 1

)

Note that the first leg of M1 and the last leg of M3 only have dimension one, since these legs
are not contracted. From this tensor decomposition, we can reconstruct the original tensor.
We choose an element we want to construct, for example F [4, 4, 1] = 1. By fixing the original
indices σℓ but regarding all elements of the bonds ai, we obtain vectors for the end tensors
and a matrix for the center tensor.

M1[:, 4, :](
0 0 1

)
M2[:, 4, :]1 −1
1 −1
1 0


M3[:, 1, :](

1
0

)
The element F [4, 4, 1] now can be reconstructed by matrix-vector multiplication

F [4, 4, 1] ≈
(
0 0 1

)
·

1 −1
1 −1
1 0

 ·
(
1
0

)
= 1 (2.4)

All other elements can be reconstructed in the same way. Note that in equation (2.4) F
was only approximated. In this special case, the approximation by TCI is exact (see section
2.2) since the TT and F both have rank three (the maximum of the link dimensions of the
TT is three). If the rank of the TT is lower than the tensor rank, then the TT is only an
approximation of the original tensor. The error made by the approximation is controlled by
the tolerance τ of the compression.

In this small example, the compression by TCI can already be recognised. While the original
tensor A needs memory to store 7 · 7 · 2 = 98 elements, our TT representation only requires
1 · 7 · 3 + 3 · 7 · 2 + 2 · 2 · 1 = 67 elements. This compression improves dramatically for tensors
with a similar rank but index sizes of a few hundred or thousand. Storing the information of
such tensors in a compressed TT leads to huge savings in memory and further allows fast
tensor operations such as integration or Fourier transformation.

2.2 Tensor Cross Interpolation

Since we have discussed the advantages of learning a tensor train from a given tensor, the
question is how to construct it efficiently. This step is achieved by ”tensor cross interpolation”

7

(TCI) algorithms. We want to sketch only the algorithm’s key idea since the details and
implementation are beyond the scope of this bachelor thesis. It can be regarded as a black
box that creates a TT from an input tensor. For further details, we refer to [6].

2.2.1 Matrix cross interpolation

A TCI algorithm achieves the factorisation by generalizing the concept of matrix cross
interpolation (MCI) to tensors. The decomposition of a matrix can be done in multiple ways
and is the aspect that distinguishes TCI implementations. Originally the decomposition was
achieved with cross interpolation (CI)[17]:

A ≈ CP−1R = Ã . (2.5)

Figure 2.3: Matrix cross interpolation (taken from [14], pp. 2).

C and R consist of columns/rows of A while P is the pivot matrix of the intersecting elements
as can be seen in figure 2.3. All colored columns/rows are reproduced by the decomposition,
while the grey elements are interpolated. The accuracy of the interpolation can be improved
by adding more pivots.

The interpolation can even be made exact A = Ã, if the matrix A has rank D and D pivots
are chosen. A matrix with a low rank thus can be fully reconstructed by just storing a few
rows and columns.

The problem with cross interpolation is that it requires the inversion of the pivot matrix,
which is for some configurations numerically unstable. To improve this, one can achieve
the same results with partial rank revealing LU decomposition (prrLU). The matrix is in
this case decomposed into a lower triangular matrix L, a diagonal matrix D and an upper
triangular matrix U

A ≈ LDU = Ã . (2.6)

This method is mathematically equivalent to the CI approximation but circumvents the
inversion of the pivot matrix. This results in a more numerically stable algorithm. A proof
of the equivalence can be found in [6] section 3.3. For this bachelor thesis, we use the
QTCI package, which implements the prrLU decomposition. One should keep in mind that
whenever we speak of tensor cross interpolation (TCI), the interpolation itself is achieved by
LU decomposition and not cross interpolation as one would assume from the name.

The concept of MCI is generalized to TCI, by regarding a Tensor Fσ1...σL as a matrix Fij,
with the multi-index i = (σ1, . . . , σL−1) and j = σL and iterative application of the shown
matrix decomposition. The details of the generalization can be found in [6] chapter 4.

8

Figure 2.4: Logarithmic plot of worstcase for R = 11

2.2.2 Worstcase scaling of TT rank

The potential of compression for a matrix depends on its rank. For a matrix with high rank,
many pivots are needed to approximate the matrix. This statement also holds for the more
general tensors. If a tensor has full rank (i.e. a tensor with random elements), many pivots
are needed and the bond dimensions χℓ grow exponentially towards the middle. In the worst
case of a full rank tensor, this exponential growth does not stop and the dimension of the
link bonds is described by :

χℓ = min

(
ℓ∏

i=1

di,
L∏

i=ℓ+1

di

)
. (2.7)

If all indices have the same length d, this formula reduces to [6] pp. 6

χℓ = min(dℓ, dL−ℓ) . (2.8)

In this case, exponential memory cost for storing the TT elements is needed. However, if
the tensor has only low rank, which is the case for functions with a non-random structure,
then the rank saturates at a certain value. If this value is a lot smaller than the expected
exponential worstcase χ << 2L/2, then we call the tensor strongly compressible since only
few elements must be stored to capture its structure.

The exponential growth forms an upper limit to the TT rank. Plotted on a logarithmic scale,
the worstcase is a triangle that forms a roof for the TT ranks, as can be seen in figure 2.4.

The comparison of the rank of a function with this worstcase is a parameter of the compressible.
A low rank implies that only a few pivots are necessary to capture enough information about
a function so that a good interpolation for the rest of the tensor is possible.

9

2.3 Quantics representation

Every function can be represented as a tensor. Functions can be regarded as a data set,
that stores f(x) for every input value x a value. In most practical cases x is part of a set
with infinitely many elements. If we limit ourselves to a finite amount of input elements by
choosing a suitable grid, we can store the function values in a tensor. To this end, finding a
tensor representation of an arbitrary function only means choosing a grid and storing the
function values in a clever way. We will demonstrate this by starting with a one-dimensional
function.

Assume we have an arbitrary function f : R → C in a continuous variable x. We choose L
arbitrary grid points, and label them with the index σ = {1, . . . ,L}. Now we have a set that
contains a grid point for every index value {x(σ)} = {x(1), x(2), . . . , x(L)}. This leads to f
in its natural representation, where for each grid index σ we get a value

fσ = f(x(σ)) . (2.9)

Since we only chose one index, this process is equivalent to storing function values in a vector
(i.e. a degree one tensor).

For a high grid resolution L, a bitwise representation of the grid with multiple indices becomes
handy. This method is called the quantics representation. We set L = 2R where R is the
number of bits we want to use. Each bit has a corresponding index σi ∈ {0, 1}. Instead
of using only one index σ as we did in the natural representation, we now use R indices
σ1, . . . , σR.

Let f : [xmin, xmax] → C, x → f(x). We discretize the interval [xmin, xmax] on a cartesian grid
with L = 2R points. The position of the grid points are defined by

x(σ1, · · · , σR) = xmin + (xmax − xmin) · δ(σ1, · · · , σR) , (2.10)

where δ(σ1, · · · , σR) ∈ [0, 1) can be expressed by R bits (σ1, σ2, . . . , σR):

δ(σ1, · · · , σR) =
σ1

2
+

σ2

22
+ · · ·+ σR

2R
=

R∑
j=1

σj

2j
. (2.11)

Every grid point now has a bit representation, and we can use the bit indices {σ1, σ2, . . . , σR}
as legs for our tensor. This leads to the quantics representation of f :

fσ = fσ1···σR = f(x(σ1, . . . , σR)) . (2.12)

This concept can easily be generalised on multidimensional functions f(x1, x2, . . . , xN) of N
variables. Every variable xi is discretized on a grid with 2R points and represented by R bits
xi(σi1, σi2, . . . , σiR) as in the 1-dimensional case. This leads to NR indices in total.

We now start to order the bits by grouping all indices that represent the same grid scale. We
start with the bits of all xi representing the scale 2−1, then the bits of the scale 2−2 and so on.
The multi-index then can be renamed, resulting in a single index σi with i ∈ {1, . . . ,NR}.

10

This is called the interleaved representation.

Figure 2.5: Interleaved representation

A more compact approach is given by the fused representation. Starting from the interleaved
bit ordering, one can reduce the number of indices by combining all bits of the same scale
into one single bit σ̃ℓ

σ̃ℓ = σℓ1 + 2 · σℓ2 + · · ·+ 2N−1 · σℓN =
N∑
n=1

2n−1σℓn . (2.13)

This single index can be defined by reversing the bit representation, i.e. (σ1ℓ, . . . , σN ℓ) are
considered as the bit representation of the integer σ̃ℓ. This leads to σ̃ℓ ∈ {1, . . . , 2N} and
reduces the number of indices from RN to R but increases the length of the indices from 2
to 2N .

Figure 2.6: Fused representation

As an example for interleaved and fused representation, we regard a function in three
dimensions f : [−1, 1]3 → C on a quantics grid with the resolution R = 4. Figure 2.7 shows
f in its tensor forms. The grey text comments on the variable and scale each bit corresponds
to.

11

Figure 2.7: Example of fused and interleaved representation of a three dimensional function.
All σij and σi can take values from {0, 1}, while the σ̃i have values in {1, . . . , 8}

2.4 Integration in TT representation

Last but not least, we want to show that the integration of a function can simply be achieved
by a summation over the constructed tensor train.

Let f(x1, . . . , xN) be a function in N variables. Assume we already have a tensor train
approximation

fσ ≈ f̃σ = [M1]
σ1

1α1
[M2]

σ2

α1α2
. . . [MR]

σL
αL−11

(2.14)

of f on a specific grid with L indices. If we now wish to compute the N -dimensional integral,
we can achieve this by quadrature∫

dNx f(x1, . . . , xN) ≈
∑
σ

ω(σ)f̃σ , (2.15)

where
∑

σ describes the sum over all index combinations, i.e. all grid points and ω(σ) the
integration weight at this grid point. The sum is only an approximation of the solution since
we sum the function values only over finitely many grid points, and the integrand itself is
interpolated by the TT. The errors of these approximations are discussed in more detail in
Chapters 3 and 4 at the example of the tested functions.

For a cartesian grid, the integration weights reduce to the cartesian volume element∑
σ

ω(σ)f̃σ =
V

Ngrid

∑
σ

f̃σ , (2.16)

where V =
∏N

n=1(xn,max − xn,min) is the volume of the N -dimensional cube we integrate over.
Since we made no constraints on fσ, we could also compress the grid weights into the function
and proceed with the combined gσ = ω(σ)f̃σ. To this end, the condition of a cartesian grid

12

is not necessary but simplifies understanding this derivation.

So far we haven’t made use of the tensor structure, since summing over all grid elements is
also the concept of the standard approach. But because of the TT structure of f̃σ, the sum
can be factorized: ∑

σ

f̃σ =
∑

σ1...σL

[M1]
σ1

1α1
[M2]

σ2

α1α2
. . . [ML]

σL
αL−11

=
∑
σ1

[M1]
σ1

1α1

∑
σ2

[M2]
σ2

α1α2
· · ·
∑
σL

[ML]
σL
αL−11

=
L∏

ℓ=1

[
d∑

σℓ=1

[Mℓ]
σℓ
αℓ−1αℓ

]
.

In conclusion, integration of a tensor train requires only O(Ldχ2) summations and matrix
multiplication of the cost O(Lχ2). This method is for TT of low rank χ exponentially cheaper
than the integration by quadrature, which requires the summation over the exponentially
large grid at a cost O(dL). For functions with a low rank TT structure, QTCI could bring
therefore an exponential speedup.

We also want to mention that we did not make any assumptions about the form of the TT
approximation and the number L of indices. We could have used the presented natural,
interleaved, or fused representation, which differ drastically in the parameters L and d. Even
though the integral approximation holds for all imaginable tensor representations, the natural
form has a feature that gives the integration approach a new significance. In the natural
representation TCI can be understood as an factorization of the integrals. To this end, we
will again derive the result, but highlight this time the new aspect.

We represent a function f(x1, . . . , xN) in its natural tensor form by discretizing each variable
xℓ on a grid x(σℓ) = {xℓ(1), . . . , xℓ(d)}, where σℓ = 1, . . . d. For every input vector σ, a tensor
element is now defined by

fσ = f(x1(σ1), x2(σ2), . . . , xN (σN)) . (2.17)

In this form, f can be given as input to the TCI algorithm, which returns a TT approximation
of f

fσ ≈ [M1]
σ1

1α1
[M2]

σ2

α1α2
. . . [MN]σN

αN−11
. (2.18)

One should keep in mind that in the natural representation, every index σℓ is a discrete version
of a continuous variable xℓ. The discretization can in theory be extended to the continuum
by increasing the number of grid points d. To emphasise this one to one correspondence
between σℓ and xℓ we notate the tensor train leg σℓ as if it were continuous:

f(x1, . . . , xN) = [M1]1α1
(x1) [M2]α1α2

(x2) . . . [ML]αN−11
(xN) . (2.19)

To this end, TCI can also be regarded as a factorization of the function in its variables. For
χ = 1, the function is indeed factorizable, and for a small rank of for example χ ≈ 30, we call

13

the function almost factorizable.

Because of this separation, the N -dimensional integral can be reduced to N 1-dimensional
integrals by inserting the TT approximation for f . The single integrals are multiplied together
by tensor contraction (i.e. matrix multiplication, since all Ml are matrices for a fixed xi or σl)∫

dxNf(x1, . . . , xN) =

∫
dx1 [M1]1α1

(x1)· · ·
∫

dxN [ML]αL−11
(xN) . (2.20)

The integrals in each variable are numerically evaluated by a Riemann sum∫
dxi [Mi]αi−1αi

(xi) ≈ δi

d∑
σℓ=1

[Ml]
σℓ
αiαi+1

, (2.21)

with the 1-dimensional cartesian volume element δi = (xi,max − xi,min)/d. Inserting (2.21) in
(2.20) yields the already known end result∫

dxNf(x1, . . . , xN) ≈ V

dN

L∏
ℓ=1

[
d∑

σℓ=1

[Mℓ]
σℓ
αℓ−1αℓ

]
. (2.22)

In conclusion, TCI tries to factorize a given input as well as possible and exploits the uncovered
structure in the integration step. The reduction of necessary summation steps, and therefore
the speed of the integral evaluation, depends heavily on the rank of the TT. The condition
for a high acceleration of the computation, compared to standard integration by quadrature,
is a low rank structure of the integrand function f . If for specific given functions this low
rank tensor structure is available will be investigated in the following chapters.

14

Chapter 3

Application of TCI in DFT

QTCI is a general tool that can find application wherever heavy numerical (multidimensional)
integration is required. One such application is the field of ’Density Functional Theory’ (DFT)
in quantum chemistry, where the evaluation of lots of overlap integrals is required.

3.1 Density Functional Theory

The goal of density functional theory (DFT) [11] is, to determine the electron density ρ(r)
of a given molecule in the ground state. The knowledge of ρ(r) then allows, to calculate
observables, like the energy E[ρ], which is a functional of the ρ(r).

The electron density is found in an iterative self consistent field (SCF) calculation. For a
multi electron system ρ can be written as a linear combination of Ne occupied molecular
orbitals [3] pp. 13-16. These orbitals can be described by single electron wave functions Ψℓ

ρ(r) =
Ne∑
ℓ

|ϕℓ(r)|2 . (3.1)

The orbitals can be expanded over the whole molecule and are themselves described by a
linear combination of atomic basis functions

ϕℓ(r) =
∑
µ

Cℓµ φµ(r) (3.2)

These basis functions can arbitrarily be chosen. The task of the basis is to approximate the
molecule orbitals with as few basis elements as possible. Popular choices for the basis φi are
discussed later. Finding ρ therefore reduces to finding the the molecular orbital coefficient
matrix C = Cℓµ.

This can be achieved by solving the Kohn-Sham equation [12] pp. 616-617

FC = SC ϵ , (3.3)

15

16

Figure 3.1: Self consistent field algorithm in DFT. Graphic inspired from [12] pp. 616.

with the Kohn-Sham matrix F = Fµν and the overlap matrix S = Sµν . For a known F and S
this equation is an eigenvalue problem and can be solved by diagonalisation of F. While S
can be directly computed from the chosen basis

Sµν =

∫
dr φµ(r) · φν(r) (3.4)

the Kohn-Sham matrix contains multiple factors, requiring the knowledge of C, among which
only one is relevant for us

Fµν = Vµνκλ Pκλ + . . . (3.5)

Vµνκλ =

∫∫
φµ(r

′) · φν(r
′) · φκ(r) · φλ(r)

|r− r′|
dr dr′ (3.6)

Pκλ =
∑
i∈ occ

C†
κiCiλ (3.7)

Summarizing this, to obtain the coefficient matrix C from the Kohn-Sham matrix, we already
need C to calculate F in the Kohn-Sham equation. This requires an iterative process, to solve
the equations. We start with an inital guess for C and compute F with it. We then solve the
Kohn-Sham equation and obtain an new coefficient matrix. Then repeat this process until C
and hence ρ does not change anymore. It has reached a the self consistent point. After we
found ρ the energy and other observables can be determined for the ground state.

The term we presented in the calculation of Fµν between the is called the coulomb matrix
Jµν = Vµνκλ Pκλ. While all other terms that contribute to F are easy to compute, the
evaluation of the coulomb matrix forms the bottleneck of the algorithm. The problem behind
the bottleneck has for distinct bases a different form. Before we explain the nature of the
bottleneck, we therefore must have a look on the most common basis.

3.2 The Gaussian basis

For the basis function ϕℓ(r) one can choose an arbitrary basis. Since one can only implement
finitely many basis functions, a basis should be able to approximate the true atomic orbital

17

function by combining just a few basis elements. The most popular choice are the Gaussian
basis sets. They are available in cartesian and spherical form. The spherical sets approximate
the radial term of the atomic wave functions by a linear combination of Gauss functions and
are then multiplied with the spherical harmonics. In this thesis we use the cartesian ansatz,
which has the form:

ϕℓ(r) = (rx −Rx)
lx(ry −Ry)

ly(rz −Rz)
lz ·

Ncoef∑
n=0

cne
−ζn(r−R)2 . (3.8)

With a basis of this specific form the six dimensional integral of the V -tensor can be evaluated
analytically. This reduces the cost of calculating the tensor elements dramatically, since
expensive numerical integration can be avoided. For this reason, the gaussian basis is used in
almost all molecular DFT programs.

The disadvantage of the gaussian basis is that it approximates the true atomic orbitals rather
badly. Cusps at the position of the kernel require a large linear combination of smooth Gauss
functions to get well approximated. Higher precision of the calculation requires therefore
larger basis sets.

To get more intuition about the gaussian basis, we consider the H2O basis as an example.
This molecule is not a trivial single atom, but has an easy enough structure to present all basis
functions in this thesis. Basis sets of different size, and therefore of different resolution are
tabulated online, and can easily be implemented. We use the Julia package GaussianBasis.jl
[1], since it is perfectly compatible for the later use with the QTCI algorithm, which is also
based on Julia.

The number of basis functions Nbas for the H2O-molecule depends on the chosen basis set
as can be seen in table 3.2. Also the number of expansion coefficients Ncoef increases for
larger bases and allows a better approximation of the atomic orbitals. Each basis function
corresponds to a specific atom of the molecule and an angular momentum value (ℓx, ℓy, ℓz).
For small sets, most orbitals are only represented by one basis function. In larger sets, orbitals
with higher quantum numbers get included, and orbitals may possess multiple functions that
approximates them. Hydrogen for example has in the small sto-3g basis no p-orbitals and
only one s-orbital function, but in the larger def2-svp basis also an p-orbital and two different
s-orbitals. The basis functions that are implemented for H2O in the def2-svp basis are listed
in table 3.1.

18

Atom Ncoeff ℓ ℓx ℓy ℓz i

5 s 0 0 0 1
1 s 0 0 0 2
1 s 0 0 0 3

1 0 0 4
3 p 0 1 0 5

0 0 1 6
1 0 0 7

O 1 p 0 1 0 8
0 0 1 9
2 0 0 10
1 1 0 11
1 0 1 12

1 d 0 2 0 13
0 1 1 14
0 0 2 15

3 s 0 0 0 16
1 s 0 0 0 17

H 1 0 0 18
1 p 0 1 0 19

0 0 1 20
3 s 0 0 0 21
1 s 0 0 0 22

H 1 0 0 23
1 p 0 1 0 24

0 0 1 25

Table 3.1: Basis functions with their corresponding angular mo-
mentum of H2O and number of coefficients Ncoeff in the def2-svp
basis. The later use of a function label ϕi refers to the index i of
this table

Basis Set Nbas

sto-3g 7
def2-svp 25
def2-tzvp 48
def2-qzvp 142

Table 3.2: Number of func-
tions for H2O in different
gaussian basis sets. The
used basis sets were devel-
oped by [21], [20], [5].

A plot of the def2-svp basis can be seen on the following pages. The upper plot shows the
function values on a axis. This axis is determined by the angular momentum. We chose the
plot axis to point in the direction of ℓ = (ℓx, ℓy, ℓz) and normalized it to maintain the correct
length units. Functions with |ℓ| = 0 are spherical symmetric, so we chose for the axis in this
case the x-axis. The variable r represents the covered distance on the axis in angstrom. The
zero point of this scale is located in the atom kernel. We plotted all function for the same r
distance to emphasize the different expansions of the orbitals.

The lower graphic shows the absolute value of the basis function as a density plot in 3D
space. Again all functions are plotted on the same volume to emphasize the expansion. We
chose a cubic volume [−2, 2]3, centered around the corresponding atom. The density shows
all points r, whose function value lie in in the interval 0.2 · fmax ≤ f(r) ≤ fmax, which leads
to a representation of the main support of each function.

19

Oxygen s-orbitals

1 2 3

Hydrogen s-orbitals

16 17

Figure 3.2: Atom centred density and x-axis plots of s-orbitals. The density is plotted on the
volume [−2, 2]3. The heatscale is used for all 3D plots.

20

Oxygen p-orbitals Hydrogen p-orbitals

4, 5, 6 7, 8, 9 18, 19, 20

Figure 3.3: Atom centred density and x-axis plots of p-orbitals. The density is plotted on
the volume [−2, 2]3.

21

Oxygen d-orbitals

10, 13, 15 11, 12, 14

Figure 3.4: Atom centred density and x-axis plots of d-orbitals. The density is plotted on
the volume [−2, 2]3.

22

3.3 Approaches to the bottleneck

In DFT calculations the bottleneck is formed by the rapidly increasing number of basis
functions Nbas. More basis functions make the computation of the coulomb matrix

Jµν = Vµνκλ Pκλ (3.9)

Vµνκλ =

∫∫
φκ(r) · φλ(r) · φµ(r

′) · φν(r
′)

|r− r′|
dr dr′ (3.10)

more expensive. Although one would expect a cost of O(N4
bas), the computation of J can for

large molecules be obtained for O(N2
bas) due to a property of the atomic orbitals [8]. DFT

is a general tool and is used on a big range starting from single atoms and reaching up to
molecules with more than a thousand atoms.

Atoms that are spatially separated over a large distance have a negligible overlap and therefore
do not contribute to the coulomb matrix. To this end, each atom only has an approximately
constant number of relevant second atoms in his proximity. Each double index combination
therefore has only O(Nbas) non zero combinations.

In the concepts of our approaches we assume that we only regard molecules with such a
screening. All statement also hold for smaller molecules, but without the screening all
combinations have to be considered. In this case we have to replace Nbas → N2

bas in the
formulas.

Although the computational cost for the coulomb matrix can for large molecules be reduced,
it still scales worse than other terms. We will now present three different approaches that
may accelerate this algorithm step.

3.4 Approach 1: compression of orbital indices

If one chooses a gaussian basis the evaluation of the six dimensional integral in Vµνκλ can be
done analytically for each fixed index combination µνκλ. The tensor evaluation is in this
case very quick and achieved in a constant time. The bottleneck is here given by the rapidly
growing length of the orbital indices µ, ν, λ, ρ = 1, . . . Nbas, that lead to a costly contraction
with the density matrix Pκλ of O(N2

bas).

A possible solution to this bottleneck is a tensor decomposition in the orbital indices. We
can summarize the indices κλ and µν into big multi indices I and J . This is only a change
in notation, since the sum runs over the pair. Filtering only the contributing elements of
atoms close to each other, both indices have O(Nbas) elements. With these multi indices V
can be seen as a I × J matrix. The more general tensor decomposition reduces in this case
to a matrix decomposition. We will further use terms as TCI and tensor trains, to remember
that I and J describe multi indices, but want to raise attention to the fact that the approach
is mathematical equivalent to a matrix decomposition.

If V has enough structure to interpolate the whole tensor from a few elements (i.e V has a

23

Figure 3.5: Accelerated contraction with density matrix by tensor decomposition

low rank), a TT could be build with TCI by just evaluating the analytic formula for these
elements. The TT structure would then allow perform the contraction with the density
matrix at a reduced cost. While the standard approach requires to add up for all I (κλ) all
values of J (µν) at a cost of O(IJ) = O(I2) = O(N2

bas), TCI can reduce this process to the
order O(χI) = O(χNbas), where χ denotes the rank of the TT. In the case χ << I this would
speed up the calculation by a factor O(Nbas), which is for large basis sets very desirable.

Since the density matrix P is in the multi-index representation already a degree one tensor,
it is already fully decomposed and no further work is required.

Finding a low rank tensor train representation of V would allow to use bigger and more
precise basis sets, due to the improved scaling behavior. But if this high compression really is
achievable is an open question, since the orbitals have very different shapes and locations. To
this end, the structure of J may be random and consequently not compressible. The crucial
question of this approach will therefore be, if a low rank representation of V can be found or
not.

3.4.1 Compression of full V -tensor

The most simple approach to obtain a tensor train from Vµνκλ is, to directly use it as an
input to TCI. The data of this first test was provided by Markus Frankenbach.

24

basis atom Natom Nbas χ χworst

water 3 7 24 28
sto-3g ethane 8 16 71 136

propanol 12 28 124 406
water 3 25 313 325

def2-svp
ethane 8 60 1324 1830

Table 3.3: Compression in all four indices in def2-svp basis with tol=10−5

The worstcase rank of this compression includes the symmetry of the VIJ tensor in the
multi indices I and J . Since the matrix is symmetric, we get a free compression factor of
approximately 2 and the worstcase is only

χworst =
Nbas · (Nbas + 1)

2
. (3.11)

Table 3.3 shows the tensor train ranks of this approach for molecules of various sizes and
different bases. We can see, that for larger molecules the compression improves. Nevertheless,
the rank of the tensor increases with the number of the basis functions Nbas. Maybe the size
of the selected molecules was below the saturation point and for larger molecules the rank
reaches a converging point.

A simple compression in multi-indices is not sufficient to solve the bottleneck. To really speed
up the calculation by a reduction of the evaluated orbitals, we would require χ << χworst,
which is for our examined molecules not the case.

3.4.2 Concept of compression by parts

We have seen, that the V tensor can barely be compressed by an tensor decomposition. The
rank of the tensor train increases with the the number of basis functions. If the compression
remains at the fixed factor of approximately 1.2, for large basis set of molecules with more
than thousand atoms this would lead to huge bond dimensions. We expected that the simple
tensor decomposition will not suffice, since the problem exists for a long time and tensor
decomposition is no new feature, so such a simple solution would have been found already.
We proceed with decomposing V in a seminumerial way. The idea is, to separate the the
integral into two parts. The coulomb kernel is then integrated with two of the gaussian basis
functions analytical. The second integral is then evaluated numerical by quadrature

Vκλµν =

∫∫
ϕκ(r) · ϕλ(r) · ϕµ(r

′) · ϕν(r
′)

|r− r′|
dr dr′

=

∫
dr ϕκ(r

′) · ϕλ(r
′) ·
∫

dr′
ϕµ(r) · ϕν(r)

|r− r′|

=

∫
dr Bκλ(r) · Aµν(r) .

25

The A and P tensors are defined as:

Aµν(r) =

∫
ϕν(r

′) · ϕµ(r
′)

|r− r′|
dr′ (3.12)

Bλρ(r) = ϕλ(r) · ϕρ(r) . (3.13)

The concept of the seminumerical evaluation is not new, see for example [8]. Our new
contribution is to replace the numerical integration with QTCI.

First we construct tensor trains of the analytic coulomb integral Aµν(r) and the overlap of the
basis functions Bµν(r). The compression includes for both tensors the orbital index I = µν
and the grid indices of r, obtained by the quantics representation.

If both tensor trains Ã and B̃ have low rank structure, the integral over r can be performed
by tensor contraction and we obtain a low rank TT representation of V as an end result.
Although we assumed it while working on this section we recently recognised that this tensor
train can not have a smaller rank than the simple tensor decomposition of section 1.4.1. This
means that the seminumerical approach will also not allow a higher compression. Solving the
bottleneck by compressing the orbital indices is therefore not possible.

The results of this section are nevertheless relevant for our other approaches. We will proceed
even though we can already say that this approach will not bring any improvements.

Figure 3.6: Evaluation of the integral by using tensor networks

26

3.4.3 Visualisation of A and B tensor

Before we start with the compression of the tensors, we want to have a look on the functional
dependency. Because we already saw the single basis functions plotted for H2O in the def2-svp
basis, we also look at the A and B tensors for this molecule.

The B tensor simply is the overlap of two basis functions. The first plot of the following
figure shows various combinations of atomic orbitals with the corresponding overlap. The
functions are plotted along the connecting line between the kernels for distinct atoms, or
respectively on the x-axis for functions of the same atom. The variable r −R1 denotes the
distance on the plotted axis with respect to the position R1, of the first kernel (i.e. the first
atom has its center at r −R1 = 0).

Looking at the definition of A we notice that it is a convolution of B with the coulomb kernel.
The convolution smoothens the function and extends its support to a larger domain as can
be seen in the second plot. To allow a comparison between A and B we plotted both again
on the axis, connecting the kernels of the respective atoms.

A and B tensor

(2,18)

(3,10)

Figure 3.7: A and B tensor plotted on the connecting axis of the respective atoms.

27

A and B tensor

(1,4)

(10,4)

(7,18)

Figure 3.8: A and B tensor plotted on the connecting axis of the respective atoms.

28

3.4.4 Implementation and grid

We describe briefly the implementation in julia. We refer to all important functions and
packages that were used.

The two functions A and B are implemented in julia with the use of the earlier named
GaussianBasis.jl [1] package. The package contains the tabulated coefficients ζn, dn, ℓx, ℓy, ℓz
of the Gauss functions (3.8), as well as an implemented function that returns the integral
with the coulomb kernel. The B tensor is implemented directly by evaluating the gaussian
basis formula (3.8) with the correct coefficients, while the A tensor is realised with the use of
the pre implemented overlap() function of the GaussianBasis.jl package.

Before we can construct a TT from A and B , we have to choose a suitable grid. We use a
cartesian grid that captures the whole volume of the molecule. On the one hand the grid has
to be large enough to contain all relevant structures. By restricting the function to a finite
volume, we neglect the contribution of the function tail to the integral. Increasing the grid
volume minimizes this error. On the other hand, a large grid requires a fine grid resolution,
to resolve small peaks and tiny structures. A smaller grid does therefore already resolve all
features at a low resolution. Having these aspects in mind, we determined the limits of our
grid, by evaluating each basis function at the closest point of each boundary wall. If one
function value is larger than a limit value of 10−6 the boundary is increased. This process
is repeated iterative until all functions fulfill the condition. By the monotone decay of the
basis, this construction ensures that all basis functions are smaller then 10−6 outside the grid
and therefore, Bµν(r) = ϕµ(r)ϕν(r) is smaller then 10−12. Since we cover with this method
the support of any orbital function, the whole molecule is contained in this grid, which is
why we will call this grid the ’molecular’ grid.

As we have seen in the last chapter Aµν expands further than the Pλρ tensor and does not
fulfill the condition Aµν < 10−12 at the boundary of the molecular grid. But since Aµν is
later contracted with Bλρ, only the the support of Bλρ is relevant for the summation. This
allows us to compress Aµν also on the molecular grid.

3.4.5 Results for A

Figure 3.9 shows the bond dimensions of Ã at the example of the H2O molecule in the
def2-svp basis. The maximum bond dimension, i.e the rank of the TT, does not increase with
R, which implies that all relevant structures are already revealed at a medium grid resolution.
The rank saturates at χ ≈ 1100, which is a rather high rank for a tensor train. The reason
for this high rank has its origin in the orbital index. TCI only achieves a reduction from the
worst case scenario with χworst = 325 to χ ≈ 260 in the first index, which is a compression by
the factor 1.2.

The bond dimension does even increase in the second index even though this index is a grid
index of a smooth function and is therefore expected to be highly compressible. This increase
is due to the bad compression of the orbital grid as we will see later, after performing a
compression in only the grid indices.

29

As we explained in section 3.4 to really deliver a speedup against the standard approach
χ << I is required. This condition is here with χ ≈ I not fulfilled. Further does the small gain
in the compression not outweigh the costs of constructing a tensor train for a large grid for sev-
eral hours. The overhead of having to build the TT at first is simply too large for this molecule.

Grid bounds

x ∈ [−4.31, 7.43)
y ∈ [−3.43, 7.69)
z ∈ [−5.22, 5.86)

Nbas = 25
I = 325

R χ t [h]
4 237 0.03
6 995 1.51
8 1100 3.58
10 1108 4.06

Figure 3.9: Bond dimension of the TT at every chain position ℓ for multiple grid resolutions.
The table to the right shows the boundary of the used grid, the number Nbas of basis functions
for the molecule, as well as the length of the multi-index I = N2

bas. Also the rank of all
presented tensor trains χ with the runtime t of the construction in hours is noted.

Grid bounds

x ∈ [−6.41, 6.41)
y ∈ [−6.17, 6.17)
z ∈ [−6.22, 6.22)

Nbas = 60
I = 1830

R χ t [h]
4 400 0.18
6 1998 4.18
8 2317 7.18
10 2369 9.87

Figure 3.10: Bond dimension of the TT at every chain position l for multiple grid resolutions

30

Grid bounds

x ∈ [−9.21, 5.42)
y ∈ [−5.00, 8.58)
z ∈ [−6.25, 6.41)

Nbas = 100
I = 5050

R χ t [h]
4 434 0.27
6 2786 29.57

Figure 3.11: Bond dimension of the TT at every chain position l for multiple grid resolutions

The hope now was that the compression in the grid index could be better for larger molecules,
and χ1 saturates at a certain value when Nbas is increased. But the compression factor does
not significantly improve for larger molecules. Figure 3.10 and 3.14 show the bond dimensions
for the molecules ethane and propanol in the def2-svp basis.

Again the first index is compressed from the potential worst case χworst = 1830 to χ = 900 (i.e
a factor 2) for ethane and from χworst = 5050 to χ = 1450 (i.e a factor 3.5) for propanol. The
compression does indeed improve but the rank nevertheless rises, which leads to a enormous
runtime for the TT construction. For larger molecules even worse ranks are to be expected.
This is a big problem, since ethane and propanol are with six and twelve atoms not large
molecules for DFT calculations, which can run up to more than thousand atoms.

31

3.4.6 Results for B

The computation of the integral in r in the V tensor requires tensor trains of A and B. If
we compress the B tensor, we obtain very similar bond dimensions. In this case the ranks
are around 15% lower, but still too large to achieve a contraction that could challenge the
conventional schemes. Since B has a similar but yet different functional dependency compared
to A this result supports our hypothesis that the compression over different orbital indices is
responsible for the high ranks and not the shape of the function itself.

Grid bounds

x ∈ [−4.31, 7.43)
y ∈ [−3.43, 7.69)
z ∈ [−5.22, 5.86)

Nbas = 25
I = 325

R χ t [h]
4 88 0.005
6 997 1.16
8 680 1.17
10 648 1.66

Figure 3.12: Bond dimension of the TT at every chain position l for multiple grid resolutions

Grid bounds

x ∈ [−6.41, 6.41)
y ∈ [−6.17, 6.17)
z ∈ [−6.22, 6.22)

Nbas = 60
I = 1830

R χ t [h]
4 312 0.09
6 1897 6.94
8 1652 5.99
10 1576 6.54

Figure 3.13: Bond dimension of the TT at every chain position l for multiple grid resolutions

32

Grid bounds

x ∈ [−9.21, 5.42)
y ∈ [−5.00, 8.58)
z ∈ [−6.25, 6.41)

Nbas = 100
I = 5050

R χ t [h]
4 343 0.23
6 2217 12.42

Figure 3.14: Bond dimension of the TT at every chain position l for multiple grid resolutions

3.5 Approach 2: Contraction with electron density

Our first approach aimed to speed up the summation over the orbital indices with TCI

Jµν =
∑
κλ

VµνκλPκλ . (3.14)

By making use of definition of the A tensor we can rearange this equation and include the
contraction with Pκλ directly into the integrals:

Jµν =
∑
κλ

PκλVµνκλ (3.15)

=
∑
κλ

Pκλ

∫
dr ϕκ(r

′)ϕλ(r
′) ·
∫

dr′
ϕµ(r) · ϕν(r)

|r− r′|
(3.16)

=

∫
dr

(∑
κλ

Pκλ ϕκ(r
′)ϕλ(r

′)

)
·
∫

dr′
ϕµ(r) · ϕν(r)

|r− r′|
(3.17)

=

∫
dr ρ(r) · Aµν(r) . (3.18)

In the last step we used the defintions

ρ(r) =
∑
κλ

Pκλ ϕκ(r
′)ϕλ(r

′) (3.19)

33

Aµν =

∫
dr′

ϕµ(r) · ϕν(r)

|r− r′|
. (3.20)

We can compute a fixed matrix element Jµν with QTCI by constructing tensor trains of ρ and
A and performing the integration with tensor contraction. The full coulomb matrix can then
be computed at the cost of O(χ3Nbas log(Ngrid)), where Ngrid is the number of grid points
that are needed to compute the numerical integral with QTCI.

For a low rank of the two tensors, this approach delivers a speedup compared to the standard
approach, which scales with O(N2

bas).

3.5.1 Compression of A with fixed indices

We investigated the rank of the already implemented A tensor. The rank of the density
matrix ρ could due to the limited time scale of this bachelor thesis not be investigated.

At first we have to fix the orbital pair κλ. Figure 3.15 shows the bond dimensions of the
compression of Aµν with µν = (1, 16) of H2O in the def2-svp basis. To save space the ranks
of further index combinations are listed in table 3.4. Since the expansion of ρ is limited to
the volume of the molecule, we can again use our molecular grid and do not have to search a
larger grid that captures the whole support of A. To this end, all compression used the grid
in the table of figure 3.15 regardless of the index combination.

The rank of the TT depends on the tolerance of the compression. For a smaller tolerance,
more pivots have to be added, to fulfil the error condition of the approximation. For both
tolerances the bond dimension saturates very quickly and reveals the low rank structure
of the basis functions with χ ≈ 105 for τ = 10−5 and χ ≈ 51 for τ = 10−3. Furthermore,
for all examined index pair combinations, the rank does not exceed χ = 120 (for tolerance
= 10−5, so we conclude that the low rank structure is not a feature of some orbital index

Grid bounds

x ∈ [−4.31, 7.43)
y ∈ [−3.43, 7.69)
z ∈ [−5.22, 5.86)

tol R χ t [s]
10 51 5.1

10−3 20 52 7.7
30 50 6.8
10 96 24.3

10−5 20 105 58.7
30 104 57.1

Figure 3.15: Bond dimension of the TT at every chain position ℓ for multiple grid resolutions

34

combinations, but a general characteristic of the used basis.

To be able to compute a coulomb matrix element, we now would have to find a tensor
representation of the electron density ρ. This will be the topic of future research. Since ρ a
smooth function in r, it is very likely to have a low rank structure. Because of the already
revealed low rank structure of the A tensor at fixed orbital combinations, it seems worthwhile
to investigate this approach in the future.

µ ν tol=3 tol=4 tol=5

2 4 66 98 134
2 9 65 87 124
4 17 62 92 131
4 25 68 102 138
6 12 86 117 157
6 17 62 96 135
7 9 62 101 140
8 12 77 111 147
9 1 63 100 139
9 12 70 104 144
10 18 56 100 128
11 6 99 120 170
11 8 68 103 143
11 17 67 96 137

µ ν tol=3 tol=4 tol=5

15 2 72 105 147
13 7 69 103 146
17 1 50 77 113
17 6 63 93 138
17 10 58 91 126
17 25 65 84 113
17 19 63 88 120
18 25 60 88 130
19 1 60 93 135
22 9 64 99 133
23 22 69 88 113
24 16 61 93 133
24 17 57 84 116
25 1 51 78 115

tol=3 tol=4 tol=5
min 50 77 113
max 99 120 170

Table 3.4: Tensor train ranks for further index combinations. The rank was determined in a
compression with R = 30 and is not expected to increase for arbitrary large R due to the
saturation of the rank.

3.6 Approach 3: Using a non gaussian basis

In our first two approaches, we chose a gaussian basis to compute the integrals analytically.
Alternatively we could solve the bottleneck by reduce Nbas with the selection of a better basis.
This idea was originally proposed in [10]. Non-gaussian bases are not limited to a specific
functional dependency and can approximates the orbital structure better than the Gauss
functions.

In this case fewer basis elements are required to get precise results, but the integral in the
V tensor cannot be done analytically anymore. Integration now has to be done for every
fixed index pair numerically. This new bottleneck might be resolved by the QTCI-algorithm,
which constructs low rank tensor trains from the integrand and evaluates the integral by
tensor contraction numerically. This method requires a TT construction for every index pair,

35

Figure 3.16: Evaluation of the integral by using tensor networks

but since the basis is chosen to approximate the orbitals well, Nbas is rather low.

Our task has now shifted. Instead of finding a way to compress the orbital indices, we now
search a way to numerically evaluate the V integral fast for every fixed index combination.
The advantage of this method is, that now only grid indices are contracted. The basis
functions have a smooth form in r and therefore are expected to possess a low rank structure.

The main task of this method is to find a suitable basis, that approximates the true atomic
structure very well and features a low rank structure. Since the use of the gaussian basis is so
common in the DFT community, finding a non gaussian one is no easy task. Some programs,
such as as FHI-AIMS [2], feature a suitable set, but are not available open source.

The goal of this section is to demonstrate the potential of this method and show that further
research might be fruitful. For a working algorithm a suitable basis has to be chosen and
examined. Since we have already investigated the ranks of the A tensor, we will also present
the ranks of the B tensor. The gaussian basis is not suitable as an basis, since the whole
reason for this approach is to be able to use other functions. The Gauss functions are
nevertheless smooth basis functions and thus will share some properties with an arbitrary
non gaussian basis. Studying the ranks of the Gauss functions will hence give an impression
about the potential of this approach.

3.6.1 Grid

For a fixed index pairs µν and κλ not the whole molecular grid is required for the compression.
Because of the contraction with Bκλ, only its support contributes to the end result. An
optimal algorithm would therefore find for every κλ a fitting grid. For a better comparison
between the results with free and fixed orbital indices we nevertheless use again the whole
molecular grid for the contraction, as described in 3.4.4.

36

3.6.2 Compression results of B with fixed indices

We again have to fix the orbital pair κλ. Figure 3.17 shows the bond dimensions of the
compression of Bµν with µν = (1, 16) of H2O in the def2-svp basis. The plot is very similar
to the already performed compression of the A tensor.

Figure 3.17: Bond dimension of the TT at every chain position ℓ for multiple grid resolutions

To compare the two different functions, we also included the data of the A tensor compression
in table 3.5

A tensor
tol R χ t [s]

10 51 5.1
10−3 20 52 7.7

30 50 6.8
10 96 24.3

10−5 20 105 58.7
30 104 57.1

B tensor
tol R χ t [s]

10 45 1.3
10−3 20 5 6.1

30 50 4.6
10 100 9.5

10−5 20 113 87.9
30 113 83.8

Table 3.5: Comparison of A and B tensor for at fixed orbital (1,16)

Although the two tensors have different functional dependencies, both tensors achieve an
enormous compression and saturate at a rank of χ ≈ 110 for τ = 10−5. This encourages
our hypothesis that any arbitrary basis with a smooth dependency in r will have a low rank
structure. Our approach of choosing a non gaussian basis has therefore much potential to
accelerate the bottleneck.

37

3.7 Error Analysis

3.7.1 Error types and dependence in Ngrid

As we explained in the introduction to TCI, three approximations are made for the integration:

1. Limiting the integral on a finite volume

2. Discretizing the integral into a Riemann sum

3. Approximation of the function by interpolation

These three approximations lead to errors for the calculated integral value. The significance
of these errors and their dependence in Ngrid shall now be investigated. At first we limit the
integral to the finite volume:

I =

∫
RN

f(xa, . . . , xN)dNx

=

∫
V

f(x)dNx+

∫
V

f(x)dNx .

V represents here the finite integration volume and V its complement, i.e the rest of the space.
The error by neglecting the function tail ϵtail is independent of the number of grid points,
since we haven’t yet chosen a resolution. It is a constant offset between the convergence limit
of our TCI result and the true analytic integral value. If the decay behavior of the integrated
function is known, the value of ϵtail can be estimated.

Another error comes from the approximation of the integral by the Riemann sum:∫
V

f(x)dNx =
V

Ngrid

Ngrid∑
n=1

f(xn) + ϵgrid

=
V

Ngrid

∑
σ

fσ + ϵgrid .

The error of the Riemann sum converges as O(1/Ngrid).

Last but not least we do get an error by approximating the function in form of a tensor train

V

Ngrid

∑
σ

fσ =
V

Ngrid

∑
σ

(f̃σ +∆fσ)

=
V

Ngrid

∑
σ

f̃σ +
V

Ngrid

∑
σ

∆fσ

= ITCI + ϵapprox .

The total error resulting from the approximation of the function depends on the error
distribution ∆fσ of the grid points. The tolerance condition of the tensor trains construction

38

Grid bounds

x ∈ [−4.31, 7.43)
y ∈ [−3.43, 7.69)
z ∈ [−5.22, 5.86)

τ = 10−4

R = 10

Samples = 106

N0 = 998 123

Figure 3.18: Error distribution of ϵTCI. N0 denotes all points that deviate less than 10−10

from the original function.

delivers an upper bound for the error

|∆fσ|
fmax

≤ τ , (3.21)

where τ denotes the given tolerance. For a further analytic calculation the exact distribution
would be required but is not available to us. Also the distribution varies for distinct integrated
functions and also contains a random component as we shall see later. Nevertheless, we can
derive some general statements by investigating the error distribution of a gaussian basis
function.

We constructed a tensor train of the Bµν tensor at a fixed orbital value µν. Then we subtracted
the exact tensor value from the TCI approximation and divided it by the function maximum
for 106 random grid point samples

ϵTCI =
∆Bσ

Bmax

=
B̃(σ)−B(σ)

Bmax

. (3.22)

From equation (3.21) we get that ϵ ≤ τ . Figure 3.18 shows the distribution of the errors
for the orbital (1,3) at tolerance τ = 10−4 and grid resolution R = 10. The distribution is
plotted in the order of magnitude of the error times the sign. A value of 54 at the x position
-5 means for example that a negative deviation between 10−5 < 10−4 appeared 54 times
during the 106 samples. We only decided to plot deviations until the order of 10−10, since
smaller values do not contribute to the overall error.

While for most grid points the error of the approximation is negligible, some grid points
deviate with an error 0.1 · τ < ϵTCI < τ . The upper limit of the tolerance can clearly be seen

39

in the distribution. In rare cases we also get errors above the maximal allowed error. TCI
checks condition (3.21) only for the evaluated points. Since only a fraction of the whole grid
is evaluated, the approximation may be for some points worse than the given tolerance. The
number of such points is very small as can be seen in the distribution plot, but when they
appear, they significantly contribute to the error of the approximation.

One can also note that the distribution is not perfectly symmetric. We notate the number of
points with positive/negative errors with N+ and N−. These parameters contain the number
of points that contribute with an error of τ , so for our upper example of τ = 10−4 the points
with error 10−5 contribute with a factor of 0.1

N− = N−3 · 10 +N−4 +N−5 · 0.1 +N−6 · 0.01 (3.23)

N+ = N+3 · 10 +N+4 +N+5 · 0.1 +N+6 · 0.01 , (3.24)

where N±x notates the number of points with an error of the magnitude ±10−x.

The number of points with maximal error is proportional to the total number of grid points.
This can be easily seen in plot 3.19, which shows a plot of the number of grid points with
maximum error from a sample of 106 points. The number does not decrease in R, so we can
conclude that a constant fraction of the grid points has a maximal deviation

N± ≈ 12

106
Ngrid = 1.2 · 10−5 ·Ngrid . (3.25)

Figure 3.19: Asymmetry in the error distribution in 106 samples, that leads to an error of τ .

40

Also the asymmetry |N+ − N−| does not decrease for higher R, so we have to expect a
remaining error that is proportional to Ngrid:

|N+ −N−| ≈ a ·Ngrid (3.26)∑
σ

∆Bσ ≈ a ·Ngrid ·Bmax · τ , (3.27)

where we can fit a ≈ 8 · 10−6 from our data. Finally we can estimate

ϵapprox =
V

Ngrid

∑
σ

∆fσ ≈ V

Ngrid

· a ·Ngrid · fmax · τ (3.28)

= V · a · fmax · τ . (3.29)

Summarizing the upper derivation for the errors, we can approximate the analytic integral
value with TCI by

I = ITCI + ϵtail + ϵgrid + ϵapprox , (3.30)

where the errors have the following dependencies

ϵtail ∝ const (3.31)

ϵgrid ∝ 1

Ngrid

(3.32)

ϵapprox ∝ τ . (3.33)

3.7.2 Error discussion of V tensor

As we have seen in the last sections, the runtime and required memory depend heavily on
the input parameters i.e the tolerance τ and grid resolution R. In the case of a compressible
functions like the A and B tensors for fixed orbital indices, the runtime increases at a cheap
cost O(R) linear in R, but nevertheless it is advisable to find parameters that match the
required precision of the end result, to save time and resources.

After have we found the convergence behavior of the different error sources in the last section,
we now continue with a quantitative example. The integral values of the V tensor are
analytically known and therefore perfectly suited for an error analysis.

We chose to compare the results for the orbital combination (µν|κλ) = (1, 16|3, 17). Figure
3.20 shows the relative error |(I − ITCI)/I| of the analytic integral value I and our TCI
approximation ITCI for increasing R and different tolerances τ . For each R value the
contraction was performed five times and the minimal error was plotted. This avoids the
statistical errors of the algorithm (more details in the next section)

We can clearly see our derived dependencies of the different errors. For small resolutions R
the grid error ϵgrid dominates and converges with 1/Ngrid. After reaching a certain precision
the constant error of ϵapprox becomes relevant and the convergences in the accuracy terminates.

41

Figure 3.20: Absolute error |(I − ITCI)/I| for different R and τ

Since ϵapprox is proportional to τ , an increase in R does not change this error. A higher grid
resolution will thus not always result in better integral approximations. The dependency
of the constant convergence limit can clearly be seen in the graphic. We also notice two
anomalies. Tolerance τ = 10−6 and τ = 10−7 converge at the same level and τ = 10−2 even
has an higher accuracy then τ = 10−3. The reason for this strange behavior could lie in the
specific form of the function. Maybe the unprecise approximation with τ = 10−2 by chance
converges against a tensor train that eliminates approximation errors of the same magnitude.

Apart from that, the error convergence has the expected dependency in R and τ . By setting
a limit on the required precision, we can determine from this graphic the first tolerance that
achieves the limit and also find the minimum R that is required. This gives us a method to
determine appropriate input parameters for the TCI algorithm.

3.7.3 Statistical error

The TCI algorithm searches a given tensor for structure it can exploit, to construct a low
rank TT. The search for suitable pivots contains a random component, which makes the TCI
algorithm not completely deterministic. The randomness is obtained during the selection of
the global pivots.

The search is optimized to find the best pivots and deliver a good approximation. However in
rare cases, the random component of the global pivot search leads to an approximation other
than the best possible one. For these cases one obtains a higher error. This effect makes the
TCI results statistical. We investigated the variation over different compression runs again
for the orbital (µν|κλ) = (1, 16|3, 17) at tolerance τ = 10−6 and R = 11. We used a sample
of 1000 runs. The distribution of the errors can be seen in figure 3.21.

42

Grid bounds

x ∈ [−4.31, 7.43)
y ∈ [−3.43, 7.69)
z ∈ [−5.22, 5.86)

τ = 10−6

R = 11

Samples = 1000

N0 = 731

I = 0.019344

ϵstd = 0.002013

Figure 3.21: Statistical deviation of the TCI algorithm at orbital (1,16,3,17). I is the
analytical integral value that should be approximated. ϵstd is the standard error that is found
in most cases by the algorithm. N0 notates the number of runs that returned this value. The
first peak summarizes smaller deviations is therefore larger than N0.

Figure 3.22: Logarithmic plot of deviation |ϵ− ϵstd| of the statistical errors ϵ to the standard
error ϵstd. The graph does only include errors that are distinct from ϵstd.

We can clearly see that there is one value of the error that is found in most compressions.
We will refer to this value as the standard error. We also see that there are some runs that
deviate a lot from the standard error. But Figure 3.21 does not give a good overview over

43

small differences. We decided to plot the exponents again on a logarithmic scale. For this
example all deviating results have a higher absolute value than the most probable one, so the
deviations will only be positive.

Figure 3.22 shows the distribution of the statistical error again on logarithmic x scale. We can
see that many integration results differ only slightly from the standard error. The random
global pivot search has determined only alternative pivots that do not have much influence
on the integral value. But in rare cases the algorithm finds bad alternatives for important
pivots. These are the cases with an untypical large error.

Concluding form the set of errors as a whole, TCI returns in approximately 30% of the runs
a alternative result. For a precise error analysis multiple runs are hence required to find the
standard value.

44

Chapter 4

Transcorelated methods with TCI

As explained in the last chapter, the compression in the orbital indices is not large enough
to give the numerical TCI approach an advantage over the analytic computations. One
should focus on integrals that require numerical integration and hence, are more likely to be
improved by TCI.

During this project, we came in touch with the group of Prof. Dr. Ali Alavi, whose group
is working on transcorrelated methods [4]. The bottleneck of the calculation consists of a
three-dimensional integration, which is a potential use case of TCI.

4.1 Problem formulation

4.1.1 Theory

The details of the Jastrow factorization are out of focus of this bachelor thesis and can be
found in [4]. The following section is a summary of aspects of the paper that are relevant
to this thesis. The key idea of the method is to perform a similarity transformation of the
second quantised Hamiltonian with the Jastrow factors. Afterwards, high-accuracy solutions
of the electronic Schrödinger equation can be computed. The Hamiltonian contains, among
others, the term:

H̃ =
1

2

∑
pqrs

(V pq
rs −Kpq

rs)
∑
στ

a†pσa
†
qτasτarσ + . . . , (4.1)

where a†pσ(arpσ) are the spin-1/2 creation (annihilation) operators and V pq
rs = ⟨pq|r−1

12 |rs⟩ is
the two electron term of the Schrödinger equation. |rs⟩ is the combination of two molecule
orbitals ϕi(r) that are again represented by a linear combination of gaussian basis functions
φi(r)

|rs⟩ = ϕr(r1)ϕs(r2) (4.2)

ϕs(r) =
∑
n

φn(r) . (4.3)

45

46

The K tensor contains jastrow factor u(r1, r2), and consists itself out of three terms:

Kpq(1)
rs = ⟨pq| ∇1u(r1, r2) · ∇1 |rs⟩ (4.4)

Kpq(2)
rs = ⟨pq| ∇2

1u(r1, r2) |rs⟩ (4.5)

Kpq(3)
rs = ⟨pq| (∇1u(r1, r2))

2 |rs⟩ . (4.6)

The bottleneck of the Hamiltonian construction consists of the K tensor computation. After
integrating K

pq(2)
rs by parts and adding up all three terms, the tensor evaluates to:

Kpq
rs =

∫
dr2 ϕq(r2)ϕs(r2)

∫
dr1 gpr(r1, r2) (4.7)

gpr(r1, r2) = ∇1u(r1, r2) · ϕp(r1)∇1ϕr(r1) + (∇1u(r1, r2))
2 · ϕp(r1)ϕr(r1) . (4.8)

Both integrals can in this case not be evaluated analytically. One could compute the
six-dimensional integral by naive quadrature with a repeated three-dimensional grid:

Kpq
rs ≈

Ngrid∑
m1

Ngrid∑
m2

ϕq(rm2)ϕs(rm2) gpr(rm1, rm2)ω(rm1)ω(rm2) . (4.9)

where ω(rmi
) are the integration weights of the grid points. With Nbas basis functions, each

index p, q, r, s takes on values (1, . . . , Nbas) and the computation of the whole K tensor would
come at the cost of O(N2

gridN
4
bas).

However, this cost can be reduced by dividing the summation into two steps. To achieve this,
an intermediate object, the xcoulomb matrix, is created for every r2 and p, r

XCpr(r2) =

∫
dr1 gpr(r1, r2) . (4.10)

This requires O(N2
gridN

2
bas) steps. In a second step the summation over r2 is performed

in O(NgridN
4
bas) steps. The number of basis functions is with Nbas ≈ O(101) rather small,

compared to the required grid Ngrid ≈ O(104). Higher precision of the integral approximation
requires even more grid points. Therefore the bottleneck of K tensor evaluation lies in the
first step (∝ N2

grid).

4.1.2 Approaches to the bottleneck

With the QTCI algorithm, this bottleneck could possibly be improved. If one achieves to
construct for every combination of fixed r2, p, r a TT with low bond dimension χ from the
the integrand

gpr(r1, r2)
p,r,r2 fixed

−−−−−−→ f(r1) , (4.11)

then the first sum could be performed at a cost of O(χ2Ngrid log(Ngrid)N
2
bas) by simple tensor

contraction, which is exponentially cheaper than the integration by quadrature. One should

47

nevertheless keep in mind that the cheap integration requires the preliminary construction of
the TT at the cost of O(χ3 log(Ngrid)). Whether TCI can bring an advantage thus depends
strongly on the rank of the integrated function.

Note that we will further refer with f to the integrand with fixed orbitals and r2 and with
g to the integrand in both variables. Both f and g refer to the same function but with a
different number of free variables. If we do not explicitly write down indices for f or g, this
implies they are fixed.

Our task is to determine the rank of f(r1) for a significant amount of index combinations
r2, q, s and compare the number of function evaluations that are required to construct the
tensor train, with the number of grid points the quadrature requires to achieve the same
result.

4.2 Implementation

Before determining the necessary precision of the TCI compression, we want to comment on
a few implementation details and get a feeling for the integrated functions f(r1) by looking
at their plots.

The complete energy calculation for a molecule with a given basis is usually performed in
Fortran with the package TCHint. Recently, a Python wrapper was developed, which allows
the important Fortran subroutines to be called directly with Python.

The integration by quadrature utilises an atom-centered grid built from Treutler-Ahlrichs
radial grids and Lebedev angular grids. Such types of grids are commonly used in the field
of DFT and are optimized for integration. They contain comparably few grid points since
the knowledge about the basis functions is used to directly choose appropriate coordinates.
The grids are available via the python package PySCF [19], which then redirects the grid as
an input to the Fortran code. Further, the basis functions ϕi and their gradients are also
evaluated by the package and passed to TCInt.

The second property requires PySCF, and hence Python, inevitable for this project, even
though we do not use the DFT grids. For this research, it is necessary to pass data between
three different programming languages: Fortran, Python and Julia, in which our QTCI
library is encoded. We make the function fpr(r1, r2) accessible to Julia by calling the Python
wrapper with the Julia package PyCall. The Python wrapper then generates the input data
with PySCF and passes it to Fortran, which then returns the function value of the integrand.
This routine currently leads to a costly function evaluation of approx. 1ms per function call
and could be optimized a lot, but since we are only interested in determining the number of
function calls that are necessary to construct a TT, we worked with the non-optimal code.

QTCI does not rely on an evenly spaced cartesian grid and can be applied to any curvilinear
coordinate system as long as the number of grid points equals a multiple of two. We only
need a bijection between a bit vector of arbitrary length and a grid in 3D space. For a
cartesian grid, this bijection is given by the quantics method, but for the DFT grids, it is
non-trivial. The bijection should further be smooth, i.e. the bits should contain information
about the 3D location of the grid point. Just mapping the bits to a random sequence of the

48

grid points would eliminate the structure of a function and therefore lead to full rank tensors.

Because of this aspect we conducted our analysis with the most simple approach, the cartesian
grid. As a result, the TCI algorithm receives no information about the structure of the
integrand even though this information is a priori available.

4.2.1 Visualisation of integrand

The transcorrelated method is specialised in computing high-accuracy results. This expensive
algorithm is mainly applied to small molecules with only a few basis elements. For our
analysis, we used a single beryllium atom with five basis functions.

The integrand fpr has no intuitive shape since it consists of two terms, each containing the
derivative of the Jastrow factor ∇1u(r1, r2). The Jastrow is only available numerically to
us, by the program implementation. This makes it hard to get a feeling for the integrand
function.

Also, plotting the integrand is not trivial since it is a six-dimensional function. To get at
least a small impression of the function, we plotted all orbital combinations at the point
r2 = [0., 0., 0.]. Even though the K tensor is not symmetric, a few symmetries can be
recognized, as can be seen in table 4.1.

All of the functions resemble the atomic orbitals we have seen earlier. The letters s, p, d
denote the atomic shells the functions correspond to. All functions of a given block in the
xcoulomb matrix represent the same atomic orbital but with different rotations.

Further we noticed a symmetry in the p rows and columns. The p row at the upper right
and the p row at the upper left seem to have the same functional dependency. This holds
for both p rows/columns. This means that for these elements we indeed have the symmetry
(a,b) = (b,a). This symmetry also holds for the d block. Although a lot of matrix elements
seem to be symmetric, we see at the example of (1,2) and (2,1) that the matrix as a whole is
asymmetric. By looking at the functions definition (4.8), we expected this asymmetry since
the gradiant is only applied one basis function.

1 2 3 4 5

1 S S P

2 S S P

3

4 P P D

5

Table 4.1: Symmetries in the Xcoulomb matrix at the point r2 = [0, 0, 0]. The letter notates
the atomic orbital the function does resemble. Matrix elements with the same label (for
example P1) have (almost) the same shape

49

We plotted all functions of the same shell on the x-axis (where we picked for functions with
multiple rotations the one lying on the x-axis). The x range varies for the different shells so
all features can be seen. Note the different expansions of the shells. Also, a 3D plot of the
orbitals can be seen below the axis plot. The 3D plot shows (as for the Gauss orbitals) all
function values in the range 0.2 · fmax ≤ f(r1) ≤ fmax. The orbitals are plotted on a cubic
volume, centred around the kernel.

We present the plots in the order p, s, d since s and d require a whole page.

p like Jastrow orbitals

Figure 4.1: Plots of integrand functions gpr(r1, r2) with p orbital resemblance. The 3D Plot
shows orbital (1,3). The maximum is not reached, because for 3D plots, the resolution had
to be chosen small.

50

s like Jastrow orbitals

Figure 4.2: Plots of integrand functions fpr(r1) with s orbital resemblance at the position
r2 = [0, 0, 0]. The 3D Plot shows f11. The maximum is not reached, because for 3D plots,
the resolution had to be chosen small. One should note the anti-symmetry in (1,2) and (2,1).
All shown orbitals are spherical symmetric

51

d like Jastrow orbitals

Figure 4.3: Plots of integrand functions gpr(r1, r2) with d orbital resemblance. The 3D Plots
show orbital (3,3) (top) and orbital (3,4) (bottom).

52

r2 = [0, 0, 0] r2 = [0.2, 0, 0] r2 = [10.0, 0, 0]

Figure 4.4: X-axis plot of integrand at different positions of r2

One should keep in mind that all these plots only show the six-dimensional function g(r1, r2)
at the specific point r2 = [0, 0, 0]. For a different value of r2 the functions might have a totally
different shape. Table 4.4 shows three orbitals during a transition of r2 on the x-axis. The
shape and the integral over the function changes noticeably during the transition. Also, a
cusp appears at the position r1 = r2.

53

For large values of r2 the graph does not vanish. The function reaches a static form and does
not change anymore. We therefore assume that the integrand consists of the static function,
we see for large distances between r1 and r2, added on an additional function that vanishes
for large values of |r1 − r2|. For further statements about the function’s properties, we would
require an analytic formula, which is currently not available to us.

4.3 Error Analysis

The goal of this chapter is to test if QTCI can be a tool that is able to accelerate the existing
Jastrow code. The given code sets a minimum limit on the required precision of the integral
in the xcoulomb matrix, which our TCI approach has to fulfil. It is advisable to determine
the maximum error before we start with the research so that we will not create tensor trains
that cannot reach the required precision or overshoot it. For the error analysis we use the
graphical method to search suitable input parameters: first, we find the maximum error that
is still acceptable and then determine the necessary grid resolution R and tolerance τ a TT
needs for this accuracy, by plotting relative error for different R and τ .

4.3.1 Required accuracy

The maximum error can be obtained from the original code. The xcoulomb matrix is here
computed by quadrature and its accuracy heavily depends on the number of grid points,
which is fixed by a parameter called ’grid level’ (simply notated as ’lvl’). The higher the level,
the higher the precision of the xcoulomb matrix and hence the end results. The following
table shows Ngrid for our beryllium example at different grid levels.

lvl Ngrid

0 1 296
1 7 760
2 18 120
3 22 656
4 53 104
5 80 856

Table 4.2: Grid points for single beryllium atom at different grid levels

Typically, the computations are performed at lvl=2. The exact result can be obtained by
setting the grid resolution to an unnecessary high value of lvl=5. Then the absolute and
relative errors can be calculated by comparing the lvl=2 and lvl=5 results. Note that since
we calculate XCpr(r2), all results are only valid for a fixed value of r2. We can choose an
arbitrary point, so we selected r2 = [0, 0, 0] for which we already saw the corresponding plots.

Table 4.3 shows the ’literature values’ of the computation with lvl=5 and table 4.4 the
relative errors ϵ = |lvl2− lvl5|/lvl5. Here, we can see more clearly that no perfect symmetry
in the functions is given. Elements where p = 5 or r = 5 have an absolute value close to
zero (compared with the rest of the matrix and the functions maxima). The numerical

54

p
r

1 2 3 4 5

1 1.3e-01 -2.7e-01 7.1e-05 7.1e-05 1.4e-17
2 2.3e-01 9.5e-03 1.9e-05 1.9e-05 9.5e-18
3 -4.0e-05 -1.7e-05 8.6e-03 4.1e-09 5.9e-19
4 -4.0e-05 -1.7e-05 4.1e-09 8.6e-03 5.5e-19
5 5.0e-17 -2.6e-17 -3.9e-19 -1.5e-19 8.6e-03

Table 4.3: Literature values (lvl=5) of xcoulomb matrix at r2 = [0,0,0]

p
r

1 2 3 4 5

1 6.1e-04 1.6e-04 3.1e-05 3.1e-05 1.8e+00
2 4.0e-05 2.3e-04 1.0e-03 1.0e-03 3.7e-01
3 6.2e-05 5.4e-05 1.5e-04 9.9e-03 8.2e-01
4 6.2e-05 5.4e-05 9.9e-03 1.5e-04 7.1e-01
5 1.5e+00 6.2e-01 1.0e+00 2.1e+00 1.5e-04

Table 4.4: Relative error ϵ = |lvl2− lvl5|/lvl5 of xcoulomb matrix at r2 = [0,0,0]

p
r

1 2 3 4 5

1 6.1e-04 1.6e-04 1.9e-04 5.4e+00 7.3e+00
2 3.8e-05 2.1e-04 6.0e-04 9.9e-01 1.3e+00
3 2.1e-04 1.1e-04 2.0e-04 2.0e+00 5.0e+01
4 3.0e-01 1.1e+00 1.5e-01 1.7e-04 1.2e+00
5 1.4e+00 1.1e+00 1.1e+01 3.3e-01 1.7e-04

Table 4.5: Relative error ϵ = |lvl2− lvl5|/lvl5 of xcoulomb matrix at r2 = [0.1,0,0]

computation requires the elimination of positive and negative values, which is numerically
unstable. Although lvl=2 achieves results in the same order of magnitude as lvl=5, this
numerical noise leads to very high relative errors of, for example, 210% for the orbitals (5,4).
We conclude that for matrix elements that are practically zero, results in the same order of
magnitude are sufficient.

All other matrix elements have a relative error in the range 10−5 < ϵ < 10−3. This limits
the required order of magnitude for the relative precision of a xcoulomb matrix element. We
recall that all the data only holds for the point r2 = [0, 0, 0]. To confirm if this result can be
generalised, we performed the same process for another point r2 = [0.1, 0, 0]. Table 4.5 has a
remarkable resemblance with 4.4. Two points do not allow us to make a general conclusion
but encourage us in our decision to aim at a precision of ≈ 10−4.

55

Figure 4.5: Relative error ϵ = (TCI - lvl5)/lvl5 of the TCI approximation of the xcoulomb
matrix for the orbital (1,1) at r2 = [0, 0, 0]. The error is shown in dependency of R and τ .

4.3.2 TCI error

We now try to reproduce the exact results of lvl=5 as well as possible with TCI by first
constructing for fixed r2, p, r a tensor train from the integrand f(r1) and then summing it
over all indices. We chose again r2 = [0, 0, 0] and p, r = (1, 1) and plotted the relative error

ϵ =
|TCI− lvl5|

lvl5
(4.12)

As with the Gauss function, one can see that the error converges at a level that depends
on the tolerance τ of the approximation. The first tolerance value for which the required
precision of 10−4 < 10−3 is achieved is τ = 10−4. For small R, the grid level dominated, while
above R ≈ 13, the tolerance is the dominating uncertainty.

We also notice that the error varies for τ = 10−4 in a whole order of magnitude, while for
all other tolerances the relative error converges against a constant value. This is due to the
asymmetry in the error distribution of the tensor train approximation. For some values of R
TCI returns a more symmetric distribution and the errors cancel each other. This leads to a
fluctuation of the approximation error and hence the total relative error. This fluctuation
becomes more dominant for lower values of τ since more points have a maximal deviation
and hence, the asymmetry can be larger.

The variation of the relative error results in relative errors in high R that are worse than our
fixed limit of 10−4. Since this limit was only a guideline this is behavior is not problematic.
The variation remains in the acceptable range of 10−5 < 10−3. This is the same range we
obtained with the integration by quadrature in table 4.4.

56

From figure 4.5, we conclude that τ = 10−4 and R = 13 are sufficient to achieve the same
precision as integration by quadrature at lvl=2. These parameters could be further optimized
since the tolerance can take a continuous value and is not limited to powers of ten. This
optimization is too sophisticated at this point and would be the last step before a potential
application of the code.

Lower values of τ would theoretically also fulfil the accuracy limit, but these tensor trains do
not converge faster in R than τ = 10−4. In conclusion, one could not reduce R with more
restrictive tolerances but would obtain a higher rank of the TT.

Having determined the input parameters for the QTCI algorithm, we continue to study the
properties of the created tensor trains. By comparing the function evaluations of the tensor
train creation and the quadrature integration, we can conclude if the use of QTCI may be
fruitful for the transcorrelated method.

4.4 Fixed Compression

The question of interest is whether we can reduce the number of function evaluations by using
QTCI integration. The key idea of QTCI is to evaluate the function on grid points until the
function structure is completely revealed. From that point on, more function evaluations do
not contribute new information, and the algorithm stops. This also explains why the tensor
ranks saturate at a specific point. If a higher grid resolution would not reveal new structure
and make already known peaks or features smoother, no new information is added, and the
algorithm does not need more function evaluations to capture the whole structure, which
leads to an approximately constant amount of function evaluations for an increasing grid
resolution. Figure 4.6 demonstrates this concept

Figure 4.6: Saturation of the function evaluations in R at the example of (1,1) with τ = 10−4

57

Tolerance: τ = 10−4

Side length: a = 3.32

R Neval

10 7.6 · 106
20 15.3 · 106
30 15.6 · 106

R χ t [h]
10 381 0.39
20 400 0.83
30 411 0.95

Tolerance: τ = 10−5

Side length: a = 3.32

R Neval

10 11.3 · 106
20 88.1 · 106
30 102.8 · 106

R χ t [h]
10 512 0.82
20 1426 7.51
30 1436 5.25

Figure 4.7: Bond dimension of the TT at every chain position ℓ for tolerances 10−4 and 10−3.

To this end, for functions with a low rank tensor structure, only a fraction of the total grid
points must be evaluated. The hope is that the integrand of the xcoulomb matrix has a low
enough rank, such that constructing a tensor train requires way fewer function calls than the
direct summation in the quadrature.

At first, we consider again our well-known orbital (1,1) at r2 = [0, 0, 0]. For the required
precision of < 10−4, we need a tolerance τ = 10−4, as we concluded from our error analysis.
We used a cubic grid with a side length of a = 3.32 centred around the origin. Figure 4.7
illustrates that the rank of the TT indeed saturates quickly at χ ≈ 410 for τ = 10−4, and the
information content of the tensor is strongly compressible. Although the 8.1 · 106 function
evaluations are few compared to the grid size of 1.0 · 109, the construction of the TT requires

58

(p, r) a χ Neval [10
6] t [h] ϵabs ϵrel

(1,2) 2.44 643 21.1 1.6 1.7e-4 6.4e-5
(1,3) 4.96 460 16.8 0.9 7.0e-5 1.0
(2,1) 4.92 210 12.5 0.7 1.3e-5 6.0e-6
(2,2) 1.16 288 12.3 0.9 4.5e-3 0.5
(2,4) 3.8 385 22.5 1.1 2.2e-5 1.3
(3,1) 5.0 503 19.5 1.4 3.8e-5 0.9
(3,3) 5.64 476 50.0 2.6 7.8e-7 9.0e-5
(5,3) 5.64 582 48.7 2.4 2.9e-10 7.6e+8
(5,5) 5.64 479 41.3 2.3 7.7e-7 8.9e-5

Table 4.6: Compression results for further index combinations. The compression was per-
formed on a cubic volume with side length a, centred around the origin.

way more evaluations than a direct summation over an optimized DFT grid, which only
requires 18 120 grid points. The hope of our approach was that QTCI would require less
function evaluations than the quadrature. We conclude form our data that this is for the
investigated example not the case.

We want to check if these results are also valid for other orbitals. Table 4.6 lists the data
from the respective compression with R = 14 and τ = 10−4. We want to mention that
these compressions were not performed with smoothed functions (see appendix) since the
interpolation has to be optimized for every function individually and takes much time. We
therefore used the original formula with the zero plateau. The end results are nevertheless
not affected by this change since the grid resolution of R = 14 is not high enough to resolve
the tiny structures in the centre.

At first we notice that the relative error varies for different orbitals. This originates in the
absolute error, which is for all functions approximately of the same order of magnitude.
Integral values of almost zero can not be resolved with the given tolerance.

Last but not least, for all examined orbitals, the ranks χ and function evaluations Neval

are of the same magnitude. We can conclude from these data that 10 - 40 million function
evaluations are required to learn a TT of sufficient accuracy. This confirms our conclusion that
TCI cannot outperform the integration by quadrature, which requires only 18 120 function
evaluations on an optimized DFT grid.

4.5 Compression in both variables

For completeness, we also tried to compress the integrand in both variables. The orbital vari-
ables were again fixed, but instead of a three-dimensional function, we obtain six dimensions

fµν(r1, r2)
µν fixed−→ f(r1, r2) . (4.13)

59

Instead of compressing only one grid variable, we search for structure in both of them.
Although our main task was to evaluate the xcoulomb matrix fast for every given r2, it is
worth trying a different approach. We couldn’t accelerate the computation with constructing
a TT for each single r2. The overhead of Ngrid repeated TCI compressions is simply too high.
By including r2 into the algorithm, we only need one single TT construction in both variables
and can possibly gain an advantage over the repeated overhead. Having a TT in r1 and r2,
both integrals of the K tensor can be simultaneously evaluated with tensor contraction.

Grid bounds

x ∈ [−1.0, 1.0]
y ∈ [−1.0, 1.0]
z ∈ [−1.0, 1.0]

Tolerance: τ = 10−3

mode χ t [h]
worst. 4096 -
sep. 1657 1.3
inter. 1372 2.4
shift. 745 1.8

Figure 4.8: Compression in both variables r1 and r2 for the orbital (1,1) with tolerance 10−3

and R = 4. Since both variables are resolved with R = 4, we get a tensor of degree L = 8.
The labels refer to the used ordering of the indices. The grid is used for r1 as well as r2. For
’shifted’, the vector [10−6, 0, 0] is added to the grid.

The compression results can be seen in figure 4.8. The three different lines denote different
index orderings. The ordering of the indices can have a huge impact on the rank of the
resulting tensor trains, so it is worth to try different index combinations. In the first approach
with natural ordering, we simply added all bits for r2 after the bits of r1, while for the
interleaved ordering, we pair all indices that represent the same scale. This concept is
depicted graphically in figure 4.9.

Figure 4.9: Concept of separated and interleaved index ordering

The ’shifted’ approach targets the already mentioned problem of the zero plateau (see
Appendix). If one uses the same grid for r1 and r2, the function will be evaluated multiple
times at the problematic point r1 = r2. By shifting the grids relative to each other with the
vector [10−6, 0, 0], the variables are never evaluated at the same point, and one obtains the

60

smooth version of the functions.

All three approaches achieve a small compression. While the natural and the interleaved
ordering return approximately the same rank, the shifted approach has the lowest rank. We
can conclude that the ”zero plateau” problem influences the rank. Although we could achieve
a compression, the ranks are far to large to achieve a competitive algorithm. Already at these
low parameters R = 4 and tol = 10−3, the bond dimensions are in the order of a thousand.
We also tried to compress the function with R = 5 but the calculation did not finish during
our time limit of 24 hours. Therefore, we expect higher parameters bond dimensions in the
order of multiple thousands. For required grid resolution R = 14, this approach will therefore
not bring the desired acceleration.

Chapter 5

Conclusion

In this bachelor thesis we worked on two similar but unrelated problems. To this end we will
split our conclusion in two sections.

The first problem we investigated was the coulomb matrix in density functional field theory
calculations. The main problem of the computation of the matrix elements was the large
number of basis functions that are needed for a precise approximation of the molecule orbitals.
The usage of gaussian basis functions allows us to compute the integrals analytically, but to
not solve the problem of large basis sets.

In our first approach we aimed to compress the tensors in the orbital index and therefore
accelerate the summation over all orbitals. Unfortunately, the tensor was not compressible,
which implies that many pivots are needed to find a precise approximation. TCI can therefore
not result in an acceleration through a simple tensor decomposition.

A further compression of two instead of four orbital indices also returned ranks close to
the worstcase. The orbital indices represent functions of various shapes and thus possess a
random structure that gives the tensor a high rank. From these results, we can conclude that
a compression of orbital indices is not advisable.

We then moved to another approach that makes use of the properties of a gaussian basis. By
defining the electron density ρ and the A tensor, we presented another approach to calculating
coulomb matrix elements. A compression of A with fixed orbital indices returned tensor
trains with a rank of O(102) and thus revealed the low rank structure of the tensor. This is a
promising result and shows the potential of the method. Future research may determine the
rank of the electron density ρ and decide the applicability of the approach.

Last but not least, we mentioned that the number of basis functions could drastically be
reduced by using a non-gaussian basis. The integrals can in this case be computed with
QTCI. This requires a basis with low rank elements. By comparing tensor trains of the A
tensor and the gaussian basis with fixed orbital indices, we showed that any arbitrary basis
with a smooth dependency in r will likely have such a low rank structure. Finding a suitable
basis for this approach will be the task of future research.

In the second part of the thesis, we investigated the xcoulomb matrix in the transcorrelated
methods. The QTCI algorithm achieves an enormous compression of the integrand in one

61

62

variable. All the integrand functions f(r1) indeed have a low rank structure since they
saturate at a rank χ ≈ 400. The demand for the low rank structure has thus been fulfilled.
So why is the method so far away from a practical application?

The problem reduces to mainly one simple point: the integration by quadrature with optimized
DFT grids requires very few grid points. Density functional theory is a well established
and highly optimized method that has been worked on for multiple decades. While the
integral can be computed by quadrature with only 18 120 grid points to a sufficient precision,
TCI requires 10-40 million function calls to learn a TT of the same accuracy. To this end,
constructing a TT to compute the integral is currently highly inefficient.

TCI tries to choose appropriate grid points (pivots) by learning the structure of an unknown
function. In quantum chemistry, the structure of the examined functions is well known and
directly used to choose an optimal grid. The grid which TCI tries to find by sweeping through
the function tensor is therefore known a priori. By choosing a cartesian grid, we do not use
this knowledge, which in the end leads to way more function evaluations than the quadrature
would require.

However, there is a way to use the available knowledge in the TCI methods well. As explained
earlier, TCI is not limited to the cartesian grid but could use any arbitrary grid as long as
Ngrid equals a power of two to use the bit representation. For a single atom, a DFT grid
could easily be implemented since it is in this case equivalent to spherical coordinates with a
certain spacing in the radial direction (the density of grid points is higher near the kernel and
lower farther outside). With such a grid, TCI could try to find all important pivots among
the same points that are used for the quadrature. The use of the available knowledge could
be the advantage TCI needs to outperform the quadrature.

But not all problems might be solved with another grid. If one would convert the 18 120
points at lvl=2 into the bit scale, this would be equivalent to a quantics grid with exponent
R = 4.7. At such small grid resolutions, the rank of the tensor will probably be close to the
worst case of 512. With only so few grid points, almost all of them are important to capture
the features of a function, so whether the number of function evaluations can be reduced is
questionable.

The overhead of constructing the tensor train makes TCI probably only usable, when enormous
grid sizes are required. This would lead us to larger molecules with tens or hundreds of
atoms. But the transcorelated methods are only applied for smaller molecules due to their
high computation cost. Further, in the case of molecules with more than one atom, a smooth
bijection between a non-cartesian grid and the quantics representation is again non-trivial to
find.

Concluding all named aspects, TCI will without the use of optimized DFT grids not outperform
state of the art methods. Whether or not the usage of curvilinear grids will change this
statement may be the topic of future research.

Appendix A

Zero plateau at r1 = r2

The integrand functions f(r1) from the pytchint package have a property that hinders
the integration with TCI. The functions appear to be smooth in r1 without any cusps or
discontinuous points. If we look for example at the orbital (1,1) with r2 = [0, 0, 0], we would
expect a value unequal zero at r1 = [0, 0, 0] by continuity. But if we evaluate the point
r1 = r2 = [0, 0, 0], we obtain a function value of zero. The function not only vanishes at
r1 = r2, but also in a small ball with radius r ≈ 10−6. This unexpected behaviour is a general
feature of the functions fij(r1, r2). For r1 = r2 we get a function value of zero for all orbital
combinations. This property is intended by the package developers but is undesired for our
TCI integration approach. Since the functions are never evaluated at the kernel on DFT grids,
the zero region was never a problem. Further, we have to mention that it is not intended to
neglect the volume at r1 = r2 in the integral. The contribution of this tiny area is so small
that it does not appear as an integral error.

If we apply TCI to the function, this property also remains unnoticed until the grid resolution

Figure A.1: Rank of TT for orbital (1,1) and r2 = [0, 0, 0] with and without a smooth kernel

63

64

is high enough to resolve the plateau in the centre. The unexpected discontinuity leads to an
increase of the rank. New pivots must be added to include the structure in the approximation.
While the new feature does not affect the precision of the integral, the bond dimensions and
hence the runtime increase significantly. Figure A.1 shows the orbital (1,1) with and without
the discontinuity.

We can simply resolve this problem by interpolating the function in the affected region. The
(1,1) orbital has a practical constant slope on the scale of the zero plateau. By extending this
slope over the area. This eliminates the new structure, created by the zero values.

Note that this interpolation is only valid for the (1,1) orbital. It is not possible to find a
general solution. One has to find for every function a unique suitable extension.

Figure A.2: Zero plateau and smoothed function

65

66

Bibliography

[1] Gustavo J. R. Aroeira, Matthew M. Davis, Justin M. Turney, and Henry F. III Schaefer.
“Fermi.jl: A Modern Design for Quantum Chemistry”. In: Journal of Chemical Theory
and Computation 18.2 (2022). PMID: 34978451, pp. 677–686. doi: 10.1021/acs.
jctc.1c00719. eprint: https://doi.org/10.1021/acs.jctc.1c00719. url: https:
//doi.org/10.1021/acs.jctc.1c00719.

[2] Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu, Ville Havu, Xinguo Ren, Karsten
Reuter, and Matthias Scheffler. “Ab initio molecular simulations with numeric atom-
centered orbitals”. In: Computer Physics Communications 180.11 (2009), pp. 2175–
2196. issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.2009.06.022. url:
https://www.sciencedirect.com/science/article/pii/S0010465509002033.

[3] Asbjörn Manfred Burow. “Methoden zur Beschreibung von chemischen Strukturen be-
liebiger Dimensionalität mit der Dichtefunktionaltheorie unter periodischen Randbedin-
gungen”. PhD thesis. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät I, 2011. doi: http://dx.doi.org/10.18452/16415.

[4] Aron J. Cohen, Hongjun Luo, Kai Guther, Werner Dobrautz, David P. Tew, and Ali
Alavi. “Similarity transformation of the electronic Schrödinger equation via Jastrow
factorization”. In: The Journal of Chemical Physics 151.6 (Aug. 2019). issn: 1089-7690.
doi: 10.1063/1.5116024. url: http://dx.doi.org/10.1063/1.5116024.

[5] David Feller. “The role of databases in support of computational chemistry calcula-
tions”. In: J. Comput. Chem. 17 (1996), pp. 1571–1586. doi: 10.1002/(SICI)1096-
987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P.

[6] Yuriel Núñez Fernández, Marc K. Ritter, Matthieu Jeannin, Jheng-Wei Li, Thomas
Kloss, Thibaud Louvet, Satoshi Terasaki, Olivier Parcollet, Jan von Delft, Hiroshi
Shinaoka, and Xavier Waintal. Learning tensor networks with tensor cross interpolation:
new algorithms and libraries. 2024. arXiv: 2407.02454 [physics.comp-ph]. url:
https://arxiv.org/abs/2407.02454.

[7] W. J. Hehre, R. F. Stewart, and J. A. Pople. “Self-Consistent Molecular-Orbital
Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals”. In: J. Chem.
Phys. 51 (1969), pp. 2657–2664. doi: 10.1063/1.1672392.

[8] Christof Holzer. “An improved seminumerical Coulomb and exchange algorithm for
properties and excited states in modern density functional theory”. In: The Journal
of Chemical Physics 153.18 (Nov. 2020), p. 184115. issn: 0021-9606. doi: 10.1063/
5.0022755. eprint: https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/

67

https://doi.org/10.1021/acs.jctc.1c00719
https://doi.org/10.1021/acs.jctc.1c00719
https://doi.org/10.1021/acs.jctc.1c00719
https://doi.org/10.1021/acs.jctc.1c00719
https://doi.org/10.1021/acs.jctc.1c00719
https://doi.org/https://doi.org/10.1016/j.cpc.2009.06.022
https://www.sciencedirect.com/science/article/pii/S0010465509002033
https://doi.org/http://dx.doi.org/10.18452/16415
https://doi.org/10.1063/1.5116024
http://dx.doi.org/10.1063/1.5116024
https://doi.org/10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
https://arxiv.org/abs/2407.02454
https://arxiv.org/abs/2407.02454
https://doi.org/10.1063/1.1672392
https://doi.org/10.1063/5.0022755
https://doi.org/10.1063/5.0022755
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0022755/15580656/184115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0022755/15580656/184115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0022755/15580656/184115_1_online.pdf

68

5.0022755/15580656/184115_1_online.pdf. url: https://doi.org/10.1063/5.
0022755.

[9] Hirone Ishida, Natsuki Okada, Shintaro Hoshino, and Hiroshi Shinaoka. Low-rank
quantics tensor train representations of Feynman diagrams for multiorbital electron-
phonon models. 2024. arXiv: 2405.06440 [cond-mat.str-el]. url: https://arxiv.
org/abs/2405.06440.

[10] Nicolas Jolly, Yuriel Núñez Fernández, and Xavier Waintal. Tensorized orbitals for
computational chemistry. 2023. arXiv: 2308.03508 [cond-mat.str-el]. url: https:
//arxiv.org/abs/2308.03508.

[11] W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange and Correla-
tion Effects”. In: Phys. Rev. 140 (4A Nov. 1965), A1133–A1138. doi: 10.1103/PhysRev.
140.A1133. url: https://link.aps.org/doi/10.1103/PhysRev.140.A1133.

[12] Jörg Kussmann, Matthias Beer, and Christian Ochsenfeld. “Linear-scaling self-consistent
field methods for large molecules”. In: WIREs Computational Molecular Science 3.6
(2013), pp. 614–636. doi: https://doi.org/10.1002/wcms.1138. eprint: https:
//wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1138. url: https:
//wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1138.

[13] Benjamin P. Pritchard, Doaa Altarawy, Brett Didier, Tara D. Gibsom, and Theresa
L. Windus. “A New Basis Set Exchange: An Open, Up-to-date Resource for the
Molecular Sciences Community”. In: J. Chem. Inf. Model. 59 (2019), pp. 4814–4820.
doi: 10.1021/acs.jcim.9b00725.

[14] Marc K. Ritter, Yuriel Núñez Fernández, Markus Wallerberger, Jan von Delft, Hiroshi
Shinaoka, and Xavier Waintal. “Quantics Tensor Cross Interpolation for High-Resolution
Parsimonious Representations of Multivariate Functions”. In: Physical Review Letters
132.5 (Jan. 2024). issn: 1079-7114. doi: 10.1103/physrevlett.132.056501. url:
http://dx.doi.org/10.1103/PhysRevLett.132.056501.

[15] Kohtaroh Sakaue, Hiroshi Shinaoka, and Rihito Sakurai. Learning tensor trains from
noisy functions with application to quantum simulation. 2024. arXiv: 2405.12730
[quant-ph]. url: https://arxiv.org/abs/2405.12730.

[16] Rihito Sakurai, Haruto Takahashi, and Koichi Miyamoto. Learning parameter depen-
dence for Fourier-based option pricing with tensor trains. 2024. arXiv: 2405.00701
[q-fin.CP]. url: https://arxiv.org/abs/2405.00701.

[17] Dmitry V. Savostyanov. “Quasioptimality of maximum-volume cross interpolation
of tensors”. In: Linear Algebra and its Applications 458 (2014), pp. 217–244. issn:
0024-3795. doi: https://doi.org/10.1016/j.laa.2014.06.006. url: https:
//www.sciencedirect.com/science/article/pii/S0024379514003711.

[18] Karen L. Schuchardt, Brett T. Didier, Todd Elsethagen, Lisong Sun, Vidhya Gurumoor-
thi, Jared Chase, Jun Li, and Theresa L. Windus. “Basis Set Exchange: A Community
Database for Computational Sciences”. In: J. Chem. Inf. Model. 47 (2007), pp. 1045–
1052. doi: 10.1021/ci600510j.

https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0022755/15580656/184115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0022755/15580656/184115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0022755/15580656/184115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0022755/15580656/184115_1_online.pdf
https://doi.org/10.1063/5.0022755
https://doi.org/10.1063/5.0022755
https://arxiv.org/abs/2405.06440
https://arxiv.org/abs/2405.06440
https://arxiv.org/abs/2405.06440
https://arxiv.org/abs/2308.03508
https://arxiv.org/abs/2308.03508
https://arxiv.org/abs/2308.03508
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
https://doi.org/https://doi.org/10.1002/wcms.1138
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1138
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1138
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1138
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1138
https://doi.org/10.1021/acs.jcim.9b00725
https://doi.org/10.1103/physrevlett.132.056501
http://dx.doi.org/10.1103/PhysRevLett.132.056501
https://arxiv.org/abs/2405.12730
https://arxiv.org/abs/2405.12730
https://arxiv.org/abs/2405.12730
https://arxiv.org/abs/2405.00701
https://arxiv.org/abs/2405.00701
https://arxiv.org/abs/2405.00701
https://doi.org/https://doi.org/10.1016/j.laa.2014.06.006
https://www.sciencedirect.com/science/article/pii/S0024379514003711
https://www.sciencedirect.com/science/article/pii/S0024379514003711
https://doi.org/10.1021/ci600510j

69

[19] Qiming Sun, Timothy C. Berkelbach, Nick S. Blunt, George H. Booth, Sheng Guo,
Zhendong Li, Junzi Liu, James D. McClain, Elvira R. Sayfutyarova, Sandeep Sharma,
Sebastian Wouters, and Garnet Kin-Lic Chan. “PySCF: the Python-based simulations of
chemistry framework”. In: WIREs Computational Molecular Science 8.1 (2018), e1340.
doi: https://doi.org/10.1002/wcms.1340. eprint: https://wires.onlinelibrary.
wiley.com/doi/pdf/10.1002/wcms.1340. url: https://wires.onlinelibrary.
wiley.com/doi/abs/10.1002/wcms.1340.

[20] Florian Weigend and Reinhart Ahlrichs. “Balanced basis sets of split valence, triple
zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of
accuracy”. In: Phys. Chem. Chem. Phys. 7 (2005), p. 3297. doi: 10.1039/b508541a.

[21] Florian Weigend, Filipp Furche, and Reinhart Ahlrichs. “Gaussian basis sets of quadruple
zeta valence quality for atoms H-Kr”. In: J. Chem. Phys. 119 (2003), pp. 12753–12762.
doi: 10.1063/1.1627293.

[22] Erika Ye and Nuno F. G. Loureiro. “Quantum-inspired method for solving the Vlasov-
Poisson equations”. In: Phys. Rev. E 106 (3 Sept. 2022), p. 035208. doi: 10.1103/
PhysRevE.106.035208. url: https://link.aps.org/doi/10.1103/PhysRevE.106.
035208.

https://doi.org/https://doi.org/10.1002/wcms.1340
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1340
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1340
https://doi.org/10.1039/b508541a
https://doi.org/10.1063/1.1627293
https://doi.org/10.1103/PhysRevE.106.035208
https://doi.org/10.1103/PhysRevE.106.035208
https://link.aps.org/doi/10.1103/PhysRevE.106.035208
https://link.aps.org/doi/10.1103/PhysRevE.106.035208

70

Disclaimer

I confirm that this thesis type is my own work and I have documented all sources and
material used.

Munich, Author

72

	1 Introduction
	2 The QTCI algorithm
	2.1 Input and output of the algorithm
	2.1.1 Tensors
	2.1.2 Tensor Trains

	2.2 Tensor Cross Interpolation
	2.2.1 Matrix cross interpolation
	2.2.2 Worstcase scaling of TT rank

	2.3 Quantics representation
	2.4 Integration in TT representation

	3 Application of TCI in DFT
	3.1 Density Functional Theory
	3.2 The Gaussian basis
	3.3 Approaches to the bottleneck
	3.4 Approach 1: compression of orbital indices
	3.4.1 Compression of full V-tensor
	3.4.2 Concept of compression by parts
	3.4.3 Visualisation of A and B tensor
	3.4.4 Implementation and grid
	3.4.5 Results for A
	3.4.6 Results for B

	3.5 Approach 2: Contraction with electron density
	3.5.1 Compression of A with fixed indices

	3.6 Approach 3: Using a non gaussian basis
	3.6.1 Grid
	3.6.2 Compression results of B with fixed indices

	3.7 Error Analysis
	3.7.1 Error types and dependence in Ngrid
	3.7.2 Error discussion of V tensor
	3.7.3 Statistical error

	4 Transcorelated methods with TCI
	4.1 Problem formulation
	4.1.1 Theory
	4.1.2 Approaches to the bottleneck

	4.2 Implementation
	4.2.1 Visualisation of integrand

	4.3 Error Analysis
	4.3.1 Required accuracy
	4.3.2 TCI error

	4.4 Fixed Compression
	4.5 Compression in both variables

	5 Conclusion
	A Zero plateau at r1 = r2

