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The multipoint numerical renormalization group (mpNRG) is a powerful impurity solver that provides
accurate spectral data useful for computing local, dynamic correlation functions in imaginary or real frequencies
nonperturbatively across a wide range of interactions and temperatures. It gives access to a local, nonperturbative
four-point vertex in imaginary and real frequencies, which can be used as input for subsequent computations
such as diagrammatic extensions of dynamical mean-field theory. However, computing and manipulating the
real-frequency four-point vertex on large, dense grids quickly becomes numerically challenging when the
density and/or the extent of the frequency grid is increased. In this paper, we compute four-point vertices
in a strongly compressed quantics tensor train format using quantics tensor cross interpolation, starting from
discrete partial spectral functions obtained from mpNRG. This enables evaluations of the vertex on frequency
grids with resolutions far beyond the reach of previous implementations. We benchmark this approach on the
four-point vertex of the single-impurity Anderson model across a wide range of physical parameters, both in its
full form and in its asymptotic decomposition. For imaginary frequencies, the full vertex can be represented to
an accuracy on the order of 2 × 10−3 with maximum bond dimensions not exceeding 120. The more complex
full real-frequency vertex requires maximum bond dimensions not exceeding 170 for an accuracy of �2%. Our
work marks another step toward tensor-train-based diagrammatic calculations for correlated electronic lattice
models starting from a local, nonperturbative mpNRG vertex.
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I. INTRODUCTION

In the study of strongly correlated systems, correlations
at the two-particle level play a key role. A powerful frame-
work for computing two-particle correlation functions is given
by quantum field theory approaches such as the functional
renormalization group (fRG) [1] or (closely related [2–4]) the
parquet equations [5]. While these methods formally provide
exact and unbiased equations at the four-point (4p) level,
solving them in practice requires some approximations. A
common choice is the perturbative parquet approximation,
which limits the applicability of these methods to weak in-
teractions. In order to apply these diagrammatic methods to
correlated electronic lattice systems in the physically rel-
evant strong interaction regime, it has been proposed to
combine them with dynamical mean-field theory (DMFT)
[6]. DMFT approximates the self-energy to be local, i.e.,
momentum-independent, thereby neglecting spatial correla-
tions but capturing local correlations nonperturbatively [7].
In the form of DMFT+fRG (DMF2RG) [8] or the dynam-
ical vertex approximation [9,10], the fRG or the parquet
equations can, in principle, be used to self-consistently add
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nonlocal correlations on the two-particle level on top of the
local DMFT result.

However, such calculations entail two numerical chal-
lenges: the solution of the impurity model arising in the
self-consistent DMFT loop and, subsequently, solving the
fRG or parquet equations for frequency- and momentum-
dependent vertices. The present work is concerned with the
interface between these two steps, i.e., the conversion of lo-
cal four-point spectral functions obtained from an impurity
solver to a 4p vertex. An impurity solver that yields such
4p spectral functions is the multipoint numerical renormaliza-
tion group (mpNRG)[11,12]. This extension of the numerical
renormalization group (NRG) [13,14] is capable of computing
both imaginary- and real-frequency local correlation functions
up to the four-point level in the form required for a sub-
sequent diagrammatic extension of DMFT [15,16]. Just as
NRG, which has been the gold standard for solving impurity
problems on the two-point (2p) level for decades [17,18], mp-
NRG can be applied to a wide range of parameters, including
large interactions and low temperatures. A central ingredi-
ent to mpNRG are spectral representations of time-ordered
correlation functions in the frequency domain [11]. These
represent correlators as convolutions of formalism-dependent
but system-independent kernels with formalism-independent
but system-dependent partial spectral functions (PSFs). While
the former are known analytically, the latter are obtained from
their respective Lehmann representations, using the eigenen-
ergies and (discarded) eigenstates obtained from mpNRG.
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The local 4p vertex can be computed using the symmetric
improved estimator (sIE) technique [15], which avoids the
numerically unstable amputation of 2p Green’s functions.

An appealing feature of spectral representations is that
the same set of PSFs can be used to obtain imaginary- and
real-frequency correlation functions. However, even when
energy conservation is exploited, the 4p vertex is a huge,
three-dimensional object. Hence its computation from PSFs
on a large, dense grid quickly becomes challenging or even
unfeasible due to its huge memory footprint. Furthermore,
performing calculations with such vertices as required in fRG
or parquet calculations poses a major challenge [19–21].

It is thus highly desirable to represent 4p vertices in a
compressed format that reduces the computational cost of the
operations occurring in diagrammatic calculations. A promis-
ing candidate for compression is the quantics tensor train
(QTT) representation [22,23] of multivariate functions, which
has recently proven useful in various areas of physics [24–29].
Its first application in the context of many-body theory was
in Ref. [25], a study that demonstrated the compressibility of
correlation functions and used QTT-based algorithms to solve
the Schwinger-Dyson and Bethe-Salpeter equations. Further-
more, the QTT representation has been employed successfully
in imaginary-frequency parquet calculations for the Hubbard
atom and the single-impurity Anderson model (SIAM), using
the parquet approximation [28].

These recent developments and the need for efficient repre-
sentations of 4p vertices motivate this work: We use mpNRG
to compute the local vertex of the SIAM as a function of
real and imaginary frequencies in QTT format and inves-
tigate its compressibility across a broad range of physical
parameters. The reason for studying the SIAM is its natural
appearance in a DMFT treatment of the Hubbard model and
the fact that it can be solved accurately using (mp)NRG. To
compute the vertex of the SIAM, we employ the quantics
tensor cross interpolation (QTCI) algorithm [30–33], which
iteratively constructs a QTT by sparse sampling of the target
function. This sampling-based interpolation enables evalua-
tion of the mpNRG vertex on grids much larger and much
denser than those accessible with the previous state of the
art [15]. For appropriate error tolerances, the maximum bond
dimensions (ranks) of the resulting QTTs are within a range
where diagrammatic calculations, such as those presented in
Ref. [28], should be feasible, even for real frequencies.

This paper is organized as follows: In Sec. II, we reca-
pitulate how the 4p vertex of the SIAM can be obtained in
imaginary or real frequencies from PSFs. Additionally, we
briefly explain key features of the QTCI algorithm and how it
is employed in this work. In Sec. III, we show that imaginary-
and, in particular, real-frequency vertices are representable by
low-rank QTTs within a reasonable error margin. In Sec. IV,
we provide an outlook on how the results of this work may be
used to perform diagrammatic calculations for lattice models
in QTT format.

II. METHODS

This section explains how to compute 4p vertices in QTT
format. This is achieved in two steps: First, we convolve
PSFs with formalism-dependent frequency kernels to obtain

correlation functions (cf. Ref. [11]). In a second step, the sIE
scheme is employed [15] to extract the 4p vertex from various
correlators and self-energies in a numerically stable fashion.
The vertex is computed both in its asymptotic decomposition
[34], which the sIE naturally yields, and in its “full” form.

A. Partial spectral functions

The input to our calculations is given by the PSFs

S[O](ω) =
∫

d�t

(2π )�
eiω·t

〈
�∏

i=1

Oi(ti)

〉
, (1)

depending on a tuple O = (O1, . . . ,O�) of operators in
the Heisenberg picture and � frequency arguments ω =
(ω1, . . . , ω�). By 〈O〉 = Tr[e−βHO]/Z , we denote the thermal
expectation value, with the partition function Z = Tr[e−βH ]
at inverse temperature β = 1/T . Time translation invariance
implies

S[O](ω) = δ(ω1···�) S[O](ω), (2)

with the shorthand ω1···� = ∑�
i=1 ωi, thus making S[O] a

function of � − 1 independent frequencies. In this work,
we are primarily interested in the case � = 4, i.e., three-
dimensional PSFs.

The PSFs carry the formalism-independent information
that is specific to the model itself. The same set of PSFs can
thus be used to compute Matsubara and Keldysh correlators
by convolution with formalism-specific kernels. In this work,
PSFs were computed using mpNRG as described in Ref. [12].
This yields PSFs on a discrete, (� − 1)-dimensional logarith-
mic energy grid for all relevant operator tuples O. This yields
the representation

S[O](ω) =
∑

ε

S[O](ε) δ(ω − ε), (3)

where the peak weights S[O](ε) and energies ε are obtained as
output of the mpNRG computation. The energies ε are binned
into a Cartesian product of logarithmic grids.

B. Matsubara formalism

A Matsubara correlator G(iω) depending on � operators
(O1, . . . ,O�) can be expressed via �! PSFs S[Op], as was
shown in Sec. II C of Ref. [11]:

G(iω) =
∑

p

Gp(iωp) =
∑
p,ε

ζpK (iωp − εp)S[Op](εp). (4)

The frequencies ω = (ω1, . . . , ω�) are restricted to discrete
fermionic or bosonic grids, depending on the type of the
respective operator Oi. Similarly to Eq. (2), frequency con-
servation ω1···� = 0 is understood. The sum

∑
p is over all

permutations of � elements, permuting frequency arguments
and operators accordingly. Using the shorthand i = p(i), we
can then write

ωp = (ωp(1), . . . , ωp(�) ) = (ω1, . . . , ω�), (5)

Op = (Op(1), . . . ,Op(�) ) = (O1, . . . ,O�). (6)

Depending on whether p transposes an even or odd number
of fermionic operators, a sign factor ζp = ±1 is required in
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Eq. (4). The summands Gp(iωp) are termed partial correlators. Most importantly, Eq. (4) also introduces the Matsubara
frequency kernel K , which reads

K (�p) =
⎧⎨⎩

∏�−1
i=1 �−1

1···i if
∏�−1

i=1 �1···i �= 0,

− 1
2

[
β + ∑�−1

i=1
i �= j

�−1
1···i

] ∏�−1
i=1
i �= j

�−1
1···i if ∃ j : �1··· j = 0,

(7)

where � j = iω j − ε j [cf. Eq. (4)] and �1···i = iω1̄···ī − ε1̄···ī
with iω1̄···ī = ∑i

j=1 iω j̄ and ε1̄···ī = ∑i
j=1 ε j̄ . The Definition

(7) assumes that at most one of the partial sums �1··· j van-
ishes, which is the case if there is at most one bosonic
Matsubara frequency (this is always true in the present work).
The first case in Eq. (7) is called regular kernel, and the second
case anomalous kernel. In the most important situation, � = 4
and

∏�−1
i=1 �1̄···ī �= 0, the spectral representation of a partial

correlator for permutation p is simply given by

Gp(iωp) =
∑

ε1̄,ε1̄2̄,ε1̄2̄3̄

S[Op](ε1̄, ε1̄2̄, ε1̄2̄3̄ )
3∏

i=1

(iω1̄···ī − ε1̄···ī )
−1.

(8)

Equation (8) assumes that the PSFs S[Op] are parametrized in
partially summed energies (ε1̄, ε1̄2̄, ε1̄2̄3̄ ), which is always the
case for our data (see Ref. [12]).

C. Keldysh formalism

We now turn to the relation between PSFs and correlators
in the Keldysh formalism [35–37]. For details and derivations,
see Sec. II D of Ref. [11]. Keldysh �-point correlators Gk(ω)
carry a Keldysh index k = (k1, k2, . . . , k�) with ki ∈ {1, 2}.
Their spectral representation is analogous to Eq. (4):

Gk(ω) = 2

2�/2

∑
p

Gk
p(ωp), (9a)

Gk
p(ωp) =

∑
ε

ζpK
kp

b (ωp, εp)S[Op](εp). (9b)

It involves � real frequencies ω that satisfy ω1···� = 0. The
broadened Keldysh frequency kernel K

kp

b is a linear combina-
tion of the broadened, fully retarded kernels K [λ]

b :

K
kp

b (ωp, εp) =
�∑

λ=1
kλeven

(−1)λ−1+k1···λ−1 · K [λ]
b (ωp, εp), (10a)

K [λ]
b (ωp, εp) =

�−1∏
j=1

lim
γ0→0+

∫
R

dω′
1··· j

δb(ω′
1··· j

, ε1··· j )

ω1··· j − ω′
1··· j

+ iγ λ
0, j

,

(10b)

where δb(ω′̄
1··· j̄

, ε1̄··· j̄ ) is a broadened version of the Dirac-
δ function appearing in Eq. (3). This broadening ensures a
smooth structure of the kernel, free from unphysical poles or
δ peaks. The imaginary shifts iγ λ

0, j in Eq. (12) are defined as

iγ λ
0, j =

{
iγ0 · (� − j), j � λ,

−iγ0 · j, j < λ.
(10c)

While the factors � − j and j in Eq. (10c) can be dis-
regarded in the limit γ0 → 0+, they remain relevant for the

linear broadening. Details on the broadening procedure can
be found in Appendix A and Sec. VI of Ref. [12].

D. Symmetric improved estimators: From correlators
to the vertex

In principle, the one-particle irreducible 4p vertex can be
obtained simply by amputating the four external 2p propa-
gators (“legs”) of the connected impurity Green’s function
Gcon[dσ1 d†

σ2
dσ3 d†

σ4
] (cf. Sec. III A). In practice, however, this

leads to pronounced numerical artifacts, especially at asymp-
totically large frequencies, where both functions decay to
zero. A numerically stable scheme that avoids direct amputa-
tion is the sIE technique introduced in Ref. [15]. In addition,
this method yields the vertex in its asymptotic decompo-
sition [34]. This decomposition separates the contributions
that decay only in one or two frequency directions from the
genuinely three-dimensional core vertex �core, which asymp-
totically decays in all three frequencies,

�(ω, ν, ν ′) = �core(ω, ν, ν ′)

+
∑

r=a,p,t

[
Kr

2(ωr, νr ) + Kr
2′ (ωr, ν

′
r ) + Kr

1(ωr )
]

+ �0. (11)

The functions Kr
1, Kr

2, and Kr
2′ (not to be confused with

the kernels K defined above) only depend on one or two
frequencies if parametrized in their native channel r. They
are one- (1D) and two-dimensional (2D) contributions to the
two-particle reducible vertex in channel r. This channel can
be the antiparallel (a), parallel (p), or the transverse (t) chan-
nel. These are also known as the particle-hole, particle-hole
crossed, and particle-particle channels, respectively [15]. By
�0 we denote the frequency-independent bare vertex. Note
that the sIE method does not provide a decomposition of �core

into two-particle reducible contributions Kr
3 and a two-particle

irreducible term.
In this work, we consider the single-impurity Anderson

model with interaction Hint = Ud†
↑d↑d†

↓d↓, where d†
σ creates

an electron with spin σ on the impurity; see Sec. III A for
details. We denote the self-energy of the impurity Green’s
function G[dσ , d†

σ ′ ](ν) as �σσ ′
(ν). In the absence of a

magnetic field, it satisfies �σσ ′
(ω) = δσσ ′

�(ω). Following
Ref. [15], �core can be obtained as

�core(ω) =
∑

ai∈{d,q}
Ya1 (ω1)Ya3 (ω3) Gcon[a1, a†

2, a3, a†
4](ω)

· Ya2 (ω2)Ya4 (ω4), (12)
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where we introduced an auxiliary operator q = [d, Hint], and

Yai (ωi ) =
{−�

(
(−1)i−1ωi

)
, ai = d,

X =
(

0 1
1 0

)
, ai = q

(13)

is a 2 × 2 matrix acting on the ith Keldysh index of Gcon.
In the Matsubara formalism, X is replaced by scalar unity.
In practice, the main workload in computing �core at a
given frequency ω is the evaluation of all 24 = 16 connected
correlators, each comprised of 4! = 24 partial correlators. The
quantities Kr

1 and Kr
2(′) can be computed using an analogous

approach presented in Appendix B.

E. Quantics tensor cross interpolation

Having summarized the evaluation of the four-point vertex
in its asymptotic decomposition, we next discuss the QTCI
method [30–33], which we used to obtain vertex functions
in the form of QTTs. Recently, it has been shown in the
Matsubara formalism that this representation is well suited for
efficient diagrammatic calculations [28]. We discuss only the
basics of QTCI here. For a detailed introduction, we refer to
Ref. [38].

Let us begin with the quantics representation [22,23]. Con-
sider a 1D function f (ω) defined on a discrete, equidistant
grid {ω0, . . . , ω2R−1} consisting of 2R points with ωm ∈ R.
The grid index m of a point ωm can be written in binary
representation

m =
R∑

�=1

2R−�σ�, σ� ∈ {0, 1}, (14)

so that m can be identified with the R-tuple (σ1, . . . , σR).
Hence, the mapping m �→ f (ωm) can be viewed as an R-leg
tensor Fσ1···σR = f (ωm({σ�}) ). This so-called quantics encoding
can be generalized to higher-dimensional functions, in par-
ticular to functions f (ω, ν, ν ′) of three frequency arguments.
The frequencies lie on a Cartesian product of 1D grids, each
of size 2R. We use a binary encoding

(ωi, ν j, ν
′
k ) = ((σ11,..., σ1R), (σ21,..., σ2R), (σ31,..., σ3R)),

(15)

with the binary variables σn� labeled by n = 1, 2, 3 for
ω, ν, ν ′. The function f can then be represented by a tensor
with 3R indices:

Fσ = Fσ11σ21σ31···σ1Rσ2Rσ3R = f (ωi, ν j, ν
′
k ). (16)

Importantly, note that the tensor indices in Eq. (16) have been
interleaved, such that the indices corresponding to the same
length scale 2R−� in different variables σ1�, σ2�, σ3� are adja-
cent. Alternatively, triples (σ�1, σ�2, σ�3) of legs can be fused
to single legs σ̃� = ∑3

n=1 2n−1σ�n, which yields the fused rep-
resentation of f as an R-leg tensor:

F̃σ̃ = F̃σ̃1···σ̃R = f (ωi, ν j, ν
′
k ). (17)

The second ingredient of QTCI is the tensor cross in-
terpolation (TCI) algorithm [30–32,38], which approximates
tensors Fσ = Fσ1···σL (with L = R, 2R, or 3R for one-, two-, or
three-dimensional functions, respectively) using tensor trains
constructed from a sampled subset of all tensor elements. If
a low-rank factorization of the tensor exists, the number of

samples taken is much smaller than the number of elements
of the full tensor. This way, the cost of generating all tensor
elements, exponentially large in R, can be avoided.

More precisely, the TCI algorithm seeks to find a tensor
train

F QTCI
σ1···σL

=
∑

α1···αL−1

[
Mσ1

1

]
1α1

[
Mσ2

2

]
α1α2

· · · [MσL
L

]
αL−11 (18)

that minimizes the elementwise error

εσ[F ] =
∣∣F QTCI

σ − Fσ

∣∣
maxσ ′ |Fσ ′ | . (19)

Here, α� are virtual bond indices with �-dependent bond
dimensions, α� = 1,..., χ�. The maximum bond dimension,
χ = max χ�, is called the rank of F QTCI

σ . The maximum in
Eq. (19) is estimated using all sampled entries of Fσ . The
TCI algorithm optimizes the tensors [Mσ�

� ]α�−1α�
iteratively,

progressively sampling Fσ , until no σ is found where the
error εσ exceeds a given tolerance τ . During this process, the
bond dimensions χ� are increased dynamically to improve the
accuracy of the tensor train representation. Finding a tensor
train representation of F QTCI

σ with TCI has a computational
cost of O(Rχ3).

In conjunction with the quantics representation, TCI can
be employed to approximate not only tensors, but also func-
tions defined on discrete grids by tensor trains. Once the
bond dimensions are saturated, i.e., no longer increase with
R, the computational cost of QTCI scales linearly in R. This
translates to an exponential resolution of the target function
at linear cost. Of course, the function is only approximated
within an error margin given by Eq. (19). The next section de-
tails how we used QTCI to compress 4p vertex functions on
exponentially large grids.

F. Implementation details

To obtain the core and full vertices in the Matsubara and
Keldysh formalisms as QTTs, we apply QTCI to functions
that evaluate �core(ω) and �(ω) on individual frequency points
ω to be specified on demand by the TCI algorithm. The fre-
quencies ω reside on an equidistant grid of 23R points. For
Matsubara grids, the grid spacing is set by the temperature,
and the extent of the grid can be increased exponentially by
increasing R. For Keldysh vertices, which are functions of
continuous frequencies, one may exponentially increase either
the density of grid points or the extent of the grid, or both, by
increasing R. It is important not to precompute the vertices on
a dense grid, as this precomputation step would incur costs
scaling as O(23R). By avoiding precomputation, R can be
increased to yield grid sizes and/or grid densities beyond those
attainable by conventional means. The TCI algorithm samples
a sparse set of O(χ2R) points ω, which is much smaller than
23R, the total number of grid points for the 4p vertex func-
tions considered in this work. For this application, function
evaluation during sampling is the dominant cost as opposed to
the O(χ3R) cost of computing prrLU factorizations (see Sec.
3.3 of Ref. [38]). More specifically, the computational effort
is dominated by the evaluation of partial 4p correlators. These
enter �core and � via the full correlators appearing in Eq. (12).
In this section, we discuss how our code evaluates partial
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correlators in an efficient way. Readers only interested in
our results on the compressibility of Matsubara and Keldysh
vertices can move on to Sec. III.

1. Matsubara vertices

In the Matsubara case, evaluating the regular part of the
4p correlator, Eq. (8), constitutes the majority of computa-
tional cost. Using the shorthand kω1̄···īε1̄···ī = i�1̄···ī = (iω1̄···ī −
ε1̄···ī )−1, we can rewrite Eq. (8) as

Gp(iωp) =
∑

ε1̄,ε1̄2̄,ε1̄2̄3̄

kω1̄ε1̄
kω1̄2̄ε1̄2̄

kω1̄2̄3̄ε1̄2̄3̄
S[Op](ε1̄, ε1̄2̄, ε1̄2̄3̄ ).

(20)

Since (ω1̄, ω1̄2̄, ω1̄2̄3̄ ) and (ε1̄, ε1̄2̄, ε1̄2̄3̄ ) live on finite fre-
quency grids, the kernels kω1̄···īε1̄···ī can be viewed as matrices. A
typical grid size for the spectral function peaks (ε1̄, ε1̄2̄, ε1̄2̄3̄ )
is 70 × 70 × 70, while the largest grids for Matsubara fre-
quencies (ω1̄, ω1̄2̄, ω1̄2̄3̄ ) used in this work have 212 = 4096
points in each dimension. Thus, kω1̄···īε1̄···ī can be precomputed
and stored for all relevant grid sizes.

We implemented two methods to speed up the threefold
contractions in Eq. (20): (1) compressing the kernels and (2)
performing one kernel contraction as a preprocessing step.

(1) Compressing the kernels is the more general of the two
methods, in that it has a smaller memory footprint [<1 GB per
full correlator G(iω) for R = 12 and τ = 10−3]. The idea is to
compress the kernels kωε by exploiting their low-rank struc-
ture [39,40]: We apply singular value decomposition (SVD)
to each kωε and discard singular values below a given cutoff
Scut, resulting in the approximation

kωε ≈
∑

a

UωaSaV
†

aε . (21)

We then contract the singular values Sa � Scut and the right-
hand isometries V † with the PSF by performing ε sums to
obtain a smaller rank-3 tensor A, thus reducing the cost of the
threefold summation in Eq. (20):

Gp(iωp) =
∑

a1a2a3

Aa1a2a3

3∏
i=1

Uωiai , (22a)

Aa1a2a3 =
∑

ε1̄,ε1̄2̄,ε1̄2̄3̄

S[Op](ε1̄, ε1̄2̄, ε1̄2̄3̄ )
3∏

i=1

SaiV
†

aiε1···i
. (22b)

The computations (21) and (22b) are performed during
preprocessing prior to the QTCI run. Note that this treatment
of the low-rank Matsubara kernels is closely related to the so-
called intermediate representation (IR) of Matsubara Green’s
functions (see Refs. [41,42]). The cutoff Scut should be chosen
as to introduce an error significantly below the TCI tolerance
τ in all target quantities. While one can bound the error in
Eq. (22a), e.g., using the Cauchy-Schwarz inequality, these
estimates were found to be very conservative. We observed
that setting Scut = 10−2 τ leads to errors more than 2 orders of
magnitude below the TCI tolerance when evaluating correla-
tors and vertices. This is shown in Fig. 1, where we plot the
accuracy of Matsubara (and Keldysh) core vertex evaluations
for different TCI tolerances τ and numbers of quantics bits R.
In Matsubara, the accuracy improves with increasing R. This

FIG. 1. Maximum error of Matsubara (circles) and Keldysh (dia-
monds) core vertex evaluations with SVD truncations as described in
the main text. The error is measured relative to the maximum of the
respective vertex function. By τ we denote the target TCI tolerance
and use a cutoff of Scut = 10−2τ for Matsubara. For Keldysh, we
choose an SVD cutoff of 10−6 times the largest singular value and
find that this yields results that are sufficiently accurate for a toler-
ance of τ = 10−3. We show maximum errors over 64 000 sampling
points for the Matsubara core vertex and 2 × 106 sampling points for
the more complicated Keldysh core vertex. All errors are well below
the respective target tolerance τ .

is because, for a fixed SVD cutoff, fewer singular values are
discarded for larger R.

A further speedup can be achieved by realizing that even
though all singular values Sa in Eq. (21) are larger than Scut,
their products appearing in Eq. (22b) can become negligibly
small. Ordering Sai by decreasing magnitude, we therefore
discard all entries Aa1a2a3 where a1 + a2 + a3 is larger than
some integer N :

Gp(iωp) =
∑

∑
i ai�N

Aa1a2a3

3∏
i=1

Uωiai . (23)

A similar truncation is useful when constructing IR 4pt
Green’s functions (see Ref. [43]). To determine N for a pre-
scribed tolerance τ , we estimate the contribution from terms
with

∑
i ai > N via the Cauchy-Schwarz inequality:∣∣∣∣∣∣
∑

∑
i ai>N

Aa1a2a3

3∏
i=1

Uωiai

∣∣∣∣∣∣
�

√ ∑
∑

i ai>N

∣∣Aa1a2a3

∣∣2
3∏

i=1

max
ωi

√∑
ai

∣∣Uωiai

∣∣2

=
√ ∑

∑
i ai>N

∣∣Aa1a2a3

∣∣2
. (24)

The second factor in the second line of Eq. (24) is equal to
one, since the U ’s are isometries. Hence, Eq. (24) provides a
simple bound on the error in Gp(iω), which is independent of
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the frequency at hand. We choose N such that√ ∑
∑

i ai>N

∣∣Aa1a2a3

∣∣2 � τ

10
max

ω
|G(iω)|, (25)

which ensures an error one order of magnitude below the
TCI tolerance in the full correlator G. While this error in
principle occurs per partial correlator Gp, the criterion (25)
was observed to yield sufficient accuracy. Overall, this first
method gives a substantial speedup compared to directly
performing the contractions in Eq. (20): It accelerates the
evaluation of the full 4p impurity correlator G[d↑, d†

↑, d↑, d†
↑]

at β = 2000 and u = 0.5 (cf. Sec. III A) at a single frequency
in an R = 12 quantics grid using an SVD cutoff of Scut = 10−5

by more than a factor of 60. This observation simply reflects
the strong compresssibilty of the Matsubara kernels.

(2) A more straightforward way to speed up pointwise
evaluations of partial correlators [Eq. (20)] is to precompute
one of the three contractions before running QTCI. This yields
an object depending on the variables (ω1̄, ε1̄2̄, ε1̄2̄3̄ ),

Bp(ω1̄, ε1̄2̄, ε1̄2̄3̄ ) =
∑
ε1̄

kω1̄ε1̄
S[Op](ε1̄, ε1̄2̄, ε1̄2̄3̄ ). (26)

Bp gives access to Gp via

Gp(iωp) =
∑

ε1̄2̄ε1̄2̄3̄

kω1̄2̄ε1̄2̄
kω1̄2̄3̄ε1̄2̄3̄

Bp(ω1̄, ε1̄2̄, ε1̄2̄3̄ ). (27)

In this approach, we only have two kernel contractions in
each evaluation Gp, but have to store the intermediates [Eq.
(26)] for all partial correlators. Their size grows linearly in
the grid frequency grid size, i.e., as 2R where R is the num-
ber of quantics bits. For example, if R = 12 and the PSFs
live on a 70 × 70 × 70 logarithmic grid (which results from
2 × 6 decades of energy bins with eight points per decade and
discarding zeros in the PSFs), each full correlator consumes
12.9 GB of memory. On an R = 12 grid at β = 2000 and u =
0.5, the precomputation also yields a speedup of about a factor
of 60. But in contrast to the compression of kernels [Eq. (21)],
this speedup is independent of the TCI tolerance τ . Overall,
method (2) is recommended as long as its memory demands
can be met, because it evaluates correlators in a numerically
exact fashion.

2. Keldysh vertices

In the Keldysh formalism, evaluating partial correlators Gk
p

[cf. Eq. (9b)] also comes down to threefold contractions of a
three-dimensional PSF with kernel matrices. This can be seen
by rewriting the kernel K [λ]

b [Eq. (10b)] as a product of one-
dimensional kernels evaluated at frequencies ω1̄···ī:

K [λ]
b (ωp, εp) =

3∏
i=1

k[λ,i]
b (ω1̄···ī, ε1̄···ī ), (28a)

k[λ,i]
b (ω1̄···ī, ε1̄···ī ) = lim

γ0→0+

∫
R

dω′
1···i

δb(ω′
1···i, ε1···i )

ω1···i − ω′
1···i + iγ λ

0,i

.

(28b)

Equation (9b) can then be written as

Gk
p(ωp) =

4∑
λ=1

kλeven

(−1)λ−1+k1···λ−1 · G[λ]
p (ωp), (29a)

G[λ]
p (ωp) =

∑
ε1̄,ε1̄2̄,ε1̄2̄3̄

S[Op](ε1̄, ε1̄2̄, ε1̄2̄3̄ )

×
3∏

i=1

k[λ,i]
b (ω1̄···ī, ε1̄···ī ). (29b)

The ensuing contractions [Eq. ((29a) to be performed for
λ = 1,..., 4 are analogous to Eq. (20). However, interpolating
the complex structure of the Keldysh vertex requires more
evaluations compared to its Matsubara counterpart. At the
same time, the memory cost of a precomputation analogous
to Eq. (26) becomes prohibitive for large (R � 12) frequency
grids, since it must be applied to G[λ]

p for λ = 1, ..., 4 and
for each partial correlator. For these reasons, the optimization
of Eq. (29a) needs to go beyond the compression scheme
for the Matsubara kernels from Eqs. (21) and (22b). To this
end, we exploit the fact that the structure of the 1D ker-
nels k[λ,i]

b (ω1̄···ī, ε1̄···ī ) becomes simpler at large frequencies
ω1̄···ī: We divide the ω1̄···ī grid into nL equally sized intervals
I i
1, . . . , I i

nL
, with nL = 23 as a default. Then, for each dimen-

sion i and each interval I i
j , we SVD-decompose the restricted

kernel

k[λ,i]
b (ω1̄···ī, ε1̄···ī )

∣∣∣∣
ω1̄···ī∈I i

j

≈
∑

ai

U i j
ω1̄···īai

Si j
ai

V †i j
aiε1̄···ī , (30)

discarding singular values that are at least 6 orders of magni-
tude smaller than the largest singular value. This strategy of
partitioning the ω1̄···ī grid prior to the SVD truncation allows
us to discard more singular values in outer intervals, where the
kernel is more compressible. Next, for each triple of intervals
(I1

k , I2
l , I3

m), we contract the corresponding singular values and
right-hand isometries into the PSF. While this entails precom-
puting n3

L 3-leg tensors of the form

(Aklm)a1a2a3

=
∑

ε1̄,ε1̄2̄,ε1̄2̄3̄

(SV †)1k
a1ε1̄

(SV †)2l
a2ε1̄2̄

(SV †)3m
a3ε1̄2̄3̄

S[Op](ε1̄, ε1̄2̄, ε1̄2̄3̄ ),

(31)

it yields a substantial speedup in evaluations of Gk(ω): For
β = 2000, u = 0.5, ωmax = 0.65 (cf. Sec. III A), and R = 12,
this scheme is about a factor of 150 faster than a naive kernel
contraction. This speedup refers to an average over 2 × 105

evaluations on random frequency points, since the compress-
ibility of the kernels depends on the intervals (I1

k , I2
l , I3

m)
the frequencies (ω1̄, ω1̄2̄, ω1̄2̄3̄ ) belong to. Indeed, truncated
isometries U i j pertaining to the outermost intervals usually
have about 5 times fewer rows than those of the inner inter-
vals. That Keldysh core vertex evaluations using the above
scheme are sufficiently accurate (i.e., to more than 10−3, see
Sec. III C) is verified in Fig. 1.

Having explained the optimization of vertex evaluations,
we turn to the settings chosen in the QTCI routine. All of
our code is written in Julia (versions 1.9.4 and 1.10.3), us-
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ing the TCI package TensorCrossInterpolation.jl, the
quantics utilities QuanticsGrids.jl, and the QTCI pack-
age QuanticsTCI.jl of the tensor4all collaboration [38,44].
The latter exposes the quanticscrossinterpolate rou-
tine, which is the entry point of the QTCI algorithm and offers
various settings: We used the default :backandforth sweep
strategy and the :fullsearch pivot search strategy. The in-
crease in computational cost entailed by a full pivot search
was accepted to ensure a reliable interpolation. For Matsubara
objects, the interleaved representation was chosen to obtain
maximum memory compression. In the Keldysh case, the
interleaved representation exhibited convergence problems:
After 80 sweeps (with �5 sweeps until convergence being
common), a QTT with an error significantly exceeding the
tolerance was obtained. Switching to the fused representation
solved this problem. This is due to the fact that a two-site up-
date in a three-dimensional fused representation corresponds
to a six-site update in the interleaved representation, which
implies more extensive sampling of the target function. An-
other choice worth mentioning is that of initial pivots: For
Keldysh vertices, it was sufficient to use the grid center as the
only initial pivot. In Matsubara, the same choice occasionally
lead to premature termination of the TCI algorithm, resulting
in a QTT representation that was missing relevant features. We
therefore chose 125 initial pivots forming a cube at Matsub-
ara frequencies (ωi, ν j−1, ν

′
k−1) with i, j, k ∈ {−2,..., 2}. On

fermionic grids, the cube is thus centered around ν−1 = ν ′
−1 =

−πT . This choice of initial pivots ensures that the sharp Mat-
subara vertex structure around the origin is properly sampled.
Finally, since vertex evaluations are the bottleneck of our
QTCI compressions, a significant speedup can be achieved
via multithreading. The samples evaluated during a two-site
optimization step (see Sec. 4.3 of Ref. [38]) are independent
of one another and can therefore be evaluated in parallel.

We tested our code for evaluating vertex functions with the
sIE scheme against the prior MATLAB implementation used
in Ref. [15]. We found numerically exact agreement with a
normalized discrepancy <10−13 for the Matsubara quantities.
In Keldysh, the maximum discrepancy in the core vertex
between our Julia code and the MATLAB code of Ref. [15] is
about 0.002 · ||�core||∞ (with the supremum norm || · ||∞).
This discrepancy can be attributed to small differences in
the broadening implementation, mainly the interpolation of
the broadened kernel from a logarithmic to a linear grid (cf.
Appendix A). This discrepancy is one order of magnitude
smaller than the error introduced by the arbitrariness inherent
in the choice of broadening parameters. As an additional test,
our code was used to generate Keldysh vertex data to check
the fulfillment of exact diagrammatic relations of mpNRG
data [16].

To conclude this section, Fig. 2 compares the singular value
spectra of regular Matsubara kernels [Eq. (7)] and broadened,
fully retarded Keldysh kernels [Eq. (28a)] at different temper-
atures. As expected, the singular values of both Matsubara and
Keldysh kernels decay significantly faster at higher temper-
atures. In Keldysh, this is due to the temperature-dependent
linear broadening γL (see Appendix A). Moreover, the sin-
gular values of Keldysh kernels decay much more slowly than
their Matsubara counterparts at the same temperature. This re-

FIG. 2. Singular values Si of regular Matsubara kernels [Eq. (7),
solid line] and broadened, fully retarded Keldysh kernels [Eq. (28a),
dashed line]. We show kernels at inverse temperatures β ∈
{20, 200, 2000} and interaction u = 0.5. The frequency grids are
bosonic with 212 points, with the Keldysh grid ranging from −0.65
to ωmax = 0.65.

flects the more complex structure, i.e., lower compressibility,
of Keldysh vertices.

III. RESULTS

In this section, we show how QTCI performs in compress-
ing the 4p vertex of the single-impurity Anderson model in the
Matsubara (Sec. III B) and Keldysh (Sec. III C) formalisms.
We discuss the benefits of its QTT representation compared
to storing the vertex on dense frequency grids, considering
both the core and the full vertex [�core and � in Eq. (11)]. The
asymptotic contributions are discussed in Appendix B. The
two most relevant numerical parameters are the number R of
quantics bits, corresponding to a grid with 2R points in each
dimension and the maximum bond dimension χ , which serves
as a measure for compressibility.

A. Single-impurity Anderson model

The Hamiltonian of the single-impurity Anderson model
[46] reads

H =
∑

σ

εd nσ + Un↑n↓ +
∑
kσ

εkc†
kσ

ckσ

+
∑
kσ

Vk
(
d†

σ ckσ + H.c.
)
, nσ = d†

σ dσ , (32)

where d†
σ with spin σ ∈ {↑,↓} creates an electron in an in-

teracting, single-orbital impurity. c†
bσ creates an electron in a

noninteracting bath, coupled to the impurity via a hybridiza-
tion term Vk . Electrons on the impurity site interact with the
interaction strength U . Since the ckσ electrons occur only
quadratically, they can formally be integrated out, yielding a
frequency-dependent hybridization function �(ν) as an ad-
ditional quadratic term for the d electrons. We choose the
hybridization function as

�(ν) = �

π
ln

∣∣∣∣ν + D

ν − D

∣∣∣∣ − i�θ (D − |ν|), (33)
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TABLE I. Kondo temperatures TK = TK (U,�) with inverses
βK = 1/TK for different parameter sets. The Kondo temperature was
computed via the Bethe ansatz solution of the SIAM (see, e.g.,
Ref. [45]). All quantities have been rounded to three significant
digits.

U � u TK βK = 1/TK

0.05 0.0318 0.5 4.14 ×10−2 24.2
0.05 0.0159 1.0 9.58 ×10−3 104
0.05 0.0106 1.5 3.57 ×10−3 280
0.05 0.00530 3.0 3.36 ×10−4 2980
0.05 0.00318 5.0 2.06 ×10−5 48 400

with a box-shaped imaginary part, characterized by the band-
width 2D and the hybridization strength � ∈ R. Moreover,
we set εd = −U/2, which leads to a particle-hole symmetric
Hamiltonian.

In the following, energy, temperature, and frequencies are
measured in units of half the bandwidth D = 1. The inter-
action strength is specified by the dimensionless quantity
u = U/π�. Our analysis covers a wide parameter range
from weak (u = 0.5) to very strong (u = 5.0) interactions
and moderate (β = 20) to low (β = 2000) temperatures. The
corresponding Kondo temperatures are given in Table I. (It
should be noted that the two datasets for β = 20 and β = 200
have u = 0.5004 rather than u = 0.5. This minor difference
changes the Kondo temperature by less than a factor of 1.002.)
To parametrize the vertex, different frequency conventions
and index orderings can be used. Both are listed in Appendix
D. Finally, note that the spin structure of the vertex �σ1σ2σ3σ4

can be simplified by exploiting the SU(2) spin symmetry of
the SIAM in the absence of a magnetic field. Only components
of the form

�σσ ′ = �σσσ ′σ ′
(34)

are needed. Moreover, we have �↓↓ = �↑↑ and �↓↑ = �↑↓
by spin flip symmetry, such that only �↑↑ and �↑↓ remain
independent. The same applies to �σσ ′

core.

B. mpNRG vertex functions: Matsubara formalism

Let us first consider the QTCI compression of the Matsub-
ara core and full vertices. An important input to the QTCI
algorithm is the specified error tolerance τ [see Eq. (19)].
When compressing vertices from mpNRG, the choice of tol-
erance should be based on the accuracy of the PSFs. Based on
benchmark results of Refs. [11,12,15], we expect the mpNRG
vertex to be reliable to roughly 10−3 · ||�core||∞, where the
error is partially systematic (as opposed to pure white noise).
It should be emphasized that this is only an estimate and
inherent errors in mpNRG (due to discretization of the nonin-
teracting bath and discarding high-energy eigenstates during
iterative diagonalization) are different from those stemming
from TCI. A tolerance significantly below τ = 10−3 may be
desirable for two reasons: First, to avoid errors [Eq. (19)]
larger than our mpNRG accuracy estimate of 10−3: After all,
a local error [Eq. (19)] below the tolerance is only expected
within the set of pivots that have been sampled by TCI—
and even for these, the tolerance is not strictly guaranteed

FIG. 3. QTCI compression of the Matsubara core vertex
�core(ω, ν, ν ′) in the p channel at β = 2000, with R = 8 and toler-
ance τ = 10−3. Heatmaps show the log10 absolute value of �↑↑

core in
panels (a) and (b) and �↑↓

core in panels (d) and (e) on the slice ω = 0.
nν and nν′ enumerate the fermionic Matsubara frequencies ν, ν ′. Left
column: Reference data �ref

core. Center column: QTCI representation
�QTCI

core . Right column: Normalized error εσ[�core] � 1.58 × 10−3 de-
fined in Eq. (19). We reproduce key features of the vertex on a large
frequency box with a comparatively low QTT rank of χ = 107 and
χ = 106, respectively.

by the TCI routine used here (see Sec. 4.3.1 of Ref. [38]),
which breaks full nesting conditions. Lowering the tolerance
increases the confidence that the required accuracy has been
reached even outside the sampled set. The second motivation
is to assess the potential of our approach for situations where
more precise input data are available. We shall therefore in-
vestigate tolerances ranging from 10−2 to 10−5.

The vertex functions �core(ω, ν, ν ′) and �(ω, ν, ν ′) to be
represented in QTT format here generally have prominent
structures around the origin, along the frequency axes, and
along the diagonals [47]. This is exemplified in Fig. 3, which
shows slices of �core at fixed bosonic frequency ω = 0. The
inverse temperature is β = 2000. We compare reference data
with the QTT representation of the vertex for a TCI tolerance
of τ = 10−3. The reference was obtained by evaluating the
vertex only on the two-dimensional slice shown in Fig. 3. A
logarithmic color scale has been chosen to expose imperfec-
tions of the TCI approximation. Figure 3 illustrates how QTCI
represents important features of the vertex in a strongly com-
pressed format: For a 256 × 256 × 256 (R = 8) frequency
grid, we have ranks of χ = 107 for �↑↑

core and χ = 106 for
�↑↓

core. This translates to memory footprints reduced by factors
of 92 (from 268 to 2.9 MB) and 89 (from 268 to 3.0 MB),
respectively.

A systematic account of the compressibility of �core is
provided in Fig. 4. It shows [panel (a)] ranks and [panel
(b)] memory consumption of the resulting QTTs, as a func-
tion of tolerance τ and grid size. The grid size is governed
by the number R of quantics bits in each dimension. Two

043032-8



COMPRESSING LOCAL VERTEX FUNCTIONS FROM THE … PHYSICAL REVIEW RESEARCH 7, 043032 (2025)

FIG. 4. (a) Rank and (b) random access memory (RAM) usage of
the interleaved QTT representation of the Matsubara core vertex �↑↑

core

in the p channel vs frequency grid size for different tolerances. The
grid has 2R points in each frequency argument. For the target toler-
ance of τ = 10−3, ranks saturate at χ ≈ 100. Dotted worst-case lines
in panels (a) and (b) indicate the maximum rank of a 3R-leg QTT
[hence the even-odd alternation in the worst case of panel (a)] and
the RAM requirements of dense grids with 23R points, respectively.

different datasets at β = 200 and β = 2000 are represented
by crosses and circles, respectively. The QTT ranks do not
exceed 250 (red circles, τ = 10−5), with compressions for the
target accuracy of τ = 10−3 (green) saturating with respect
to R at χ = 96 even for the low-temperature data. This rank
saturation reflects the simple asymptotic structure of �core.

In light of recent work by Rohshap et al. [28], these
results are very promising: There, the authors demonstrate
that self-consistent parquet calculations with maximum bond
dimensions of 200 are feasible on a single CPU (cf. Sec. VI
B of Ref. [28]). While the calculations in Ref. [28] were
performed in a different parameter regime of the SIAM, their
computational cost is determined by the bond dimensions of
the QTTs involved. Our results therefore suggest that QTT-
based parquet calculations with an NRG Matsubara vertex as
input will be feasible. Figure 4 further shows that TCI ranks
of �core do not significantly increase beyond a grid size of
R = 8. In this region of saturated ranks, both memory usage
and run-time required for manipulations of the vertex such
as convolutions or frequency transformations scale logarith-
mically in the grid size (linearly in R) [33]. In this regime, the
QTT representation yields an exponential reduction in compu-
tational cost compared to dense grids. Lowering the tolerance
(thus increasing χ ) comes at a run-time cost of O(χ4) for
the most expensive manipulations performed in Ref. [28] (see
Sec. V D there).

The linear scaling in R generically allows for exponen-
tially cheap reduction of discretization errors (for continuous
variables) or errors due to finite-size domains (for discrete
variables) [33]. For Matsubara vertices, the asymptotic struc-
ture contains terms �0,K1,K2, and K2′ that are independent
of some of the frequencies [see Eq. (11)], implying that the
function does not decay to zero at infinity [34]. One might
be tempted to conclude that this makes any finite box rep-
resentation invalid without high-frequency extrapolation. In
practice, vertex functions are used in evaluating diagrammatic
equations such as expectation values of observables, Bethe-
Salpeter equations, or the Schwinger-Dyson equation. In all of
these cases, the vertex is embedded in a frequency summation
or integral with single-particle propagators that do approach
zero asymptotically for high frequencies. The error generated
in such summations and integrals is thus the relevant crite-
rion for frequency box size, as was shown in Ref. [28] for a
parquet approach, including Bethe-Salpeter equations. There,
the error of a QTCI-based self-consistent calculation of the
density channel irreducible vertex was shown to improve from
10−1 for R = 5 to 10−3 for R = 9. Frequency grids larger
than R = 8 are hence relevant. We are considering signifi-
cantly lower temperatures (βD ∈ {200, 2000}, U/π� = 0.5
here versus βD = 100, U/π� ≈ 0.51 in Ref. [28]). Since
�core becomes more complicated at these low temperatures

FIG. 5. Rank of the Matsubara core vertex �↑↑
core and full vertex �↑↑ in the p channel vs (a) TCI tolerance τ , (b) inverse temperature β, and

(c) interaction strength u.
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FIG. 6. Imaginary part of the Keldysh core vertex �2121,↑↑
core , at ω = 0, compressed using R = 12 and τ = 10−2. On this slice, Re(�2121,↑↑

core )
is a factor of 25 smaller than Im(�2121,↑↑

core ). The QTT rank is χ = 198. The QTT representation allows us to zoom in by a factor of 25 (from
left to right) while retaining a sharp resolution throughout.

[cf. Fig. 5(b)], we expect large grids to be even more relevant
in NRG + parquet calculations.

To assess the range of applicability of our approach, we
also examined how the QTT rank for �core as well as the full
vertex � depends on the desired tolerance, inverse temperature
β, and interaction strength u. The results for the ↑↑ flavor
and an R = 10 grid are summarized in Fig. 5. The full and
core vertices show a similar increase in rank with the TCI
tolerance [Fig. 5(a)], since �core contains precisely the com-
plex three-dimensional structure of the full vertex. Consistent
with previous results on random pole-based Matsubara cor-
relators (cf. Fig. 8(b) in Ref. [48]), the TCI ranks increase
with β, though only logarithmically [see Fig. 5(b)]. Finally,
Fig. 5(c) shows the ranks versus the interaction strength. The
key finding is that both vertices remain strongly compressible
with ranks � 110 when increasing u from the perturbative
regime (u � 1) to very strong coupling (u = 5). Since the y
axis ranges only from 85 to 110, the observed variation in
ranks with u does not carry much significance. Overall, Fig. 5
suggests that parquet calculations with an mpNRG vertex as
input will be feasible across a wide range of parameters.

According to Eq. (11), the full vertex also contains lower-
dimensional contributions Kr

1 and Kr
2(′) . In Appendix B, we

verify that they have very small TCI ranks (χ � 20 for τ =
10−3) compared to �core and �. Moreover, we focused on the
↑↑ component of the vertex in the p channel. In Appendix
C, we discuss how the ranks of �core and � depend on the
frequency channel and spin component.

C. mpNRG vertex functions: Keldysh formalism

We now turn to computations of the Keldysh vertex in
QTT format. In contrast to the Matsubara vertex, this object
gives direct access to real-frequency dynamic response func-
tions, but is a significantly more complicated function on a
continuous domain of real frequencies. Faithfully capturing
its structure on a finite grid while keeping the computational
cost in check is very challenging. This has been achieved
in Refs. [20,21], but requires tedious manual tuning of non-
linear grids. The evaluation of mpNRG Keldysh vertices on
nonlinear grids is discussed in Appendix E. Our QTCI-based
approach allows us to automatically capture features on dif-
ferent length scales on an extremely fine equidistant grid. Our
grid for ω contains 0, while ν and ν ′ live on a grid that is offset
from 0 by half a grid spacing. An alternative choice would be
to include 0 in all three grids. In QTCI, we can refine the grid
until all features are represented up to a given tolerance, so

that shifting the ν and ν ′ grids by half a grid spacing does not
make a difference. The resolution attained with QTCI is exem-
plified in Fig. 6, showing a QTT representation of �2121,↑↑

core on
a slice at ω = 0 using R = 13 quantics bits. The TCI tolerance
was set to 10−2. All panels show the same slice, but zoom in
by factors of 2 moving from left to right. The rightmost panel
still exhibits a sharp resolution after a 32-fold magnification.
As a further illustration, Fig. 7 compares the TCI-compressed
vertex (center) to the reference (left), showing the normalized
error on the right. The slices are taken again at ω = 0 and for
u = 0.5 (top row) and u = 1.5 (bottom row). Overall, we see
that TCI resolves the core vertex to 1% precision with ranks
of 184 and 187, respectively.

This 1% error is comparable to the uncertainty due to the
broadening of spectral functions, which supersedes the NRG
error of 10−3 in the real-frequency case: While there are well-

FIG. 7. QTCI compression of the Keldysh core vertex
�2121,↑↑

core (ω, ν, ν ′) in the p channel at β = 2000, with R = 10 and
tolerance τ = 10−2. Heatmaps show the log10 absolute value of the
vertex on the slice ω = 0. The interaction strengths are u = 0.5 in
panels (a)–(c) and u = 1.5 in panels (d)–(f). Left column: Reference
data �ref

core. Center column: QTT representation �QTCI
core . Right column:

Normalized error εσ[�core] � 1.73% defined in Eq. (19). The QTT
representation captures complex features using moderate bond
dimensions of χ = 184 and χ = 187, respectively.
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FIG. 8. (a) Rank and (b) RAM usage of Keldysh core vertex
�2121,↑↑

core (ω, ν, ν ′) in the p channel vs frequency grid size for different
tolerances and temperatures. The grid has 2R points in each frequency
argument. For a tolerance of τ = 10−2 (blue), the bond dimension
saturates at χ ≈ 200. Dotted worst-case lines in panels (a) and (b) in-
dicate the maximum rank of an R-leg QTT (fused representation) and
the RAM requirements of dense grids with 23R points, respectively.

established schemes [12,15] to choose broadening parameters,
legitimate choices can vary within a range that causes vertex
functions to change by a few percent. Our default tolerance
for Keldysh objects is therefore chosen as τ = 10−2. In view
of ongoing research aiming to develop an impurity solver
less susceptible to broadening artifacts [49], which could be
extended to the multipoint case in the future, we extend our
investigations down to τ = 10−3.

Figure 8 shows [panel (a)] the rank and [panel (b)] the
memory size of the compressed Keldysh core vertex compo-
nent �2121,↑↑

core at temperatures β = 200 and 2000 versus the
number of quantics bits R in each dimension. This Keldysh
component of �k

core was found to have the highest bond di-
mension (see Appendix C, Fig. 12). We set a fixed box size of
ωmax = 0.65 [cf. Fig. 6(a)] and increase the resolution with R.
We verified that the chosen box size is large enough to capture
all relevant structures within the target tolerance τ = 10−2. At
this tolerance, the rank shown in Fig. 8 saturates at χ = 202.
This rank is again of a magnitude where a self-consistent
parquet calculation in the Matsubara formalism was shown to
be feasible on a single core in Ref. [28]. The 16 components
of the Keldysh vertex can be inferred from just 5 com-
ponents using complex conjugation and crossing symmetry
[50]. Nevertheless, in follow-up computations such as solving
the parquet equations, these multiple Keldysh components in
contrast to a single Matsubara vertex may necessitate paral-
lelization already for χ ≈ 200. Multithreaded or distributed
schemes will certainly be required for the most difficult case
considered here (τ = 10−3 and β = 2000), which results in
ranks of χ ≈ 450. On a different note, the QTT vertex has
a vastly reduced memory footprint, as shown in Fig. 8(b):
For β = 2000, τ = 10−2, and R = 10, it requires 11.3 MB
of memory, compared to 17.1 GB for a dense grid repre-
sentation; this corresponds to a compression ratio of 1:1513.
Although real-frequency diagrammatic calculations for the
SIAM are limited by run-time rather than memory [20], this
paves the way for investigation of more complicated models
with multiple orbitals or momentum dependence, which have
prohibitive memory requirements if attempted with dense
grids [51–53].

In Fig. 9, we explore the compressibility of the core and
full vertices for varying tolerance τ , inverse temperature β,
and interaction strength u. As seen before in Fig. 8, lowering
the tolerance below 10−2 results in a steep increase in the
rank. As in the Matsubara formalism, the rank increases with
β, but only slowly. Panel (c) reveals a much less predictable
behavior: The ranks of both the full and core vertices reach a
maximum at u = 1.0 and decrease significantly for large u.
Moreover, the rank of the full vertex � approaches that of
�core from below with increasing interaction u. This reflects
the increasing magnitude of �core relative to the asymptotic
contributions Kr

1 and Kr
2(′) : At weak interaction, the magnitude

FIG. 9. Rank of Keldysh core vertex �↑↑
core and full vertex �↑↑ in the p channel vs (a) TCI tolerance τ , (b) inverse temperature β, and

(c) interaction strength u. We show data for the k = (2121) Keldysh component. In panel (c), we choose smaller box sizes ωmax = 0.08 and
ωmax = 0.04 for u = 3.0 and u = 5.0, respectively. This is because the extent of the core vertex decreases at these strong interactions.
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TABLE II. QTT ranks of the five Keldysh components not re-
lated by crossing symmetry or complex conjugation (center columns)
compared to the QTT rank of a single tensor that contains all
five components (rightmost column). Parameters are u = 0.5, β =
2000, ωmax = 0.65, τ = 10−2, and R = 8.

Component k 1111 2111 2121 2112 1222 All

Rank χ 130 136 159 126 95 344

of the core vertex is much smaller than that of the full vertex,
which is dominated by Kr

1 and Kr
2(′) . Since TCI measures the

error relative to the supremum norm of the target function
[cf. Eq. (19)], this means that �core need not be resolved as
accurately at weak interaction. The compression of the asymp-
totic contributions Kr

1 and Kr
2(′) is discussed in Appendix B,

together with their Matsubara counterparts. In Appendix C,
we discuss how the ranks of �k

core and �k depend on flavor,
frequency channel, and Keldysh component k.

Finally, we discuss how compressing each Keldysh com-
ponent of the vertex separately, as was done in this work,
compares to running TCI on the entire Keldysh core or full
vertex, where the Keldysh components are encoded in an
additional leg of a single tensor train. In both cases, spin com-
ponents are compressed separately. For a fair comparison of
these two approaches, recall the following: (1) TCI measures
the interpolation error relative to the supremum norm of the
target function [see Eq. (19)]. When compressing the entire
vertex, any given Keldysh component �k (or �k

core) should
therefore be normalized by ||�k||∞ (or ||�k

core||∞), i.e., with
the supremum norm of the same Keldysh component k. Only
then does one achieve the same accuracy as in separate com-
pressions of Keldysh components. (2) Matrix product operator
contractions (MPO-MPO contractions), the most expensive
operations in QTT-based diagrammatic calculations, scale
as O(Rχ4) in run-time. As a preliminary investigation, we
compressed the entire core vertex at u = 0.5, β = 2000, and
ωmax = 0.65 with a tolerance of τ = 10−2 and R = 8 quantics
bits. The tensor leg for the Keldysh component was placed to
the very left and only included the five Keldysh components
not related by crossing symmetry or complex conjugation (cf.
Appendix C).

The resulting rank χ is compared with the ranks χk of
individual Keldysh components in Table II. We observe the ra-
tio χ4/ maxk χ4

k ≈ 21.77; thus, MPO-MPO contractions take
about 22 times longer for two entire vertices than for two
individual components. On the other hand, the latter type
of contraction would have to be performed 52 = 25 times.
However, Table II shows that some Keldysh components
have a significantly lower bond dimension than maxk χk. In
summary, both approaches are worth investigating, and a con-
clusive comparison is only possible in the context of a specific
QTT-based diagrammatic code.

IV. SUMMARY AND OUTLOOK

We have presented a QTCI-based method for representing
imaginary- and real-frequency mpNRG vertex functions on
large grids that are far beyond the reach of previous imple-

mentations. The QTCI algorithm allows us to automatically
capture all relevant features of the vertex up to a prescribed
accuracy and represents the result in a highly compressed
format. Repeated sampling during TCI sweeps necessitates
optimizations of the vertex evaluation, which we described in
detail. We studied the compressibility of the vertex in a sys-
tematic fashion: Imaginary- and even real-frequency vertices
are representable as QTTs with maximum bond dimensions
sufficiently small (χ ≈ a few hundred) to allow for dia-
grammatic computations with these objects. This holds true
across a broad range of temperatures and interaction strengths,
both for the full vertex and for its asymptotic decomposition.
Our work thus constitutes an important step toward QTCI-
based diagrammatic calculations that use a nonperturbative
DMFT vertex as input and suggests that these will be feasible.
The next step will be to implement a QTCI-based diagram-
matic extension of DMFT that augments the local vertex
with momentum dependence. An analogous program can be
envisioned in the real-frequency setting. Though this is a
challenging, computationally demanding endeavor, it would
achieve a long-sought goal: a method to obtain nonlocal,
real-frequency dynamical response functions of strongly cor-
related systems.
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DATA AVAILABILITY

The mpNRG computations were performed with the
MUNRG package [12,54,55], which is based on the QSPACE

tensor network library [56–59]. The latest version of QSPACE

is available [60] and a public release of MUNRG is intended.
The code used in this work to compute and compress vertices
is available on GitHub [61]. The partial spectral functions
required as input for that code can be found in Ref. [62].
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TABLE III. Broadening settings for different NRG datasets. T =
1/β denotes the temperature. See main text for definitions of the
parameters. We set emin = 10−6, emax = 104, and estep = 50. For TCI
tolerances τ � 3.4 × 10−3, the integration grid was refined to estep =
200 to avoid fitting of numerical noise by the TCI algorithm. We also
set estep = 200 to broaden 2p functions.

u β σsLG γL

0.5 20/200 0.693 T
0.5/1.0/1.5 2000 0.4 T
3.0/5.0 2000 0.4 T

APPENDIX A: COMPUTING BROADENED KELDYSH
KERNELS

In this Appendix, we provide details on the numerical
computation of the broadened Keldysh kernels K [λ]

b appearing
in Eq. (10b). It consists of two steps: broadening the Dirac-δ
functions in Eq. (3) to δb(ω′, ε) and convolution of δb(ω′, ε)
with the Keldysh kernel (ω′ + iγ λ

0,i)
−1. The numerical details

of this procedure are taken from the MUNRG code of Ref. [12].
The broadening combines symmetric log-Gaussian and lin-

ear broadening (cf. Appendix E 2 of Ref. [15]):

δb(ω′, ε) =
∫
R

dε′δF(ω′, ε′)δsLG(ε′, ε), (A1a)

δsLG(ε′, ε) = �(ε′ε)√
πσsLG|ε| exp

[
−

(
ln |ε/ε′|
2σsLG

− σsLG

4

)2
]
,

(A1b)

δF(ω′, ε′) = 1

2γL

(
1 + cosh

ω′ − ε′

γL

)−1

. (A1c)

The broadening parameters γL and σsLG along with other
numerical settings for all physical parameter sets are listed
in Table III. However, the linear broadening γL is multiplied
with a prefactor that depends on the current permutation p,
the fully retarded index λ, and the dimension i. This scheme
will be explained further at the end of this Appendix [see
Eq. (A4)]. The Integral (A1a) is performed by trapezoidal
quadrature, where ω′ and ε′ are discretized on logarithmic
grids. These grids contain 0, are symmetric around the ori-
gin, and range from emin to emax with estep points per decade
(see Table III). For the ε′ grid, emin is automatically replaced
by a lower boundary xmin with 0 < xmin < emin if the low-
frequency tail of the log-Gaussian broadening kernel extends
below emin. This ensures an accurate integration of δsLG(ε′, ε).
The energies ε specifying the location of the spectral function
peaks also reside on a logarithmic grid, which arises from the
mpNRG computation.

The numerical integration described above yields δb(ω′, ε)
with ω′ and ε on logarithmic grids. To convolve δb with the
Keldysh kernel (ω′ + iγ λ

0,i )
−1, we use the identity

lim
γ0→0+

∫
R

dω′ δb(ω′, ε)

ω − ω′ + iγ λ
0,i

= P
∫
R

dω′ δb(ω′, ε)

ω − ω′ − iπsgn
(
γ λ

0,i

)
δb(ω, ε), (A2)

TABLE IV. Linear broadening of a 3p correlator with doubled
broadening on the composite operator qi j . The operator qi j is in the
first slot of the operator tuple for the identity permuation p = [123].
Left: Permutation p = [123]. Right: Permutation p = [213].

i = 1 i = 2 i = 1 i = 2

λ = 1 2γL γL λ = 1 3γL γL

λ = 2 2γL γL λ = 2 γL γL

λ = 3 2γL 3γL λ = 3 γL 3γL

where P denotes the Cauchy principal value (PV) integral.
Also, recall the Definition (10c) of γ λ

0,i. Importantly, δb(ω′, ε)
has been computed on a logarithmic grid, while ω in the
broadened Keldysh kernel K [λ]

b (ω, ε) defined in Eq. (10b)
resides on a linear grid. This is because the external frequency
grids on which we compute vertices are also linear. To obtain
the imaginary part of Eq. (A2) on the linear grid, we use
linear interpolation of δb(ω, ε) in the argument ω. Computing
the real part, i.e., the PV integral, is slightly more involved:
By the linear interpolation performed for the imaginary part,
δb(ω, ε) can be viewed as a piecewise linear function. We
split the PV integral over δb(ω′, ε) into PV integrals over
linear functions (ai,εω

′ + bi,ε ) on intervals [ω′
i, ω

′
i+1]. These

are evaluated using the formula

P
∫ ω′

i+1

ω′
i

dω′ ai,ε (ω′ − ωi ) + bi,ε

ω − ω′

= −ai,ε (ω′
i+1 − ω′

i ) − (ai,ε (ω − ω′
i ) + bi,ε ) ln

∣∣∣∣ω − ω′
i+1

ω − ω′
i

∣∣∣∣.
(A3)

The sum over all PV integrals of the form (A3) then yields
the real part of the broadened Keldysh kernel Kb(ω, ε). For
this scheme to be accurate, the extent [−emax, emax] of the
logarithmic ω′ grid should be significantly larger than the
frequency box delimited by ωmax. Comparing the values of
emax given in Table III with our default frequency box size
ωmax = 0.65, one verifies that this is the case.

We now turn to the prefactors of the linear broadening γL

mentioned above. In the linear broadening kernel δF(ω′̄
1···ī, ε

′
i )

to be convolved with the Keldysh kernel (ω′̄
1···ī + γ λ

0,i )
−1, the

broadening with γL is replaced by

γ λ
L,i =

{
γL · (� − i), for i � λ,

γL · i, for i < λ.
(A4)

This choice was found to reduce broadening artifacts in an
mpNRG treatment of the Hubbard atom in Ref. [63]. More-
over, composite operators qi j in 3p correlators [cf. Eq. (96)
of Ref. [15]] receive a doubled linear broadening. This was
found to cancel discretization and broadening artifacts when
computing Kr

2(′) by multiplication with self-energies; see
Eq. (B3) and Ref. [63]. The broadening of 3p correlators is
exemplified in Table IV. Finally, the 2p correlators required
for self-energies in the symmetric estimators for �core and Kr

2(′)
(cf. Sec. II D and Appendix B.) are broadened according to
Table V.
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TABLE V. Linear broadening of a 2p function used for the aIE
self-energy. The two rightmost columns correspond to the two possi-
ble permutations.

i = 1, p = [12] i = 1, p = [21]

λ = 1 3γL γL

λ = 2 γL 3γL

APPENDIX B: COMPRESSION OF 1D AND 2D VERTEX
CONTRIBUTIONS

A QTCI-based parquet calculation exploiting the asymp-
totic decomposition (11) requires not only �core, but also
Kr

1 and Kr
2(′) represented as QTTs. Recall that r = a, p, t

labels the three frequency channels. In this Appendix, we
verify that these asymptotic contributions indeed have a
significantly lower rank than �core, as expected from their
simpler structure.

The Kr
1 contributions are simply given by 2p correla-

tors of composite operators (see Sec. IV F of Ref. [15]).
We illustrate the evaluation of Kr

2(′) using Kt
2 as an exam-

ple. For derivations and the remaining Kr
2(′) components,

we refer to Secs. IV C and IV F of Ref. [15]. Since
the self-energy is spin-diagonal, we again omit spin in-
dices. First, the operator q = [d, Hint] introduced in Sec. II D
is used to define the operator q34 = {q, d†} = qd† + d†q.
One further introduces 3p correlators G[q34, a1, a†

2], where
a1, a2 ∈ {d, q}. They are defined in terms of connected
correlators as

Gk[q34, a1, a†
2] = Pk1k2(k3+k4 )Gk

con[q34, a1, a†
2]. (B1)

In the Keldysh formalism, the tensor P reads

Pk1k2(k3+k4 ) =
{ 1√

2
, if

∑
i ki is odd,

0, else,
(B2)

while it is set to unity in Matsubara. Using the symbol Yxi

introduced in Eq. (13), Kt
2 can then be expressed as

Kt
2(ωt , νt ) =

∑
a1,a2∈{d,q}

Ya1 G[q34, a1, a†
2](−ω12, ω1, ω2)Ya2 .

(B3)
To evaluate Kt

2, the external frequencies ω1, ω2 appearing on
the right-hand side of Eq. (B3) are expressed in the t-channel
parametrization, i.e., in terms of ωt and νt .

The ranks of Matsubara and Keldysh asymptotic contribu-
tions Kt,↑↑

1 and Kt,↑↑
2 for different parameters are shown in

Figs. 10(a)–10(c) and 10(d)–10(f), respectively. We use the
t-channel frequency parametrization, thus viewing Kt

1(ωt ) as
a 1D and Kt

2(ωt , νt ) as a 2D function. A comparison of Fig. 10
with Figs. 5 and 9 confirms that the three-dimensional vertex
functions will dominate the cost of a diagrammatic calcula-
tion: For a tolerance of τ = 10−3, the ranks of the Matsubara
Kt

2 component are no larger than 20. The variation of the rank
with β and u does therefore not bare much significance. For
smaller tolerances, the rank of Kt

2 remains much lower than
that of the core vertex. Analogous observations hold for the
Keldysh Kt

2 component with a target tolerance of τ = 10−2.
Like the Keldysh core vertex, its rank increases slowly with β

and decreases for strong coupling u, but the changes are small
compared to the core vertex.

FIG. 10. QTT ranks of Matsubara [top row, panels (a)–(c)] and Keldysh [bottom row, panels (d)–(f)] Kt,↑↑
1 and Kt,↑↑

2 contributions to the
full vertex vs: (a), (d) tolerance τ , (b), (e) inverse temperature β, and (c), (f) interaction strength u. In Keldysh we chose, of all components,
the component k = (22) for Kt,↑↑

1 and k = (112) for Kt,↑↑
2 . These components were found to have the highest rank, respectively.
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FIG. 11. Top row [panels (a) and (b)]: TCI ranks of �↑↑ and �↑↑
core

in the three channels a, p, t . Bottom row [panels (c) and (d)]: TCI
ranks of � and �core in the p channel for the two flavors ↑↑ and
↑↓. Matsubara vertices [panels (a) and (c)] were compressed with
τ = 10−3 and R = 10, and Keldysh vertices [panels (b) and (d)] with
τ = 10−2 and R = 12.

APPENDIX C: COMPRESSION FOR DIFFERENT
CHANNELS, FLAVORS, AND KELDYSH COMPONENTS

In this Appendix, we investigate the compressibility of
core and full vertices for different flavors (↑↑,↑↓), fre-
quency channels (r = a, p, t), and Keldysh components k =
(k1k2k3k4).

Figure 11 shows the QTT ranks of the Matsubara and
Keldysh full and core vertices for different channels and fla-
vors, at β = 2000 and u = 0.5. The tolerances are τ = 10−3

and τ = 10−2 for Matsubara and Keldysh vertices, respec-
tively. We observe that the p channel exhibits the highest ranks
throughout, which is why we used this frequency parametriza-
tion in the main text. The QTT ranks of the Matsubara vertices
shown in Fig. 11(c) barely differ between the two flavors. In
contrast, �2121,↑↑

core has a significantly higher rank than �2121,↑↓
core

(χ = 198 versus χ = 154).
The rank of �↑↑

core and �↑↑ depending on the Keldysh com-
ponent is shown in Fig. 12. Only components that are not
related by crossing or complex conjugation symmetry [50]
are considered. We show data for β = 2000, u = 0.5, and
τ = 10−3. The (2121) component of �core is found to have the
highest rank. We therefore selected �2121,↑↑

core for our analysis
of rank saturation and parameter dependence in Figs. 8 and 9.

FIG. 12. QTT rank of Keldysh core vertex �k,↑↑
core in the p channel

vs Keldysh component. From the 16 Keldysh components, only those
are shown that are not related by crossing symmetry or complex con-
jugation. The �1111,↑↑ component of the full vertex was compressed
with tolerance τ = 0.1, since it is about a factor of 10 smaller than
the other Keldysh components of the full vertex. This is because the
Kr

1 contributions, which dominate other components �k �=1111, vanish
in the k = (1111) component.

APPENDIX D: FREQUENCY CONVENTIONS

We use the following parametrizations for the t (particle-
hole), p (particle-particle), and a (transverse particle-hole)
channels:

ω =
⎧⎨⎩

(−νr, ωr + νr,−ωr − ν ′
r, ν

′
r ), for r = t (ph),

(−νr, ωr − ν ′
r,−ωr + νr, ν

′
r ), for r = p (pp),

(−νr, ν
′
r,−ωr − ν ′

r, ωr + νr ), for r = a (ph).
(D1)

These are the same as in Ref. [15], up to a global minus
sign. Spin and, if present, Keldysh indices of the vertex
�k,σ1σ2σ3σ4 (ω) are ordered according to the underlying im-
purity Green’s function Gk

con[dσ1 d†
σ2

dσ3 d†
σ4

](ω). Finally, the
evaluation of a 2p correlator G at a frequency ν is defined as
G(ν,−ν) in our convention. This is relevant for evaluating the
self-energy � in Eq. (13), because computing the self-energy
comes down to evaluating 2p correlators according to the
asymmetric estimators we employed; see Eq. (27) in Ref. [15].

APPENDIX E: EVALUATING THE KELDYSH VERTEX ON
NONLINEAR GRIDS

As mentioned in Sec. II A, the PSFs consist of spectral
peaks residing on a logarithmic energy grid. This raises the
question whether the vertices could also be computed on
logarithmic (or arbitrary nonlinear) grids. Since the Matsubara
vertex is inherently defined on an equidistant grid, we consider
this question to be relevant only for the Keldysh vertex. While
the spectral representation and symmetric estimators yield
the Keldysh vertex at arbitrary frequency points, evaluating
the vertex on a nonlinear grid turns out to be much more
expensive. This Appendix explains why that is the case.

Consider a grid W ⊂ R, where the frequencies ω ∈ W may
be spaced, e.g., logarithmically. Suppose we want to evaluate
the Keldysh vertex on points ω ∈ W 3 ⊂ R3. As detailed in
Secs. II C and II D, this entails the evaluation of full corre-
lators Gk(ω) with ω ∈ W 3, which in turn requires G[λ]

p (ωp)
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[see Eq. (29a)]. Crucially, the broadened kernels k[λ,i]
b are

evaluated at the transformed frequency ω1̄···ī in Eq. (29a). Let
us denote this linear transformation ω �→ (ω1̄, ω1̄2̄, ω1̄2̄3̄ ) for
4p correlators by Tp. The broadened kernels k[λ,i]

b must be
evaluated on points in the image of the chosen grid W 3 under
Tp, i.e., Tp(W 3) � ωp. In order to save computation time by
precomputing the kernels, one can embed the image grid in a
Cartesian product of one-dimensional grids Wp,1,Wp,2,Wp,3 ⊂
R, i.e., Tp(W 3) ⊂ Wp,1 × Wp,2 × Wp,3. It is the grids Wp,i on
which the kernels are broadened and, if desired, SVD com-
pressed as explained in Sec. II F 2. In the case of an equidistant
grid, the Wp,i have at most 3 · |W | = O(|W |) points.

In constrast, if W is nonlinear, one has |Wp,i| = O(|W |3)
in general. This means that, for large grid sizes, precomputing
and storing the broadened kernels k[λ,i]

b on Wp is no longer
possible. The same holds for the SVD compression of the
kernels. This issue leaves two alternatives for evaluating the
Keldysh vertex �k on nonlinear grids:

(1) For each individual point ω ∈ W 3, compute the broad-
ened kernels upon evaluating �k(ω). This is not implemented
in our code [61], but we expect it to be prohibitively expensive
even if caching of previously computed kernel values was
introduced.

(2) Precompute the kernels on a very fine, equidistant grid
and evaluate the vertex by interpolation from linear grids.
This approach is implemented in our code [61] and has been
employed in Ref. [16] when investigating the fulfillment of
diagrammatic identities by mpNRG data.

TABLE VI. QTT ranks of different components of the t-channel
Keldysh core vertex �↑↑

core computed on a logarithmic grid and, for
comparison, on an R = 15 linear quantics grid. The tolerance is τ =
10−2.

k 1111 2111 2121 2112 1222

χlog 258 475 718 379 445
χlin 129 150 177 127 101

In conclusion, we do not see an affordable method of
evaluating the Keldysh vertex “directly” on a large, nonlinear
grid. However, interpolation from a linear grid provides
a viable alternative: Using QTCI, one can determine at
which grid size the vertex is resolved to the desired ac-
curacy and then use the resulting quantics tensor train
for interpolation.

Finally, we report a preliminary investigation of the QTCI
compressibility of Keldysh vertex components stored on log-
arithmic grids: We compressed different Keldysh components
of the t-channel Keldysh core vertex at β = 2000 and u =
0.50 computed on a 243 × 243 × 243 logarithmic grid. The
TCI tolerance was τ = 10−2. The grid spans a large frequency
range from −3.18 to 3.18. The vertex was interpolated trilin-
early from a quantics grid with R = 15 bits (see Ref. [16]).
The results are summarized in Table VI, showing large QTT
ranks χlog compared to the QTT ranks on a linear grid, χlin.
This indicates that a QTCI compression of Keldysh vertex
data on a logarithmic grid is not effective.
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