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Two-particle response functions are a centerpiece of both experimental and theoretical quantum many-body
physics. Yet, due to their size and discontinuity structure, they are challenging to handle numerically. Recently,
two advances were made to tackle this problem: first, the overcomplete intermediate representation (OIR), which
provides a highly efficient compression of Green’s functions in imaginary frequency, and second, partial spectral
functions (PSFs), which allow for an efficient evaluation in real frequency. We show that there is a two-to-one
correspondence between PSFs and OIR coefficients and exploit this fact to construct the OIR for three-or-more-
particle propagators. We then use OIR to fit and compress imaginary-frequency data obtained from the numerical
renormalization group (NRG), reaching a compression ratio of more than 400. Finally, we attempt to match the
OIR data to partial Green’s functions from NRG. Due to the overcompleteness, we achieve only qualitative

agreement.
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I. INTRODUCTION

Green’s functions (GFs) are a critical tool for understand-
ing the physics of quantum many-body systems. One-particle
GFs relate to spectral functions, amendable to spectroscopy
experiments, while higher-order, two-or-more-particle GFs
relate to linear and nonlinear response functions, such as
response functions to optical or magnetic probes, collective
modes, bound states or pairing instabilities [1]. Naturally, they
also form the basis of a smorgasbord of many-body frame-
works [2]. While in analytic calculations we frequently mix
GFs of all orders, higher-order GFs are considerably more
intricate when working with them numerically. This comes
down to two problems: one of space and one of structure.

The first problem, space, is simply the curse of dimension-
ality: the memory required to naively store the simultaneous
movement of n quantum particles scales exponentially in 7.
Current solutions have focused on making the base of that
exponent as small as possible: when working in imaginary
time, one can construct an almost maximally compact basis,
the so-called intermediate representation (IR) [3,4]. For the
dependence on position and (real) time, quantics tensor trains
provide a controlled and, at least in some cases, very compact
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representation [5,6]. These and other [7] tensor trains can also
be used in an attempt to cure the exponential scaling itself.

The second problem, the structure of many-body GFs, is
linked to the quantum nature of the underlying particles: the
(anti)commutativity of bosons (fermions) causes discontinu-
ities at equal-time planes. For higher-order GFs, some of these
planes run “diagonally” through the time domain [8], which
implies that any discretization given by a direct product of the
single-particle basis cannot be compact. One can mitigate this
by subtracting the jumps, either numerically [9] or diagram-
matically [10,11], but this still leaves nonanalyticities in these
locations. Alternatively, one may elect to not store these GFs
at all, but compute them on the fly, either stochastically [12]
or analytically [13].

Two recent approaches address the structure problem di-
rectly: in Ref. [14], the two-particle imaginary-frequency GFs
is represented as a sum of twelve separate terms identified
by their analytic form, each of which is smooth. This ad-
mits the construction of an almost maximally compact, albeit
overcomplete, intermediate representation (OIR). The OIR
allows for an exponential speedup in solving two-particle
diagrammatic equations [15]. In Ref. [16], an arbitrary n-
point ([n/2]-particle) GFs, in real or imaginary frequencies,
is represented as a sum of n! terms. Each of these terms, to
be called partial Green’s functions (PGFs), is the convolu-
tion of a simple, system-independent integral kernel with a
partial spectral function (PSF). By computing the PSFs, e.g.,
via exact diagonalization [17] or the numerical renormaliza-
tion group (NRG) [18], and the resulting PGFs separately

Published by the American Physical Society
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rather than as a sum, one again can work with more compact
discretizations.

The natural questions arising from this, which we shall
address in Sec. II, are the following: is there a connection
between the OIR and PGFs? And, if so, can we use the PGFs,
which were derived for all orders [16,19], to construct the
corresponding OIR, which has previously only been done for
two-particle quantities?

Having answered these questions in the affirmative, we will
move to a more subtle point in Sec. III: the coefficients of the
OIR are usually fitted while the PGFs are computed. Since the
OIR is overcomplete, there is an ambiguity in exactly how we
determine the coefficients, in other words, the corresponding
fitting problem is poorly conditioned. This is no problem for
the OIR itself. The question is, when fitting the OIR in imag-
inary frequencies, do its constituents still match the original
PGFs? Section IV offers our conclusions and an outlook.

II. PARTIAL GREEN’S FUNCTIONS
AND OVERCOMPLETENESS

In this section, we aim to connect two descriptions of the
multipoint GFs: (i) PSFs and PGFs [16], which originate from
considering all possible permutations of operators, and (ii)
the OIR [14], which originates from grouping terms in the
Lehmann representation in imaginary frequency by different
kernels.

For completeness, we review two-point imaginary-
frequency GFs and the compression of such objects [3,4] in
Secs. II A and IT B. This sets the stage for our two main results:
(i) establishing a two-to-one connection between PGFs and
the terms in the OIR for the arbitrary n-point case in Sec. I C,
and (ii) using this to generalize the overcomplete basis [14]
to the general n-point case and showing how to obtain the
coefficients in Sec. I D.

A. Two-point partial Green’s functions

Let us start with the two-point GF in imaginary time for
simplicity. (Most of this material is well known but serves to
introduce the topic and our notation.) Its definition is

G(ty, 1) == — Z ¢

v

—BE,

(WITA(m)A()IY), (D)

where A; are fermionic operators; t; are imaginary
(Euclidean) times, which can be restricted to 0 < 7; < S,
where B! is temperature; imaginary-time evolution is gov-
erned by A;(t) =ef"A;,e "7, where H is the Hamiltonian;
H|y) = Ey|y) defines an eigenstate ¥ and its energy Ey;
Z :=trexp(—pBH) is the grand canonical partition function;
and the chemical potential was absorbed into the Hamiltonian.

The effect of the time-ordering symbol 7 on the expec-
tation value in Eq. (1) is to split it up into a sum over two
operator permutations:

B e e PR A (A @)Y, T > T,
G, ) = sz T{+(1//|A2(T2)A1(Tl)|¢), <7
(2)

To condense the equations, we introduce the following nota-
tion [16]: by 12 e {12, 21} we denote a permutation of the
indices 12. For the trivial permutation, e.g., we have 12 = 12,
and so replace 1 with 1 and 2 with 2; for the reversed one,
we have 12 =21 and replace 1 with 2, and 2 with 1. By
sgn(12) we denote the sign of the permutation, and by ;5 the
sum over all permutations, 12 € {12, 21}. Using this notation,
Eq. (2) becomes

Gt ) =) G, m), 3)

12
where G, and G»; are imaginary-time PGFs, defined as

Gra(n. 1) o= — O(r; r2>sgn<12)
x Z

We define the Fourier transform of Eq. (1) as

1A ()Y). )

B . . -
Givy, ivs) = / PTG ), (5)
0

where iv; and iv, are fermionic imaginary or Matsubara
frequencies, iv € {%(2/( + 1)}, and k is some integer. One

can perform the Fourier transform by substituting (u;, up) =
(t; — 13, 75) into each PGF (4), which leads to

G(ivi,iv2) = ) Gyz(ivy, ina), 6)
12
with the PGFs (4) in Matsubara frequencies reading
Gis(ivy, iv2) = BSiv, 1iny 08gn(12)

y Z e Pt

Sds Vivi +Ey — H

(N

In Eq. (7), we adopted the common convention of understand-
ing the reciprocal 1/(z — H) as the resolvent (z1 — H)™!,
where 1 is the identity.

We can now separate the system-dependent part of Eq. (7)
into PSFs pi, and p;;, defined as [16]

= sgn(12) Z

H)A3|¥),

®)
where § is the Dirac delta generalized to operator arguments:
6(z—H) = Z¢ 8(z — Ey)|¢){(¢|. This permits us to represent
the PGFs (7) as a simple convolution:

Grz(ivr. 1v2) = i 4ius0 / de PO )
iv; — €’
From the next section onward, we will assume that the in-
tegral can be restricted to some finite interval [—€max, €max],
or, equivalently, that H is bounded. (This restriction can be
relaxed).
Inserting the PSFs (8) into the (full) GF (6) yields

,021(6)
1vz —€

P12(€)
v —e

Glivy, iva) = B8t / de[ } (10)
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Observing iv; = —iv; and changing variables € — —e in the
second term, we can condense Eq. (10) to a single convolu-
tion, the spectral representation of G:
o p'(€)
Glivy,ive) = Bousino [de ()

1w, — €

where o’ is the (full) spectral function,
p'(€) = pra(€) — par(—e). (12)

We shall make note of this fact: the sum of two PSFs forms
the argument for a single convolution in the spectral represen-
tation of the imaginary-frequency GF.

For illustration, consider the case that A; = d and Ay = d'
are the annihilation and creation operators for a fermion in
some spin orbital, respectively, and 8 = oco. Then, p;»(€) and
—p21(€) are nonzero for € > 0 only and yield the particle and
hole side of the spectral function p’(¢), respectively.

B. Intermediate representation for two-point Green’s functions

The numerical transformation (11) between p’(e¢) and
G(iv) is lossy. This is evident from the singular value expan-
sion of the corresponding kernel [20,21]:

= ZU@(iv)Sg Vi(e), (13)

£=0

iv—e€

where {U,} are the left-singular functions, which form an
orthonormal set in imaginary frequencies, and {V;} are the
right-singular functions, which form an orthonormal set in
real frequencies. S, are the singular values, which for a kernel
of finite support [—emax, €max] decay faster than exponen-
tially with € [22,23], epitomizing the loss of significance
from the real to imaginary frequencies. V, are bounded in
[_emaXy emax]'

This loss of information allows for an extremely compact
representation of the Matsubara GF [3], called the IR. Insert-
ing Eq. (13) into Eq. (11) yields

L-1

G(ivy, iv2) & BSiv, 4inn.0 Y eU(iv1), (14)
=0

where g, = S, f deVy(e)p'(€) is a basis expansion coeffi-
cient. The number of coefficients needed to represent a
given GF with a relative error of at most ¢ scales as L ~
10g(Bemax) log(e ™) [22].

The expansion coefficients g, can also be inferred from
imaginary-frequency data using sparse sampling [4]. The ker-
nel (13) determines a set of L frequencies V, = {ivy, ...iv.}
such that Eq. (14) can be turned into a well-conditioned least-
squares problem:

II111’1 E

ivel,

G(@iv, —iv) — Z ggUg(lv) 15)

A similar procedure exists for imaginary-time data.

Once we obtained the GF in the IR, its analytic continua-
tion to real frequencies is trivial: p’(¢) = 2310 Vi(e)ge/Se,
though one must regularize this expression heavily due to
the rapid decay of the singular values. Note that, in an “ob-
served” imaginary-frequency GF G(iv, —iv), the two PSFs are

combined according to Eq. (11). Thus, the IR, which relies
on a decomposition of the kernel (13), invariably mixes the
PSFs, and only the full GF, rather than the partial ones, are
accessible.

C. Partial Green’s functions in the n-point case

Let us repeat the calculation in Sec. IT A for the n-point GF.
Its definition is

G(r) = (—=1)"" 12

1(T1) - An(T)|Y),

(16)
where T = (ty, ..., T,) collects imaginary (Euclidean) times,
which we again restrict to 7; € [0, 8], and T again orders
operators by imaginary time.

The Fourier transform of Eq. (16) is defined as

B . A
G(iv) = / d't elvltl+"'+w”r”G(T), (17)
0
where iv = (ivy, ..., iv,) collects fermionic Matsubara fre-

quencies. Using a similar reasoning as in the two-point case
(6), one finds after a lengthy calculation [16,17],

3G (i), 1s)
1.7

Instead of two PGFs as in the two-point case (7), we have n!
PGFs:

G(iv) =

e BEy

Gi_a(iv) = Bsysgn(l ..

(¥1Ag

n)Z
n—1

X
l_[|:2k g+ Ey —

where §, is equal to one if the sum of all frequencies in v
is zero and equal to zero otherwise, 1...7isa permutation,
and sgn denotes its sign. The resolvent in Eq. (19) contains
sums of fermionic frequencies for even i, this gives a bosonic
Matsubara frequency, iw € { (2k)}, where k is some integer.
As bosonic Matsubara frequenmes can be exactly zero, one
must either avoid the poles Eq. (19) by carefully taking limits
or treat these terms separately [14,16,19].
Instead of just two as in Eq. (8), we now have n! PSFs:

n)Z

HAM}IIM, 19)

pialer... 1) =sgn(l..

n—1

X H[S(ei +Ey —H)Am]hw- (20)
i=1

Inserting the PSFs (20) into the Fourier transform (19), we
again find convolutions,

Gi_s(iv)

= P / (ivg —el) €n-1)

Here, conservation of energy implies that reversing a per-
mutation { — n 4+ 1 — i together with the order of energies
€; - —€,_; leaves the integral kernel (the denominator of

e piaer, ..., €n1)

. (21
v+ iy — @b
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TABLEI. Each semi-PGF or semi-PSF with representation index
7 [15] (first column) combines the contribution from a pair of permu-
tations, 1234 (second column) and its reverse 4321 (third column),
from the permutation group S,. The 4!/2 = 12 pairs are further
grouped into three cosets (fourth column). In each coset, the 1234
permutations are related by cyclicity [16]; see Sec. III C for details.

r 1234 4321 coset
1 1234 4321 A
2 1243 3421 B
3 1324 4231 C
4 1342 2431 B
5 1423 3241 C
6 1432 2341 A
7 2134 4312 B
8 2143 3412 A
9 2314 4132 C
10 2413 3142 C
11 3124 4213 B
12 3214 4123 A

above equation) invariant. Similarly as in the two-point case
where two PSFs can be combined to the full spectral function
through Eq. (12), we can combine pairs of PSFs to what we
shall call semipartial spectral functions (semi-PSFs):

€n—1) :==p1_n(€1, ..., €21)

+ D" o (=€t

IO%,TI(EI LI
—61).
(22)

Correspondingly, the semipartial Green’s function (semi-
PGF) is defined as

i.2v)

=Po f(lvl —€1)-

which equals the full GF for n = 2. Otherwise, the (full) GF
can be expressed in terms of the semi-PGFs:

6n—l)

+iv, 7 — €—1)

6,01 n(el,...,
S(vi+ ...

. (23)

G(iv) = Z G, _(iv), (24)

where the primed sum Y runs over n!/2 inequivalent per-
mutations obtained under the equivalence 12...7 =#i...21.
Table I summarizes the corresponding terms in the primed
sum for the case n = 4.

D. Overcomplete intermediate representations
for the n-point Green’s function

Equations (22)—(24) allow us to construct a compact basis
for an arbitrary n-point GF. The crucial observation, made
for three- and four-point functions in Ref. [14], is that, to
generalize a compact basis from the two- to the n-point GF,
we must expand the semi-PGFs instead of the full GF [24].

Indeed, replacing the kernels in Eq. (23) with their

truncated singular-value expansion (13) yields

A(0) ~ B3, Z Z

£,—1=0
X U@[(ivi) e U@”_l(ivi +. n— 1) 81.. 1,8

(25)
where g are again a set of basis coefficients, given by

81.ae =St St Pl (26)

—_r

Py = / A" eV (e)) Vi, (€ a6, (27)

This is the IR of an arbitrary n-point GE. Since the basis
coefficients (26) are multiplied by the quickly decaying sin-
gular values S;, we need to store only O(nL"~") coefficients
[25], where L ~ log(Bemax)log(s™"). Equations (25)—(27)
were previously derived for the three- and four-point case
[14]. Table I relates the pairs of permutations indexing of the
representations to the representation index used in Ref. [15].
Importantly, we now have a formula for arbitrary n.

A brief comment about bosonic arguments in Eq. (25) is in
order: as alluded to in Sec. II C, whenever a sum of fermionic
frequencies is exactly zero, additional terms appear. One can
show that these terms can be formally absorbed by augment-
ing the one-particle basis U, in Eq. (25) [14]. Numerically,
this augmentation is usually not necessary as the additional
basis functions are almost linearly dependent on the other
basis functions [15].

We note that the construction (25) is, in principle, indepen-
dent of the actual form of the basis function used. In particular,
one can replace the underlying IR basis by a finite sum over
real [26] or complex [27,28] poles:

Gr.aliv) ~ B8, Y
P1e-Pn—1

pi...ﬁ,pl..pn—l
(vi+... +iv—7—

Gpn—l ) ’

(28)

(ivi —€p,) -+

where py_j , and €, for p =1, ..., L are now parameters to
be fitted, either directly for each semi-PGF or in the overcom-
plete sense (see below).

As in the two-point case, sparse sampling can be used
to infer the basis coefficients (an example can be seen in
Fig. 1). To this end, one constructs a sampling frequency set
V, (e.g., by taking the direct product of V), for all the possible
permutations) and turns Egs. (24) and (25) into a least-squares
problem:

mm E

iveV,

G<w>—ﬂZZ >

1.n 1= £y—1=0

2

x Up(ivy) - - ({vy +. , (29)

n]

i nfl) 81..7.4

which can be solved in O(n!L?3#=D1y time [15].
Given the basis coefficients g in Eqgs. (26) and (27), we can
invert these two equations to perform analytic continuation.
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v/

FIG. 1. Sparse sampling points for the OIR basis, with 8 =
100/D, €max = D, and & = 1073, plotted in the w = 0 plane.

100

-100

(d)
100

-100

10~

., y e -6
Voo ol R | 8 10

—100 - 1y e

.

—-100 O 100 -100 0 100
v/ v/

FIG. 2. Four-point GF for the SIAM (30) on Matsubara frequen-
cies in the particle-hole convention for (a) w = 0 and (b) w = 20%.
(c), (d) The reconstructed data from the OIR fit for the same bosonic
frequencies as in (a) and (b), with sampling frequencies indicated as
gray dots. (e), (f) Corresponding relative error.

However, we emphasize again that, since pairs of PSFs are
combined in the imaginary-frequency GF [Eq. (22)], only
semi-PSFs can be inferred.

Another, more practical problem is the following: since U,
form a basis for the two-point GF, the basis expansion (25) is
overcomplete for L — 00, since any one permutation already
spans the full space, yet we sum over n!/2 permutations. For
finite L, the basis functions formally do not have this issue,
but they are still almost linearly dependent, which implies
that the least-squares problem (29) is illconditioned. This in
turn means that the basis coefficients g strongly depend on the
regularization scheme for the least-squares problem (25). This
does not hinder the ability of the basis to compress, inter- and
extrapolate imaginary-frequency data [14,15,29]. However, it
is a problem for analytic continuation, since it is unclear if
the fitted coefficients have any connection to the semi-PSFs.
Exploring this is the subject of Sec. III.

III. MATCHING THE OVERCOMPLETE INTERMEDIATE
REPRESENTATION AND PARTIAL GREEN’S
FUNCTIONS FROM DATA

In this section, we first compress imaginary-frequency data
computed with NRG, and then compare the fitted functions
(36) with the exact expressions (38).

We use the particle-hole symmetric single-impurity
Anderson model (SIAM) with a flat hybridization. Its
Hamiltonian is

— Tt
H=Ud{d}dd, -

+V Z(C;ﬂd" +dlc,,)+ Z €pChyCppr (30
po po

Udt t
lUdid, +djd))

where d,, and c,,, annihilate a spin-o electron on the impurity
and in the bath with momentum p, respectively. Further, U is
the interaction strength, V' is the hopping amplitude between
impurity and bath, taken to be constant, and €, is the energy
of the corresponding bath level, taken uniformly distributed
in the interval €, € [-D, D]. We use U = 0.2D, tempera-
ture B~! = 1072D, and a hybridization strength A = 0.04D,
defined as

Y wVels(w — €) = AOD — |o)). 31

A. Compression

In the following, we illustrate the efficient compression
of the Matsubara impurity two-particle GF. Its definition in
imaginary time follows from Eq. (16) with (A, Ay, A3, Ay) =
(dy,dr",dy, dy'). In NRG, we compute this object as a sum
of 4! PGFs, each of which is obtained by convolving a kernel
and a PSF.

To specify on which Matsubara frequencies we store G(iv),
let us first define the particle-hole convention:

/
VLV, V3, 0 V==,V =, 0 =v 4+, (32)

where v and V' are fermionic Matsubara frequencies and w
bosonic Matsubara frequencies. We can now create a three
dimensional box with axes v, V', and w. We fill this frequency

043228-5
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r =1 from OIR 123414321 from NRG r =5 from OIR 1423|3241 from NRG r =9 from OIR 2314]4132 from NRG
50
. 4 # / # s
-50
r =2 from OIR 1243|3421 from NRG r =6 from OIR 1432|2341 from NRG r =10 from OIR 2413|3142 from NRG
’ A + ~
r = 3 from OIR 1324|4231 from NRG r =7 from OIR 2134]4312 from NRG r=11 from OIR 3124]4231 from NRG
50
v’ 04 -‘- % P —
-50
r =4 from OIR 1342|2431 from NRG r =8 from OIR 2143|3412 from NRG r =12 from OIR 3214]4123 from NRG

50

v’ 04 || * 7L %
-50+
50 0 50 50 0 50 50 0 50 50 0 50 50 0 50 50 0 50
v v v v v v
-1.0 -0.5 010 0.5 1.0

normalized real part of G(v,V',w)

FIG. 3. Comparison of semi-PGFs for the four-point GF of the SIAM. Each of the twelve pairs of panels depicts a semi-PGF when fitted
from the OIR through Eq. (33) and then expanded using Eq. (37) on the left side and compares it to the exact result from NRG (38) on the
right side, cf. Table I. The values are normalized by the maximum value per panel and plotted for = 0 and v and v’ ranging from —100 to

100 in the particle-hole convention (32).

box with equidistant points in all dimensions. Each point
is defined by a specific set of frequencies. The fermionic
frequencies range from —199% to 199% and the bosonic fre-
quencies from —200% to 200%.

This convention is chosen to match Ref. [18]. The OIR
itself does not depend on the convention chosen, the frequency
box, however, does weakly depend on it.

Figures 2(a) and 2(b) show G(iv) from NRG in the
v,V plane for (a) iw =0 and (b) ia):ZO%. There are
nontrivial structures along the horizontal, vertical, and diag-
onal directions, which arise by summing the different PGFs.
The diagonal of zero elements exemplifies why it is dif-
ficult to compress these objects. In fact, this figure was
created with 8.04 million data points, occupying more than
6 GB.

Using the OIR, we were able to compress these 6 GB
to 565 kB or about 0.2% of its original size. For this, we
estimate €, = D and choose & = 1073, which gives a linear

basis size of L = 15. The number of basis coefficients of the
OIR is 11952. To fit the data, we use Eq. (29), which for the
four-point GF, reads

min E
g

iv€V4

/s L—1L-1L-1

G -3 53

1234 £=0 m=0¢'=0

(33)
2

x Ug(ivy)Un (ivy + 1v3)Up (—ivz) €1233.eme

’

where V), are the sparse sampling points, indicated as gray
dots in Figs. 2(c) and 2(d). We write Eq. (33) as an ordinary
least-squares problem with the loss function [14,15]

L=|G—-Egl-, (34)
where G is the target data, in our case obtained through NRG,

and E is the design matrix. We use an LSMR solver with
loss function (34) to obtain the coefficients g. The fitting
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Coset AOIR Coset A NRG 010
50 + 0.05
v’ 04 0.00
-50 1 -0.05
Coset B OIR Coset B NRG ::100
50 + 0.05
v’ 0A + 0.00
-50 1 -0.05
Coset C OIR Coset C NRG ;::00
50 1 0.05
v’ 04 /'-/ /l/ 0.00
-50 1 -0.05
T T T T T T -0.10

50 0 50 -50 0 50

FIG. 4. Comparison of PGFs between OIR and NRG, as in
Fig. 3, where each row now depicts the sum over a coset (group of
representations as defined in Table I).

procedures takes less than one minute on a six-core Ryzen
3600 CPU.

To assess the error of this process, we first evaluate on the
sparse sampling points by multiplying them with the corre-
sponding design matrix E. This yields the predicted values of
the GF on the sampling points, the so-called in-sample relative
error, which was 9.95 x 10, consistent with the accuracy
goal of ¢ = 1073, We also construct E for the full frequency
box of the NRG data with the sampling frequencies removed,
yielding an out-of-sample relative error of 4.86 x 1073, The
relative error

|G(@v) — E(iv)gl/118llo (35)

is plotted in Figs. 2(e) and 2(f), where the in-sample errors (lo-
cations of the dots) are below the accuracy goal, as expected,
and the out-of-sample errors, away from the dots, are slightly
higher but still comparable to the accuracy goal, indicating
an absence of overfitting. This means that we reduce the nec-
essary frequency points from 8,040,000 points (which span
the Matsubara box) to 19,282 sparse sampling points, while
maintaining the same information up to the desired accuracy.

B. Comparing partial Green’s functions

As outlined above, there is a two-to-one correspondence
between the summands in the OIR and PGFs from NRG. Let
us write this explicitly for the case of the two-particle GF,
where the OIR (25) involves twelve semi-PGFs,

G(iv) ~ Y G} 4(iv), (36)
1.4

each of which is given by a basis expansion from a set of
coefficients,

Gi.a(iv) = B8y Y UrGv)Up(ivy + iv3)
o'm

X Up (—1v3)81333 me' - (37)

In the OIR, the coefficients g1535 , and hence the decomposi-
tion (36) is fitted from imaginary-frequency data via a fitting
problem similar to Eq. (29). This is enough to allow for a
compressed representation and interpolation.

If the Hamiltonian is solved with, e.g., exact diagonaliza-
tion [17] or NRG [18], then the “true” decomposition into
semi-PGFs and, if desired, the “true” fitting coefficients ob-
tained from the semi-PSFs [cf. Egs. (26) and (27)] can be
computed:

G, 4(iv) = ﬂsvf ¢ piygler. e &) .
b (ivy — €n)(iv +iv; — €2)(—ivz — 63()38

Figure 3 compares the fitted and “true” semi-PGFs for the
SIAM (30). For the OIR, the same fitting parameters were
used as in Sec. III A, with the exception of €y, = 2D +
U = 2.2. Each of the twelve pairs of panels depicts a single
summand of the OIR (37) on the left and the corresponding
NRG semi-PGF on the right, cf. Table I. The comparison
is made for bosonic frequency @ = 0, which exhibits the
largest deviations, and plotted in the v, v’ plane in the particle-
hole convention (32). There is qualitative agreement for
r=1,2,6,7,8, 12 and discrepancy for r = 3,4,5,9, 10, 11.
This suggests that the loss function (34), together with early
stopping regularization performed by the LSMR, adversely
affects the decomposition.

C. Cosets

The OIR is, by design, overcomplete, so that a naive fitting
problem is poorly conditioned. In other words, the fitting
parameters are partially ambiguous. One source of ambiguity
is the relation between PSFs whose operator arguments are
cyclic permutations of one another, see Eq. (25) in Ref. [16].
For instance, the PSFs (in the present notation) for the permu-
tations 1234 and 2341 obey

prai(€x — €1, €3 — €1, —€1) = —e P piosa(ey, €2, €3). (39)

This partitions the permutations (and the corresponding PSFs)
into three cosets, which cannot be related through either cyclic
permutation or reversal of the arguments. We call these cosets
A, B, C, and enumerate their elements in Table 1.

Figure 4 shows the comparison of OIR and PGFs, decom-
posed only on the level of the cosets. As in Fig. 3, we find
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merely partial qualitative agreement, albeit a somewhat better
match. This suggests that the cyclic permutation ambiguity is
not the main source for the ill-conditioning of the fitting prob-
lem. We conjecture that the permutations within a single coset,
while cyclically related, may still be distinguishable within the
OIR due to the presence of the additional factor exp(—pBe;)
in Eq. (39): this factor is “unique” to each of the cyclic
permutations 1...7 since the energy always comes attached
with index 1. The ambiguity between cosets is more difficult
to understand and an important topic for further research.

IV. CONCLUSIONS

We showed that, using the OIR, it is possible to compress
data for two-particle Green’s functions computed from NRG
and reconstruct it to the desired accuracy. For example, with
an accuracy goal of ¢ = 1073, we achieved a data compres-
sion by a factor of 400 and an out-of-sample relative error of
4.86 x 1073,

Further, we derived a two-to-one correspondence between
the n! PGFs, which can be obtained from exact diagonal-
ization or NRG, and the n!/2 semi-PGF of the OIR. For
a two-particle (n = 4) GF of the single-impurity Anderson
model, we compared the 12 semi-PGFs of the OIR to their
corresponding pair of NRG PGFs, and find a qualitative match
but quantitative differences. A further restriction of the 12
semi-PGF to only three cosets is possible, by grouping to-
gether terms corresponding to cyclic permutations. Again,
we find only a qualitative match between the OIR and the
original NRG data. Either the regularization used in the fitting
procedure needs to be improved to better reflect the nature of
the semi-PGFs or the overcompleteness of the OIR has to be
mitigated for obtaining a better match.

Since the OIR fitting process introduces qualitative dif-
ferences in the PGFs and analytic continuation is an

ill-conditioned problem to begin with, it seems unlikely that
the present scheme allows for an analytic continuation of
two-particle GFs to real frequencies within reasonable er-
ror margins. Whether recent progress in understanding the
analytic continuation of higher-order correlators [30] can,
notwithstanding, help with the analytic continuation of the
OIR is an interesting topic for future studies.

IR calculations were performed using the sparse-ir library
[31]. Codes for computing the OIR and NRG data are avail-
able from the authors upon request and are forthcoming as
open-source packages. The data of our calculations for OIR
and NRG is available upon request.
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