
Variational optimization of ground-state
iPEPS via automatic differentiation

Dimitra I. Nikolaidou

München 2024

Variational optimization of ground-state
iPEPS via automatic differentiation

Dimitra I. Nikolaidou

Master’s thesis
Faculty of Physics

Chair of Theoretical Condensed-Matter Physics
Ludwig–Maximilians–Universität

München

Dimitra I. Nikolaidou

München, 2024

Supervisor and First examiner: Prof. Dr. Jan von Delft

Second examiner: Prof. Dr. Frank Pollmann

Abstract

Simulations of quantum many-body systems are invaluable for gaining insight into the na-
ture of the various phases of strongly correlated matter, the nature of the excitations which
emerge in many-body systems, as well as their dynamics. The continuously growing field of
tensor network methods involves a variety of algorithms which provide a framework to sim-
ulate bosonic and fermionic systems of many particles at the strongly interacting regime.
Specifically, tensor networks are particularly successful in representing ground states of
effective Hamiltonians used in quantum many-body physics. In order to take advantage of
this fact, accurate algorithms must be devised to obtain the tensors which best represent
the true ground state(s) of a system. A primitive algorithm for ground-state search of
2D tensor networks is the simple update algorithm, based on imaginary time evolution,
which is accurate for tree-like networks but becomes inaccurate for tensor networks with
loops. Numerous improvements to this algorithm exist, including various algorithms based
on variational optimization of tensor networks. Among these, the focus of this thesis is
gradient-based optimization, which uses gradient information of the variational energy in
order to optimize over the tensor network parameters and achieve the lowest possible en-
ergy.
This thesis focused on the development of an implementation of reverse-mode Automatic
Differentiation (AD), a method that allows for precise and efficient gradient evaluation.
The energy gradient information obtained in this way was used for gradient-based opti-
mization of infinite Projected Entangled Pair States (iPEPS), in the context of ground-
state search for various quantum lattice models. The QSpace library for tensor network
operations was chosen, which allows for the implementation of abelian and non-abelian
symmetries on tensor networks. An efficient implementation of AD for the Corner Trans-
fer Matrix scheme was investigated in detail and applied to the 2D Heisenberg model, a
2D free fermionic model, and the Hubbard model at half-filling, all with nearest-neighbor
interactions. These benchmarks demonstrated the performance of the optimization proce-
dure and quantified the improvement over the simple update algorithm. For the case of
nearest-neighbor Hubbard model, the potential of the recently proposed Belief Propaga-
tion gauging was investigated as a way to improve over the usual simple update algorithm
for pre-training the tensor network before the optimization. Finally, the Hubbard model
with next-nearest neighbor hopping amplitude t′ = 0.25 at finite doping is considered, and
variational optimization is applied to a U(1) state with period eight, and a uniform, SU(2)
symmetric state.

vi

Acknowledgments

I would first like to thank Prof. Dr. Jan von Delft for giving me the opportunity to
work on an interesting and modern topic, and for passing on his enthusiasm for the field
of tensor networks. I feel very lucky to be included in his group, as he created a positive
atmosphere and consistently provided encouragement, care, and careful guidance to me
and the rest of the group members.

I would also like to express my appreciation for the support I received from Changkai
Zhang, who was always there to answer my questions with a particular clarity of thought
and with strategic suggestions. Additionally, I am thankful for the time he devoted to
his own master’s project, as this thesis partly builds upon his, and for the nicely drawn
diagrams which he shared with me. I am also grateful for the assistance provided by Dr.
Markus Scheb, who was always eager to share with me his technical expertise and useful
advice when I was stuck.

I must express my thanks to two individuals I have never met, yet whose contributions
were vital to the completion of this project. First, thanks to Jheng-Wei Li for sharing with
me the backbone of a code which I used, crucial also as a guide for me to take the first
steps on this project. Second, a special thanks should also go to Andreas Weichselbaum
for the hours he spent on building the QSpace library used in this project.

Finally, I wish to thank Leonardo Bezzo for proofreading this manuscript, as well as
for always being at my side the past year, with meaningful advice at moments of doubt,
engaging discussions and practical help, to matters of physics or otherwise.

viii

Contents

Abstract v

Acknowledgments vi

Introduction 1

1 Automatic differentiation for tensor networks 3

1.1 Basics on automatic differentiation (AD) 4

1.2 Basics on tensor network states . 9

1.2.1 Physical motivation . 9

1.2.2 Diagrammatic notation . 11

1.2.3 Implementation of symmetries . 12

1.2.4 The (infinite) Projected Entangled Pair States 13

1.3 AD for the Corner Transfer Matrix Renormalization Group 16

1.3.1 Corner Transfer Matrix: Forward sweep 17

1.3.2 Corner Transfer Matrix: Reverse sweep 22

2 Gradient-based optimization of tensor networks 29

2.1 Quasi-Newton optimization techniques . 30

2.1.1 The BFGS optimization . 30

2.1.2 Line search: Armijo backtracking 32

2.1.3 Limited-memory BFGS . 33

2.1.4 Generalization to functions of complex variables 35

2.2 Initialization of tensor network . 37

3 Application to ground-state search of quantum lattice models 47

3.1 Benchmark results . 47

3.1.1 The Heisenberg model . 48

3.1.2 Free fermion model . 49

3.2 The Hubbard model . 50

3.2.1 Nearest-neighbor interaction . 51

3.2.2 Next-nearest-neighbor interaction 53

x Contents

A Gauging of loop-free tensor networks 59
A.1 Canonical form . 60
A.2 Γ− Λ form . 61

B Tensor derivative results for reverse-mode automatic differentiation 63

Bibliography 69

Introduction

The ground-state problem, concerning the identification of the lowest energy of a system
at zero temperature and its associated state(s), is one of the most important questions in
quantum many-body physics, with no known universally applicable solution. It is phys-
ically and technologically a highly relevant question to ask, since quantum many-body
systems, especially at the strongly interacting regime, might reveal previously unknown,
exotic phases at low temperatures, whose realization might provide useful technological
applications.

Interactions between individual quantum particles are responsible for entanglement
generation; strong, local interactions tend to create locally strongly entangled states. The
amount and distribution of entanglement across the system, which are controlled by the
Hamiltonian, determine the system’s properties at zero temperature. Different parameter
regimes of the Hamiltonian might correspond to distinct phases with diametrically differ-
ent properties. A notable example is the Mott transition of strongly interacting electronic
systems, which is a shift from a metallic to an insulating phase controlled by the interac-
tion strength. Strongly interacting systems can be modeled via variational wavefunctions,
classes of quantum states which depend on some variational parameters, and are considered
to describe well the real ground states at some parameter regimes. Tensor network vari-
ational ansätze provide a natural framework for the modeling of states with strong, local
correlations. Their usefulness comes into play when considering that due to the locality of
physical interactions, “physical” entangled states are restricted to a small subspace of the
total, exponentially large, Hilbert space. Due to this property, tensor networks can provide
accurate variational descriptions of ground states even with a relatively small number of
parameters.

A large portion of tensor network applications is concerned with the ground-state search
for quantum many-body systems. One method of approaching the problem is through the
variational optimization of tensor network ansätze for the identification of the minimum of
the corresponding variational energy. A straightforward way to obtain the minimum over
the parameter space is to adopt a gradient-based optimization procedure. There are several
methods developed for this purpose outside the context of tensor networks, which can be
applied directly to them. The main obstacle is the calculation of the energy gradient. A
particularly promising technique in this respect is that of Automatic Differentiation (AD),
a method to obtain gradient values efficiently up to machine precision, which is widely used
in machine learning. AD was originally proposed for use in tensor networks in [LLWX19],

2 Introduction

where promising benchmarks were provided for second-derivative calculations of the parti-
tion function of the Ising model, and for ground-state search of the 2D Heisenberg model.
It quickly became a standard method for tensor network optimization, with applications
to several problems, primarily regarding ground-state search [NWR+24] [LS23] [WR24].

This year-long thesis project had as its main scope the implementation of such an AD-
based optimization of tensor networks. Although several libraries for this already exist
(TensorFlow, Jax, PyTorch, and more), in this thesis the implementation was done from
scratch1 for the QSpace library [Wei24]. QSpace offers the ability to easily implement
abelian and non-abelian symmetries for tensor network calculations, which results in more
efficient computations. The technique was benchmarked for the infinite Projected Entan-
gled Pair States, and the performance of the AD implementation was studied in the context
of variational optimization for several quantum lattice models.

1For this, the contribution of Jheng-Wei Li needs to be stated, who provided a first version of the code
for some basic AD operations used in tensor networks.

Chapter 1

Automatic differentiation for tensor
networks

Automatic differentiation (AD) is a technique to calculate derivative values of arbitrary
differentiable functions expressed as computer programs [BBCD00]. It is a simple method
based on the chain rule of differentiation, but it is very powerful, widely preferred for
non-linear optimization problems over other methods such as numerical and symbolic dif-
ferentiation. The term automatic highlights the fact that there is no need for “manual”
calculation of each gradient. Instead, only the gradients of functions of a few fundamental
operations need to be constructed, and the full gradient is obtained from a propagation
through the chain rule. The key advantages of AD are its mathematically guaranteed
efficiency, flexibility in terms of applications, and the ability to calculate gradients up to
machine precision. The last feature distinguishes it from numerical methods of gradient
calculation, such as the finite-differences method, which inevitably introduce errors.

This chapter aims at introducing the concepts of AD that were found to be useful
for its application to tensor networks. It also gives an introduction on some important
tensor network concepts and an exemplary application of AD on tensor networks, which
was implemented for this thesis. The chapter is divided as follows. The basic idea of AD
is described in Sec. 1.1, where forward- and reverse-mode AD are explained in the context
of functions of real variables. The generalization to complex-variable functions is also
given. This is followed by Sec. 1.2, where the validity of tensor networks as frameworks
for simulating quantum many-body ground states is discussed, together with some basic
concepts of tensor networks. In Sec. 1.3.1 the Corner Transfer Matrix Renormalization
Group is described, which is followed by Sec. 1.3.2 on how to efficiently implement reverse-
mode AD in it.

4 1. Automatic differentiation for tensor networks

1.1 Basics on automatic differentiation (AD)

Suppose that we have a real function f : Rm0 → RmN , differentiable at a point x0 ∈ Rm0

where we want to evaluate the Jacobian

J =


∂f1
∂x1

· · · ∂f1
∂xm0

...
. . .

...
∂fmN

∂x1
· · · ∂fmN

∂xm0

 (1.1)

Suppose also that we are equipped with an algorithm for the computation of f(x0).
The computer program for this calculation is assumed to consist of smaller steps and can
be depicted as a directed, acyclic graph. The acyclicity implies that, in case of writing-over
variables, which is common in function evaluations, the graph is written in such a way that
the overwritten values are stored as new variables. An example of the types of graphs that
we are interested in in this thesis can be seen in Fig. 1.1a. Since it is common to work
with vectors instead of elements of vectors, it is convenient to write the same graph in a
way that each layer is compressed to one vertex which corresponds to a whole vector of
variables independent to each other, as shown, for example, in Fig. 1.1b. For the rest of
the section we will work at this vectorial level.

The graph is composed of an input layer plus N vertices labeled by i ∈ {1, 2, ..., N}
and each vertex v(i) is related to preceding connected nodes via some function

ϕ(i) : Rli → Rmi (1.2)

which is assumed to be continuously differentiable in Rli . The input node corresponds to
the initial condition:

v(0) = x0 (1.3)

and the last node to the function value:

v(N) = f(x0) (1.4)

For each vertex there exist a set of nodes called parent/child nodes which are the
preceding/succeeding nodes directly connected to it. The following notation is adopted:

Pi : set with elements the parent nodes of vertex v(i)

Ci: set with elements the child nodes of vertex v(i)
(1.5)

This means that at step i the following mapping occurs:

Pi = {y1, ...,yli}|x0 → v(i) = ϕ(i)(y1, ...,yli)
∣∣
x0

(1.6)

For example, in Fig. 1.1 the parent nodes of vertex v(2) are P2 = {v(0),v(1)} and for v(3)

is P3 = {v(2)}. Their child nodes are, respectively, C2 = {v(3),v(4)} and C3 = {v(4)}.

1.1 Basics on automatic differentiation (AD) 5

v
(0)
1

v
(0)
2

v
(0)
3

v
(0)
4

v
(0)
5

v
(1)
1

v
(1)
2

v
(1)
3

v
(1)
4

v
(1)
5

v
(2)
1

v
(2)
2

v
(2)
3

v
(2)
4

v
(2)
5

v
(3)
1

v
(3)
2

v
(3)
3

v
(4)
1

(a)

v(0) v(1) v(2) v(3) v(4)

ϕ(1)

ϕ(2)

ϕ(2) ϕ(4)ϕ(3)

ϕ(4)

(b)

Figure 1.1: (a) Graph showing a function evaluation procedure in the form of an acyclic,
directed graph, broken down to multiple layers of nodes. (b) Equivalent of the graph in
(a) but choosing vectorial representation for the vertices, indicating also the corresponding
mappings ϕ(i) from previous layers to layer i.

Another useful notation is that for the tangents and gradients of intermediate steps. I
will make use of the following definitions which are common in the literature1:

ẏ := ∂y
∂xk

=
(
∂y1
∂xk

, ∂y2
∂xk

, ..., ∂yl
∂xk

)T
, k ∈ {1, 2, ...,m0}

y := ∂fk
∂y

=
(
∂fk
∂y1
, ∂fk
∂y2
, ..., ∂fk

∂yl

)
, k ∈ {1, 2, ...,mN}

(1.7)

When ϕ(i) are chosen to be elementary operations used in the program, the correspond-
ing graph is called the computational graph [Bau74]. Such elementary operations are called

1This notation is a bit confusing since the derivatives depend on k while ẏ and y don’t encode this
information. However, since it is a well-established notation in the AD literature, it is adopted in this
manner. Later it will become more clear that this notation is justified by the fact that one forward or
reverse pass of AD can only refer to a constant value of k.

6 1. Automatic differentiation for tensor networks

primitives in the AD literature. What is considered primitive depends on the user and
the application. As we will see in the next section, for tensor network applications these
might be commonly used functions for which analytical expressions for the derivatives are
known, such as addition, contraction, singular value decomposition, etc.

The AD calculation of the gradients is not a symbolic one, and therefore in practice
the vertices take specific numerical values. However, in order to develop the AD method,
v(i) are seen as variables which directly or indirectly depend on the input vector. Using
the chain rule, an element of the Jacobian (1.1) is given by:

∂fi
∂xj

=
∑
y∈PN

∂v
(N)
i

∂y

∂y

∂xj
(1.8)

There are two mathematically equivalent ways to use this equation to calculate such ele-
ments, known as forward- and reverse-mode automatic differentiation. The term forward
is used to indicate that the calculation of derivatives is happening in parallel with the
function evaluation, contrary to the reverse mode where the function evaluation needs to
be completed first (forward sweep) and then the gradient is computed in a way that scans
backwards the computational graph (reverse sweep). Each method has its advantages, and
for tensor network applications, the reverse mode is preferred. In order to understand the
reason for this, a comparison of the two methods follows.

Forward mode

Suppose first that we would like to compute a specific column k of the Jacobian:

v̇(N) =
∂f(x)

∂xk

∣∣∣∣
x0

(1.9)

In the forward-mode AD, at each step of the function evaluation the corresponding tan-
gent is calculated in direction k. Specifically, functions that calculate the Jacobian-vector

products of the primitives {∂ϕ(j)

∂y
ẏ ∀y ∈ Pj} need to be constructed, and by using the

chain rule the result automatically propagates through all the parent nodes of v(N). The
tangents ẏ are known from previous steps of the chain rule, after initilizing ẋ0. Fig. 1.2
shows the computation steps of the forward-mode AD. Note that the arrows of the chart
show only the order of operations and are not related to the connectivity of the graph. In
order to obtain the full Jacobian (1.1), this procedure must be repeated for all k.

Reverse mode

For the reverse mode, suppose first that we would like to compute a specific row k of
the Jacobian at point x0:

x0 := ∇fk(x)|x0
=
(
∂fk
∂x1
, ∂fk
∂x2
, ..., ∂fk

∂xm0

)∣∣∣
x0

(1.10)

1.1 Basics on automatic differentiation (AD) 7

v(0) = x0

v̇
(0)
i = ∂xi

∂xk
= δi,k for i ∈ {1, 2, ...,m0}

j = 1

v(j) = ϕ(j)({yi})
∣∣
x0
, yi ∈ Pj

v̇(j) = ∂ϕ(j)

∂xk

∣∣∣
x0

j = j + 1j ≤ N

v(j) = ϕ(j)({yi})
∣∣
x0
, yi ∈ Pj

v̇(j) =
∑
y∈Pj

∂ϕ(j)

∂y
ẏ

∣∣∣∣∣∣
x0

True

Stop

False

Figure 1.2: Schematic of the flow of computations in the forward-mode automatic differ-
entiation routine.

For this calculation, after the function evaluation we start from the vector v(N) made

up of mN independent variables, and initialize v(N). Then, by constructing the vector-
Jacobian products of the primitives {y ∂y

∂v(j) ∀y ∈ Cj}, the chain rule can be used to
propagate the gradient backward through all child nodes of x0. For this reason, reverse-
mode AD is also referred to as backpropagation. Gradients y are known from previous steps
of the chain rule. In Fig. 1.3, the process of calculating Eq. (1.10) through reverse-mode
automatic differentiation is illustrated. In order to obtain the full Jacobian (1.1) for all
the mN final variables, the procedure must be repeated for each element of f(x0).

Computational complexity

From the above we can see that whenever m0 >> mN , i.e. the input dimension is much
larger than the output dimension, the reverse mode is the most efficient choice for obtaining
the full Jacobian. This is the case for applications in physics or in machine learning, where
f corresponds to a scalar such as the energy or a cost function respectively, and therefore
mN = 1, while the inputs are large tensors or large vectors of data. On the contrary, when
m0 << mN the forward mode AD is the best option.

In general, both the forward and reverse modes are very efficient when m0 << mN and
mN << m0 correspondingly. Specifically, their algorithmic complexity is mathematically
guaranteed to be of the same order as that of the function evaluation [GW08][Gri89].

8 1. Automatic differentiation for tensor networks

v(0) = x0

j = 1
v(j) = ϕ(j)({yi})

∣∣
x0
, yi ∈ Pj

j = j + 1j ≤ N

Forward
sweep

True

v
(j)
i =

∂v
(j)
k

∂v
(j)
i

∣∣∣∣
x0

= δi,k, i ∈ {1, 2, ...,mN}

False

j = j − 1

j ≥ 0 v(j) =
∑
y∈Cj

y
∂y

∂v(j)

∣∣∣∣
x0

True

Stop

False

Reverse
sweep

Figure 1.3: Schematic of the flow of computations in the reverse-mode automatic differ-
entiation routine.

Memory cost

One of the biggest drawbacks of backpropagation compared to the forward-mode is its
storage requirement. Notice that in order to calculate {y ∂y

∂v(j) ∀y ∈ Cj} after the function
evaluation, we need all the information from the computational graph: the values at each
node and what operations ϕ(i) lead to these values. This means that all this information
needs to be stored during the forward sweep. This, in tensor network applications that
depend on fixed-point iterations, might quickly drive the memory requirements to the
order of hundreds of GB. A common tool that partially remedies this is checkpointing.
This consists of saving the computational graph at specific parts of the forward sweep
(checkpoints), and during the reverse sweep to rerun small points of the forward sweep

1.2 Basics on tensor network states 9

that were not saved, in order to obtain the corresponding gradients via backpropagation
on these smaller parts. After, the variables saved at for this reevaluation can be cleared
from memory. This inevitably brings an increase in the computational cost. Specific
examples are given in the following sections, in the context of the Corner Transfer Matrix
algorithm. Another remedy to the large memory requirements are to choose some of the
primitives to be not only elementary operations, but larger pieces of code. In this case
customized primitives need to be constructed. This method has the advantage of keeping
the computational cost low, contrary to checkpointing which might be inefficient. In general
one needs to decide on a balance between memory cost and computational complexity for
optimal performance.

Extension to complex variables

So far we introduced automatic differentiation for real functions of real variables. Now
we will deal with the problem where the input vectors have complex elements and therefore
f : Cm0 → RmN is a real differentiable function of complex variables. The output space is
always real when AD is used to optimize some function, which is the case of interest for
this thesis. Real functions of complex variables can be shown to be either constant or not
complex differentiable using the Cauchy-Riemann equations, and therefore one needs to be
more careful on how to define the corresponding forward and reverse procedures. Partial
derivatives can still be defined, namely the Wirtinger derivatives [Wir27]:

∂
∂zi

:= 1
2

(
∂
∂xi
− i ∂

∂yi

)
∂
∂z∗i

:= 1
2

(
∂
∂xi

+ i ∂
∂yi

) (1.11)

With these definitions, when differentiating with respect to z, z∗ is treated as a constant,
while the z is considered constant when differentiating with respect to z∗.

From these we can define the nabla operator [Spe64]:

∇ = 2
∂

∂z∗ = 2
(

∂
∂z∗1
, ∂
∂z∗2
, ..., ∂

∂z∗m0

)
, (1.12)

Since f maps to RmN , the gradient of its k−th element relates to the Wirtinger derivatives
through the relation:

∇fk(z) = 2
∂fk
∂z∗ = 2

(
∂fk
∂z

)∗

(1.13)

which is consistent with the equivalent definition for real variables.

1.2 Basics on tensor network states

1.2.1 Physical motivation

Quantum many-body systems are often studied through effective low-energy descriptions
that simplify their analysis. When it comes to simulating strongly interacting systems, it

10 1. Automatic differentiation for tensor networks

is typically useful to discretize the full Hilbert space in the basis of real coordinates, thus
obtaining a lattice upon which we can define the effective Hamiltonian. At each site i of
the lattice, a local basis |ai⟩ is defined according to the local degrees of freedom (e.g. spin,
occupation number, etc.). A general eigenstate for a Hamiltonian on a lattice of N sites
and d−dimensional local Hilbert space takes the form:

|ψ⟩ =
d∑

ai=1

Ca1...aN |a1...aN⟩ (1.14)

Performing efficient computations with a random state drawn from such an ansatz in

the Hilbert space H =
(
Cd
)⊗N

is computationally very inefficient for classical computing
methods. Classical computers are, however, very successful in performing calculations
efficiently with many-body states of low entanglement. Physically, the difference is that
two subsystems of a random state in H are most probably entangled with each other no
matter their position. However, physical interactions are usually of finite range, i.e. local
interactions described by Hamiltonians of the form:

H =
∑
i

ĥi,ni
(1.15)

where ni are a finite set of sites with which site i directly interacts. For such Hamiltonians,
strong correlations tend to be shared only among the sites that directly interact with each
other. In particular, the entanglement entropy of the ground states of local Hamiltonians
that have a finite energy gap between ground and excited states satisfies an area law: if we
cut a partition R from the ground state and measure the entanglement entropy S(ρR) of the
corresponding reduced density matrix ρR of R, the entanglement grows with the number of
neighbors of the sites that live in the boundary of region R, i.e. with the boundary surface
area of R (see Fig. 1.11a):

S(ρR) ∼ ∂R (1.16)

The reason why neighboring sites tend to be strongly entangled in the first place has to
do with the fact that, usually, for local Hamiltonians, it is energetically efficient for neigh-
boring sites to be as much entangled as possible, only limited by entanglement monogamy
[CPGSV21]. Eq. (1.16) have been proved for one-dimensional local gapped Hamiltoni-
ans [Has07]. For higher dimensions there is no general proof, but several area laws ex-
ist [PEDC05] [CE06]. Critical systems might need corrections with respect to area laws
[GK06], [Wol06], [CEP07].

Tensor network states offer efficient representations of states in H with entanglement
structure motivated by such physical considerations. A tensor network state is a contraction
of tensors which forms tensor C corresponding to state (1.14) (or to the density matrix for
mixed states, which we are not interested in in this thesis). Tensor network states become
useful when a (in general) high-degree tensor C can be decomposed to tensors of small
degrees. This is the case for ground states of physical systems, which makes tensor networks
extremely useful for such problems. Different families of tensor network states correspond

1.2 Basics on tensor network states 11

to differently distributed entanglement across the lattice, and therefore the geometry of the
lattice has to be chosen so that it captures the physics related to the system’s correlations in
an efficient way. Finally, even though often tensor networks represent quantum states, they
can also be used to represent other objects such as expectation values, classical partition
functions, operators, and more.

1.2.2 Diagrammatic notation

It is very practical and instructive to use diagrams to describe tensor networks and
tensorial operations. In the context of this thesis, tensors are considered simply multidi-
mensional arrays and are denoted by a shape (circle, square, triangle, etc.), together with
lines which correspond to each dimension. The number of dimensions of the array is called
degree. For example a degree-three tensor T ∈ Kda ×Kdb ×Kdc (K = R or C) is given by
the diagram:

=

Figure 1.4: Example of degree-three tensor.

where a, b, c ∈ {1, ..., da,b,c}.
The ordering of the legs of the tensor is in general important. Tensor contractions are

depicted by connecting the lines at the contracted dimensions. For example, the contraction
of the previously defined tensor T at the third index, with S ∈ Kdc ×Kdd , is given by the
shape:

=

Figure 1.5: Example of contraction of two tensors.

Gradients of tensors can be represented diagrammatically simply by removing the cor-

responding tensor from the diagram. For example, given the contraction Xabd =
∑
c

TabcScd

of Fig. (1.5), the gradient ∂Xabd

∂T
is represented as:

12 1. Automatic differentiation for tensor networks

=

Figure 1.6: Example of tensor derivative. Lines without a specified tensor contracted to
them represent identity matrices.

An important property of tensor networks is gauge freedom. Namely, to any contracted
bond, an invertible matrix can be applied together with its inverse without changing the
tensor network (see Fig. 1.7). This means that there is no unique representation for tensor
networks.

(a) (b)

Figure 1.7: (a) Arbitrary tensor network state made up of 5 tensors. (b) Introducing a
gauge G to bond, for example, 1-5, and defining T̃1 = T1G

−1 and T̃5 = GT5, leaves the
total network invariant.

1.2.3 Implementation of symmetries

Quantum many-body systems are often governed by Hamiltonians with a number of
discrete or continuous symmetries. Moreover, distinct phases might be characterized by
ground states invariant under different symmetries. In computational physics, the existence
of symmetries should be taken into account when possible as it can significantly speed up
the calculations as well as achieve more accurate results. The reason is that when an array

1.2 Basics on tensor network states 13

is invariant under some operation, it can be decomposed as the direct sum of different
blocks of smaller arrays. Because of this, multiplications of large arrays can be replaced
by multiplications of smaller blocks of arrays, thus reducing the computational costs.

Symmetries can be incorporated in the representation of tensor networks via extra
labels in the indices which specify the symmetry sectors. For example, consider a U(1)
symmetry connected to a conservation of charge. A degree-three tensor is now represented
(in the charge-operator eigenbasis) as:

=

Figure 1.8: Example of tensor subscribing to a U(1) symmetry.

with the charge quantum numbers q1, q2, q3 being restricted by a conservation law, q1+q2 =
q3 in accordance with the U(1) invariance. The conservation law is encoded diagrammati-
cally through arrows on the legs of the tensor according to the flow of charge. In written
form, the convention is to set up/down indices for incoming/outgoing charges. In this case,
the labels a, b, c label the states in a specific symmetry sector of charge q1,2,3. Another
example used for the benchmarks of this thesis is the SU(2) symmetry. In this case, an
extra label qi,z is added to distinguish individual states of a multiplet.

=

Figure 1.9: Example of tensor subscribing to a SU(2) symmetry.

This is a very powerful technique to automatize symmetry tracking in tensor networks. For
this reason, the use of the QSpace library was chosen, which keeps track of the symmetry
labels and conservation laws. The latest documentation for QSpace is reported in [Wei24].

1.2.4 The (infinite) Projected Entangled Pair States

Among all the possible tensor network geometries, the Projected Entangled Pair States
(PEPS) are those that efficiently capture the entanglement properties of ground states
of local, gapped Hamiltonians. They were originally proposed as a generalization of the
Matrix Product States (MPS) for 2D systems [VC04]. Each tensor of a PEPS corresponds
to a quantum system (spin, boson, fermion, etc.) and consists of one physical index to
which are assigned the quantum numbers related to that system; the correlations between

14 1. Automatic differentiation for tensor networks

particles are encoded via z virtual indices, where z is the coordination number of that
site. The virtual bonds in a tensor network are those that do not correspond to physical
degrees of freedom; however, they do have a physical significance as they are linked to how
entanglement gets distributed through the system’s interactions. In this thesis, square-
lattice geometries are studied, and therefore we are interested in systems in 2D where the
individual tensors have the shape:

Figure 1.10: Elementary PEPS tensors of a 2D PEPS arranged in a square geometry.
The letters next to the arrows indicate the dimension of the space of the corresponding
index. The virtual indices have a dimension D, while the local index dimension d.

The whole tensor network can be visualized as in Fig. 1.11b.

The PEPS geometry might seem intuitively the natural choice for systems where the
leading interaction is between nearest neighbors, however the ansatz is far more general:
any state of the form (1.14) with finite d can be represented through PEPS [ECP10].
Specifically, the maximal entanglement entropy for a PEPS with virtual bond dimension
D grows as:

SR,max ∼ ∂R logD (1.17)

which means that the smaller the bond dimension D the smaller the amount of entangle-
ment that the PEPS can capture. However, for ground states governed by the area law for
entanglement (1.16), D can take small values and still permit very accurate calculations.
What is important is that the area law holds true for any bipartition, which is indeed the
case. An example of this is illustrated in Fig. 1.11b. If we want to represent a highly
entangled state, then the bond dimension must be increased exponentially with system
size, which means that this representation is not efficient for such states.

The thermodynamic limit can be approached with PEPS by considering a supercell of
tensors which is repeated across the network. The size of the supercell determines the exact
way in which translational symmetry presents itself on the lattice. Such a construction
is abbreviated as iPEPS, originally introduced in [JOV+08]. For an LX × LY supercell
the degrees of freedom grow linearly with the size of the supercell as dD4LXLY , and stay
constant with increasing system size, keeping the iPEPS representation efficient.

So far we have not specified whether the particles that make up the quantum state
are bosons or fermions. For bosonic statistics, no modifications to the PEPS ansatz are
required since the creation operators commute. However, for building a PEPS that can
capture ground-state properties of local fermionic Hamiltonians, two essential modifications
are required [COBV10]:

1.2 Basics on tensor network states 15

R

(a)

R
x

y

(b)

Figure 1.11: (a) Lattice of particles. The entanglement of the particles inside area R, with
the rest of the lattice, grows with ∂R (blue shaded area). (b) Diagrammatic representation
of PEPS. The PEPS construction automatically satisfies the area law. The entanglement
of the particles in bipartition R with the rest increases only with the number of bonds at
the boundary, and thus, in this example, with LY . The same holds true for all bipartitions.

1. Tensors M should be invariant with respect to the parity of the fermionic particle
number. This comes from the fact that fermionic Hamiltonians possess this Z2 sym-
metry, and therefore their eigenstates should correspond to fixed parity. For this, the
elements that mix parities must be set to 0:

Ma c e
b d = 0 if p(a)p(b)p(c)p(d)p(e) = −1 (1.18)

where p(x) is the parity carried by the edge x.

2. At each line crossing in the tensor network, a fermionic SWAP operator should be
added, defined as:

with

S(i1, i2) =

{
−1 if p(i1) = p(i2) = −1
1 otherwise

(1.19)

This comes from the fact that such line crossing represents exchange of the degrees
of freedom carried by the crossed edges [CV09] (be it virtual or not). The fermionic

16 1. Automatic differentiation for tensor networks

SWAP assures that the fermionic statistics will be satisfied since a minus sign is
introduced for each exchange of two fermions. For what it means for bonds to carry
fermionic charge, see 1.2.3.

These simple modifications to the original PEPS definition result in an efficient way of
studying fermionic ground states. By the second rule, the new PEPS representation has
the diagrammatic form of Fig. 1.12.

Figure 1.12: Generalization of the PEPS of Fig. 1.11b to fermions. Fermionic SWAPs
are added whenever two lines cross.

With such a PEPS, expectation values can be computed by defining the conjugate to the
PEPS and the corresponding double-layer tensors. For each tensor Mi,j of the supercell
the corresponding double-layer tensorMi,j is defined from the contraction of the physical
index of Mi,j and its conjugate Wi,j, as shown in Fig. 1.13.

1.3 AD for the Corner Transfer Matrix Renormaliza-

tion Group

In this section the application of AD (Sec. 1.1) to tensor networks is exemplified for
the case of the Corner Transfer Matrix Renormalization Group (CTMRG). CTMRG is one
of the most competitive algorithms for performing calculations with ground states of 2-D
lattices at the thermodynamic limit, and for this reason it has been chosen to compute the
energies of iPEPS for the benchmarks of Ch. 3. I will start by introducing the CTMRG
algorithm, and subsequently continue with details on how to implement backpropagation
efficiently with it. Since AD is a generic method for gradient calculation, it can be applied
to all kinds of different algorithms; therefore, one can apply these ideas to other cases.

1.3 AD for the Corner Transfer Matrix Renormalization Group 17

=

=

Figure 1.13: Conjugate W and double-layer tensor M with respect to the M tensors
that make up the iPEPS.

1.3.1 Corner Transfer Matrix: Forward sweep

A most challenging aspect of tensor network states drawn from an iPEPS ansatz, or even
from finite PEPS, is computing expectation values. The reason behind it is the lack of a
canonical form similar to tree-like structures2. As explained in App. A, the canonical form
allows the use of isometric relations to efficiently contract the environment of a tensor of a
MPS, and can also be used to approximate infinite environments. The lack of a canonical
form is the biggest bottleneck for iPEPS, and different methods for contracting the infinite
environment must be constructed. For this purpose, several approximate methods have
been developed, among which is the Corner Transfer Matrix (CTM), originally adapted in
the context of iPEPS in [OV09].

Below, CTMRG is described following the implementation in [Zha21]. For more details,
this source should be used along with the references therein. Fig. 1.13 and Fig. 1.15-1.19
explaining the steps of CTMRG were kindly provided by Changkai Zhang.

Suppose that we are equipped with an approximation of the ground state of a Hamilto-
nian, drawn from the iPEPS ansatz for some bond dimension D. The CTM ansatz encodes
the infinite environment of each tensor in the supercell in 8 tensors called corner matrices
and transfer matrices. The mapping of iPEPS to CTM is shown in Fig. 1.14 for a central
tensorM1,1.

2An isometric PEPS ansatz was defined in [ZP20], which, however, does not represent a generic PEPS
ansatz.

18 1. Automatic differentiation for tensor networks

Figure 1.14: Mapping of the iPEPS ansatz (top) to the CTM ansatz (bottom) for tensor
M1,1. The shaded areas of the top diagram are encoded to the similarly colored tensors of
the bottom diagram. The value χ is the environment bond dimension and its exact value
is case-dependent.

This mapping is achieved via an iterative coarse-graining procedure, the CTMRG. CTMRG
consists of the following steps:

• Initialization: Choose an initialization of the corner and transfer matrices. A
natural choice is initializing with the immediate environment of each tensor as shown
in Fig. 1.15.

1.3 AD for the Corner Transfer Matrix Renormalization Group 19

=

=

Figure 1.15: Exemplary initialization of the corner matrices CLDj,i and transfer matrices
T Lj,i using the closest tensors to the site (j, i). Similar initialization can be defined for the
rest of the environment tensors.

• Vertical update: We start with vertically updating the environment. This consists
of three steps:

1. Renormalization Group (RG): The goal of this step is to obtain an efficient de-
scription of the environment tensors, i.e. obtain environment tensors whose in-
dividual dimensions do not exceed the pre-selected value χ. This is achieved via
subsequent Singular Value Decompositions (SVD) and truncation of the small-
est singular values, as explained in detail in Fig. 1.16. As the coarse-graining
proceeds, the environment bond dimension grows by D2 at each iteration, and
therefore this step is crucial. At this step projectors with dimensions at the
most χD2 × χD2 × χ are obtained.

2. Update corner matrices: A transfer matrix is absorbed by a corner matrix to
obtain the new corner, as shown in Fig. 1.17. This contraction increases the
bond dimension of the corner matrices from χ × χ to χD2 × χ. Then, by con-
tracting with the projectors computed in the first step the dimension decreases
back to χ× χ.

3. Update left/right transfer matrices: Similarly to the corner matrices, the trans-
fer matrices are updated by absorption of a double-layer M tensor, as shown
in Fig. 1.16. Again, renormalization is required to keep the environment bond
dimension no larger than χ.

• Horizontal update: Similar to the vertical update, but now the renormalization
involves SVD on the left-right splitting of the iPEPS, resulting in 4 new projectors.
The corner matrices are updated horizontally and the up/down transfer tensors are
now updated.

20 1. Automatic differentiation for tensor networks

SVD

=

(a)

≈SVD ≈

(b)

= =

(c)

Figure 1.16: Update of up/down projectors for the renormalization. (a) Firstly, an
effective description of the upper part of the iPEPS is computed by contractions that form
the left part of Fig. (a). Subsequently, a SVD and truncation of the smallest singular
values assures stability of the renormalization step. In this way, the tensor ΣU of Fig. (a)
is obtained as an efficient description of the upper left part of the iPEPS. Similarly for
the lower part of the iPEPS tensor ΣD is obtained. (b) ΣUΣD is computed and after an
SVD the inverses of the three SVD tensors are taken. At the SVD, up to χ singular values
are kept. (c) From there two projectors can be defined, P LU and P LD, which map from a
space of dimension χD2 of the left upper/lower iPEPS to one of dimension χ. With this
definition, the product P LUP LD is the identity.

• Steps 1-3 are repeated for vertical and horizontal updates alternately, until conver-
gence.

1.3 AD for the Corner Transfer Matrix Renormalization Group 21

RG

(a) (b)

(c) (d)

Co
nt
ra
ct

Figure 1.17: Left-down corner matrix update of CTM. (a) Setup from previous iteration.
(b) Absorbing a transfer matrix to the corner matrix. (c) Updated corner matrix, with the
increased bond dimension χD2 shown with a thicker line. (d) Renormalization decreases
this dimension back to χ.

Contract
RG

(a)

(b)

(c)

(d)

Figure 1.18: Left transfer matrix update of CTM. (a) Setup from previous iteration. (b)
Absorbing a double-layer tensor to the transfer matrix. (c) Updated transfer matrix with
the increased bond dimensions shown with thicker lines. (d) Renormalization.

22 1. Automatic differentiation for tensor networks

The forward sweep starts with initializations 1.13 and includes all the subsequent steps
of CTMRG. Finally, it concludes with the computation of the expectation value of the
Hamiltonian. In this thesis, nearest and next-nearest neighbor interactions are studied.
The nearest-neighbor terms of the Hamiltonian for the square iPEPS act on vertically and
horizontally neighboring sites. The next-nearest neighbor terms act on the diagonally and
anti-diagonally neighboring sites. The diagrammatic form of such expectation values is
shown in Fig. 1.19.

Figure 1.19: Top: Expectation value of horizontal two-site observable. Bottom: Expec-
tation value of anti-diagonal two-site observable.

1.3.2 Corner Transfer Matrix: Reverse sweep

To conduct gradient-based ground-state search, what we are interested in is exploiting
AD for calculating energy gradients. The function f through which we would like to back-
propagate and compute its gradient is only a function of the tensors {Mi,j}. Summarizing
the forward sweep, f consists of:

• Initializations 1.13 for all the LXLY tensors of the supercell

• Initializations 1.15 for all the 8LXLY environment tensors

• CTMRG for all the 8LXLY environment tensors vertically and horizontally updated,
repeated Nit times until convergence

1.3 AD for the Corner Transfer Matrix Renormalization Group 23

• The expectation value of the Hamiltonian for vertical and horizontal interaction terms
(and across the two diagonals for the next-nearest neighbor interaction) for all LXLY
tensors (Fig. 1.19). The total energy E is calculated as the average over all these
terms.

What we wish to compute are the gradients:

Ei,j =
∂E

∂Mi,j

∣∣∣∣
M0i,j

(1.20)

using reverse-mode AD, starting from an initial iPEPS ansatz with parameters {M0i,j}.
To do this, the whole computational graph of all the above steps needs to be recorded
and stored in memory at the forward sweep. Operations ϕ(i) which map from one node
of the graph to another include contractions, SVDs, permutations, etc. This information
on how the different nodes are connected also needs to be stored in memory, so that the
corresponding gradient formula can be addressed at the backward pass. A few non-trivial
gradient formulas for such common tensor network operations are given in the app. B.
At first sight, calculating Eq. (1.20) in this way seems an unfeasible task, as there is a
huge number of contractions and intermediate tensors which need to be stored in memory.
In particular, for our benchmarks it was found that already at bond dimension D = 5
the consumption in memory was more than 20GB, and with increasing bond dimension it
quickly reached hundreds of GB, since the memory cost of CTMRG scales as O(D4χ2).
The challenging part is the fact that, within the forward pass, there exists an iterative
procedure which increases the memory costs proportionally to the number of iterations
and supercell-size. In order for AD to become practically feasible for the CTMRG coarse
graining, we perform the checkpointing technique explained in Sec. 1.1. As an exam-
ple, Fig. 1.20 explains how updating a corner matrix and its gradients can be done via
checkpointing. Another possible way to tackle the problem is the backward formula for
fixed-point iterations [Chr94], which is briefly described in App. B.

A reasonable choice of checkpoints to the RG step leads to the computational graph
of Fig. 1.21. In general, the checkpoints should be customized depending on the com-
putational and memory requirements for each algorithm; however, a balance between the
memory and computational cost should be preferred. An example where the computational
burden of checkpointing outweighs its benefits is for the calculation of vector-Jacobian prod-
ucts for the corners of the iPEPS, made up of the tensors {C, T U/D, T R/L,M,W}. These
corners are needed for the update of the projectors (see Fig. 1.21). Even though check-
pointing leaves the computational complexity unaltered, it becomes impractical, since for
each iteration it includes contractions with scaling 4O(χ3D4) (and 6O(χ3D4) for fermionic
iPEPS), instead of O(χ3D4). Avoiding the checkpointing for this part comes at a cost of
storing four times more tensors (and six for fermionic iPEPS). As we can see from this
example, checkpoints should be applied with care. Except for the RG step, checkpoints
should also be applied for the calculation of the energy, as it also involves a big number of
intermediate, large tensors.

24 1. Automatic differentiation for tensor networks

=

=

= =

= =

(a)

(b)

(c)

Figure 1.20: Forward and reverse sweeps of the update of a corner matrix at CTMRG
iteration k+1. At the forward sweep, the initial and final tensors are saved to memory while
the intermediate tensor C ′ is not. At the reverse sweep, first the forward calculation is re-

executed (step (a)), this time saving temporarily also C ′. Gradient CLU(k+1)
i,j is known from

previous steps, and can be used to compute the gradients with respect to tensors directly
related to it (step (b)). Lastly, the two remaining gradients are computed (step (c)). Once
all the gradients have been updated, unnecessary information of doubly computed the
tensors can be discarded.

1.3 AD for the Corner Transfer Matrix Renormalization Group 25

(b) (c)

(a)

Figure 1.21: Computational graph for the RG step of CTMRG. (a) Renormalization
step. (b) Update of corner tensors. (c) Update of transfer tensors.

26 1. Automatic differentiation for tensor networks

(a)

(b)

Figure 1.22: (a) Coarse-grained schematic of the computation graph of CTMRG. En-
vironment tensors of iteration (k − 1) depend directly only on those of iteration k. (b)
Gradient calculation can be done iteration-by-iteration at the reverse sweep, so that the
part of the graph related to iteration k + 1 can be discarded once the the gradients of
iteration k are obtained.

In parallel, during the backward pass, storage space should be available for the gradient
tensors. The gradient tensors should also be saved, as they contain useful information
which might be reused in different steps of the backward process. For example, looking at

backpropagating through the graph (b) of Fig. 1.21, CLU(k+1)
j,i+1 is computed once and saved

in order to be used for all three vector-Jacobian products of its parent nodes (see steps
(b)-(c) of Fig. 1.20). In order to avoid unnecessary memory consumption because of this
process, a simple trick is to use that in a coarse-grained schematic of the computational
graph (Fig. 1.22a), the environment tensors of iteration k − 1 do not depend directly on
those of iteration k + 1. Therefore, if one computes all the gradients up to iteration k, all
the information regarding the computational graph and the gradients from iteration k+ 1
and onward can be discarded, making space for next gradient computations. This trick is
useful for any algorithm dependent on iterative procedures similar to CTMRG, and it only
comes down to rearranging the order in which the gradient computations are made (see
Fig. 1.22b).

Using all of the above, we can estimate that this implementation of reverse-mode AD
for CTMRG requires 40LXLYNit saved tensors (or 56LXLYNit for fermionic iPEPS). Even
though this is still a big number, the order of magnitude of total memory consumption

1.3 AD for the Corner Transfer Matrix Renormalization Group 27

required for the benchmarks of Ch. 3 was still reduced from hundreds of GB with plane AD,
to tens of GB after applying the above tricks, at the expense of increasing the computational
cost to about twice as much.

Finally, some comments are required regarding the stability of the backward process.
Specifically, the implementation of the reverse AD for the SVD might create instability
to the gradient and should be applied as presented in App. B. Additionally, due to the
terms S−1 containing inverse singular values at the update of the projectors (see Fig. 1.16),
the gradient of such terms ∼ S−2 is prone to cause instabilities at the backward pass of
the CTMRG. For this reason, it is advisable to keep singular values no smaller than 10−8

at the corresponding SVD (Fig. 1.16b). This introduces a truncation error to the energy
calculations (which is already partly there since only the χ largest singular values are kept).

28 1. Automatic differentiation for tensor networks

Chapter 2

Gradient-based optimization of
tensor networks

In quantum mechanics, variational methods are the most powerful technique for ground-
state approximation when perturbative expansions cannot be used. The variational ap-
proach assumes that a suitable variational ansatz is known for the ground state, and one
needs to compute the variational parameters of the ansatz so that the corresponding state
belongs to the subspace of the lowest eigenvalue of the Hamiltonian. In the context of this
thesis, the variational ansatz is the iPEPS which takes as parameters the (single-layer)
tensors {Mi,j} of the supercell. {Mi,j} need to be optimized to approximate as much
as possible a true ground state. Optimization methods are guaranteed to give an upper
bound to the ground-state energy due to the variational principle. Given an iPEPS ansatz
|ψ⟩ = |ψ({Mi,j})⟩, the variational principle states that:

E0 ≤ min
{Mi,j}

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

(2.1)

whereH is the full Hamiltonian and E0 the true ground-state energy. Once we are employed
with an algorithm to calculate the expectation value of the Hamiltonian, optimization
algorithms can be used to compute, or at least approximate, the right-hand side of Eq.
(2.1).

For this purpose, gradient-based optimization methods can be employed, where gradi-
ent information is used to approach the ground state by minimizing the energy. AD as
described in Ch. 1 provides us an efficient method to calculate energy-gradient values.
There are several gradient-based optimization techniques which can be used for tensor
networks. The most naive approach would be gradient descent, where the update rule:

x→ x− η∇E(x)

with E(x) = ⟨ψ(x)|H|ψ(x)⟩
⟨ψ(x)|ψ(x)⟩ and η > 0

(2.2)

is used for the variational parameters x, which are vectors containing the elements of the
iPEPS tensors. However, such a method might take a very long time to converge when

30 2. Gradient-based optimization of tensor networks

the number of parameters is large. The exact rate of convergence depends on the objective
function, but in general it can be linear or slower [NW99]. For this reason, other methods
which converge quadratically have been developed and are used for tensor networks, such
as the conjugate gradient method [FR64] and Newton-type methods [NW99]. For the
benchmarks of this thesis the limited-memory BFGS method was used, which is in the class
of quasi-Newton methods. In Sec. 2.1 this method is described, along with some necessary
background. In Sec. 2.2 possible initializations of the tensor network are given, along with
some details which can improve the performance or efficiency of the optimization.

2.1 Quasi-Newton optimization techniques

2.1.1 The BFGS optimization

Suppose that we have a function f : Rm0 → R twice continuously differentiable and
we want to find a global minimum x = xe. For non-convex functions this is a very
difficult task because it requires knowledge of the function and its derivatives for all x ∈
Rm0 . Optimization algorithms are in general capable of scanning a restricted region of
the function and find a local minimum. The BFGS optimization method, named after its
inventors Broyden, Fletcher, Goldfarb, and Shanno, is a powerful technique that combines
numerical accuracy and efficiency in search for (local) minima. It belongs to the class of
line search methods, which means that it is composed of successive iterations k = 0, 1, ...
in which the variables are updated as:

xk → xk+1 = xk + akpk (2.3)

Here xk is the variable value at the k-th step of the optimization process, pk is the search
direction, a direction along which the function is guaranteed to decrease, and ak > 0 is
the step length calculated through a line search algorithm for each iteration k. ak should
be chosen so that the function value minimizes in a given search interval. Line search
methods are used to only approximate the optimal value of ak in a way that few trial steps
are required to obtain a reasonable decrease in the function value.

Optimization methods are divided into different classes depending on how the search
direction pk is calculated. In this respect, BFGS is a quasi-Newton method. Newton’s
methods have as their starting point the second order Taylor’s expansion of f(x) around
the current iterate xk:

f(xk + s) ≈ f(xk) + sT∇f(x)|xk
+

1

2
sTH(xk)s+O

(
s3
)

(2.4)

where H(xk) is the Hessian matrix at point xk:

H(xk) =
∂2f

∂x∂xT

∣∣∣∣
xk

(2.5)

2.1 Quasi-Newton optimization techniques 31

and is symmetric by Clairaut’s theorem, since f is considered twice continuously differen-
tiable. This means that the model function which is being optimized is:

mk(s) = f(xk) + sT∇f(x)|xk
+

1

2
sTH(xk)s (2.6)

which is an accurate approximation of the true f in a neighborhood close to xk.
The optimal value for s needs to be found in order to reach the local minimum around

xk. For an s = sk to be a descent direction at xk, it has to point opposite to the direction
of gradient increase:

sTk∇f(x)|xk
< 0 (2.7)

At the local minimum s = se,k, ∇mk = 0 which leads to the optimal search direction:

se,k = −H−1(xk)∇f(x)|xk
(2.8)

This is a descent direction for mk for any xk ∈ Rm0 if Eq. (2.7) holds, and therefore if:

H(x) > 0 (2.9)

i.e. the Hessian is positive definite [NW99, 23]. Eq. (2.8) can be used directly to compute
the correct search direction pk of Eq. (2.3), with the step length ak = 1.

The discussion would end here if the Hessian or its inverse were easy to compute.
However, for tensor network applications computing second derivatives is expensive, and
for this reason quasi-Newton methods are preferred, which instead use an approximation
of the Hessian based only on gradient information. The Hessian is approximated with a
symmetric, non-singular, positive definite m0 ×m0 matrix Hk ≈ H(xk). It incorporates
curvature information from the last two gradient computations by imposing that at xk−1 =
xk − sk, mk(−sk) has the correct gradient [NW99, 195]:

∇mk(s)|−sk = ∇f(x)|xk−1
⇒ ∇f(x)|xk

−Hksk = ∇f(x)|xk−1
⇒

⇒ sk = H−1
k yk (2.10)

where the following definitions are adopted:

sk = xk − xk−1, k > 0

yk = ∇f(x)|xk
−∇f(x)|xk−1

, k > 0
(2.11)

From all the matrices that satisfy condition (2.10), the BFGS algorithm chooses H−1
k+1 from

H−1
k as [NW99, 197]:

H−1
k+1 = argmin{

H−1:
H−1yk = sk,

H−1 =
(
H−1

)T

}
∥∥H−1 −H−1

k

∥∥
WF

(2.12)

where WF refers to the weighted Frobenius norm:

∥M∥WF =
∥∥W 1/2MW 1/2

∥∥
F

(2.13)

32 2. Gradient-based optimization of tensor networks

Other quasi-Newton algorithms arise from different choices of norm, while imposing always
the condition that the inverse Hessian at the new step is as close as possible to the one
at the previous step, with respect the chosen norm. To obtain an exact expression, the
weight can be chosen as the average Hessian:

W =

∫ 1

0

∇2f(x)|xk+τskdτ (2.14)

however other choices are acceptable as long as Wsk = yk. With this choice, the BFGS
algorithm is characterized by the following inverse-Hessian update [NW99, p. 197–198]:

H−1
k+1 = (I − ρkskyTk)H−1

k (I − ρkyks
T
k) + ρksks

T
k

with ρk =
1

yT
k sk

(2.15)

For the initial choice H−1
0 there is no explicit formula; it can be approximated via AD

for second derivatives or finite differences, or it can also just be set to a positive definite
matrix. For the benchmarks of this thesis, it was chosen identity, which proved sufficient
for the problems at hand.

Under this approximation, the search direction, using Eq. (2.8) is:

pk = −H−1
k ∇f(x)|xk

(2.16)

Now the optimal step length ak might be different than 1, but 1 might (and usually is) a
good starting point. In order to calculate the optimal step length, a line search algorithm
is needed. This is the last piece of the puzzle to complete the BFGS procedure.

2.1.2 Line search: Armijo backtracking

The goal is to find ak such that at the point xk+1 the function value has decreased. In
addition, ak shouldn’t be chosen too small so that there is visible progress at each iteration.
The algorithm that takes this condition into account is called Armijo backtracking [NW99,

41–42]. Backtracking starts with a trial step length a = a
(0)
k and the sufficient-decrease

condition (also known as Armijo condition) is tested:

f(xk + apk) ≤ f(xk) + c1ap
T
k∇f(x)|xk

, 0 < c1 < 1 (2.17)

which states that a new accepted value of f should be below the current value by a finite
amount, which depends on the step length and the gradient projection along the search
direction. Typical values are c1 = 10−4 [NW99, 38] and a

(0)
k = 1[NW99, 42], but should be

best chosen by the user for each application. If this condition doesn’t hold for the initial
step a

(0)
k , the trial step is updated as:

a
(l)
k → a

(l+1)
k = ra

(l)
k , 0 < r < 1 (2.18)

2.1 Quasi-Newton optimization techniques 33

a

f(xk + apk)

f(xk) + c1ap
T
k∇f(x)|xk

Figure 2.1: Geometric picture of sufficient decrease condition. The green area is all the
points of f where the decreease is enough according to Eq. (2.17). The red are the areas
where either there is an increase, or the decrease is too small.

An alternative choice is for the new trial step length to be calculated via, for example,
quadratic interpolation, with the requirement that the new step is within a given region
a
(l+1)
k ∈ [amin, amax] with 0 < amin < amax < 1. The minimum accepted value amin

shouldn’t be too small so that the super-linear convergence of Newton-type methods can be
exploited. With appropriate initialization x = x0 not far from the minimum, requirement
(2.17) can be enough for the optimization to progress. Nonetheless, optimization might
be more efficient if an additional condition is imposed for sufficiently large curvature at
the new point compared to the previous point. This condition is called second Wolfe
condition [NW99, 38] and it also guarantees the positive definiteness (2.9) of the Hessian,
which is not guaranteed by Eq. (2.12). However, it requires to compute the gradient

at each trial point xk + a
(l)
k pk. Due to this complication, in this thesis, the second Wolfe

condition was avoided, since it requires additional gradient calculations, thus slowing down
the computation. Instead, as we will see in the next section, the algorithm was initialized at
a point not too far from the minimum, and the Armijo backtracking was proven sufficient.

2.1.3 Limited-memory BFGS

The Limited-memory BFGS algorithm, or L-BFGS [NW99, 224], is a slight modification
of the BFGS algorithm. In BFGS, H−1

k as given by Eq. (2.15) depends on H−1
0 and

{(sk−1, yk−1), (sk−2,yk−2), ..., (s0,y0)}. This calculation might be computationally and
memory inefficient, as in general the input space Rm0 is of large dimension and performing
operations with a dense m0×m0 matrix can be expensive. L-BFGS was invented to make
a more efficient version of the BFGS algorithm. L-BFGS has two differences with respect
to BFGS:

34 2. Gradient-based optimization of tensor networks

1. At each step, the inverse Hessian is approximated by taking into account the m last
iterations, where m is the history size, which means that H−1

k is determined via
recursion (2.15) only from the sets {(sk−1, yk−1), (sk−2,yk−2), ..., (sk−m,yk−m)}

2. The initial guess H
−1(0)
k of the Hessian at each iteration k can be chosen to vary. A

common choice for H
−1(0)
k is [NW99, 226]:

H
−1(0)
k =

sTk−1yk−1

yT
k−1yk−1

I (2.19)

This choice enssures that the search direction pk given by Eq. (2.8) is well-scaled,
and the step length ak = 1 is for most iterations a valid choice.

The search direction can then be computed via:

pk = −
k−m∏
i=k−1

(I − ρisiyTi)H
−1(0)
k

k−1∏
j=k−m

(I − ρjyjs
T
j)∇f(xk)−

−

(
k−2∑

i=k−m

i+1∏
j=k−1

(I − ρjsjyTj)ρisisTi
k−1∏
l=i+1

(I − ρlyls
T
l) + ρk−1sk−1s

T
k−1

)
∇f(xk)

(2.20)

which comes from the recursion (2.15) by going only back to the (k−m)-th iteration. The
algorithm that computes this matrix-vector product is called two-loop recursion because it
first calculates the second product of the first term in one loop, and subsequently the rest
via a second loop. The two-loop recursion is demonstrated in the pseudocode of Algorithm
1.

Algorithm 1: Two-loop recursion

Input: ∇f(xk), {si}, {yi}
Output: p
q ← ∇f(xk);
for i = k − 1, k − 2, ..., k −m do

ai ← ρis
T
i q;

q ← q − aiyi;

end

r ← H
−1(0)
k q, where H

−1(0)
k is calculated via Eq. (2.19);

for i = k −m, k −m+ 1, ..., k − 1 do
b← ρiy

T
i r;

r ← r + si(ai − b);
end
p← −r;

When m ×m0 ∼ m2
0, L-BFGS becomes inefficient compared to plain BFGS in terms

of computation and storage requirements, since in the two-loop recursion many operations

2.1 Quasi-Newton optimization techniques 35

would be repeated for each iteration, and m vectors of length m0 would have to be stored
in memory. For the problems that we consider however, m0 >> 1 and m ∼ 10, therefore
L-BFGS is the most suitable choice. In Algorithm 2 the summary of the whole L-BFGS
procedure described in this subsection is presented in the form of a pseudocode.

Algorithm 2: L-BFGS

Input: x0 ∈ Rm0 , m ∈ N>0, a0, c1 ∈ (0, 1), ConvergenceCriteria
Output: xe minimizer of f(x)
H−1

0 = In; /* Initial inverse Hessian set, e.g., to identity */

p0 ← −H−1
0 ∇f(x0);

k = 0;
while True do

atmp ← a0;
xtmp ← xk + atmppk;
while f(xtmp) > f(xk) + c1atmpp

T
k∇f(x)|xk

do
atmp ← atmp/2 ; /* Alternative choices indicated in the text */

xtmp ← xk + atmppk;

end
xk ← xtmp;
sk ← atmppk and save;
yk ← ∇f(xk)−∇f(xk−1) and save;
k ← k + 1;
if k > m then

discard sk−m−1, yk−m−1;
end
if ConvergenceCriteria then

break;
end
Update pk with Algorithm 1;

end
xe ← xk

2.1.4 Generalization to functions of complex variables

For tensor network applications, it is important to have a generalization of the optimization
procedure to complex variables. The problem we consider is having a function f : Cm0 → R
and searching the solution to:

min
z∈Cm0

f(z) (2.21)

36 2. Gradient-based optimization of tensor networks

In Sec. 1.1 we saw that, through automatic differentiation, the Wirtinger derivatives are
computed (up to a factor of two), which are related to each other through

∂fk
∂z∗ =

(
∂fk
∂z

)∗

(2.22)

because f(z) ∈ R. Therefore, it is desirable to adapt the L-BFGS algorithm so that it uses
these complex derivatives. The difficulty lies in the fact that a non-constant function f
with range in the real numbers is non-analytic in Cm0 , as can be proved using the Cauchy-
Riemann equations. However, a generalization of the Taylor series does exist, and is used
in [SvBdL12] in the context of optimization of real functions in the complex domain.

Suppose that f is twice continuously differentiable in the space spanned by x̃ = (x,y) =
(Re z, Im z) ∈ R2m0 . Then, Eq. (2.4) holds for f(x̃). The variables z and z∗ generally
span different spaces. Gradient-based optimization should function in a way that has the
whole derivative information, and for this, in general, the derivatives with respect to both
variables are needed. Because the space spanned by z̃ = (z, z∗) is isomorphic to the space
spanned by x̃, f inherits the same analyticity properties in the space spanned by z̃. Then,
the only part of the previous section that needs reformulation is the Taylor expansion (2.4),
which needs to be written with respect to z̃. The model function that has to be optimized
by Newton’s methods is:

mk(s̃) = f(z̃k) + s̃†
∂f

∂z̃∗

∣∣∣∣
z̃k

+
1

2
s̃†H(z̃k)s̃ (2.23)

where now the second order complex Taylor series was used and the complex Hessian is
[vdB94]:

H(z̃k) =
∂2f

∂z̃∗∂z̃T

∣∣∣∣
z̃k

(2.24)

Defined in this way, the Hessian is not symmetric but a Hermitian matrix, due to Eq.
(2.22). The search direction is then computed by setting∇mk(s̃e,k) = 0, where the complex
gradient is defined in Eq. (1.12). In this way, the expression is completely analogous to
the real case:

s̃e,k = −H−1(z̃k)∇f(z̃)|z̃k (2.25)

and it has to point opposite to ∇f(z̃)|z̃k , analogously to Eq. (2.7). The rest of the results
are completely analogous to the real case under this framework [SvBdL12]1; for example, in
the context of BFGS, the approximation H−1

k should now be a Hermitian (positive definite)
matrix, and the resulting expression is also analogous to the real case:

H−1
k+1 = (I − ρ(c)k s̃kỹ

†
k)H

−1
k (I − ρ(c)k ỹks̃

†
k) + ρ

(c)
k s̃ks̃

†
k

with ρ
(c)
k = 1

ỹ†
ks̃k

(2.26)

1Some results differ by a factor of 2 with respect to results of [SvBdL12] due to our use of Eq. (1.12) for
the gradient, which is consistent with the AD calculation. This allows for the use of the standard initial

trial step length a
(0)
k = 1 also in this case.

2.2 Initialization of tensor network 37

The search direction pk+1 = −H−1
k+1∇f(z̃)|z̃k+1

can be written in a simpler way by using
that:

ρ
(c)
k ãb̃†c̃ = ρk Re(b

†c)a, a, b, c ∈ Cn (2.27)

with

ρk =
1

Re(y†
ksk)

(2.28)

Algorithm 3 gives the two-loop recursion that computes pk.

Algorithm 3: Two-loop recursion (complex variables)

Input: ∇f(zk), {si}, {yi}
Output: p
q ← ∇f(zk);
for i = k − 1, k − 2, ..., k −m do

ai ← ρiRe(s
†
iq), ρi from Eq. (2.28);

q ← q − aiyi;

end

r ← H
−1(0)
k q where H

−1(0)
k is calculated via Eq. (2.30);

for i = k −m, k −m+ 1, ..., k − 1 do

b← ρiRe(y
†
ir);

r ← r + si(ai − b);
end
p← −r;

The line search is done with updates of the form:

zk → zk+1 = zk + akp
∗
k, ak ∈ R (2.29)

Finally, regarding L-BFGS, the generalization of Eq. (2.19) is:

H
−1(0)
k =

Re(s†k−1yk−1)

y†
k−1yk−1

I (2.30)

In this way, the search for a minimum of f(z) can be done in a compact way for real and
complex variables, by use of the Wirtinger derivatives. Algorithm 4 gives the complete
L-BFGS procedure.

2.2 Initialization of tensor network

Algorithms like the BFGS converge locally rather than globally, which means that the
initialization is an important factor which might determine the solution. For this reason,
it is important to be equipped with an initial state adequately close to the minimum, and
possibly actively prevent the algorithm from getting stack at local minima. In this section,
these issues are addressed for the case of tensor networks.

38 2. Gradient-based optimization of tensor networks

Algorithm 4: L-BFGS (complex variables)

Input: z0 ∈ Cm0 , m ∈ N>0, a0, c1 ∈ (0, 1), ConvergenceCriteria
Output: ze minimizer of f(z)
H−1

0 = In; /* Initial inverse Hessian set, e.g., to identity */

p0 ← −H−1
0 ∇f(z0);

k = 0;
while True do

atmp ← a0;
ztmp ← zk + atmpp

∗
k;

while f(ztmp) > f(zk) + c1atmpRe(p
†
k∇f(z)|zk) do

atmp ← atmp/2 ; /* Alternative choices indicated in the text */

ztmp ← zk + atmpp
∗
k;

end
k ← k + 1;
zk ← ztmp;
sk ← atmpp

∗
k and save;

yk ← ∇f(zk)−∇f(zk−1) and save;
if k > m then

discard sk−m−1, yk−m−1;
end
if ConvergenceCriteria then

break;
end
Update p with Algorithm 3;

end
ze ← zk

2.2 Initialization of tensor network 39

Simple update

For tensor networks a relatively good guess of the ground state can be approximated via
algorithms based on imaginary time evolution [Vid07]. The computationally cheapest solu-
tion is to use a simple update algorithm [JWX08] which is used to initialize the benchmarks
of this thesis. A summary of the simple update algorithm is presented below.

As discussed in Sec. 1.2.1 we are interested in local Hamiltonians of the form:

H =
∑
i,j∈ni

hi,j (2.31)

Imaginary time evolution is used to approximate ground states for such Hamiltonians using
an imaginary time unit β = it. The decomposition of the time-evolution operator in its
eigenbasis:

e−βH =
∑
i

e−βEi |i⟩ ⟨i| (2.32)

at the limit β →∞ tends to maintain only contributions from the ground state. Updating
the whole supercell with this gate is practically impossible. For this reason it is common
to apply time evolution gates for small time intervals δτ = β/N :

e−βH =
(
e−δτH

)N
(2.33)

for δτ → 0 and N →∞, and to use the first order Trotter decomposition:

e−δτH ≈
∏
i,j∈ni

e−δτhi,j +O
(
δτ 2
)

(2.34)

In this way, only two-site gates e−δτhi,j are applied. This decomposition ignores the possible
non-commutativity of different terms hi,j, thus introducing an error O(δτ 2) known as
Trotter error.

For imaginary time evolution, usually the Γ−Λ gauge is used. This gauge is introduced
in App. A for a MPS starting from a canonical form, and we see there that the right and
left bond tensors Λ contain all the information regarding the right and left environment
of that tensor. The fact that the bond tensors are used to simulate the environment is
accurate only for tree-like networks because cutting a bond of the network divides it into
two parts and pure-state bipartite entanglement characterizes the correlations between the
left and right part. In the case of square PEPS such a gauge can also be employed as in
Fig. 2.2, but only information from a small region around the tensors is contained in the
bond tensors. In Fig. 2.2 the relation of the Γ−Λ gauge to the gauge used in CTMRG is
depicted.

40 2. Gradient-based optimization of tensor networks

=

Figure 2.2: Relation of the gauge used for the CTMRG with respect to the gauge used
for the simple update.

The steps of one simple update step are shown diagrammatically in Fig. 2.3 for nearest-
neighbor interactions. We start by applying a Trotter gate e−δτh(j,i),(j,i+1) to sites (j, i) −
(j, i+ 1), thus increasing the dimension of the intermediate bond between the two sites to
D3d. Then, through an SVD and truncation the bond dimension can be decreased back to
D. A further rescaling is needed to bring the tensor network back to its Γ−Λ form. This
must be repeated for each pair of interacting sites in the supercell. The starting Γ and Λ
tensors are chosen randomly, and the time-evolution gates are applied, until convergence
of the local energy expectation values, such as the one shown in Fig. 2.4. Next-nearest
neighbor terms between (anti-)diagonally located sites can be updated in a similar fashion
(see, for example, the implementation in [Zha21] for further details).

Finally, it is important to note that the optimization procedure described in Sec. 2.1
conserves the structure of the tensors of the tensor network. This means that the block
structure of the tensors is determined by the structure of the converged tensors from the
simple update algorithm, and by the symmetry which we enforce initially on the iPEPS.
The optimization is restricted to this structure and can only improve on the numerical
values of the tensor elements.

Gauging with Belief Propagation

For an MPS, starting from the canonical form we can consistently build the Γ−Λ gauge
so that the identity A.6 holds, or at least is approximated with controllable accuracy (see
App. A). The equivalent of the isometric condition A.6 for a square lattice is shown in
Fig. 2.5. In the following discussion, the term Vidal gauge will be used to describe a
tensor network in the Γ − Λ form that also satisfies this condition, out of Guifré Vidal
who originally used it in the context of imaginary time evolution for an MPS. Identity
(2.5) is nowhere explicitly imposed during the simple update steps of the square iPEPS,
but we see from the example of the MPS that it is important in order to contract the
tensor network and calculate expectation values of local observables such as (2.4). For
general tensor network states, such as the PEPS, there is no canonical form from which to
obtain the Vidal gauge, and we have to invent other ways to obtain it so that it respects
the isometric condition. The simple update algorithm presented previously eventually

2.2 Initialization of tensor network 41

(a)

(b)

(c)

Figure 2.3: Simple update of horizontal bond (i, j)− (i, j+1). (a) Update with a Trotter
gate. (b) SVD and rescale the isometries with the inverses of the bond tensors. The
singular value matrix defines the updated Λ tensor. (c) Define the updated Γ tensor.

42 2. Gradient-based optimization of tensor networks

Figure 2.4: Expectation value of h(j,i),(j,i+1) at the Γ− Λ gauge. This expectation value
is not the true expectation of h(j,i),(j,i+1), since only sites i, j are considered.

converges to the Vidal gauge, but there is no guarantee that it is in the Vidal gauge
at every step, and truncations during SVDs or due to insufficiently small time steps δτ
prevent it from reaching exactly this gauge. A method to remedy this was recently proposed
[TF23], and maintains the tensor network close to the Vidal gauge at every step of the
simple update. Among other advantages, this method acts as an improvement on simple
update, being characterized by faster convergence to the Vidal gauge and lower variational
energies.

This new gauging technique was examined within the scope of this thesis as a possible
way of pre-training the tensor network before starting the optimization based on CTMRG.
Eventually, it did not prove to be a better candidate for initializing gradient-based opti-
mization than the usual simple update, but it is presented below so that the corresponding
results can be discussed in the next chapter, and because it might be useful in other
contexts.

The general strategy is based on Belief Propagation (BP), a method originally used in
the context of statistical inference, but which also found application in tensor networks.

2.2 Initialization of tensor network 43

=

Figure 2.5: Isometric condition for a square PEPS tensor network in the Vidal gauge.
Equivalent equations it holds for the other bonds.

Belief propagation is used to form a new gauge, called the BP gauge. One starts from
a double-layer supercell made up of tensors Ti,j and simulates the periodicity with extra
bonds, as, e.g. for a 2× 2 supercell:

Figure 2.6: Periodic PEPS made up of the double-layer tensors of the supercell.

The environment for each tensor Ti,j is simulated via four tensors for each site called
message tensors, MsgUj,i, MsgDj,i, MsgRj,i and MsgLj,i, as depicted in Fig. 2.7. The labels
U,D,R, L show the position of the (j, i)−th message tensor with respect to site (j, i).
The message tensors MsgRj,i are obtained via the self-consistent conditions of Fig. 2.8,

44 2. Gradient-based optimization of tensor networks

Figure 2.7: Environment of site (j, i) as given by the message tensors.

=

Figure 2.8: Fixed-point condition for message tensors MsgRj,i. The depicted tensor acts
as the left environment for site (j, i+ 1).

and equivalently for the other bonds. By iterating this self-consistent equation over the
supercell tensors, one can obtain fixed-point message tensors. At the fixed point, the
identity of Fig. 2.9 holds, which can be derived directly from the fixed-point conditions
2.8. These fixed-point message tensors provide a representation of part of the environment
of tensorMi,j in a similar way as the Λ tensors do in the Vidal gauge. Simple update can
be implemented directly using this gauge. After each simple update step, or after a few
steps, condition 2.8 needs to be iterated again until convergence.

Once the simple update has converged, the Vidal gauge can be obtained through an
SVD on each of the bonds, as shown in Fig. (2.10). In this figure, the definition of the
square of a matrix is defined as: M = U †DU , M1/2 = D1/2U and M−1/2 = U1/2D−1/2, or
the corresponding pseudoinverse. These relations, combined with identity 2.9 guarantee
the isometric condition 2.5 for the Vidal gauge, up to a small error due to truncation during
the SVD and inversion of matrices.

In this way, the isometric property is restored. This results in an improved approxima-
tion of local observables such as the local energy terms of Fig. 2.4. Nevertheless, it still is
a very crude approximation of the environment, and eventually it might not converge too
far from the fixed point of regular simple update.

2.2 Initialization of tensor network 45

=

Figure 2.9: Isometric property of the message tensors at the fixed point.

Escaping local minima

As mentioned in Sec. 2.1, optimization methods might converge to local minima instead of
global ones, depending on the initialization of the algorithm. Simple update is a convenient
way to initialize the tensor network to start the optimization. However, it is prone to
get stuck at local minima, which might prevent the optimization from reaching the global
solution. One way to tackle this [NWR+24] is to perturb with small random noise (∼ 10−2)
the tensors where simple update has converged, and after multiple trials, choose the best
solution.

46 2. Gradient-based optimization of tensor networks

=

=

=

(a)

(b)

(c)

Figure 2.10: Relation of the BP gauge to the Vidal gauge. (a) A SVD to the horizontal
square-root message tensors gives the horizontal bond tensors. (b) A SVD to the vertical
square-root message tensors gives the vertical bond tensors. (c) Rescale T tensors with
square-root message tensors and isometries to obtain the Γ tensors.

Chapter 3

Application to ground-state search of
quantum lattice models

Models that effectively represent quantum Hamiltonians on a lattice serve as the pre-
ferred tool for examining quantum systems with strong interactions. This chapter is de-
voted to the simulation results of ground-state search for several quantum lattice models,
using AD-based optimization of iPEPS as presented in Ch. 1 and Ch. 2. Sec. 3.1 con-
cerns the validation of the performance of the AD/L-BFGS implementation for variational
optimization of iPEPS. I present benchmark results for spin systems using the nearest-
neighbor (NN) Heisenberg model, whose ground-state energy is known to high accuracy.
I additionally provide results for a model of non-interacting spinful fermions featuring an
exact solution for the ground-state energy. This allows for a highly accurate comparison of
the performance of AD applied to fermionic iPEPS. In Sec. 3.2 the Hubbard model is ad-
dressed, starting from the Hamiltonian at half-filling and NN interaction. The performance
of AD is compared with results based on the simple update algorithm. Next, the belief
propagation technique described in Sec. 2.2 is employed for this case, to explore potential
benefits in the search for the ground state. Finally, the same method is applied for finite
doping and next-nearest neighbor (NNN) interaction for a U(1) iPEPS with period eight,
and a SU(2), uniform iPEPS.

3.1 Benchmark results

The protocol followed for the AD benchmarks is as follows:

1. The iPEPS is initialized to random Γ− Λ tensors with D = 2 and a value is defined
for the environment bond dimension χ. Typically, for iPEPS with U(1) symmetry,
χ = 10D is chosen in practice, and χ = 5D∗ for SU(2) symmetry, where D∗ is the
number of multiplets kept.

2. Simple update is run, starting from time step δτ = 0.1 and ending at δτ = 10−5 until
convergence.

48 3. Application to ground-state search of quantum lattice models

3. Starting from the last state of step 2, CTMRG is run to obtain the converged envi-
ronmental tensors, and the expectation value of the energy is calculated. The com-
putational graph is saved in the process. Checkpoints are used to reduce memory
costs.

4. L-BFGS optimization is performed using AD, until satisfactory convergence of the
variational energy. The history size is set to m = 20, as this was found to be
adequate; increasing it did not show additional advantages. For the line search, the
initial trial step length for each iteration k is chosen a

(k)
0 = 1, unless otherwise stated.

It is updated at every step via quadratic interpolation, considering the energy and
gradient from the prior step and the energy at the previous trial point, until either
the condition for sufficient decrease is fulfilled or convergence is achieved (see Sec.
2.1). An alternative solution is to decrease the step by a factor of two, which does
not change the result but might find a solution more slowly.

5. The bond dimension is increased by 1, the new environmental bond dimension is
defined, and we go back to step 2.

As a side-comment, the converged tensors of step 2 are in some cases perturbed with small
random noise (see Sec. 2.2), and the above process is also run for multiple such perturbed
states so that the optimal result can be selected. However, this step did not prove to be
crucial in the context of this specific implementation, in the sense that the final optimal
solution resulting from perturbing the initial tensors was located very closely to the original
one.

3.1.1 The Heisenberg model

First we start with the nearest-neighbor anti-ferromagnetic Heisenberg model:

H =
∑
<i,j>

Si · Sj (3.1)

where Si is the spin-1/2 operator of site i. This model captures the magnetic properties of
materials by simulating the interaction of spins on a lattice. Each spin occupies one lattice
site and only the nearest-neighbor interactions are non-zero.

Fig. 3.1 shows the benchmark results for the Heisenberg model, considering a U(1)-
invariant iPEPS with a 2×2 supercell, and following the aforementioned protocol for bond
dimensions D = 2 up to D = 7. The relative error for the variational energy is plotted,
obtained using as reference the more accurate extrapolated result with the quantum Monte
Carlo method [San97], Eg = −0.669437.1 The results are also compared with the equivalent
results based on a plane simple update. The starting state (D = 2) for the simple update
and for the variational optimization was the same, and the results are therefore comparable.

1The energies here and throughout the text are dimensionless, as they are considered relative to the
coupling constant.

3.1 Benchmark results 49

This figure is a proof of principle for the variational optimization with AD, as it shows
that the results are up to an order of magnitude improved compared to the simple update
results.

For each bond dimension, the L-BFGS algorithm typically required several tens of itera-
tions to reach convergence. Larger dimensions demanded more iterations, but generally no
more than 60 were necessary. For the CTMRG to converge well, about 15 iterations were
required. The computational cost of AD, measured as the ratio of the time Tf for a forward

sweep over the time Tr for a reverse sweep, was in a range of approximately
Tf
Tr
∼ 2 − 3

without the use of checkpointing, and increased to
Tf
Tr
∼ 5− 7 with checkpointing applied

as described in Sec. 1.3.2.

2 3 4 5 6 7

10 -3

10 -2

Figure 3.1: Relative error of variational energy for 2D Heisenberg anti-ferromagnet on
a square lattice, with reference a quantum Monte Carlo calculation [San97], as a function
of D. The data provided show the simple update results (red) and the improved results
obtained via L-BFGS optimization (black). The y-axis is in logarithmic scale.

3.1.2 Free fermion model

Tensor networks provide particularly competitive algorithmic architectures for the sim-
ulation of fermionic systems, as the main competitors, quantum Monte Carlo methods,
are cursed with the negative sign problem [TW05] which results in exponential scaling in
computing times. For this reason, computational quantum many-body physics can profit
significantly from improved tensor network calculations for strongly correlated fermions.

50 3. Application to ground-state search of quantum lattice models

Before going to interacting systems, in order to test the AD implementation for fermionic
iPEPS the free-fermion Hamiltonian is benchmarked:

H = −
∑

<i,j>,σ

(c†iσcjσ + ci↑cj↓ − ci↓cj↑ + h.c.) + µ
∑
i,σ

niσ (3.2)

In the first sum, the first term and its conjugate are the nearest-neighbor hopping terms,
with c†iσ being the creation operator of a fermion at site i with spin σ ∈ {1

2
,−1

2
}. The term

cj↓− ci↓cj↑+h.c. indicates the singlet pairing, µ is the chemical potential, and ni,σ = c†iσci,σ
is the particle number operator. The ground state energy of this Hamiltonian can be
computed analytically [ZLvD23], and for 0 < µ ≤ 8 is characterized by an energy gap:

∆ =
µ√
2

(3.3)

Because of this property, the larger the chemical potential the more reliable the iPEPS
representation is (see Sec. 1.2.1). Therefore, to benchmark the AD for fermionic iPEPS,
µ = 8 is chosen, for which the analytical solution, calculated using a 100 × 100 finite-size
lattice, gives Eg = −0.27318687. The supercell is again chosen 2 × 2 and both U(1)
and SU(2) iPEPS are studied (with also Z2 symmetry to ensure the fermionic parity
conservation explained in Sec. 1.2.4). In Fig. 3.2 the variational energy is given for
iPEPS bond dimensions D = 3, 4, 5, 6, 7 for the case of L-BFGS optimization, as well as
for the the ground state search computed only with simple update. We notice that even
though the convergence of SU(2) is faster than of U(1) iPEPS in both cases, in the end, for
D = 7, the energies computed with gradient-based optimization on a U(1) iPEPS are lower
than the results obtained via simple update for both U(1) and SU(2) iPEPS. Here both
ways are sufficient to obtain a very accurate solution, but again AD-based optimization
achieves up to an order of magnitude better result, with a relative error O(10−4) for simple
update, and O(10−5) for L-BFGS at D = 7.

CTMRG for this model needed no more than 10 iterations to converge, and L-BFGS
required no more than 20 gradient and energy calculations per bond dimension. The
performance of AD for this case was slightly better than for the Heisenberg model, with
Tf
Ti
∼ 4− 5 after the checkpoints are applied.

3.2 The Hubbard model

The Hubbard model [Hub67] captures the essence of strongly correlated electron systems
via the Hamiltonian:

H = −
∑
i,j,σ

tij(c
†
iσcjσ + c†jσciσ) + U

∑
i

ni↑ni↓ (3.4)

tij are coupling amplitudes for the hopping from site i to site j and U simulates the
Coulomb repulsion between fermions. In general, the ground state of the Hubbard model

3.2 The Hubbard model 51

3 4 5 6 7
-0.2735

-0.273

-0.2725

-0.272

-0.2715

Figure 3.2: Variational energy for the 2D free-fermion model (3.2) on a square lattice as
function of D, for U(1) symmetry, or D∗ for SU(2). The data provided show the simple
update results (circles) and the improved results obtained via L-BFGS optimization (x’s),
together with the analytical result (green line).

is characterized by a complicated phase diagram with rich physics and is yet to be fully
understood. For this reason, it is important to have accurate simulations of the Hubbard
model across a range of interaction parameters. Moreover, investigations of the Hubbard
model using square-lattice iPEPS are significant because they allow for the exploration of
high-Tc superconductivity in cuprates.

3.2.1 Nearest-neighbor interaction

Firstly we will focus on nearest-neighbor interactions, with a Hamiltonian

H = −
∑
⟨i,j⟩,σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓ + µ
∑
i

ni (3.5)

for U = 8 and µ = −U/2. The chemical potential µ enters as a parameter to control
doping, as there is no direct way to do this with iPEPS. With this choice of µ, we ensure
that each site is occupied by one fermion. With these parameters, the double occupancy
is ∼ 10−2.

The choice of symmetry is again U(1) and the iPEPS supercell 2 × 2. In Fig. 3.3,
the optimization landscape of L-BFGS is shown for bond dimensions D = 2, 3, 4, 5, 6, 7, 8.
Note now that the variational energy is E = Eg − µn where in this case n = 1 is the site

52 3. Application to ground-state search of quantum lattice models

occupancy. What we observe is that even though for small D L-BFGS provides a large im-
provement over the corresponding simple update results, as the bond dimension increases
it converges similarly to the simple update and therefore provides less and less advantage.
This is a weak point in the protocol followed in this thesis, as, even though simple update
provides a good initialization for the optimizations, the symmetry structure of the tensors
throughout the whole optimization gets necessarily restricted by it. Additionally, we ob-
serve that a bigger advantage occurs due to the increase of bond dimension than due to
the L-BFGS optimization.

0 50 100 150 200
-0.525

-0.52

-0.515

-0.51

Figure 3.3: AD-based optimization for the NN Hubbard model at half-filling for a U(1)
iPEPS and 2×2 supercell. The whole L-BFGS progression is plotted following the protocol
described in Sec. 3.1. The color-bar indicates the bond dimension for which the similarly
colored data were obtained. The results are compared to the simple update results(circles),
as well as with an auxiliary-field quantum Monte Carlo (green) result [L+15]

.

Subsequently, the belief propagation gauging technique (Sec. (2.2)) was tested for the
same model parameters. Firstly, the claims of the original publication [TF23] were tested
to determine whether simple update enhanced with BP gauging converges to lower energies
for ground-state iPEPS. For this, the optimal simple update result was picked for D = 2
and then, every time D was increased by one, simple update was carried out within the
BP gauge in two ways: first, by converging the message tensors to the BP fixed-point after
each gate update, and second, by skipping this step. It was found that BP has a very
small impact on the ground-state energies, of the order of 10−5, if simple update is well
converged. With the application of L-BFGS optimization the impact of BP disappears, as

3.2 The Hubbard model 53

BP converges to tensors with the same symmetry structure as regular simple update. An
example of this is given in Fig. 3.4 for D = 4, where the optimization landscape is given
for both cases.

Note also that performing variational optimization via optimizing energy 2.4 under the
improved BP framework cannot provide better results since BP already gives the best
approximation of rank-one environment that we can have, and from there one has to resort
to more accurate methods such as CTMRG.

0 2 4 6 8 10 12 14

-0.5135

-0.513

-0.5125

-0.512

-0.5115

Figure 3.4: Optimization landscape of variational energy for the NN Hubbard model at
half-filling, with a U(1) iPEPS with 2×2 supercell andD = 4. The advantage of converging
the message tensors to the fixed point at each gate update of simple update emerges at the
initial state as a slightly decreased energy, but eventually gets lost as L-BFGS progresses.

3.2.2 Next-nearest-neighbor interaction

Finally, we study the next-nearest neighbor Hubbard model with Hamiltonian:

H = −
∑
⟨i,j⟩,σ

(c†iσcjσ + c†jσciσ)− t′
∑

⟨⟨i,j⟩⟩,σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓ + µ
∑
i

ni (3.6)

The next-nearest neighbor coupling t′ introduces frustration to the system, and for this
reason the model is challenging to study as it incorporates different phases. An interesting
aspect is the work on the disambiguation on the nature of the ground state, as different
simulations give inconsistent results. In particular, some simulations indicate an antifer-
romagnetic striped ground state with a periodicity of 8 for the spin order and 4 for the

54 3. Application to ground-state search of quantum lattice models

charge order [PCC19], while others indicate a uniform ground state which exhibits d-wave
superconductivity. In [ZLvD23], for t′ = 0.25 and for SU(2) symmetric iPEPS, ground
state energies were shown to be lower than for U(1) symmetric iPEPS at large doping,
with simulations using simple update up to D = 12.

In Fig. 3.5 we show the AD-optimized results of a U(1) symmetric iPEPS and a SU(2)
symmetric one, for interaction strength U = 10 and NNN hopping amplitude t′ = 0.25.
The variational energy Eg − µn is plotted with the number of iterations of L-BFGS for
bond dimensions D = 3, 4, 6, 7 and D = 4, 5, 6, 7 for SU(2) and U(1) symmetric iPEPS
accordingly. In the former case, µ = 2.1 is chosen, and in the latter µ = 2.4. For the
SU(2) symmetric iPEPS we observe a similar pattern as in Fig. 3.3, namely that L-BFGS
provides a significant improvement on the variational energy for small bond dimensions, and
we also notice that it converges as the bond dimension increases. For the U(1) iPEPS we
note that convergence seems to be slower, as for the D = 7 there is still significant decrease
to the variational energy. The fact that there are more variational parameters than the
SU(2) might play a role in this. A bond dimension higher than D = 7 was not achieved
in the limited time of this project, due to the increased computation times. Results for
higher bond dimensions might result in a better convergence of the optimization landscape,
however for the large 8× 2 supercell it is challenging to reach high bond dimensions.

Some technical differences compared to the previous examples should be noted here.
Firstly, the initialization of these two iPEPS was not obtained via the simple update
algorithm. The converged state forD = 12 simple update was already known, and therefore
the corresponding results for smaller bond dimensions were obtained via a projection from
the D = 12 states.

Secondly, variational optimization on the NNN Hubbard model proved more challenging
compared to the previous, simpler models. Specifically, optimizing the quantity Eg − µn
with the usual L-BFGS trial step a

(k)
0 = 1 had the tendency to not converge to the ground

state of a specific phase, but to optimize over the term µn of the variational energy, instead
of Eg which is what we desire, and as a result to slip between different phases with different

ground state energies. For this reason, a small step a
(k)
0 = 0.1 was chosen as a trial step of

the line search of L-BFGS, at the cost of a slower, less-than-quadratic convergence.

3.2 The Hubbard model 55

0 20 40 60 80 100 120 140
-2.55

-2.5

-2.45

-2.4

-2.35

-2.3

-2.25

(a)

0 10 20 30 40 50
-2.81

-2.8

-2.79

-2.78

-2.77

-2.76

-2.75

-2.74

-2.73

-2.72

-2.71

(b)

Figure 3.5: AD-based optimization of the NNN doped Hubbard model. (a) Variational
landscape of L-BFGS for SU(2) iPEPS with a 2 × 2 supercell. (b) Variational landscape
of L-BFGS for U(1) iPEPS with an 8× 2 supercell.

56 3. Application to ground-state search of quantum lattice models

Outlook

In this thesis, reverse-mode Automatic Differentiation (AD) was implemented for the
QSpace library and applied to the Corner Transfer Matrix Renormalization Group, with
the scope of ground-state search of tensor networks at the thermodynamic limit. We saw
that even though the basic principle of AD is simple, there are several technical details
which must be overcome in order to achieve a stable and efficient implementation.

Gradient-based optimization via AD has several advantages. It is a very flexible algo-
rithm, which can be implemented to any tensor network algorithm with only few modifica-
tions to it. Gradient calculations require a time cost of the same order of magnitude as that
of the forward sweep, and when combined with a quadratically-converging optimization and
a good initial guess for the ground-state, it only needs a few tens of iterations to converge
to a solution for a fixed bond dimension. Additionally, if initialized with the ground state
obtained via the simple update algorithm, we can gain insight over the performance of
simple update for tensor networks with loops, and over the variational landscape around
simple-update solutions. Overall, limited-memory BFGS proved to be a useful method to
improve the ground state energies obtained via simple update for a fixed bond dimension.
It is therefore reasonable to apply it directly at a target bond dimension D, and initialize
it with the optimal simple-update ground state tensors with bond dimension D.

Yet, we saw that there are challenges in the implementation, which we need to over-
come in order to acquire competitive results. Firstly, as the bond dimension increases, it
becomes computationally expensive to cope with the tens of iterations needed to optimize
the tensors. On top of that, we saw that with increasing bond dimension the improvement
which gradient information provides to the variational energy becomes less advantageous
as compared to the much cheaper alternative, the energy obtained via simple update. This
is expected as the optimization will eventually converge, however the fact that it converges
so closely to the simple update solutions (for large D) implies that it might be limited by
the initialization via the simple update ground state. This drawback might be overcome
by modifying the Limited-memory BFGS algorithm in order to explore different symmetry
sectors.

58 3. Application to ground-state search of quantum lattice models

Appendix A

Gauging of loop-free tensor networks

Loop-free tensor networks are special because entanglement can be encoded in bonds be-
tween connected tensors. For this reason they are easier to deal with and tensor network
methods are particularly successful for such geometries. The most basic example is that
of a Matrix Product State (MPS), made up of degree-three tensors with two virtual bonds
contracted to neighboring tensors and one physical bond corresponding to one particle per
site. This can be represented with the following diagram:

Figure A.1: Example of an MPS.

Such a diagram, as all the tensor networks with tree-like connections, has the property that
cutting a bond splits the network in two. This is a particularly important property as it
means that entanglement between the left and right cut can be described by the Schmidt
coefficients. In this way a Schmidt decomposition at the first bond:

Figure A.2: Through an SVD at the first site T1 = U1S1V1 the entanglement of the first
site with the rest is encoded in matrix S1.

results in a bond tensor S1, which encodes entanglement between the first site and the rest.
Entanglement entropy in an MPS has a tendency to drop quickly with the distance. Due
to this property, truncation of the smallest singular values can decrease the dimensions of

60 A. Gauging of loop-free tensor networks

the tensors without altering significantly the state, making the computations more stable
and efficient.

These properties of loop-free tensor networks can be used to obtain two very important
gauges, the canonical form and the Γ − Λ form. They can also be generalized for infinite
loop-free tensor networks. These gauges are described in this appendix, in connection
mainly to the discussion of Sec. 2.2.

A.1 Canonical form

For the left canonical form, starting from an MPS as that of Fig. A.1, we use an SVD at
the first site to obtain the form of Fig. A.2. Then, the steps in Fig. A.3 bring the MPS to
a form made up of left isometries. The isometric property of the left isometries U †

jUj = I
is diagrammatically described by Fig. A.4. A similar right canonical form can be obtained
via an analogous procedure starting from right to left, in which the final configuration is a
decomposition of right isometries with the property VjV

†
j = I.

(a)

(b)

(c)

Figure A.3: (a) Starting from the configuration of Fig. A.2 the tensors S1V1 get absorbed
to tensor T2, defining a new tensor T̃2. (b) Decompose tensor T̃2 through an SVD. (c) The
procedure is continued until all the tensors have the form of left isometries.

A.2 Γ− Λ form 61

=

Figure A.4: Diagrammatic representation of isometry U †
jUj = I.

A.2 Γ− Λ form

The Γ − Λ form is a gauge made up of site tensors Γj and bond tensors Λj as shown in
Fig. A.5. The Γ− Λ form is closely related to the left and right canonical forms through:

Uj = Λj−1Γj, l ≥ j ≥ 1

Vj = ΓjΛj+1, L ≥ j > l
(A.1)

where L is the number of sites and l is a target site (for which potentially we would like
to obtain a local expectation value). The Γ−Λ form can be obtained from the equations:

Λ0 = ΛL = 1

Λj =

S
(left)
j , l ≥ j ≥ 1

S
(right)
j , L ≥ j > l

Γj =


(
S
(left)
j−1

)−1

Uj, l ≥ j ≥ 1

Vj

(
S
(right)
j+1

)−1

, L ≥ j > l

(A.2)

where S
(left/right)
j are the singular-value matrices obtained when bringing the MPS to

left/right canonical form up to site l/l + 1.
In this gauge, for each site the left/right bond tensors encode the entanglement from the

left/right part of the MPS. This gauge becomes approximative in practice, when truncation
of the very small singular values is applied to the SVDs and at the inversion of Sj.

Due to Eq. (A.1) and Fig. A.4, as well as the analogous equation for right isometries,
the Γ− Λ gauge also respects isometric conditions as depicted in Fig. A.6, which are ap-
proximative when truncations are involved. These conditions assure that the environment
for each site is captured accurately by the bond tensors. This can be seen when calculating
local observables. Fig. A.7 shows that the expectation value of a 2-site observable Ol,l+1

can be obtained only by tensors {Λl−1,Γl,Λl,Γl+1,Λl+1} using identities A.6.

62 A. Gauging of loop-free tensor networks

(a)

Figure A.5: The Γ− Λ gauge for an MPS.

=

=

Figure A.6: Isometric condition of the Γ− Λ gauge.

Figure A.7: Expectation value of a two-site observable Ol,l+1 for an MPS at the Γ − Λ
gauge.

Appendix B

Tensor derivative results for
reverse-mode automatic
differentiation

In this appendix there are collected a few results for reverse-mode AD of operations
with tensors which are used commonly in tensor networks, together with some technical
details to make the implementation explicit.

General contraction

The most used operations in tensor networks are contractions, and so it is important to
present the formula for its gradient for a general case. Let’s start from a general contraction
which takes place during the forward sweep of the algorithmic procedure:

Cc1c2...cl
cl+1...cdC

= A ◦idxA B =
∑

ã∈ idxA

Aa1...ama∗m+1...a
∗
dA

Bb1...bn
b∗n+1...b

∗
dB

(B.1)

where dA/B is the degree of tensors A/B, idxA is the set of all indices of A that get
contracted with B and the symbol ◦idxA is used to denote this operation. The set of
indices of B which are contracted to indices in idxA is denoted by idxA∗1. Suppose that
C is known and we want to calculate A. We need to consider two cases individually.

Case 1: |idxA| < dB

In this case the indices of tensor C are

idxC = idxCA ∪ idxCB (B.2)

where
idxCA = {a(∗)1 , a

(∗)
2 , ..., a

(∗)
dA
} \ idxA (B.3)

1This notation is chosen due to details on the conventions used in the QSpace library [Wei24]. The
important is that if i ∈ idxA is covariant, i∗ ∈ idxA∗ is contravariant and vice versa.

64 B. Tensor derivative results for reverse-mode automatic differentiation

and

idxCB = {b(∗)1 , b
(∗)
2 , ..., b

(∗)
dB
} \ idxA∗ (B.4)

where i(∗) is used to specify that the corresponding index can be either contravariant
or covariant2. The corresponding indices of C are those of C but starred, and are
denoted by idxC∗. This can be understood by noticing that in the diagrammatic
representation of gradient tensors (Fig. 1.6), an inward arrow in C would be an
outward arrow in C. Then, up to permutations of the final indices the following
equation holds:

A
am+1...adA

a∗1...a
∗
m

= C ◦idxC∗
B
B (B.5)

The convention used is that A should have the same order of indices as A (starred),
so a permutation may be needed afterward.

Example Let’s consider the contraction:

Ca1a3 b3
a∗4a

∗
5

=
∑

ã∈ idxA

Aa1a2a3a∗4a∗5a∗6a∗7B
a6a7b3

a∗2
(B.6)

represented in Fig. B.1a.

In this case idxA = {a2, a∗6, a∗7}, idxA∗ = {b1 = a6, b2 = a7, b
∗
4 = a∗2}, idxCA =

{a1, a3, a∗4, a∗5}, idxCB = {b3}. Then,

A a4a5a6a7
a∗1a

∗
3 a∗2

=
∑
b3∗

C a4a5
a∗1a

∗
3 b∗3

Ba6a7b3
a∗2

(B.7)

A permutation (1 7 2 3 4 5 6) is needed to get the correct indices for A. The calcu-
lation of B would be analogous.

Case 2: |idxA| = dB

Suppose now that in the previouse example also index b3 is contracted and so |idxA| =
dB and idxCB = {}: Now we are dealing with a contraction of the form (Fig. B.2a):

Ca1a3
a∗4

=
∑

ã∈ idxA

Aa1a2a3a∗4a∗5a∗6a∗7B
a5a6a7

a∗2
(B.8)

As can be seen in the Fig. B.2b, now a tensor product is needed to get A (up to
permutations):

A = C ⊗B (B.9)

2Even though distringuishing covariant from contravariant indices is not especially relevant for the cases
considered, up and down indices are used to represent flow of charges as explained in Sec. 1.2.

65

=

(a)

=

(b)

Figure B.1: (a) Diagrammatic representation of contraction (B.6). (b) Gradient with
respect to tensor A gien by Eq. (B.7).

Singular value decomposition (SVD)

The backpropagation formula for the gradient of the SVD given by the equation

A = USV † (B.10)

is [WZ19]:

A =
[
USV † + UPV † +

(
I − UU †)US−1V † + US−1V †∗ (I − V V †)]∗ (B.11)

where
P =M +N

M = 1
2
(F −G− S−1)⊙

(
V †V †T − (V †V †T)†

)
N = 1

2
(F +G)⊙

(
UTU − (UTU)†

)
,

(B.12)

⊙ denotes the element-wise multiplication, and

Sii = si

Fij =
1

sj−si

Gij =
1

si+sj

(B.13)

66 B. Tensor derivative results for reverse-mode automatic differentiation

=

(a)

=

(b)

Figure B.2: (a) Diagrammatic representation of contraction (B.8). (b) Gradient tensor
with respect to A. At the right hand side no contraction is depicted, which implies that a
tensor product should be taken to map to the space where A belongs.

Note that the notation has been changed compared to the reference [WZ19] in order to
match the notation and conventions of this thesis.

In practice, to avoid instabilities for very small singular values, F is modified as:

Fij =
sj − si

(sj − si)2 + ϵ
(B.14)

for some small ϵ ∼ 10−11 − 10−12, in order to keep the accuracy to machine precision. For
the same reason we use the following G:

Gij =

{
1

sj+si
sj + si > ϵ

0 sj + si ≤ ϵ
(B.15)

Fixed-point iteration

Another operation that is used often in tensor networks is a fixed-point condition of the
form:

y∗ = f(y∗, u) (B.16)

67

where u are parameters with respect to which the gradient ∇uE of some larger function E
must be obtained (E is for example the expectation value of the Hamiltonian). As it turns
out, obtaining u can be transformed to a fixed-point condition for the gradient tensors, and
the graph of only the last iteration (i.e. when Eq. (B.16) holds) can be retained [Chr94].
A summary of this process is described below.

Differentiating Eq. (B.16) with respect to u we get:

u = y∗
∂y∗

∂u
= y∗

(
I− ∂f(y∗, u)

∂y∗

)−1
∂f(y∗, u)

∂u
(B.17)

Then, expanding the parenthesis in a geometric series we have:

u = y∗

(
I+

∂f(y∗, u)

∂y∗
+

(
∂f(y∗, u)

∂y∗

)2

+ ...

)
∂f(y∗, u)

∂u
(B.18)

In order to approximate Eq. (B.18) in a real implementation, we retain the graph of the
last iteration, which is:

yf = f(yi, u) (B.19)

where yi are the initial tensors of the last iteration and yf the final ones. If the forward
sweep is well converged, yf ≈ yi ≈ y∗. The first two terms of Eq (B.18) can be obtained
via Eq. (B.19):

u = yf
∂f

∂u
+ yi

∂yi
∂u

(B.20)

The whole Eq. (B.18) can be derived via subsequent reverse sweeps over the same f (at
the fixed-point), by updating yf as:

yf → yf + yi (B.21)

and updating yi via backpropagation, starting from this new yf . In this way we can reach
a fixed-point for yf . Each time, the u and yi must be re-initiated to 0 so that no false
accumulation of gradients happens.

This method could be applied to a CTMRG algorithm with the memory consumption
of only one iteration. However, due to the gauge freedom of tensor networks, Eq. B.16 is
not guaranteed to hold.

68 B. Tensor derivative results for reverse-mode automatic differentiation

Bibliography

[Bau74] F. L. Bauer. Computational graphs and rounding error. SIAM J. Numerl.
Anal., 11:87–96, 1974.

[BBCD00] M. Bahrtholomew Biggs, S. Brown, B. Christianson, and L. Dixon. Automatic
differentiation of algorithms. J. Comput. Appl. Math., 124:171–190, 2000.

[CE06] M. Cramer and J. Eisert. Correlations, spectral gap and entanglement in
harmonic quantum systems on generic lattices. New J. Phys., 8(71), 2006.

[CEP07] M. Cramer, J. Eisert, and M. B. Plenio. Statistics dependence of the entan-
glement entropy. Phys. Rev. Lett., 98:220603, 2007.

[Chr94] B. Christianson. Reverse accumulation and attractive fixed points optim.
methods software. Optim. Methods Software, 3:311–326, 1994.

[COBV10] P. Corboz, R. Orús, B. Bauer, and G. Vidal. Simulation of strongly correlated
fermions in two spatial dimensions with fermionic projected entangled-pair
states. Phys. Rev. B, 81:165104, 2010.

[CPGSV21] I. J. Cirac, D. Pérez-Garćıa, N. Schuch, and F. Verstraete. Matrix product
states and projected entangled pair states: Concepts, symmetries, theorems.
Rev. Mod. Phys., 93:045003, 2021.

[CV09] P. Corboz and G. Vidal. Fermionic multiscale entanglement renormalization
ansatz. Phys. Rev. B, 80:165129, 2009.

[ECP10] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the
entanglement entropy. Rev. Mod. Phys., 82:277–306, 2010.

[FR64] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients.
Comp. J., 7(2):149–154, 1964.

[GK06] D. Gioev and I. Klich. Entanglement entropy of fermions in any dimension
and the widom conjecture. Phys. Rev. Lett., 96:100503, 2006.

[Gri89] A. Griewank. On Automatic Differentiation, Math. Program. Recent Dev.
Appl., pages 83–108. Kluwer Academic Publishers, 1989.

70 BIBLIOGRAPHY

[GW08] A. Griewank and A. Walther. Evaluating derivatives: Principles and tech-
niques of automatic differentiation, pages 19–29. Society for Industrial and
Applied Mathematics, Philadelphia, 2nd edition, 2008.

[Has07] M. B. Hastings. An area law for one-dimensional quantum systems. J. Stat.
Mech., 2007.

[Hub67] J. Hubbard. Electron correlations in narrow energy bands V. A perturbation
expansion about the atomic limit. Proc. R. Soc. London A, 296(82), 1967.

[JOV+08] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac. Classical simula-
tion of infinite-size quantum lattice systems in two spatial dimensions. Phys.
Rev. Lett., 101:250602, 2008.

[JWX08] H. C. Jiang, Z. Y. Weng, and T. Xiang. Accurate determination of tensor
network state of quantum lattice models in two dimensions. Phys. Rev. Lett.,
101:090603, 2008.

[L+15] J. P. F. LeBlanc et al. Solutions of the two-dimensional Hubbard model:
Benchmarks and results from a wide range of numerical algorithms. Phys.
Rev. X, 5:041041, 2015.

[LLWX19] H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang. Differentiable programming
tensor networks. Phys. Rev. X, 9:031041, 2019.

[LS23] I. V. Lukin and A. G. Sotnikov. Variational optimization of tensor-network
states with 1159 the honeycomb-lattice corner transfer matrix,. Phys. Rev. B,
107:054424, 2023.

[NW99] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in
Operations Research, 1st edition, 1999.

[NWR+24] J. Naumann, E. L. Weerda, M. Rizzi, J. Eisert, and P. Schmoll. An introduc-
tion to infinite projected entangled-pair state methods for variational ground
state simulations using automatic differentiation. SciPost Phys. Lect. Notes,
86, 2024.

[OV09] R. Orús and G. Vidal. Simulation of two-dimensional quantum systems on an
infinite lattice revisited: Corner transfer matrix for tensor contraction. Phys.
Rev. B, 80:094403, 2009.

[PCC19] B. Ponsioen, S. S. Chung, and P. Corboz. Period 4 stripe in the extended
two-dimensional Hubbard model. Phys. Rev. B, 100:195141, 2019.

[PEDC05] M.B. Plenio, J. Eisert, J. Dreißig, and M. Cramer. Entropy, entanglement,
and area: Analytical results for harmonic lattice systems. Phys. Rev. Lett.,
94:060503, 2005.

BIBLIOGRAPHY 71

[San97] A. W. Sandvik. Finite-size scaling of the ground-state parameters of the two-
dimensional Heisenberg model. Phys. Rev. B, 56(18), 1997.

[Spe64] M. R. Speigel. Schaum’s outline of theory and problems of complex variables
with an introduction to conformal mapping and its applications, page 69. Mc-
Graw Hill, Inc., 1964.

[SvBdL12] L. Sorber, M. van Barel, and L. de Lathauwer. Unconstrained optimization
of real functions in complex variables. SIAM J. Optim., 22(3):879–898, 2012.

[TF23] J. Tindall and M. Fishman. Gauging tensor networks with belief propagation.
SciPost Phys., 15:222, 2023.

[TW05] M. Troyer and U. Wiese. Computational complexity and fundamental lim-
itations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett.,
94:170201, 2005.

[VC04] F. Verstraete and J. I. Cirac. Renormalization algorithms for quantum-many
body systems in two and higher dimensions. arXiv:cond-mat/0407066v1[cond-
mat.str-el], 2004.

[vdB94] A. van den Bos. Complex gradient and hessian. IEE Proc. Vis. Image &
Signal Process., 141(6):380–382, 1994.

[Vid07] G. Vidal. Classical simulation of infinite-size quantum lattice systems in one
spatial dimension. Phys. Rev. Lett., 98:070201, 2007.

[Wei24] A. Weichselbaum. Qspace – an open-source tensor library for abelian and
non-abelian symmetries. arXiv:2405.06632 [cond-mat.str-el], 2024.

[Wir27] W. Wirtinger. Zur formalen Theorie der Funktionen von mehr komplexen
Veränderlichen. Math. Ann., 97:357–375, 1927.

[Wol06] M. M. Wolf. Violation of the entropic area law for fermions. Phys. Rev. Lett.,
96:010404, 2006.

[WR24] E. L. Weerda and M. Rizzi. Fractional quantum hall states with variational
projected entangled-pair states: A study of the bosonic harper-hofstadter
model. Phys. Rev. B, 109:L241117, 2024.

[WZ19] Z.-Q. Wan and S.-X. Zhang. Automatic differentiation for complex valued
SVD. arXiv:1909.02659[math.NA], 2019.

[Zha21] C. Zhang. Symmetric infinite projected entangled-pair state study of quantum
lattice models. Master’s thesis, Ludwig–Maximilians–Universität München,
2021.

72 BIBLIOGRAPHY

[ZLvD23] C. Zhang, J.-W. Li, and J. von Delft. Frustration-induced superconductivity
in the t− t′ hubbard model. arXiv:2307.14835v1 [cond-mat.str-el], 2023.

[ZP20] M. P. Zaletel and F. Pollmann. Isometric tensor network states in two dimen-
sions. Phys. Rev. Lett., 124:037201, 2020.

	Abstract
	Acknowledgments
	Introduction
	1 Automatic differentiation for tensor networks
	1.1 Basics on automatic differentiation (AD)
	1.2 Basics on tensor network states
	1.2.1 Physical motivation
	1.2.2 Diagrammatic notation
	1.2.3 Implementation of symmetries
	1.2.4 The (infinite) Projected Entangled Pair States

	1.3 AD for the Corner Transfer Matrix Renormalization Group
	1.3.1 Corner Transfer Matrix: Forward sweep
	1.3.2 Corner Transfer Matrix: Reverse sweep

	2 Gradient-based optimization of tensor networks
	2.1 Quasi-Newton optimization techniques
	2.1.1 The BFGS optimization
	2.1.2 Line search: Armijo backtracking
	2.1.3 Limited-memory BFGS
	2.1.4 Generalization to functions of complex variables

	2.2 Initialization of tensor network

	3 Application to ground-state search of quantum lattice models
	3.1 Benchmark results
	3.1.1 The Heisenberg model
	3.1.2 Free fermion model

	3.2 The Hubbard model
	3.2.1 Nearest-neighbor interaction
	3.2.2 Next-nearest-neighbor interaction

	A Gauging of loop-free tensor networks
	A.1 Canonical form
	A.2 - form

	B Tensor derivative results for reverse-mode automatic differentiation
	Bibliography

