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Abstract

Calculations for finite-temperature Green functions in many-body physics are usually done
in the Matsubara formalism through which imaginary time results are generated. The real
time Green function can be obtained from these results by analytic continuation. However,
this analytic continuation problem is ill-conditioned numerically and turns out to be a
difficult task. A number of different approaches have been developed in recent years.
They show different behavior in terms of accuracy, performance, numerical stability, and
sensitivity to noisy input data. In this thesis, I want to compare the well-established
Padé approximation with two recently proposed methods, namely PES and Nevanlinna.
These two methods guarantee the non-negativity constraint of the spectral function per
construction. This is a common problem of Padé approximation. In addition, I show that
Padé approximation can be improved by using the AAA algorithm for interpolation.
These methods are applied to data for Matsubara Green functions that correspond to the
Anderson impurity model, a spectral function composed of Gauss functions, and a spectral
function corresponding to a finite-energy system.
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Chapter 1

Introduction

Condensed matter physics is the branch of physics that deals with the properties of liq-
uid and solid substances. The discovery of quantum mechanics around 1920 led to great
advances in the field. Notable examples are Pauli’s theory of paramagnetism and Sommer-
feld’s free-electron model which predicts the temperature dependence of the heat capacity
of metals. Also, the theory of electronic band structure is rooted in quantum mechanics
which can explain the conductive properties of metals, insulators, or semiconductors. To-
day, life without digital devices such as smartphones or computers is hard to imagine. Such
technologies wouldn’t be available without the human understanding of semiconductors.
Despite this huge success, some properties of condensed matter remained without theoret-
ical explanation using only quantum mechanics. Phenomena such as superconductivity or
the Kondo effect called for new approaches to the description of matter. This was even-
tually done by using new ideas which were originally developed in quantum field theory
for quantum many-body systems. This way in 1957 the BCS theory for superconductivity
was developed, providing a quantum many-body model for the behavior of conventional
superconductors.
A common problem in many-body physics is the analytic continuation of Green functions.
In 1.1, I give an introduction to this problem. In 2, I explain the mechanism of Padé
approximation and the two recently proposed Nevanlinna and PES methods that were de-
veloped for this problem. I also show how Padé approximation can be modified using the
AAA algorithm for rational approximation. In 3, the performance of all of the introduced
methods is compared for various input data. Finally, in 4, a summary of the results as well
as some ideas about how this problem can be approached in the future is given.
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1.1 The analytic continuation problem

1.1.1 Green functions for solving differential equations

Green functions are a powerful tool for solving linear differential equations. A standard
example that illustrates the mechanism of Green functions is finding a solution for the
Poisson equation:

△ϕ(r⃗) = − 1

ϵ0
ρ(r⃗) (1.1)

The equation relates the electric potential ϕ to the charge carrier density ρ. △ is the
Laplace operator. The Green function is defined as the function which yields a delta
function when the differential operator of the differential equation is applied to it:

△G(r⃗) = δ(r⃗) (1.2)

The Green function for the Laplace operator is [1]:

G(r⃗) = − 1

4πr
(1.3)

Once the Green function is known, the solution for the differential equations can be ob-
tained from the convolution of the inhomogeneous part of the differential equation and the
Green function:

ϕ(r⃗) = − 1

ϵ0

∫
dr⃗ ′G(r⃗ − r⃗ ′)ρ(r⃗ ′) =

1

4πϵ0

∫
dr⃗ ′ ρ(r⃗ ′)

|r⃗ − r⃗ ′| (1.4)

Green functions can be viewed as building blocks that can be used to create solutions for
differential equations.

1.1.2 Green functions in many-body physics

In many-body physics, Green functions are defined in a similar way 1. First, consider the
Schrödinger equation for a single particle:2

[i∂t −H(r⃗)]Ψ(r⃗, t) = 0 (1.5)

The Green function is then defined by:

[i∂t −H(r⃗)]G(r⃗, t; r⃗ ′, t′) = δ(r⃗ − r⃗ ′)δ(t− t′) (1.6)

We can use a Green function to describe the time evolution of a state Ψ(r⃗ ′, t′) at time t′

to time t:

Ψ(r⃗, t) =

∫
dt′

∫
dr⃗ ′G(r⃗, t; r⃗ ′, t′)Ψ(r⃗ ′, t′) (1.7)

Ψ(r⃗, t) satisfies the Schrödinger equation 1.5. This can be seen by inserting 1.7 in 1.5 and
using 1.6. For this reason G(r⃗, t; r⃗ ′, t′) is also called propagator.

1This is only a very brief introduction to Green functions and their use in many-particle physics. For
a more detailed discussion see Chapters 8 and 11 in [2].

2ℏ is set to 1 in all equations in this thesis.
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Retarded Green functions

An important solution for 1.6 is the retarded Green function.

GR(r⃗, t; r⃗ ′, t′) = −iθ(t− t′)⟨r⃗|e−iH(t−t′)|r⃗ ′⟩ (1.8)

It is the amplitude for the particle to be in state |r⃗⟩ at time t, given that it was in state |r⃗ ′⟩ at
time t′. GR could also be represented in another basis by replacing ⟨r⃗| and |r⃗ ′⟩ with vectors
of the new basis. It is often useful to express the retarded Green function in an eigenbasis
of the Hamiltonian. Let {|ϕn⟩} be a complete eigenbasis of H with H|ϕn⟩ = En|ϕn⟩. We
can then rewrite 1.8 to:

GR(r⃗, t; r⃗ ′, t′) = −iθ(t− t′)
∑
n

⟨r⃗|ϕn⟩⟨ϕn|r⃗ ′⟩e−iEn(t−t′) (1.9)

Many-body systems

So far, we have only discussed single particles and neglected the interactions between them.
In many-body physics a more general definition of the retarded Green function is needed.
The retarded Green function is now rewritten in terms of annihilation/creation operators:

GR
ν,ν′(t− t′) = −iθ(t− t′)

〈{
aν(t), a

†
ν′(t

′)
}〉

(1.10)

aν(t) is the annihilation operator for a state |ν⟩ and a†ν′(t) is creation operator for a state
|ν ′⟩. ν and ν ′ are quantum numbers. Both states are given in the Heisenberg picture.
They are related to the Schrödinger picture operators aν and a†ν by:

aν(t) = eiHtaνe
−iHt (1.11)

a†ν(t) = eiHta†νe
−iHt (1.12)

{·, ·} is the fermionic anticommutator:

{A,B} = AB +BA (1.13)

⟨...⟩ = 1
Z
Tr(e−βH) denotes the thermal expectation value where β = 1

kBT
.

For simplicity, I will only discuss fermionic systems here. The treatment of bosonic systems
is very similar.
Since we are considering system in thermal equilibrium, GR

ν,ν′(t − t′) is a function of time
difference only. We can perform a Fourier transformation to get a function in the frequency
domain. Before doing that, we again express the Green function through energy eigenstates:

GR
ν,ν′(t− t′) = −iθ(t− t′)

1

Z

∑
nn′

e−βEn
(
⟨ϕn|aν |ϕn′⟩⟨ϕn′ |a†ν′ |ϕn⟩ei(En−En′ )(t−t′)

+⟨ϕn|a†ν′|ϕn′⟩⟨ϕn′|aν |ϕn⟩e−i(En−En′ )(t−t′)
)

(1.14)
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The Fourier transformation of GR
ν,ν′(t− t′) is:

GR
ν,ν′(ω + iη) =

∫ ∞

−∞
dtei(ω+iη)tGR

ν,ν′(t)

=
1

Z

∑
nn′

⟨ϕn′|aν |ϕn′⟩⟨ϕn′|a†ν |ϕn⟩
ω + En − En′ + iη

(
e−βEn + e−βEn′

)
(1.15)

η is a positive infinitesimal number, which is necessary to ensure that the integrand con-
verges. Eq. 1.15 is called Lehmann representation of GR

ν,ν′ .
Using the Green function in the frequency domain, the spectral function is defined

A(ω) = lim
η→0

− 1

π
ImGR

ν,ν′(ω + iη) (1.16)

which can also be written in Lehmann representation [2],

A(ω) =
1

Z

∑
nn′

⟨n|cν |n′⟩⟨n′|c†ν |n⟩e−βEn(1 + e−βω)δ(ω + En − En′) (1.17)

It contains information about the distribution of quantum states independent of their
occupation. It can be measured using, e.g., photoemission spectroscopy. A property of the
spectral function is that it fulfills the sum rule∫ ∞

−∞
dωA(ω) = 1 (1.18)

and that A is always non-negative:

A(ω) ≥ 0,∀ω (1.19)

1.1.3 Imaginary time Green functions

When dealing with systems at finite-temperature, one would expect that things will be-
come very difficult because now we need to consider quantum effects over a large ensemble
of possible states whose probability is given by the Boltzmann distribution: pi =

e−βEi

Z
,

where β = 1
kBT

. However, in practice, working with finite-temperature systems is often not
more difficult than with zero-temperature systems. This is because the concept of imag-
inary time can be used. To get an idea of why the imaginary time formalism works, one
can consider the inverse temperature β as the imaginary time in a time evolution operator.
It shows a lot of calculations are done more practicable in this formalism. Therefore,
most finite-temperature calculations for the Green function are done using imaginary time.
Then, analytic continuation is used to obtain the real time function.
To work with imaginary time, we replace the real time t with an imaginary valued expres-
sion t → −iτ , where τ is a real number. For example, operators in the Heisenberg picture
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then become:

A(t) = eitHAe−itH

↓
A(τ) = eτHAe−τH

The imaginary time or Matsubara Green function is defined:

Cνν′(τ − τ ′) = −
〈
Tτaν(τ)a

†
ν′(τ

′)
〉

(1.20)

Still, we are only considering fermionic systems. Tτ is the imaginary time-ordering operator.
It orders operators such that operators with a later time appear on the left while respecting
the anticommuting behavior of fermionic creation/annihilation operators:

Tτ (A(τ)B(τ ′)) = θ(τ − τ ′)A(τ)B(τ ′)− θ(τ ′ − τ)B(τ ′)A(τ) (1.21)

Again, Cνν′ is a function of time difference only. It can be proven that CAB is well-defined
only for −β < τ − τ ′ < β and it is antiperiodic CAB(τ) = −CAB(τ + β) [3]. Thus, the
function can be expressed as a Fourier series:

Cνν′(τ) =
1

β

∞∑
n=−∞

e−iπnτ/βCνν′(n)

Cνν′(n) =
1

2

∫ β

−β

dτeiπnτ/βCνν′(τ)

=
1

2
(1− e−iπn)

∫ β

0

dτeiπnτ/βCνν′(τ)

Cνν′(n) is only non-zero when n is odd. Using the Matsubara frequencies ωn = (2n+1)π
β

for
fermionic systems, these two equations can be rewritten to:

Cνν′(τ) =
1

β

∞∑
n=−∞

e−iωnτCνν′(n)

Cνν′(iωn) =

∫ β

0

dτeiωnτCνν′(τ)

To see the connection between Cνν′(iωn) and the retarded Greens function GR
νν′(ω) we

compare the Lehmann representations of the two:

Cνν′(iωn) =
1

Z

∑
nn′

⟨n|cν |n′⟩⟨n′|c†ν′|n⟩
iωn + En − En′

(
e−βEn + e−βEn′

)
(1.22)

GR
νν′(ω + iη) =

1

Z

∑
nn′

⟨n|cν |n′⟩⟨n′|c†ν′|n⟩
ω + En − En′ + iη

(
e−βEn + e−βEn′

)
(1.23)
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The two functions coincide, except for the part in the denominator. We can rewrite this
as just G(z) where z is a complex number and note that the Matsubara function and the
retarded Green function are identified by the limits z → iωn and z → ω + iη, respectively.
Indeed, the retarded Green function is obtained uniquely from the analytic continuation
of the Matsubara function at all Matsubara frequencies:

GR
νν′(ω) = Cνν′(iωn → ω + iη) (1.24)

This was formally proven by Mermin and Baym in 1960 [4]. For calculating the retarded
Green function numerically, this is not well-defined, though, because the Matsubara Green
function can only be known for a finite set of points. Instead, the analytic continuation
has to be performed numerically. In practice, the analytic continuation procedure turns
out to be a difficult problem. To illustrate this, we look at the following relation between
G(z) and the spectral function A(ω) [5]:

G(z) =

∫ ∞

−∞
dω

A(ω)

z − ω
(1.25)

For large |ω|, a small noise in G(z) leads to a big change in A(ω), making the problem very
sensitive to noise.

We can try to perform the analytic continuation straightforward, by rewriting equation
1.25 to

G(z) =

∫ ∞

−∞
dωK(z, ω)A(ω) (1.26)

K(z, ω) =
1

z − ω
(1.27)

and discretizing this integral to a matrix-vector multiplication:

G = KA (1.28)

A = K−1G (1.29)

We can test this approach by generating an arbitrary spectral function A(ω) and then
calculate G(iωn) for a set of frequencies using 1.25. Then, we use 1.29 to get back A(ω),
which should be exactly the same as before. We would see that this does not work at all
- even for the most basic spectral functions the data we would get back for A(ω) looks
like random noise. The reason for this is that K is ill-conditioned. The singular values
of K lie in an extremely wide range [6]. The condition number of a K which indicates
how well K can be inverted numerically is given by the ratio of the biggest and smallest
singular value. Thus, for K the condition number is extremely big, meaning that inverting
the matrix numerically without big errors is impossible. Because of that, we need to look
at some more sophisticated approaches for the analytical continuation.
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1.2 The Anderson impurity model

Before doing this, I want to give an example of a physical system to which the discussed
tools can be applied. The single impurity Anderson model(SIAM) is a simple model aimed
to explain the behavior of magnetic impurities in metals. These occur when small amounts
of magnetic ions such as iron are added to a metallic host material. These impurity atoms
may or may not form local magnetic moments. Magnetic impurities can be used to explain,
for example, the Kondo effect. The Kondo effect describes the observation that for some
metals below a certain temperature, the resistivity starts to rise as the temperature is
lowered further. Naturally, one would expect the opposite to happen.
The Anderson model combines two ideas: 1.) Because of Coulomb interaction the d-orbitals
of the impurity are strongly localized. 2) Despite their strong localization, the impurities
hybridize with the host metal: The electrons can still tunnel from the orbitals to the host
metal. It is sufficient to only consider a single impurity atom. The Hamiltonian of a single
impurity is given by the three parts: H = Hbath +Hloc +Hhyb

Hbath =
∑
kσ

ϵknkσ (1.30)

Hloc =
∑
σ

Edndσ + Und↑nd↓ (1.31)

Hhyp =
∑
kσ

vk(c
†
kσdσ + d†σckσ) (1.32)

Hbath describes the energy of particles in the conducting sea. nks = c†kscks is the number
operator for the sea electron with momentum k and spin σ ∈ {↑, ↓}. Hloc describes the
energy of the impurity site with energy Ed. ndσ = d†σdσ is the number operator for the
electron at the impurity site with spin σ. If two electrons occupy the impurity they expe-
rience a repulsion U due to Coulomb interaction. Finally, Hhyb describes the hybridization
between site electrons and sea electrons. Electrons can tunnel back and forth from the sea
to the site. In this process, the tunneling constant vk depends on the momentum k of the
sea electron. Because of the hybridization, the spectrum of the localized site is broadened
to the width ∆, which becomes a constant in the limit of an infinitely wide density of states
for the sea electrons, considered here.
The spectral function as well as the Matsubara Green function for this model can be cal-
culated using the numerical renormalization group (NRG) [7]. The energy of the impurity
site is set to Ed = −U

2
, corresponding to half-filling. The temperature is always set to

T = U
100

. In the following, I will use the NRG data for the Green function to test differ-
ent methods for analytic continuation and compare the resulting spectral functions to the
numerically exact one.
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Chapter 2

Methods

Here, I explain the mechanisms of the methods that are tested later. I first introduce
Padé approximation because it is one of the oldest and most popular methods for analytic
continuation. Then, I will explain the two new methods Nevanlinna and PES which aim
to improve current analytic continuation methods by enforcing the positivity constraint
of the spectral function. I also show how AAA can be used as an alternative to Padé
approximation.

2.1 Rational approximation

A rational function can be used to interpolate the Green function for a given set of Mat-
subara frequencies. The function can then be evaluated at ω + i0+ to obtain the retarded
Green function. Rational functions are suited because they can capture the existence and
locations of poles in the resulting function, in contrast to, for example, polynomials. An-
other advantage of using rational functions is that they can be stored compactly since only
a small number of coefficients is needed for that.
Since the approximation does not follow any physical constraints, the resulting spectral
function does not necessarily obey the constraint that the function is positive at all fre-
quencies.

2.1.1 Padé approximation

One of the first methods developed for the analytic continuation problem is called Padé
approximation. It was first suggested in 1977 [8]. The coefficients for the rational function
are determined by the multipoint Padé approximants algorithm. Usually, the Matsubara
function for a subset of all Matsubara frequencies {iωn} is used, because calculations would
take a very long time otherwise. The quality of analytic continuation depends on that
choice.
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Multipoint Padé approximants

Padé approximation uses a simple algorithm for interpolating [8]. Given a function f(z)
whose function values are known for a set of points f(zi) = fi, i = 1, . . . ,M , the Padé
approximation can be written as a continued fraction:

CM(z) =
a1

1 +
a2(z − z1)

1 +
a3(z − z2)

1 + · · ·+ aM(z − zM−1)

1

(2.1)

where the coefficients ai are determined recursively through the functions gi(z):

ai = gi(zi)

g1(zi) = fi (2.2)

gp(z) =
gp−1(zp−1)− gp−1(z)

(z − zp−1)gp−1(z)
, p ≥ 2

2.1.2 Approximation using the AAA algorithm

In 2018, the Antoulas-Anderson algorithm (AAA) was introduced as a new algorithm
to approximate rational functions whose values are known for a real or complex set of
points [9]. In Appendix A, a description is given. A big difference to multipoint Padé
approximants is that the algorithm chooses the points that are used for interpolation
adaptively while still giving an approximation that includes all given points. AAA can
therefore lead to a good approximation for all given data points much faster than Padé.
Although the advantages of using the AAA algorithm for analytic continuation have been
pointed out [10], the algorithm has yet not been used for the analytic continuation of Green
functions. Later, I will show that the AAA algorithm leads to more accurate results than
previous rational approximation techniques while taking only a small fraction of the time
for calculations.
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2.2 Nevanlinna

The Nevanlinna analytic continuation is a new approach to the analytic continuation prob-
lem that was developed in 2021 [5]. It uses Nevanlinna functions to interpolate the given
imaginary-time data. The advantage of using Nevanlinna functions is that they preserve
certain physical properties of the Green function by construction. To create a Nevanlinna
function the Matsubara function is mapped from the upper complex half to the complex
unit disc by a Möbius transformation. The points on the unit disc can then be interpo-
lated by the Schur algorithm. The Nevanlinna function is then obtained by mapping this
function back to the upper complex half by the inverse Möbius transformation.

2.2.1 Nevanlinna functions

A Nevanlinna function is a holomorphic function that maps the upper complex half-plane
C+ = {z ∈ C|Imz > 0} to its closure C+. We call the set of all Nevanlinna function N .
Every Nevanlinna function can be written in the following representation [11]:

N(z) = C +Dz +

∫
R

(
1

λ− 1
− λ

1 + λ2

)
dµ(λ) (2.3)

where C is a real constant and D is a non-negative constant. µ is a Borel measure such
that

∫
R

dµ(λ)
1+λ2 < ∞. If we set

D = 0 (2.4)

dµ(λ) =
1

Z

∑
n,n′

⟨n|cν |n′⟩⟨n′|c†ν′|n⟩
(
e−βEn + e−βEn′

)
δ(λ− En + En′) (2.5)

C =

∫
R

1

1 + λ2
dµ(λ) (2.6)

we can see by comparing N(z) with equation 1.22 that −G(z) = N(z). Thus, −G(z) is a
Nevanlinna function.
Also from the definition of Nevanlinna functions, it follows that:

A(ω) = − 1

π
G(ω + 0+) = +

1

π
Im(N(ω + 0+)) ≥ 0 (2.7)

Meaning that interpolating the Green function with Nevanlinna functions respects the
condition that A(ω) ≥ 0,∀ω. This avoids the appearance of unphysical negative values in
the final spectral function.

2.2.2 Interpolation

For interpolation, the Schur algorithm is used 1. A Schur function is a holomorphic function
that maps the open unit disc D = {w ∈ C||w| < 1} to its closure D. We call the set

1The Schur algorithm does not work for all kinds of input data. The so-called Pick criterion is a
necessary and sufficient condition. For more details, see Section 2.2.3 in [5]. Note that exact Matsubara
functions fulfill this criterion while noise can lead the data to violate it.
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which contains all Schur functions S. C+ can be mapped to D using the bijective Möbius
transformation hξ:

hξ : C+ → D

w = hξ(z) =
z − ξ

z − ξ∗

h−1
ξ : D → C+

z = h−1
ξ (w) =

wξ∗ − ξ

w − 1

Where ξ ∈ C+. The Schur algorithm constructs a Schur function for a given set of points
in D using a continued fraction expression.
Given the data Gn = G(iωn) for a set of Matsubara frequencies {iωn} n = 1, ...,M , we aim
to find the Nevanlinna function f ∈ N which satisfies

f(iωn) = −Gn ≡ Cn (2.8)

This problem can be modified to the problem by using the contractive Möbius transfor-
mation hi

hi ◦ f(iωn) = hi(Cn) ≡ λn (2.9)

which can be solved by the Schur algorithm since Cn = f(iωn) ∈ C+ and λn ∈ D.

2.2.3 Schur algorithm

Following the convention in [5], we will write Yn instead of iωn. It is useful to introduce
another Möbius transformation gζ :

gζ : D → D

w′ = gζ(w) =
w + ζ

1 + ζ∗w

g−1
ζ : D → D

w = g−1
ζ =

w′ − ζ

1− ζ∗w′

Given a Schur function ϕ ∈ S with the constraint ϕ(0) = γ1 ∈ D, we can construct the
function:

ϕ̃(w) =
1

w

ϕ(w)− γ1
1− γ∗

1ϕ(w)
=

1

w
g−1
γ1

(ϕ(w)) (2.10)

It can be shown that ϕ̃ is a Schur function. This means that for any Schur function ϕ̃(w)
the Schur function

ϕ(w) =
wϕ̃(w) + γ1

1 + γ∗
1 ϕ̃(w)

= gγ1

(
wϕ̃(w)

)
(2.11)
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with ϕ(0) = γ1 can be constructed. Using the Möbius transformation hY1(z), we can go
further and construct the function θ(z) = ϕ ◦ hY1(z) which follows the constraint that
θ(Y1) = γ1:

θ(z) =

z−Y1

z−Y ∗
1
θ̃(z) + γ1

γ∗
1
z−Y1

z−Y ∗
1
θ̃(z) + 1

= gγ1

(
hY1(z)θ̃(z)

)
(2.12)

Where θ̃ is any contractive function. This way we can iteratively construct θ1, θ2, ..., θM+1.
θ1 is constructed by θ1 = gλ1 (hY1(z)θ2(z)). Therefore it satisfies θ1(Y1) = λ1. If we want
it to also satisfy θ1(Yα) = λα for α = 2, ...,M , we have to make sure that θ2 satisfies

θ2(Yα) = λ
(2)
α for α = 2, ...,M where

λ(2)
α =

Yα − Y ∗
1

Yα − Y1

λ
(1)
1 − λ

(1)
1

(λ
(1)
1 )∗λ

(1)
α − 1

(2.13)

Similar constraints can be made for θ3, θ4, ... . In the end, only θM+1 remains free to choose
and is determined by the Hardy optimization step2.
To obtain the retarded Green function, we remember that by 2.9, λn are the contracted
values Gn of the Matsubara Green function. The approximation for the Green function is
the inverse Möbius of 2.9 transformation applied to θ1:

G(z) = h−1
i (θ(z)) (2.14)

2.3 PES

Another new approach for the analytic continuation problem is the PES method[11]. PES
is short for Projection into causal space, pole Estimation, and Semidefinite relaxation,
indicating that the method is a three-step procedure. The PES method is particularly
aimed at systems with finite numbers of allowed energy levels leading to discrete energy
spectra. To grasp the meaning of these steps, we use that in this case the Green function
can be written as:

G(z) =

Np∑
l=1

Xl

z − λl

(2.15)

Here I follow the convention of [11] and write the double sum over the energy levels n, n′

to a single sum
∑

l where Np is the number of energy levels squared. The numerators
1
Z
⟨n|c|n′⟩⟨n′|c†|n⟩ · (e−βEn + e−βEn′ ) in 1.15 are absorbed into Xl and the energy differences

En−En′ are absorbed into λi. Notice that all Xl are nonnegative. Because every discrete-
energy Green function is of this form, one can define the causal space which contains every
possible G(z):

SF =

{
G

∣∣∣∣∣ G(z) =

Np∑
l=1

Xl

z − λl

, for λl ∈ R and Xl ∈ R+

}
(2.16)

2For more details on how θM+1 is chosen, see Section 2.2.5 in [5].
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The subscript F denotes that these Green functions are for fermionic systems. The causal
space for bosonic systems can be defined in a similar way.
For simplicity, only the single-orbital case is discussed here. In the general fermionic
case, G(z) would become a matrix G(z) whose components Gij correspond to the orbital

in which a state is annihilated (ci) or constructed (c†j). The constraints for Xl which
are the generalizations of the Xl are different, namely that they are rank-1 and positive
semidefinite.

2.3.1 Projection

The Green function with respect to the Matsubara frequencies G(iωn) ≡ Gn is often
obtained numerically. For some of these techniques, especially for Monte-Carlo simulations,
the data contains unphysical noise. It is more desirable to start with data that corresponds
to a possible physical system, i.e. data that lies in the causal space SF . To achieve
this, we project the data into the causal space. We can do this by choosing a set of
equidistant points xm, m = 0, ...,M around 0 on the real axis. Our goal is to find a set
{Pm ∈ R+,m = 0, ..,M |∑M

m=0 Pm = 1} such that the error

Eproj(Pm) =
Nw∑
n=1

∥∥∥∥∥Gn −
M∑

m=0

Pm

iωn − xm

∥∥∥∥∥
2

(2.17)

is minimal. Here, ∥· | indicates the Frobenius norm. This convex optimization problem can
in practice be solved by using software packages like Convex.jl. The projected Matsubara
data Gproj

n is now:

Gproj
n =

M∑
m=0

Pm

iωn − xm

(2.18)

This initial step is independent of the remaining steps of the procedure, but one finds that
it improves the quality of the final result. It can also be used as a preprocessing step to
improve other analytic continuations.

2.3.2 Pole estimation

One could argue that we are done after this first step because it yields an expression
2.18 which already is an analytic continuation (we could simply replace iωn with ω + iη).
However, in practice, the accuracy which is needed for the pole locations is much higher
than the distance between the points xn. To get a more precise estimation for the poles
the Antoulas-Anderson algorithm (AAA) is used. In A an explanation of how it works is
given. It provides a rational function that approximates the input data. The zeros of its
denominator can be used to get a better estimation of the pole locations.
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2.3.3 Semidefinite relaxation

In the last step, the final sets {Xl} and {λl} are determined. The step is called semidefinite
relaxation because, in the multi-orbital case, Xl are semidefinite matrices. This constraint
is then dropped in this step.
Of course, we want to choose them such that the resulting Green function is as close as
possible to our projected data Gproj

n , i.e. the error

Err({λl}Np

l=1, {Xl}Np

l=1) =

 N∑
n=1

∥∥∥∥∥Gn −
Np∑
l=1

Xl

iωn − λl

∥∥∥∥∥
2
1/2

should be minimal. When the poles {λl} are fixed this becomes a convex optimization
problem which can be solved very efficiently using Convex.jl and SCS.jl. The optimization
of poles, however, is nonconvex.
To tackle this problem a bilevel optimization approach is used. We define the error func-
tion for a set of poles {λl} where the corresponding optimal {Xl} are found by convex
optimization:

E({λl}Np

l=1) = min
Xl≥0

Err({λl}Np

l=1, {Xl}Np

l=1)

For the initial poles, we use the data from the second step. Since E as well as Xl are
functions of {Xl}, we can find an expression for the partial derivative:

∂mE =
∂

∂λm

Err +

Np∑
l=1

∂Err

∂(Xl)

∣∣∣∣
Xopt

l

· ∂X
opt
l

∂λm

To minimize E({λl}Np

l=1) we can now use a gradient-based optimization solver that also
includes the information about the gradient into the calculation.
Note that 2.15 only applies to finite energy systems. For continuous energy systems, the
expression would become an integral over energies as in 1.25. In principle, PES could also
work for continuous energy systems if the number of Xl is increased so that 2.15 approaches
an integral. Therefore in the next chapter, PES is also applied to the data for a continuous
energy system.
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Chapter 3

Results

Before showing the results of the calculations, I want to give a list of the questions I try
to answer.

• Can PES also be applied to Matsubara Green functions that correspond to systems
with continuous energy spectra?

• Can the Projection step improve the quality of other analytic continuation methods?

• How does the Nevanlinna method perform compared to Padé approximation?

• Can the AAA algorithm lead to a more efficient or accurate analytic continuation
than previous rational approximation techniques?

• How robust are all of the mentioned analytic continuations to noise in the input data?

For all of the tests that are shown below, the spectral functions that are calculated by
analytic continuation of the Matsubara function are compared with the (numerically) exact
spectral functions.

3.1 Rational approximation

First, we will compare Padé approximation with rational approximation using the AAA
algorithm1.
For AAA the implementation in the ’baryrat’ python package is used [12]. For Padé
approximation, the ’ana cont’ python package is used [13].
The results for the spectral function of the single impurity Anderson model are shown in
Fig. 3.1. Both approaches yield good results. The errors of the exact spectral function

1Here, I call the algorithm that is explained in 2.1.1 Padé approximation because it is the algorithm
that is usually referred to by this term in this context. Strictly speaking, a Padé approximation is just the
best rational approximation for a given function. Since AAA is also using rational functions, it could also
be called so.
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Figure 3.1: The numerically exact spectral function from NRG (blue), as well as the
estimation by Padé approximation (red) and AAA algorithm (green), is shown for four
different values of U . The spectral function is multiplied with π times the hybridization
width ∆. u indicates the dimensionless interaction strength and is related to the U in 1.31
by u = U

π∆
.
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can hardly be seen. Therefore, in Fig. 3.2 the deviation from the exact spectral function
is shown. Both methods yield roughly the same approximation.
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Figure 3.2: The error of the analytic continuation which is shown in 3.1

To see a difference between the two approaches, we need to consider a Matsubara
function that corresponds to a more complicated spectral function. This is done in Fig. 3.3.
The function shown does not correspond to a particular physical system. It is composed
of Gauss functions such that it contains both very fine and broad features. Now, the AAA
algorithm performs much better although the positivity constraint is violated slightly. For
Padé, the first thirty Matsubara frequencies were chosen. The analytic continuation could
be enhanced by increasing that number. However, this would also increase calculation
time. Already for the data shown, Padé took much longer to compute in comparison to
AAA. The reason for this is that AAA chooses the Matsubara points that are used for
interpolation by itself while still making sure that the resulting function approximates all
points well.
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Figure 3.3: AAA (green) and Padé (red) analytic continuation for data corresponding to
an arbitrary spectral function (blue). The spectral function contains both very fine and
broad features.

3.2 Nevanlinna

Next, we will see how well the Nevanlinna analytic continuation performs on the SIAM
data.
For the calculations, I used the Nevanlinna.jl package for Julia [5]. In general, the code
package does not prove to be very reliable, as several problems occurred to me while testing.
Depending on the data for the Matsubara function, the Hardy optimization step sometimes
did not work at all. In other cases, the Hardy optimization seems to reduce the quality of
the analytic continuation instead of increasing it. Here, it is left out for that reason. Also,
in some cases, using 128-bit precision lead to worse results than double float precision which
is unintuitive because higher precision should make the algorithm more numerically stable.
For the SIAM, double precision is used. The results are shown in Fig. 3.4. Nevanlinna
gives a reasonable approximation of the spectral function. However, compared to rational
function approximatiosn, is it less precise.
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Figure 3.4: The exact spectral function (blue) and the spectral function obtained by Nevan-
linna analytic continuation (red) is shown for four different values of u.

3.3 PES

In PES, the final Green function will be in the representation shown in equation 2.15. We
can see that this representation leads to a sum of Lorentz peaks in the resulting spectral
function:

A(ω) = − 1

π
ImG(ω + 0+) = − 1

π
Im

Np∑
l=1

Xl

ω − λl

= − 1

π

Np∑
l=1

Xl · Imλl

(ω − Reλl)
2 + (Imλl)

2 (3.1)

PES was designed to work for systems with discrete energy levels. Here, I test if it can also
be applied to continuous energy systems. In principle this could work., because representing
a spectral function as a sum of Lorentz functions is possible. This is illustrated in Fig. 3.5.
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Figure 3.5: The exact spectral function of the SIAM for u = 1.5 is shown (blue) as well
as an approximation (blue). The approximation is a sum of 99 single Lorentz peaks. The
approximation was done in the following way: Using AAA, the set of poles for the spectral
function was determined. From that, the spectral function can be created analogously to
3.1 where to each pole a weight is assigned. The weights here are chosen using the Optim.jl
optimization package to best fit the exact function.

I wrote an own implementation of PES in Julia following the existing software for
Matlab [11]. For the Convex optimization, I used the packages Convex.jl and SCS.jl. For
non-discrete spectral function, the projection step does not work and leads to awkward
results. This is not surprising, because the step forces the data for the Matsubara function
to follow the representation given in 2.15 which does not apply to systems with continuous
energy levels. Therefore, in the discussion here, it is left out.
In Fig. 3.6 we can see the result that the PES analytic continuation yields for the SIAM
data. Each single lorentz function, which together make up the approximation, is also
depicted. This representation fails to give a good approximation, especially for the broad
parts of the curve. Thus, it can be concluded that the PES method is not suited for the
analytic continuation in systems with continuous energy levels.
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Figure 3.6: PES for the NRG spectral function. Each thin line represents a lorentz function.
Together they make up the approximation. Lorentz function whose weights are very small
are not shown.
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3.4 Noisy data
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Figure 3.7: Analytic continuation by rational approximation is shown for four different
levels of noise (u = 1.5).

We will now look at what happens when random noise is artificially added to the Mat-
subara Green function. This is of practical importance because many calculations for the
Matsubara Green function are done by Monte Carlo simulations which leads to at least
some noise in the result. To simulate the noise that occurs in numerical calculations, to
each data point, a random number is added. These random numbers are samples from
a Gauss distribution where the variance is equal to the absolute value of the data point
times the noise level N .
The rational approximations prove to be very robust to noise. This can be seen in Fig.
3.4, where high levels of noise are added to the data.
Nevanlinna fails when the data contains strong noise. The reason for this is that a holo-
morphic and positive function that interpolates all Matsubara points does not exist [5].
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The discussion on how PES performs on noisy NRG data is left out here because we already
concluded that PES is not suited for this type of system.

3.5 Discrete spectral functions

Finally, we also want to test the discussed methods for systems with discrete energy levels.
For instance, this could be a single atom or molecule.
To do this, we create an arbitrary discrete spectral function. We then calculate the corre-
sponding Green function for a set of Matsubara frequencies using 1.25.
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Figure 3.8: The analytic continuation done by PES (green), PES without projection (red)
AAA (purple), and Nevanlinna (yellow) of a discrete energy system is shown.

In Fig. 3.8 the results for AAA, Nevanlinna, and PES are shown. In addition to PES,
the results that are obtained without the Projection step are also shown. PES without
Projection and AAA yield the best results. The position as well as the height of the four
peaks are captured correctly by both methods. PES with Projection gets the position of
the peaks only approximately right while failing totally at their height. Finally, Nevanlinna
only gets three of the four positions right while also failing at their height.
Again, we can artificially add noise to the Matsubara Green function in the same way as
done in 3.4.
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Figure 3.9: The influence of noise on the analytic continuation of a discrete energy system is
shown for PES, PES (without projection), AAA algorithm, and AAA algorithm in addition
to the projection step.

In Fig. 3.9 the results for that can be seen. Nevanlinna is left out here because it leads
to results that are not useful at all. Instead, AAA is shown when the Projection step of
PES is applied to the Matsubara data before the analytic continuation to investigate the
claim made in [11] that the Projection step can also enhance the analytic continuation of
noisy input data in other methods.
In all cases, the noise strongly affects the quality of the analytic continuation. When the
Projection step is left out, the spectral function has negative values for some frequencies
which is unphysical. The Projection step is able to restrict the outcome to only a positive
function when the remaining two steps of PES and the AAA algorithm are used. The best
results are obtained by the PES method because it best respects the shape of the discrete
spectral function. Interestingly, all the spectral functions, where the data was projected,
look very similar. The reason for this is that the Projection step changes the data for the
Matusbara function to correspond exactly to a function in the causal space SF defined in
2.3. However as seen in Fig. 3.8, if there is no noise the data is mapped function in SF

that is not the ”true” Green function. I assume that the reason for this is that the grid
which is created as explained in 2.3.1 is too coarse.
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Conclusion and outlook

4.1 Conclusion

The data presented in Chap. 3 provides answers to the questions posed at the beginning
of the chapter. The key findings can be summarised as follows:

• The PES method is not suitable for systems with continuous energy spectra. Al-
though PES uses a representation that can lead to continuous spectral functions, in
practice, the method does not give appropriate results for most of them. Thus, the
use of PES is restricted to systems with a finite number of energy states.

• The Projection step can not be used to improve the quality of other analytic con-
tinuation techniques for continuous energy systems. This fact is not too surprising
since the Projection step forces the data into the representation in 2.15 which does
not hold for this kind of system.
Even further and in contrast to the claims made in [11], the data shown in 3.9 sug-
gests that in the discrete energy case, the Projection step reduces the quality of the
remaining two steps of the PES method when the noise is weak. Only in certain
cases, when strong noise is added to the data, the Projection step leads to better
results.

• The Nevanlinna method leads to reasonable results for the spectral function of the
SIAM. However, a rational approximation of data is both more efficient and more
precise.

• As an alternative to Padé, the AAA algorithm can be used for analytic continua-
tion using rational functions. The most important difference in practice is that in
Padé approximation the Matsubara frequencies which are used for interpolation have
to be chosen manually. The quality of the results strongly depends on that choice.
Generally speaking, interpolating more Matsubara frequencies leads to better results
but also longer calculations. Simply choosing all available frequencies is usually not
an option. The AAA algorithm does not have that issue. The algorithm works by
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choosing the optimal support points on its own. For simple spectral functions, both
methods yield results that are equally good. For more complicated spectral func-
tions, when more Matsubara frequencies are needed for a precise estimate, the AAA
algorithm is superior.
Also, it is worth mentioning that the AAA algorithm is extremely easy to use. Im-
plementations can easily be found in Julia or Python packages. Most of the code
needed for the calculation consisted of a few lines and ran in a fraction of a second.

• Nevanlinna fails at noisy data because a function that interpolates through all Mat-
subara points can not be found. Both Padé and AAA prove to be resistant to noise.
PES also gives reasonable results even for strong noise. The Projection step is able
to get adequate results from data that otherwise would yield total nonsense.

Method Continuous Discrete
Continuous
+ Noise

Discrete
+ Noise

Spectral function
is always positive

Padé + o ✗

AAA ++ ++ + o ✗

Nevanlinna + − A A ✓
ES −− ++ A o ✗

PES A o A + ✓

Table 4.1: A general overview over the performance of the tested methods is given. They
are ranked from very good (++) over okay (o) to very bad (−−). A means that the
method can not be used for the specific case at all. Padé was not tested for the discrete
spectra but is expected to perform similar to AAA.

4.2 Outlook

Out of all the methods that were tested, AAA showed to be the most reliable method
for analytic continuation. In addition, it is very easy and straightforward to use. Also,
packages containing ready to use implementations are available publicly for Python and
Julia [12][14]. In short, AAA showed to be an improved Padé approximation.
However, some of the problems that are known for Padé continue to occur in AAA. Most
strikingly, for data that contains strong noise, the final spectral function does not neces-
sarily obey the positivity constraint (see Figure 3.9). A question for future research could
be to investigate whether AAA could be modified in a way to ensure that this constraint is
fulfilled. Maybe, this could be achieved by preprocessing steps similar to PES’s projection
or by modifying the algorithm itself.
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AAA algorithm

The AAA algorithm is used to approximate a function f(z) that is known on a set of points
f(zi) = fi, i = 1, ...M by using a rational function. It uses the barycentic representation
of rational functions:

r(z) =
n(z)

d(z)
=

∑M
j=1

wjfj
z−zj∑M

j=1
wj

z−zj

(A.1)

where w1, ..., wM are weights. Note that for any choice of w1, ..., wM , wi ̸= 0, r(z) satisfies
the constraints f(zi) = fi. However, in practice, it is usually not necessary to include all
support points zi and function values fi in A.1 because a much smaller number of points
can obtain a good approximation for f(z). The algorithm decides which zi are chosen and
calculates the optimal choice for the weights wi.
The algorithm works iteratively. Let Z be the set of all support points. At each step m a
new support point zm from the set of remaining support points Z(m−1) = Z\{z1, ..., zm−1}
is chosen. It is chosen when the difference between the current approximation r(z) and f(z)
has the largest absolute value. At step m a new point zm is carefully chosen from the set
of support points that have not been used Z(m−1) = Z\{z1, ..., zm}. The weights w1, ..., wm

are then determined by solving the linear least-square problem over the remaining points
Z(m):

min
∥w∥2=1

∥fd− n∥2 (A.2)

We write the support points Z(m) and their corresponding function values F (m) = f(Z(m))
as column vectors:

Z(m) = (Z
(m)
1 , ..., Z

(m)
M−m)

T

F (m) = (F
(m)
1 , ..., F

(m)
M−m)

T

A.2 can be written in matrix form:

min
∥w∥2=1

∥A(m)w∥2 (A.3)
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where A is a (M −m)×m-matrix:

A =


F

(m)
1 −f1

Z
(m)
1 −z1

. . .
F

(m)
1 −fm

Z
(m)
1 −zm

...
. . .

...
F

(m)
M−m−f1

Z
(m)
M−m−z1

. . .
F

(m)
M−m−fm

Z
(m)
M−m−zm

 (A.4)

A.3 can be solved using a singular value decomposition of A = UΣV †. U is a unitary
matrix. Σ is a diagonal matrix containing the singular values of A. V † is the complex
conjugate of the unitary matrix V . The singular values are non-negative real numbers.
The singular values are ordered by size, i.e. σ11 ≥ σ22 ≥ . . . . For any matrix at least one
singular value decomposition exists and Σ is always unique. The optimal w is then given
by the last column vector of V corresponding to the smallest singular value.
The algorithm terminates as soon as the error in A.2 is smaller than a given tolerance
which is usually set to 10−13 as the default value in most implementations. The power of
the AAA algorithm is that usually, the number of support points that is sufficient to get
a good approximation for all points is much smaller than the number of total constraints
M .
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[9] Y. Nakatsukasa, O. Sète, and L. N. Trefethen, “The AAA algorithm for rational
approximation,” SIAM Journal on Scientific Computing, vol. 40, pp. A1494–A1522,
Jan. 2018.

[10] L. N. Trefethen, “Numerical analytic continuation,” Japan Journal of Industrial and
Applied Mathematics, June 2023.

https://arxiv.org/abs/2302.10476v1
https://arxiv.org/abs/2302.10476v1


32 BIBLIOGRAPHY

[11] Z. Huang, E. Gull, and L. Lin, “Robust analytic continuation of Green’s functions via
projection, pole estimation, and semidefinite relaxation,” Physical Review B, vol. 107,
p. 075151, Feb. 2023. arXiv:2210.04187 [cond-mat, physics:physics].

[12] Clemens, “Barycentric rational approximation,” May 2023. https://github.com/

c-f-h/baryrat.

[13] J. Kaufmann, “ana cont: Python package for analytic continuation,” July 2023.
https://github.com/josefkaufmann/ana_cont.

[14] D. MacMillen, “BaryRational,” May 2023. original-date: 2021-01-19T08:00:17Z.

https://github.com/c-f-h/baryrat
https://github.com/c-f-h/baryrat
https://github.com/josefkaufmann/ana_cont


BIBLIOGRAPHY 33



34 BIBLIOGRAPHY
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