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selbstständig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe.

Munich, 01/10/2024 Guillermo Muñoz Menés
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Fermionic Gaussian State Assisted DMRG for 2D Hubbard Models

Abstract:

The Density Matrix Renormalization Group (DMRG) algorithm is one of the most
widely used and successful numerical techniques for determining ground states in quan-
tum systems. DMRG requires an initial state in Matrix Product State (MPS) form, and
the choice of this initial state can significantly impact both the computational efficiency
and the likelihood of finding the true ground state by avoiding local minima. In this
thesis, we investigate the effect of using a fermionic Gaussian state as the initial ansatz
for DMRG. Fermionic Gaussian states are advantageous because they are fully character-
ized by their covariance matrix, which scales quadratically with the system size. Previous
studies have already demonstrated the benefit of using fermionic Gaussian states when
exploring topologically ordered systems. In this thesis, we focus on the study of the 2D
Hubbard model, and we explain how to implement an algorithm that gets a fermionic
Gaussian state approximation of the ground state, converts it into an MPS, and initiates
DMRG with it. We evaluate the performance of this approach by comparing it to the more
conventional use of a product state as the initial ansatz. Our analysis covers both the half-
filling case and the 1/8-hole-doping scenario. The results show that, for most parameter
sets, the fermionic Gaussian state does not outperform the product state. However, in one
of the 1/8-hole-doping cases, the Gaussian state successfully avoids a local minimum in
which the product state becomes trapped, suggesting its potential advantage in specific
situations.
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Introduction

In condensed matter physics, determining the ground state, the configuration of the
system with the lowest possible energy, is a fundamental task. At zero temperature,
the ground state represents the most stable arrangement of particles within the
system and is crucial for understanding its overall behavior. The properties of the
ground state dictate the quantum phase of the material, influencing whether it
exhibits characteristics of a magnet, Mott insulator, conductor, or other phases.
While determining the ground state is of critical importance, finding an analytical

solution to this problem is typically far from trivial. Many-body quantum systems,
especially those with strong interactions, often lack known exact analytical solutions.
As a result, numerical methods are frequently used to obtain an approximation to
the ground state.
One of the most powerful and widely-used numerical techniques for this purpose

is the Density Matrix Renormalization Group (DMRG) algorithm. Originally de-
veloped by Steven R. White in 1992 [1], DMRG has revolutionized the study of
low-dimensional quantum systems. The algorithm relies on tensor network tech-
niques to iteratively optimize the system’s wave function, allowing for an efficient
representation of the ground state even in systems where traditional methods strug-
gle. In spite of its huge success for one-dimensional systems, DMRG has found some
limitations when moving towards higher dimensional systems due to the increase in
the computational resources required to successfully encode the relevant physics of
the ground state. In order to try and mitigate this cost increment, further efforts to
improve its performance have been made throughout the years [2–5].
The initial ansatz used to start the DMRG algorithm can significantly impact the

method’s overall success. This is because DMRG can get trapped to local minima if
the initial state is not suitable. One of the reasons for this is that DMRG conserves
the quantum numbers of the initial state during its iterative updates. As a result,
to accurately obtain the system’s true ground state and avoid convergence to a local
minimum, it is a necessary condition (though not sufficient) that the initial state
shares the same quantum numbers as the target ground state.
The primary objective of this thesis is to explore the effectiveness of using a good

approximation of the true ground state as the initial state in DMRG computations.
The goal is to improve overall performance by either reducing computation time or
minimizing the likelihood of converging to a local minimum.
Previous research demonstrated the benefits of employing Gutzwiller-projected

fermionic Gaussian states to initialize DMRG when studying topologically ordered
systems [6], a strategy that was subsequently adopted in several studies [7–10].
In our case, we will study the use of a fermionic Gaussian state approximation

to the ground state as the initial ansatz for DMRG. Fermionic Gaussian states are
characterized by a density matrix that can be expressed as a quadratic function of
canonical creation and annihilation operators, and they are fully described by their
covariance matrix [11, 12]. Unlike arbitrary states, where the number of elements

1



Introduction

grows exponentially with the system size, the covariance matrix for Gaussian states
scales quadratically, making them particularly suitable for numerical calculations.
A ground state approximation for interacting Hamiltonians can be obtained by per-
forming successive short imaginary time evolutions and projecting the results onto
the set of Gaussian states at each step [13].
The DMRG performance will be tested on the Hubbard model, a fundamental

model in condensed matter physics that has attracted significant interest since it was
first introduced by John Hubbard [14]. The Hubbard model provides a framework
to study the interplay between electron hopping, which allows electrons to move
between neighboring lattice sites, and an on-site electron-electron interaction, which
accounts for the energy cost of having two electrons occupy the same site. Despite
its apparent simplicity, the Hubbard model exhibits a rich phase diagram, including
metallic, Mott insulating, and magnetically ordered phases [15]. Due to the presence
of a quartic interaction term, finding an analytical solution for an arbitrary choice
of the model’s parameters is highly non-trivial. Consequently, the Hubbard model
has been extensively studied by a wide range of numerical techniques [16–22].
In Chapter 1, we introduce the theoretical background essential for comprehending

the motivation and functionality of the proposed method. This chapter covers several
key topics, including an explanation of the Hubbard model, a definition of Gaussian
states, and a brief introduction to fundamental concepts in tensor networks, with a
particular focus on the DMRG algorithm.
Chapter 2 describes the method to obtain the Matrix Product State (MPS) used to

initialize DMRG. We begin by explaining how to obtain a fermionic Gaussian state
approximation of the real ground state through an imaginary time evolution. Then,
we will describe how to convert the resulting state into an MPS starting uniquely
from its covariance matrix. Finally, we include an step-by-step description of how
the full algorithm was implemented.
In Chapter 3, we present our numerical results. We start by showing some bench-

marks on the obtention of the initial fermionic Gaussian state MPS. Afterwards, we
show the DMRG performance comparison considering two possible scenarios: half-
filling and 1/8-hole-doping. The main metrics considered for the comparison are
the computational time required and the energy reached by the DMRG converged
states.
To conclude, Chapter 4 provides a summary of our work, the main conclusions

obtained after evaluating the results, and some proposals for further research.
In Appendix A, the interested reader can find some details on the numerical im-

plementation of the Bloch-Messiah decomposition, one of the fundamental steps for
compressing a fermioninc Gaussian state into an MPS.
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1. Theoretical Background

In this chapter, we begin by briefly summarizing the physics of fermions and intro-
ducing the physical model that will be of interest for benchmarking our method: the
Hubbard model.
In Sec. 1.2, we will introduce Gaussian states and their advantage for performing

numerical calculations.
In Sec. 1.3, a brief overview of the basic tensor network building blocks, as well

as our variational ground state search algorithm, will be provided.

1.1. Physical model

During this thesis, we will focus on the study of interacting fermions in a lattice.
Before introducing the model that will govern the dynamics of our particles, it is
convenient to set up the physical and mathematical framework in which we will
work.
Fermions are described in particle physics as particles with half-integer spin that

obey Pauli’s exclusion principle and, therefore, obey Fermi-Dirac statistics. In our
case, we will restrict ourselves to spin-1/2 particles. In order to work with such
particles, we need to define their corresponding creation and annihilation operators.
Opposed to their bosonic counterpart, those operators are not introduced in terms
of position and momentum operators but in terms of their action on the vacuum
state. Therefore, we define the creation operator â†σ as the operator that generates
a fermion with magnetic quantum number ms equal to σ and, analogously, the
annihilation operator âσ as the operator that annihilates a fermion with magnetic
quantum number ms equal to σ:

â†σ |0⟩ =

{
|↑⟩ if σ = 1/2

|↓⟩ if σ = −1/2
, âσ′ â†σ |0⟩ = δσ,σ′ |0⟩ , (1.1.1)

where we have defined |↑⟩ := |S = 1/2,ms = 1/2⟩, |↓⟩ := |S = 1/2,ms = −1/2⟩ and
where |0⟩ represents the vacuum state, characterized by being annihilated by any
annihilation operator, i.e., âσ |0⟩ = 0 ∀σ.
These operators are defined to satisfy the so-called canonical anticommutation

relations (CARs). If we consider an ensemble of sites instead of a single one, these
relations can be expressed as

{âi,σ, â†j,σ′} = δi,jδσ,σ′ , {âi,σ, âj,σ′} = {â†i,σ, â
†
j,σ′} = 0, (1.1.2)

where {Â, B̂} := ÂB̂ + B̂Â. The CARs ensure that the fermions satisfy the Pauli

principle (â†i,σâ
†
i,σ |0⟩ = −â†i,σâ

†
i,σ |0⟩ → â†i,σâ

†
i,σ |0⟩ = 0) and that the system’s wave

function changes sign under the exchange of two fermions with different label. Ad-
ditionally, the CARs also require us to establish a convention when defining states.
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1. Theoretical Background

That is, for example, that state |... ↑i ... ↑j ...⟩ could be represented as both â†i,↑â
†
j,↑ |0⟩

or â†j,↑â
†
i,↑ |0⟩ which differ by a sign. In our work, we will define the Fock basis as

|n1,↑, n1,↓, n2,↑, ..., nN,↑, nN,↓⟩ = (â†1,↑)
n1,↑(â†1,↓)

n1,↓(â†2,↑)
n2,↑ ...(â†N,↑)

nN,↑(â†N,↓)
nN,↓ |0⟩
(1.1.3)

with N the total number of sites and ni,σ the number of fermions with spin σ in site
i.

1.1.1. Hubbard model

The Hubbard model is one of the most well-known models for describing interacting
fermions in a lattice. In the computations performed in this thesis and for this
theoretical introduction, we will restrict ourselves to the study of square lattices.
The model can be used to understand how such interactions can give rise to Mott
insulating and magnetic effects in a solid. Due to the Pauli principle, each site has
local dimension 4, corresponding to the following possible configurations: completely
empty |0⟩, occupied by a single spin-up fermion |↑⟩, occupied by a single spin-down
fermion |↓⟩ and completely occupied |↑↓⟩.
The model can be understood intuitively by considering the motion of fermions in

a lattice. First, we may think about the kinetic energy. For that, it seems reasonable
to consider a term that destroys a fermion in one site and creates it in another. This
hopping term is modulated by an energy scale that we will denote as t. Additionally,
fermions interact with each other through a screened Coulomb interaction. As that
interaction decays with the distance between particles, we can approximate it to only
have a non-vanishing effect for particles occupying the same site, in which case they
would interact with an energy U (Fig. 1.1). In addition, we can include a chemical
potential term µ. A Hamiltonian describing such behavior can be written as

Ĥ = −t
∑
⟨i,j⟩,σ

(
â†i,σâj,σ + â†j,σâi,σ

)
+U

∑
i

(
n̂i,↑ −

1

2

)(
n̂i,↓ −

1

2

)
−µ

∑
i,σ

n̂i,σ, (1.1.4)

where ⟨i, j⟩ indicates that the sum extends only to nearest-neighbor sites and n̂i,σ :=

â†i,σâi,σ is the number operator. From the Hamiltonian, we can distinguish the kinetic
energy term,

Ĥt = −t
∑
⟨i,j⟩,σ

(
â†i,σâj,σ + â†j,σâi,σ

)
, (1.1.5)

the interaction term,

ĤU = U
∑
i

(
n̂i,↑ −

1

2

)(
n̂i,↓ −

1

2

)
, (1.1.6)

and the chemical potential term,

Ĥµ = −µ
∑
i,σ

n̂i,σ. (1.1.7)

Some additional interesting properties of the model are its symmetries. The Hub-
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1.2. Fermionic Gaussian states

Figure 1.1.: Graphic representation of the kinetic and interaction terms of the Hubbard
model on a square lattice.

bard Hamiltonian shows a conservation in the total particle number of the system.
In the absence of an external magnetic field, it also remains invariant under a spin
rotation transformation. Those correspond to a U(1) and SU(2) symmetry, respec-
tively. Additionally, let’s consider the particle-hole transformation

âi,σ → (−1)iâ†i,σ. (1.1.8)

Under such a transformation, both the kinetic Ĥt and the interaction ĤU terms of
the Hamiltonian remain unchanged. Therefore, the only term that would be affected
is the chemical potential one Ĥµ. That is, the total Hamiltonian will be modified as

Ĥt + ĤU + Ĥµ → Ĥt + ĤU − Ĥµ − 2µN (1.1.9)

with N the total number of sites. It is then easy to see from Eq. (1.1.9) that for
µ = 0, corresponding to the half-filling case [23], the Hamiltonian presents a particle-
hole symmetry which implies that the phase diagram of the Hubbard Hamiltonian
is symmetric around this half-filling configuration.

To conclude, we will briefly discuss some of the expected ground state configura-
tions in a square lattice. For repulsive interactions (U > 0), one expects the state
to be in an antiferromagnetic ground state, and for large values of U , the system is
expected to behave as if it was governed by a Heisenberg Hamiltonian. On the other
hand, for attractive (U < 0) and large interactions, we expect pairs of opposite spin
fermions to form a singlet on a site [24].

1.2. Fermionic Gaussian states

Following the procedure presented in Ref. [11], we introduce Gaussian states and
the formalism required to define them.

5



1. Theoretical Background

1.2.1. Majorana operators

The fermionic creation and annihilation operators introduced in Eq. (1.1.1) are usu-
ally known as Dirac operators and are not Hermitian. However, if we consider n
fermionic modes, we can define a Hermitian combination of those operators that
receive the name of Majorana operators:

ĉ2j−1 =
1√
2

(
â†j + âj

)
, ĉ2j =

−i√
2

(
â†j − âj

)
. (1.2.1)

It can be shown from Eq. (1.1.2) that Majorana operators satisfy the Clifford
algebra C2n

{ĉj, ĉk} = 2δjk ∀1 ≤ j, k ≤ 2n. (1.2.2)

Furthermore, they are traceless and any arbitrary element X̂ ∈ C2n can be ex-
pressed as a polynomial of Majorana operators:

X̂ = α1̂ +
2n∑
p=1

∑
1≤j1<...<jp≤2n

αj1,...,jp ĉj1 ...ĉjp (1.2.3)

with α, αj1,...,jp ∈ R. The parameter α is related to the trace of operator X̂

α =
1

2n
Tr

[
X̂
]
. (1.2.4)

A particularly interesting operator is the parity operator

P̂ =
N∏
i=1

∏
σ∈{↑,↓}

(1̂ − 2â†i,σâi,σ) = i2nĉ1ĉ2...ĉ2n, (1.2.5)

where N is the number of sites. We say that an operator X̂ is even (odd) if P̂ X̂ =

(−)X̂ or, analogously, if it involves only even (odd) powers of Majorana operators.

1.2.2. Grassmann algebra

Before properly defining Gaussian states, allow us to introduce Grassmann variables
and their algebra. Consider an n-dimensional complex linear space Cn and its basis
vectors θ1, ..., θn. Grassmann algebra with complex coefficients Gn is generated by
formal variables θ1, ..., θn subject to the following multiplication rules:

θ2j = 0, {θj, θk} = 0 ∀1 ≤ j, k ≤ n. (1.2.6)

An arbitrary element f ∈ Gn can be expressed as a polynomial of Grassmann vari-
ables

f(θ) = α +
n∑

p=1

∑
1≤ji<...<jp≤n

αj1,...,jpθj1 ...θjp , (1.2.7)

where we have defined θ := (θ1, ..., θn).

6



1.2. Fermionic Gaussian states

Partial derivatives of Grassmann variables are linear operators

∂

∂θj
: Gn → Gn (1.2.8)

defined by
∂

∂θj
1 = 0,

∂

∂θj
θk = δjk, (1.2.9)

and by the Leibniz’s rule

∂

∂θj
(θkf(θ)) = δjkf(θ)− θk

∂

∂θj
f(θ). (1.2.10)

Since the derivative ∂
∂θj
f(θ) no longer depends on θj, we can define integration as

a linear operator that acts as a derivative and maps Gn into Gn−1, i.e.,∫
dθj :=

∂

∂θj
: Gn → Gn−1. (1.2.11)

One interesting property of Grassmann variables is that one can map any poly-
nomial of Majorana operators to a polynomial ω(ĉj1 ĉj2 ...ĉjp , θ) of 2n Grassmann
variables

ω(ĉj1 ĉj2 ...ĉjp , θ) = θj1θj2 ...θjp (1.2.12)

ω(1̂2n×2n, θ) = 1. (1.2.13)

Since any operator X̂, can be expressed as a polynomial of Majorana operators
(Eq. (1.2.3)), one can also assign a polynomial of Grassmann variables to any op-

erator ω(X̂, θ), which receives the name of Grassmann representation of X̂. It is
interesting to emphasize that ω is just an isomorphism between spaces and is not
related to a multiplication in the algebras C2n and G2n

1.2.3. Definition of Gaussian states and the covariance matrix

Definition 1.1. A quantum state of n fermionic modes is Gaussian iff its density
operator ρ has a Gaussian Grassmann representation [11]

ω(ρ, θ) =
1

2n
exp

(
i

2
θTΓθ

)
(1.2.14)

for some 2n× 2n real antisymmetric matrix Γ and θ := (θ1, ..., θ2n)
T . The matrix Γ

is called a covariance matrix of ρ.

The covariance matrix can be found to be

Γjk =
i

2
Tr(ρ[ĉj, ĉk]) =

{
iTr(ρĉj ĉk) for j ̸= k

0 for j = k
(1.2.15)

Γ is the covariance matrix of a physical state iff iΓ− 1̂ ≤ 0, while pure states have
to fulfill Γ2 = −1̂ [13].

7



1. Theoretical Background

The covariance matrix can also be represented in the Dirac representation, in
which case we define it as

Γdir =

(
⟨â†j âi⟩ ⟨âj âi⟩
⟨â†j â

†
i⟩ ⟨âj â†i⟩

)
1≤i,j≤n

, (1.2.16)

where ⟨X̂⟩ is the expectation value of the operator X̂ for a system that is in a state

ρ, and is defined as ⟨X̂⟩ := Tr
(
ρX̂

)
.

By defining a unitary 2n× 2n transformation

Ω =



1 0 · · · 0 1 0 · · · 0
i 0 · · · 0 −i 0 · · · 0
0 1 · · · 0 0 1 · · · 0
0 i · · · 0 0 −i · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1
0 0 · · · i 0 0 · · · −i


(1.2.17)

such that c⃗ = Ωα⃗ with c⃗ = (ĉ1, ..., ĉ2n)
T and α⃗ =

(
â1, ..., ân, â

†
1, ..., â

†
n

)T

, we can

change between the two possible covariance matrix representations as [12]

Γ = −iΩ
(
2Γdir − 1̂

)
Ω†. (1.2.18)

1.2.4. Wick’s theorem

One of the most interesting properties of Gaussian states is that they satisfy the
Wick’s theorem which can be expressed in terms of the covariance matrix as

ipTr
(
ρĉj1 ...ĉj2p

)
= Pf(Γ|j1...j2p) with 1 ≤ j1 < ... < j2p ≤ 2n, (1.2.19)

where Γ|j1...j2p is the 2p × 2p submatrix of Γ that results from taking the rows and

columns of the corresponding indices jα and Pf(Γ|j1...j2p)2 = det
(
Γ|j1...j2p

)
is called

the Pfaffian.

By combining Wick’s theorem with the fact that every operator can be expressed
as a polynomial of Majorana operators, it becomes clear that all higher-order corre-
lations of a Gaussian state can be derived from its covariance matrix. Consequently,
a Gaussian state is fully characterized by its covariance matrix. This has a significant
implication: for a lattice of N sites with local dimension d, only O(N2) elements are
needed to describe a Gaussian state, in contrast to the O(dN) elements required to
describe a general state. The reduced number of elements necessary to specify the
state makes Gaussian states particularly well-suited for numerical calculations.

1.2.5. Quadratic Hamiltonians

Fermionic Gaussian states are tightly related to the study of quadratic Hamiltonians.
The most general quadratic Hamiltonian can be written in the Dirac representation

8



1.2. Fermionic Gaussian states

as

Ĥ =
n∑

i,j=1

tij â
†
i âj +

1

2

n∑
i,j=1

(
∆ij â

†
i â

†
j +∆∗

ij âiâj

)
, (1.2.20)

where the hermiticity of Ĥ requires the matrix t to be hermitian (tij = t∗ji) and the
matrix ∆ to be skew-symmetric (∆ij = −∆ji). Such a Hamiltonian can be more
compactly represented in matrix form as

Ĥ =
1

2
α⃗†Hα⃗ +

1

2
Tr (t) , (1.2.21)

where we have defined α⃗ =
(
â1, ..., ân, â

†
1, ..., â

†
n

)T

and

H =

(
t ∆

−∆∗ −t∗
)
. (1.2.22)

Similarly, a quadratic Hamiltonian can be written in terms of Majorana operators
as

Ĥ = i
2n∑

i,j=1

hij ĉiĉj, (1.2.23)

where h is a real and skew-symmetric matrix.

All Gaussian states remain Gaussian when evolving under the action of a quadratic
Hamiltonian, and its covariance matrix evolves according to

Γ (t) = O (t) Γ (0)O (t)T , (1.2.24)

where O (t) = e4ht is an orthogonal transformation [13].

Additionally, every pure fermionic Gaussian state is the ground state of a quadratic
Hamiltonian. In order to understand how to get the covariance matrix representing
the ground state of a certain quadratic Hamiltonian we can start from noticing that
the Hamiltonian matrix represented in Eq. (1.2.22) has a particle-hole symmetry,
manifested by

ΣHΣ = −H (1.2.25)

with

Σ =

(
0 1n×n

1n×n 0

)
K, (1.2.26)

where K performs the complex conjugation operation. Having that symmetry im-
plies that the eigenvalues of H are symmetric with respect to zero, i.e., one can
always find a unitary transformation B

B =

(
U V ∗

V U∗

)
(1.2.27)

such that

H = B

(
Λ 0
0 −Λ

)
B† (1.2.28)

with Λij = ϵiδij and ϵi ≥ 0 ∀i = 1, ..., n. The matrix B receives the name of

9



1. Theoretical Background

Bogoliubov transformation.

We can then further develop Eq. (1.2.21) and obtain

Ĥ =
1

2
α⃗†Hα⃗ +

1

2
Tr (t) =

1

2
α⃗†B

(
Λ 0
0 −Λ

)
B†α⃗ +

1

2
Tr (t)

=
1

2
δ⃗ †

(
Λ 0
0 −Λ

)
δ⃗ +

1

2
Tr (t) , (1.2.29)

where we have defined new fermionic eigenmodes as δ⃗ :=
(
d̂1, ..., d̂n, d̂

†
1, ..., d̂

†
n

)T

=

B†α⃗. By using these eigenmodes, the Hamiltonian is brought into a diagonal form

Ĥ =
1

2

n∑
i=1

(
ϵid̂

†
i d̂i − ϵid̂id̂

†
i

)
+

1

2
Tr (t)

=
n∑

i=1

ϵid̂
†
i d̂i −

1

2

n∑
i=1

ϵi +
1

2
Tr (t) . (1.2.30)

Since ϵi ≥ 0, the ground state will be the vacuum of d modes. By looking at
Eq. (1.2.16), it is easy to see that the covariance matrix of such a state in the
diagonal basis of eigenmodes is just

ΓD =

(
0 0

0 1̂

)
. (1.2.31)

Finally, since the same unitary transformation that diagonalizes the Hamiltonian
also diagonalizes the covariance matrix, we can recover the expression of the co-
variance matrix in terms of the original fermionic creation and annihilation modes
as

Γdir = BΓDB†. (1.2.32)

1.3. Tensor networks basics

Tensor network methods constitute one of the most relevant numerical techniques
for efficiently encoding the information of both wave functions and the operators
acting on them. Their main applications lie in the fields of quantum many-body
physics, quantum information, and machine learning.

In this section, we will introduce the fundamentals of tensor networks and one
of their most successful algorithms for ground state searching: the Density Matrix
Renormalization Group (DMRG).

1.3.1. Matrix Product States

In quantum mechanics, all the information describing a state is encoded in its wave
function. Given a lattice of N sites with local dimension d, a general state |ψ⟩ is

10



1.3. Tensor networks basics

determined by a tensor of O(dN) elements,

|ψ⟩ =
d∑

σ1,σ2,...,σN=1

T σ1σ2...σN |σ1⟩ |σ2⟩ ... |σN⟩ =:
∑
σ⃗

T σ⃗ |σ⃗⟩ , (1.3.1)

where we have defined σ⃗ := (σ1, σ2, ..., σN).

Matrix Product States (MPSs) provide an alternative way to represent a quantum
state using a set of tensors. These tensors are contracted through certain indices,
referred to as bond indices:

|ψ⟩ =
∑
σ⃗,χ⃗

[M1]
1,σ1
χ1

[M2]
χ1,σ2
χ2

...[MN ]
χN−1,σN

1 |σ⃗⟩ . (1.3.2)

where we have defined χ⃗ := (χ1, χ2, ..., χN−1). Each bond index χi will have a bond
dimension Di. If we define D := max({Di}), the required number of elements to
represent the state in MPS form is O(ND2d); see Fig. 1.2.

If we compare the required number of elements for both representations, we can
notice that, as long as the maximum bond dimension D remains small (does not
increase exponentially with the size of our system), the MPS representation offers
an exponential advantage with respect to the conventional representation. Some
notable examples where an exact MPS representation with small D is possible are
product states (D = 1) and the entangled state |GHZ⟩ (D = d).

In cases where an exact representation requires an exponentially increasing bond
dimension, an efficient approximation can usually still be found via a truncation
scheme. One of the simplest and most widely used truncation protocols consists of
the following:

1. Starting from our initial tensor T σ⃗ representing the state, we perform a singular
value decomposition (SVD) as

T σ1,α =

D1∑
χ1,χ′

1=1

Uσ1
χ1
Sχ1

χ′
1
V †χ′

1,α, (1.3.3)

where α = (σ2, ..., σN) is a compound index and D1 is the number of singular
values.

2. Choose a maximum bond dimension D < D1 and keep only the D largest

𝑀1 𝑀2 𝑀N𝑀N-1

𝜎1 𝜎2 𝜎N-1 𝜎N

𝜒1 𝜒2 𝜒N-1𝜒N-2

𝑇

𝜎1 𝜎2 𝜎N-1 𝜎N

𝑎) 𝑏)

Figure 1.2.: Comparison between the conventional diagrammatic representation of (a) a
state and (b) its MPS representation.
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singular values and their corresponding left- and right-singular vectors.

T σ1,α ≈
D∑

χ1,χ′
1=1

Ũσ1
χ1
S̃χ1

χ′
1
Ṽ †χ′

1,α. (1.3.4)

3. Define M1 := Ũ and T σ2,...,σN := S̃Ṽ †.

4. Iterate through the steps with the new tensor T until reaching the MPS form
of Eq. (1.3.2).

In addition to providing an effective representation of a state while keeping the
required number of elements to describe it manageable, MPSs also offer an efficient
contraction pattern when computing overlaps of the form

⟨ψ′|ψ⟩ =
∑

σ⃗,σ⃗′,χ⃗,χ⃗′

[M ′†
1 ]

χ′
1

1,σ′
1
...[M ′†

N ]
1
χ′
N−1,σ

′
N
[M1]

1,σ1
χ1

...[MN ]
χN−1,σN

1 ⟨σ⃗′|σ⃗⟩

=
∑
σ⃗,χ⃗,χ⃗′

[M ′†
1 ]

χ′
1

1,σ1
...[M ′†

N ]
1
χ′
N−1,σN

[M1]
1,σ1
χ1

...[MN ]
χN−1,σN

1 . (1.3.5)

The contraction pattern consists of an iterative method following these steps:

1. Compute the element C1 defined as

[C1]
χ′
1

χ1
:=

∑
σ1

[M ′†
1 ]

χ′
1

1,σ1
[M1]

1,σ1
χ1

. (1.3.6)

2. Iteratively compute the elements

[Cl]
χ′
l

χl =
∑

χ′
l−1,χl−1,σl

[Cl−1]
χ′
l−1

χl−1 [M
′†
l ]

χ′
l

χ′
l−1,σl

[Ml]
χl−1,σl
χl

, (1.3.7)

for each l.

3. Reach element [CN ]
1
1, which corresponds to the value of the desired overlap. A

visual representation of the protocol can be found in Fig. 1.3.

To conclude this introduction on MPSs, it is worth mentioning that any product
of matrices can be represented in infinitely many different ways without changing
the final result:

MM ′ = (MU)(U−1M ′) = M̃M̃ ′, (1.3.8)

with M̃ := MU and M̃ ′ := U−1M ′. This Gauge freedom allows us to express the
MPSs in particularly convenient ways, which receive the name of canonical forms.
Those canonical forms exploit the usage of isometries: linear transformations that
conserve the distance between points. A tensor A (B) is said to be left-(right-
)normalized if it is a left (right) isometry, i.e., it satisfies A†A = 1 (BB† = 1).
One of the most used MPS representations is the so-called site-canonical form,

which consists of the first l − 1 tensors being left isometries and the tensors from
l + 1 to the last one being right isometries. The tensor in position l is the only one
that is not an isometry and receives the name of orthogonality center.
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𝑀N𝑀1 𝑀2

𝜒1 𝜒2 𝜒N-1

𝑀†
N𝑀†

1 𝑀†
2

𝜎1 𝜎2𝜒'1

𝜎N𝜒'2 𝜒'N-1

~ ~ ~

𝐶
1

𝐶
2

𝐶
N

Figure 1.3.: Schematic representation of an efficient protocol for computing the overlap
between two states represented in MPS form.

If the orthogonality center is in the first (last) position and the state is normalized,
the orthogonality center is also a right (left) isometry. In that case, the MPS is said
to be in right-(left-)canonical form.
One can also express the orthogonality center as Cl = AlSlBl where Sl is a diagonal

matrix (e.g., through an SVD decomposition). Then, the MPS can be rewritten as
...Al−1ClBl+1... = ...Al−1AlSlB̃l+1... with B̃l+1 := BlBl+1 still being a right isometry.
This new form of the MPS receives the name of bond-canonical form. A graphic
representation of these canonical forms can be found in Fig. 1.4.

𝜎1 𝜎N

𝐴 𝐴 𝐴𝐴

𝜎1 𝜎N

𝐵 𝐵𝐵 𝐵

𝑎) 𝑐)

𝑑)𝑏)
𝜎ℓ

𝐵𝐵 𝐵𝐴 𝐴 𝐶ℓ

𝜒ℓ-1 𝜒ℓ

𝜒ℓ-1 𝜒ℓ𝜒'ℓ
𝜎ℓ

𝐵𝐵 𝐵𝑆𝐴 𝐴 𝐴 ~

Figure 1.4.: Graphic representation of the canonical forms of an MPS: (a) left-canonical,
(b) right-canonical, (c) site-canonical, (d) bond-canonical.

1.3.2. Matrix Product Operators

Following the same spirit of MPSs, we can define an specially convenient form for
describing the action of the operators: Matrix Product Operators (MPOs). Con-
ventionally, an operator that acts in a lattice of N sites with local dimension d will
require O(d2L) elements to be described:

Ô =
∑
σ⃗,σ⃗′

Oσ⃗
σ⃗′ |σ⃗⟩ ⟨σ⃗′| . (1.3.9)

Alternatively, operators can also be described through an MPO,

Ô =
∑
σ⃗,σ⃗′,χ⃗

[W1]
1,σ1

χ1,σ′
1
[W2]

χ1,σ2

χ2,σ′
2
...[WN ]

χN−1,σN

1,σ′
N

|σ⃗⟩ ⟨σ⃗′| . (1.3.10)
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𝑊1 𝑊2 𝑊N

𝜎1 𝜎2 𝜎N

𝜎'1 𝜎'2 𝜎'N

𝜒1 𝜒2

𝑂

𝜎1 𝜎2 𝜎N-1 𝜎N

𝜎'1 𝜎'2 𝜎'N-1 𝜎'N

𝑎) 𝑏)

Figure 1.5.: Comparison between the conventional diagrammatic representation of (a) an
operator and (b) its MPO representation.

The required number of elements to store the information of an MPO is O(Nw2d2),
where we have defined w as the maximum bond dimension (Fig. 1.5). In our case,
we will be specially interested in the MPO of a certain Hamiltonian. For short-
ranged Hamiltonians, a small value of w is typically enough to obtain an exact
representation of its action.
One of the key advantages of using MPOs is their strong synergy with MPSs, since

applying an MPO to an MPS produces a resulting state that remains in MPS form.
Additionally, an analogous protocol to the one described to compute overlaps ⟨ψ′|ψ⟩
can be adopted to compute expected values ⟨ψ| Ô |ψ⟩, as long as all the elements
are on their corresponding MPS or MPO form.

1.3.3. Density Matrix Renormalization Group

The Density Matrix Renormalization Group (DMRG) is a highly successful and
widely-used numerical method in the field of tensor networks. It is designed to
iteratively search for the ground state of a given Hamiltonian. This method was
originally developed by Steve R. White [1].
In order to perform a DMRG calculation, we need to start by obtaining the MPS

and MPO representations of an initial state and the Hamiltonian, respectively. Now,
we consider the space of all MPSs of a given bond dimension D as a variational space
and the objective is to find the ground state, i.e. the state |ψ⟩ that minimizes the
energy,

E =
⟨ψ| Ĥ |ψ⟩
⟨ψ|ψ⟩

. (1.3.11)

Additionally, the normalization requirement adds an extra constraint into our
minimization problem, which will be taken into account through a Lagrangian mul-
tiplier. Therefore, the quantity to be minimized is

⟨ψ| Ĥ |ψ⟩ − λ ⟨ψ|ψ⟩ . (1.3.12)

A key insight of DMRG is its iterative approach to solving the optimization prob-
lem. The idea is to assume that all tensors in the MPS remain fixed, except for
the one at position l. By optimizing the tensor at this position, a state with lower
energy can be found, although it may not yet be the optimal ground state. The
process then involves updating the tensor at site l with its variationally optimized
version, moving to site l + 1, and treating that tensor as the one to be updated.
This cycle is repeated until the energy no longer decreases when moving to a new
site. The efficiency of the method is significantly enhanced by reshaping the MPS
into a site-canonical form where the orthogonality center is aligned with the tensor
being optimized.

14



1.3. Tensor networks basics

Considering that the MPS is in site-canonical form, the detailed description of a
single tensor update during a left-to-right sweep is

1. Set the minimization equation of Eq. (1.3.12) subject to the constraint of all
tensors except from the one in site l, Cl, being constant:

∂

∂C†
l

[
⟨ψ| Ĥ |ψ⟩ − λ ⟨ψ|ψ⟩

]
= 0, (1.3.13)

2. Define an effective Hamiltonian [Ĥ(1)]a
′

a such that Eq. (1.3.13) can be seen as
an eigenvalue problem:

[Ĥ(1)]a
′

a [Cl]
a = λ[Cl]

a′ , (1.3.14)

where a and a′ are composite indices.

This can be done partly thanks to the MPS being in site-canonical form with
the orthogonality center in site l.

3. Solve the eigenvalue problem, get the eigenvector C̃l with the lowest eigenvalue
and substitute Cl → C̃l. The effective Hamiltonian is a matrix of O(D2d ×
D2d) elements, and therefore performing an exact diagonalization is typically
non-convenient. As we are just interested in the eigenvector with the lowest
eigenvalue, it is highly advisable to use a method that targets that eigenvalue,
such as the Lanczos method [25].

4. Move the orthogonality center towards the next site, i.e., perform an SVD
decomposition C̃l = USV † and redefine the MPS tensor in site l as Ãl := U
and the one in site l + 1 as Cl+1 = SV †Bl+1.

A graphic representation of some of the key elements of this update can be found in
Fig. 1.6.
DMRG can be initialized with an arbitrary state far from the real ground state

and, after enough iterations of the variational optimization process, the method
will eventually converge to a certain energy value. However, the final state is not
guaranteed to correspond to the real ground state. That is, DMRG has a probability
to fall into local minima.
The protocol described in this section corresponds to a single-site update and it

only considers the variational space of MPSs with a fixed bond dimension D. This
implies, among other things, that if the initial state lies in a different symmetry
sector than the true ground state, the one-site DMRG cannot expand the variational
space to explore new symmetry sectors. As a result, the likelihood of converging to
a local minimum is significant. To mitigate this risk, an alternative known as the
two-site DMRG has been proposed, where the update involves two adjacent tensors
simultaneously. This approach allows the method to increase the bond dimension D
if necessary, enhancing accuracy and reducing the probability of getting trapped in a
local minimum. However, the computational cost of the two-site update (O(D3d3 +
D3d2w)) is also considerably higher than that of the one-site update (O(D3dw +
D2d2w2)).
Alternative methods to increase the performance of one-site DMRG without in-

creasing the computational cost to that of two-site DMRG by exploiting symmetries
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𝐶ℓ 𝐶ℓ

Àλ 0=

𝜎
𝛽
𝜎

α

𝜎'
α' 𝛽'

=
𝑎

𝑎'

𝜎
α 𝛽

𝜎
α

𝐶ℓ

𝜎'
α' 𝛽'

α' 𝛽'

𝜎'

𝐶ℓ

λ=

~
𝐴ℓ-1 𝐵ℓ+1𝐶ℓ

~
𝐴ℓ 𝐶ℓ+1

𝑎)

𝑏)

𝑐)

𝑑)

𝑒)

Figure 1.6.: Graphic representation of some of the elements used on the description of a
single-site DMRG update. (a) Eq. (1.3.13), (b) effective Hamiltonian [Ĥ(1)]a

′
a

with a = (α, σ, β) and a′ = (α′, σ′, β′), (c) Eq. (1.3.14), (d) updated MPS, (e)
MPS with shifted orthogonality center.

and quantum numbers have been suggested. Some of those are density matrix per-
turbation [2], the center matrix wave function formalism [3], subspace expansion [4]
and controlled bond expansion (CBE) [5]. The results shown in Chapter 3 have been
obtained via either two-site or CBE DMRG.
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The main idea of this thesis is to develop a method to improve the performance of
the DMRG algorithm by using a fermionic Gaussian state approximation of the real
ground state as the initial variational ansatz.
During this chapter, we first describe how to get the best Gaussian state ap-

proximation to the ground state for a Hubbard-like model. Additionally, since the
variational ansatz of the DMRG algorithm is an MPS, we also describe how to com-
press an arbitrary Gaussian state into its MPS form. To conclude, we introduce the
implemented algorithm used to obtain the results shown in Chapter 3.

2.1. Generalized Hartree-Fock Theory

When studying the physics and the arising phenomena of many-body fermionic
systems, the most well-known tools are Hartree-Fock and Bardeen, Cooper and
Schrieffer (BCS) theory.
The usual Hartree-Fock theory for an N -particle system constitutes a mean-field

theory approximation. It considers that the ground state can be approximated to
a Slater determinant formed from N orthonormal, single-particle functions. One
starts with a state of that shape and optimizes these single-particle functions to
minimize the energy of the total state. The resulting state usually breaks some
symmetries from the Hamiltonian, such as translation invariance. In BCS theory, a
violation of the particle-number conservation is also permitted (even though parity
is still preserved) as long as it allows us to reduce the energy [26].
These two theories can be unified under a more general one: the generalized

Hartree-Fock theory. The key insight for doing so is realizing that both Hartree-
Fock and BCS states belong to the family of fermionic Gaussian states, described
in Sec. 1.2. In this section, we describe how to obtain the covariance matrix of the
state that best approaches the real ground state of the system under study. This
method follows the steps outlined by Kraus et al. [13].

2.1.1. Ground state search

We start by considering a fermionic system in a lattice governed by a Hamiltonian
of the form

Ĥ = i
∑
j,k

Tjkĉj ĉk +
∑
j,k,l,m

Ujklmĉj ĉkĉlĉm, (2.1.1)

where each ĉi is a Majorana operator, T is a matrix satisfying T = −T T , and U is a
tensor antisymmetric under the exchange of two adjacent indices. We can identify
two distinct terms: a quadratic term,

Ĥq = i
∑
j,k

Tjkĉj ĉk, (2.1.2)
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and an interaction or quartic term,

ĤI =
∑
j,k,l,m

Ujklmĉj ĉkĉlĉm. (2.1.3)

It is easy to notice that the Hubbard Hamiltonian constitutes a particular case of
the Hamiltonian in Eq. (2.1.1).
In principle, the fermionic Gaussian state approximation to the ground state could

be found via a direct minimization of the energy,

min
ρ Gaussian

Tr
(
ρĤ

)
= min

iΓ≤1̂

{∑
i,j

TijΓij − 3
∑
i,j,k,l

UijklΓijΓkl

}
, (2.1.4)

where we have used the expression of the covariance matrix from Eq. (1.2.15) and
that Wick’s theorem allows us to write

⟨ĉiĉj ĉkĉl⟩ = −(ΓijΓkl − ΓikΓjl + ΓilΓjk). (2.1.5)

Generally, solving that problem is analytically non-trivial and numerically de-
manding. Therefore, we employ a distinct strategy: we aim to find the ground state
via an imaginary time evolution. Every Gaussian state remains Gaussian through
a time evolution under a quadratic Hamiltonian. However, due to the presence of
the interacting term ĤI , the time evolution will drive the state out of the set of
Gaussian states. In order to avoid that, two approaches can be considered:

1. Evolve the state under the full Hamiltonian for a short amount of time ∆t and
then projecting the resulting state ρ(t+∆t) back to the set of Gaussian states.

2. It can be shown that the real time evolution of the covariance matrix can be
viewed as an evolution under a quadratic but state-dependent Hamiltonian of
the form

ĤQ = i
∑
j,k

h̄(Γ(t))jkĉj ĉk, (2.1.6)

where h̄(Γ(t)) is defined as

h̄(Γ(t)) := T + 6TrB[UΓ(t)], (2.1.7)

with TrB(UΓ)ij :=
∑

kl UijklΓlk [13]. Then, we can perform the imaginary
time evolution of the state under such a quadratic but state-dependent Hamil-
tonian. Since the considered Hamiltonian is indeed quadratic, the Gaussian
state remains Gaussian throughout the entire evolution, eliminating the need
for projection at each time step. However, the Hamiltonian now depends on
the evolving state, requiring it to be updated according to the new state at
every time step of the process.

For obtaining the imaginary time evolution equations, we start by considering the
imaginary time evolved Gaussian state

ρ(τ) =
e−Ĥτρ(0)e−Ĥτ

Tr
[
e−2Ĥτρ(0)

] , (2.1.8)
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which leads to the following time evolution equation:

d

dτ
ρ(τ) = −{Ĥ, ρ(τ)}+ 2ρ(τ) Tr

[
Ĥρ(τ)

]
. (2.1.9)

Following the time evolution equation of the density operator, we can find the one
from the covariance matrix to be

d

dτ
Γjk(τ) =

i

2

d

dτ
Tr [ρ(τ)[ĉj, ĉk]]

= −iTr
[
{Ĥ, ĉj ĉk}ρ(τ)

]
+ 2Γjk Tr

[
Ĥρ(τ)

]
(2.1.10)

Now, regardless of whether we consider the Hamiltonian to be the quadratic but
state-dependent Hamiltonian ĤQ or we follow the approach where we consider the
interacting Hamiltonian and project the state back to the set of Gaussian states for
each small time step, the evolution equation of the covariance matrix can be found
to be described by

d

dτ
Γ(τ) = −4(Γh̄(Γ)Γ + h̄(Γ))

= [A(Γ),Γ], (2.1.11)

where we have used that for a pure Gaussian state Γ2 = −1 and defined

A(Γ) := 2[h̄(Γ),Γ]. (2.1.12)

It is interesting to note that any pure state remains pure under an evolution
through Eq. (2.1.11) since

d

dτ
Γ2 = Γ

dΓ

dτ
+

dΓ

dτ
Γ = −4(Γ2h̄Γ + Γh̄+ Γh̄Γ2 + h̄Γ) = 0, (2.1.13)

where we used that all pure Gaussian states fulfill Γ2 = −1. Furthermore, we can
also observe that the energy of the state always decreases under such an evolution:

d

dτ
E(τ) =

∑
jk

∂E

∂Γjk

d

dτ
Γjk =

∑
jk

h̄(Γ)jk
d

dτ
Γjk

= 4Tr
[
h̄(Γh̄Γ + h̄)

]
= 2Tr

[
[h̄,Γ]2

]
≤ 0, (2.1.14)

where we have used that [h̄,Γ] is antisymmetric and, therefore, [h̄,Γ]2 is negative-
definite. This energy evolution is interesting because it implies that the state reaches
a stationary point iff [h̄,Γ] = 0, which suggests us a possible convergence criterion
for the imaginary time evolution.

To conclude, if we start from a pure state, Eq. (2.1.11) can be formally integrated.
Its solution is given by

Γ(t) = O(t)Γ(0)O(t)T (2.1.15)

with

O(t) = T exp

(∫ τ

0

A(Γ(τ ′))dτ ′
)
, (2.1.16)
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where T is the time-ordering operator.

2.2. MPS conversion of Gaussian states

The ultimate goal is to use our Gaussian state approximation of the ground state as
the initial state for the DMRG algorithm. To achieve this, it is essential to obtain its
representation in MPS form. We start by recalling that in the Dirac representation,
the covariance matrix of a Gaussian state is given by

Γdir =

(
⟨â†j âi⟩ ⟨âj âi⟩
⟨â†j â

†
i⟩ ⟨âj â†i⟩

)
1≤i,j≤n

. (2.2.1)

Since our state is pure, it will be the ground state of a quadratic Hamiltonian.
Our strategy will then consist on finding the ground state MPS of our Gaussian
state’s parent Hamiltonian.

2.2.1. Covariance matrix with vanishing off-diagonal terms

We start by evaluating the case in which the pairing terms of the covariance matrix
are absent, i.e., ⟨âj âi⟩ = ⟨â†j â

†
i⟩ = 0 ∀i, j. The parent Hamiltonian will be of the

form

Ĥ =
n∑

i,j=1

tij â
†
i âj, (2.2.2)

where n is the number of fermionic modes. The Hamiltonian corresponds to the free
fermions case and its diagonalization through a unitary transformation U leads to

Ĥ =
n∑

i,j,k,l=1

â†iUikϵkδklU
†
lj âj =

n∑
k=1

ϵkd̂
†
kd̂k, (2.2.3)

where we have defined the eigenmodes d̂k :=
∑n

j=1 U
†
kj âj. Now, let’s assume that

the first m eigenmodes have negative eigenenergy, i.e., ϵk < 0 for 1 ≤ k ≤ m. Then,
the ground state is given simply by

|GS⟩ =
m∏
k=1

d̂†k |0⟩ . (2.2.4)

Since we have access to the covariance matrix of the ground state and the same
unitary transformation that diagonalizes the Hamiltonian is the one that diago-
nalizes the covariance matrix, we can obtain the occupied eigenmodes simply by
diagonalizing its upper-left block,

γij := ⟨â†j âi⟩ =
n∑

k=1

UiknkU
†
kj, (2.2.5)

where nk = 1 for 1 ≤ k ≤ m and nk = 0 for m < k ≤ n.
It follows from Eq. (2.2.4), that in order to build the MPS of the ground state,

we need to successively apply the MPOs of each occupied eigenmode to the MPS
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2.2. MPS conversion of Gaussian states

of the vacuum state. However, the lowest possible bond dimension for any MPO
representing one of the occupied eigenmodes is 2, which means that the final bond
dimension of the ground state MPS will be 2m. As this number is typically large,
we will need a truncation scheme to keep a manageable bond dimension D ≪ 2m.
A popular strategy consists on, after each MPO application:

1. Bring the MPS into right-canonical form.

2. Perform an SVD decomposition on the orthogonality center Cl = USV † while
only keeping the D largest singular values.

3. Shift the orthogonality center, i.e., Cl → Al = U and Bl+1 → Cl+1 = SV †Bl+1,
where A and B are left and right isometries, respectively.

4. Repeat steps 2 and 3 until reaching the last site.

5. When the orthogonality center reaches the last site, perform an additional SVD
CN = USV † and just update CN → AN = U . That ensures that the state
after the truncation is normalized and in left-canonical form.

As a result of truncating the bond dimension, an error on the MPS representation
is introduced. In order to reduce such truncation error, it is highly advisable to
express the eigenmodes through Wannier orbitals. This operators are more localized
in space as they correspond to the eigenstates of the position operator projected onto
the space of occupied modes [27]. The position operator is given by X̂ =

∑n
k=1 kâ

†
kâk

and its projection in the eigenmode basis is simply

Xij = ⟨0| d̂iX̂d̂†j |0⟩ =
n∑

k=1

kU †
ikUkj. (2.2.6)

Being V the unitary matrix that diagonalizes the position operator, we can now
define the Wannier orbitals as

f̂l =
m∑
k=1

V †
lkd̂k =

m∑
k=1

n∑
j=1

V †
lkU

†
kj âj. (2.2.7)

Now, it can be shown that the ground state in terms of the Wannier orbitals is just

|GS⟩ =
m∏
k=1

d̂†k |0⟩ =
m∏
k=1

f̂ †
k |0⟩ . (2.2.8)

In order to find the MPO representation of the Wannier orbitals we have to take
into account that in the spin-1/2 there are 2 possible fermionic modes per site. If

we do the transformation â†2j−1(2j) → â†j,↑(j,↓), the Wannier orbitals can be written as

f̂ †
k =

N∑
j=1

(
[UV ]2j−1,kâ

†
j,↑ + [UV ]2j,kâ

†
j,↓

)
, (2.2.9)

where N is the total number of sites. Then, the MPO representing each Wannier
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2. Method: State initialization

orbital will simply be

f̂ †
k =

(
0̂ 1̂

) N∏
l=1

W
[k]
l

(
1̂
0̂

)
, (2.2.10)

with

W
[k]
l =

(
1̂l 0̂l

[UV ]2l−1,kâ
†
l,↑ + [UV ]2l,kâ

†
l,↓ Ẑl

)
, (2.2.11)

and

Ẑl =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


l

(2.2.12)

being the parity operator acting on site l.
To conclude, we simply need to apply the MPOs of the Wannier orbitals succes-

sively. In practice, it has been observed that to minimize truncation errors further,
it is more effective to apply them in a ”left-meet-right” order [28]. This approach in-
volves alternately applying the operators localized at the edges and gradually moving
toward the center (Fig. 2.1).

𝑀1 𝑀2

...

𝑀N𝑀N-1 j0i
𝑓1
^

𝑓N
^

𝑓2
^

Figure 2.1.: Graphic representation of the method to obtain the Fermi sea ground state
via the successive application of the MPOs representing Wannier orbitals to
the MPS of the vacuum state. The MPOs are applied in the ”left-meet-right”
order.

2.2.2. General case

In the general case, the parent Hamiltonian corresponds to the one introduced in
Eq. (1.2.20). As stated in Sec. 1.2.5, the ground state of such Hamiltonian is the
vacuum of its eigenmodes, which receives the name of Bogoliubov vacuum. Our
goal is then to find an efficient MPS representation of such state. We will follow the
method described in Jin et al. [29].
Consider that we have N fermionic modes and we divide the system in two

subsystems A and B. Being A the subsystem composed by M fermionic modes
i = 1, 2, , ...,M , the covariance matrix of its reduced density operator will take the
form

Γdir
A =

(
⟨â†j âi⟩ ⟨âj âi⟩
⟨â†j â

†
i⟩ ⟨âj â†i⟩

)
1≤i,j≤M

. (2.2.13)

The Bogoliubov transformation of the reduced subsystem diagonalizes the Hamil-
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2.2. MPS conversion of Gaussian states

tonian and is given by

BA =

(
UA V ∗

A

VA U∗
A

)
(2.2.14)

where UA and VA are matrices satisfying the relations U †
AUA+V

†
AVA = 1 and U †

AV
∗
A+

V †
AU

∗
A = 0. Those relations are a direct consequence of the unitarity of BA. The

Bogoliubov transformation defines the eigenmodes of the system as

d̂A,k =
M∑
j=1

(
â†j[VA]

∗
jk + âj[UA]

∗
jk

)
, (2.2.15)

which bring the covariance matrix into diagonal form,

Γdir
A = BA

(
ΛA 0
0 1 − ΛA

)
B†

A, (2.2.16)

where [ΛA]ij = λiδij and λi ∈ [0, 1] ∀i. The eigenvalues i-th and (M + i)-th are then
paired and their corresponding eigenvectors are the i-th and (M + i)-th columns of
the Bogoliubov transformation. An interchange of those columns in the Bogoliubov
matrix correspond to a particle-hole transformation d̂†A,i ↔ d̂A,i.
It can be seen from the diagonalized covariance matrix that the eigenmodes allow

to express the density operator as

ρ̂A =
M∏
k=1

[
λkd̂

†
A,kd̂A,k + (1− λk)d̂A,kd̂

†
A,k

]
. (2.2.17)

The eigenstates of the density operator are the Fock states of dA modes,

|mA⟩ = (d̂†A,1)
m1 ...(d̂†A,M)mM |0⟩dA , (2.2.18)

where |0⟩dA is the vacuum of dA modes, mi ∈ 0, 1 is the occupation number of the
i-th eigenmode and mA = m1,m2, ...,mM labels each Fock state. These Fock states
can also be expressed in terms of the Fock states of the subsystem A − 1, defined
as the subsystem A with the M -th mode excluded and the local space of the M -th
mode,

|mA⟩ =
∑
mA−1

∑
nM=0,1

[CA]
mA−1,nM
mA

|mA−1⟩ |nM⟩ , (2.2.19)

where |nM⟩ = (â†)nM |0⟩ and

[CA]
mA−1,nM
mA

= (⟨nM | ⊗ ⟨mA−1|) |mA⟩ . (2.2.20)

Therefore, by starting with a subsystem of only one fermionic mode and iteratively
increasing its size one by one, we can get an MPS expression for our ground state

|GS⟩ = |0⟩dN
=

∑
m⃗,n⃗

[CA]
n1
m1

[CA]
m1,n2
m2

...[CA]
mA−2,nN−1
mA−1

[CA]
mN−1,nN

0 |n1⟩ |n2⟩ ... |nN−1⟩ |nN⟩ ,

(2.2.21)
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2. Method: State initialization

where m⃗[n⃗] = (m1, ...,mN−1)[(n1, ..., nN)]. Hence, the problem has been reduced to
the computation of certain overlaps. It is interesting to highlight that, thanks to the
possibility of performing a particle-hole transformation by interchanging the proper
columns of the Bogoliubov transformation, any Fock state can be expressed as the
vacuum of the appropriate Bogoliubov transformation. Consequently, it is enough
to explain how to calculate the overlaps between Bogoliubov vacua, i.e., of the form(
⟨nM | ⊗ ⟨0|dA−1

)
|0⟩dA .

Before explaining how to calculate those overlaps, we can notice that the bond
dimension of our MPS scales exponentially with the size of the system. In order to
avoid that, a truncation protocol is required. We introduce two possible schemes:

• Gaussian truncation. It consists on setting a small truncation value ϵ such that
if λi < ϵ (λi > 1− ϵ) for some i, we will only consider the Fock states in which
that i mode is empty (occupied), reducing by a factor of 2 the bond dimension
per every value λi that satisfies one of this two conditions. This truncation
protocol preserves the Gaussian nature of the state.

• SVD truncation. We compute the density operator eigenvalues for each Fock
state and only keep the Fock states associated with the largest ones. This
protocol is more precise than Gaussian truncation, but it can be more compu-
tationally expensive.

For the results shown in Chapter 3, we used a mixed approach. We did a preselection
of D′ Fock states by using the Gaussian truncation. Afterward, we computed its
associated density operator eigenvalues and keep those with the D < D′ largest
ones.

Now we can start to explain how to properly compute overlaps of the shape of
Eq. (2.2.20), where the main difficulty arises from the fact that |mA−1⟩ and |mA⟩
are built over two different Bogoliubov vacua. We start by introducing the Bloch-
Messiah decomposition [30], which allows to write the matrices UA and VA from the
Bogoliubov transformation as UA = DAŪACA and VA = D∗

AV̄ACA, where DA and
CA are unitary matrices and ŪA and V̄A are of the form

ŪA =

1
⊕kupσ

0

0

 , V̄A =

0
⊕kivpσ

y

1

 (2.2.22)

with up and vp satisfying u2p + v2p = 1 and up, vp ≥ 0, and σ0 and σy being the
2 × 2 identity and Pauli-Y matrix, respectively. A detailed explanation on how to
numerically perform this decomposition can be found in Appendix A.

After performing the Bloch-Messiah decomposition, the Bogoliubov transforma-
tion can be expressed as

B =

(
DA 0
0 D∗

A

)(
ŪA V̄A
V̄A ŪA

)(
CA 0
0 C∗

A

)
, (2.2.23)

which allow the dA modes to be seen as the result of three successive canonical

24



2.3. Description of the algorithm

transformations(
d̂†A d̂A

)
=

(
â† â

)(DA 0
0 D∗

A

)(
ŪA V̄A
V̄A ŪA

)(
CA 0
0 C∗

A

)
, (2.2.24)

where the operators without indices represent row vectors, e.g., â† = (â†1, ..., â
†
M).

To help us understand the structure of the Bogoliubov vacua, we can define the b
modes as b̂† = â†DA. Then, we can see that the identity block 1 (null block 0) in
V̄A corresponds to fully occupied (empty) b modes in the vacuum |0⟩dA . As a and b
modes share the same vacuum, we can rewrite the Bogoliubov vacuum as [31]

|0⟩dA =
∏
k∈O

b̂†k
∏
p∈P

(up + vpb̂
†
pb̂

†
−p) |0⟩a (2.2.25)

where O (P ) denotes the set of fully occupied (paired) b modes. We can now define

f modes as f̂ = b̂†V̄A + b̂ŪA = â†DAV̄A + âD∗
AŪA and rewrite Eq. (2.2.25) as

|0⟩dA =
1∏

p∈P vp

∏
k∈O

f̂k
∏
p∈P

f̂pf̂−p |0⟩a . (2.2.26)

We can find an analogous expression for |0⟩dA−1
which allows us to write

|0⟩dA−1
|nM⟩ = 1∏

p∈P ′ v′p

∏
k∈O′

f̂ ′
k

∏
p∈P ′

f̂ ′
pf̂

′
−p(f̂

′
M)nM |0⟩a , (2.2.27)

where we have defined f̂ ′
M := â†M and, in general, f̂ ′ = â†D′

AV̄
′
A + âD′∗

AŪ
′
A with

D′
A = DA−1 ⊕ 1, Ū ′

A = ŪA−1 ⊕ (1− nm), V̄ ′
A = V̄A−1 ⊕ nm. (2.2.28)

Finally, we can compute the overlap as

⟨nM | ⊗ ⟨0|dA−1
) |0⟩dA = (−1)M̄(M̄−1)/2Pf

(
V̄ ′T
A Ū ′

A V̄ ′T
A D′†

ADAV̄A
−V̄ T

AD
T
AD

′∗
AV̄

′
A ŪT

A V̄A

)
, (2.2.29)

where M̄ correspond to the number of f ′ modes and the matrices within the Pfaffian
only contain the rows and columns corresponding to the fully occupied and paired
f modes [32].

2.3. Description of the algorithm

In this section, a detailed description of the algorithm used to obtain the MPS
representation of the initial Gaussian state is provided.
The main steps of the algorithm are:

1. Find matrices T and U such that the Hamiltonian in Eq. (2.1.1) corresponds to
the Hubbard Hamiltonian with our desired values for the hopping t, interaction
U and chemical potential µ terms.

2. Obtain the covariance matrix representing the ground state of the quadratic
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2. Method: State initialization

term of our Hamiltonian. This is done by following the procedure described in
Sec. 1.2.5.

The obtained covariance matrix will be used as the initial state for the imag-
inary time evolution. Since the evolution takes place under the action of an
effective quadratic Hamiltonian, the only quantum number that will be pre-
served is the parity. Therefore, it is vital that our initial Gaussian state lies
in the same symmetry sector as the final ground state. If we are performing
a calculation for µ = 0, the ground state will correspond to the half-filling
setting and, therefore, the parity corresponds to that of the number of sites.
However, for µ ̸= 0 it is typically non-trivial to know before-hand the parity of
the final state. In that case, it is advised to generate both an even and an odd
covariance matrix and check which of the converged states has a lower energy.

The parity of the fermionic Gaussian state with covariance matrix Γ can be
obtained through the Wick’s theorem as P = Pf(Γ). One can obtain a covari-
ance matrix representing a state with the opposite parity by defining a matrix
U := diag(1, 1, ..., 1,−1) and computing Γ̃ = UΓU †.

3. Perform the imaginary time evolution with

Γ(τ +∆τ) = O(∆τ)Γ(τ)O(∆τ)T , O(∆τ) = exp(A(Γ(τ))∆τ). (2.3.1)

In our case, we have used time steps whose length decays logarithmically to
accelerate the initial part of the time evolution. As our convergence criteria,
we choose a small value ϵit and assume that the evolution has converged when
two conditions are met:

• The energy difference between the two last time steps ∆E satisfies ∆E <
ϵit.

• The Frobenius norm of the matrix [h̄,Γ] satisfies ∥[h̄,Γ]∥F < ϵit, where Γ
is the covariance matrix and h̄ is the matrix defined in Eq. (2.1.7).

4. Transform the converged covariance matrix into its Dirac representation.

5. Compute the Frobenius norm of one of its off-diagonal blocks, e.g., ∥⟨⃗aa⃗T ⟩∥F
with a⃗ = (â1, â2, ...., âN)

T .

6. Set a small parameter ϵMPS. If ∥⟨⃗aa⃗T ⟩∥F < ϵMPS, we compress the Gaus-
sian state into an MPS using the Fermi sea approach described in Sec. 2.2.1.
Otherwise, we follow the Pfaffian method introduced in Sec. 2.2.2.

7. Due to the accumulation of numerical errors, the covariance matrix in the
Dirac representation can have some coefficients with non-vanishing imaginary
terms. In that case, the final MPS will also have complex entries, which can
significantly increase the computation time of the DMRG calculation. In order
to avoid that we realize that, since the Hamiltonian is Hermitian, given a
ground state |ψ0⟩ with complex entries, we can define another state |ψ′

0⟩ :=
1/
√
2(|ψ0⟩ + |ψ∗

0⟩) such that it has the same energy. In terms of MPS, each
tensor M ′

l of |ψ′
0⟩ will be

M ′
l =

1√
2
(Ml ⊕M∗

l ) =
1√
2

(
Ml 0
0 M∗

l

)
(2.3.2)
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with Ml being the site l tensor of the MPS representation of |ψ0⟩ and the
matrix indices being the bond indices χl−1 and χl. If we split each tensor Ml

into its real MR
l and imaginary M I

l parts, we can write

M ′
l =

1√
2

(
MR

l + iM I
l 0

0 MR
l − iM I

l

)
=

1√
2
(1 ⊗MR

l + iσZ ⊗M I
l ) (2.3.3)

with σZ being the Pauli-Z matrix.

Finally, we can apply a π/2-rotation around the X- axis,

M ′
l =

1√
2
(1 ⊗MR

l + ie−iπ
4
σX

σZei
π
4
σX ⊗M I

l ) =
1√
2
(1 ⊗MR

l − iσY ⊗M I
l )

=

(
MR

l −M I
l

M I
l MR

l

)
, (2.3.4)

such that all the entries of M ′
l are real.

8. Initialize the DMRG calculation with the computed MPS as the initial state.
In our case, we have used both two-site and CBE DMRG for obtaining the
results of Chapter 3.

9. Compute and store the energy, the local density distribution and the local spin
distribution of the state after each sweep has been completed. That is done to
have a better understanding on the ground state search process.

10. Continue the DMRG calculation until one of the two following events takes
place: a maximum number of sweeps previously set is reached, or a convergence
criterion is met.

In our implementation, we allow to choose between a fixed or an adaptive
maximum bond dimension. If the maximum bond dimension is fixed, the
convergence criterion consists on setting a value ϵ1 such that if the energy
difference between the last two sweeps ∆E is smaller than that value, DMRG
stops. If the maximum bond dimension is allowed to increase, the algorithm
does not stop when ∆E < ϵ1. Instead, it increases the maximum allowed bond
dimension. For this scenario, we introduce a second threshold value ϵ2. If
the energy difference between the last sweep at the current maximum bond
dimension and the last sweep at the previous maximum bond dimension is
smaller than ϵ2, the DMRG algorithm stops.
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3. Numerical results

In this chapter, we present some benchmarks of the fermionic Gaussian state MPS
obtention procedure, showing the accuracy of the imaginary time evolution and its
posterior MPS conversion. Additionally, we compare the DMRG ground state search
performance when initialized with either a product or a Gaussian state. The DMRG
algorithms used for the comparison are two-site and CBE DMRG. We examine two
scenarios: one where the ground state is at half-filling and another corresponding to
the 1/8-hole-doped configuration.

3.1. Benchmarks for the initial fermionic Gaussian state MPS
obtention

We started by conducting some benchmarks to guarantee that the method employed
to obtain the fermionic Gaussian state MPS used to initialize DMRG works appro-
priately.
First, we compared the imaginary time evolution result to the one obtained via

direct minimization of Eq. (2.1.4). It is shown in Ref. [26] that for the attractive
Hubbard model in a lattice of size n×n and with periodic boundary conditions, the
best variational energy of a fermionic Gaussian state is given by

E(µ) = min
d2≤η

{
−Tr

[√
h20 + 2Udh0 + U2η

]
− Uηn2

}
− µn2, (3.1.1)

where d and η are the optimization parameters, U and µ are the interaction and
chemical potential terms, respectively, of the Hubbard Hamiltonian as introduced
in Eq. (1.1.4), and h0 is a matrix such that the quadratic part of the Hubbard
Hamiltonian can be written as

Ĥq = −t
∑
⟨i,j⟩,σ

(
â†i,σâj,σ + â†j,σâi,σ

)
− µ

∑
i,σ

n̂i,σ =
∑
σ

a⃗†σh0a⃗σ (3.1.2)

with a⃗σ = (â1,σ, â2,σ, ..., âN−1,σ, âN,σ)
T .

We considered an 8 × 8 lattice with periodic boundary conditions. The hopping
term t was set as the energy scale, i.e., t = 1, and we evaluated the half-filling
case for different values of the interaction term (Fig. 3.1). We observe that the
imaginary time evolution rapidly converges to the expected ground state. We have
also examined the case away from half-filling for different chemical potential values
and a fixed attractive interaction U = −5 (Fig. 3.2). The results have also shown
excellent convergence.
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3. Numerical results

Figure 3.1.: Evolution of the difference between the imaginary time evolution energy and
the analytical ground state energy found via direct minimization of Eq. (3.1.1).
The calculations correspond to the Hubbard model in an 8 × 8 lattice with
periodic boundary conditions and parameters t = 1 and µ = 0.

Figure 3.2.: Evolution of the difference between the imaginary time evolution energy and
the analytical ground state energy found via direct minimization of Eq. (3.1.1).
The calculations correspond to the Hubbard model in an 8 × 8 lattice with
periodic boundary conditions and parameters t = 1 and U = −5.

To conclude, we have benchmarked the MPS conversion process by checking the
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3.2. Comparison of the DMRG performance

maximum bond dimension dependence of the per-site energy difference between the
fermionic Gaussian state and the resulting MPS. The test has been performed in a
4×8 cylinder for both a case where the Fermi sea approach described in Sec. 2.2.1 was
suitable and a case where the Pfaffian method introduced in Sec. 2.2.2 was needed
(Fig. 3.3). The results show the expected behavior in which the per-site energy
difference tends to vanish as the maximum bond dimension D increases, suggesting
that the MPS properly represents the fermionic Gaussian state.

Figure 3.3.: Bond dimension dependence of the per-site energy difference between the
fermionic Gaussian state and the MPS representing it. The calculations cor-
respond to a 4 × 8 cylinder with Hubbard parameters t = 1 and µ = 0. The
interaction terms are (a) U = 1 and (b) U = −5. The MPS conversion meth-
ods employed have been (a) the Fermi sea approach described in Sec. 2.2.1
and (b) the Pfaffian method described in Sec. 2.2.2.

3.2. Comparison of the DMRG performance

3.2.1. Half-filling case

We began our calculations by considering the simplest case, where the chemical
potential µ vanishes. In this scenario, the total particle charge of the ground state
equals the number of sites, making it straightforward to determine the quantum
numbers that a product state should have so that it is not guaranteed to converge
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3. Numerical results

Figure 3.4.: Density and spin distributions of the initial product state for the (a) attractive
and (b) repulsive cases in a 4 × 16 cylinder at half-filling. Yellow circles
represent particles, and green circles represent holes relative to the half-filling
setting. The size of the circles and arrows is proportional to the magnitude of
the corresponding quantities.

to a local minimum. Additionally, for large repulsive interactions, we expect the
ground state to exhibit an antiferromagnetic configuration, while for large attractive
interactions, we anticipate the formation of singlets consisting of pairs of fermions
with opposing spins on a site.

We can employ this knowledge to accelerate the convergence of the product state
calculation by initializing the method with a product state composed of pairs of
opposing spin fermions for U < 0, i.e., |↑↓, 0, ↑↓, 0, ...⟩, and a fully antiferromagnetic
product state for U > 0, i.e., |↑, ↓, ↑, ↓, ...⟩ (Fig. 3.4).
Firstly, we ran a DMRG calculation for a relatively low bond dimension D = 1000

considering three cylinders of sizes 4 × 16, 4 × 24, and 8 × 8. In each case, we set
the hopping term t as our energy scale, i.e., t = 1, and fixed an interaction U = 5
(Fig. 3.5). We assumed convergence to the ground state when the energy difference
between the last sweep and the previous one was lower than a specific value.

We begin by noting that, even with a low maximum bond dimension, the time
required to obtain the initial Gaussian state is not particularly significant compared
to the DMRG calculation. Moreover, the number of sweeps needed for convergence
is lower when initializing DMRG with a Gaussian state. However, in terms of overall
time performance, both initial states perform similarly, except in the 8× 8 cylinder
case, where the Gaussian state requires approximately 40% less time to converge.

In terms of energy, the Gaussian state converged to a lower energy state in every
case. The energy differences ∆E between the final states of each cylinder follow the
relation: ∆E4×16 ≲ ∆E4×24 < ∆E8×8. For the 4 × 16 and the 4 × 24 cylinders,
the energy difference is close to the convergence criteria, indicating that both initial
states are approaching similar final states. In contrast, for the 8 × 8 cylinder, the
energy difference between the final states is two orders of magnitude larger than the
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3.2. Comparison of the DMRG performance

Figure 3.5.: Time evolution of the energy during the DMRG ground state search, initialized
with a product state (red circles, solid line) and a Gaussian state (blue squares,
dashed line). Each marker in the plot represents the energy after completing
both a left-to-right and right-to-left sweep. Calculations were performed for
the Hubbard model with parameters t = 1, U = 5 and µ = 0 and a fixed
maximum bond dimension D = 1000, for the following system sizes: (a)
4 × 16 cylinder, (b) 4 × 24 cylinder, (c) 8 × 8 cylinder. The first coordinate
corresponds to the dimension with periodic boundary conditions. For (a) and
(b), a two-site update protocol was used, while for (c) we used CBE DMRG.
Since the true ground state energy is unknown, the energy is compared against
a value Eref,i corresponding to the lowest energy between the product state
and Gaussian state calculation minus the convergence criteria value.

convergence criteria, suggesting that the states may converge to different minima.

To better understand the converged states’ differences in the 8× 8 cylinder case,
we plotted their spin distributions (Fig. 3.6). As predicted, the spin configurations
in both cases correspond to an antiferromagnetic arrangement. The average local
spin magnitude is nearly identical in both states, with the primary difference being
that each state represents one of the two possible antiferromagnetic configurations.

Additionally, we repeated the DMRG calculations for the same configurations un-
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3. Numerical results

Figure 3.6.: Local spin distribution of the two converged states obtained through CBE
DMRG in an 8× 8 cylinder for Hubbard parameters t = 1, U = 5, and µ = 0.
Plot (a) corresponds to initializing DMRG with a product state, while (b)
corresponds to the Gaussian state initialization. In both cases, the maximum
bond dimension of the MPS was set to D = 1000. The size of the arrows is
proportional to the spin magnitude.

der a more realistic scenario, where instead of maintaining a fixed bond dimension,
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3.2. Comparison of the DMRG performance

we allowed it to increase when a specific convergence criterion was met. The al-
gorithm continues to increase the bond dimension until further increases no longer
yield a significant reduction in the state energy (Fig. 3.7).

The Gaussian state still needs fewer sweeps to achieve convergence when allowing
the bond dimension to adapt. However, when evaluating more relevant metrics, such
as the computation time or the converged energy, the Gaussian state advantage
vanishes. Further calculations for a different set of parameters showing a similar
performance are shown in Fig. 3.8.

Figure 3.7.: Time evolution of the energy during the DMRG ground state search, initialized
with a product state (red circles, solid line) and a Gaussian state (blue squares,
dashed line). Each marker represents the energy after completing both a left-
to-right and right-to-left sweep. Calculations were performed for the Hubbard
model with parameters t = 1, U = 5 and µ = 0, for the following system
sizes: (a) 4× 16 cylinder, (b) 4× 24 cylinder and (c) 8× 8 cylinder. The first
coordinate corresponds to the dimension with periodic boundary conditions.
The maximum bond dimension is allowed to increase when convergence is
achieved, reaching values of (a) D = 3000, (b) D = 3000, and (c) D = 9000.
For (a) and (b), a two-site update protocol was used, while for (c) we used CBE
DMRG. Since the true ground state energy is unknown, the energy is compared
against a value Eref,i corresponding to the lowest energy between the product
state and Gaussian state calculation minus the convergence criteria value.
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3. Numerical results

This behavior suggests that if we define a bond dimension Dopt such that it is
sufficient to capture all the relevant physics of the ground state in an MPS for a
given setting, and we set a maximum bond dimension D for our DMRG calculation,
if the ratio D/Dopt is sufficiently large, the variational space of the product state
becomes large enough to avoid the same local minima as the Gaussian state. As a
result, both initial states may converge to the same final state, thereby nullifying
the previously observed advantage of the Gaussian state.

Figure 3.8.: Time evolution of the energy during the two-site DMRG ground state search,
initialized with a product state (red circles, solid line) and a Gaussian state
(blue squares, dashed line). Each marker represents the energy after complet-
ing both a left-to-right and right-to-left sweep. Calculations were performed
for the Hubbard model with hopping parameter t = 1 and chemical poten-
tial µ = 0, for the following system sizes and interaction terms: (a) 4 × 16
cylinder with U = 1, (b) 4 × 24 cylinder with U = 3, and (c) 8 × 8 cylinder
with U = 7. The first coordinate corresponds to the dimension with periodic
boundary conditions. The maximum bond dimension is allowed to increase
when convergence is achieved, reaching values of (a) D = 4000, (b) D = 5000,
and (c) D = 9000. Since the true ground state energy is unknown, the energy
is compared against a value Eref,i corresponding to the lowest energy between
the product state and Gaussian state calculation minus the convergence cri-
teria value.
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3.2. Comparison of the DMRG performance

3.2.2. Hole-doping case

In this section, we conduct a similar study for the 1/8-hole-doping case as the one
performed previously. It is interesting to mention that since we are considering the
Hubbard Hamiltonian as introduced in Eq. (1.1.4), the phase diagram of the model
has a particle-hole symmetry and, therefore, it is enough for us to consider just the
hole-doping case.

In principle, it is non-trivial to know beforehand the particle charge quantum
number of the ground state when we move away from the half-filling setting. In
our case, for a given set of Hubbard model parameters, we got the Gaussian state
approximation to the ground state via imaginary time evolution as described in
Sec. 2.1, analyzed its quantum numbers, and generated a product state which shares
them. The initial product states used during our calculations for the 1/8-hole-doping
case are shown in Fig. 3.9.

In the same way as in the half-filling scenario, we initially conducted a DMRG
calculation with a fixed bond dimension of D = 1000 for two cylinders of sizes 4×16
and 4 × 24. In both cases, we set the hopping parameter t as our energy scale,
i.e., t = 1, and a fixed interaction U = 1 (Fig. 3.10). The exhibited behavior was
similar to the one observed in the half-filling case, where the Gaussian state required
fewer sweeps, achieved faster convergence, and reached a lower energy state than the
product state. It is worth noting that the energy difference between the converged
states for both cylinders is larger than in their corresponding half-filling settings,
and so is the computation time advantage. However, this observation could be
attributed to two factors. Firstly, based on the observed phenomenology in the half-
filling case, the hole-doped ground state may have a larger optimal bond dimension

Figure 3.9.: Density and spin distributions of the initial product state for the (a) attractive
and (b) repulsive cases in a 4×16 cylinder for a 1/8-hole-doped setting. Yellow
circles represent particles, and green circles represent holes relative to the
half-filling setting. The size of the circles and arrows is proportional to the
magnitude of the corresponding quantities.
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Figure 3.10.: Time evolution of the energy during the two-site DMRG ground state search,
initialized with a product state (red circles, solid line) and a Gaussian state
(blue squares, dashed line). Each marker represents the energy after complet-
ing both a left-to-right and right-to-left sweep. Calculations were performed
for the Hubbard model with parameters t = 1, U = 1, and chemical po-
tentials (a) µ = −0.3 and (b) µ = −0.33. The chemical potential values
were chosen such that the particle density corresponds to a 1/8-hole-doping
configuration. The maximum bond dimension is D = 1000, and the two
cases correspond to (a) a 4 × 16 cylinder and (b) a 4 × 24 cylinder, where
the first coordinate corresponds to the dimension with periodic boundary
conditions. Since the true ground state energy is unknown, the energy is
compared against a value Eref,i corresponding to the lowest energy between
the product state and Gaussian state calculation minus the convergence cri-
teria value.

Dopt, which would reduce the ratio D/Dopt and therefore increase the advantage of
the Gaussian state. Secondly, the interaction strength chosen here, U = 1, is smaller
than in the previous case, reducing the influence of the quartic term in the Hubbard
Hamiltonian relative to the quadratic terms, which suggests that the Gaussian state
provides a better approximation to the true ground state.

We repeated the DMRG calculations but allowing to increase the bond dimension
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3.2. Comparison of the DMRG performance

Figure 3.11.: Time evolution of the energy during the two-site DMRG ground state search,
initialized with a product state (red circles, solid line) and a Gaussian state
(blue squares, dashed line). Each marker represents the energy after complet-
ing both a left-to-right and right-to-left sweep. Calculations were performed
for the Hubbard model with parameters t = 1, U = 1, and chemical po-
tentials (a) µ = −0.3 and (b) µ = −0.33. The chemical potential values
were chosen such that the particle density corresponds to a 1/8-hole-doping
configuration. The maximum bond dimension is allowed to increase when
convergence is achieved, reaching values of (a) D = 4000 and (b) D = 7000.
The two cases correspond to (a) a 4 × 16 cylinder and (b) a 4 × 24 cylin-
der, where the first coordinate corresponds to the dimension with periodic
boundary conditions. Since the true ground state energy is unknown, the
energy is compared against a value Eref,i corresponding to the lowest energy
between the product state and Gaussian state calculation minus the conver-
gence criteria value.

whenever conversion was achieved (Fig. 3.11). The results obtained are analogous to
the half-filling setting: for a large enough bond dimension, the previously observed
Gaussian state advantage vanishes.

Additionally, we examined the hole and spin distributions for the two converged
states on the 4× 16 cylinder with Hubbard parameters t = 1 and U = 1 (Fig. 3.12).
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3. Numerical results

Figure 3.12.: Comparison of the local hole density relative to half-filling and spin distribu-
tion of the two converged states obtained through two-site DMRG in a 4×16
cylinder for Hubbard parameters t = 1, U = 1, and µ = −0.3. The chemical
potential value was chosen such that the particle density corresponds to a
1/8-hole-doping configuration. Plot (a) shows the hole and spin distribution
of the converged state when initializing the DMRG calculation with a prod-
uct state, while (b) corresponds to the Gaussian state initialization. Plot (c)
compares the mean hole population per column of the two converged states.
The MPS maximum bond dimension is D = 4000 for both cases. The circles
and arrows sizes are proportional to the hole density and spin magnitudes,
respectively.

Both initializations converge to nearly identical states, with their plotted distribu-
tions showing no noticeable differences. The hole density exhibits a fairly uniform
pattern with no signs of stripe formation. Similarly, the spin distribution is also
uniform, with magnitudes so close to zero that they are indistinguishable in the
plot.

To conclude, we performed some additional computations on the 4 × 16 cylinder
with different sets of parameters (Fig. 3.13). The results show that even though
the behavior in the U = 1 case is similar to all the previously examined sets of

40



3.2. Comparison of the DMRG performance

Figure 3.13.: Time evolution of the energy during the two-site DMRG ground state search,
initialized with a product state (red circles, solid line) and a Gaussian state
(blue squares, dashed line). Each marker represents the energy after com-
pleting both a left-to-right and right-to-left sweep. The lattice is set on a
4×16 cylinder, where the first coordinate corresponds to the dimension with
periodic boundary conditions. Calculations were performed for the Hubbard
model with (a) hopping term t = 1, interaction term U = 3 and chemical
potential µ = −0.6, and (b) hopping term t = 1, interaction term U = 7 and
chemical potential µ = −1.8396. The chemical potential values were chosen
such that the particle density corresponds to a 1/8-hole-doping configura-
tion. The maximum bond dimension is allowed to increase when conver-
gence is achieved, reaching values of (a) D = 7000 and (b) D = 3000. Since
the true ground state energy is unknown, the energy is compared against a
value Eref,i corresponding to the lowest energy between the product state
and Gaussian state calculation minus the convergence criteria value.

parameters, in the U = 7 case, the fermionic Gaussian state clearly outperforms its
counterpart. This result indicates that, for this configuration, initializing DMRG
with a Gaussian state MPS allows us to circumvent a local minimum in which our
product state would get stuck. That behavior was not expected since it is the only set
of parameters for which such a clear advantage was observed for a reasonable bond
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dimension. Additionally, it corresponds to a case where the interaction strength U
is the largest among all the previously studied, suggesting that the initial fermionic
Gaussian state approximation should be further from the true ground state.
To gain a clearer understanding of the characteristics of each converged state in

the U = 7 case, we compared their local hole and spin distributions (Fig. 3.14).
In this case, the two states display distinct patterns. The state resulting from the
product state initialization shows a more dispersed hole distribution, with most
of the holes concentrated near the center of the cylinder. Its spin distribution is
also more uniform, exhibiting a consistent antiferromagnetic pattern. In contrast,
the state obtained from the Gaussian state displays two distinct stripes in the hole
distribution, acting as domain walls for the spin configuration. This results in an
antiferromagnetic pattern in the center of the cylinder and a reversed configuration
at the edges.
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3.2. Comparison of the DMRG performance

Figure 3.14.: Comparison of the local hole density relative to half-filling and spin distri-
bution of the two converged states obtained through two-site DMRG in a
4 × 16 cylinder for Hubbard parameters t = 1, U = 7, and µ = −1.8396.
The chemical potential value was chosen such that the particle density corre-
sponds to a 1/8 hole doping configuration. Plot (a) shows the hole and spin
distribution of the converged state when initializing the DMRG calculation
with a product state, while (b) corresponds to the Gaussian state initializa-
tion. Plot (c) compares the mean hole population per column of the two
converged states. The MPS maximum bond dimension is D = 3000 for both
cases. The circles and arrows sizes are proportional to the hole density and
spin magnitudes, respectively.
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Summary. In this thesis, we have assessed the efficiency of utilizing a Gaussian
state as the initial ansatz for performing DMRG calculations on the 2D Hubbard
model. We successfully implemented an algorithm that computes a fermionic Gaus-
sian state approximation to the real ground state through imaginary time evolution,
subsequently compresses into its MPS form and uses it as the initial ansatz for a
DMRG calculation.
A comparison between the efficiency of using the Gaussian state and a product

state as initial ansatz was conducted, as detailed in Chapter 3. This comparison
focused on both the half-filling and 1/8-hole-doping cases, with the primary metrics
being the computational time required and the energy of the converged state.
The results indicate that while the Gaussian state performs better with a low

maximum bond dimension, it does not generally outperform the product state when
a reasonable maximum bond dimension is used in DMRG calculations. However, we
found an exception in one of the 1/8-hole-doping cases, where the Gaussian state
converges to a lower energy state, highlighting its potential advantages in specific
situations. Furthermore, the Gaussian state approximation can be particularly use-
ful in studying the Hubbard model under conditions where determining the quantum
numbers of the ground state is difficult, as it automatically provides a reasonable
initial guess for them.

Outlook. This thesis has provided an initial study on the usage of fermionic Gaus-
sian states as the initial ansatz for DMRG calculations when studying Hubbard-like
models. Some proposed further research directions are:

• Even though the Gaussian state has not generally shown a relevant advantage
for the considered Hubbard model, it could be interesting to study the per-
formance when adding an extra next-to-nearest-neighbor hopping term. The
Hubbard model with that extra term has been of interest since some numeri-
cal studies show that it can enhance superconductivity [33–35]. The next-to-
nearest-neighbor hopping term involves a longer range hopping, which implies
an increment in the MPO’s bond dimension and, consequently, a more expen-
sive DMRG calculation. Under such circumstances, a possible Gaussian state
advantage could be more relevant.

• When compressing the Gaussian state into an MPS, some of the information of
the state is lost. Additionally, the MPS conversion requires considerably more
computational time than the obtention of the covariance matrix describing the
state. A recent study has proposed a more efficient MPS conversion of particle-
number conserving fermionic Gaussian states [36]. Implementing this method
in our algorithm may lead to better performance.

• The method could be more useful for the study of models for which little
information about the true ground state is available. Although this thesis
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4. Summary and outlook

focused on the study of the Hubbard model, any Hamiltonian that can be
brought to the form shown in Eq. 2.1.1 is suitable for being studied through
this method. Some Hamiltonians which can be of special interest are the
so-called all-to-all interactions Hamiltonians, which are specially popular in
quantum chemistry.

• Mean-field theories are widely employed in condensed matter physics to pro-
vide an analytical approximation of a model’s ground state. These techniques
involve replacing the complex many-body interactions with a mean field plus
a quantum fluctuation, while neglecting second-order quantum fluctuations.
This approach effectively transforms the Hamiltonian into a quadratic form,
which can then be analytically solved to obtain the so-called mean-field solu-
tion. Since the ground state of a quadratic Hamiltonian is a fermionic Gaussian
state, the Gaussian state used to initialize our DMRG calculation should be at
least as accurate as the best possible mean-field approximation. Analyzing the
relationship between the initial Gaussian state and the DMRG-converged state
could provide valuable insights into the accuracy of mean-field approximations.
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A. Numerical implementation of the
Bloch-Messiah decomposition

The MPS conversion of a Gaussian state using the Pfaffian overlap method in-
troduced in Sec. 2.2.2 can be highly sensitive to numerical errors. This issue is
particularly significant in the implementation outlined in this thesis, where the co-
variance matrix is obtained numerically and already carries its inherent errors. If
not handled carefully, the accumulation of these errors can result in the matrix from
Eq. (2.2.29) losing its antisymmetric property, making it impossible to compute the
Pfaffian and causing the method to fail.
In our experience, performing an accurate Bloch-Messiah decomposition is the

most critical and sensitive step for a successful implementation. In this appendix,
we present the Bloch-Messiah decomposition algorithm that has yielded the best
results in our work:

1. Obtain the Bogoliubov matrix. We do it by getting the unitary transformation
B′

A that diagonalizes the reduced covariance matrix. Since the columns of B′
A

represent eigenmodes, there is a global phase freedom that could prevent it from
having the exact shape introduced in Eq. (2.2.14). To solve it, we identify the
upper-left and lower-left blocks of B′

A with UA and VA, respectively. Afterward,
we define our Bogoliubov transformation as

BA =

(
UA V ∗

A

VA U∗
A

)
(A.0.1)

2. Now that we have identified UA and VA, we can begin with the proper Bloch-
Messiah decomposition. First, we realize that UA is decomposed as UA =
DAŪACA with DA and CA being unitary matrices and ŪA being a diagonal
matrix. Therefore, we can obtain a first guess of these matrices by performing
an SVD decomposition UA = USV † and identifying D′

A = U , Ū ′
A = S and

C ′
A = V †.

3. Identify which diagonal values correspond to occupied, paired, and empty
modes. Theoretically, the occupied modes correspond to the diagonal values of
ŪA that are equal to 0, the empty modes correspond to the diagonal values of
ŪA that are equal to 1 and the paired modes are the rest. However, determining
them in the presence of numerical errors is not that straightforward.

In our case, we start by generating 5 sets of modes: the definitely occupied O′,
paired P ′, and empty E ′; and the suspicious to be occupied Osus, and empty
Esus. If we denote the elements of Ū ′

A as [Ū ′
A]kl = ukδkl, we define each set as

• O′ = {uk | uk < 10−10}
• Osus = {uk | 10−10 < uk < 0.1}
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• P ′ = {uk | 0.1 < uk < 0.9}
• Esus = {uk | 0.9 < uk < 1− 10−10}
• E ′ = {uk | 1− 10−10 < uk}

From those 5 sets, we can generate our sets of occupied O, paired P and E
modes as

• O = O′ ∪ {uk ∈ Osus | ∄ul ∈ Osus, |uk − ul| < 10−8 for k ̸= l}
• P = P ′ ∪ {uk, ul ∈ Osus ∪ Esus | |uk − ul| < 10−8}
• E = E ′ ∪ {uk ∈ Esus | ∄ul ∈ Esus, |uk − ul| < 10−8 for k ̸= l}

4. Identify values up from Eq. (2.2.22). We do so by sorting the values in P in
descending order and selecting the ones in odd positions.

5. Build matrix ŪA. If we denote the number of occupied modes as NO, the
number of empty modes as NE and the number of up values as NP , we can
define ŪA as

UA = 1NE×NE
⊕

NP⊕
p=1

upσ
0 ⊕ 0NO×NO

, (A.0.2)

with σ0 the 2× 2 identity matrix.

6. Get values vp. We obtain them from up as vp =
√

1− u2p.

7. Build matrix V̄A as

VA = 0NE×NE
⊕

NP⊕
p=1

ivpσ
y ⊕ 1NO×NO

, (A.0.3)

where σy is the 2× 2 Pauli-Y matrix.

8. Obtain matrices DA and CA. Due to the global phase freedom, matrices D′
A

and C ′
A define a matrix V̄ ′

A = D′T
A VAC

†
A ̸= V̄A. The difference between V̄ ′

A

and V̄A is that the elements of V̄ ′
A are not necessarily real and have arbitrary

complex phases. If V̄A is a N ×N matrix, we get rid of the complex phases of
V̄ ′
A as follows:

• For all k = 1, 2, ..., N such that [V̄A]kk ̸= 0 (i.e., the occupied eigenmodes),
we multiply the k-th column of D′

A by e−iϕk with ϕk the phase such that
[V̄ ′

A]kk = eiϕk .

• For all k = 1, 2, ..., N such that [V̄A]kk = 0 and [V̄A]k,k+1 ̸= 0 (i.e., the
paired eigenmodes), we multiply the k-th column of D′

A by e−iϕk and the
k-th row of C ′

A by eiϕk with ϕk the phase such that [V̄ ′
A]k,k+1 = vpe

iϕk for
p = (k −NE + 1)/2.

After that, we have successfully transformed D′
A → DA and C ′

A → CA, such
that UA = DAŪACA and VA = D∗

AV̄ACA.
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