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We combine two recently established methods, the extended Coupled-Ladder Approximation
(eCLA) [Phys. Rev. B 95, 035122 (2017)] and a dynamic Keldysh functional Renormalization
Group (fRG) approach for inhomogeneous systems [Phys. Rev. Lett. 119, 196401 (2017)] to tackle
the problem of finite-ranged interactions in quantum point contacts (QPCs) at finite temperature.
Working in the Keldysh formalism, we develop an eCLA framework, proceeding from a static to a
fully dynamic description. Finally, we apply our new Keldysh eCLA method to a QPC model with
finite-ranged interactions and show evidence that an interaction range comparable to the length
of the QPC might be an essential ingredient for the development of a pronounced 0.7-shoulder in
the linear conductance. We also discuss problems arising from a violation of a Ward identity in
second-order fRG.

I. INTRODUCTION

In a previous work [1], we have devised an extended
Coupled-Ladder Approximation (eCLA), an approxima-
tion scheme within the second-order truncated functional
Renormalization Group (fRG) approach. The eCLA is
capable of a controlled incorporation of the spatial extent
of the one-particle irreducible two-particle vertex (here-
after simply called ”vertex“) into a channel-decomposed
[2–4] fRG flow. Using a static Matsubara implementa-
tion, we showed that this scheme improves the conver-
gence of the fRG flow by increasing the feedback between
the separate channels of the vertex flow. Furthermore, by
design, this scheme includes a correct treatment of finite-
ranged interactions up to second order in the interaction.
Applying the eCLA scheme to a quantum point contact
(QPC), we observed that with an increasing interaction
range, the effective QPC barrier flattens and additional
features in the linear conductance (herafter simply called
”conductance“) arise, caused by corresponding Friedel
oscillations.

The eCLA has recently also been used in [5] to study
phase transitions in an one-dimensional spinless tight-
binding chain with nearest and next nearest neigbor in-
teraction. Furthermore, in [6] a set of second order flow-
equations was derived for a one-dimensional system of
spinless fermions, which can be obtained as a special case
of the spin-1/2 eCLA equations.

In this paper, we build on our previous QPC stud-
ies, now focusing on the following question: how does
the temperature dependence of the QPC conductance
change when the interaction range is increased from 0
up to the scale of the characteristic QPC length? In
this regime, our previous zero-temperature static Mat-
subara approach indicated only a slight broadening of
the conductance step. However, it is very interesting to
study the behavior in this regime at finite temperature,
since – contrary to experimental findings, see e.g. [4, 7, 8]
– an earlier study [9], utilizing only onsite interactions,
found no pronounced 0.7-shoulder in the conductance.
In order to be able to treat finite temperatures, we here
present an implementation of the eCLA in a dynamic

Keldysh setup, as devised in [10, 11] and extended and
successfully applied to QPCs with short-range interac-
tions in [9]. Since a full treatment of both the spatial as
well as the frequency structure of the vertex is numeri-
cally not possible, we introduce an additional approxima-
tion scheme that allows us to take the extended spatial
structure of the vertex for successively more frequencies
into account. Although the numerical costs did not per-
mit us to reach full convergence w.r.t. the used frequency
range, the qualitative behavior at large ranges remained
stable. Furthermore, we analytically argue that we are
indeed able to capture the most important vertex contri-
butions to the conductance within the covered frequency
range.

Finally, we apply this new method to a QPC at finite
temperature and show evidence that a finite interaction
range on the scale of the length of the QPC likely is an
essential factor for the development of a pronounced 0.7-
shoulder in the conductance (see Fig. 7 below).

We also discuss problems arising from a violation of
a Ward identity in second-order fRG. We suggest a sim-
ple correction factor for ameloriating these problems, but
conclude that a truly reliable cure will require going be-
yond second-order fRG.

This paper is structured as follows. Sec. II defines the
model used to describe a QPC. Sec. III describes method-
ological details, in particular regarding our parametriza-
tion of the vertex. (Problems arising from a Ward iden-
tity violation are addressed in Sec. III C, see Fig. 3 be-
low). Sec. IV presents our results for the temperature de-
pendence of the QPC conductance and Sec. V our conclu-
sions. Three appendices deal with further technical de-
tails, such as vertex symmetries (App. B), the importance
of a dynamic treatment of vertex feedback (App. E), and
the consequences of violating Ward identities (App. F).

II. MODEL

We consider a Hamiltonian consisting of a one-
dimensional tight-binding chain with finite-ranged inter-
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actions:

H = −
∑
iσ

τi[c
†
iσci+1σ + h.c] +

∑
iσ

σ
B

2
niσ

+ 1
2

∑
ijσσ′

Uij(1− δijδσσ′)niσnjσ′ , (1)

where ciσ annihilates an electron at site i ∈ Z with spin

σ and niσ = c†iσciσ is the number operator. Instead
of a quadratic onsite potential as used in [1], we use
a quadratic modulation in the hopping, τi = τ − ∆τi,
to model the QPC barrier. This approach was also
used in [9]. It causes a constriction of the tight-binding
band, leading to a density of states which, close to the
lower band edge, is equivalent to the one generated by a
quadratic onsite potential. Moreover, at the upper band
edge this method avoids the formation of sharp bound
states which are difficult to treat numerically and lead
to problems with e.g. the normalization of the density of
states.

The hopping modulation and the interactions are both
taken to be finite only within a central region with 2N+1
sites, i.e. U(i, j) = 0, if i or j 6∈ [−N,N ] and ∆τi = 0 if
i 6∈ [−N,N − 1]. Note that the central region contains
one hopping element less than onsite terms. Within this
region the hopping and interaction takes the form

∆τi =
1

2
Vge
−x2

i /(1−x
2
i ), xi =

2i+ 1

2N
, (2)

Uij =
[
δijU0 + (1− δij)U1

e−|i−j|/χ

|i− j|

]
f(i, j), (3)

where i ∈ [−N,N −1] for ∆τi and i, j ∈ [−N,N ] for Uij .
The hopping variation ∆τj is characterized by Vg, the
effective barrier height in the center of the QPC, as well
as an exponential factor exp[−x2

i /(1−x2
i )] governing the

form of the barrier: In the QPC center a quadratic barrier
top dominates, while in the QPC flanks the barrier goes
smoothly to zero. The interaction consists of an onsite
term δijU0 as well as a Yukawa-like offsite term governed
by interaction strength U1 and exponential decay rate
χ. We chose the Yukawa-like form of the interaction
strength in order to fit two demands: (i) The interaction
should not only be onsite anymore (as it was in [9]), but
also have a finite extent comparable to the characteristic
QPC length. (ii) It still has to decay quickly enough,
i.e. not develop an algebraic long-range tail, in order to
be numerically treatable at finite temperature within a
dynamic Keldysh setup. The situation of weaker screen-
ing, introducing only an algebraic decay in the interac-
tion strength, requires a very large spatial extent of the
vertex. For this situation, a dynamic treatment within
the eCLA approach is therefore not feasible. However, for
zero temperature, this case can be studied approximately
within a static fRG approach that requires considerably
lesser numerical resources [1]. The function f(i, j) is in-
serted for numerical purposes and consists of two factors

f(i, j) = exp
(
− z(i, j)6

1− z(i, j)2

)
× θ
(
LU − |i− j|

)
, (4)

with z(i, j) = max
(
|i|
N ,
|j|
N

)
. The exponential factor sup-

presses the interaction at the edges of the central region
and thus assures a smooth transition from finite inter-
action strength to zero interaction in the leads. Note
that instead of the quadratic power that appears in the
numerator of the exponential factor in the hopping vari-
ation (2), we used in (4) a power of z(i, j)6 in the expo-
nential term. This ensures that the interaction strength
around the barrier top stays almost constant and only
drops off, smoothly, relatively close to the edges of the
central region. The θ factor introduces a cutoff in the
interaction range, i.e. the interaction is only finite for
ranges |i − j| ≤ LU . Since in this work we will focus
only on qualitative predictions, we will in fact use only
LU to vary the range of the interaction, while keeping
χ fixed on the scale of the QPC length. Concretely, if
not specified otherwise, we will use the following param-
eters throughout: Spatial discretization N = 30, i.e. we
have a total number of 2N + 1 = 61 sites; barrier height
Vg = 0.5τ , i.e. the lower edge of the noninteracting band
in the QPC center lies at ωb = −2τ + Vg = −1.5τ , c.f.
Fig. 1(a); screening length χ = 5. This is on the scale of
the characteristic length of our QPC, see below; magnetic
field B = 0.

The curvature of the central barrier, which sets the
characteristic energy scale of the QPC, is then given by
Ωx = 2

√
Vgτ/N ≈ 0.05τ . Likewise, the characteris-

tic QPC length scale is given by lx = a
√
τ/Ωx ≈ 5a,

where a denotes the lattice constant of our discretiza-
tion. Moreover, if not otherwise specified, we will use
the following set of interaction parameters. Onsite in-
teraction: LU = 0, U ≡ U0 = 0.7τ = 3.2

√
Ωxτ . These

values were also used in [9]. We remark that this onsite
interaction strength is close to its maximal value that
can be used before the fRG flow breaks down. Finite-
ranged interaction: LU = 3, U0 = 0.5τ = 2.3

√
Ωxτ ,

U1 = 0.3τ = 1.4
√

Ωxτ . These parameters are chosen in
such a way that (i) LU > lx/(2a) i.e. a particle on the top
of the QPC barrier can interact with a particle outside of
the QPC center, whose width is set by the characteristic
length lx. (ii) The strength of the onsite term U0 = 0.5 in
(3) is chosen to be slightly smaller than that for the pure
onsite interaction with U = 0.7, in order to compensate
for the finite extent of the interaction. The strength of
the offsite interaction is chosen in an ad hoc fashion as
U1 = 0.3 which, as we will see, is large enough to lead to
a noticeable impact on the conductance behavior. In the
end of Sec. III B 4 we take a very brief look on how the
conductance changes with (i) increasing interaction range
LU and (ii) when varying the overall interaction strength
while keeping the ration U0/U1 fixed. A systematic study
of the conductance dependence on the detailed form of
the interaction is, however, beyond the scope of this pa-
per. The resulting barrier and interaction forms for this
choice of parameters are shown in Fig. 1.

Primarily, we are interested in the form of the first con-
ductance step that occurs when the QPC opens up, right
after pinch-off. To vary the effective barrier height, we
vary the chemical potential µ instead of the gate voltage
Vg, as done in experiments. This has the advantage that
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Figure 1. (a) Colorplot of the non-interacting LDOS Aj(ω)
for the chosen QPC model. (b) Interaction profile U0j in the
center of the QPC as function of site j.

the curvature Ωx of the central barrier does not change
during the conductance step. All observed changes dur-
ing the step therefore depend only on the energetic dis-
tance of the chemical potential to the barrier top, i.e. on
the Fermi energy at the central site, εF = µ− ωb.

III. METHOD

In order to compute the conductance from the de-
scribed model, we use a second-order truncated Keldysh
fRG (in a similar fashion as described in [9]). However,
in order to treat finite-ranged interactions we extend the
scheme used there, applying an eCLA-approximation, as
described in [1].

This section is divided into three parts. Sec. III A sum-
marizes the general Keldysh fRG approach to the QPC
model (1). Since this general approach is the same as in
[9], we provide only a brief description and just state the
most important relations. In Sec. III B, we describe the
combination of Keldysh- and eCLA fRG in detail, discuss
the resulting flow equations and comment on symmetries
of the involved quantities. Finally, in Sec. III C we dis-
cuss how to obtain the conductance from our fRG data,
using the approach presented in [12].

A. Keldysh fRG setup

1. Propagators

We implement our fRG flow as hybridization flow [3, 9],
by introducing a flow parameter Λ into the retarded bare
propagator which nominally acts as coupling strength be-
tween the system sites (including the leads) and an arti-
ficial source of dissipation

GR0,Λ(ω) =
1

ω −H0 + i
2Λ

, (5)

where H0 denotes the single-particle part of the Hamil-
tonian (1). Via the relations (9a) and (10), the Λ de-
pendency will also enter the advanced and the Keldysh
component of the bare propagator. In the limit Λ→∞
which serves as a starting point of the flow, the artifical
dissipation renders the model trivial, whereas for Λ→ 0
we recover the full bare propagator.

As usual, before carrying out any numerical calcula-
tions, the non-interacting leads can be integrated out
analytically [2–4] and their effect is absorbed into a self-
energy contribution Σlead for the central region given by
sites [−N, . . . , N ]. This contribution is located at the two
ends of the central region and its retarded component is
given by [9]

ΣRσΛ
leadij(ω) =

1

2
(δi,−Nδj,−N + δi,Nδj,N )

×
(
ωσ + i

Λ

2
− i
√

4τ2 −
(
ωσ + i

Λ

2

)2)
, (6)

with ωσ = ω−σ2B. Using this quantity, the retarded bare

propagator GR0,Λij(ω) with i, j within the central region
can be expressed as

GR0,Λij(ω) =
[ 1

ω −HC
0 − ΣRσΛ

lead + i
2Λ

]
ij
, (7)

where HC
0 is the part of the single-particle Hamiltonian

that lives entirely within the central region.

Using the Λ dependent bare propagator (7), the re-
tarded component of the single-scale propagator can be
obtained by

SR(ω) = (GG−1
0 ∂ΛG0G

−1
0 G)RΛ(ω)

= GRΛ(ω)
(
− i

2
+ ∂ΛΣRΛ

lead(ω)
)
GRΛ(ω). (8)

In order to simplify notation, we will supress the index
Λ in the following.

For all propagators and the self-energy, the advanced
component is the hermitian conjugate of the retarded
component and the Keldysh component is its own nega-
tive hermitian conjugate, i.e. for all ξ ∈ {G0, G, S,Σ} we
have

ξA = (ξR)†, (9a)

ξK = −(ξK)†. (9b)

Additionally, due to our equilibrium setup, these quan-
tities also fulfill a fluctuation-dissipation theorem (FDT)

ξK(ω) = (1− 2f(ω))
(
ξR(ω)− ξA(ω)

)
. (10)

Here, f(ω) = (1 + e(ω−µ)/T )−1 denotes the Fermi dis-
tribution with chemical potential µ and temperature T
(Boltzmann constant kB = 1 by convention).

For further use, we also note that using Keldysh indices
∈ {1, 2} we have

GR = G21, GA = G12, GK = G22. (11)

Here and in the following sections, we use the common
notation, where “2” indicates the classical and “1” the
quantum component, c.f. [10, 11].



4

2. Keldysh and frequency structure of the vertex

We arange the Keldysh structure of the two-particle
vertex according to the convention [10, 11]

γαβ|γδ =

(11|11) (11|21) (11|12) (11|22)
(21|11) (21|21) (21|12) (21|22)
(12|11) (12|21) (12|12) (12|22)
(22|11) (22|21) (22|12) (22|22)

 , (12)

where α, β, γ, δ ∈ {1, 2} denote Keldysh indices.
Furthermore, we use a channel decomposition,

γ(ω′1, ω
′
2|ω1, ω2) ≈ ν̄ + ϕP (Π) + ϕX(X) + ϕD(∆), (13)

with the bosonic frequencies given by

Π = ω1 + ω2 = ω′1 + ω′2, (14a)

X = ω2 − ω′1 = ω′2 − ω1, (14b)

∆ = ω2 − ω′2 = ω′1 − ω. (14c)

The quantity ν̄ denotes the bare vertex whose Keldysh
structure reads [3]

ν̄α
′
1α

′
2|α1α2 = 1

2 v̄

0 1 1 0
1 0 0 1
1 0 0 1
0 1 0 1

 . (15)

The spin and spatial dependence of the antisymmetrized
quantity v̄ is given by

v̄
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

= δj′1j1δj′2j2δσ′
1σ1
δσ′

2σ2
Uσ1σ2
j1j2

− δj′1j2δj′2j1δσ′
1σ2
δσ′

2σ1
Uσ1σ2
j1j2

, (16)

with

Uσ1σ2
j1j2

=

{
0, if j1 = j2 and σ1 = σ2

Uj1j2 , else.
(17)

The quantitites ϕP (Π), ϕX(X), ϕD(∆) denote the con-
tributions of the respective channels. Using general
symmetries of the vertex, as well as additional (approxi-
mate) symmetries introduced by our chosen approxima-
tion of the fRG equations, it can be shown that [3, 9] the
form of the resulting Keldysh structure depends on the
individual channel and is given by

ϕP (Π) =


0 dP dP 0
aP bP bP aP

aP bP bP aP

0 dP dP 0

 (Π), (18a)

ϕX(X) =


0 dX aX bX

aX bX 0 dX

dX 0 bX aX

bX aX dX 0

 (X), (18b)

and

ϕD(∆) =


0 aD dD bD

aD 0 bD dD

dD bD 0 aD

bD dD aD 0

 (∆). (18c)

Furthermore, including frequency, spin and spatial struc-
ture one finds that these components are not all inde-
pendent but fullfill additional symmetry relations (see
App. B). In thermal equilibrium, it is possible to ex-
press all d-components via the complex conjugate of a-
components, see (B13). Additionally, the components of
the vertex fulfill a FDT [10, 11],

bP = 2i Im(aP ) coth
((Π

2
− µ

)
/T
)
, (19a)

bX = −2i Im(aX) coth
( X

2T

)
, (19b)

bD = 2i Im(aD) coth
( ∆

2T

)
, (19c)

leaving the a-components as the only independent part of
the Keldysh structure. As a final remark, we emphasize
that in the chosen convention aP (Π) and aD(∆) are both
retarded, whereas aX(X) is advanced [10, 11].

3. Frequency parametrization

We now briefly explain the nature of our chosen fre-
quency parametrization and introduce some notations
that will be useful in the subsequent sections. Here again,
we closely follow the method described in [9], therefore
we refer the interested reader to its extensive supplement
material. Since we are working in the Keldysh formal-
ism, both the fermionic frequencies in the propagators
and self-energy as well as the bosonic frequencies of the
vertices are continuous real numbers and one cannot for-
mally distinguish them (as one does in the finite temper-
ature Matsubara formalism). For our numerical treat-
ment, we use two different frequency parametrizations.

The first one discretizes the state of the system, i.e.
self-energy and vertices, with Nfreq underlying frequency
points. Since both computation time and allocated mem-
ory depend crucially on Nfreq, this number should be
chosen with care. For the explicit implementation of the
grid, we proceed then as follows. Within the energy
window [−4τ, 4τ ], corresponding to twice the band width
introduced through our tight-binding leads, we choose a
linear discretization, outside of this window we use an
exponentially-spaced discretization scheme. Of the num-
ber Nfreq of total frequency points, we use roughly 2/3
of them within and 1/3 outside of the linear window.
In addition to this underlying grid, we add a number of
extra frequencies, which depend upon whether we want
to use the grid for the self-energy, the P-channel, or the
XD-channel contribution of the vertex. The idea here is
that for each of those cases there is a frequency window
of special physical interest. For the self-energy, this win-
dow is around the chemical potential, and for the vertex
channels around the so-called feedback frequency, which
equals 2µ in the P- and 0 in the X-channel. In each of
these cases we add one extra frequency point at each of
these special frequencies. Additionally, in the case of fi-
nite temperature, NT frequencies are added to resolve
a frequency window [−5T, 5T ] of width 10T around the
special frequencies. We use Nfreq ∼ 1490 and NT = 10
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and have verified that our results are converged w.r.t.
these two parameters. While the number of base grid
frequencies Nfreq ∼ 1490 was already used in [9], the cho-
sen number of additional frequencies (∼ 100) to resolve
the temperature window in [9] was much higher than our
NT = 10. Our comparatively low choice of this number is
due to the fact, that for our study NT affects the numer-
ical cost much more than for [9], due to the inclusion of
the long-range part of the vertex around the feedback fre-
quencies, see Sec. III B 4. However, even with the choice
NT = 10, our data is still reasonably converged w.r.t.
NT , see App. G. We use the following notation for the
frequency parametrization: We denote the total number
of frequency points by Nf for the fermionic grid, and
by NA with A ∈ {P,X}, for the bosonic P-, and XD-
channel grid. We denote the respective frequency grids
by ωf = {ωn}0≤n≤Nf and ΩA = {ΩAn }0≤n≤NA . We intro-

duce the notation ΩAf for the feedback frequency of the

bosonic channels, i.e. ΩPf = 2µ and ΩXf = 0. Moreover,
we denote the index of the feedback frequency by nA.
Thus, we have ΩPnP = 2µ and ΩXnX = 0.

A second frequency parametrization is utilized to dis-
cretize the propagators G and S. In a precomputation
step, taking place before the evaluation of the r.h.s. of the
fRG flow equations, we evaluate G and S on a very fine
grid of approximately Npre ∼ 30000 frequency points,
using linear interpolation of the self-energy. Whenever a
propagator within the r.h.s. of the flow has to be eval-
uated at a given arbitrary frequency (not necessarily a
grid frequency) we use its linearly interpolated value ob-
tained from this fine frequency grid. Concretely, this
evaluation always occurs as part of a frequency integra-
tion over an internal fermionic frequency ω, see (22), (26)
below. Due to the matrix inversion involved in the com-
putation of a propagator from the self-energy, the pre-
computation method is much faster than computing the
propagators separately for each internal frequency occur-
ing in the frequency integration. Compared to the time
the actual evaluation of the r.h.s. takes, the time spent
for this precomputation is negligible. In order to facili-
tate the integration, we employ a frequency substitution
(see discussion in Sec. III B 5). In all our computations,
the fine propagator grid was chosen as a uniform grid in
this substituted frequency space.

At the end of this subsection, we summarize the intro-
duced parameters for our frequency grids in Tab. I. The
specified values for the number of frequencies will be used
for all subsequent calculations, except in App. G, where
we discuss the convergence behavior w.r.t. NT .

B. Extended Coupled Ladder Approximation

1. Spatial short indices and simple eCLA

Having summarized the general Keldysh setup in the
previous subsection, we are now in the position to for-
mulate the fRG flow equations using a variation of the
eCLA-Method [1]. For this, we first introduce spatial
“short” indices l, k and “long” indices j, i , parameteriz-

Table I. Summary of parameters for frequency grids.

Parameter Description

Nfreq ∼ 1490 Number of basic grid frequencies for self-energy
and vertices.

NT = 10 Additional frequencies in the temperature win-
dow [−5T, 5T ] around the feedback frequencies
for the respective vertex channels and the chem-
ical potential for the self-energy.

ΩA Resulting frequency grid for channel A ∈
{P,X}.

NA ∼ 1500 Total number of frequencies in ΩA.

ΩAf Feedback frequency of channel A:

ΩPf = 2µ, ΩXf = 0.

nA Index of the feedback frequency of channel A:

ΩPnP = 2µ, ΩXnX = 0.

ωf Resulting frequency grid for self-energy.

Nf ∼ 1500 Total number of frequencies in ωf .

Npre ∼ 30000 Total number of frequencies in the fine propa-
gator grid.

ing the spatial structure of the vertices, as:

(aP )lkji(Π) = aPj(j+l)|i(i+k)(Π), (20a)

(aX)lkji(X) = aXj(i+k)|i(j+l)(X), (20b)

(aD)lkji(∆) = aDj(i+k)|(j+l)i(∆). (20c)

Since the treatment of the full spatial structure of the
vertex is numerically too costly, the eCLA scheme re-
stricts the range of the short indices l, k by introducing
the feedback-length L, with |l|, |k| ≤ L. The range of
the corresponding long indices j, i is dependent on l, k,
respectively, since we require that both j, i and j+ l, i+k
lie within the central region, i.e.

max(−N,−N − l) ≤ j ≤ min(N,N − l) (21a)

max(−N,−N − k) ≤ i ≤ min(N,N − k). (21b)

Generically, the feedback length L should be chosen at
least as great as the range of the bare interaction LU
(L ≥ LU ), such that the spatial structure of all ver-
tex components generated in second-order of the bare
interaction can be represented. In practical applications,
we view L as an internal numerical parameter in which
convergence should be reached. For example, in case of
a QPC with onsite-interactions [1] and a static imple-
mentation of the eCLA, convergence in the conductance
was achieved for L ≈ lx/a, where lx is the characteristic
length of the QPC.

However, in this form the eCLA is still too costly to
be implemented in a dynamic Keldysh setup, due to the
large number of frequencies needed to resolve sharp struc-
tures on the real frequency axis: A straightforward pa-
rameterization with NP = NX ∼ 1500 bosonic frequen-
cies, as was chosen in [9], is numerically not possible if
we want to take a feedback length L into account that
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is at least of the order of the characteristic QPC length
L ≈ lx/a ∼ 5, where a is the lattice spacing of the spatial
discretization. For this reason, we have to further refine
our eCLA scheme, see Sec. III B 4 below. However, to do
this efficiently, we first take a look at the structure of the
Keldysh-fRG flow equations.

2. Flow equations

In this subsection, we state the general form of the
flow equations for self-energy and two-particle vertex. In
order to get a feeling for their general structure, we will
not write down their full index dependencies, but rather
focus on the important aspects. In App. D the flow equa-
tions are then given with their full index structure.

Due to the equilibrium symmetries of self-energy and
vertex (a thorough discussion of these is included in
App. B), we only have to compute the flow of ΣR and
the a components of the vertex. In our presentation here,
we will first present the Keldysh and frequency structure
and suppress spin and spatial indices. For the self-energy
this flow takes the following form

∂ΛΣR(ω) =̂

∫
dω′
{
SR(ω′)

[
bX(ω′ − ω) + bD(0)

]
+SA(ω′)

[
bP (ω′ + ω) + bD(0)

]
+SK(ω′)

[
1
2 v̄ + aP (ω′ + ω) + aX(ω′ − ω) + aD(0)

]}
,

(22)

where we have written “ =̂ ” instead of “ = ” in order
to indicate that we suppressed a (non trivial) spin and
spatial structure. Via the relations (9a,10), SA and SK

can be expressed through SR and the b components can

be expressed through the a components using the ver-
tex FDTs (19). Therefore, the flow of the retarded self-
energy can be expressed solely through SR and the a
compontents of the vertex. By splitting (22) into a static
and a dynamic part, its spatial structure can be ex-
pressed using only two pairs of short-long indices (j, l)
and (i, k), see App. D. For each combination of those one
has to compute an internal frequency integral. There-
fore the computational effort for the self-energy scales
like (2N + 1)2(2L+ 1)2.

The flow of the a components of the vertex is of the
general structure

∂Λa
A(Ω) =̂ ãA(Ω) IA(Ω) ãA(Ω), (23)

with A ∈ {P,X,D} and correspondingly Ω ∈ {Π, X,∆}.
Again we have suppressed spatial und spin indices, for
details see App. D. In (23) , the tilded quantities are
given by

ã =̂ 1
2 v̄ + aA + φB + φC , (24)

where φB , φC denotes the static feedback from the other
two channels, which is chosen as in [9–11], namely φP =
aP (2µ), φX = aX(0), φD = aD(0). The main effort in
the vertex flow goes into the computation of the bubble
quantities IA(Ω), which contain the internal frequency
integration. Suppressing spatial and spin structure, these
bubbles are of the form

IP = (Ĩpp)22|21 + (Ĩpp)22|12 (25a)

IX = (Ĩph)22|12 + (Ĩph)21|22 (25b)

ID = −
[
(Ĩph)22|21 + (Ĩph)12|22

]
, (25c)

with

(Ĩpp)α
′
1α

′
2|α1α2(Π)=̂

i

2π

∫
dω
[
Sα

′
1α1(ω)Gα

′
2α2(Π− ω) + [S ↔ G]

]
, (26a)

(Ĩph)α
′
1α

′
2|α1α2(X)=̂

i

2π

∫
dω
[
Sα

′
1α1(ω)Gα

′
2α2(ω +X) + [S ↔ G]

]
, (26b)

and the Keldysh convention (11).
Let us now take a look at the spatial structure of (23).

We have already seen in (20) that (aA)lkji has a blockma-
trix structure in position space, with two pairs of short
and long indices (l, j) and (k, i). The same is true for
the bubble quantities (IA)lkji . If we introduce the block-
matrix multiplication in spacial indices

[A ·B]lkji = Alk1ji1B
k1k
i1i

, (27)

the multiplications appearing between the different fac-
tors in (23) are all of this blockmatrix type, although for
the D-channel some factors are to be transposed. For
details see App. D. In our regime of parameters, the bot-
tleneck in computation time is not the blockmatrix mul-

tiplications in (23) but rather the computation of the
bubbles (26). Therefore, as for the self-energy, the lead-
ing contribution to computation time for the r.h.s. of the
vertex flow scales as (2N + 1)2(2L+ 1)2.

After having specified the flow-equations, the last piece
missing to determine the flow completely are the initial
conditions. For a finite but large Λini (in practice Λini =
105τ) they are given by [10, 11]

ΣRσΛini
ij (ω) =

1

2

∑
kτ

v̄
στ |στ
ik|jk , (28)

aPΛini = aXΛini = aDΛini = 0. (29)
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3. Bubble symmetries

Since the evaluation of the bubble integrals in (26) will
be the most expensive part of the fRG flow, we briefly
comment on simplifications occurring due to symmetry
relations of the bubbles. While we refer the interested
reader again to App. D for details, it turns out that we
only need to compute two Keldysh components of the
bubbles (26), namely

Ipp = (Ĩpp)22|21, (30a)

Iph = (Ĩph)22|12. (30b)

Thus generically, we have to compute 8 integrals of the
type given in (26), namely (Ipp)στ and (Iph)στ for all
possible spin combinations of σ, τ = ± ↑, ↓. In thermal
equilibrium, the propagators G and S for our system are
symmetric in position space (see discussion in App. A),
i.e.

Gσji(ω) = Gσij(ω) (31a)

Sσji(ω) = Sσij(ω). (31b)

Due to this property, the bubbles satisfy

I lkji = Iklij . (32)

This implies that we only have to compute the compo-
nents of the bubble with k ≥ l, and for l = k only the
components with i ≥ j.

A further great simplification occurs in the case of zero
magnetic field: Here we only need to compute the two
integrals (Ipp)↑↑ and (Iph)↓↓.

4. Dynamic feedback length

Now that we have obtained the fRG equations, we can
proceed to tackle the problem identified in Sec. III B 1:
the huge numerical cost arising from the combination of
high frequency resolution in the vertex (NA ∼ 1500)
with a finite feedback length on the scale of the QPC
length L ∼ lx/a ∼ 5 sites. Our Ansatz to overcome this
challenge is to introduce for each channel A two individ-
ual feedback lengths, a static one, LAs , and a dynamic
one, LA(Ω), which depends on the bosonic frequency Ω
of the respective channel and decreases with increasing
difference between Ω and the feedback frequency ΩAf .
We choose these feedback lengths in such a way that
LA(Ω) ≤ LAs for all Ω and that at the feedback frequency
LA(ΩAf ) = LAs holds. Our strategy is now the following:

For each dynamic block-matrix quantity MA ∈ {aA, IA},
we compute the components MAlk

ji (Ω) (we suppress spin
indices in this subsection) only for the spatial and fre-
quency grid points for which |l|, |k| ≤ LA(Ω) holds. Thus,
using the dynamic feedback length, we can restrict the
numerical effort to obtain and store the spatial structure
of these quantities for each frequency individually. On
the other hand, if we have to evaluate MA in a compu-
tation for a short-index |l| or |k| greater than LA(Ω), we

Figure 2. Illustration of the dynamic feedback length LA(Ω).
The vertex contribution at the feedback frequency is depicted
in green, contributions at other frequencies are shown in dif-
ferent colors. Note that for frequencies Ω 6= ΩAnA , vertex

contributions beyond the dynamic feedback length LA(Ω) but
within the static feedback length LAs are replaced by the green
feedback contributions.

apply the following rule:

MAlk
ji (Ω) =

{
0, if |l| > LAs or |k| > LAs
MAlk
ji (ΩAf ), else.

(33)

Thus, if we do not have the dynamic value for a com-
bination of short indices (l, k) available, we replace it, if
possible, by the corresponding value at the feedback fre-
quency. Otherwise we have to set it to zero. A schematic
illustration of this procedure is given in Fig. 2. In the
special case LA(Ω) = L for all Ω and A ∈ {P,X}, we
recover the simple eCLA scheme described in III B 1.

Using this extended scheme, we are able to include a
long-range contribution at physically important frequen-
cies, namely the ones around the feedback frequencies
Π = 2µ in the P- and X = 0 in the XD-channel. Those
frequencies can be shown to have the biggest contribution
to low-energy observables like the linear conductance. A
short argument for this can be found in App. E. For all
other frequencies we can treat the long-range feedback in
a static manner, similar to the treatment in [1]: Every-
time, we have to evaluate the long-range contribution at
one of those frequencies, we will simply replace it by its
value at the feedback frequency of the respective channel.

This approximation is admittedly quite crude. How-
ever, note that many previous treatments that were even
cruder, e.g. treating the vertex only statically altogether,
still led to reasonable results. In this sense, our semi-
static treatment should be understood as the next step
on the way to a more quantitatively reliable method. The
approximation could be improved by not using the val-
ues at the feedback frequency, but the values at the edge
of the region that was parametrized in detail when going
beyond that region. However, in our view, such a more
refined treatment would only be warranted if at the same
time one also refrained from making the channel decom-
position of the vertex. Recall that the channel decompo-
sition tracks only a single frequency argument per chan-
nel and evaluates the contributions from the other two
channels only at the feedback frequency. The errors in-
curred in this manner seem to be comparable to the ones
incurred by the approximation of Eq. (33). A more so-
phisticated parametrization of the frequency dependence
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is left for future work.

The remaining question is how to choose the frequency
dependence of the dynamic feedback length LA(Ω). Note
that generically, for this scheme to be formally exact in
second-order in the bare interaction, LA(Ω) would have
to be chosen greater than LU for all frequencies in the
grid. However, this is exactly the situation we want to
avoid with this construction: The hope is that the rele-
vant (low energy) physics can already be captured with
a (much) smaller dynamic feedback length when evalu-
ating quantities away from their respective feedback fre-
quencies. Thus our goal is to choose a sequence of pa-
rameterizations LAn (Ω) that (a) formally converges point-
wise to 2N (the maximal value of the feedback length):
limn→∞ LAn (Ω) = 2N , and (b) achieves a much quicker
convergence than the formal one in low-energy observ-
ables, yielding an efficient low-energy description. In
principle, one is free to choose such a sequence in any way
one likes. In this work, we use a very simple treatment,
with a parameterization LA(Ω) characterized by only two
numerical integer parameters, L ≥ 0 and NL ≥ 0, where
2NL+1 sets the window of frequencies around ΩAf within
which we treat the long-ranged part of the vertex dynam-
ically. In fact, we here choose these two parameters chan-
nel independent and refer to L as the feedback length and
NL as the number of long-range frequencies. Physically,

the contributions around the feedback frequency ΩfA are
most important, i.e. there it is important to resolve the
long-range structure in frequency. We call this frequency

range Θf
A and choose it in a symmetric fashion around the

feedback frequency via Θf
A = [ΩAnA−NL ,Ω

A
nA+NL

]. There-

fore we set LA(Ω) = L for all Ω ∈ ΘA
f . Away from the

feedback frequency, we expect a static treatment of the
long-range structure to be acceptable, therefore we set
the dynamic feedback length LA(Ω) = 0 for all Ω /∈ ΘA

f .
In the limit of large L and NL, we recover the full channel
decomposed description of the vertex as given in (13).

Note that for a fixed finite L > 0, and for all observ-
ables that depend only on the low energy properties of
the system (like e.g. the linear conductance) this method
interpolates between two extreme cases: As discussed
above, for a large number of long-range frequencies NL,
the results of this method converge to the results ob-
tained without static long-range feedback. On the other
hand, for NL = 0 (i.e. the only long-range contributions
live at the feedback frequencies) this method still already
incorporates the spatial structure of the long-range feed-
back L, even though only statically. Loosely speaking,
this NL = 0 case results from the simplest possible com-
bination of the previous dynamic work on Keldysh-fRG
[9] and the static eCLA implementation in [1]. By further
increasing NL, we can deepen the combination between
those approaches and create more reliable dynamic re-
sults.

At the end of this subsection, we summarized the in-
troduced numerical parameters for the dynamic feedback
length in Tab. II.

Table II. Summary of parameters for dynamic feedback length

Parameter Description

LA(Ω) Dynamic feedback length. Controls the spatial
extent of the vertex that is taken into account
at frequency Ω.

LAs Static feedback length, LAs = LA(ΩAnA). For all

other frequencies Ω we have LA(Ω) ≤ LAs .

Θf
A Frequency range around the feedback frequency,

for which LA(Ω) is non-vanishing. Concretely,

LA(Ω) = L for Ω ∈ Θf
A and zero otherwise.

NL 2NL + 1 is the number of frequencies in Θf
A.

Concretely, Θf
A = [ΩAnA−NL ,Ω

A
nA+NL

].

5. Further implementational details

The coupled system of flow equations (D2,D3) and
(D10) was solved with a standard fourth-order Runge-
Kutta ODE solver. The integration over frequencies on
the r.h.s. of the flow equations was carried out using
Gaussian quadrature with Patterson sets [13]. In order to
facilitate the computation, we used a substitution of the
real frequency axis to the interval (−7, 7), which trans-
forms the integrand in such a way that (integrable) poles
are avoided and the integrand becomes finite on the whole
interval (−7, 7). This substitution is a slightly modified
version of the one used in [9], see [14] for details. The
most time-consuming part of the calculation is the eval-
uation of the r.h.s. of the flow equations, especially the
computation of the bubble integrals in the vertex- (D4)
and self-energy flow (D2,D3). In order to speed up com-
putation time, we used a hybrid MPI + OMP implemen-
tation, parallelizing the computation of the self-energy
bubble in external frequencies ω and the vertex bubbles
I lk(Ω) both in external frequency Ω and additionally in
the short-indices l, k. Furthermore, we also parallelized
the block-matrix multiplication appearing on the r.h.s. of
the flow in the short-indices l, k.

C. Conductance Computation

The main observable of interest for us is the linear
conductance g. In order to compute it, we use a formula
first derived by Oguri [15]. We employ its convenient
Keldysh formulation developed in [12], whose notational
conventions we have also adopted in this work. Within
this formulation the conductance g can be expressed as

g = g1 + g2, (34)

with the one-particle contribution

g1 = −e
2

h

∫ ∞
−∞

dε f ′(ε)Tr
{

Γl(ε)GR(ε)Γr(ε)GA(ε)
}

(35)
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and the two-particle contribution g2 = g2Σ + g2Φ, with

g2Σ =
2e2

h

∫
dε f ′(ε)Tr

{
Γl(ε)GR(ε) Im ΣR(ε)GA(ε)

}
,

(36a)

g2Φ =
e2

h

∫
dε f ′(ε)Tr

{
Γl(ε)GA(ε)Φ̃l(ε)GR(ε)

}
. (36b)

Here, f ′ denotes the derivative of the Fermi distribu-
tion w.r.t. energy ε, Γr(ε)ij = δiNδjNΓ(ε), Γl(ε)ij =

δ−Niδ−NjΓ(ε), with Γ(ε) = θ(2τ − |ε|)
√

4τ2 − ε2, are the
hybridization functions for the right/left lead, 2 Im ΣR =

−i(ΣR − ΣA) and Φ̃r(ε) is the vertex correction term.

This term encodes the direct contribution of the two-
particle vertex to the conductance. It is given by (c.f.
[12], Eq. (20))

(Φ̃l/r)σ2

j′2j2
(ε) =

1

2πi

∫
dε′

∑
j′1,j1

[
GA(ε′)Γl/r(ε′)GR(ε′)

]σ1

j1j′1

×Kσ1σ2|σ1σ2

j′1j
′
2|j1j2

(ε, ε′, 0). (37)

The vertex response part K
σ1σ2|σ1σ2

j′1j
′
2|j1j2

(ε, ε′, 0) can be

brought into the form (using the vertex FDTs (19))

K
σσ|σσ
j′1j

′
2|j1j2

(ε, ε′, 0) = 2i
[

Im(ap)
σσ(j′2−j

′
1)(j2−j1)

j′1j1
(ε′ + ε)fp(ε, ε′)− Im(ad)

σσ(j2−j′1)(j′2−j1)

j′1j1
(ε′ − ε)fx(ε, ε′)

]
(38a)

K
σ̄σ|σ̄σ
j′1j

′
2|j1j2

(ε, ε′, 0) = 2i
[

Im(ap)
(j′1−j

′
2)(j1−j2)σσ̄

j′2j2
(ε′ + ε)fp(ε, ε′)− Im(ax)

(j′1−j2)(j1−j′2)σσ̄

j2j′2
(ε′ − ε)fx(ε, ε′)

]
(38b)

K
σσ̄|σσ̄
j′1j

′
2|j1j2

(ε, ε′, 0) = 2i
[

Im(ap)
(j′2−j

′
1)(j2−j1)σσ̄

j′1j1
(ε′ + ε)fp(ε, ε′) + Im(ax)

(j2−j′1)(j′2−j1)σσ̄

j′1j1
(ε− ε′)fx(ε, ε′)

]
, (38c)

with the functions fp(ε, ε′) = 2f(ε′) + 2b(ε′ + ε− µ) and
fx(ε, ε′) = 2f(ε′)+2b(ε′−ε+µ). Here b(ε) = 1/(eβ(ε−µ)−
1) denotes the Bose distribution.

Fig. 3 shows the resulting conductance for a generic
set of parameters. Fig. 3(a) depicts the two-particle con-
tributions g2, g2Σ, and g2Φ. In particular, note that for
small values of the chemical potential µ, the total two-
particle contribution becomes negative. This carries over
to the total conductance, see Fig. 3(b): At pinch-off, the
one particle-contribution g1 vanishes and thus the nega-
tive two-particle part g2 leads to a negative conductance
g. This behavior is clearly unphysical, as the total con-
ductance should vanish below pinch-off. The cause of this
problem has to stem from the two major approximations
that we applied: The channel decomposition (13) and
the general second-order fRG truncation. Especially the
latter is known to lead to a violation of the law of current
conservation and Ward identities (see App. F for a more
detailed discussion). In particular, the Ward identity

Φ̃l(ε) + Φ̃r(ε) = −2 Im ΣR(ε), (39)

derived in [12], is violated in our approximation scheme,
leading to unphysical results for transport quantities [14].
To ameliorate this problem, we replace the vertex contri-
butions Φ̃l/r by “Ward-corrected” versions,

Φ̃
l/r,W
ij (ε) = Φ̃

l/r
ij (ε)Fij(ε), Fij(ε) =

−2 Im ΣRij(ε)

(Φ̃r + Φ̃l)ij(ε)
.

(40)

The multiplicative factor Fij nominally equals 1 if Φ̃l,r

satisfy the Ward identity (39) with Im ΣR. If they do

not, it by construction ensures that Φ̃l/r,W do,

Φ̃l,W(ε) + Φ̃r,W(ε) = −2 Im ΣR(ε), (41)

thereby compensating the adverse consequences of the
second-order truncation scheme. (To avoid numerical er-
rors arising from division by very small numbers, we set
Fij(ε) = 1 whenever its denominator becomes smaller
than 10−8; the results are not sensitive to the value of
this bound.) The sum of (36a) and (36b), with Φ̃l re-

placed by Φ̃l,W in the latter, yields

gW
2 = −e

2

h

∫ ∞
−∞

dε f ′(ε)Tr
{

Γl(ε)GA(ε)Φ̃r,W(ε)GR(ε)
}
.

(42)

Note that the integrand is proportional to Φ̃r. This prop-
erty ensures that the conductance vanishes at pinch-off,
as can be seen by the following argument. Assume that
the QPC is closed, i.e. the chemical potential µ is below
the QPC barrier. Then in the integral (42) only frequen-
cies ε below the QPC barrier contribute, implying that

the propagators G
R/A
ij (ε) are only non-vanishing for spa-

tial indices i, j on the same side of the barrier. Therefore,
since the hybridization function Γl(ε) lives on the left side

of the system, only contributions of Φ̃rij(ε) contribute
where i, j are on the left side of the barrier. However,
applying the same logic in the definition of Φ̃r(ε) (37),

we see that Φ̃rij(ε) is only non-vanishing for i, j on the
right side of the barrier. Therefore, the two-particle part
of the conductance vanishes at pinch-off. Indeed, this is
confirmed by the violet curves in Fig.3(c,d), computed
using Eq. (42) for gW

2 .
All conductance results shown in the subsequent sec-

tions are obtained using the Ward-corrected two-particle
contribution (42).

Note that if one evokes the Ward identity (39) with-

out replacing Φ̃l/r by Φ̃l/r,W, the sum of (36a) and (36b)
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Figure 3. Conductance obtained via straightforward appli-
cation of formulas (35-36). (a) Two-particle contributions
g2 = g2Σ + g2Φ [Eq. (36)]. (b) Single- and two-particle con-
tributions to the total conductance g = g1 + g2 [Eq. (34-36)].
Note that both g2 and g are negative at pinch-off. (c) Compar-
ison of g2 to gW

2 and ḡ2; the latter two go to zero at pinch-off.
(d) Single-particle and Ward-corrected two-particle contribu-
tions to the total conductance g = g1 + gW

2 . For comparison
we also show ḡ = g1 + ḡ2.

yields an expression for g2 similar to (42), but contain-

ing Φ̃r instead of Φ̃r,W. This expression ḡ2, which cor-
responds to the second term in Eq. (23) of [12], also
vanishes at pinch-off, see Fig. 3(c,d). However, we be-
lieve it to be unreliable when used in conjunction with
second-order-truncated fRG, since the latter, as men-
tioned above, yields results for Φ̃l,r which (in contrast

to Φ̃l/r,W) violate the Ward identity used for its deriva-
tion.

IV. RESULTS

In this section, we investigate the features one obtains
for a QPC with a finite-ranged interaction of the type de-
scribed in Sec. II. The section is divided into two parts. In
the first part, we present results obtained with a dynamic
treatment of the short-range part and a static treatment
of the long-range part of the vertex. In the second part,
both short-range and long-range contributions of the ver-
tex are treated dynamically.

1 0 1 2

(µ−ωb)/Ωx

0.0

0.5

1.0

g

Finite-ranged, NL = 0, T= 0. 05Ωx

L
5

10

Figure 4. Conductance for large feedback lengths L = 5, 10
(solid curves), computed using a static treatment of the long-
ranged part of the vertex, i.e. using NL = 0. Dashed and
dotted curves indicate the one- and two-particle contribution,
respectively. As in the static Matsubara case, we see that
L = 5 is sufficient to achieve convergence.

A. Static long-range part

The results of this first subsection are obtained us-
ing NL = 0, i.e. by a direct combination of the dynamic
treatment of the short-range part [9] and the static treat-
ment of long-range part of the vertex [1]. As discussed in
Sec. III B, introducing a finite-ranged interaction neces-
sitates the introduction of the feedback length L, mea-
suring the range over which the vertex develops structure
during the RG flow. In [1], we have shown that in the
static Matsubara setup convergence in L was reached for
L ∼ lx/a and L > LU , where lx is the characteristic QPC
length and LU the range of the interaction. In our new
Keldysh formulation, this statement remains true. As an
example, Fig. 4 shows a typical conductance curve for
our generic finite-ranged interaction from Sec. II, com-
puted at a finite temperature T = 0.05Ωx. We see that
convergence is reached around L = 5 ≈ lx/a. In the rest
of this work, we always use L = 5 if not explicitly stated
otherwise.

Having assured the convergence w.r.t. the feedback
length, we can now compare the implication of finite-
ranged interactions on the conductance within a static
long-range feedback description. For this, we compare a
typical onsite-interaction model (here we use the same
parameters as used in [9], in particular onsite U = 0.7τ)
with a model with finite-ranged interactions. The form
of the interaction is here chosen as introduced in Sec. II,
i.e. with a onsite interaction strength U = 0.5τ and expo-
nentially screened offsite components, reaching an inter-
action range of LU = 3. Therefore, a particle in the cen-
ter of the QPC can directly interact with a particle out-
side the center, being half the characteristic QPC length
away. The resulting conductances are shown in Fig. 5.
Fig. 5(a) displays the conductance of the onsite model,
which is qualitatively very similar to the one obtained in
[9], even though we here use a finite feedback length L. It
is important to mention that in [9] this onsite interaction
strength was chosen as large as possible without causing a
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Finite-ranged, NL = 0

Figure 5. Temperature dependence of the conductance (solid
curves) for a model with (a) onsite interations and (b) finite-
ranged interactions (LU = 3), computed using a feedback
length L = 5 and static long-range part NL = 0. Dashed
and dotted curves indicate the one- and two-particle contri-
butions, respectively. In the finite-ranged case (b) the con-
ductance shows a slightly stronger flattening in the 0.7 region
than in the onsite case (a). However, the form of the curves
is still quite similar.

failure of convergence for the RG flow. However, even in
this maximal interaction strength case, no development
of a pronounced 0.7-shoulder with increasing tempera-
ture was observed. In Fig. 5(b) we use a finite-ranged
interaction. The only difference compared to part (a) is
that the conductance curves are slightly more asymmet-
ric, indicating that due to its finite range, the amount of
interaction that can be taken into account with fRG is
larger. However, there is still no pronounced shoulder in
the conductance. In the next subsection, we will see that
this changes when taking a dynamic contribution of the
long-range part into account.

B. Dynamic long range part

In this section, we will extend our study by treating the
long-range part of the vertex dynamically within a cer-
tain window of frequencies. As explained in Sec. III B,
this window is controlled numerically by the number, NL,
of frequency points around the feedback frequencies for
which the long-range part is taken into account. How-
ever, there is a caveat: Our frequency parametrization
is not strictly uniformly spaced, especially around the
feedback frequencies we have to distinguish two scales,
c.f. Sec. III A 3. The smaller scale is set by tempera-
ture, and we use NT = 10 frequencies distributed on
that scale around the feedback frequency to resolve the
temperature dependence. The other relevant scale is set
by the curvature Ωx, which is resolved by our underly-
ing equally spaced general frequency grid, introduced in
Sec. III A 3. Therefore, when we increase NL up to ∼ 5
we take only the vertex contribution in a frequency range
set by temperature into account. A further increase of
NL then begins also to resolve the Ωx scale, which sets the
scale of the characteristic width of the conductance step.

1 0 1 2

(µ−ωb)/Ωx

0.0

0.5

1.0

g

Finite-ranged, L= 5, T= 0. 05Ωx
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Figure 6. Dependence of the conductance on increasing NL,
which controls the width of the frequency window within
which the long-ranged part of the vertex is treated dynami-
cally, at finite L = 5. While, within our numerical resources,
convergence in NL could not be fully reached, finite values of
NL seem to lead to a more prominent 0.7-feature than in the
onsite case: This is most pronounced for medium NL = 10, 15
and still noticeable at large NL = 25, 29.

Concretely, the half-width of the frequency range of the
long-range vertex is given by ∆ω = 0.8Ωx for NL = 10
and increases roughly by 0.8Ωx per additional increase of
5 in NL. Thus, the biggest value NL = 29 corresponds
to a maximal frequency range of ∆ω = 3.8Ωx. Further-
more, one can show that the leading frequency contribu-
tion to the conductance at the chemical potential µ lies
around the feedback frequencies in a range determined
by εF = µ − Vb (c.f. App. E), i.e. it is on a scale set by
Ωx. Between NL = 10 and NL = 15, ∆ω becomes big-
ger than Ωx. Thus, starting from NL = 15, we take all
leading frequency contributions into account for values of
the chemical potential reaching the shoulder region, c.f.
Fig. 6.

The dependence of the resulting conductance on NL
for a typical set of parameters is shown in Fig. 6. Al-
though, we were not able to reach completely converged
results at our maximal value NL = 29 (after which we
hit the memory bound of our computational resources),
there seems to be a persistent feature for large NL: Go-
ing from NL = 0 (the static long-range result from last
section) up to finite NL = 29, we observe a qualitative
difference in the conductance. In the second half of the
conductance step a shoulder-like structure emerges, re-
sembling the 0.7-anomaly observed at finite temperature
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in various experiments [4, 7, 8, 16–18]. This feature is
most pronounced for NL = 10−15, when just the leading
frequency contribution is taken into account and relaxes
somewhat for larger NL. However, as we will show be-
low, even for NL = 29 the 0.7-feature is still much more
prominent than in the onsite case.

When decomposing the conductance in one- and two-
particle contributions (dashed and dotted lines in Fig. 6),
we see that this 0.7-feature comes from two effects: (i) In
the shoulder region, the one-particle part itself exhibits a
kink at a conductance value around g ∼ 0.4. This feature
is very strongly pronounced for NL = 10 and seems to
weaken somewhat for larger NL. Note here that near
pinch-off the differences between curves with different NL
are small and become larger starting when µ reaches the
shoulder region. This behavior is consistent with our
discussion in App. E. (ii) The two-particle contribution
increases steeply from pinch-off towards its maximum in
the shoulder region and decreases after that. This feature
seems to be almost equally pronounced for all large NL =
15− 29. Both of these effects lead to the development of
a shoulder-like structure in the conductance.

Concluding this discussion, we point out another in-
teresting effect. Even if the one- and two-particle parts
themselves are still subject to changes in NL, these
changes seem to mostly cancel out each other. The
resulting conductance seems to be much lesser depen-
dent on NL: Comparing the magenta (NL = 20), cyan
(NL = 25), and black lines (NL = 29) in Fig. 6, the
NL = 29 data seem almost converged in the shoulder
region. In fact, apart from the precise position of the
shoulder, the qualitative shape of all three curves is al-
ready very similar. Intuitively this effect makes sense:
If a particle traverses the QPC and contributes directly
to the conductance via the one-particle contribution it is
less likely to have given energy to create particle-hole ex-
citations which might contribute to the two-particle part
of the conductance and vice versa.

In the following, we study the dependence of the 0.7-
feature on temperature, interaction range and interaction
strength. For this, we will always compare the onsite
interaction result with the finite-ranged results for both
the leading frequency case at NL = 15, where the 0.7-
structure is most pronounced, as well as for the full NL =
29 result.

Above we have established the development of a 0.7-
shoulder in the finite-ranged interaction model when
treating the long-range contributions of the vertex dy-
namically. In Fig. 7, we study how finite-ranged interac-
tions affect the temperature dependence of the conduc-
tance. We see that the form of the onsite-conductance
in Fig. 7(a) is still the same as in Fig. 5(a,b). How-
ever, in Fig. 7(b,c), we see that for finite-ranged interac-
tions increasing temperatures lead to a more and more
pronounced 0.7-plateau. As above, we see that in the
NL = 15 case the 0.7-feature is most pronounced, how-
ever also for NL = 29 it is much stronger than in the
onsite case. In addition to having a different shape, the

conductance also depends much more strongly on tem-
perature itself. We see that finite-ranged interactions,
if treated dynamically, have the potential to introduce
major changes compared to onsite interactions and are
likely to be essential ingredients in the development of
a pronounced 0.7-plateau. This finding constitutes the
main result of this paper.

While we believe that the qualitative behavior of the
conductance is captured correctly within our approach,
we still want to comment on two inaccuracies: In the
NL = 29 case, the T = 0.1Ωx curve exhibits a slight
kink in the 0.7-structure, which can be traced back to a
peak in the two-particle contribution. This is probably
an artifact of our method, indicating that for this param-
eter regime an improvement of the vertex description is
in order: While it could be that simply a larger value of
NL is needed to converge to a smooth result, it might
also be possible that for a more accurate description one
would have to improve the vertex treatment alltogether.
We comment on one possible way to do this below. An-
other problem that we can observe in Fig. 7(b,c) is a
(slight) pinch-off shift to lower chemical potentials, i.e.
the QPC with finite-ranged interactions opens up ear-
lier than the one with onsite interactions or even the one
without interactions. This unphysical behavior, an arti-
fact of our method, was also encountered in our earlier
work in the Matsubara context [1]. It will be interest-
ing to see, whether further improvements of the vertex
treatment succeed in eliminating this unphysical shift.

Further insight can be gained by looking at the re-
sulting local density of states (LDOS) of the interact-
ing system. First of all, this yields an intrinsic consis-
tency check, by inspecting how well the LDOS satisfies
the normalization condition

∫
dωAi(ω) = 1, see Fig. 8.

Note that the normalization condition is relatively well
satisfied in the center of the QPC (where the relevant
physics for transport happens) and is off in the flanks
of the QPC. This is somewhat to be expected, since we
utilized our numerical resources in such a manner as to
best resolve the position and frequency dependence in
the center region, i.e. for frequencies close to barrier top
and chemical potential. For up to site 15 ≈ 3lx/a the
LDOS normalization is fulfilled well, which is exactly the
region of the renormalized flat barrier top, as we will see
below. Beyond that most of the LDOS contribution sits
deeper in the flanks of the QPC away from the barrier top
and the region of good resolution. Within the region of
the barrier top itself, the leading frequency contribution
NL = 15 seems to be yielding the best results.

Having checked the LDOS normalization, we next dis-
cuss the frequency resolved LDOS structure. Fig. 9 shows
the LDOS Ai(ω) as a colorplot depending on frequency
and site index of the effective QPC barrier. Compar-
ing the onsite result (a) to the finite-ranged results (b,c)
shows that the latter exhibit a stronger flattening. This
behavior is qualitatively consistent with our static Mat-
subara treatment, which also suggested a flatter barrier
top for finite-ranged interactions. Just as the conduc-
tance earlier, this indicates again that here more inter-
action processes are taken into account. Comparing the
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Figure 7. Temperature dependence of the conductance for (a) onsite and (b) finite-ranged interactions with NL = 15 and (c)
NL = 29. In contrast to the onsite case, the finite-ranged conductance shows a much more pronounced 0.7-feature: While for
NL = 15 in (b) an actual shoulder emerges, the full NL = 29 result in (c) is still much more asymmetric than the onsite-case.
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Figure 8. LDOS normalization in the plateau region (µ −
ωb)/T = 0.4 for finite interaction range for different param-
eters NL. In the QPC center the normalization condition∫
dωAj(ω) = 1, is satisfied much better than in the flanks.

two finite-ranged results, the NL = 15 result exhibits a
stronger van Hove ridge peak than the NL = 29 result.
Applying the rationale developed in [4], this is consistent
with the more pronounced 0.7-structure in the conduc-
tance in Fig. 7.

Aside from the form of the renormalized barrier in the
0.7-regime of the conductance step, one can also look at
the development of this barrier when varying the chemi-
cal potential. For this we plot in Fig. 10 the LDOS on the
middle site A0(ω) as function of frequency and chemical
potential, analogously to Fig. (5) of [9]. We see that when
the chemical potential (black line) crosses the barrier top
ωb, the van Hove ridge of the interacting LDOS increases
with it. This pinning is much more pronounced for the
finite-ranged case [Fig. 10(b,c)] than for the onsite-case
[Fig. 10(a)]. Again, this indicates the presence of more

interaction processes in the case of finite-ranged interac-
tions.

Up to now, we always used the same finite-ranged in-
teraction with an interaction range on the scale of the
characteristic length of the QPC and a strength that had
been chosen ad hoc. A systematic study of how these
properties affect the QPC conductance is beyond the
scope of this work. However, in the very last part of this
subsection, we will take a first brief look what happens
when these parameters are changed. Fig. 11 shows the
influence of a variation in the interaction range. With in-
creasing interaction cutoff LU , the conductance changes
from the onsite LU = 0 to the LU = 3 results discussed
earlier. We see that the 0.7-feature becomes more pro-
nounced, while at the same time the unphysical pinch-off
shift mentioned above occurs.

Fig. 12, instead shows the dependence of the conduc-
tance on increasing interaction strength with fixed range
LU = 3. Here, we keep the ratio of onsite- and offsite-
interaction strength U0/U1 = 5/3 = fixed and increase
U0 from 0.3τ beyond our usual value 0.5τ to the large
value 0.7τ . With increasing interaction strength, the
form of the conductance becomes more asymmetric and
the 0.7-structure eventually develops a oscillatory fea-
ture. Similar to the observations discussed above, this is
very pronounced for the leading frequency contribution
(NL = 15) and less visible for NL = 29. Again the un-
physical pinch-off shift in the chemical potential is clearly
visible.
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NL = 29. Note that in (b) and (c) the renormalized barrier top is much flatter than in the onsite case. For the NL = 15 case
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Figure 11. Dependence of the conductance on the interaction
range for (a) NL = 15 and (b) NL = 29. With increasing
interaction range the 0.7-feature develops in the conductance
step. Note that with increasing LU the pinch-off of the con-
ductance is shifted to smaller chemical potentials

C. Further challenges

In the data of the previous subsection, we have noticed
that for finite-ranged interactions an unphysical shift in
the conductance occurs: The pinch-off is shifted to lower
chemical potentials, seeming to imply that the effective
QPC barrier gets somehow reduced by finite-ranged in-
teractions. This effect was also found to a varying extent
in previous fRG work on QPCs [1, 4, 9, 12, 19] and is
an artefact of our method, presumably our truncation
scheme. Together with the other inconsistencies, namely
the violation of the Ward identity (39) and the associ-
ated issue that the two-particle contribution to the con-
ductance is negative unless the Ward-correction (40) is
used, this implies that in order to obtain quantitatively
reliable results for the conductance one will have to go
beyond the channel decomposition (13), and in general
also beyond second-order truncated fRG. In particular,
a more refined description and treatment of the vertex
is required, using not only one but all three indepen-
dent frequencies. A possible approach for meeting the
latter challenge within the Matsubara formalism is de-
tailed in [20]. A general improvement of our method
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Figure 12. Dependence of the conductance on the interaction
strength (a) for the leading frequency contribution NL = 15,
as well as (b) the full NL = 29 contribution. For large interac-
tion strength the 0.7-structure develops an oscillatory feature,
more pronounced in (a) but also visible in (b). Note again
the unphysical shift to smaller chemical potentials occuring
for larger interaction strength.

could be to combine this efficient vertex treatment with
the recently developed multiloop fRG (mfRG) method
[21–23] which provides a natural strategy for going be-
yond second-order truncated fRG. Work in this direction
is currently in progress.

V. CONCLUSIONS

The work reported here had two goals. The first was
methodological – advancing fRG methodology by com-
bining long-range feedback (eCLA) with the Keldysh for-
malism. The second goal was phenomenological – in-
vestigating the effect of finite-ranged interactions on the
temperature dependence of the 0.7-anomaly in QPCs.

Regarding our second goal, the conclusions are encour-
aging: we find clear indications that finite-ranged interac-
tions strengthen the 0.7-shoulder in the conductance step
at finite temperature. However, we were unable to fully
achieve our first goal: the approximations used (1-loop
truncation, channel decomposition of the vertex) are too
crude to obtain a fully converged and truly satisfactory
fRG treatment of long-range interactions in the Keldysh
formalism. Moreover, we encountered problems arising
from the violation of Ward identities.

Thus, we conclude that finite-ranged interactions merit
further study in the context of the 0.7-anomaly, but more
sophisticated methodology is needed to describe them
satisfactorily. A promising candidate for further studies
in this direction would be multi-loop Keldysh-fRG [21–
23]. Work in this direction is currently in progress.
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APPENDIX

In this appendix, we discuss some more technical as-
pects of our model and method. We begin with summa-
rizing the general symmetries of our system in App. A.
These symmetries are exact and do not depend on the
channel decomposition or our fRG approximations. In
App. B, we discuss the implications of these general sym-
metries on the components (18) of the channel decompo-
sition and count the number of independent components.
In particular, we use in App. B a more general form of
the multiparticle FDTS (19,B13) in the channel decom-
position than in previous works [9–11]. For the interested
reader, we have included a derivation of this more gen-
eral form in App. C. In App. D, we show the explicit
form of the flow equations from Sec. III B 2, including
the full index structure. In App. E, we discuss the im-
portance of the feedback frequencies for the conductance,
and give a justification for our frequency approximation
within Sec. III B 4 while developing the dynamic feedback
length. In App. F, we explicitly show the violation of the
Ward identity (39) for increasing interaction strength.
Finally, in App. G, we discuss the convergence of our re-
sults w.r.t. the number of frequencies NT for which we
take a long-range structure of the vertex into account,
c.f. Sec. III B 4.

Appendix A: General symmetries

In this section, we list the general symmetries that our
system introduced in Sec. II obeys. The derivation of
these symmetry relations can be found in great detail
in [10]. Note that all the symmetries discussed in this
section are exact. In particular they do not depend on the
channel decomposition (13), or any fRG approximations.

1. Particle permutation. For any permutation P of
(1, . . . , n) with sign (−1)P holds (c.f. Eq. (3.18) in
[10])

ξPm′|m = ξm′|Pm = (−1)P ξm′|m, (A1)

where ξ ∈ {G, γ} is either a multi-particle Green’s
or vertex function and m = (m1, . . . ,mn) is a
multi-particle index, with mk = (ωk, αk, qk) con-
sisting of frequency ωk, Keldysh index αk, and site
and spin index qk = (ik, σk).

2. Complex conjugation. For ξ ∈ {G, γ} holds (c.f.
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Eq. (3.24) in [10])

ξ
α′|α
q′|q (ω′|ω)∗ = (−1)zξ+

∑
k(α′

k+αk)ξ
α|α′

q|q′ (ω|ω′), (A2)

with zG = n and zγ = 1. For further reference,
we also state the equivalent relation of (A2) on the
double time contour (i.e. before rotating to Keldysh
space)

ξ
j′|j
q′|q(t

′|t)∗ = (−1)zξξ
j̄|j̄′
q|q′(t, t

′), (A3)

where j, j′ ∈ {+,−}n are multi-particle indices on
the double time contour (+: forward branch, −:
backward branch), and j̄ = −j.

3. Thermal equilibrium and time reversal. In thermal
equilibrium, our system obeys the general Kubo-
Martin-Schwinger (KMS) condition [24–26], which
leads to the relation (c.f. Eq. (3.52) in [10])

eβ∆j|j′ (ω|ω′)G
j|j′
q|q′(ω|ω

′) = (−1)m
j|j′

G̃j̄j̄
′

q|q′(ω|ω
′), (A4)

with

mj′|j =
∑

k:jk=+

1−
∑

k:j′k=+

1, (A5)

and

∆j′|j(ω′|ω) =
∑

k:jk=+

(ωk − µ)−
∑

k:j′k=+

(ω′k − µ). (A6)

The tilded Green’s function G̃ in (A4) is defined as
the normal Green’s function G, however with anti-
time ordering on the forward- and time orderinng
on the backward branch, see Eq. (3.16) in [10]. In

the single-particle case, G̃ can be expressed simply
in terms of G via the relation (c.f. Eq. (3.17) in
[10])

G̃
j′|j
q′|q(ω

′|ω) = Gj̄j̄
′

q′|q(ω
′|ω). (A7)

Combining (A4) with (A7) and rotating to Keldysh
space (we follow the convention in [10], see (A15))
yields the single-particle FDTs (10).

Additionally to the KMS conditions, thermal equi-
librium also implies the following time reversal
behavior for multi-particle Green’s functions (c.f.
Eq. (3.71) in [10])

G̃
j|j′
q|q′(ω|ω

′) = G
j̄′|j̄
q̃′|q̃(ω

′|ω)
∣∣∣
H̃
. (A8)

Here, q̃ = Θq denote the time reversed basis states,
where Θ is the anti-unitary time reversal operator

Θ|i, σ〉 = ei
π
2

∑
k σk |i, σ̄〉, (A9)

with σ̄ denoting the opposite spin of σ ∈ {+,−}n.
Note that the propagator on the r.h.s. of (A8) has
to be evaluated using the time reversed Hamilto-
nian H̃ = ΘHΘ†.
The Eqs. (A4) (relating G and G̃) and (A10) (relat-

ing G̃ and G|H̃) are general equilibrium properties.
Our specific system exhibits additionally a special
form of time-reversal symmetry, that will allow us
to relate G and G̃: For the components of the prop-
agators evaluated in the basis {|q〉} with |q〉 = |i, σ〉
holds (see Eq. (3.80) in [10])

Gjj
′

qq′(t, t
′) = Gjj

′

q̃q̃′(t, t
′)
∣∣∣
H̃
. (A10)

Although our system is more general than the ones
considered in [10], the proof that (A10) holds for
our specific choice of the basis {|q〉} can be done
completely analogously to the one in [10], pp. 60-
61. For details, see [27]. We remark that for (A10)
to hold, the Hamiltonian (1) does not have to be
time reversal invariant itself, in particular (A10)
also holds for finite magentic field.

Using (A10), we can obtain two more important
symmetry relations. In the single-particle case,
combining (A10) with (A8) and (A7) yields

G
j′|j
q′q (ω′|ω) = G

j′|j
q|q′(ω|ω

′). (A11)

Since, in our system, G is diagonal in spin and fre-
quency, this implies that the spatial transposition
symmetry (31a) and by extension also (31b).

In the multiparticle case, one can combine (A10)
with (A8) and (A4) to obtain after transformation
to Keldysh space a FDT for G. An analog rela-
tion holds for the vertex γ, making it possible to
express this multi-particle FDTs for ξ ∈ {G, γ} in
the compact form (see Eqs. (3.104,3.106) in [10])

Re ξ
j′|j
ε
j′|j
ξ

(ω′|ω) = −
[
1− 2f

(
∆j′|j(ω′|ω) + µ

)]
Re ξ

j′|j
−εj

′|j
ξ

(ω′|ω), (A12a)

Im ξ
j′|j
−εj

′|j
ξ

(ω′|ω) = −
[
1− 2f

(
∆j′|j(ω′|ω) + µ

)]
Im ξ

j′|j
ε
j′|j
ξ

(ω′|ω), (A12b)
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where

ε
j′|j
ξ = (−1)1+nξ+m

j′|j
, (A13)

and for given ε = ±1

γj
′|j
ε =

∑
α′,α

(−1)
∑
k(α′

k
+αk)=ε

Dj′|α′
γα

′|α(D−1)α|j , (A14)

with the Keldysh rotation

D−|1 = D±|2 =
1√
2
, (A15a)

D+|1 = − 1√
2
. (A15b)

Appendix B: Symmetries of vertex components

In this section, we discuss the symmetries of the vertex
components ϕP , ϕX , ϕD of Eq. (18). This symmetries
arise from the general vertex symmetries discussed in
App. A. We first take a look at the general (i.e. not nec-
essarily equilibrium) symmetries in App. B 1, and discuss
special equilibrium properties in more detail in App. B 2,
where we also comment on additional symmetries arising
in the case of zero magnetic field or a parity-symmetric
model.

1. General case

Using general vertex properties and the channel de-
composition of 2nd-order truncated fRG, one obtains var-
ious relations for the vertex components in (18) (c.f. e.g.
[10, 11]). Fig. 13(a,b) depicts how those symmetries re-
late the different components. We use the notation:

• Pi: Exchange of incoming particles:

ϕβ′
1β

′
2|β1β2

Pi→ −ϕβ′
1β

′
2|β2β1

,

• Po: Exchange of outgoing particles:

ϕβ′
1β

′
2|β1β2

Po→ −ϕβ′
2β

′
1|β1β2

,

• C: Vertex conjugation:

ϕβ′
1β

′
2|β1β2

C→ (−1)1+
∑
k α

′
k+αkϕ∗β1β2|β′

1β
′
2
.

Here β = (α, ω, j, σ) are composite-indices, comprised of
Keldysh index, frequency, spatial site and spin. Each
of these three symmetries is depicted by an arrow, con-
necting related vertex components. Therefore each of the
components is connected via three solid arrows to other
components or itself. The symmetries obey the general
relations

P 2
i = P 2

o = C2 = 1,

[Po, Pi] = 0,

CPi = PoC. (B1)

This implies that not all the relations between the var-
ious vertex components are independent, i.e. that they
can not be expressed via each other. However, one can
always find an independent subset of relations. In Fig. 13,
an example for such an independent subset is given by
the relations colored red. Expressed as equations, this
independent subset takes the form

(aP )
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

(Π)
Po= −(aP )

σ′
2σ

′
1|σ1σ2

j′2j
′
1|j1j2

(Π), (B2)

Pi= −(aP )
σ′
1σ

′
2|σ2σ1

j′1j
′
2|j2j1

(Π), (B3)

C
= (dP∗)

σ1σ2|σ′
1σ

′
2

j1j2|j′1j′2
(Π). (B4)

(bP )
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

(Π)
Po= −(bP )

σ′
2σ

′
1|σ1σ2

j′2j
′
1|j1j2

(Π), (B5)

C
= −(bP∗)

σ1σ2|σ′
1σ

′
2

j1j2|j′1j′2
(Π). (B6)

(aX)
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

(X)
Po= −(dD)

σ′
2σ

′
1|σ1σ2

j′2j
′
1|j1j2

(X), (B7)

Pi= −(aD)
σ′
1σ

′
2|σ2σ1

j′1j
′
2|j2j1

(−X), (B8)

C
= (dX∗)

σ1σ2|σ′
1σ

′
2

j1j2|j′1j′2
(X). (B9)

(bX)
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

(X)
Pi= −(bD)

σ′
1σ

′
2|σ2σ1

j′1j
′
2|j2j1

(−X), (B10)

C
= −(bX∗)

σ1σ2|σ′
1σ

′
2

j1j2|j′1j′2
(X). (B11)

(aD)
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

(∆)
C
= (aD∗)

σ1σ2|σ′
1σ

′
2

j1j2|j′1j′2
(−∆). (B12)

2. Equilibrium case

Besides the generic single-particle FDTs (10), which
are a generic property of any equilibrium system, the
multiparticle relation (A12) holds due to the special form
of time-reversal symmetry (A10) that our system obeys.
Applying this multi-particle relation to our channel de-
composition, we obtain two properties for our vertex
quantities, namely (ii) the vertex FDTs from (19), as
well as (iii) the relation

a∗ = d, (B13)

which holds for all channels. Since especially the rela-
tions (19c) and (B13) have (to our knowledge) not been
stated in this generality before, we give a short derivation
for the interested reader in App C.

In Fig. 13, the symmetries containing the additional
equilibrium symmetry relations are depicted in panels
(c,d). In the following, we will restrict our discussion to
this equilibrium case. Then, for finite magnetic field, we
have 7 independent components in spin space:

(aP )σσ := (aP )σσ|σσ, σ =↑, ↓, (B14a)
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Figure 13. Graphical representation of the symmetry relations for the P-channel (a,c) and XD-channel (b,d). The first row
(a,b) depicts the general symmetries for the non-equilibrium case, the second row (c,d) depicts the symmetries for the special
case of thermal equilibrium. For each subfigure, the red colored symmetries are an example for an independent subset.

(aP )↑↓ := (aP )↑↓|↑↓, (B14b)

(aX)↑↓ := (aX)↑↓|↑↓, (B14c)

(aD)σσ := (aD)σσ|σσ, σ =↑, ↓, (B14d)

(aD)↑↓ := (aD)↑↓|↑↓. (B14e)

The remaining task is to determine the symmetries of
these quantities in position and frequency space and to
identify the independent components. This process can
be illustrated again via the symmetry diagrams shown
in Fig. 13. We are now looking for a complete subset of
independent symmetry operations that do not change the
channel or spin configuration, i.e. that do not mix the
quantities introduced in (B14). This can be done in the
following way: Start from one component and form all
possible closed paths with the solid arrows starting and
ending at the same component. Then discard those loops
that change the spin structure. The remaining paths
form the desired complete set of remaining symmetries.
This leads to the following symmetry counts: aPσσ: 3,
aP↑↓: 1, aX↑↓: 1, aDσσ: 2, aD↑↓: 1.

In order to classify these symmetries, we use the short-
index notation introduced in (20), i.e. we encode the spa-
tial structure in a (frequency dependent) block-matrix
A(Ω) = {Alkji}(Ω), with a bosonic frequency Ω. To sim-
plify notation, let us define the following generic indepen-
dent transformations in position and frequency space:

[AI1 ]lkji(Ω) = −A(−l)k
(j+l)i(Ω), (B15a)

[AI2 ]lkji(Ω) = −Al(−k)
j(i+k)(Ω), (B15b)

[AT ]lkji(Ω) = Aklij (Ω), (B15c)

[AZ ]lkji(Ω) = A
∗(−l)(−k)
(j+l)(i+k)(−Ω). (B15d)

With this, we can classify the symmetries in position and

Table III. Symmetries of vertex components in position and
frequency space.

aPσσ aP↑↓ aX↑↓ aDσσ aD↑↓

I1 X − − − −
I2 X − − − −
T X X X X −
Z − − − X X

frequency as in Table III. The invariance under transpo-
sition T implies that for all vertex components in (B14)
except aD↑↓, the spatial block-matrix is symmetric, i.e.
we only need to compute components with

k ≥ l, (B16)

and for k = l it suffices to compute components with i ≥
j . The additional symmetries I1, I2 in aPσσ imply that
there we only need to consider l > 0. Finally, for both the
D-channel contributions aDσσ and aD↑↓ we need to only
compute the contributions for the frequencies ∆ ≥ 0.

Zero magnetic field

In our work, we do not consider a finite magnetic field.
This directly implies that we only need to compute one
spin component of aPσσ and aDσσ (e.g. σ =↑). Further-
more, applying the same method as described above, we
find that each of the mixed spin components now has one
symmetry more, changing the symmetry counts to aPσσ:
3, aP↑↓: 2, aX↑↓: 2, aDσσ: 2, aD↑↓: 2.

Again we can classify the symmetries, see Table IV.
In terms of independent vertex components this implies
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Table IV. Same as in Table III but for zero magnetic field.

aP↑↑ aP↑↓ aX↑↓ aD↑↑ aD↑↓

I1 X − − − −
I2 X − − − −

I ≡ I1 ◦ I2 X X − − −
T X X X X X

Z − − X X X

that now we have to compute only the components with
non-negative frequencies in the X-channel and that the
spatial block structure of aD↑↓ is now symmetric. Fur-
thermore, additionally to the symmetric condition (B16),
now one only needs to compute the components with
l ≤ 0 in aP↑↓. (Note that, in agreement with our choice
of sign in (B16), this is a weaker statement than the
condition l > 0 that is encountered for aP↑↑, which is
symmetric under I1 and I2 independently).

Parity

Finally, in the equilibrium context, the setup studied
in this work is parity symmetric, due to the parity sym-
metry of the Hamiltonian. In our notation, the parity
transformation can be expressed as

[AM ]lkji(Ω) = A
(−l)(−k)
(−j)(−i)(Ω). (B17)

(B18)

In our work this relation is then a symmetry for all vertex
components.

Summary

Each of the above-mentioned symmetries reduces the
independent components of the vertex by roughly a fac-
tor of 1/2. Since in our work the computation of the
bubbles (30) takes the most time, our implementation
does not make explicit use of the vertex symmetries in
Table IV. However, they are useful tools for checking an
implementation for possible mistakes.

Appendix C: Derivation of vertex FDTs

In this section, we give a brief derivation of the vertex
FDTs (19) and the relation (B13). As starting point, we
use the general statement (A12) for the exact two-particle
vertex in contour space, derived in [10], Eq. (3.106). We
remark that the spin and spatial structure of (A12) is
trivial. For this reason, we will not display any spin or
spatial indices in this section.

Inserting the channel decomposition (13) in (A12)
yields

Re
[
ν
j′|j
ε
j′|j
1

+
∑
A

(ϕA
ε
j′|j
1

)j
′|j(ΩA)

]
= −

[
1− 2f

(
∆j′|j(Π,X,∆) + µ

)]
Re
[
ν
j′|j
−εj

′|j
1

+
∑
A

(ϕA
−εj

′|j
1

)j
′|j(ΩA)

]
, (C1a)

Im
[
ν
j′|j
−εj

′|j
1

+
∑
A

(ϕA
−εj

′|j
1

)j
′|j(ΩA)

]
= −

[
1− 2f

(
∆j′|j(Π,X,∆) + µ

)]
Im
[
ν
j′|j
ε
j′|j
1

+
∑
A

(ϕA
ε
j′|j
1

)j
′|j(ΩA)

]
, (C1b)

where A ∈ {P,X,D} and correspondingly ΩA ∈
{Π,X,∆}, and where we applied an analogous definition
of (A14) to the ϕ’s and ν. Using (14), we obtain for

∆j′|j(ω′|ω)

∆−−|−−(ω′|ω) = 0, (C2a)

∆++|−−(ω′|ω) = 2µ− (ω′1 + ω′2) = 2µ−Π, (C2b)

∆−+|+−(ω′|ω) = ω1 − ω′2 = −X, (C2c)

∆−+|−+(ω′|ω) = ω2 − ω′2 = ∆. (C2d)

Furthermore, combining (A14) and (15) yields the bare
vertex expressions

ν
j′|j
+ = 0, (C3a)

ν
j′1j

′
2|j1j2

− = νj
′
1j

′
2|j1j2 ∼ δ(j′1 = j′2 = j1 = j2). (C3b)

Analogously, a combination of (A14) with the Keldysh

structure of the vertices (18) leads i.a. to the relations

(ϕA−)−−|−− = aA + dA, (C4a)

(ϕA+)−−|−− = bA, (C4b)

for all A ∈ {P,X,D}, as well as

(ϕP−)++|−− = −aP + dP , (C4c)

(ϕP+)++|−− = −bP , (C4d)

(ϕP±)−+|+− = (ϕP±)−+|−+ = 0, (C4e)

(ϕX− )−+|+− = aX − dX , (C4f)

(ϕX+ )−+|+− = −bX , (C4g)

(ϕX± )++|−− = (ϕX± )−+|−+ = 0, (C4h)
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and

(ϕD−)−+|−+ = aD − dD, (C4i)

(ϕD+)−+|−+ = −bD, (C4j)

(ϕD±)++|−− = (ϕD±)−+|+− = 0. (C4k)

If we insert (C2), (C3) and (C4) into (C1a), we obtain

∑
A

Re
[
bA(ΩA)

]
= 0, (C5a)

Re
[
− bP (Π)

]
= −

[
1− 2f(3µ−Π)

]
Re
[
− aP + dP

]
(Π),

(C5b)

Re
[
− bX(X)

]
= −

[
1− 2f(µ−X)

]
Re
[
aX − dX

]
(X),

(C5c)

Re
[
− bD(∆)

]
= −

[
1− 2f(µ+ ∆)

]
Re
[
aD − dD

]
(∆).

(C5d)

If we insert (C2), (C3) and (C4) into (C1b), we obtain

∑
A

Im
[
aA(ΩA) + dA(ΩA)

]
= 0, (C6a)

Im
[
− aP + dP

]
(Π) = −

[
1− 2f(3µ−Π)

]
Im
[
− bP (Π)

]
,

(C6b)

Im
[
aX − dX

]
(X) = −

[
1− 2f(µ−X)

]
Im
[
− bX(X)

]
,

(C6c)

Im
[
aD − dD

]
(∆) = −

[
1− 2f(µ+ ∆)

]
Im
[
− bD

]
(∆).

(C6d)

Using (C5) and (C6a) together with the continuity of
the vertex components as well as their high frequency
asymptotic lim|Ω|→∞ ϕA(Ω) = 0 yields relation (B13). If
we additionally also use the relations (C6b-C6d) and the
identity

1

1− 2f(µ+ Ω)
= coth

( Ω

2T

)
, (C7)

we obtain the vertex FDTs (19).

Appendix D: Explicit flow equations

In this section, we give the full form of the flow equa-
tions discussed in Sec. III B 2, including all spin- and spa-
tial indices. For the notation of the latter, we use the
general short-index notation introduced in (20). Using
the symmetries of the vertex for the equilibrium case (as
discussed in App. B) , the general fRG-flow equations
in the channel decomposition (see e.g. [10, 11]) can be
formulated as shown below.

In order to facilitate the representation of the self-
energy flow, it is convenient to split the self-energy into
a static and a dynamic contribution Σ = Σs + Σd. Fur-
thermore, we introduce first the following auxiliary quan-
tities, identified by a tilde:

∂Λ(Σ̃s)
Rσ
j(j+l)(ω) = − i

2π

∫
dω′

[1

2
v̄
σσ|σσ
j(i+k)|(j+l)i + (aD)σσlkji (0)

]
SKσi(i+k)(ω

′), (D1a)

∂Λ(Σ̃d)
Rσ
ji (ω) =

i

2π

∫
dω′

{
(bD)σσlkji (ω − ω′)SRσ(j+l)(i+k)(ω

′)− (bP )σσlkji (ω′ + ω)SAσ(i+k)(j+l)(ω
′)

+
[
(aD)σσlkji (ω − ω′)− (aP )σσlkji (ω′ + ω)

]
SKσ(j+l)(i+k)(ω

′)
}
. (D1b)

Then the flow of the self-energy is given by:

∂Λ(Σs)
R↑
j(j+l)(ω) = ∂Λ(Σ̃s)

R↑
j(j+l)(ω)

− i

2π

∫
dω′

[1

2
v̄
↑↓|↑↓
j(i+k)|(j+l)i + (aD)↑↓lkji (0)

]
SK↓i(i+k)(ω

′), (D2a)

∂Λ(Σd)
R↑
ji (ω) = ∂Λ(Σ̃d)

R↑
ji (ω)

− i

2π

∫
dω′

{
(bX)↑↓lkji (ω′ − ω)SR↓(j+l)(i+k)(ω

′) + (bP )↑↓lkji (ω′ + ω)SA↓(i+k)(j+l)(ω
′)

+
[
(aX)↑↓lkji (ω′ − ω) + (aP )↑↓lkji (ω′ + ω)

]
SK↓(j+l)(i+k)(ω

′)
}
, (D2b)

and

∂Λ(Σs)
R↓
j(j+l)(ω) = ∂Λ(Σ̃s)

R↓
j(j+l)(ω)
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− i

2π

∫
dω′

[1

2
v̄
↑↓|↑↓
i(j+l)|(i+k)j + (aD)↑↓klij (0)

]
SK↑i(i+k)(ω

′). (D3a)

∂Λ(Σd)
R↓
ji (ω) = ∂Λ(Σ̃d)

R↓
ji (ω)

− i

2π

∫
dω′

{
(bX)

↑↓(−l)(−k)
(j+l)(i+k) (ω − ω′)SR↑(j+l)(i+k)(ω

′) + (bP )
↑↓(−l)(−k)
(j+l)(i+k) (ω′ + ω)SA↑(i+k)(j+l)(ω

′)

+
[
(aX∗)

↑↓(−l)(−k)
(j+l)(i+k) (ω − ω′) + (aP )

↑↓(−l)(−k)
(j+l)(i+k) (ω′ + ω)

]
SK↑(j+l)(i+k)(ω

′)
}
. (D3b)

Before we proceed to write down the flow of the two-particle vertex, let us take a look at the bubble terms (26).
Displaying the full spin and spatial structure, (26) reads[

(Ĩpp)α
′
1α

′
2|α1α2

]στlk
ji

(Π) =
i

2π

∫
dω
[
(Sα

′
1α1)σji(ω)(Gα

′
2α2)τ(j+l)(i+k)(Π− ω) + [S ↔ G]

]
, (D4a)[

(Ĩph)α
′
1α

′
2|α1α2

]στlk
ji

(X) =
i

2π

∫
dω
[
(Sα

′
1α1)σji(ω)(Gα

′
2α2)τ(i+k)(j+l)(ω +X) + [S ↔ G]

]
. (D4b)

The symmetrical appearance of G and S in definition (D4) implies a corresponding symmetry for the whole bubbles.
Using the notation introduced in (B15) with I ≡ I1 ◦ I2, the implied [G↔ S] symmetry of the bubble reads[

(Ĩpp)α
′
1α

′
2|α1α2

]στ
(Π) =

[
(Ĩpp)α

′
2α

′
1|α2α1

]Iτσ
(Π), (D5a)[

(Ĩph)α
′
1α

′
2|α1α2

]στ
(X) =

[
(Ĩph)α

′
2α

′
1|α2α1

]Iτσ
(−X). (D5b)

These symmetries immediately follow from definiton (D4). Additionally, by complex conjugation, we have for
ζ ∈ {Ipp, Iph}

ζα
′
1α

′
2|α1α2 = (−1)1+α′

1+α′
2+α1+α2

[
ζα1α2|α′

1α
′
2

]∗
, (D6)

which follows from (D4) and (9). In terms of the components in Keldysh space (30), and with properly treated spin
and spatial structure, the bubbles IA with A ∈ {P,X,D} from (25) take the form

(IP )στ (Π) =
[
(Ĩpp)22|21 + (Ĩpp)22|12

]στ
(Π) =

[
(Ipp)στ + (Ipp)Iτσ

]
(Π), (D7a)

(IX)στ (X) =
[
(Ĩph)22|12 + (Ĩph)21|22

]στ
(X) =

[
(Iph)στ (X) + (Iph)I∗τσ(−X)

]
, (D7b)

(ID)στ (∆) = −
[
(Ĩph)22|21 + (Ĩph)12|22

]Iστ
(∆) = −(IX)τσ(−∆)

]
. (D7c)

Furthermore, using the propagator FDTs (10), together with the general relation

1− 2f(µ− ω) = −
[
1− 2f(µ+ ω)

]
, (D8)

one can straightforwardly show (c.f. [10], pp. 166-167) that the bubbles (D7) are real at their feedback frequencies,
i.e. IP (2µ) and IX(0), ID(0) are real.

For the flow of the vertex we define:

(ãP )σσlkji (Π) =
1

2
v̄
σσ|σσ
j(j+l)|i(i+k) + (aP )σσlkji (Π)−(φD)

σσ(i+k−j)(j+l−i)
ji + (φD)

σσ(i−j)(j+l−i−k)
j(i+k) , (D9a)

(ãP )↑↓lkji (Π) =
1

2
v̄
↑↓|↑↓
j(j+l)|i(i+k) + (aP )↑↓lkji (Π) + (φX)

↑↓(i+k−j)(j+l−i)
ji + (φD)

↑↓(i−j)(j+l−i−k)
j(i+k) , (D9b)

(ãX)↑↓lkji (X) =
1

2
v̄
↑↓|↑↓
j(i+k)|i(j+l) + (aX)↑↓lkji (X) + (φP )

↑↓(i+k−j)(j+l−i)
ji + (φD)

↑↓(i−j)(i+k−j−l)
j(j+l) , (D9c)

(ãD)σσlkji (∆) =
1

2
v̄
σσ|σσ
j(i+k)|(j+l)i + (aD)σσlkji (∆) + (φP )

σσ(i+k−j)(i−j−l)
j(j+l) − (φD)

σσ(i−j)(i+k−j−l)
j(j+l) , (D9d)

(ãD)↑↓lkji (∆) =
1

2
v̄
↑↓|↑↓
j(i+k)|(j+l)i + (aD)↑↓lkji (∆) + (φP )

↑↓(i+k−j)(i−j−l)
j(j+l) + (φX)

↑↓(i−j)(i+k−j−l)
j(j+l) . (D9e)

The static interchannel feedback is chosen as in [9–11] φP = aP (2µ), φX = aX(0), φD = aD(0). Note that since the
bubbles (D7) are real valued at the respective feedback frequencies, the φ are also real and furthermore (due to the
vertex FDTs (19) and (B13)) they have the same Keldysh structure as the bare vertex (15).

If we use the definition of block-matrix multiplication in
spacial indices (27), the flow of the vertex can be written

in the simple form:

(ȧP )σσ(Π) =
1

2
(ãP )σσ(Π) · (IP )σσ(Π) · (ãP )σσ(Π)

(D10a)
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(ȧP )↑↓(Π) = (ãP )↑↓(Π) · (IP )↑↓(Π) · (ãP )↑↓(Π) (D10b)

(ȧX)↑↓(X) = (ãX)↑↓(X) · (IX)↑↓(X) · (ãX)↑↓(X)
(D10c)

(ȧD)↑↑(∆) = −(ãD)↑↑(∆) · (IX)↑↑(−∆) · (ãD)↑↑(∆)

− (ãD)↑↓(∆) · (IX)↓↓(−∆) · (ãD)T↑↓(∆)
(D10d)

(ȧD)↓↓(∆) = −(ãD)↓↓(∆) · (IX)↓↓(−∆) · (ãD)↓↓(∆)

− (ãD)T↑↓(∆) · (IX)↑↑(−∆) · (ãD)↑↓(∆)
(D10e)

(ȧD)↑↓(∆) = −(ãD)↑↓(∆) · (IX)↓↓(−∆) · (ãD)↓↓(∆)

− (ãD)↑↑ · (IX)↑↑(−∆) · (ãD)↑↓. (D10f)

Appendix E: Importance of feedback frequencies

In this section, we discuss the importance of the feed-
back frequencies in the vertex (c.f. Sec. III B 4) for low-

energy observables. In particular, we use the linear re-
sponse conductance g of Eq. (34) as an example. In order
to illustrate the underlying mechanism, we first focus on
the system at T = 0. In this case, the conductance con-
sists only of the one-particle contribution (35), i.e. it is
completely determined by the knowledge of Σ(µ). We
obtain Σ(µ) via our fRG flow, i.e. in order to understand
the influence of our treatment of the two-particle vertex
on the conductance, we have to take a look at the flow
equations formulated in Sec. III B 2. In case of the static
part ∂Λ(Σs)

R, this is easy: The vertex contribution aD is
only evaluated directly at the feedback frequency ∆ = 0.
For the dynamic contribution ∂Λ(Σd)

R, we have to look
a little closer. In the T = 0 case, we can prove here two
exact statements (E4a,E4b). By using the FDTS (19)
and performing the limit T → 0, we obtain

∂Λ(Σ̃d)
Rσ
ji (µ) =

1

π

∫
dω′

(
2θ(ω′ − µ)− 1

)
Im
[(

(aP )σσlkji (µ+ ω′)− (aD∗)σσlkji (µ− ω′)
)
SRσ(j+l)(i+k)(ω

′)
]
. (E1)

Since both aP and aD are retarded and approach constants and SR(ω) ∼ 1
ω2 for large frequency arguments ω, we

have furthermore: ∫
dω′
(

(aP )σσlkji (µ+ ω′)− (aD∗)σσlkji (µ− ω′)
)
SRσ(j+l)(i+k)(ω

′) = 0. (E2)

With this, we can rewrite (E1) and obtain

∂Λ(Σ̃d)
Rσ
ji (µ) = − 2

π

∫ µ

−∞
dω′ Im

[(
(aP )σσlkji (µ+ ω′)− (aD∗)σσlkji (µ− ω′)

)
SRσ(j+l)(i+k)(ω

′)
]
. (E3)

Proceeding analogously, we can obtain for the complete dynamic self-energy

∂Λ(Σd)
R↑
ji (µ) = ∂Λ(Σ̃d)

R↑
j|i (µ)− 2

π

∫ µ

−∞
dω′ Im

[{
(aP )↑↓lkji (µ+ ω′) + (aX∗)↑↓lkji (ω′ − µ)

}
SR↓(j+l)(i+k)(ω

′)
]
, (E4a)

∂Λ(Σd)
R↓
ji (µ) = ∂Λ(Σ̃d)

R↓
ji (µ)− 2

π

∫ µ

−∞
dω′ Im

[{
(aP )

↑↓(−l)(−k)
(j+l)(i+k) (µ+ ω′) + (aX)

↑↓(−l)(−k)
(j+l)(i+k) (µ− ω′)

}
SR↑(j+l)(i+k)(ω

′)
]
.

(E4b)

In the one-particle part of the conductance (35), we
have to evaluate GRσ−NN (µ) at opposite ends of the chain.

In order for a self-energy component (Σd)
R
ji(µ) to yield

a substantial contribution to this propagator, the spatial
indices j, i have to fulfill at least one of the following two
criteria: (i) The spatial indices lie on different sides of
the QPC barrier. In this case, ΣRji(µ) yields a direct hop-

ping contribution to GRσ−NN (µ). (ii) At least one spatial
index lies in the region of the barrier top. In this case,
one either obtains a still significant hopping contribution
(if the other index does not lie in the region of the barrier

top) or a renormalization of the barrier top (if both in-
dices lie in the region of the barrier top). The remaining
case, where both indices lie away from the barrier top on
the same side of the QPC barrier, does not yield any sig-
nificant contributions to the conductance. In this case,
both spatial indices j, i lie in a connected spatial region
where the lower band edge is way below the chemical po-
tential (c.f. Fig. 1(a)), i.e. in this region the movement
of electrons is not impaired anyway. Therefore, we will
assume in the following that j, i fulfill at least one of the
two criteria (i),(ii).
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In this case, we can approximately change the lower
bound of the integration in (E1-E4b) from −∞ to ωb =
−2τ + Vg, the energy of the barrier top in the middle
of the QPC: For small l, k the propagator SR(i+k)(j+l)(ω

′)

gets suppressed exponentially by the barrier once ω′ <
ωb. For large l or k, the vertex contributions (aA)lk(ω′)
will be small, since the interaction range of the bare in-
teraction is finite and much shorter than the length of the
entire system (including the QPC flanks). Therefore, in
the flow of the self-energy compontents ΣRj,i(µ) where i, j
fulfill at least one of the conditions (i) or (ii), only vertex
components within the frequency range [2µ−(µ−ωb), 2µ]
are important for the P-contribution, and in the range
[−(µ− ωb), (µ− ωb)] for the X- and D-channel contribu-

tions. Since we are especially interested in the behavior
during the first conductance step, i.e. when (µ−ωb) ∼ Ωx,
the leading frequency contribution of the vertex compo-
nents lies in the frequency range Ωf ± Ωx, where Ωf are
the feedback frequencies 2µ and 0, defined in Sec. III A 3.

At finite temperatures, for the one-particle contribu-
tion of the conductance, the same argument holds in
essence. It is just slightly more technical due to keep-
ing track of the temperature smearing of Fermi steps.
Instead of evaluating Σ only at µ, we now need it in an
interval [µ−∆T , µ+ ∆T , where the scale of ∆T ∼ 5T is
set by temperature, c.f. (35). In analogy to (E1), the flow
of Σ(µ + ∆ω), with ∆ω ∈ [−∆T ,∆T ] can be rewritten
using

∂Λ(Σ̃d)
Rσ
ji (µ+ ∆ω) = − 2

π

∫ µ

−∞
dω′ Im

[(
(aP )σσlkji (µ+ ∆ω + ω′)− (aD∗)σσlkji (µ+ ∆ω − ω′)

)
SRσ(i+k)(j+l)(ω

′)
]

+
1

π

∫
dω′

[{
coth

(ω′ − µ+ ∆ω

2T

)
− [2θ(ω′ − µ)− 1]

}
Im(aP )σσlkji (µ+ ∆ω + ω′)SRσ∗(i+k)(j+l)(ω

′)

+
{

(1− 2nF (ω′))− [2θ(ω′ − µ)− 1]
}

(aP )σσlkji (µ+ ∆ω + ω′) ImSRσ(i+k)(j+l)(ω
′)

−
{

coth
(µ+ ∆ω − ω′

2T

)
− [2θ(µ− ω′)− 1]

}
Im(aD)σσlkji (µ+ ∆ω − ω′)SRσ(i+k)(j+l)(ω

′)

−
{

(1− 2nF (ω′))− [2θ(ω′ − µ)− 1]
}

(aD)σσlkji (µ+ ∆ω − ω′) ImSRσ(i+k)(j+l)(ω
′)
]
. (E5)

Note that in (E5) all four terms in curly brackets {. . . }
decay exponentially in ω′ on the scale of temperature T
for ω′ outside a small interval around µ. Following the
same line of argument as above, one finds that the vertex
components are suppressed outside of an interval around
the feedback frequency which is widened on the order
of temperature: The important frequencies effectively lie
in the intervals [2µ − (µ − ωb) − ∆̃T , 2µ + ∆̃T ] for the

P-channel and [−(µ − ωb) − ∆̃T , (µ − ωb) + ∆̃T ] for the

X- and D-channel, where ∆̃T ∼ 2∆T lies again on the
scale of temperature. Analogous arguments hold for the
complete self-energy.

For finite temperature there is also a two-particle con-
tribution (42) to the conductance, directly containing a
vertex contribution. This vertex contribution is effec-
tively only needed in an interval of width set by tem-
perature around the feedback frequencies. This can be
seen from (42) together with (37) and (38) , since the
functions

fp(µ+ ∆T , ε
′) = coth

[ε′ − µ+ ∆T

2T

]
− tanh

[ε′ − µ
2T

]
,

(E6)

fx(µ+ ∆T , ε
′) = coth

[ε′ − µ−∆T

2T

]
− tanh

[ε′ − µ
2T

]
(E7)

decay exponentially with increasing |ε′−µ|, on a scale set
by temperature. Furthermore, the input argument ∆T is
analogous to the one appearing in (E5) and lives again

on the scale of temperature. That the leading frequency
contribution for the two-particle contribution of the con-
ductance is determined on the scale of temperature can
also be nicely seen in Fig. 6. The main contribution to
g2 is collected by going from NL = 0 to NL = 5, i.e.
while resolving the temperature scale (c.f. the discussion
in Sec. IV B). Further increase in NL > 5 only slightly
changes the two-particle contribution.

Appendix F: Violation of Ward Identities

In Sec. III C, we have seen that the conductance com-
putation suffers from a violation of the Ward identity
(39). Here, we will elaborate on this violation and show
how it depends on external and numerical parameters.
One of the main influences on the severity of this vio-
lation are the interaction parameters employed. For an
onsite interaction model our fRG treatment is exact to
second order in the interaction, even in the case of the
feedback length L = 0. Therefore, for small enough in-
teraction strengths, the violation of the Ward identity
(39) scales like ∼ U3, i.e. in this weak interaction regime
we expect (39) to be well satisfied. This can indeed be
seen in Fig. 14(a,b).

However, for an interaction strength suitable to ob-
serve 0.7-physics, the Ward identity is severly violated,
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Figure 14. Violation of the Ward identity (39) at temperature T = 0.1Ωx for onsite interactions (first column), and finite-ranged
interactions with NL = 0 (second column) and NL = 15 (third column). The power of 10 indicated above each panel is a
scale factor for the vertical axis. Within each column the interaction strength is increased from very small in the first row,
up to the realistic strength in the last row. In (c), the dashed lines (blue for −2 Im ΣR00 and red for (Φ̃l + Φ̃r)00), show the
onsite interaction results computed using L = 5, NL = 15. Note that with these choices the violation in the region around the
chemical potential µ is reduced compared to the NL = 0 result, even in the case of onsite interactions.

see Fig. 14(c). For this reason, the best way to obtain the
conductance from the results of our current fRG method,
is the Ward-corrected treatment described in Sec. III C,
which restores the Ward consistency between the two-
particle part and the self-energy.

Note that the situation is somewhat remedied by using
our eCLA scheme with finite L and finite NL already for
the onsite interaction, see the dashed lines in Fig. 14(c).
In the static Matsubara case [1], we saw that the eCLA
scheme stabilizes the fRG flow by coupling the individual
channels better together, extending the accessible physi-
cal parameter regime. Now we also see that it increases
the internal consistency of the results between the one-
and two particle level.

In the case of the model with finite-ranged interac-
tions the situation is qualitatively similar. However,
with our approximate treatment of the frequency depen-
dence of the long-ranged part of the vertex, described in
Sec. III B 4, we generally already make a mistake in sec-
ond (i.e. the leading order) in the Ward identity. This is
due to the fact that it is numerically not possible to incor-
porate the effect of long-range feedback at all frequencies.
We take long-range contributions only into account in a
certain frequency range around the feedback-frequencies
[c.f. (33)]. Following the logic of App. E, we therefore ex-
pect the Ward identity (39) to hold only in this frequency
range around the chemical potential, even at small inter-
action strengths. This effect can indeed be seen by com-
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Figure 15. Conductance curves for NT = 10 (blue) and NT =
20 (red). As before, solid lines indicate the whole conductance
g, while dashed lines indicate the one-particle and dotted lines
the two-particle contributions. The resulting curves almost
perfectly agree.

paring Figs. 14(d,e) to Figs. 14(g,h). At large interaction
strengths the violation then becomes much more severe,
as for the onsite interaction model. This necessitates in-
troducing the Ward-correction strategy of Eq. (40).

Appendix G: Convergence w.r.t. NT

In our whole work, we used NT = 10 additional fre-
quencies in the temperature window [−5T, 5T ] around
the chemical potential / feedback frequencies in oder to
resolve the finite temperature behavior of the self-energy
/ two-particle vertex. Despite NT = 10 being much
lesser than the comfortable ∼ 100 additional frequen-
cies used in Ref. [9] for the same purpose, our results
are still converged w.r.t. NT , see Fig. 15. Here we com-
pare the results for the finite-ranged interaction model
with NT = 10 (blue curves) and NT = 20 (red curves).

Note that in order to not change the frequency range θfA,
for the respective channels A ∈ {P,X,D}, we also had
to increase the number of long range frequencies NL ac-
cordingly. Both curves lie almost perfectly on top of each
other, indicating that a further increase of NT beyond 10
is not necessary.
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