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Analytic Continuation of Multipoint Correlation Functions

Anxiang Ge,* Johannes Halbinger, Seung-Sup B. Lee, Jan von Delft, and Fabian B. Kugler

Conceptually, the Matsubara formalism (MF), using imaginary frequencies,
and the Keldysh formalism (KF), formulated in real frequencies, give
equivalent results for systems in thermal equilibrium. The MF has less
complexity and is thus more convenient than the KF. However, computing
dynamical observables in the MF requires the analytic continuation from
imaginary to real frequencies. The analytic continuation is well-known for
two-point correlation functions (having one frequency argument), but, for
multipoint correlators, a straightforward recipe for deducing all Keldysh
components from the MF correlator had not been formulated yet. Recently, a
representation of MF and KF correlators in terms of formalism-independent
partial spectral functions and formalism-specific kernels was introduced by
Kugler, Lee, and von Delft [Phys. Rev. X 11, 041006 (2021)]. This
representation is used to formally elucidate the connection between both
formalisms. How a multipoint MF correlator can be analytically continued to
recover all partial spectral functions and yield all Keldysh components of its
KF counterpart is shown. The procedure is illustrated for various correlators of
the Hubbard atom.
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1. Introduction

Multipoint correlation functions, or cor-
relators for short, are central objects of
investigation in many-body physics. The
fermionic one-particle or two-point (2p)
correlator describes the propagation of
a single particle, containing information
on the spectrum of single-particle excita-
tions. The two-particle or four-point (4p)
correlator is associated with the effective
interaction between two particles. Inter-
esting observables, like optical and mag-
netic response functions, can be deduced
from it. Additionally, the closely related
4p vertex, obtained by amputating all four
external legs, is an essential ingredient in
numerous many-body methods such as
the functional renormalization group,[1]

the parquet formalism,[2] and diagram-
matic extensions of dynamicalmean field
theory.[3]

The most common framework for
studying systems in thermal equilibrium

at temperature T = 1∕𝛽 is the imaginary-timeMatsubara formal-
ism (MF).[4] It exploits the cyclicity of the trace and the fact that
the statistical weight of a thermal state for aHamiltonianH, e−𝛽H,
corresponds to a time-evolution e−iHt along the imaginary axis of
the time argument. After a so-called Wick rotation, t → −i𝜏, the
correlators are well-defined on the interval 𝜏 ∈ [−𝛽, 𝛽] and there
satisfy (anti)periodicity relations with period 𝛽. Correspondingly,
they can be expressed through a Fourier series using a discrete
set of imaginary frequencies, the so-called Matsubara frequen-
cies, ensuring this (anti)periodicity. Due to this periodicity, the
Fourier transform of a MF correlator is a function defined on
a discrete set of imaginary frequencies, so-called Matsubara fre-
quencies. To obtain a correlator of real times or real frequencies,
one has to “unwind” the Wick rotation by performing a suitable
analytic continuation. Numerically, however, the analytic contin-
uation to real frequencies is a highly challenging problem.[5,6]

The Keldysh formalism (KF) is another established
framework.[7] Unlike the MF, it is not restricted to thermal
equilibrium. It directly works with real times and frequencies,
obviating the need for an analytic continuation. However, this
comes at the cost of an increased complexity: the KF is formu-
lated on a doubled time contour, and an 𝓁-point (𝓁p) function
has 2𝓁 components.[8,9] By contrast, every MF correlator is just a
single function.
In thermal equilibrium, both MF and KF must in principle

yield identical results for exact computations of any physical
observable—the two formalisms only differ in the computational
route to arrive at the result. In practice, though, it may be useful
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to transition from one formalism to the other, in order to exploit
advantages from one or the other. The connection between the
MF and KF by means of analytic continuation is well known for
2p functions, which effectively depend on a single time or fre-
quency argument, see e.g., refs. [10–12]. For higher-point func-
tions, progress has beenmade by various authors: Eliashberg dis-
cussed the analytic continuation of a specific 4p correlator from
the MF to real frequencies.[13] Evans[14] and Kobes[15,16] studied
the correspondence between both formalisms for 3p correlators
in refs. [14–16]. Evans then considered 𝓁 ≥ 4 multipoint correla-
tors and showed that fully retarded and fully advanced Keldysh
components can be obtained from analytic continuations of MF
correlators.[17] Weldon conducted a thorough analysis of real-
frequency 𝓁p functions and proved that these KF components
are in fact the only ones that can be identified with an analyti-
cally continued MF function.[18,19] Taylor extended Evans’ results
to arbitrary Keldysh components of the fermionic 4p correlator,
assuming the absence of so-called anomalous terms in the MF
correlator.[20] (Anomalous terms can arise if the Lehmann rep-
resentation of a correlator involves vanishing eigenenergy differ-
ences and zero bosonic Matsubara frequencies.) Guerin derived
analogous results from diagrammatic arguments.[21,22]

In this paper, we solve the problem of analytic continuation of
multipoint functions from theMF to the KF in full generality: We
develop a strategy for analytically continuing an arbitrary MF 𝓁p
correlator G (including anomalous terms) to all 2𝓁 components
of the corresponding KF correlator Gk as functionals of G, i.e.,
Gk = Gk[G]. We exemplify the procedure for the most relevant
cases 𝓁 ∈ {2, 3, 4}.
Our strategy builds upon the spectral representation of gen-

eral 𝓁p correlators introduced in ref. [23]. There, the computa-
tion of MF and KF correlators is split into two parts: the cal-
culation of formalism-independent but system-dependent par-
tial spectral functions (PSFs), and their subsequent convolution
with formalism-dependent but system-independent kernels. The
mainmessage of the present paper is that individual PSFs can be
retrieved from the MF correlator, demonstrating the direct link
between both formalisms.
In a nutshell, both MF and KF correlators have spectral repre-

sentations involving sums over permutations of their constituent
operators of the form

G(i𝝎) =
∑
p

Gp(i𝝎p), Gp(i𝝎p) = (K ∗ Sp)(i𝝎p) (1a)

Gk(𝝎) =
∑
p

G
kp
p (𝝎p), G

kp
p (𝝎p) = (Kkp ∗ Sp)(𝝎p) (1b)

Here, the summandsGp andG
kp
p are real-frequency convolutions

(denoted by ∗) of MF or KF kernels, K or Kkp , with PSFs Sp. Im-
portantly, the MF and KF correlators depend on the same PSFs,
G = G[Sp] and Gk = Gk[Sp]. The key insight of this work is that
the so-called regular part of the partialMF correlatorGp, denoted
G̃p, can be expressed as an imaginary-frequency convolution (de-
noted by ⋆) of a kernel and the fullMF correlator:

G̃p(i𝝎p) = (K̃ ∗ Sp)(i𝝎p) = (K ⋆G)(i𝝎p) + ( 1
𝛽
) (1c)

(The ( 1
𝛽
) terms can be identified analytically and discarded.)

From this, we can extract Sp as a functional of G, thus inverting
the relationG[Sp] → Sp[G]. That enables us to express KF through
MF correlators, Gk = Gk[G].
Our analysis not only provides relations between functions

in the MF and the KF, but also between different Keldysh com-
ponents of the KF correlator. As an application of our general
results, we derive a complete set of generalized fluctuation-
dissipation relations (gFDRs) for 3p and 4p functions. These
reproduce the results of Wang and Heinz[24] for real fields
and the generalization to fermionic ones.[25] Moreover, we give
a comprehensive discussion of the role of anomalous terms
during analytic continuation and in gFDRs. Prior discussions
of these topics have often neglected anomalous terms; indeed,
their presence is acknowledged only in few works, such as
refs. [26–28]. As an example of their physical importance, we
mention that ref. [28] analyzed anomalous terms for the Mott–
Hubbardmetal–insulator transition in theHubbardmodel using
the dynamical mean-field theory and detected a degeneracy in
the insulating regime by means of a finite anomalous term.
Conceptually, theMatsubara formalism (MF), using imaginary

frequencies, and the Keldysh formalism (KF), formulated in real
frequencies, give equivalent results for systems in thermal equi-
librium. TheMFhas less complexity and is thusmore convenient
than the KF. However, computing dynamical observables in the
MF requires the analytic continuation from imaginary to real fre-
quencies. The analytic continuation is well-known for two-point
correlation functions (having one frequency argument), but, for
multipoint correlators, a straightforward recipe for deducing all
Keldysh components from the MF correlator had not been for-
mulated yet. Recently, a representation of MF and KF correlators
in terms of formalism-independent partial spectral functions and
formalism-specific kernels was introduced by Kugler, Lee, and
von Delft. Regarding the number of independent components
in the KF, one observes a general trend, obeyed by the known
results for 𝓁 ∈ {2, 3, 4}: Due to the doubled time contour, there
are 2𝓁 Keldysh components. In the Keldysh basis, 2𝓁 − 1 of them
are nonzero, and 𝓁 are fully retarded components. Now, there
are 2𝓁−1 gFDRs (2, 4, 8 for 𝓁 = 2, 3, 4). Thus, the number of inde-
pendent Keldysh components is 2𝓁−1 − 1 (1, 3, 7 for 𝓁 = 2, 3, 4).
It follows that, for 𝓁 ≥ 4, the fully retarded components do not
suffice to encode the entire information of the Keldysh correlator.
The rest of the paper is organized as follows: In Section 2, we

summarize the most important points of the spectral represen-
tation of 𝓁p MF and KF correlators introduced in ref. [23] (Sec-
tions 2.1–2.3) and then introduce our general recipe for the an-
alytic continuation of arbitrary 𝓁p correlators (Sections 2.4 and
2.5). This recipe is applied to the 2p case in Section 3 and, after
the investigation of analytic properties of regular 𝓁p MF correla-
tors in Section 4, also to the 3p and 4p cases in Sections 5 and 6.
The results also lead to gFDRs between different Keldysh com-
ponents of the KF correlator. In Section 7, we perform explicit
analytic continuations from MF to KF correlators for the Hub-
bard atom. The Hubbard atom is a good example for a system
with anomalous contributions and, here, serves as a simple, ex-
actly solvable model with just the right degree of complexity for
illustrating our approach. Section 8 presents another application
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Table 1.Overview of notation for correlators and their contributions. In the
top, we list symbols for the MF correlator and its contributions, then, no-
tation for analytic continuations and discontinuities, and, lastly, notation
for Keldysh correlators.

Symbol Description

G full MF correlator, Equations (9)

Gp partial MF correlator, Equation (11b)

G̃, Ĝ regular and anomalous part of the MF correlator, Equations (14a)
and (A5)

G̃p regular part of the partial MF correlator, Equation (14c)

Ĝi, Ĝ
Δ
i , Ĝ

–Δ
i further decomposition of the anomalous MF correlator,

Equations (A5b) and (73)

G̃ž, Ĝi;ž shorthand for analytic continuations of the regular/anomalous
MF correlator, see Section 4.1

G̃𝜔žr , Ĝ
𝜔

i;žr discontinuities of the regular/anomalous MF correlator,
Equation (67)

Gk , G[𝜂1…𝜂𝛼 ] Keldysh correlator, Equations (19)

G′k , G′[𝜂1…𝜂𝛼 ] primed Keldysh correlator, Equations (25)

of our continuation formulas, namely for the computation of ver-
tex corrections to susceptibilities. We conclude in Section 9.
In Appendix A and B, we give details on the MF kernels and

PSFs used in calculations throughout the paper. Appendix C is
devoted to detailed calculations concerning the analytic continu-
ation of 3p correlators. In Appendix D, we extend insights from
2p and 3p results to deduce the relation between 4p PSFs and an-
alytically continued MF correlators. The spectral representations
of various useful combinations of analytically continued MF cor-
relators and anomalous parts are presented in Appendix E. Ap-
pendix F expresses the spectral representation of KF correlators
in a form especially suited for deriving their connection to MF
functions. In Appendix G, we check the consistency of our results
for PSFs by using equilibrium properties. Finally, Appendix H
gives details about simplifications used for the analytic continu-
ation of Hubbard atom correlators and includes full lists of the
especially important fermionic 4p KF correlators.

2. Spectral Representations of Matsubara and
Keldysh Correlators

To make our presentation self-contained, we summarize the
key elements of the conventions and results of ref. [23] for
common notions (Section 2.1), the MF (Section 2.2), and the KF
(Section 2.3). Table 1 provides an overview of our symbols for
correlators and their contributions. Our general strategy for the
analytic continuation from MF to KF correlators is described in
Sections 2.4 and 2.5.

2.1. Formalism-Independent Expectations Values

Consider a tuple of 𝓁 operators O = (O1,… , O𝓁) at real times
t = (t1,… , t𝓁), obeying the Heisenberg time evolution Oi(ti) =
eiHtiOie−iHti for a given Hamiltonian H. O may include an even
number of fermionic operators and any number of bosonic op-
erators. Time-ordered products of such tuples, defined below,

involve permuted tuples Op = (O1,… , O𝓁) and tp = (t1,… , t𝓁),

where p = (1…𝓁) denotes the permutation of indices that re-
places i by p(i) = i. If 𝓁 = 3 and p = (123) is chosen as (312), e.g.,
then tp = (t1, t2, t3) = (t3, t1, t2). Thermal expectation values of per-
muted tuples are denoted by

p[Op](tp) = 𝜁p
⟨ 𝓁∏

i=1
Oi(ti)

⟩
(2)

For later convenience, the definition includes a sign factor 𝜁p
which equals −1 if the permutation from O to Op involves an
odd number of transpositions of fermionic operators; otherwise
𝜁p = 1. We will often suppress the operator arguments [Op] for
brevity, since the subscript on p specifies their order. The real-
frequency Fourier transform of p(tp) defines the so-called partial
spectral function (PSF)

p(𝜺p) = ∫
∞

−∞

d𝓁tp
(2𝜋)𝓁

ei𝜺p⋅tpp(tp) (3a)

Here, 𝜺p = (𝜀1,… , 𝜀𝓁) is a permuted version of 𝜺 = (𝜀1,… , 𝜀𝓁),
a tuple of continuous, real-frequency variables. We strictly asso-
ciate each (integration) variable, such as ti, 𝜀i, with the operatorO

i

carrying the same index. Time-translational invariance of p(tp)
implies energy conservation for p(𝜺p), which is expressed as

p(𝜺p) = 𝛿(𝜀1…𝓁)Sp(𝜺p) (3b)

Here, 𝜀1…i = 𝜀1 +⋯ + 𝜀i is a shorthand for a frequency sum.
We call it bosonic/fermionic if the frequencies (𝜀1,… , 𝜀i) are
associated with an even/odd number of fermionic operators,
i.e., if the sign 𝜁 1…i = 𝜁1 … 𝜁 i equals ±1 (with 𝜁 j = ±1 for
bosonic/fermionic operators Oj). The function p (calligraphic
type) on the left of Equation (3b) is non-zero only if its arguments
satisfy “energy conservation”, 𝜀1…𝓁 = 0; for Sp (italic type) on the
right, this condition on 𝜺p is understood to hold by definition,
e.g., by setting 𝜀𝓁 = −𝜀1…𝓁−1. This convention for frequency ar-
guments of functions typeset in calligraphics or italics also holds
for the correlators,  vs. G, and kernels,  vs. K, defined below.
PSFs whose arguments are cyclically related are proportional

to each other. For two cyclically related permutations, say p =
(1… 𝜆 − 1 𝜆…𝓁) and p𝜆 = (𝜆…𝓁 1… 𝜆 − 1), the cyclicity of the
trace of operator products ensures the equilibrium condition
(called cyclicity relation in ref. [23])

Sp(𝜺p) = 𝜁p𝜁p𝜆e
𝛽𝜀1…𝜆−1Sp𝜆 (𝜺p𝜆 ), 𝜁p𝜁p𝜆 = 𝜁

1…𝜆−1 (4)

Explicit Lehmann-type representations for PSFs in terms of a
complete set of eigenenergies and eigenstates of H are given in
refs. [23, 29] and exploited for numerical computations; however,
they are not needed in this work. Here, it suffices to assume that
Sp(𝜺p) may contain sums over Dirac delta functions and a part
that is (piece-wise) continuous in its arguments. For future refer-
ence, we split it into regular and anomalous parts,

Sp(𝜺p) = S̃p(𝜺p) + Ŝp(𝜺p) (5)

where the anomalous part, Ŝp, comprises all terms containing
bosonicDirac 𝛿(𝜀1…i) factors (i.e. ones having bosonic arguments)

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (3 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH

 15213889, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300504, W

iley O
nline L

ibrary on [09/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 1. a) MF imaginary-time ordering: operators are arranged such that they are time-ordered (larger times to the left). b) KF real-time Keldysh
ordering: operators are arranged such that all (forward-branch) times t− appear to the right of all (backward-branch) times t+, with t− times time-
ordered (larger ones to the left) and t+ times anti-time-ordered (smaller ones to the left). c) Depiction of imaginary shifts of frequencies 𝜔[𝜂]i = 𝜔i + i𝛾 [𝜂]i
with i ∈ {1, 2, 3, 4} and 𝜂 = 4 according to Equation (21).

setting 𝜀1…i = 0, while S̃p contains everything else (including
fermionic Dirac deltas). We will see later that Ŝp gives rise to
anomalous contributions to MF correlators, whereas S̃p does not.
In the ensuing analysis, we make no assumptions on the be-

havior of the PSFs (apart from cyclicity). Thus, our analysis is
equally applicable to finite systems or infinite systems in the
thermodynamic limit, and whether or not an ordered phase is
present. Any such information is fully encoded in the PSFs.

2.2. Matsubara Formalism

A 𝓁p MF correlator  is defined as a thermal expectation value of
time-ordered operator products of the form

(𝝉) = (−1)𝓁−1
⟨ 𝓁∏

i=1
Oi(−i𝜏i)

⟩
(6)

where  denotes time-ordering along the imaginary time axis
(see Figure 1a). This time-ordering ensures that (𝝉) is periodic
under 𝜏i → 𝜏i + 𝛽 if Oi is bosonic, and anti-periodic if Oi is
fermionic. Therefore, it suffices to confine all times to the
interval 𝜏i ∈ [0, 𝛽), and the Fourier transform of a MF correlator
is defined as

(i𝝎) = ∫
𝛽

0
d𝓁𝜏 ei𝝎⋅𝝉(𝝉) = 𝛽𝛿i𝜔1…𝓁

G(i𝝎) (7)

where 𝝎 = (𝜔1,… ,𝜔𝓁) is a tuple of discrete Matsubara frequen-
cies (as indicated by the i in the argument of (i𝝎)), with 𝜔i
bosonic/fermionic if Oi is bosonic/fermionic. On the right, 𝛿
is the Kronecker delta for Matsubara frequencies, 𝛿i𝜔=0 = 1 and
𝛿i𝜔≠0 = 0. In Equation (7), it enforces “energy conservation”,
i𝜔1…𝓁 = 0. This condition originates from time translation invari-
ance of (𝝉); it is understood to hold for the argument of G(i𝝎)
by definition.
As shown in ref. [23], it is possible to cleanly separate the ana-

lytical properties of correlators from the dynamical properties of
the physical system of interest by expressing time-ordered prod-
ucts as sums over 𝓁! parts, reflecting the 𝓁! possible ways of or-
dering the time arguments:

(𝝉) = ∑
p

p(𝝉p) (8a)

p(𝝉p) = (𝝉p)p(−i𝝉p) (8b)

(𝝉p) =
𝓁−1∏
i=1

[
−𝜃(𝜏i − 𝜏i+1)

]
(8c)

Each partial correlatorp(𝝉p) is a product of two factors:p(−i𝝉p), a
thermal expectation value of imaginary-time operators obtained
by Wick rotation of Equation (2); and a kernel (𝝉p), a product
of Heaviside step functions enforcing time ordering: for given 𝝉 ,
only that partial correlator p(𝝉p) in Equation (8a) is nonzero for
which the permuted tuple 𝝉p is time-ordered. is independent of
the system and operators under consideration; all system-specific
dynamical information is encoded in the PSFs p. Note that the
(anti)periodic properties of (𝝉) under 𝜏i → 𝜏i + 𝛽 do not hold for
the individual partial correlators p(𝝉p); they emerge only once
these are summed over all permutations, Equation (8a).
The product form of Equation (8b) for p(𝝉p) in the time do-

main implies that, in the Fourier domain, (i𝝎) can be expressed
as a sum over convolutions:

(i𝝎) = ∑
p

p(i𝝎p) (9a)

p(i𝝎p) = ∫
𝛽

0
d𝓁𝜏p e

i𝝎p⋅𝝉pp(𝝉p) (9b)

=
[ ∗ Sp

]
(i𝝎p) (9c)

Here, the convolution ∗ is defined as

[ ∗ Sp
]
(i𝝎p) = ∫

∞

−∞
d𝓁𝜀p 𝛿(𝜀1…𝓁)(i𝝎p−𝜺p)Sp(𝜺p) (9d)

where 𝜺p satisfies 𝜀1…𝓁 = 0 (due to Equation (3b)), and the trans-
formed kernel is defined as follows, with 𝛀p = i𝝎p−𝜺p:

(𝛀p) = ∫
𝛽

0
d𝓁𝜏p e

𝛀p⋅𝝉p(𝝉p) (10a)

= 𝛽𝛿Ω1…𝓁
K(𝛀p) +(𝛀p) (10b)

In the second line, has been split into two contributions: 𝛽𝛿Ω1…𝓁

times a primary part K, with Ω1…𝓁 = 0 understood for its argu-
ment, and a residual part, not containing 𝛽𝛿Ω1…𝓁

. Using 𝛿Ω1…𝓁
=

𝛿i𝜔1…𝓁
(since 𝜀1…𝓁 = 0), each partial correlator p(i𝝎p) can corre-

spondingly be split into primary and residual parts,

p(i𝝎p) = 𝛽𝛿𝜔1…𝓁
Gp(i𝝎p) + 

p (i𝝎p) (11a)

Gp(i𝝎p) =
[
K ∗ Sp

]
(i𝝎p) (11b)

with i𝜔1…𝓁 = 0 understood for the argument ofG(i𝝎p), and 
p =

[ ∗ Sp]. Since(𝝉p) and p(𝝉p) lack the (anti)periodicity proper-
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ties of (𝝉), the residual parts(𝛀p) and 
p (i𝝎p) are nonzero per

se. However, inserting Equation (11a) into Equation (9a) and not-
ing from Equation (7) that (i𝝎) is proportional to 𝛽𝛿i𝜔1…𝓁

, one
concludes that

G(i𝝎) =
∑
p

Gp(i𝝎p) (12)

and
∑

p 
p (i𝝎p) = 0. Thus, the full (summed over p) MF correla-

torG involves only primary partsGp; the residual parts 
p cancel

out in the sum over all permutations. In the discussions below,
we will therefore focus only on the primary parts K and Gp (as
done in ref. [23]), ignoring the residual parts  and 

p for now.
They will make a brief reappearance in Section 2.4, where we es-
tablish the connection between MF and KF correlators.
Explicit expressions for the primary kernel K were derived in

refs. [23, 30] and are collected in Appendix A. Here, we just re-
mark that K can be split into a regular kernel K̃ and an anomalous
kernel K̂:

K(𝛀p) =

{
K̃(𝛀p) if

∏𝓁−1
i=1 Ω1…i ≠ 0

K̂(𝛀p) else
(13a)

K̃(𝛀p) =
𝓁−1∏
i=1

1
Ω1…i

(13b)

The regular kernel K̃ will play a crucial role for the analytic con-
tinuation of MF to KF correlators, since the latter can be ex-
pressed through kernels having the same structure as K̃ (see
Equation (19(d)) below). The anomalous kernel K̂ is nonzero only
if we have Ω1…i = 0 for one or more values of i < 𝓁, requiring
both i𝜔1…i = 0 and 𝜀1…i = 0. The first condition requires i𝜔1…i

to be bosonic (with 𝜁 1…i = +1). The second condition requires
the PSF Sp(𝜺p) to have an anomalous contribution Ŝp(𝜺p) contain-
ing terms proportional to a bosonic Dirac 𝛿(𝜀1…i); then (and only
then), the 𝜀p integrals in the convolution K ∗ Sp receive a finite
contribution from the point 𝜀1…i = 0. (See Appendix B.1 for a fur-
ther discussion of this point.)
The regular/anomalous distinction made for the kernel im-

plies, via Equations (11b) and (12), a corresponding decomposi-
tion of the full MF correlator G into regular (G̃) and anomalous
(Ĝ) parts:

G(i𝝎) = G̃(i𝝎) + Ĝ(i𝝎) (14a)

G̃(i𝝎) =
∑
p

G̃p(i𝝎p) (14b)

G̃p(i𝝎p) =
[
K̃ ∗ Sp

]
(i𝝎p) (14c)

= ∫
∞

−∞
d𝓁𝜀p 𝛿(𝜀1…𝓁)

𝓁−1∏
i=1

Sp(𝜺p)

i𝜔1…i − 𝜀1…i

(14d)

The regular partial correlators G̃p, constructed via the regular ker-
nel K̃, will be the central objects for the analytic continuation
from MF to KF correlators, as discussed in Section 2.4 below.
Their sum over all permutations defines the regular full correlator
G̃. The anomalous full correlator Ĝ collects all other contributions

toG; these contain one (or multiple) factors 𝛽𝛿i𝜔1…i
with i < 𝓁, i.e.

they involve vanishing partial frequency sums (see Appendix A.2
for details). The contribution of Ĝ to MF-to-KF analytical contin-
uation has been rather poorly understood to date. In this work,
we fully clarify how it enters: not directly, but indirectly, in that
the central objects G̃p(i𝝎p) can be expressed explicitly through the
fullG = G̃ + Ĝ via imaginary-frequency convolutions of the form
[K ⋆G](i𝝎p) (see Equation (31) below). There, Ĝ must not be
neglected.

2.3. Keldysh Formalism

A KF 𝓁p correlator in the contour basis is defined as

c(t) = (−i)𝓁−1
⟨c 𝓁∏

i=1
Oi(tcii )

⟩
(15a)

=
∑
p

cp (tp)(tp) (15b)

Here, c denotes contour ordering on the Keldysh contour (see
Figure 1b), and tcii are real times. They carry a tuple of contour
indices c = (c1,… , c𝓁) with ci = − or + if operator Oi resides on
the forward (upper) or backward (lower) branch of the Keldysh
contour, respectively. Equation (15b) is a permutation decompo-
sition of the KF correlator c(t), analogous to Equation (8b) for
(𝝉) in the MF. Importantly, it employs the same PSFs (tp) as
there (which is why the KF and MF formalisms have the same
physical information content). The Keldysh kernelcp (tp) by def-
inition (see ref. [23] for details) singles out that p for which the
operators in p(t) are contour ordered.
The Fourier transform of the KF correlator is

c(𝝎) = ∫ d𝓁t ei𝝎⋅t c(t) = 2𝜋𝛿(𝜔1…𝓁)G
c(𝝎) (16)

Here, the Dirac 𝛿(𝜔1…𝓁), following from time translation invari-
ance, enforces 𝜔1…𝓁 = 0; this condition is understood for the ar-
gument of Gc(𝝎) by definition.
We now switch to the Keldysh basis. There, correlators k(𝝎)

carry a tuple of Keldysh indices, k = k1 … k𝓁 , with ki ∈ {1, 2}.
They are obtained by applying a linear transformation D to each
contour index,

k(𝝎) = 1
2

∑
c1 ,…,c𝓁

𝓁∏
i=1

[Dkici ]c(𝝎), Dkici = (−1)ki𝛿ci ,+ (17)

(This convention differs by a prefactor from ref. [23], with k
here =

2𝓁∕2−1k
there, to avoid a proliferation of factors of 2𝓁∕2−1 in later

sections.) One thus obtains

Gk(𝝎) =
∑
p

G
kp
p (𝝎p) (18a)

G
kp
p (𝝎p) =

(
Kkp ∗ Sp

)
(𝝎p) (18b)

= ∫ d𝓁𝜀p𝛿(𝜀1…𝓁)K
kp (𝝎p − 𝜺p)Sp(𝜺p) (18c)
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Remarkably, the same convolution structure emerges as for
the MF correlator G(i𝝎) (Equation (11b)), for the same reason
(Fourier transforms of products yield convolutions). But now
the frequency arguments are real, and the kernel Kkp (𝝎p) carries
Keldysh indices, with kp = k1 … k𝓁 a permuted version of the ex-
ternal Keldysh index k on Gk.
An explicit expression for this kernel, derived in ref. [23], is

given in Equations (19) below. There, an alternative notation
for Keldysh indices is employed. Each Keldysh index k, being
a list with entries 1 or 2, is represented as a list k = [𝜂1 … 𝜂𝛼 ],
where 𝛼 is the total number of 2’s in k and 𝜂i ∈ {1,… ,𝓁} de-
notes the position of the ith 2 in k in increasing order; e.g.,
k = 1212 = [24]. Similarly, permuted Keldysh indices are repre-
sented as kp = [𝜂̂1 … 𝜂̂𝛼 ], where 𝜂̂i denotes the position of the
ith 2 in kp. Its values can be deduced from the old 𝜂j’s as fol-
lows: a 2 in slot 𝜂j of k is moved by the permutation p to the
new slot 𝜇j = p−1(𝜂j); denoting the list of new 2-slots by [𝜇1…𝜇𝛼 ]
and arranging it in increasing order yields the desired [𝜂̂1 … 𝜂̂𝛼 ].
Note also that since 𝜂̂j ∈ {p−1(𝜂1),… , p−1(𝜂𝛼)}, we have 𝜂̂1 ∈
{𝜂1,… , 𝜂𝛼}; hence, 𝜂̂j is an element of the list specifying the ex-
ternal Keldysh index k = [𝜂1… 𝜂𝛼 ]. This will be crucial below. We
illustrate these conventions for the permutation p = (4123) and
k = 1212 = [24]. Then, kp = 2121, [𝜇1𝜇2] = [31] and kp = [𝜂̂1𝜂̂2] =
[13]; moreover, 𝜂̂1 = 1 = 4 and 𝜂̂2 = 3 = 2 are both elements of
k = [24].
Expressed in this notation, Equations (18) read

G[𝜂1…𝜂𝛼 ](𝝎) =
∑
p

G[𝜂̂1…𝜂̂𝛼 ]
p (𝝎p) (19a)

G[𝜂̂1…𝜂̂𝛼 ]
p (𝝎p) =

[
K [𝜂̂1…𝜂̂𝛼 ] ∗ Sp

]
(𝝎p) (19b)

with the permuted Keldysh kernel K [𝜂̂1…𝜂̂𝛼 ] given by [23]

K [𝜂̂1…𝜂̂𝛼 ](𝝎p) =
𝛼∑
j=1
(−1)j−1K [𝜂̂j ](𝝎p) (19c)

K [𝜂](𝝎p) =
𝓁−1∏
i=1

1

𝜔
[𝜂]

1…i

(19d)

Equations (19) compactly express all partial correlators G
kp
p =

G[𝜂̂1…𝜂̂𝛼 ]
p , and hence also the full KF correlator Gk = G[𝜂1…𝜂𝛼 ],

through a set of 𝓁 so-called fully retarded kernels K [𝜂]. These are
defined by Equation (19d) and depend on just a single index 𝜂,
which takes the value 𝜂̂j in Equation (19c). The superscript on
the frequencies occurring therein denotes imaginary shifts 𝜔i →
𝜔
[𝜂]
i = 𝜔i + i𝛾 [𝜂]i , with 𝛾

[𝜂]
i ∈ ℝ chosen such that 𝛾 [𝜂]i≠𝜂 < 0, 𝛾

[𝜂]
𝜂 > 0,

and 𝜔1…𝓁 = 𝜔[𝜂]1…𝓁 = 0. Shifts of precisely this form are needed
to regularize the Fourier integrals expressing kp (𝝎p) through

kp (tp). Indeed, for infinitesimal 𝛾 [𝜂]i each factor in Equation (19d)
is the Fourier transform of a step function,

±i∫ℝ
dt 𝜃(±t)ei𝜔t = 1

𝜔 ± i0+
= P

( 1
𝜔

)
∓ i𝜋𝛿(𝜔) (20)

giving the kernels both principal-value P and Dirac-𝛿 contribu-
tions. We choose the same convention as in ref. [23],

𝛾
[𝜂]
i≠𝜂 = −𝛾0, 𝛾 [𝜂]𝜂 = (𝓁 − 1)𝛾0 (21)

see Figure 1c, with 𝛾0 taken to be infinitesimal, 𝛾0 = 0+, for ana-
lytical considerations. Below, we also use the shorthand 𝜔±i…j =
𝜔i…j ± i0+ to indicate infinitesimal imaginary shifts for sums
of frequencies.
Comparing the fully retarded kernelK [𝜂] of Equation (19d) with

the regularMatsubara kernel K̃ of Equation (13b), we find that the
former is the analytic continuation of the latter:

K [𝜂](𝝎p) = K̃
(
i𝝎p → 𝝎[𝜂]

p

)
(22)

This remarkable relation betweenMF and KF kernels constitutes
the nucleus fromwhichwewill develop our strategy for obtaining
KF correlators via analytic continuation of MF correlators. Here,
we just note that, by Equations (13b) and (20), the analytical con-
tinuation of the regular MF kernel on the right of Equation (22)
generally yields both principal-value and Dirac-𝛿 contributions.
By contrast, we will find below that the analytic continuation of
anomalous MF kernels yields solely Dirac-𝛿 contributions in KF
correlators [cf. Equations (84) and (101)].
Two well-known statements on general 𝓁p correlators fol-

low immediately from Equations (19). First, for 𝛼 = 0, they im-
ply G[] = G1…1 = 0. Second, for 𝛼 = 1, we have 𝜂̂1 = 𝜂1. Thus,
K [𝜂̂](𝝎p) = K̃(𝝎[𝜂]

p ) by Equation (22), and Equation (19b) yields

G[𝜂̂]
p (𝝎) = [K̃ ∗ Sp](𝝎

[𝜂]
p ) = G̃p(i𝝎p → 𝝎[𝜂]

p ) (23)

For the second step, we evoked Equation (14c). Importantly, the
superscript on 𝝎

[𝜂]
p on the right, which specifies its imaginary fre-

quency shifts, is fully determined by the external Keldysh index
𝜂 and not dependent on p. It thus remains unchanged through-
out the sum on p in Equation (18a) for the full correlator G[𝜂](𝝎),
which hence can be expressed as

G[𝜂](𝝎) = G̃(i𝝎 → 𝝎[𝜂]) (24)

The fully retarded (𝛼 = 1) components of KF correlators are
therefore fully determined, via analytic continuation, by the reg-
ular parts of MF correlators. Conversely, anomalous parts of MF
correlators can only influence Keldysh components with 𝛼 ≥ 2.
For later use, we also define primed partial correlators

G′[𝜂1…𝜂𝛼 ](𝝎) =
∑
p

G′[𝜂̂1…𝜂̂𝛼 ]
p (𝝎p) (25a)

G′[𝜂̂1…𝜂̂𝛼 ]
p (𝝎p) =

[(
K [𝜂̂1…𝜂̂𝛼 ]

)∗ ∗ Sp
]
(𝝎p) (25b)

They differ from the unprimed correlators of Equation (19b) by
the complex conjugation of the kernel, replacing 𝜔i + i𝛾 [𝜂]i by
𝜔i − i𝛾 [𝜂]i , with 𝛾

[𝜂]
i still determined by the rule Equation (21). For

𝛼 = 1, the corresponding G′[𝜂] will be called fully advanced corre-
lators. For fully retarded or advanced correlators, G[𝜂] or G′[𝜂], all
frequencies 𝜔i≠𝜂 acquire negative or positive imaginary shifts,
respectively. Note that primed correlators G′k may differ from

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (6 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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complex conjugated correlators G∗k as the complex conjugation
generally affects the PSFs, too.
This concludes our summary of the results of ref. [23] needed

for present purposes. In the next section, we introduce a gen-
eral strategy for expressing KF correlators through analytically-
continued MF correlators. It is well-known how to do this for all
components of 2p correlators, and, as discussed above, for the
fully retarded and advanced components of 𝓁p correlators. Our
goal is a strategy applicable for all components of 𝓁p correlators.

2.4. The Bridge between the MF and KF Formalisms

Equation (23), expressing KF partial correlators through MF par-
tial correlators for 𝛼 = 1, has a counterpart for arbitrary 𝛼, ob-
tained via Equations (19), (22), and (14c):

G[𝜂̂1…𝜂̂𝛼 ]
p (𝝎p) =

𝛼∑
j=1
(−1)j−1

[
K̃ ∗ Sp

](
𝝎
[𝜂̂j ]
p

)
(26a)

=
𝛼∑
j=1
(−1)j−1 G̃p

(
i𝝎p → 𝝎

[𝜂̂j ]
p

)
(26b)

with 𝜂̂j ∈ {𝜂1,… , 𝜂𝛼}. This is already one of our main results:
The partial correlators serve as a bridge between the MF and

KF. All components of the partial KF correlator G
kp
p = G[𝜂̂1…𝜂̂𝛼 ]

p

can be obtained by taking linear combinations of analytic con-

tinuations of partial regular MF correlators, G̃p(i𝝎p → 𝝎
[𝜂̂j ]
p ). The

external Keldysh indices k = [𝜂1… 𝜂𝛼 ] and the permutation p to-

gether specify the imaginary frequency shifts, encoded in 𝝎
[𝜂̂j ]
p , to

be used.
Equation (23), expressing the full (p-summed) KF correlators

throughMF ones for 𝛼 = 1, does not have a counterpart for 𝛼 > 1.
Then, the full correlators, given by

G[𝜂1…𝜂𝛼 ](𝝎) =
∑
p

[
K [𝜂̂1…𝜂̂𝛼 ] ∗ Sp

](
𝝎p

)
(27a)

=
∑
p

𝛼∑
j=1
(−1)j−1 G̃p

(
i𝝎p → 𝝎

[𝜂̂j ]
p

)
(27b)

involve a sum
∑

j. The 𝜂̂j indices on the right now depend on p,
so that the imaginary frequency shifts vary from one permutation
to the next. As a result, the full G[𝜂1…𝜂𝛼 ], unlike G[𝜂], does not de-
pend on a single set of frequency shifts and cannot be directly ex-
pressed through a mere analytic continuation of G̃(i𝝎). Instead,
Equation (27b) requires separate knowledge of each individual
G̃p(i𝝎p). Most computational methods capable of computing the
full MF correlatorG(i𝝎) do not have access to the separate partial
MF correlators G̃p(i𝝎p). In the following, we therefore develop a
strategy for extracting the partial MF correlators G̃p(i𝝎p) from a
full MF correlator G(i𝝎) given as input, assuming the latter to be
known analytically. By writing the resulting functions G̃p(i𝝎) in
the form [K̃ ∗ Sp](i𝝎), one can deduce explicit expressions for the
PSFs Sp[G] as functionals of the input G. By inserting these Sp
into Equation (27a), one obtains G[𝜂1…𝜂𝛼 ][G] as a functional of G,
thereby achieving the desired MF-to-KF analytic continuation.

We start in the MF time domain. There, a specific partial MF
correlator p(𝝉p) can be obtained from the full (𝝉) = ∑

p p(𝝉p)
(Equations (8)) using the projector property of MF kernels in the
time domain, (𝝉p)(𝝉p′ ) = (−1)𝓁−1(𝝉p) if p = p′ and 0 other-
wise. Hence, we can express the partial correlator as

p(𝝉p) = (−1)𝓁−1(𝝉p)(𝝉) (28)

Computing the discrete Fourier transform of Equation (28) ac-
cording to Equation (9b), we obtain

p(i𝝎p) = [ ⋆G] (i𝝎p) (29a)

with the imaginary-frequency convolution ⋆ defined as

[ ⋆G] (i𝝎p) =
1

(−𝛽)𝓁−1

∑
i𝝎′

p

𝛿i𝜔′
1…𝓁

(i𝝎p − i𝝎′
p)G(i𝝎

′) (29b)

We will typically sum over the 𝓁 − 1 independent Matsubara
frequency variables i𝜔′1…i, with i ∈ {1,… ,𝓁 − 1}. Note that the
arguments of G(i𝝎′) appear in unpermuted order, but are to
be viewed as functions of the summation variables, i.e., i𝝎′ =
i𝝎′(𝝎′

p). We will oftenmake this explicit using the notationGi𝝎′
p
=

G(i𝝎′(𝝎′
p)), where the subscript is a label indicating the 𝓁 − 1

independent frequencies chosen to parametrize i𝝎′. Consider,
e.g., 𝓁 = 3 and choose i𝜔1, i𝜔12 as summation variables. For
the permutation p = (132), the correlator is then represented as
Gi𝜔1 ,i𝜔12

= Gi𝜔1 ,i𝜔13
= G(i𝝎(i𝜔1, i𝜔13)) = G(i𝜔1,−i𝜔13, i𝜔13 − i𝜔1).

Using Equation (11a) for p(i𝝎p) and Equation (10b) for(i𝝎p)
in Equation (29a), we obtain

𝛽𝛿i𝜔1…𝓁
Gp(i𝝎p) +G

p (i𝝎p)

= 𝛽𝛿i𝜔1…𝓁
[K ⋆G](i𝝎p) + [ ⋆G](i𝝎p) (30)

By construction, neither G
p nor contain an overall factor of 𝛽;

in this sense, they are(𝛽0). Likewise, ⋆G is(𝛽0), for reasons
explained below. Moreover, recall that MF-to-KF continuation via
Equation (27b) requires only the regular part G̃p(i𝝎p). We avoid
anomalous contributions to Gp(i𝝎p) in Equation (30) by impos-
ing the condition i𝜔1…i ≠ 0 on the external frequencies. Setting
i𝜔1…𝓁 = 0, we conclude that

G̃p(i𝝎p) + ( 1
𝛽

)
= [K ⋆G](i𝝎p), (i𝜔1…i ≠ 0, ∀i < 𝓁)

= 1
(−𝛽)𝓁−1

∑
i𝝎′

p

𝛿i𝜔′
1…𝓁

K(i𝝎p − i𝝎′
p)Gi𝝎′

p
(31)

To find G̃p(i𝝎p), we should thus compute K ⋆G with i𝜔1…i ≠ 0
and retain only the (𝛽0) terms, ignoring all (1∕𝛽 j≥1) contri-
butions. Note, however, that the full information on K and G,
including both regular and anomalous terms, is needed on the
right-hand side to obtain G̃p on the left.
Equation (31) is an important intermediate result. It provides a

recipe for extracting partial regular MF correlators from the full
MF correlator by performing Matsubara sums

∑
i𝝎′

p
. After per-

forming the sums, the final results will be analytically continued
to yield G̃p(i𝝎p → 𝝎

[𝜂]
p ) through which all Keldysh correlators can

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (7 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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be expressed (Equation (27b)). However, we choose to fully evalu-
ate the Matsubara sums before performing this analytic continu-
ation. The reason is that we will evaluate the sums using contour
integration and contour deformation. For the latter step, it is con-
venient if the arguments of G̃p(i𝝎p) all lie safely on the imaginary
axis, where they do not impede contour deformation.

2.5. Converting Matsubara Sums to Contour Integrals

Next, we discuss three technical points relevant for performing
Matsubara sums explicitly. To be concrete, we illustrate our gen-
eral statements for the case 𝓁 = 2. Other cases are discussed in
subsequent sections.

2.5.1. Singularity-Free Kernels

The argument of the kernel K(𝛀p) in Equation (31) has the
form𝛀p = i𝝎p − i𝝎′

p. This is always bosonic, being the difference
of two same-type Matsubara frequencies. The Matsubara sums∑

i𝝎′
p
will thus contain terms with Ω1…i = 0. To facilitate deal-

ing with these, we assume that the kernel has been expressed
in “singularity-free” form, where case distinctions ensure that
factors of 1∕Ω1…i occur only if Ω1…i ≠ 0. This is possible for the
presented correlators, as shown in ref. [30] and discussed in Ap-
pendix A.1. These case distinctions are expressed via the symbol

ΔΩ1…i
=

{ 1
Ω1…i

if Ω1…i ≠ 0

0 if Ω1…i = 0
(32)

Thus, K(𝛀p) is assumed to contain 1∕Ω1…i only via ΔΩ1…i
. A sum

over aΔ symbol becomes a restricted sum, lacking the summand
for which Δ = 0. For 𝓁 = 2, e.g., we have K(𝛀p) = ΔΩ1

− 1
2
𝛽𝛿Ω1

(see Equation (A2a)), so that Equation (31) yields

G̃p(i𝝎p)
i𝜔1≠0

+ ( 1
𝛽

) 𝓁=2
= 1

(−𝛽)

≠i𝜔1∑
i𝜔′

1

Gi𝜔′
1

i𝜔1 − i𝜔′
1

+
Gi𝜔1

2
(33)

This involves a restricted sum and an (𝛽0) term resulting from
𝛽𝛿Ω1

collapsing the sum 1
(−𝛽)

∑
i𝜔′

1

in Equation (31).

2.5.2. 𝛽𝛿 Expansion of G

To facilitate the identification of the leading-in-𝛽 contributions
to Equation (31), we assume that the anomalous Ĝ contribu-
tion to Gi𝝎′

p
= (G̃ + Ĝ)i𝝎′

p
has been expressed as an expansion in

powers of 𝛽𝛿i𝜔′
1…i
. Such a 𝛽𝛿 expansion is always possible for

the correlators under consideration in this work, as discussed
in Appendix A.2. Whenever 𝛽𝛿i𝜔′ appears in a Matsubara sum
1

(−𝛽)

∑
i𝜔′ , the sum collapses and their 𝛽 factors cancel. (This can-

cellation is why ⋆G in Equation (30) is (𝛽0), as stated above,
even if G contains anomalous terms.) For 𝓁 = 2, e.g., we have
Gi𝜔′

1
= G̃i𝜔′

1
+ 𝛽𝛿i𝜔′

1
Ĝ1, with G̃i𝜔′

1
singularity-free at all Matsub-

ara frequencies i𝜔′
1
and Ĝ1 a constant (see Equation (40)). Thus,

Equation (33) becomes

G̃p(i𝝎p)
i𝜔1≠0

+ ( 1
𝛽

) 𝓁=2
= 1

(−𝛽)

≠i𝜔1∑
i𝜔′

1

G̃i𝜔′
1

i𝜔1 − i𝜔′
1

+
G̃i𝜔1

2
−

Ĝ1

i𝜔1
(34)

Here, the condition i𝜔1 ≠ 0 on the left was evoked to replace
1
2
Gi𝜔1

by 1
2
G̃i𝜔1

on the right.

2.5.3. Converting Sums to Integrals

By restricting or collapsing Matsubara sums containing Δ or 𝛿
factors, one can ensure that the remaining sums are all of the
form 1

(−𝛽)

∑
i𝜔′ f (i𝜔

′) or 1
(−𝛽)

∑≠i𝜔
i𝜔′ f (i𝜔

′), where f (z), viewed as a

function of z ∈ ℂ, is analytic at each i𝜔′ visited by the sum. (More
precisely, for each i𝜔′ in the sum, f (z) is analytic in an open do-
main containing that i𝜔′.) We express such sums in standard
fashion as contour integrals:

1
(−𝛽)

∑
i𝜔′

f (i𝜔′) = ∳z
nzf (z) (35a)

1
(−𝛽)

≠i𝜔∑
i𝜔′

f (i𝜔′) = ∳z
nzf (z) − Res

z=i𝜔

(
nzf (z)

)
(35b)

Here, ∳z = ∳ dz
2𝜋i

denotes counterclockwise integration around all
points i𝜔′ visited by the sum, and nz is a Matsubara weighting
function (MWF). We choose it as

nz =
𝜁

e−𝛽z − 𝜁
= 1
(−𝛽)

1
z − i𝜔′

− 1
2
+ (z − i𝜔′) (36)

with 𝜁 = ± for bosonic/fermionic i𝜔′. (nz is related to standard
Fermi and Bose distribution functions by −𝜁 (1 + nz) = 1∕(e𝛽z −
𝜁 ).) The Laurent expansion on the right of Equation (36) shows
that nz has first-order poles with residues 1∕(−𝛽) at all Matsub-
ara frequencies i𝜔′. Therefore, the integral ∳z along a contour
including all i𝜔′ frequencies recovers the unrestricted Matsub-
ara sum of Equation (35a) (see left parts of Figure 2b,c). For the
restricted sum of Equation (35b), the first term on the right rep-
resents an unrestricted sum, i.e. the restricted sum plus a con-
tribution from i𝜔′ = i𝜔, and the residue correction subtracts the
latter. For example, consider the case, needed below, that f (i𝜔′) =
f̃ (i𝜔′)∕(i𝜔 − i𝜔′), with f̃ (z) analytic at z = i𝜔. Then, nzf (z) has a
pole of second order at i𝜔, with

Res
z=i𝜔

(
nzf̃ (z)
i𝜔 − z

)
=

(
𝜕z
[
(i𝜔 − z)nzf̃ (z)

])
z→i𝜔

= 1
2
f̃ (i𝜔) + 1

𝛽

(
𝜕zf̃ (z)

)
z→i𝜔

(37)

Note that Equations (35) remain valid under shifts of theMWF
by a constant, nz → nz + c. We purposefully exploited this free-
dom to choose nz to have −

1
2
as the second term in the Laurent

expansion. The reason is that this leads to a convenient cancel-
lation between terms arising from a 𝛿 in K and residue correc-
tions arising from Δ restrictions. For example, when evaluating

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (8 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 2. a) Analytic regions of a regular 2p MF correlator as a function of a complex frequency 𝜔1 + i𝛾1 with 𝜔1, 𝛾1 ∈ ℝ. The thick, red line on the real
axis depicts a possible branch cut of the correlator. b,c) Contours to evaluate the Matsubara summation in the (b) fermionic and (c) bosonic case, see
Equations (43) and (44), respectively. Crosses indicate the poles of the MWF nz1

at the Matsubara frequencies on the imaginary axis. The dashed blue

contours, initially enclosing all Matsubara frequencies, are deformed away from the imaginary axis to run infinitesimally above and below the real axis.
In the bosonic 2p case (c), the branch cut does not extend to z1 = 0 as the correlator, by definition, is free of any singularities at vanishing Matsubara
frequencies.

the Matsubara sum in Equation (34) using Equations (35b) with
f (i𝜔′) = G̃i𝜔′ ∕(i𝜔 − i𝜔′), we obtain:

G̃p(i𝝎p)
i𝜔1≠0

+ ( 1
𝛽

)
𝓁=2
= ∳z1

nz1G̃z1

i𝜔1 − z1
− Res

z1=i𝜔1

(
nz1G̃z1

i𝜔1 − z1

)
+
G̃i𝜔1

2
−

Ĝ1

i𝜔1
(38a)

= ∳z1

nz1G̃z1

i𝜔1 − z1
− 1
𝛽

(
𝜕z1G̃z1

)
z1→i𝜔1

−
Ĝ1

i𝜔1
(38b)

The 1
2
G̃i𝜔1

term in Equation (38a) conveniently cancels a con-
tribution from the residue correction, evaluated using Equa-
tion (37). This cancellation results from our choice of nz hav-
ing − 1

2
in its Laurent expansion. (Similar cancellations occur for

𝓁 > 2; see, e.g., Appendix C.2.1.) The− 1
𝛽
(𝜕zG̃z)z→i𝜔 term in Equa-

tion (38b) is an example of an( 1
𝛽

)
contribution that arises from

K ⋆G but is not part of G̃p.
Having worked through the example of 𝓁 = 2, we conclude

this section with some general remarks about Equation (31) for
G̃p. Once the Matsubara sums from the imaginary-frequency
convolution K ⋆G have been expressed through contour inte-
grals, one obtains the general form[31]

G̃p(i𝝎p)
i𝜔1…i≠0

+ ( 1
𝛽

)
= ∳z1

⋯∳z1…𝓁−1

K̃(i𝝎p − zp) nz1 … nz1…𝓁−1
G̃z1 ,…,z1…𝓁−1

+ contributions from Ĝ (39)

Here, the (𝓁 − 1)-fold contour integrals involve only the regular
part, G̃, of the full MF correlator. Its anomalous part, Ĝ, comes
with factors 𝛽𝛿 that collapse one or multiple sums in Equa-
tion (31). Therefore, contributions from Ĝ to G̃p contain at most
𝓁 − 2 contour integrals.
The next step, discussed in detail in Section 3.2, is to deform

the integration contour in such a way that it runs infinitesimally
above and below the real axis. The anomalous contributions from
Ĝ can then be reincorporated into the real integrals using bosonic
Dirac delta functions. As a result, one recovers precisely the form
G̃p = K̃ ∗ Sp of the spectral representation (14d): regular kernels
K̃ convolved with other functions, built fromMWFs and analytic
continuations of the various components of G̃ and Ĝ, the latter
multiplied by bosonic Dirac 𝛿 functions. These other functions
can thus be identified with the PSFs Sp = S̃p + Ŝp, now expressed
through analytic continutions ofG. This clarifies, on a conceptual
level, how the information contained in the full MF correlator G
needs to be repackaged to obtain PSFs, and the explicit formulas
for 𝓁 = 2, 3, 4 in Equations (47), (74), and (88) constitute themain
results of this paper. These, in turn, can then be used to obtain
KF correlators via Equation (27a).
To summarize, theMF-to-KF analytic continuation of arbitrary

𝓁p correlation functions can be achieved via the following three-
step strategy:

Step 1. Matsubara summation through contour integration: Insert
theMF kernel K (expressed in singularity-free form) and
the MF correlator G (expressed as a 𝛽𝛿 expansion), in-
cluding all regular and anomalous contributions, into
Equation (31) for G̃p. Restrict or collapse Matsubara
sums containing Δ or 𝛽𝛿 factors and express the re-
maining sums through contour integrals using Equa-
tions (35), to arrive at Equation (39).

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (9 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Step 2. Extraction of PSFs: Deform the contours away from the
imaginary axis to run along the real axis, while care-
fully tracking possible singularities of the MF correla-
tors. Reincorporate anomalous contributions via bosonic
Dirac delta functions. This results in a spectral represen-
tation of the form G̃p = K̃ ∗ Sp. From this, read off the
PSFs Sp[G], expressed through products of MWFs and
MF correlators, analytically continued to real frequencies
(see, e.g., Equation (47)).

Step 3. Construction of KF correlators: Construct the full KF cor-
relator G[𝜂1…𝜂𝛼 ], involving a sum

∑
p over terms of the

form
[
K [𝜂̂1…𝜂̂𝛼 ] ∗ Sp

]
(i𝝎p) (Equation (27a)). Simplify the

kernels K [𝜂̂1…𝜂̂𝛼 ] via a set of kernel identities (see, e.g.,
Equations (57)) and combine terms with similar struc-
ture from the sum

∑
p. Insert into the resulting expres-

sions the PSFs from Step 2, and then compute the inte-
grals involved in the ∗ convolution. This leads to equa-
tions expressing KF correlators through analytically con-
tinued MF correlators, G[𝜂1…𝜂𝛼 ][G].

The result of Step 2 already constitutes an analytic continuation
since the PSFs Sp suffice to construct the KF correlators via the
spectral representation. Step 3 serves to give direct relations be-
tween both formalisms.
In Appendix G.2, we follow an independent approach and use

the equilibrium condition to explicitly perform the following con-
sistency check: given an arbitrary set of PSFsSp as input, compute
the MF correlator G =

∑
p K ∗ Sp and verify that the formulas

Sp[G] correctly recover the input PSFs from G, giving Sp[G] = Sp.
This consistency check is presented for general 2p and 3p and for
fermionic 4p correlators.
The next sections are devoted to explicitly working out the de-

tails of this strategy. To demonstrate its basic ideas, we first revisit
the well-known 2p case in the following section. Though that is
textbook material, we present it in a manner that readily general-
izes to the higher-point correlators discussed in subsequent sec-
tions: 3p correlators in Section 5 and 4p correlators in Section 6.

3. Analytic Continuation of 2p Functions

In this section, we carry through the strategy outlined in Sec-
tion 2.5 to obtain the MF-to-KF analytic continuation in the well-
known 2p case. While our strategy may seemmore cumbersome
than traditional textbook discussions (see, e.g., ref. [32]), it has
the merit of readily generalizing to 𝓁 > 2. We first recapitulate
the spectral representation and analytic properties of general 2p
MF correlators (Section 3.1). Then, we express the PSFs in terms
of analytically continued MF correlators (Section 3.2). Finally, we
use these to recover familiar expressions for the retarded, ad-
vanced, and Keldysh components of the KF 2p correlator (Sec-
tion 3.3).

3.1. Analytic Properties of the 2p MF Correlator

We begin by reviewing well-known analytical properties of the 2p
MF correlator. This also serves to give concrete examples for our
notational conventions.

G(i𝝎) = G(i𝜔1, i𝜔2) explicitly depends on one Matsubara fre-
quency, i𝜔1 or i𝜔2, while the other frequency is fixed by energy
conservation, i𝜔12 = 0. Since we want to compute Equation (31)
for arbitrary permutations p = (12), it proves useful to develop
an unbiased notation for the frequency dependence. The cho-
sen explicit frequency dependence is indicated by a subscript
in Gi𝜔1

, such that Gi𝜔1
= G(i𝝎(𝜔1)) = G(i𝜔1,−i𝜔1) and Gi𝜔2

=
G(i𝝎(𝜔2)) = G(−i𝜔2, i𝜔2). The most general form of Gi𝜔1

, cover-
ing both fermionic and bosonic cases, reads

G(i𝝎(𝜔1)) = Gi𝜔1
= G̃i𝜔1

+ 𝛽𝛿i𝜔1 Ĝ1 (40)

in agreement with the general form Equation (A5). The regular
part, G̃i𝜔1

, is singularity-free for all i𝜔1, including 0. Ĝ1 denotes
the anomalous part, a constant, contributing only for i𝜔1 = 0.
The relation Gi𝜔1

= Gi𝜔2
enforces Ĝ1 = Ĝ2.

One of the next steps involves the deformation of the integra-
tion contour ∳z1 from the imaginary axis toward the real axis. This
requires knowledge of the analytic structure of the MF correla-
tor. It can be made explicit via the spectral representation of Gz1
(Equations (14)), with the PSFs Sp viewed as input. For the regu-
lar part, we obtain

G̃z1
=∫ d2𝜀 𝛿(𝜀12)

[S(12)(𝜀1)
z1 − 𝜀1

+
S(21)(𝜀2)

−z1 − 𝜀2

]
=∫ d𝜀1

Sstd(𝜀1)
z1 − 𝜀1

(41)

Here, we introduced the “standard” spectral function Sstd, given
by a commutator of PSFs resulting from the sum over the two
permutations p = (12) and (21):

Sstd(𝜀1) = S[1,2]− (𝜀1,−𝜀1) = S(12)(𝜀1) − S(21)(−𝜀1) (42a)

S[1,2]± (𝜺) = S(12)(𝜀1) ± S(21)(𝜀2) (42b)

Here, 𝜀12 = 0 is understood for the argument of S[1,2]± (𝜺). For PSF
(anti)commutators, we always display the unpermuted 𝜺 and in-
sert the permuted 𝜺p only for individual PSFs, as done on the
right of Equation (42b). Evidently, G̃z1

has poles (or branch cuts
for continuous spectra) whenever the denominator z1 − 𝜀1 van-
ishes. This can happen only if Im(z1) = 0 (or, more generally,
Im(z1) = 0), indicated in Figure 2 by thick, red lines on the real
axis. Hence, the upper and the lower complex half plane are an-
alytic regions of G̃z1

, separated by a branch cut at Im(z1) = 0.

3.2. Extraction of PSFs from Partial MF Correlators

In Section 2.5, we expressed the regular partial MF correlators
G̃p(i𝝎p) for 𝓁 = 2 in terms of a contour integral ∳z1 involving the
regular MF correlator G̃z1

, see Equation (38b). That amounted
to Step 1 of the three-step strategy. Turning to Step 2, we write
G̃p(i𝝎p) in the form of a convolution [K̃ ∗ Sp](i𝝎p), from which
we then read out expressions for the PSFs Sp[G].
To this end, we exploit the analyticity of G̃z1

in the upper and
lower half-plane to deform the contours in ∳z1 from enclosing the
imaginary axis to running infinitesimally above and below the
branch cut. We denote the corresponding integration variables

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (10 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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along the branch cut by 𝜀±
1
= 𝜀1 ± i0+, with 𝜀1 = Re(z1) now being

a real variable and ±i0+ infinitesimal shifts.
We discuss the cases of fermionic or bosonic frequencies sep-

arately. For fermions, the contour deformation of ∳z1 in Equa-
tion (38b) is straightforward and yields (see Figure 2b)

∳
dz1
2𝜋i

nz1G̃z1

i𝜔1 − z1
= ∫

∞

−∞

d𝜀1
2𝜋i

n𝜀1G̃
𝜀1

i𝜔1 − 𝜀1
(43)

Here, we defined G̃
𝜀1 = G̃𝜀+

1
− G̃𝜀−

1
as the discontinuity of G̃z1

across the branch cut at Im(z1) = 0. Moreover, we extended the
subscript notation introduced after Equation (29b) to real fre-
quencies with infinitesimal imaginary shifts. (This notation is
further discussed after Equation (47).)
In the bosonic case, the pole at z1 = 0 has to be treated sepa-

rately (see Figure 2c):

∳
dz1
2𝜋i

nz1G̃z1

i𝜔1 − z1
= P∫

∞

−∞

d𝜀1
2𝜋i

n𝜀1G̃
𝜀1

i𝜔1 − 𝜀1
+ Res

z1=0

(
nz1G̃z1

i𝜔1 − z1

)

= P∫
∞

−∞

d𝜀1
2𝜋i

n𝜀1G̃
𝜀1

i𝜔1 − 𝜀1
+ ( 1
𝛽

)
(44)

Here, P∫ indicates a principal-value integral. The residue evalu-
ates to a contribution of order ( 1

𝛽
) as the bosonic MWF nz1 is

the only factor having a pole at z1 = 0, with residue 1∕(−𝛽) there
(remember that i𝜔1 ≠ 0). Combining Equations (43), (44), and
(38b), and omitting ( 1

𝛽

)
terms, we finally find

G̃p(i𝝎p) = ∫𝜀1
n𝜀1G̃
𝜀1

i𝜔1 − 𝜀1
−

Ĝ1

i𝜔1
= ∫𝜀1

n𝜀1G̃
𝜀1 + 𝛿(𝜀1)Ĝ1

i𝜔1 − 𝜀1
(45)

On the right, we absorbed the anomalous Ĝ contribution into the
integral, defining 𝛿(𝜀1) = −2𝜋i 𝛿(𝜀1). Moreover, we introduced
the symbol ∫

𝜀i
as

∫𝜀i … =

⎧⎪⎪⎨⎪⎪⎩
∫

∞

−∞

d𝜀i
2𝜋i

… for fermionic 𝜀i or anomalous frequency,

P∫
∞

−∞

d𝜀i
2𝜋i

… for bosonic 𝜀i and regular frequency.

(46)

We call a frequency 𝜀i anomalous if it is directly set to zero by
a Dirac 𝛿(𝜀i) in the integrand, and regular otherwise. Since the
anomalous contribution arose from a Kronecker 𝛿i𝜔1 , we arrive at
a rule of thumb: when performing Matsubara sums via contour
integration and contour deformation to the real axis, Kronecker
deltas withMatsubara arguments lead to Dirac deltas with real ar-
guments.
Importantly, Equation (45) has precisely the same form as

Equation (14d) for 𝓁 = 2, with the correspondence

(2𝜋i)Sp(𝜀1) = n𝜀1G̃
𝜀1 + 𝛿(𝜀1)Ĝ1 (47)

This remarkable formula is the first central result of this section:
it shows that a suitable analytic continuation of the MF correla-

tor G(i𝝎), combined with a MWF, fully determines the PSF and
thus, via the spectral representation Equations (27a), the KF cor-
relatorGk. It also clarifies the role of anomalous contributions. In
subsequent sections, we will find analogous results for 𝓁 = 3, 4.
To conclude this section, we elaborate on the meaning of the

super- and supscript notation used above. The discontinuity in
Equation (47), G̃

𝜀1 = G̃𝜀+
1
− G̃𝜀−

1
, consists of analytically continued

MF correlators, G̃(i𝝎) → G̃(z). Here, the entries of z = (𝜀±1 , 𝜀
∓
2 )

are infinitesimally shifted by +i0+ or −i0+, but constrained by
energy conservation, 𝜀12 = 0. The subscript on G̃𝜀±

1
has the same

meaning as for imaginary frequencies (see paragraph after Equa-
tion (29b)): it indicates the chosen explicit (real-)frequency de-
pendence of G̃(z), i.e., G̃𝜀±

1
= G̃(z(𝜀±

1
)), uniquely determining the

imaginary shifts in each entry of z. To be explicit, we have

G̃𝜀1 = G̃(𝜀+1 ,−𝜀
+
1 ) − G̃(𝜀−1 ,−𝜀

−
1 ) (48a)

G̃𝜀2 = G̃(−𝜀+2 , 𝜀
+
2 ) − G̃(−𝜀−2 , 𝜀

−
2 ) (48b)

Since 𝜀2 = −𝜀1 (energy conservation) and hence 𝜀+2 = −𝜀−1 ,
we have G̃

𝜀1 = −G̃𝜀2 = G̃
−𝜀2 . (Check for negative superscripts:

G̃
−𝜀2 = G̃(−𝜀2)+ − G̃(−𝜀2)− = G̃−𝜀−2

− G̃−𝜀+2
= −G̃𝜀2 .)

For illustration, we give explicit formulas for Sp for the permu-
tations p = (12) and p = (21),

(2𝜋i)S(12)(𝜀1) = n𝜀1 [G̃(𝜀
+
1 ,−𝜀

+
1 ) − G̃(𝜀−1 ,−𝜀

−
1 )] + 𝛿(𝜀1)Ĝ1

(2𝜋i)S(21)(𝜀2) = n𝜀2 [G̃(−𝜀
+
2 , 𝜀

+
2 ) − G̃(−𝜀−2 , 𝜀

−
2 )] + 𝛿(𝜀2)Ĝ2 (49)

where we inserted Equation (48) for the discontinuities. The
anomalous contributions satisfy Ĝ1 = Ĝ2 (as explained after
Equation (40)) and exist only for bosonic correlators (𝜁 = 1). En-
ergy conservation 𝜀2 = −𝜀1 then gives

(2𝜋i)S(21)(−𝜀1) = n−𝜀1 [G̃(𝜀
−
1 ,−𝜀

−
1 ) − G̃(𝜀+1 ,−𝜀

+
1 )] + 𝛿(𝜀1)Ĝ2

= 𝜁e−𝛽𝜀1 (2𝜋i)S(12)(𝜀1) (50)

For the last step, we used the identity −n−𝜀1 = 𝜁e
−𝛽𝜀1n𝜀1 . As a use-

ful consistency check, we note that Equation (50) corresponds to
the equilibrium condition Equation (4) for PSFs (with p = (21),
p𝜆 = (12) there, implying 𝜁p = 𝜁 , 𝜁p𝜆 = +1 and 𝜀1 = 𝜀2 = −𝜀1,
𝜀p𝜆(1) = 𝜀1).
Expressing the standard spectral function Sstd(𝜀1) from Equa-

tion (42a) in terms of Equation (47), we find

(2𝜋i)Sstd(𝜀1) = n𝜀1G̃
𝜀1 + 𝛿(𝜀1)Ĝ1 − n−𝜀1G̃

−𝜀1 − 𝛿(−𝜀1)Ĝ2

= n𝜀1G̃
𝜀1 − n−𝜀1G̃

−𝜀1 = (n𝜀1 + n−𝜀1 )G̃
𝜀1

= −G̃𝜀1 (51)

where we used G̃
−𝜀1 = −G̃𝜀1 . Thus, the discontinuity G̃𝜀1 in the

PSFs (47) encodes Sstd(𝜀1). Conversely, however, Sstd(𝜀1) retains
only the discontinuity G̃

𝜀1 in the PSFs (47), while the informa-
tion on the MWF and the anomalous part, both contained in the
Sp (49), is lost. In Appendix G.2, we use Equation (51) and the
equilibrium condition to explicitly perform the following consis-
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Figure 3. a) Analytic continuation of theMatsubara frequency i𝜔1 → 𝜔
[1]
1 = 𝜔1 + i𝛾0 in Equations (52) for fermionic frequencies. The imaginary part of the

external frequency 𝜔[1]1 has to be larger than the imaginary parts of 𝜀±1 used to integrate infinitesimally above and below the real axis. The transition from
(a) to (b) illustrates the closing of the contour in the upper/lower half-planes to evaluate the integral in Equation (53). As the integrand is independent
of the fermionic MWF n𝜀1 , the only contribution to the integral originates from the simple pole at z1 = 𝜔

[1]
1 .

tency check: given an arbitrary set of PSFs as input, compute the
MF correlator G =

∑
p K ∗ Sp and verify that Equation (47) for Sp

correctly recovers the input PSFs.

3.3. Keldysh Correlator

Next, we turn to Step 3 of our three-step strategy: we use the PSFs
obtained above to explicitly construct the Keldysh components
G[1], G[2], and G[12], expressed through analytically continued MF
correlators. As the structure of KF correlators becomes more in-
tricate with an increasing number of 2’s in the Keldysh compo-
nent, denoted by 𝛼 in Equations (19), we discuss the different
values of 𝛼 separately in the following and throughout the rest of
the paper.

3.3.1. Keldysh Components G[𝜂]

For 𝛼 = 1, the fully retarded or fully advanced Keldysh compo-
nentsG[𝜂] can be deduced from the regular part of MF correlators
alone (Equation (23)). Here, we follow the alternative and equiv-
alent strategy of Step 3: we insert the PSFs from Equation (47)
into the spectral representation (27a):

G[𝜂](𝝎) =
∑
p

[
K [𝜂̂] ∗ Sp

]
(𝝎p) =

∑
p

[
K̃ ∗ Sp

](
𝝎[𝜂]
p

)
(52a)

= ∫ d2𝜀 𝛿(𝜀12)

(
S(12)(𝜀1)

𝜔
[𝜂]
1 − 𝜀1

+
S(21)(𝜀2)

𝜔
[𝜂]
2 − 𝜀2

)
(52b)

= ∫ d𝜀1
S[1,2]− (𝜀1,−𝜀1)

𝜔
[𝜂]
1 − 𝜀1

(52c)

Here, we used 𝜔[𝜂]2 = −𝜔[𝜂]1 (Equation (21)) and that the sum over
both permutations, p = (12) and (21), leads to the appearance of
the PSF commutator S[1,2]− (equalling Sstd, cf. Equation (42)).
Before proceeding, a general remark is in order: When the ex-

ternal variables 𝝎
[𝜂]
p appear in ∗ convolution integrals such as

∫
𝜀1
in Equations (52), it is essential to maintain the hierarchy
𝛾0 ≫ 0+ for the infinitesimal imaginary shifts ±i𝛾0 and ±i0± con-
tained in the external frequencies 𝝎[𝜂]

p and the integration vari-
ables 𝜀±1 , respectively. The reason is that the contour deformation

from ∳z1 to ∫
𝜀1
has been performed before the analytic continu-

ation i𝝎p → 𝝎
[𝜂]
p underlying Equations (27) and leading to Equa-

tion (52) (see Figure 3a). This hierarchy is particularly relevant for
principle-value integrals P∫ (needed below); these exclude an in-
terval [−0+, 0+] around the origin, and 𝛾0 must lie outside this in-
terval.
Inserting S[1,2]− (𝜀1,−𝜀1) = Sstd(𝜀1) = G̃

𝜀1∕(−2𝜋i) (from Equa-
tions (42a) and (51)), we find

G[𝜂](𝝎) = −∫𝜀1
G̃
𝜀1

𝜔
[𝜂]
1 − 𝜀1

= −∫𝜀1
G̃𝜀+1 − G̃𝜀−1
𝜔
[𝜂]
1 − 𝜀1

= G̃𝜔[𝜂]1
(53)

Importantly, no MWFs n𝜀1 occur in Equation (53). For the last
step, we were thus able to close the forward (backward) inte-
gration contour involving G̃𝜀+1 (G̃𝜀−1 ) in the upper (lower) half-
plane. We then used Cauchy’s integral formula for the simple
pole at 𝜔[𝜂]1 (see Figure 3b). Equation (53) expresses the fully re-
tarded Keldysh correlators through analytic continuations of MF
correlators, G[𝜂][G], as desired. To make contact with standard
notation, we recall that the retarded and advanced 2p compo-
nents are given by GR = G21 = G[1] and GA = G12 = G[2]. Rein-
stating frequency dependencies, with 𝜔[1]1 = 𝜔1 + i𝛾0 ≡ 𝜔+1 and
𝜔
[2]
1 = 𝜔1 − i𝛾0 ≡ 𝜔−1 , we get

GR(𝝎) = G̃(𝜔+1 ,𝜔
−
2 ), GA(𝝎) = G̃(𝜔−1 ,𝜔

+
2 ) (54)

This implies the well-known relation

G′R(𝝎) = GA(𝝎), G′A(𝝎) = GR(𝝎) (55)

3.3.2. Keldysh Component G[12]

For 𝛼 = 2, both Keldysh indices equal 2, G22 = G[12]. Then, the
spectral representation in Equation (27a) requires the kernel
(Equation (19c))

K [𝜂̂1 𝜂̂2](𝝎p) =
(
K [𝜂̂1]−K [𝜂̂2]

)
(𝝎p) = K̃

(
𝝎[ ̄̂𝜂1]
p

)
−K̃

(
𝝎[ ̄̂𝜂2]
p

)
(56)
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for the case [𝜂1𝜂1] = [12] = [𝜂̂1𝜂̂2]. Evaluating this for p = (12) and
(21), we find

K [12](𝝎(12)) = K̃(𝝎[1]
(12)) − K̃(𝝎[2]

(12))

= 1

𝜔
[1]
1

− 1

𝜔
[2]
1

=
−2i𝛾0
𝜔21 + 𝛾

2
0

= 𝛿𝛾0 (𝜔1) (57a)

K [12](𝝎(21)) = K̃(𝝎[2]
(21)) − K̃(𝝎[1]

(21))

= 1

𝜔
[2]
2

− 1

𝜔
[1]
2

=
−2i𝛾0
𝜔22 + 𝛾

2
0

= 𝛿𝛾0 (𝜔1) (57b)

On the right, we introduced a Lorentzian representation of a
broadened Dirac delta function:

𝛿𝛾0 (x) =
−2i𝛾0
x2 + 𝛾20

, lim
𝛾0→0+
𝛿𝛾0 (x) = −2𝜋i𝛿(x) = 𝛿(x) (58)

Finally, we obtain G[12] by convolving the kernels (57) with the
PSFs (47) according to Equation (27a):

G[12] =
∑
p

[
K [1̂2̂] ∗ Sp

]
(𝝎p)

= ∫𝜀1 (2𝜋i)S[1,2]+ (𝜀1,−𝜀1) 𝛿𝛾0 (𝜔1 − 𝜀1)

= ∫𝜀1
[
(1 + 2n𝜀1 )G̃

𝜀1 + 2𝛿(𝜀1)Ĝ1

]
𝛿𝛾0 (𝜔1 − 𝜀1)

= N𝜔1G̃
𝜔1 + 4𝜋i 𝛿(𝜔1)Ĝ1 (59)

For the last step we defined

N𝜔i = −1 − 2n𝜔i = coth[𝛽𝜔i∕2]𝜁
i

(60)

For bosonic correlators, N𝜔1 is singular at 𝜔1 = 0, so that a
principle-value integral is implied in Equation (59). Then, the
product N𝜔1G̃

𝜔1 should be evaluated via the limit (N𝜔1G̃
𝜔1 )𝜔1→0.

More precisely, three limits are involved: 0+, 𝛾0, and 𝜔1 should all
be sent to zero, while respecting 0+ ≪ 𝛾0 ≪ |𝜔1| (see discussion
after Equation (52)). In the following, we suppress the subscript
𝛾0 in Equation (58) and always take 𝛾0 → 0+ after evaluating a
principal-value integral (if present).
Summarizing, all Keldysh components can be expressed

through analytically continued MF functions. Comparing Equa-
tions (59) and (40), we find that the anomalous part, Ĝ1, en-
ters G[12] with a prefactor of 4𝜋i𝛿(𝜔1). Using our previous results
from Equation (54), yielding G̃

𝜔1 = GR(𝜔1) −GA(𝜔1), and defin-
ing G[12] = GK , the above relation (59) can be identified as the
FDR

GK (𝜔1) = N𝜔1
[
GR(𝜔1) −GA(𝜔1)

]
+ 4𝜋i 𝛿(𝜔1) Ĝ1 (61)

Hence, the way in which anomalous MF terms appear in KF cor-
relators is via Keldysh correlator GK . The anomalous term con-
tributes only if 𝜔1 is bosonic and vanishes.
We will refer to general relations between components of

KF correlators in thermal equilibrium as generalized fluctuation-

dissipation relations (gFDRs). Equations (55) and (61) constitute
the two gFDRs available for 𝓁 = 2. In the absence of anomalous
contributions, they reduce the three nonzero KF components to
a single independent one (typically chosen as GR).

4. Analytic Regions and Discontinuities of the MF
Correlator

Step 2 of our three-step strategy, the extraction of PSFs, requires
knowledge of possible singularities of the MF correlators. In the
2p case, for G̃z1

, a branch cut divides the complex z1 plain into two
analytic regions (see Figure 2a), and the discontinuity across the
branch cut is given by the difference of the analytic continuations
G̃𝜔±1 . In this section, we generalize the concepts of and notations
for branch cuts, analytic regions, and discontinuities to general𝓁,
enabling a concise discussion of the analytic continuation of 3p
and 4p MF correlators in Sections 5 and 6, respectively. We focus
on the regular parts G̃ of theMF correlators; the anomalous parts
will be discussed separately in the sections for 𝓁 = 3 and 4.

4.1. Analytic Regions of G̃(z)

Possible singularities of the regular part can be inferred from the
spectral representation in Equation (14d)

G̃(z) = ∫ d𝓁𝜀p 𝛿(𝜀1…𝓁)
∑
p

Sp(𝜺p)∏𝓁−1
i=1 (z1…i − 𝜀1…i)

(62)

with zi = 𝜔i + i𝛾i and z1…𝓁 = 0. Singularities can be located at the
points where the imaginary part of the denominator vanishes,
defining branch cuts by the condition

Im(zI) = 𝛾I = 0 (63)

where zI =
∑

i∈I zi denotes a frequency sum over the elements
of a non-empty subset I ⊆ {1,… ,𝓁}. In total, condition (63) de-
fines 2𝓁−1 − 1 distinct branch cuts since frequency conservation
implies Im(zI) = −Im(zIc ) where I

c = {1,… ,𝓁}∖I is the comple-
ment of I, so that Im(zI) = 0 and Im(zIc ) = 0 describe the same
branch cut. The branch cuts divide ℂ𝓁 into regions of analyticity
(regions without singularities), each corresponding to one partic-
ular analytic continuation of G̃.
We henceforth focus on the case, needed for Equation (27b),

that all arguments of G̃(z) are real, up to infinitesimal shifts. To
be specific, we take the imaginary shifts of the frequency sums zI
to be infinitesimal, |𝛾I| = 0+ (with signs determined via conven-
tions described below). Then, G̃(z) is a function of 𝓁 − 1 indepen-
dent real frequencies 𝜔i, and the analytic region is indicated by
including the 2𝓁−1 − 1 shift directions 𝛾I = ±0+ in the argument
of G̃(z). Thus, for 2p, 3p, and 4p correlators, we need 1, 3, and 7
imaginary parts, respectively (see examples below for 𝓁 = 3, 4 in
Equations (65) and (66)).
For a compact presentation of our results, it is convenient to

introduce notation that specifies all imaginary shifts via a (𝓁 − 1)-
tuple ž whose components ži = 𝜔̌i + i𝛾̌i are frequency sums of
the form ži = zI. Then, the argument of G̃(z) is expressed as z(ž),
and the imaginary shifts of z are determined by those chosen for
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Figure 4. Regions of analyticity of regular 3p MF correlators. Lines with
𝛾i = 0 denote possible branch cuts of the correlators. (Figure adapted
from ref. [17].) We label each region by that specific Keldysh correlator,
G[𝜂] or G′[𝜂], whose imaginary shifts 𝛾i lie within that region: For G

[1], only
𝜔1 has a positive imaginary shift, i.e., 𝛾1 > 0, 𝛾2 < 0, and 𝛾3 < 0, imply-
ingG[1](𝝎) = G̃(𝜔+1 ,𝜔

−
2 ,𝜔

−
3 ). Primed correlators (Equations (25)) have in-

verted imaginary shifts, such that G′[1](𝝎) = G̃(𝜔−1 ,𝜔
+
2 ,𝜔

+
3 ).

ž. We will specify the 𝓁 − 1 independent frequencies ž chosen
to parametrize z(ž) using subscripts, G̃ž = G̃(z(ž)), extending the
subscript notation developed in Section 3.1 for 𝓁 = 2 to the regu-
lar parts of 𝓁p correlators. To uniquely determine the imaginary
shifts in zI(ž), and hence the analytic region for G̃ž, we implicitly
assign imaginary shifts to all ži via the rule

2|𝛾̌i−1| ≤ |𝛾̌i|, for 1 < i < 𝓁 (64)

It ensures that the imaginary part of any ImzI is always nonzero,
and that its sign is specified uniquely through the sign choices
made for the shifts ±|𝛾̌i|. We specify these sign choices using
superscripts on the corresponding real frequencies 𝜔̌i, writing
ži = 𝜔̌±i = 𝜔̌i ± i|𝛾̌i|.
Examples for 𝓵 = 3: For 𝓁 = 3, the branch cuts are given by
𝛾1 = 0, 𝛾2 = 0, and 𝛾3 = 0, see Figure 4. Therefore, three imagi-
nary parts are required to uniquely identify one analytic region
for a regular MF correlator G̃(z), with z = (z1, z2, z3) and zi = 𝜔±i .
Consider, e.g., the set of independent frequencies ž = (𝜔+1 ,𝜔

−
2 )

with infinitesimal imaginary shifts fulfilling Equation (64). It
yields the analytic continuation (see Figure 4 for the labels of an-
alytic regions):

G̃𝜔+1 ,𝜔−2 = G̃(𝜔+1 ,𝜔
−
2 ,−𝜔

−
12) = G̃(𝜔+1 ,𝜔

−
2 ,𝜔

+
3 ) = G′[2](𝝎) (65a)

The third argument, z3 = −z12 = −ž1 − ž2 = −𝜔+1 − 𝜔−2 , has a
positive imaginary shift since Im(z3) = −Im(|𝛾̌1| − |𝛾̌2|) > 0, by
Equation (64). By contrast, for ž = (𝜔−2 ,𝜔

+
1 ), we obtain

G̃𝜔−2 ,𝜔+1 = G̃(𝜔+1 ,𝜔
−
2 ,−𝜔

+
12) = G̃(𝜔+1 ,𝜔

−
2 ,𝜔

−
3 ) = G[1](𝝎) (65b)

Evidently, G̃𝜔−2 ,𝜔+1 ≠ G̃𝜔+1 ,𝜔−2 , because switching 𝜔
+
1 → 𝜔−2 in the ar-

gument list of ž also switches the relative magnitudes of their
imaginary parts, due to Equation (64).
Note that the representation via subscripts is not unique.

For instance, G[1](𝝎) can also be written as G̃𝜔+12 ,𝜔+1 , since
the subscript ž = (𝜔+12,𝜔

+
1 ) yields z(ž) = (𝜔+1 ,𝜔

+
12 − 𝜔

+
1 ,−𝜔

+
12) =

(𝜔+1 ,𝜔
−
2 ,𝜔

−
3 ), matching the arguments found in Equation (65b).

For the last step, the sign of the imaginary shift of the second
argument follows from Im(z2) = Im(𝜔+12 − 𝜔

+
1 ) = |𝛾̌1| − |𝛾̌2| < 0.

Example for 𝓵 = 4: For 𝓁 = 4, the branch cuts are located at
vanishing 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾12, 𝛾13, and 𝛾14, see Figure 5. Thus, seven
imaginary parts are needed to uniquely identify one analytic re-
gion for a regular MF correlator G̃(z). We therefore write its ar-
gument as z = (z1, z2, z3, z4; z12, z13, z14), with zI = 𝜔±I , also list-
ing the arguments after the semicolon since the signs of their
imaginary parts are needed to fully specify the analytic region.
Consider, e.g., ž = (𝜔+13,𝜔

−
2 ,𝜔

+
3 ). Then, z4 = −z123 = −ž1 − ž2 =

−𝜔+13 − 𝜔
−
2 = −𝜔−123 = 𝜔

+
4 , z12 = ž1 + ž2 − ž3 = 𝜔+13 + 𝜔

−
2 − 𝜔+3 =

𝜔−12, and z14 = −z23 = −z2 − z3 = −𝜔−2 − 𝜔+3 = −𝜔+23; the signs of
the imaginary shifts on the right sides follow via Equation (64).
We thus obtain

G̃𝜔+13 ,𝜔−2 ,𝜔+3 = G̃(𝜔−1 ,𝜔
−
2 ,𝜔

+
3 ,−𝜔

−
123;𝜔

−
12,𝜔

+
13,−𝜔

+
23)

= G̃(𝜔−1 ,𝜔
−
2 ,𝜔

+
3 ,𝜔

+
4 ;𝜔

−
12,𝜔

+
13,𝜔

−
14) = C(34)

IV (66)

In the last line, the frequency arguments were expressed through
those used to label the analytic regions in Figure 5.

4.2. Discontinuities of G̃(z)

The discontinuity of G̃(z) across a given branch cut, defined by
ImzI = 𝛾I = 0, quantifies the difference between two neighbor-
ing analytic regions, R+ and R−, separated by 𝛾I = 0. We denote
this discontinuity by G̃(zR+ ) − G̃(zR− ). Explicitly, we have opposite
imaginary shifts 𝛾I in the analytic regions, 𝛾

R+
I = 0+ = −𝛾R−

I , and
equivalent shifts for all other 𝛾R+

J = 𝛾R−
J with J ⊊ {1,… ,𝓁} and

J ≠ I. To describe this discontinuity using ž notation, we write
žR± = (žR±

1 , žr), where the first variable is chosen as the one whose

imaginary part changes sign across the branch cut, žR±
1 = 𝜔±I , and

žr denotes a tuple of 𝓁 − 2 other, independent frequencies, with
imaginary shifts given by the prescription (64). Then, extending
the superscript notation from Section 3.1, we can express the dis-
continuity of G̃(z) across ImzI = 0 as

G̃
𝜔I
žr = G̃𝜔+I ,žr − G̃𝜔−I ,žr = G̃žR+ − G̃žR− (67)

Similarly, we define consecutive discontinuities across two
branch cuts, 𝛾I = 0 and 𝛾J = 0, to be evaluated as

G̃
𝜔I ,𝜔J
ž3 ,…,ž𝓁−1

= G̃
𝜔I
𝜔+J ,ž3 ,…,ž𝓁−1

− G̃
𝜔I
𝜔−J ,ž3 ,…,ž𝓁−1

(68)

where we have ž1 = 𝜔±I and ž2 = 𝜔
±
J .

Examples for 𝓵 = 3: For a discontinuity across 𝛾2 = 0 and
žr = 𝜔+1 , we find

G̃
𝜔2
𝜔+1

= G̃𝜔+2 ,𝜔+1 − G̃𝜔−2 ,𝜔+1

= G̃(𝜔+1 ,𝜔
+
2 ,−𝜔

+
12) − G̃(𝜔+1 ,𝜔

−
2 ,−𝜔

+
12)

= G̃(𝜔+1 ,𝜔
+
2 ,𝜔

−
3 ) − G̃(𝜔+1 ,𝜔

−
2 ,𝜔

−
3 )

= G′[3](𝝎) −G[1](𝝎) (69)
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Figure 5. Regions of analyticity of regular 4p MF correlators (analogous to ref. [13]). Lines with Im zi = 𝛾i = 0 and Im zij = 𝛾ij = 0 denote possible branch
cuts. The rectangular regions are labeled by arabic numbers indicating which 𝛾i are positive; e.g., for region (124), we have 𝛾1, 𝛾2, 𝛾4 > 0 but 𝛾3 < 0.
Consequently, regions composed of one or three arabic numbers correspond to fully retarded or advanced Keldysh components. Regions with two of
the 𝛾i positive, like region (12), are further divided into four subregions by the branch cuts in 𝛾ij and are distinguished by roman numbers I − IV.

Two consecutive discontinuities across, e.g., 𝛾1 = 0 and 𝛾2 = 0
yield

G̃
𝜔1 ,𝜔2 = G̃

𝜔1
𝜔+2

− G̃
𝜔1
𝜔−2

= G̃𝜔+1 ,𝜔+2 − G̃𝜔−1 ,𝜔+2 − G̃𝜔+1 ,𝜔−2 + G̃𝜔−1 ,𝜔−2

= G̃(𝜔+1 ,𝜔
+
2 ,−𝜔

+
12) − G̃(𝜔−1 ,𝜔

+
2 ,−𝜔

+
12)

− G̃(𝜔+1 ,𝜔
−
2 ,−𝜔

−
12) + G̃(𝜔−1 ,𝜔

−
2 ,−𝜔

−
12)

= G′[3] −G[2] −G′[2] +G[3] (70)

Example for 𝓵 = 4: The discontinuity for, e.g., 𝛾123 = 0 and
žr = (𝜔+3 ,𝜔

−
1 ) evaluates to

G̃
𝜔123
𝜔+3 ,𝜔

−
1
= G̃𝜔+123 ,𝜔+3 ,𝜔−1 − G̃𝜔−123 ,𝜔+3 ,𝜔−1

= G̃(𝜔−1 ,𝜔
+
2 ,𝜔

+
3 ,−𝜔

+
123;𝜔

−
12,𝜔

−
13,−𝜔

−
23)

− G̃(𝜔−1 ,𝜔
+
2 ,𝜔

+
3 ,−𝜔

−
123;𝜔

−
12,𝜔

−
13,−𝜔

−
23)

= C(23)
I − C(234) (71)

5. Analytic Continuation of 3p Correlators

The notation introduced in the previous section enables a concise
discussion of the analytic continuation of 3pMF correlators in the
following. Section 5.1 is devoted to the general structure of these
correlators and the connection of their analytical continuations to
3p PSFs. In contrast to the 2p case, the derivation of these PSFs,
constituting Steps 1 and 2 of our three-step strategy, is discussed
in Appendix C.2; in themain text, wemerely state the final result.
In Section 5.2, we show that the PSFs yield all components of
the KF correlator as linear combinations of analytically continued
MF correlators.

5.1. Extraction of PSFs

A general 3p correlator can be decomposed into a regular and
various anomalous parts (see Equation (A5) and Appendix C.1):

G(i𝝎(𝜔1,𝜔2)) = Gi𝜔1 ,i𝜔2

= G̃i𝜔1 ,i𝜔2
+ 𝛽𝛿i𝜔1 Ĝ1;i𝜔2

+ 𝛽𝛿i𝜔2 Ĝ2;i𝜔1

+ 𝛽𝛿i𝜔12 Ĝ12;i𝜔1
+ 𝛽2 𝛿i𝜔1 𝛿i𝜔2 Ĝ1,2 (72)

Here, G̃ denotes the regular part, whereas Ĝi represents the
anomalous part w.r.t. frequency i𝜔i, i.e., Ĝi comes with a factor
of 𝛽𝛿i𝜔i and is independent of i𝜔i. Ĝ1,2 is anomalous w.r.t. all fre-
quencies and is a frequency-independent constant. (Note that,
e.g., 𝛽𝛿i𝜔3 Ĝ3 can be written as 𝛽𝛿i𝜔12 Ĝ12 in the 𝛽𝛿 expansion in
Equation (72), implying relations like Ĝ12 = Ĝ3. This unbiased
notation allows us to write formulas that hold for any permuta-
tion p.)
The full correlator G as well as the components G̃ and Ĝi are,

by definition, singularity-free for all Matsubara frequencies. For
the anomalous contributions, we further have the decomposi-
tion

Ĝ3;i𝜔1
= Ĝ

–Δ
3;i𝜔1

+ Δi𝜔1
Ĝ

Δ
3;1 (73)

where Δi𝜔i
is defined in Equation (32) for a purely imaginary

Ωi = i𝜔i. Here, Ĝ
Δ
3;1 comprises all terms proportional to a Δi𝜔1

symbol, and Ĝ
–Δ
3;i𝜔1

contains the rest. Analogous definitions hold

for all anomalous terms Ĝi, see Appendix C.1 for a detailed dis-

cussion. The distinction between Ĝ
–Δ
i and ĜΔ

i is only needed if all
three operators are bosonic, in which case all anomalous terms
in Equation (72) can occur. For two fermionic and one bosonic
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operator, all following results equally hold by replacing Ĝ
–Δ
i → Ĝi

and Ĝ
Δ
i → 0.

In Appendix C.2, we show that the PSFs can be expressed via
analytic continuations of the general constituents of the 3p cor-
relator [Equation (72)]:

(2𝜋i)2Sp(𝜀1, 𝜀2)

= n𝜀1n𝜀2G̃
𝜀2 ,𝜀1 + n𝜀1n𝜀12G̃

𝜀12 ,𝜀1 + 𝛿(𝜀1)n𝜀2Ĝ
–Δ;𝜀2
1

+ 𝛿(𝜀2)n𝜀1Ĝ
–Δ;𝜀1
2

+ 𝛿(𝜀3)n𝜀1Ĝ
–Δ;𝜀1
3

+ 𝛿(𝜀1)𝛿(𝜀2)
(
Ĝ1,2 −

1
2
Ĝ

Δ
3;1

)
(74)

This is ourmain result for 𝓁 = 3. Explicit expressions of the PSFs
for individual permutations are obtained by inserting the per-
muted indices into the above equation. In Equations (C26), we
provide an overview of all possibly occurring discontinuities ex-
pressed through the analytic regions in Figure 4. As for 2p PSFs,
we provide a consistency check of Equation (74) in Appendix G.

5.2. 3p Keldysh Correlators

In the following two sections, we demonstrate how to construct
KF correlators as linear combinations of analytically continued
MF correlators using the PSFs in Equation (74), corresponding to
Step 3 of our strategy. For 𝛼 = 1, Equation (23) gives the analytic
continuation of G to fully retarded components G[𝜂] for general
𝓁. Therefore, we directly consider the more challenging cases of
𝛼 = 2, 3 in Sections 5.2.1 and 5.2.2, respectively. Lastly, in Sec-
tion 5.2.3 we provide an overview of all Keldysh components and
present gFDRs.

5.2.1. Keldysh Components G[𝜂1𝜂2]

To recapitulate, in Section 3.3.2 we performed manipulations on
the level of the Keldysh kernels for 𝓁 = 2 and 𝛼 = 2 by using
the identity (58), which directly allowed us to evaluate the con-
volution with the PSFs. Even though the kernels for 𝓁 = 3 are
more complicated due to an additional factor in the denomina-
tor (see Equation (19d)), similar manipulations are presented in
Appendix C.3.1 for the Keldysh component G212 = G[13]. There,
it is shown that simplifications of the 3p KF kernel K [𝜂̂1 𝜂̂2] (Equa-
tion (19c)) yield

G[13](𝝎) = ∫𝜀1 ,𝜀2 𝛿(𝜔1 − 𝜀1)
(2𝜋i)2

𝜔−2 − 𝜀2
S[1,[2,3]− ]+ (𝜀1, 𝜀2,−𝜀12)

− ∫𝜀1 ,𝜀2 𝛿(𝜔12 − 𝜀12)
(2𝜋i)2

𝜔−2 − 𝜀2
S[[1,2]− ,3]+ (𝜀1, 𝜀2,−𝜀12) (75)

Similarly to the 2p case, we always display the unpermuted 𝜺 for
PSF (anti)commutators and insert permuted 𝜺p only for individ-
ual PSFs, implying, e.g., S2[3,1]± (𝜺) = S(231)(𝜀2, 𝜀3) ± S(213)(𝜀2, 𝜀1).
For the integrations in Equation (75), we fixed the two indepen-
dent frequencies 𝜀1 and 𝜀2 as integration variables. We thus ob-

tain, e.g.,

S[1,[2,3]− ]+ (𝜺) = S1[2,3]− (𝜺) + S[2,3]−1(𝜺)

= S(123)(𝜀1, 𝜀2) − S(132)(𝜀1, 𝜀3) + S(231)(𝜀2, 𝜀3)

− S(321)(𝜀3, 𝜀2) (76)

with 𝜀3 = −𝜀12 being understood.
To relate the KF to the MF correlator, we insert Equation (74)

into the PSF (anti)commutators of Equation (76) and simplify
the results using relations for the discontinuities such as G̃

𝜀2 ,𝜀3 =
−G̃𝜀2 ,𝜀1 . Such identities follow by explicitly expressing the dis-
continuities in terms of G[𝜂] and G′[𝜂] correlators (see Equa-
tions (C26)). Then, the PSF (anti)commutator in Equation (76),
e.g., reads

(2𝜋i)2S[1,[2,3]− ]+ (𝜀1, 𝜀2,−𝜀12) = N𝜀1 G̃
𝜀1 ,𝜀2 − 2𝛿(𝜀1)Ĝ

–Δ;𝜀2
1

− 2𝛿(𝜀1)𝛿(𝜀2)Ĝ
Δ
1;2 (77)

Inserting Equation (77) (and a similar expression for S[[1,2]− ,3]+ ,
see Equation (C31b)) into Equation (75) and evaluating one of
the integrals via the 𝛿-function, we find

G[13](𝝎) = −N𝜔1 ∫𝜀2
G̃
𝜔1 ,𝜀2

𝜔−2 − 𝜀2
+ 2𝛿(𝜔1)

⎛⎜⎜⎝∫𝜀2
Ĝ
–Δ;𝜀2
1

𝜔−2 − 𝜀2
−
Ĝ

Δ
1;2

𝜔−2

⎞⎟⎟⎠
− N𝜔12 ∫𝜀2

G̃
𝜔12 ,𝜀2

𝜔−2 − 𝜀2
+ 2𝛿(𝜔12)

⎛⎜⎜⎝∫𝜀2
Ĝ
–Δ;𝜀2
3

𝜔−2 − 𝜀2
−
Ĝ

Δ
3;2

𝜔−2

⎞⎟⎟⎠
(78)

Here, it becomes apparent why collecting PSFs in terms of
(anti)commutators is beneficial. The integrands in Equation (78)
do not contain any MWFs depending on the integration variable
𝜀2, so that the only pole away from Im(z2) = 0 comes from the de-
nominators. Consequently, the integrals over 𝜀2 can be evaluated
by closing the forward/backward integration contours in the up-
per/lower half-planes. Then, only the pole at z2 = 𝜔−2 contributes
(as illustrated in Figure 3 for the integral in Equation (53)), and
the final result for the Keldysh correlator G[13] reads

G[13] = N𝜔1G̃
𝜔1
𝜔−2

+ N𝜔12G̃
𝜔12
𝜔−2

+ 4𝜋i 𝛿(𝜔1)Ĝ1;𝜔−2
+ 4𝜋i 𝛿(𝜔12)Ĝ3;𝜔−2

= N𝜔1
(
G′[2] −G[3]

)
+ N𝜔3

(
G′[2] −G[1]

)
+ 4𝜋i 𝛿(𝜔1)Ĝ

[3]

1 + 4𝜋i 𝛿(𝜔3)Ĝ
[1]

3 (79)

Here, we used N𝜔12 = −N𝜔3 , expressed G̃
𝜔1
𝜔−2

and G̃
𝜔12
𝜔−2

in terms of
the analytic regions in Figure 4, and defined the shorthand

Ĝi;𝜔±
j
= Ĝ

–Δ
i;𝜔±

j
+
Ĝ

Δ
i;j

𝜔±j
(80)

We emphasize that Equation (80) should not be interpreted as
a direct analytic continuation of Equation (73). Rather, it can
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be obtained from Equation (73) by replacing Δi𝜔j
→ 1∕(i𝜔j) and

only afterwards analytically continuing the resulting expression
i𝜔j → 𝜔

±
j . Additionally, we defined the shorthand Ĝ

[𝜂]

i = Ĝi(𝝎
[𝜂]),

such that, e.g., Ĝ1;𝜔−2
= Ĝ1;𝜔+3

= Ĝ
[3]

1 . The other two Keldysh com-
ponents with 𝛼 = 2, G[12] and G[23], can be derived similarly, and
their results are shown in Equations (84a) and (84c), respectively.

5.2.2. Keldysh Component G[123]

In this section, we relate the Keldysh componentG[123] to the ana-
lytic continued MF correlator. In the derivation of Equation (78),
using the identity (58) for the 𝛼 = 2 kernel K [𝜂̂1 𝜂̂2] was essential.
However, the Keldysh kernel for G[123], K [𝜂̂1 𝜂̂2 𝜂̂3], involves three re-
tarded kernels according to Equation (19c), impeding the direct
application of Equation (58).
In Appendix C.3.2, we show that this problem can be circum-

vented by subtracting a fully retarded component, say, G[3]. An
analysis of the spectral representation of G[123] −G[3] then leads
to

1
(2𝜋i)2

(G[123] −G[3])(𝝎)

= ∫𝜀1 ,𝜀2 𝛿(𝜔1 − 𝜀1) 𝛿(𝜔2 − 𝜀2)S[[1,2]+ ,3]+ (𝜀1, 𝜀2,−𝜀12)

+ ∫𝜀1 ,𝜀2 𝛿(𝜔1 − 𝜀1)
1
𝜔−2 − 𝜀2

S[1,[2,3]− ]− (𝜀1, 𝜀2,−𝜀12)

+ ∫𝜀1 ,𝜀2 𝛿(𝜔2 − 𝜀2)
1
𝜔−1 − 𝜀1

S[2,[1,3]− ]− (𝜀1, 𝜀2,−𝜀12) (81)

Similiar to Equations (76) and (78), we evaluate the PSF
(anti)commutators by inserting Equation (74) (see Equa-
tion (C36)), and subsequently evaluate the integrals either via
the 𝛿-functions or via Cauchy’s integral formula, yielding

(G[123] −G[3])(𝝎)

= (1 + N𝜔1N𝜔2 )G̃
𝜔2 ,𝜔1 + N𝜔12N𝜔1G̃

𝜔12 ,𝜔1 + G̃
𝜔1
𝜔−2

+ G̃
𝜔2
𝜔−1

+ 4𝜋i 𝛿(𝜔1)N𝜔2Ĝ
–Δ;𝜔2
1 + 4𝜋i 𝛿(𝜔2)N𝜔1 Ĝ

–Δ;𝜔1
2

+ 4𝜋i 𝛿(𝜔12)N𝜔1Ĝ
–Δ;𝜔1
3 + (4𝜋i)2𝛿(𝜔1)𝛿(𝜔2)Ĝ1,2 (82)

Amore symmetric form of this result (see Equation (84d)) can be
obtained by expressing all discontinuities in terms of the analytic
regions in Figure 4 and applying the identity

1 + N𝜔1N𝜔2 + N𝜔1N𝜔3 + N𝜔2N𝜔3 = 0 (83)

which holds for 𝓁 = 3 due to frequency conservation.

5.2.3. 3p Generalized Fluctuation-Dissipation Relations

Expressing all Keldysh components with 𝛼 ≥ 2 through analytic
continuations of MF correlators is equivalent to relating them to

fully retarded and advanced components. Indeed, as in the 2p
case, knowledge of the fully retarded and advanced components
and the anomalous terms suffices to obtain all Keldysh compo-
nents, as brought to bear by the 3p gFDRs (where Ni = N𝜔i )

G[12] = N1

(
G̃′[3] − G̃[2]

)
+ N2

(
G̃′[3] − G̃[1]

)
+ 4𝜋i 𝛿(𝜔1)Ĝ

[2]

1 + 4𝜋i 𝛿(𝜔2)Ĝ
[1]

2 (84a)

G[13] = N1

(
G̃′[2] − G̃[3]

)
+ N3

(
G̃′[2] − G̃[1]

)
+ 4𝜋i 𝛿(𝜔1)Ĝ

[3]

1 + 4𝜋i 𝛿(𝜔3)Ĝ
[1]

3 (84b)

G[23] = N2

(
G̃′[1] − G̃[3]

)
+ N3

(
G̃′[1] − G̃[2]

)
+ 4𝜋i 𝛿(𝜔2)Ĝ

[3]

2 + 4𝜋i 𝛿(𝜔3)Ĝ
[2]

3 (84c)

G[123] = N2N3G
[1] + N1N3G

[2] + N1N2G
[3]

+ (1 + N2N3)G
′[1] + (1 + N1N3)G

′[2] + (1 + N1N2)G
′[3]

+ 4𝜋i
[
𝛿(𝜔1)N2

(
Ĝ
–Δ;[2]
1 − Ĝ

–Δ;[3]
1

)
+ 𝛿(𝜔2)N3

(
Ĝ
–Δ;[3]
2 − Ĝ

–Δ;[1]
2

)
+ 𝛿(𝜔3)N1

(
Ĝ
–Δ;[1]
3 − Ĝ

–Δ;[2]
3

)]
+ (4𝜋i)2𝛿(𝜔1)𝛿(𝜔2)Ĝ1,2 (84d)

These gFDRs agree with the results in ref. [24], and generalize
those by also including anomalous contributions. Applications of
these formulas to the Hubbard atom are presented in Section 7.

6. Analytic Continuation of 4p Correlators

In this section, we demonstrate the MF-to-KF analytic con-
tinuation of fermionic 4p correlators. In Section 6.1, we first
discuss our convention for labelling analytic regions and provide
the expression of PSFs in terms of analytically continued MF
correlators. In Section 6.2, we then generalize the key concept
for the construction of 3p KF correlators, namely rewriting
the KF spectral representation using kernel identities and PSF
(anti)commutators, to arbitrary 𝓁, and apply it to the relevant
case 𝓁 = 4.

6.1. Analytic Regions and Extraction of PSFs

As discussed in Section 4.1, the possible singularities of a reg-
ular 4p MF correlator are located at seven branch cuts, splitting
the complex plane into a total of 32 regions (see Figure 5). Impor-
tantly, for 𝓁 ≥ 4, only few of these regions correspond to fully re-
tarded or advanced Keldysh components, in contrast to 𝓁 = 2, 3.
We label analytic continuations of MF correlators by C, e.g.,

G̃(𝜔+1 ,𝜔
−
2 ,𝜔

+
3 ,𝜔

−
4 ;𝜔

−
12,𝜔

+
13,𝜔

−
14) = C(13)

III (85)

The superscript of C(13)
III indicates which 𝜔i (with 1 ≤ i ≤ 4) have

a positive imaginary shift. Analytic regions with two 𝜔i’s having
positive shifts are further divided into four subregions, denoted
by romannumbers I − IV in the subscripts ofC. This is necessary
because forC(13)

III , e.g., the superscripts do not uniquely determine
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the imaginary parts of 𝜔+1 + 𝜔−2 = 𝜔±12 and 𝜔
+
1 + 𝜔−4 = 𝜔±14. Fully

retarded or advanced Keldysh components, on the other hand,
are directly related to analytic regions, G[𝜂] = C(i) with i = 𝜂 and
G′[𝜂] = C(ijk) with i, j, k ≠ 𝜂, as depicted in Figure 5.
Priming correlators, i.e., complex conjugation of the imagi-

nary parts of frequencies (Equation (25)), is directly applicable to
the analytic regions. Consider, e.g., C(1), where only 𝜔1 has a pos-
itive imaginary part; then, priming C(1) yields (C(1))′ = (G[1])′ =
G′[1] = C(234), where only𝜔1 has a negative imaginary part. The ro-
man subscripts are chosen such that they are unaffected by com-
plex conjugation of imaginary parts, so that, e.g., (C(14)

II )′ = C(23)
II .

Finally, we note that double bosonic discontinuities, e.g.,
G̃
𝜔13 ,𝜔14
𝜔+1

, vanish since the fermionic 4p kernel contains only one

bosonic frequency, see Appendix E.1.2. This implies that not all
analytic regions displayed in Figure 5 are independent, since the
following relations hold:

C(ij)
I − C(ij)

II + C(ij)
III − C(ij)

IV = 0, with 1 ≤ i < j ≤ 4 (86)

The identity for (ij) = (12), e.g., follows from G̃
𝜔13 ,𝜔14
𝜔+1

= 0.

After establishing our convention for labeling analytic re-
gions, we now apply our strategy for the analytic continua-
tion to fermionic 4p MF correlators. Anomalous terms, requir-
ing bosonic Matsubara frequencies, only occur for sums of two
fermionic Matsubara frequencies, implying the general form
(Equation (A5))

G(i𝝎(𝜔1,𝜔2,𝜔3)) = Gi𝜔1 ,i𝜔2 ,i𝜔3

= G̃i𝜔1 ,i𝜔2 ,i𝜔3
+ 𝛽𝛿i𝜔12 Ĝ12;i𝜔1 ,i𝜔3

+ 𝛽𝛿i𝜔13 Ĝ13;i𝜔1 ,i𝜔2
+ 𝛽𝛿i𝜔14 Ĝ14;i𝜔1 ,i𝜔2

(87)

The anomalous terms need not be further distinguished by fac-
tors of Δi𝜔 as in Equation (73), since the remaining frequency
arguments are fermionic (i𝜔i ≠ 0).
Using Equation (87), Steps 1 and 2 of our three-step strategy

are discussed in Appendix D; they yield the PSFs

(2𝜋i)3Sp(𝜀1, 𝜀2, 𝜀3)

= n𝜀1 n𝜀2 n𝜀3 G̃
𝜀3 ,𝜀2 ,𝜀1 + n𝜀1 n𝜀2 n𝜀123 G̃

𝜀123 ,𝜀2 ,𝜀1

+ n𝜀1 n𝜀2 n𝜀13 G̃
𝜀13 ,𝜀2 ,𝜀1 + n𝜀1 n𝜀2 n𝜀23 G̃

𝜀23 ,𝜀2 ,𝜀1

+ n𝜀1 n𝜀12 n𝜀3 G̃
𝜀3 ,𝜀12 ,𝜀1 + n𝜀1 n𝜀12 n𝜀123 G̃

𝜀123 ,𝜀12 ,𝜀1

+ n𝜀1 n𝜀3 𝛿(𝜀12) Ĝ
𝜀3 ,𝜀1
12

+ n𝜀1 n𝜀2 𝛿(𝜀13) Ĝ
𝜀2 ,𝜀1
13

+ n𝜀1 n𝜀2 𝛿(𝜀14) Ĝ
𝜀2 ,𝜀1
14

(88)

This is our main result for 𝓁 = 4. Equations (D11) give an
overview over all possibly occurring discontinuities expressed
through the analytic regions in Figure 5. As for the 2p and 3p
cases, we provide a consistency check of Equation (88) in Ap-
pendix G.
To conclude this section, we further comment on properties of

the anomalous parts. As discussed in Appendix D.2, the anoma-

lous contribution Ĝ13;i𝜔1 ,i𝜔2
, e.g., can only depend on the frequen-

cies i𝜔1 and i𝜔2 separately, but not on i𝜔12. For anomalos parts,
the complex frequency plane is thus divided into only four ana-
lytic regions corresponding to the imaginary parts of 𝜀±1 and 𝜀

±
3 , in

contrast to the six analytic regions for 3p correlators. This directly
implies symmetries for discontinuities, such as Ĝ

𝜀2 ,𝜀1
13

= Ĝ
𝜀1 ,𝜀2
13

.
Similarly as for the regular parts, we label analytic continuations
of anomalous parts with Ĉ, e.g.,

Ĝ12;𝜔+1 ,𝜔
−
3
= Ĉ

(14)

12 (89)

with the difference that subscripts indicate the anomalous con-
tributions. Since Ĝ12;𝜔+1 ,𝜔

−
3
is always multiplied by 𝛿(𝜔12), the re-

maining frequencies must have imaginary parts 𝜔−2 and 𝜔
+
4 . Ac-

cordingly, the superscript of Ĉ
(14)

12 indicates the positive imaginary
shifts of 𝜔1 and 𝜔4.

6.2. 4p Keldysh Correlators

In this section, we discuss the construction of KF correlators as
linear combinations of analytically continued MF correlators. In
Equations (59), (75), and (81), we expressed various Keldysh com-
ponents via a convolution of PSF (anti)commutators with mod-
ified KF kernels, which originated from kernel identities pre-
sented in Equations (57) and Appendix C.3. To generalize these
insights to arbitrary 𝓁p correlators and to present our results in a
concise way, we now introduce further notation. The goal of this
notation is to collect terms which are related to discontinuities,
each expressible via a sum over restricted permutations, such as
the

∑
I
1|I2 terms in Equation (93).

The set of all indices L = {1,… ,𝓁} can be partitioned into 𝛼
subsets Ij of length |Ij|, such that L =

⋃𝛼
j=1 I

j with Ij ∩ Ij′ = ∅
for j ≠ j′ and 𝓁 =

∑𝛼
j=1 |Ij|. For a general Keldysh component

[𝜂1 … 𝜂𝛼 ], we define the subsets Ij to contain at least the element
𝜂j ∈ Ij for all j ∈ {1,… , 𝛼}, implying |Ij| ≥ 1. For example, a pos-
sible choice of the subsets for 𝓁 = 4 and [𝜂1𝜂2] = [12] is given by
I1 = {1, 3} and I2 = {2, 4}. With

∑
I
1|I2 , we denote sums over re-

stricted permutations p = I
1|I2 for which all indices in subset I1

appear to the left of those in subset I2. Then, in the previous

example,
∑

I
1|I2 sums over I

1|I2 ∈ {(1324), (3124), (1342), (3142)}.

Consequently, we always find |Ij| = |Ij| and 𝜂j ∈ I
j
for all j ∈

{1,… , 𝛼}. In the following, we denote the elements of I
j
by I

j

i
with i ∈ {1,… , |Ij|}.
We further define the retarded product kernel

K̃
I
1|…|I𝛼

(
𝝎
[𝜂1]…[𝜂𝛼 ]

I
1|…|I𝛼

)
=
𝛼−1∏
j=1

[
𝛿(𝜔

I
j )
] 𝛼∏

j=1

[
K̃
(
𝝎
[𝜂j ]

I
j

)]
(90a)

K̃
(
𝝎
I
j

)
=

|Ij|−1∏
i=1

1
𝜔
I
j
1…I

j
i

(90b)

The regular kernel in the last line is defined according to
Equation (19d) but restricted to the subtuple of frequencies
𝝎
I
j = (𝜔

I
j
1
,… ,𝜔

I
j|Ij | ). Additionally, we defined the shorthand
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 15213889, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300504, W

iley O
nline L

ibrary on [09/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

𝛿(𝜔
I
j ) = −2𝜋i 𝛿(𝜔

I
j ) and 𝜔

I
j = 𝜔Ij =

∑
i∈Ij 𝜔i. The superscript

on 𝝎
[𝜂1]…[𝜂𝛼 ]

I
1|…|I𝛼 indicates that the frequencies carry imaginary parts

𝜔i + i𝛾
[𝜂j ]

i for i ∈ I
j
and j ∈ {1,… , 𝛼}, such that 𝛾

[𝜂j ]
𝜂j
> 0 and

𝛾
[𝜂j ]

i≠𝜂j < 0. The Dirac delta function also ensures conservation of
imaginary parts, 𝛾Ij = 0.

As an example, consider again 𝓁 = 4 and [𝜂1𝜂2] = [12] with I
1
=

{3, 1} and I
2
= {2, 4}. Then, we find

K̃
I
1|I2

(
𝝎
[𝜂1][𝜂2]

I
1|I2

)
= 𝛿

(
𝜔
I
1

)
K̃
(
𝝎
[𝜂1]

I
1

)
K̃
(
𝝎
[𝜂2]

I
2

)
= 𝛿(𝜔13)

1

𝜔
[1]
3

1

𝜔
[2]
2

(91)

The retarded product kernels, together with PSF (anti)commu-
tators, constitute the central objects for expressing Equations (19)
in a form particularly suitable for relating KF components to an-
alytically continued MF correlators.

6.2.1. Keldysh Components G[𝜂1𝜂2]

In Equations (42b) and (76), we introduced PSF
(anti)commutators for 𝓁 = 2 and 𝓁 = 3, respectively. We gener-
alize this notation to arbitrary subsets by defining

S
[I
1
,I
2
]±
(𝜺) = S

I
1|I2

(
𝜺
I
1|I2

)
± S

I
2|I1

(
𝜺
I
2|I1

)
(92)

where the PSF (anti)commutator takes unpermuted variables 𝜺
as its argument. In Appendix F.2, we then show that Keldysh
components with 𝛼 = 2 can be rewritten as

G[𝜂1𝜂2](𝝎) =
∑

(I1 ,I2)∈12
∑
I
1|I2

(
K̃

I
1|I2⋄ S[I1 ,I2]+

)(
𝝎
[𝜂1][𝜂2]

I
1|I2

)
(93)

Here, 12 = {(I1, I2)| 𝜂1 ∈ I1, 𝜂2 ∈ I2, I1 ∪ I2 = L, I1 ∩ I2 = ∅} is
the set of all possibilities to partition L = {1,… ,𝓁} into two non-
empty subsets, I1 and I2, such that 𝜂1 ∈ I1 and 𝜂2 ∈ I2. The con-
volution of a kernel with a PSF (anti)commutator is defined as(
K̃

I
1|I2⋄ S[I1 ,I2]±

)(
𝝎
[𝜂1][𝜂2]

I
1|I2

)
(94)

= ∫ d𝓁𝜀 𝛿(𝜀1…𝓁)K̃I
1|I2

(
𝝎
[𝜂1][𝜂2]

I
1|I2 − 𝜺

I
1|I2

)
S
[I
1
,I
2
]±
(𝜺)

Further, as shown in Equation (F10), Equation (93) can be ex-
pressed in terms of analytically continuedMatsubara correlators,

G[𝜂1𝜂2](𝝎) =
∑
I1∈1

[
N𝜔I1 G̃

𝜔I1
𝝎∗ + 4𝜋i 𝛿(𝜔I1 )ĜI1;𝝎∗

]
(95)

with 1 = {I1 ⊊ L|𝜂1 ∈ I1, 𝜂2 ∉ I1} the set of all subtuples of L
containing 𝜂1 but not 𝜂2. The 𝓁 − 2 frequencies in 𝝎∗ = {𝜔−i | i ≠
𝜂1, i ≠ 𝜂2} all carry negative imaginary shifts, in accordance with
the definition of 𝝎[𝜂1𝜂2]. The anomalous part ĜI1;𝝎∗ = ĜI1 (z(𝝎

∗))
for complex z, which is independent of the anomalous frequency

𝜔I and parametrized via 𝝎∗, is defined as

ĜI1;𝝎∗ =
[
ĜI1 (i𝝎)

]
Δi𝜔→

1
i𝜔

,i𝝎→z(𝝎∗)
(96)

We first replaced the symbol Δi𝜔 by 1∕(i𝜔) to obtain a functional
form that we can analytically continue, and then continue it as
i𝝎 → z(𝝎∗). Remarkably, Equation (95) holds for arbitrary 𝓁, 𝜂1,
and 𝜂2, and elucidates how anomalous terms enter the Keldysh
components with 𝛼 = 2. Examples are found in Equation (59) for
𝓁 = 2, where [𝜂1𝜂2] = [12], 1 = {1}, and 𝝎∗ is an empty set, or
in Equation (79) for 𝓁 = 3, where [𝜂1𝜂2] = [13], 1 = {1, 12}, and
𝝎∗ = 𝜔−2
For 𝓁 = 4, consider [𝜂1𝜂2] = [12], implying the set 1 =

{1, 13, 14, 134} and 𝝎∗ = 𝜔−3 ,𝜔
−
4 . Then, Equation (95) directly

yields

G[12](𝝎) = N1G̃
𝜔1
𝜔−3 ,𝜔

−
4
+ N13G̃

𝜔13
𝜔−3 ,𝜔

−
4
+ N14G̃

𝜔14
𝜔−3 ,𝜔

−
4
+ N134G̃

𝜔134
𝜔−3 ,𝜔

−
4

+4𝜋i 𝛿(𝜔13)Ĝ13;𝜔−3 ,𝜔
−
4
+ 4𝜋i 𝛿(𝜔14)Ĝ14;𝜔−3 ,𝜔

−
4

(97)

An expression for G[12] expressed in terms of analytic regions
is given in Equation (102). Additionally, a full list of all G[𝜂1𝜂2]

is provided in Equations (101a)–(101f) (with relations such as
N134G̃

𝜔134
𝜔−3 ,𝜔

−
4
= −N2G̃

−𝜔2
𝜔−3 ,𝜔

−
4
= N2G̃

𝜔2
𝜔−3 ,𝜔

−
4
used).

6.2.2. Other Keldysh Components

The derivation of G[123] −G[3] in Section 5.2.2 can be extended to
arbitray 𝓁 and [𝜂1𝜂2𝜂3] by keeping track of permutations that are
cyclically related, generalizing Equation (81) to (see Appendix F.3
for details)

(G[𝜂1𝜂2𝜂3] −G[𝜂3])(𝝎)

=
∑

(I1 ,I23)∈1|23
∑
I
1|I23

[
K̃

I
1|I23 ⋄ S[I1 ,I23]−

](
𝝎
[𝜂1][𝜂3]

I
1|I23

)

+
∑

(I2 ,I13)∈2|13
∑
I
2|I13

[
K̃

I
2|I13 ⋄ S[I2 ,I13]−

](
𝝎
[𝜂2][𝜂3]

I
2|I13

)

+
∑

(I1 ,I2 ,I3)∈123
∑

I
1|I2|I3

[
K̃

I
1|I2|I3 ⋄ S[[I1 ,I2]+ ,I3]+

](
𝝎
[𝜂1][𝜂2][𝜂3]

I
1|I2|I3

)
(98)

Here, 123 = {(I1, I2, I3)| 𝜂1 ∈ I1, 𝜂2 ∈ I2, 𝜂3 ∈ I3, Ij ∩ Ij′ =
∅ for j ≠ j′} is the set of all possibilities to partition L = {1,… ,𝓁}
into three subsets, each of which contains one of the indices
𝜂j ∈ Ij. The remaining sets are defined as

1|23 ={(I1, I23)| 𝜂1 ∈ I1, 𝜂2, 𝜂3 ∈ I23, I1 ∩ I23 = ∅} (99a)

2|13 ={(I2, I13)| 𝜂2 ∈ I2, 𝜂1, 𝜂3 ∈ I13, I2 ∩ I13 = ∅} (99b)

Then, Equation (81) provides an example for 𝓁 = 3 and
[𝜂1𝜂2𝜂3] = [123], where 1|23 = {(1, 23)}, 2|13 = {(2, 13)} and
123 = {(1, 2, 3)}.
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For 𝓁 = 4, consider [𝜂1𝜂2𝜂3] = [123]. Compared to
the 3p case, the additional index allows for larger sets
1|23 = {(1, 234), (14, 23)}, 2|13 = {(2, 134), (24, 13)}, and
123 = {(1, 2, 34), (1, 24, 3), (14, 2, 3)}, resulting in (suppress-
ing the frequency arguments of PSF (anti)commutators)

(G[123] −G[3])(𝝎) = G̃
𝜔1
𝜔−2 𝜔

−
4
+ G̃
𝜔14
𝜔−2 𝜔

−
4
+ G̃
𝜔2
𝜔−1 𝜔

−
4
+ G̃
𝜔24
𝜔−1 𝜔

−
4

+ ∫𝜀1𝜀2𝜀3
[
𝛿(𝜔1 − 𝜀1)𝛿(𝜔2 − 𝜀2)

(2𝜋i)3

𝜔+3 − 𝜀3
S[[1,2]+ ,[3,4]− ]+

+ 𝛿(𝜔1 − 𝜀1)𝛿(𝜔3 − 𝜀3)
(2𝜋i)3

𝜔+2 − 𝜀2
S[[1,[2,4]− ]+ ,3]+

+ 𝛿(𝜔2 − 𝜀2)𝛿(𝜔3 − 𝜀3)
(2𝜋i)3

𝜔+1 − 𝜀1
S[[[1,4]− ,2]+ ,3]+

]
(100)

Here, we identified the terms in the first line of Equa-
tion (98) with discontinuities (see Appendix E.1). After insert-
ing the PSFs (see Equations (F15)) and performing the remain-
ing integrations using Cauchy’s integral formula, we obtain
Equation (101g).
For 𝛼 ≥ 4, expressing the spectral representation of G[𝜂1…𝜂𝛼 ] in

terms of retarded product kernels and PSF (anti)commutators be-
comes increasingly challenging. Nevertheless, we provide a for-
mula for G[1234] and 𝓁 = 4 in Equation (F16), with a list of all
relevant PSF (anti)commutators given in Equation (F17). Equa-
tion (101k) then displays the result after evaluating all convolu-
tion integrals.

6.2.3. Overview of Keldysh Components

To summarize the results of the previous sections, we give an
overview of all Keldysh components with 𝛼 > 1:

G[12](𝝎) = N1G̃
𝜔1
𝜔−3 ,𝜔

−
4
+ N2G̃

𝜔2
𝜔−3 ,𝜔

−
4
+ N13G̃

𝜔13
𝜔−3 ,𝜔

−
4
+ N14G̃

𝜔14
𝜔−3 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔13)Ĝ13;𝜔−3 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔14)Ĝ14;𝜔−3 ,𝜔

−
4

(101a)

G[34](𝝎) = N3G̃
𝜔3
𝜔−1 ,𝜔

−
2
+ N13G̃

𝜔13
𝜔−1 ,𝜔

−
2
+ N14G̃

𝜔14
𝜔−1 ,𝜔

−
2
+ N4G̃

𝜔4
𝜔−1 ,𝜔

−
2
+ 4𝜋i𝛿(𝜔13)Ĝ13;𝜔−1 ,𝜔

−
2
+ 4𝜋i𝛿(𝜔14)Ĝ14;𝜔−1 ,𝜔

−
2

(101b)

G[13](𝝎) = N1G̃
𝜔1
𝜔−2 ,𝜔

−
4
+ N12G̃

𝜔12
𝜔−2 ,𝜔

−
4
+ N14G̃

𝜔14
𝜔−2 ,𝜔

−
4
+ N3G̃

𝜔3
𝜔−2 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔12)Ĝ12;𝜔−2 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔14)Ĝ14;𝜔−2 ,𝜔

−
4

(101c)

G[24](𝝎) = N2G̃
𝜔2
𝜔−1 ,𝜔

−
3
+ N12G̃

𝜔12
𝜔−1 ,𝜔

−
3
+ N14G̃

𝜔14
𝜔−1 ,𝜔

−
3
+ N4G̃

𝜔4
𝜔−1 ,𝜔

−
3
+ 4𝜋i𝛿(𝜔12)Ĝ12;𝜔−1 ,𝜔

−
3
+ 4𝜋i𝛿(𝜔14)Ĝ14;𝜔−1 ,𝜔

−
3

(101d)

G[14](𝝎) = N1G̃
𝜔1
𝜔−2 ,𝜔

−
3
+ N12G̃

𝜔12
𝜔−2 ,𝜔

−
3
+ N13G̃

𝜔13
𝜔−2 ,𝜔

−
3
+ N4G̃

𝜔4
𝜔−2 ,𝜔

−
3
+ 4𝜋i𝛿(𝜔12)Ĝ12;𝜔−2 ,𝜔

−
3
+ 4𝜋i𝛿(𝜔13)Ĝ13;𝜔−2 ,𝜔

−
3

(101e)

G[23](𝝎) = N2G̃
𝜔2
𝜔−1 ,𝜔

−
4
+ N12G̃

𝜔12
𝜔−1 ,𝜔

−
4
+ N13G̃

𝜔13
𝜔−1 ,𝜔

−
4
+ N3G̃

𝜔3
𝜔−1 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔12)Ĝ12;𝜔−1 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔13)Ĝ13;𝜔−1 ,𝜔

−
4

(101f )

(G[123] −G[3])(𝝎) =
(
N1N2 + 1

)
G̃
𝜔2 ,𝜔1
𝜔+3

+ N1N12G̃
𝜔12 ,𝜔1
𝜔+3

+ N1N3G̃
𝜔3 ,𝜔1
𝜔+2

+ (N1N13 − 1)G̃
𝜔13 ,𝜔1
𝜔+2

+ N2N3G̃
𝜔3 ,𝜔2
𝜔+1

+ (N2N23 − 1)G̃
𝜔23 ,𝜔2
𝜔+1

+G̃𝜔1
𝜔−2 ,𝜔

+
3
− G̃
𝜔23
𝜔+1 ,𝜔

−
2
+ G̃
𝜔2
𝜔−1 ,𝜔

+
3
− G̃
𝜔13
𝜔+2 ,𝜔

−
1
+ 4𝜋i 𝛿(𝜔12)N1 Ĝ

𝜔1
12;𝜔+3

+ 4𝜋i 𝛿(𝜔13)N1 Ĝ
𝜔1
13;𝜔+2

+ 4𝜋i 𝛿(𝜔14)N2 Ĝ
𝜔2
14;𝜔+1

(101g)

(G[124] −G[4])(𝝎) =
(
N1N2 + 1

)
G̃
𝜔2 ,𝜔1
𝜔+4

+ N1N12G̃
𝜔12 ,𝜔1
𝜔+4

+ N1N4G̃
𝜔4 ,𝜔1
𝜔+2

+ (N1N14 − 1)G̃
𝜔14 ,𝜔1
𝜔+2

+ N2N4G̃
𝜔4 ,𝜔2
𝜔+1

+ (N2N24 − 1)G̃
𝜔24 ,𝜔2
𝜔+1

+G̃𝜔1
𝜔−2 ,𝜔

+
4
− G̃
𝜔24
𝜔+1 ,𝜔

−
2
+ G̃
𝜔2
𝜔−1 ,𝜔

+
4
− G̃
𝜔14
𝜔+2 ,𝜔

−
1
+ 4𝜋i 𝛿(𝜔12)N1 Ĝ

𝜔1
12;𝜔+4

+ 4𝜋i 𝛿(𝜔13)N2 Ĝ
𝜔2
13;𝜔+1

+ 4𝜋i 𝛿(𝜔14)N1 Ĝ
𝜔1
14;𝜔+2

(101h)

(G[134] −G[4])(𝝎) =
(
N1N3 + 1

)
G̃
𝜔3 ,𝜔1
𝜔+4

+ N1N13G̃
𝜔13 ,𝜔1
𝜔+4

+ N1N4G̃
𝜔4 ,𝜔1
𝜔+3

+ (N1N14 − 1)G̃
𝜔14 ,𝜔1
𝜔+3

+ N3N4G̃
𝜔4 ,𝜔3
𝜔+1

+ (N3N34 − 1)G̃
𝜔34 ,𝜔3
𝜔+1

+G̃𝜔1
𝜔−3 ,𝜔

+
4
− G̃
𝜔34
𝜔+1 ,𝜔

−
3
+ G̃
𝜔3
𝜔−1 ,𝜔

+
4
− G̃
𝜔14
𝜔+3 ,𝜔

−
1
+ 4𝜋i 𝛿(𝜔12)N3 Ĝ

𝜔3
12;𝜔+1

+ 4𝜋i 𝛿(𝜔13)N1 Ĝ
𝜔1
13;𝜔+4

+ 4𝜋i 𝛿(𝜔14)N1 Ĝ
𝜔1
14;𝜔+3

(101i)

(G[234] −G[4])(𝝎) =
(
N2N3 + 1

)
G̃
𝜔3 ,𝜔2
𝜔+4

+ N2N23G̃
𝜔23 ,𝜔2
𝜔+4

+ N2N4G̃
𝜔4 ,𝜔2
𝜔+3

+ (N2N24 − 1)G̃
𝜔24 ,𝜔2
𝜔+3

+ N3N4G̃
𝜔4 ,𝜔3
𝜔+2

+ (N3N34 − 1)G̃
𝜔34 ,𝜔3
𝜔+2

+G̃𝜔2
𝜔−3 ,𝜔

+
4
− G̃
𝜔34
𝜔+2 ,𝜔

−
3
+ G̃
𝜔3
𝜔−2 ,𝜔

+
4
− G̃
𝜔24
𝜔+3 ,𝜔

−
2
+ 4𝜋i 𝛿(𝜔12)N3 Ĝ

𝜔3
12;𝜔+2

+ 4𝜋i 𝛿(𝜔13)N2 Ĝ
𝜔2
13;𝜔+3

+ 4𝜋i 𝛿(𝜔14)N2 Ĝ
𝜔2
14;𝜔+4

(101j)

G[1234](𝝎) = N1G̃
𝜔1
𝜔−2 ,𝜔

−
3
+ N2G̃

𝜔2
𝜔−3 ,𝜔

−
4
+ N3G̃

𝜔3
𝜔−1 ,𝜔

−
4
+ N4G̃

𝜔4
𝜔−1 ,𝜔

−
2
+ N3G̃

𝜔3 ,𝜔4
𝜔+2

+ N2G̃
𝜔2 ,𝜔3
𝜔+1

+ N4G̃
𝜔4 ,𝜔1
𝜔+3

+ N1G̃
𝜔1 ,𝜔2
𝜔+4

+ N2G̃
𝜔2 ,𝜔4
𝜔+3

+N4G̃
𝜔4 ,𝜔2
𝜔+3

+ N1G̃
𝜔1 ,𝜔3
𝜔+4

+ N3G̃
𝜔3 ,𝜔1
𝜔+4

+ (N1N2N3 + N1 + N3)G̃
𝜔3 ,𝜔2 ,𝜔1 + (N1N2N4 + N4 + N2)G̃

𝜔4 ,𝜔2 ,𝜔1

+ (N1N2N13 + N1 − N2)G̃
𝜔13 ,𝜔2 ,𝜔1 + (N1N2N23)G̃

𝜔23 ,𝜔2 ,𝜔1 + N1(1 + N12N3)G̃
𝜔3 ,𝜔12 ,𝜔1 + N1N12N4G̃

𝜔4 ,𝜔2 ,𝜔1

+ 4𝜋iN1N3𝛿(𝜔12)Ĝ
𝜔1 ,𝜔3
12 + 4𝜋iN1N2

[
𝛿(𝜔13)Ĝ

𝜔1 ,𝜔2
13 + 𝛿(𝜔13)Ĝ

𝜔1 ,𝜔2
14

]
(101k)
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These equations constitute the main results of the MF-to-KF an-
alytic continuation: They relate all components of a fermionic KF
4p correlator to linear combinations of analytically continued reg-
ular and anomalous parts of the correspondingMF correlator, ex-
pressed in terms of discontinuities and statistical factors Ni.

6.2.4. 4p gFDRs

For 4p correlators, there are several regions of analyticity that can-
not be identified with a KF correlator. Therefore, in contrast to
𝓁 ≤ 3, fully retarded and advanced Keldysh components do not
suffice to determine all other Keldysh components. Nevertheless,
different Keldysh components can be related to each other. We
nowpresent the strategy for deriving these gFDRs for the Keldsyh
component G[12].
Since every Keldysh component can be represented as a linear

combination of analytically continued MF correlators, the ana-
lytic regions can serve as a basis to find relations among differ-
ent Keldysh components. Expressing the discontinuities in Equa-
tion (101a) via analytic regions, the KF correlator G[12] reads

G[12] = N1

(
C(12)
III −G[2]

)
+ N13

(
C(12)
II − C(12)

III

)
+ N14

(
C(12)
IV − C(12)

III

)
+ N2

(
C(12)
I −G[1]

)
+ 4𝜋i 𝛿(𝜔13) Ĉ

(12)

13 + 4𝜋i 𝛿(𝜔14) Ĉ
(12)

14 (102)

where we inserted G[1] = C(1) and G[2] = C(2). Evidently, G[12] can-
not be expressed in terms of fully retarded and advanced com-
ponents only (modulo anomalous terms) due to the occurrence
of C(12)

I∕III∕IV. However, these analytic regions and the same anoma-
lous contributions appear in the primed KF correlator G′[34] as
well:

G′[34] = N3

(
C(12)
II −G′[4]

)
+ N13

(
C(12)
III − C(12)

II

)
+ N14

(
C(12)
III − C(12)

IV

)
+ N4

(
C(12)
IV −G′[3]

)
− 4𝜋i 𝛿(𝜔13)Ĉ

(12)

13 − 4𝜋i 𝛿(𝜔14)Ĉ
(12)

14 (103)

Note that priming the i𝛿(… ) factors amounts to complex con-
jugation, as these arise from the identity (58), i.e., [i𝛿(… )]′ =
−i𝛿(… ). Therefore, we make the ansatz of expressing G[12] as a
linear combination of G′[34], G[1], G[2], G′[3], and G′[4], where the
coefficients are determined by comparing terms proportional to
the same analytic regions. Even though the resulting set of equa-
tions is overdetermined (including anomalous contributions, we
have ten equations for five coefficients), we find the gFDR

G[12] = − N1G
[2] − N2G

[1]

+
N1 + N2

N3 + N4

[
G′[34] + N3G

′[4] + N4G
′[3]] (104a)

The anomalous terms enter the right-hand side only implicitly via
G′[34]. However, using N1+N2

N3+N4
𝛿(𝜔13) = −𝛿(𝜔13) and

N1+N2

N3+N4
𝛿(𝜔14) =

−𝛿(𝜔14), it is straightforward to show that the Ĉ
(12)

13 and Ĉ
(12)

14 con-
tributions in the last line of Equation (102) are recovered by the
corresponding terms in Equation (103) via Equation (104a). Con-
versely, the gFDR for G[34] can be derived from Equation (104a)
by solving for G′[34] and priming all correlators.
The gFDRs for all other Keldysh components with 𝛼 ≥ 2 follow

from the same strategy: Express Keldysh components in terms of
linearly independent analytic regions and find relations between
different components by solving a set of equations to determine
coefficients. In addition to Equation (104a), we then obtain for
𝛼 = 2

G[13] = − N1G
[3] − N3G

[1]

+
N1 + N3

N2 + N4

[
G′[24] + N2G

′[4] + N4G
′[2]] (104b)

G[14] = − N1G
[4] − N4G

[1]

+
N1 + N4

N2 + N3

[
G′[23] + N2G

′[3] + N3G
′[2]] (104c)

for 𝛼 = 3

G[234] = (1 + N2N4 + N2N3 + N3N4)G
′ [1] − N3N4G

[2] − N2N4G
[3]

− N2N3G
[4] − N4G

[23] − N3G
[24] − N2G

[34] (104d)

G[134] = (1 + N1N4 + N1N3 + N3N4)G
′ [2] − N3N4G

[1] − N1N4G
[3]

− N1N3G
[4] − N4G

[13] − N3G
[14] − N1G

[34] (104e)

G[124] = (1 + N1N2 + N1N2 + N2N4)G
′ [3] − N2N4G

[1] − N1N4G
[2]

−N1N2G
[4] − N4G

[12] − N2G
[14] − N1G

[24] (104f )

G[123] = (1 + N1N2 + N1N3 + N2N3)G
′ [4] − N2N3G

[1] − N1N3G
[2]

− N1N2G
[3] − N1G

[23] − N2G
[13] − N3G

[12] (104g)

and for 𝛼 = 4

G[1234] = 2N2N3N4G
[1] + (N2N3N4 + N2 + N3 + N4)G

′ [1]

+ 2N1N3N4G
[2] + (N1N3N4 + N1 + N3 + N4)G

′ [2]

+ 2N1N2N4G
[3] + (N1N2N4 + N1 + N2 + N4)G

′ [3]

+ 2N2N3N4G
[4] + (N1N2N3 + N1 + N2 + N3)G

′ [4]

+ N3N4G
[12] + N2N4G

[13] + N2N3G
[14]

+ N1N4G
[23] + N1N3G

[24] + N1N2G
[34] (104h)

These results agree with the FDRs found in ref. [24], and there-
fore provide a consistency check for our approach. Moreover, we
checked that the anomalous parts fulfill the same gFDRs. They
enter Equations (104) only implicitly through G[𝜂1𝜂2] and G′[𝜂1𝜂2]

on the right-hand sides, which contain anomalous parts via Equa-
tions (101a)–(101f). This is in contrast to the 2p and 3p cases in
Equations (61) and (84), respectively. There, only fully retarded
and advanced Keldysh correlators, which solely depend on the
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Figure 6. a) Degenerate energy levels of the half-filled Hubbard atom for u > 0. b) Relevant analytic regions of the regular part of the 3p electron-density
correlator in Equation (113). As the correlator is independent of i𝜔3 = −i𝜔12, there are are no poles on the line 𝛾3 = 0 in Figure 4, resulting inG′[1] = G[2]

and G′[2] = G[1]. The dashed arrows indicate the relevant discontinuities for the different Keldysh components with 𝛼 = 2, see Equation (84). c) Reduced
analytic regions of the regular part of the fermionic 4p correlator in Equation (119). The regions labeled by (3), (4), (34), (134), and (234) in Figure 5 are
missing.

regular part G̃ of the corresponding MF correlator (see Equa-
tion (23)), occur on the right-hand side, and thus the anomalous
parts have to enter the gFDRs explicitly.

7. Hubbard Atom

To illustrate the use of our analytic continuation formulas, we
consider the Hubbard atom (HA) with the Hamiltonian

H = Un↑n↓ − 𝜇(n↑ + n↓) (105)

It describes an interacting system of spin– 1
2
electrons on a single

site, created by d†
𝜎
, with n

𝜎
= d†
𝜎
d
𝜎
the number operator for spin

𝜎 ∈ {↑, ↓}. The chemical potential 𝜇 is set to the half-filling value
𝜇 = u = U∕2 for compact results, where U is the interaction pa-
rameter. The Hilbert space of the HA is only four-dimensional,
with the site being either unoccupied, |0⟩, singly occupied, |↑⟩
or |↓⟩, or doubly occupied, |↑↓⟩. The eigenenergies are (see
Figure 6a)

E0 = E↑↓ = 0, E↑ = E↓ = −u (106)

The partition sum evaluates to Z = tr(e−𝛽H) = 2 + 2e𝛽u.
This very simple model is interesting as it is accessible via ana-

lytically exact computations. It describes the Hubbard model and
the single-impurity Anderson model in the atomic limit (where
the interaction U dominates over all other energy scales) and
can thus serve as a benchmark for numerical methods.[23,33–35]

Several correlators of the Hubbard atom were computed in the
MF and studied extensively, like fermionic 2p (one-particle)
and 4p (two-particle) correlators.[36–40] Also its 3p MF functions
have been computed and applied in previous works.[41–43] The
vertex of the Hubbard atom, obtained from the fermionic 4p
correlator by dividing out external legs, was used as a starting
point for an expansion around strong coupling.[37,38,44,45] Addi-
tionally, it was found that (despite the simplicity of the model)
the two-particle irreducible (2PI) vertices display a complicated
frequency dependence, and their divergencies are subject to
ongoing research.[46–49] Such divergencies have been related

to the breakdown of the perturbative expansion due to the
multivaluedness of the Luttinger–Ward functional[46,50–52] and to
the local moment formation in generalized susceptibilities.[53,54]

2p and 3p bosonic correlators have gained interest in recent
years as well. They describe not only the asymptotic behaviour of
the 4p vertex for large frequencies[40] or the interaction of elec-
trons via the exchange of effective bosons,[55,56] but they are also
the central objects of linear and non-linear response theory.[57,58]

KF correlators for theHA (beyond 𝓁 = 2) were of smaller inter-
est due to the lack of numerical real-frequency studies. However,
substantial progress has been made in this direction.[23,29,59–61]

Hence, we exemplify the analytic continuation from MF to KF
correlators on the example of theHA for various correlators of in-
terest.
One further comment is in order: The following MF corre-

lators are derived by first computing the PSFs, followed by a
convolution with the MF kernels. From our experience, a direct
insertion of these PSFs into the spectral representation of KF
correlators yields cluttered expressions, cumbersome to simplify
due to the infinitesimal imaginary shifts 𝛾0. With the analytic
continuation formulas, on the other hand, terms are conve-
niently preorganized, collecting those contributions with the
same imaginary shifts. Additionally, the discontinuities conve-
niently yield Dirac delta contributions, as we will show below.
In order to derive, e.g., our first results for the 4p correlator,
Equations (H18), it is much more convenient to start from the
analytic continuation formulas, Equations (101), than from the
original KF Equation (19).
For a compact presentation of our results, we distin-

guish different correlators with operators in subscripts, e.g.,
G[O1, O2](i𝝎) = GO1O2 (i𝝎). Furthermore, we will make use of the
identities (proven in Appendix H.1)

𝜔+

(𝜔+)2 − u2
− 𝜔−

(𝜔−)2 − u2
= 𝜋

i
[𝛿(𝜔 + u) + 𝛿(𝜔 − u)] (107a)

1
(𝜔+)2 − u2

− 1
(𝜔−)2 − u2

= 𝜋i
u
[𝛿(𝜔 + u) − 𝛿(𝜔 − u)] (107b)

All following correlators refer to the connected part.
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7.1. Examples for 𝓁 = 2

7.1.1. Fermionic 2p Correlator

To begin with, we consider the fermionic 2p correlator (propa-
gator), with O = (d↑, d

†
↑). By SU(2) spin symmetry, reversing all

spins leaves the correlator invariant. As the nonzero matrix el-
ements are ⟨↑ |d†↑|0⟩ = ⟨↑↓ |d†↑| ↓⟩ = 1 and ⟨0|d↑| ↑⟩ = ⟨↓ |d↑| ↑↓⟩
= 1, we can readily compute the PSFs, Sp, via Equation (22b) in
ref. [23]. Evaluating the spectral representation yields

Gd
↑
d†
↑
(i𝜔) = i𝜔

(i𝜔)2 − u2
= G̃(i𝜔) (108)

By construction, there is no anomalous part Ĝ1 = 0. The re-
tarded and advanced component are directly obtained fromEqua-
tion (54):

G[1∕2]
d
↑
d†
↑

(𝜔) = 𝜔±

(𝜔±)2 − u2
(109)

The Keldysh component involves the difference of the retarded
and advanced component. Via Equation (107a), one gets

G[12]

d
↑
d†
↑

(𝜔) = 𝜋i t
[
𝛿(𝜔 + u) − 𝛿(𝜔 − u)

]
(110)

where we used N−𝜔 = −N𝜔 and defined t = tanh(𝛽u∕2).

7.1.2. Density–Density Correlator

Our second example is the density–density correlator O =
(n↑, n↓). The spectral representation in the MF yields a purely
anomalous result

Gn↑n↓
(i𝜔) = 𝛽𝛿i𝜔

1
4
t = 𝛽𝛿i𝜔Ĝ1 (111)

The correlator Gn↑n↓
discussed above describes the linear re-

sponse of the spin-up occupation to a shift of the spin-down
energy level, which lifts the degeneracy of the singly-occupied
energy levels in Figure 6a. For decreasing temperatures, the
system becomes increasingly susceptible to such perturbations.
This is reflected by the 𝛽 = 1∕T divergence for T → 0 in the
MF correlator of Equation (111), and the 𝛿(𝜔) behavior in
Equation (112) for its Keldysh counterpart.
Using Equations (54) and (61), the Keldysh components read

G[1]
n
↑
n
↓
(𝜔) = G[2]

n↑n↓
(𝜔) = 0,

G[12]
n
↑
n
↓
(𝜔) = 4𝜋i 𝛿(𝜔) 1

4
t (112)

We again emphasize the importance of the anomalous term in
the gFDR. If it were discarded, the Keldysh component G[12]

n
↑
n
↓

would falsely vanish entirely.

7.2. Examples for 𝓁 = 3

7.2.1. 3p Electron-Density Correlator

Our first example for𝓁 = 3 involves the operatorsO = (d↑, d
†
↑, n↑).

As only the third operator is bosonic, there is at most one anoma-

lous term if i𝜔3 = −i𝜔12 = 0. Indeed, the spectral representation
evaluates to

Gd↑d
†
↑n↑
(i𝝎) =

u2 − i𝜔1 i𝜔2[
(i𝜔1)2 − u2

][
(i𝜔2)2 − u2

] + 𝛽𝛿i𝜔12 ,0 u t2 1
(i𝜔1)2 − u2

= G̃(i𝝎) + 𝛽𝛿i𝜔12 Ĝ3(i𝜔1). (113)

Since the fully retarded and fully advanced components of the
correlator trivially follow from the regular part, we focus on the
𝛼 ≥ 2 components in the following. We begin with the Keldysh
component G[13] in Equation (84b): The regular part is inde-
pendent of i𝜔3 = −i𝜔12, such that the discontinuity across 𝛾3 =
−𝛾12 = 0 vanishes, implying G′[2] −G[1] = 0 (see Figure 6b). The
discontinuity G′[2] −G[3], on the other hand, is nonzero and can
be easily evaluated using Equations (107), leading to (see Ap-
pendix H.2)

G[13]

d↑d
†
↑n↑
(𝝎) = N1

(
G̃(𝜔+1 ,𝜔

−
2 ) − G̃(𝜔−1 ,𝜔

−
2 )
)
+ 4𝜋i 𝛿(𝜔12)Ĝ3(𝜔

+
1 )

= 𝜋i t
[
𝛿(𝜔1 − u)
𝜔−2 + u

−
𝛿(𝜔1 + u)
𝜔−2 − u

]
+ 4𝜋i 𝛿(𝜔12)

u t
2

1
(𝜔+1 )

2 − u2
(114)

Similarly, the remaining components with 𝛼 = 2, as well as the
Keldysh component with 𝛼 = 3, read

G[23]

d↑d
†
↑n↑
(𝝎) = 𝜋i t

[
𝛿(𝜔2 − u)
𝜔−1 + u

−
𝛿(𝜔2 + u)
𝜔−1 − u

]
+ 4𝜋i 𝛿(𝜔12)

u t
2

1
(𝜔−1 )

2 − u2
,

G[12]

d↑d
†
↑n↑
(𝝎) = 𝜋i t

[
𝛿(𝜔1 − u)

𝜔+2 + u
−
𝛿(𝜔1 + u)

𝜔+2 − u

]

+ 𝜋i t
[
𝛿(𝜔2 − u)

𝜔+1 + u
−
𝛿(𝜔2 + u)

𝜔+1 − u

]
,

G[123]

d↑d
†
↑n↑
(𝝎) =

u2 − 𝜔+1 𝜔
+
2[

(𝜔+1 )
2 − u2

][
(𝜔+2 )

2 − u2
] (115)

Here, G[12]

d
↑
d†
↑
n
↑

includes two discontinuities across 𝛾1 = 0 and 𝛾2 =

0, but no contribution from Ĝ3, leading to the different structure
compared to the other two Keldysh components with 𝛼 = 2. Sur-
prisingly, G[123]

d
↑
d†
↑
n
↑

is directly determined by G′[3]. All other contri-

butions from regular and anomalous parts mutually cancel, see
Appendix H.2.

7.2.2. Three-Spin Correlator

3p bosonic correlators are the central objects in non-linear re-
sponse theory. Here, we consider the correlator for the spin op-
erators O = (Sx, Sy, Sz), describing second-order changes in the
magnetization by applying an external magnetic field. The spin
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operators are given by

Sx = 1
2

(
d†↑d↓ + d†↓d↑

)
, Sy = − i

2

(
d†↑d↓ − d†↓d↑

)
,

Sz =
1
2

(
n
↑ − n↓

)
(116)

The spectral representation, using the MF kernel in Equa-
tion (A4b), then yields

GSxSySz
(i𝝎) = −𝛽𝛿i𝜔1 Z̃Δi𝜔2

+ 𝛽𝛿i𝜔2 Z̃Δi𝜔1
− 𝛽𝛿i𝜔12 Z̃Δi𝜔1

= 𝛽𝛿i𝜔1 Ĝ
Δ
1 (i𝜔2) + 𝛽𝛿i𝜔2 Ĝ

Δ
2 (i𝜔1) + 𝛽𝛿i𝜔3 Ĝ

Δ
3 (i𝜔1)

(117)

where Z̃ = ie𝛽u∕(2Z).
From Equations (84a)–(84d), we deduce the only nonzero

Keldysh components as

G[12]
SxSySz

(𝝎) = −4𝜋i 𝛿(𝜔1)
Z̃
𝜔+2

+ 4𝜋i 𝛿(𝜔2)
Z̃
𝜔+1
,

G[13]
SxSySz

(𝝎) = −4𝜋i 𝛿(𝜔1)
Z̃
𝜔−2

− 4𝜋i 𝛿(𝜔12)
Z̃
𝜔+1
,

G[23]
SxSySz

(𝝎) = 4𝜋i 𝛿(𝜔1)
Z̃
𝜔−1

− 4𝜋i 𝛿(𝜔12)
Z̃
𝜔−1

(118)

Even though anomalous parts contribute to G[123] as well, they

solely originate from the Ĝ
–Δ
i terms, such that G[123] vanishes in

this case.

7.3. Example for 𝓁 = 4: Fermionic 4p Correlator

Finally, we consider the 4p correlatorG𝜎𝜎′ involving the operators
O = (d

𝜎
, d†
𝜎
, d
𝜎′
, d†
𝜎′
). Let us showcase the analytic continuation for

G↑↓, which evaluates in the MF to

G↑↓(i𝝎) =
2u

∏4
i=1(i𝜔i) + u3

∑4
i=1(i𝜔i)

2 − 6u5∏4
i=1

[
(i𝜔i)2 − u2

]
+
u2

[
𝛽𝛿i𝜔12 t + 𝛽𝛿i𝜔13 (t − 1) + 𝛽𝛿i𝜔14 (t + 1)

]∏4
i=1(i𝜔i + u)

= G̃(i𝝎) + 𝛽𝛿i𝜔12 Ĝ12(i𝝎) + 𝛽𝛿i𝜔13 Ĝ13(i𝝎)

+ 𝛽𝛿i𝜔14 Ĝ14(i𝝎) (119)

We study the analytic continuation to the Keldysh component
G[12], expressed in terms of the analytic regions from Equa-
tion (102). Since the regular part only depends on the frequen-
cies i𝜔i individually, the discontinuities across 𝛾12 = 0, 𝛾13 = 0,
and 𝛾14 = 0 vanish (Figure 6c), resulting in

G[12]
↑↓ (𝝎) = N1

(
C(12)
III − C(2)

)
+ N2

(
C(12)
I − C(1)

)
+ 4𝜋i 𝛿(𝜔13) Ĉ

(12)

13 + 4𝜋i 𝛿(𝜔14) Ĉ
(12)

14 (120)

The remaining discontinuities can be computed without fur-
ther complications. From Equation (119), we can already infer

some of their structures. Since the regular part has poles at
i𝜔1 → z1 = ±u (or i𝜔2 → z2 = ±u), we expect the discontinuity
across 𝛾1 = 0 (or 𝛾2 = 0) to select these poles. Indeed, we find
(see Appendix H.3)

G[12]
↑↓ (𝝎) = 2𝜋i u t

𝛿(𝜔1 − u) − 𝛿(𝜔1 + u)

(𝜔+2 )
2 − u2

(
1
𝜔−13

+ 1
𝜔−14

)
+ (1 ↔ 2) + 4𝜋i u2

𝛿(𝜔13)(t − 1) + 𝛿(𝜔14)(t + 1)[
(𝜔+1 )

2 − u2
][
(𝜔+2 )

2 − u2
] (121)

where 1 → 2 indicates that indices 1 and 2 are exchanged com-
pared to the first term. This expression can be simplified even
further by collecting terms proportional to t and rewriting the
𝛿-functions in the resulting prefactor using Equations (58) and
(107b). We eventually obtain

G[12]
↑↓ (𝝎) = 4𝜋i u2

𝛿(𝜔14) − 𝛿(𝜔13)[
(𝜔+1 )

2 − u2
][
(𝜔+2 )

2 − u2
]

+ 2u2t
[

1
(𝜔+1 )

2 − u2
1

(𝜔−2 )
2 − u2

(
1
𝜔−23

+ 1
𝜔−24

)
− c.c.

]
(122)

where c.c. is the complex conjugate. The other Keldysh compo-
nents follow by similar calculations, see Appendix H.4.
This concludes the section on HA examples for the analytic

continuation of multipoint correlators. We again stress the sim-
plicity of the analytic continuation procedure using our results
for the Keldysh components expressed through analytic regions.

8. Vertex Corrections to Conductance

In this section, we consider a specific application of the analytic
continuation of 4p functions regarding vertex corrections to the
conductivity. One can deduce vertex corrections to real-frequency
susceptibilities either by working directly in the KF or by using
the MF and the analytic continuation method. The latter strategy
was pursued by Eliashberg,[13] converting Matsubara sums into
contour integrals and thereby obtaining various vertex contribu-
tions which consist of linear combinations of the MF vertex ana-
lytically continued to specific regions. For the special case of the
linear conductance through an interacting region coupled to two
noninteracting leads, Oguri[62] subsequently found that only one
of these many vertex corrections contributes to the final result. A
very similar formula for the linear conductance was later derived
by Heyder et al.[63] with a different line of argument, working en-
tirely in the KF.With our insights on 4p analytic continuation and
gFDRs, we can demonstrate the equivalence between the results
by Oguri and Heyder et al. and connect the MF and KF deriva-
tions.
A general susceptibility 𝜒 can be expressed as in Figure 7. The

first (“bubble”) term merely comprises two 2p correlators. We
thus focus on the second term, the vertex correction, which in
the MF reads

𝜒F(i𝜔) =
1
𝛽2

∑
i𝜈,i𝜈′

G(i𝜈)G(i𝜈+i𝜔)F(i𝜈, i𝜈′, i𝜔)G(i𝜈′)G(i𝜈′+i𝜔) (123)
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Figure 7. Diagrammatic representation of the susceptibility 𝜒 consisting
of a bubble and a vertex contribution. Lines represent propagators G, and
the square is a vertex F.

Definitions of the propagator G and vertex F can be found in
Section III A of ref. [23]. The summand in Equation (123) is the
connected 4p correlator. Due to their close relation, the vertex F
inherits its analytic properties from the correlator. In fact, by a
transformation of Keldysh correlators to the R∕A basis,[64,65] it
can be easily shown that our formulas in Equation (101) identi-
cally hold for F, and we thus use the same symbols C to denote
analytic continuations of F (see, e.g., Equation (124b)). Note that
the Keldysh indices 1 and 2 exchange their meaning for F, such
that, e.g., a fully retarded component reads F[1] = F1222 (while
G[1] = G2111).
In ref. [13], Eliashberg converted theMatsubara sums in Equa-

tion (123) to contour integrals, thereby analytically continuing the
MF functions and picking up contributions from all regions of
analyticity (see Figure 5). In ref. [62], Oguri showed that the 𝜔-
linear part, needed for the linear conductance (lc), stems from
only one function, F(O), see Equation (2.34) in ref. [62]. The cor-
responding vertex correction to the retarded susceptibility reads

𝜒RF,lc(𝜔) = −∫ ∫
d𝜈d𝜈′

(4𝜋i)2
GR(𝜈 + 𝜔)GA(𝜈)GA(𝜈′)GR(𝜈′ + 𝜔)

×
[
tanh

(
𝜈+𝜔
2T

)
− tanh

(
𝜈

2T

)]
FO(𝜈, 𝜈

′,𝜔) (124a)

FO = −N𝜔3C
(12)
II − N𝜔4C

(12)
IV + N𝜔13 [C

(12)
II − C(12)

III ]

+ N𝜔14 [C
(12)
IV − C(12)

III ] (124b)

where we used

(𝜔1,𝜔2,𝜔3,𝜔4) = (𝜈 + 𝜔,−𝜈, 𝜈′,−𝜈′ − 𝜔) (125)

as frequency parametrization. Note that the results by Oguri and
Eliashberg differ in their choice of the MWF; Equation (124b)
corresponds to 22 in Equation (12) of ref. [13].
An analogous result with an independent KF derivation was

obtained in Equations (11) and (17) of ref. [63] by Heyder et al.
There, the vertex correction to the linear conductance corre-
sponds to

𝜒RF,lc(𝜔) = ∫ ∫
d𝜈d𝜈′

(4𝜋i)2
GR(𝜈 + 𝜔)GA(𝜈)GA(𝜈′)GR(𝜈′ + 𝜔)

×
[
tanh

(
𝜈′+𝜔
2T

)
− tanh

(
𝜈′

2T

)]
FH(𝜈, 𝜈

′,𝜔) (126a)

FH = −
(
F[12] + N𝜔1F

[2] + N𝜔2F
[1]
)

(126b)

For an easier comparison with Equation (124a), we here used the
tanh function instead of the Fermi distribution function. We also

absorbed a factor of 2 due to our choice of convention for the
Keldysh rotation of multipoint functions (cf. Equation (17)).
To show that Equations (124a) and (126a) are equivalent, we

translate the analytic continuations of the MF vertex in Equa-
tion (124b) to Keldysh components. First, we note that the linear
combination of terms comprising FO in Equation (124b) can also
be expressed as follows, using (103):

F′[34] + N𝜔3F
′[4] + N𝜔4F

′[3]

= N𝜔3C
(12)
II + N𝜔4C

(12)
IV + N𝜔13 [C

(12)
III − C(12)

II ]

+ N𝜔14 [C
(12)
III − C(12)

IV ] = −FO (127)

where we assumed vanishing anomalous parts. Next, we use the
gFDR in Equation (104a) for vertices,

(N𝜔3 + N𝜔4 )
(
F[12] + N𝜔1F

[2] + N𝜔2F
[1]
)

= (N𝜔1 + N𝜔2 )
(
F′[34] + N𝜔3F

′[4] + N𝜔4F
′[3]) (128)

Together with Equation (125), this implies the equivalence of
Equations (124a) and (126a) as

(N𝜔3 + N𝜔4 )FH = (N𝜔1 + N𝜔2 )FO (129)

With the analytic continuation formulas and the gFDRs, we have
thereby shown that both results agree and provided a direct tran-
scription between two independent MF and KF derivations.

9. Conclusion

We showed how to perform the analytic continuation of mul-
tipoint correlators in thermal equilibrium from the imaginary-
frequency MF to the real-frequency KF. To this end, we used
the spectral representation derived in ref. [23], separating the
correlator into formalism-independent partial spectral functions
(PSFs) and formalism-specific kernels. From this analytical start-
ing point, we showed that it is possible to fully recover all 2𝓁 com-
ponents of the 𝓁p KF correlator from the one 𝓁p MF correlator.
Our main result is that each of the (𝓁!) PSFs can be obtained by
linear combinations of analytic continuations of the MF correla-
tor multiplied with combinations of Matsubara weighting func-
tions (MWFs). Explicit formulas are given in Equations (47) and
(74) for arbitrary 2p and 3p correlators, respectively, and Equa-
tion (88) for fermionic 4p correlators. For these cases, we addi-
tionally derived direct MF-to-KF continuation formulas in Equa-
tion (61) (𝓁 = 2), Equations (84) (𝓁 = 3), and Equations (101)
(𝓁 = 4), complementing the general Equation (23) for any 𝓁.
We approached the problem of analytic continuation by com-

paring the spectral representations of general 𝓁p MF (G) and KF
(G[𝜂1…𝜂𝛼 ]) correlators and by identifying the regular partialMF cor-
relators, G̃p, as the central link between them. A key insight was
that the partial MF correlators can be obtained by an imaginary-
frequency convolution of MF kernels with the full MF correla-
tor, G̃p(i𝝎p) + ( 1

𝛽

)
= (K ⋆G)(i𝝎p). Building on this formula, we

developed a three-step strategy for the MF-to-KF analytic contin-
uation, applicable to arbitrary 𝓁p correlators and explicitly pre-
sented in the aforementioned cases 𝓁 ≤ 4. In the first step, we
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used the kernel representation of ref. [30] to express the Mat-
subara sums, inherent in the imaginary-frequency convolution,
through contour integrals enclosing the imaginary axis. In the
second step, we deformed the contours toward the real axis, care-
fully tracking possible singularities of the MF correlator. This re-
sulted in a spectral representation G̃p(i𝝎p) = (K̃ ∗ Sp)(i𝝎p), which
allowed us to extract the PSFs, Sp[G], as functionals of the regular
and the various anomalous parts of Gmultiplied with MWFs. In
the third and final step, we simplified the spectral representation
for the KF components G[𝜂1…𝜂𝛼 ], inserted the PSFs from the sec-
ond step, and evaluated all real-frequency integrals to express the
KF correlators as linear combinations of analytically continued
MF correlators.
In our analysis, we explicitly considered so-called anomalous

parts of the MF correlator which can occur, e.g., for conserved
quantities or in finite systems with degenerate energy eigen-
states. The analytical continuations of these terms do not con-
tribute to fully retarded correlators, but they do contribute to
other components of the KF correlator. In the KF, the notion
of “anomalous terms” is not needed; instead, the corresponding
contributions are included via 𝛿-terms in the kernels, see Equa-
tion (20) and Equations (57)–(59) for 𝓁 = 2.
Exploiting the relations between KF correlators and an-

alytically continued MF functions, we derived generalized
fluctuation-dissipation relations (gFDRs) for 3p and 4p correla-
tors, Equations (84) and (104), establishing relations between the
different KF components. We thereby reproduced the results of
refs. [24, 25], while additionally including the anomalous terms.
We expect that similar results can be obtained for multipoint

(𝓁 > 2) out-of-time-ordering correlators (OTOCs)[66] which gen-
eralize the KF by additional copies of the Keldysh contour. Multi-
point OTOCs, too, can be written as a sum over permutations of
PSFs and kernels which encode the ordering on the desired num-
ber of branches. Importantly, the PSFs arising in this manner are
precisely the same as those used in this work. Hence, the steps
presented in Sections 3.3, 5.2 and 6.2 should be generalizable to
multipoint OTOCs. Expressing the PSFs in terms of analytically
continued MF correlators, analogous calculations would then re-
veal direct MF-to-OTOC continuation formulas. We leave this to
future work.
As an application of our results, we considered various corre-

lators of the Hubbard atom. Starting from their MF expressions,
we calculated all components of the corresponding KF correla-
tors using analytic continuation. For the fermionic 4p correlator,
a full list of all Keldysh components for the two relevant spin con-
figurations is given in Equations (H18) and (H20).
We further used our formulas to find KF expressions of the

MF results derived in refs. [13, 62] for the linear conductance
through an interacting system. There, the authors showed that
only few analytic continuations of the vertex function are re-
quired for the vertex corrections to the linear conductance. Sim-
ilar results were derived in ref. [63] working entirely in the KF.
We reproduced their real-frequency results by analytic continu-
ation and could thus provide a direct transcription between two
independent derivations in the MF and the KF.
For future investigations, it would be interesting to apply

our formulas in conjunction with the algorithmic Matsubara
integration technique.[60] There, the evaluation of Feynman
diagrams yields an exact symbolic expression for G(i𝝎) that can

be readily continued to full Keldysh correlators or to PSFs. If, by
contrast, the Matsubara results are only available as numerical
data, the numerical analytic continuation is an ill-conditioned
problem. Nevertheless, recent advances suggest that it can pos-
sibly be tamed to some extent by exploiting further information
on mathematical properties of the function.[67–69]

Numerically representing multipoint MF correlators is an-
other fruitful direction to explore. References[70,71] showed that
2pMF functions can be represented compactly by a suitable basis
expansion. Yet, for multipoint functions, ref. [33] found that the
overcompleteness of the basis hinders an extraction of the basis
coefficients by projection. Here, a numerical counterpart of our
method for recovering individual PSFs Sp (or partial correlators
Gp) from a full correlatorG(i𝝎) might be helpful. Finally, our for-
mulasmight also be useful for evaluating diagrammatic relations
typically formulated for correlators while using the PSFs as the
main information carriers. For recent developments regarding
the numerical computation of MF or KF multipoint correlators
using symmetric improved estimators, see ref. [61].

Appendix A: MF Kernels

This appendix is devoted to a discussion of the full primaryMF kernel K, in-
cluding both regular and anomalous terms. It is defined via Equation (10a)
for the MF kernel(𝛀p). In ref. [23], it was shown that it can be computed
via

(𝛀p) = ∫
𝛽

0
d𝜏′

𝓁
e
Ω
1…𝓁
𝜏′
𝓁

1∏
i=𝓁−1

[
−∫
𝛽−𝜏′

i+1…𝓁

0
d𝜏′

i
e
Ω
1…i
𝜏′
i

]

= 𝛽𝛿Ω
1…𝓁

K(𝛀p) +(𝛀p) (A1)

The residual part  is not of interest, for reasons explained after Equa-
tion (12). The primary part K(𝛀p) is obtained

[72] by collecting all contribu-
tions multiplying 𝛽𝛿Ω

1…𝓁
, and its argument satisfies Ω1…𝓁 = 0 by defini-

tion. Before presenting explicit expressions for K, let us briefly recall where
it is needed in the main text.

The analytical continuation ofMF to KF correlators, based on G̃p(i𝝎p →

𝝎
[𝜂j ]) (Equation (26)), utilizes regular partial MF correlators, G̃p(i𝝎p) =

[K̃ ∗ Sp](i𝝎p) (Equation (14c)). These are expressed through regular MF

kernels K̃(𝛀p) having a simple product form,
∏𝓁−1

i=1 Ω−1
1…i

, with Ω1…𝓁 = 0

understood. The more complicated primary kernel K(𝛀p) is defined im-
plicitly via Equation (10a). It includes both regular and anomalous parts,
the latter involving vanishing partial frequency sums,Ω1…i = 0 with i < 𝓁.
The primary kernel arises in two distinct contexts, involving either (i)
imaginary-frequency convolutions ⋆ or (ii) real-frequency convolutions ∗,
with different requirements for the bookkeeping of anomalous contribu-
tions. We discuss them in turn.

(i) For a specified permutation p, the regular partial G̃p(i𝝎p) can be ex-
tracted from the full MF correlator G(i𝝎′) via a imaginary-frequency
convolution, [K ⋆ G](i𝝎p) (Equation (31)). There, the argument of
K(𝛀p) has the form𝛀p = i𝝎p − i𝝎′

p. This is always bosonic, being the
difference of two same-type Matsubara frequencies. The convolution
⋆ involves Matsubara sums

∑
i𝝎′

p
, generating many anomalous con-

tributionswithΩ1…i = 0. For these sums to bewell-defined, the kernel
K(𝛀p) must thus be represented in a form that (in contrast to K̃(𝛀p))
is manifestly singularity-free for all values of Ω1…i, including 0.

(ii) In Equation (31), G̃p is given by that part of [K ⋆ G] that is(𝛽0); sub-
leading powers of 𝛽 are not needed. Therefore, we seek theMFG(i𝝎′)
in the form of an 𝛽𝛿 expansion, i.e. an expansion in powers of 𝛽𝛿𝜔′

1…i
.
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Then each of them can collapse one Matsubara sum 1∕(−𝛽)
∑
𝜔′
1…i

while their 𝛽 factors cancel. To obtain a 𝛽𝛿 expansion for G(i𝝎′), it is
convenient to express it via a permutation sum of real-frequency con-
volutions,

∑
p[K ∗ Sp](i𝝎

′
p) (Equation (11b)), and represent the kernel

K(𝛀p), with argument𝛀p = i𝝎′
p − 𝜺p, as a 𝛽𝛿 expansion in powers of

𝛽𝛿Ω′
1…i

.

Fortunately, suitable representations of K satisfying the respective require-
ments of either (i) or (ii) are available in the literature.[23,30,73,74] We dis-
cuss them for 𝓁 ≤ 4 in Appendices A.1 and A.2, respectively.

A.1. Singularity-Free Representation of K

Consider case (i), involving K ⋆ G, where the argument of K(𝛀p) is a
bosonic Matsubara frequency. We seek a singularity-free (sf) represen-
tation for K, to be denoted Ksf for the purpose of this appendix. That
such a representation exists is obvious from the form of integrals in Equa-
tion (A1): inserting Ω1…i = 0 there reduces an exponential function to 1,
so no contributions singular in Ω1…i can arise. To find Ksf , one simply
has to perform the integrals explicitly, treating the cases Ω1…i ≠ 0 or = 0
separately and distinguish them using Kronecker symbols.

Such a direct computation of Equation (A1) has been performed in
ref. [30] for arbitrary 𝓁 and an arbitrary number of vanishing partial fre-
quency sums, Ω1…i = 0. The following equations summarize their results
for 𝓁 ≤ 4:

Ksf (𝛀p)
𝓁=2
= ΔΩ1

− 𝛽
2
𝛿Ω1

(A2a)

Ksf (𝛀p)
𝓁=3
= ΔΩ12

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
− 𝛿Ω12

(
Δ2
Ω1

+ 𝛽
2
ΔΩ1

− 𝛽
2

6
𝛿Ω1

)
(A2b)

Ksf (𝛀p)
𝓁=4
= ΔΩ123

[
ΔΩ12

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
− 𝛿Ω12

(
Δ2
Ω1

+ 𝛽
2
ΔΩ1

− 𝛽
2

6
𝛿Ω1

)]
− 𝛿Ω123

[
ΔΩ12

ΔΩ1

(
ΔΩ12

+ΔΩ1
+ 𝛽

2

)
− 𝛽

2
ΔΩ12
𝛿Ω1

(
ΔΩ12

+ 𝛽
3

)
− 𝛿Ω12

ΔΩ1

(
Δ2
Ω1

+ 𝛽
2
ΔΩ1

+ 𝛽
2

6

)
+ 𝛽

3

24
𝛿Ω12
𝛿Ω1

]
(A2c)

Equations (A2) are manifestly singularity-free for all values of their fre-
quency arguments—including thosewithΩ1…i = 0, for whichΔΩ

1…i
terms

vanish by definition (Equation (32)).

A.2. 𝜷𝜹 Expansion for K

Next, consider case (ii), involving G =
∑

p K ∗ Sp (Equations (11b) and
(12)), where the argument of K(𝛀p) has the form 𝛀p = i𝝎p − 𝜺p, and we
seek a 𝛽𝛿 expansion for G. For this purpose, the kernels Ksf of Equa-
tions (A2) are inconvenient, because they contain some 𝛿 factors not ac-
companied by 𝛽. Instead, G can be expressed through an alternative ker-
nel, to be denoted Kalt, which constitutes a 𝛽𝛿 expansion itself and hence
differs from Ksf , but yields the same result for G when summed over all
permutations, so that

G(i𝝎) =
∑
p

[
Ksf ∗ Sp

]
(i𝝎) =

∑
p

[
Kalt ∗ Sp

]
(i𝝎) (A3)

Explicit expressions for Kalt were given in ref. [23] for up to one poten-
tially vanishing frequency (general 2p correlators, 3p correlators with one
bosonic operator, and fermionic 4p correlators). By also allowing general
3p correlators, these results are extended to

Kalt(𝛀p)
𝓁=2
= 1

Ω1

− 𝛽
2
𝛿Ω1

(A4a)

Kalt(𝛀p)
𝓁=3
= 1

Ω1Ω12

− 𝛽
2

(
𝛿Ω12

ΔΩ1
+ 𝛿Ω1

ΔΩ12

)
+ 𝛽

2

6
𝛿Ω1
𝛿Ω12

(A4b)

Kalt(𝛀p)
𝓁=4
= 1

Ω1Ω12Ω123

− 𝛽
2
𝛿Ω12

1
Ω1Ω123

(A4c)

The kernels (A4) have the form Kalt = K̃ + K̂
alt
, with regular part K̃

as given in Equation (13b), while the anomalous part, K̂
alt
, comprises

terms multiplied by one or multiple factors 𝛽𝛿Ω
1…i

. (We remark that the

nomenclature regular and anomalous is used non-uniformly in the litera-
ture and our usage here may differ from refs. [23, 30, 73].) Whether or
not Ω1…i = i𝜔1…i − 𝜀1…i can vanish at all depends on the fermionic or
bosonic nature of the Matsubara frequencies. Take, e.g., 𝓁 = 4 and all op-
erators fermionic. Then, in Equation (A2c), all terms multiplied by 𝛿Ω123
evaluate to 𝛿Ω123

= 0, since i𝜔123 ≠ 0 is a fermionic Matsubara frequency.

For the computation of fermionic 4p correlators, all terms proportional to
𝛿Ω1

and 𝛿Ω123
can thus be dropped. Even if i𝜔1…i is bosonic and vanishes,

Ω1…i = 0 additionally requires 𝜀1…i = 0, enforced by a Dirac 𝛿(𝜀1…i) in the
PSFs; see Appendix B.1 for further discussion of this point.

For a specified permutation p, the kernels Kalt are not singularity-free. In
particular, the regular part K̃ diverges if one (or multiple) Ω1⋯ī → 0. How-
ever, that singularity is canceled by 1∕Ωi+1…𝓁 = −1∕Ω1…i from a cyclically
related permutation in the sum over permutations in Equation (A3). This
can be shown explicitly by treating nominally vanishing denominators as
infinitesimal and tracking the cancellation of divergent terms while exploit-
ing the equilibrium condition (4) (see Appendix B of ref. [23]).

The kernels Kalt, inserted into Equation (A4), result in the general form
for MF correlators given in Equation (14):

G(i𝝎) = G̃(i𝝎) + Ĝ(i𝝎) (A5a)

Ĝ(i𝝎) =
𝓁−1∑
j=1
𝛽𝛿i𝜔j Ĝj(i𝝎) +

𝓁−1∑
j=1

𝓁−1∑
k>j

(
𝛽𝛿i𝜔jk Ĝjk(i𝝎) + 𝛽2𝛿i𝜔j𝛿i𝜔k Ĝj,k(i𝝎)

)
(A5b)

As for Equation (A4), this form of the anomalous part of the correla-
tor applies to general 2p and 3p correlators as well as fermionic 4p cor-
relators. The subscripts of Ĝ indicate the frequency in which they are
anomalous. Even though their arguments nominally include all frequen-
cies i𝝎, they are independent of their respective anomalous frequency;
e.g., Ĝ1(i𝜔1, i𝜔2) = Ĝ1(i𝜔2) for 𝓁 = 3. Note that this decomposition of the
correlator is convenient for the analytic continuation because the compo-
nents, such as G̃ and Ĝi, have a functional form that allows their argu-
ments to be analytically continued, i𝜔i → zi. In anomalous components
this functional form is obtained by symbolically replacing all Δi𝜔 by

1
i𝜔

(see, e.g., Equation (80) and the discussion thereafter).

Appendix B: Discussion of PSFs

In Appendix B.1, we clarify the functional structure of PSFs and moti-
vate their decomposition into regular and anomalous contributions, Sp =
S̃p + Ŝp (Equation (5)), analogous to that for MF correlators. This decom-
position aids investigations in subsequent appendices. As an immediate
application of the decomposition, we present an analysis of the effect of
fully anomalous PSFs on 3p MF correlators in Appendix B.2.

B.1. Decomposition of PSFs

Interacting thermal systems typically have a continuum of energy levels.
Ref. [27] argues that, in general, PSFs may contain contributions which
diverge as P( 1

𝜀
) for vanishing bosonic frequencies 𝜀, with P the princi-

pal value. As our derivations do not make assumptions on the shape
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of continuous PSF contributions, such terms require no further consid-
eration. However, Dirac delta contributions in Sp can arise for finite sys-
tems or in the presence of conserved quantities. When these are present,
MF partial correlators Gp = K ∗ Sp (Equation (11b)) can contain anoma-

lous terms, Ĝp, containing at least one factor 𝛿i𝜔
1…i

, with i < 𝓁. These

arise from anomalous 𝛿Ω
1…i

terms in the MF kernel K(𝛀p), with argu-

ment 𝛀p = i𝝎p − 𝜺p (Equations (A3), (A4)). Such terms can contribute
if Ω1…i = 0, requiring i𝜔1…i = 0 and 𝜀1…i = 0. The first condition requires

that i𝜔1…i is bosonic. This is the case if the sign 𝜁
1…i = 𝜁1 … 𝜁 i equals +1

(with 𝜁 j = ±1 for bosonic/fermionic operators Oj). Then, the associated
𝜀1…i is bosonic, too, according to the nomenclature introduced after Equa-
tion (3b). The second condition is met if the PSF Sp(𝜺p) contains a term
proportional to a bosonic Dirac delta, i.e. one having a bosonic 𝜀1…i as ar-

gument, e.g. 𝛿(𝜀1…i)Š1…i. Then, the 𝜀p integrals in the convolution K ∗ Sp
receive a finite contribution from the point 𝜀1…i = 0. We summarize these
conditions via the symbolic notation

𝛿Ω
1…i

= 𝛿i𝜔
1…i
𝛿𝜀

1…i
(B1)

needed only for bosonic Ω1…i. Here 𝛿𝜀1…i
, carrying a continuous variable

as subscript, is defined only for bosonic 𝜀1…i and by definition “acts on”
Sp(𝜀p) by extracting only those parts (if present) containing bosonic Dirac
𝛿(𝜀1…i) factors. For the example above, 𝛿𝜀

1…i
acts on Sp(𝜺p) as

𝛿𝜀
1…i

Sp(𝜺p) = 𝛿𝜀
1…i

Ŝp(𝜺p) ∼ 𝛿(𝜀1…i) (B2)

As we always assume an even number of fermionic operators, 𝜁1…𝓁 =
+1 follows.

The motivation for splitting PSFs as Sp = S̃p + Ŝp is now clear. The

anomalous Ŝp comprises all terms containing bosonic Dirac 𝛿(𝜀1…i) fac-
tors, the regular S̃ everything else. The regular part of the MF correlator,
G̃, receives contributions from both S̃p and Ŝp; the anomalous part, Ĝ,

receives contributions only from Ŝp, i.e. if Ŝp = 0 for all p, then Ĝ = 0.
For 𝓁 = 2, the anomalous contribution consists of one term,

Ŝp(𝜺p) = 𝛿(𝜀1)Šp;1 (B3)

where Šp;1 is a constant. Due to the equilibrium condition (4), we can fur-

ther conclude Š(12);1 = Š(21);2.

For 𝓁 = 3, the anomalous Ŝp reads

Ŝp(𝜺p) = 𝛿(𝜀1)Šp;1(◦, 𝜀2, 𝜀3) + 𝛿(𝜀3)Šp;3(𝜀1, 𝜀2, ◦) + 𝛿(𝜀1)𝛿(𝜀2)Šp;1,2 (B4)

Here, we inserted ◦’s to emphasize that functions do not depend on these
arguments, and Šp;1,2 is a constant. For bosonic 3p functions, Šp;1 and

Šp;3 do not contain further 𝛿–factors that lead to anomalous parts, e.g.,

𝛿𝜀3
Šp;1(◦, 𝜀2, 𝜀3) = 0.

To further illustrate the symbolic 𝛿𝜀
1…i

notation introduced in Equa-

tion (B1), it yields the following relations when applied to the above defi-
nitions, for bosonic 𝜀i:

𝛿𝜀1
Sp(𝜺p) = 𝛿(𝜀1)Šp;1(𝜺p) + 𝛿(𝜀1)𝛿(𝜀2)Šp;1,2 (B5a)

𝛿𝜀1
𝛿𝜀2

Sp(𝜺p) = 𝛿(𝜀1)𝛿(𝜀2)Šp;1,2 (B5b)

For fermionic 𝓁 = 4, we only need

Ŝp(𝜺p) =𝛿(𝜀12)Šp;12(𝜺p) (B6)

since, e.g., terms in the kernel proportional to 𝛿i𝜔1−𝜀1
do not lead to

anomalous contributions by the fermionic nature of i𝜔1.

B.2. Effect of Fully Anomalous PSFs on 3p MF Correlators

In the Appendix C.1 below, we discuss the general structure of 3p MF cor-
relators inferred by the decomposition of the PSFs. The regular PSFs, S̃p,
can only contribute to the regular part of the correlator. However, the ef-
fect of anomalous PSFs, Ŝp, is more involved and is studied in detail in
the following.

To this end, we consider PSFs with finite weight at vanishing fre-
quency arguments. In particular, we assume the maximally anomalous
form Sma

p (𝜀1, 𝜀2) = 𝛿(𝜀1)𝛿(𝜀2)Šp;1,2 (see Equation (B5b)). Then, the equi-
librium condition Equation (4) implies Š(123);1;2 = Š(231);2;3 = Š(312);3;1 and

Š(132);1;3 = Š(321);3;2 = Š(213);2;1, since 𝜁p = 𝜁p𝜆 = 1 for purely bosonic cor-
relators. For such PSFs, the 3p correlator evaluates to

Gma(i𝝎) =
∑
p
[K ∗ Sma

p ](i𝝎p)

=
[
𝛽

2

(
𝛿i𝜔1Δi𝜔12 + Δi𝜔1𝛿i𝜔12

)
+ 𝛽

2

6
𝛿i𝜔1𝛿i𝜔12

]
Š(123);1,2

+
[
𝛽

2

(
𝛿i𝜔2Δi𝜔23 + Δi𝜔2𝛿i𝜔23

)
+ 𝛽

2

6
𝛿i𝜔2𝛿i𝜔23

]
Š(231);2,3

+
[
𝛽

2

(
𝛿i𝜔3Δi𝜔31 + Δi𝜔3𝛿i𝜔31

)
+ 𝛽

2

6
𝛿i𝜔3𝛿i𝜔31

]
Š(312);3,1

+ (2 ↔ 3)

= 𝛽
(
𝛿i𝜔1Δi𝜔2

+ 𝛿i𝜔2Δi𝜔3
+ 𝛿i𝜔3Δi𝜔1

)(
Š(123);1,2 − Š(132);1,3

)
+ 𝛽

2

2
𝛿i𝜔1𝛿i𝜔2

(
Š(123);1,2 + Š(132);1,3

)
(B7)

where (2 ↔ 3) exchanges the indices of the frequencies and PSFs. The
contribution of the regular kernel in Equation (A4b) vanishes due to

1
i𝜔1 i𝜔12

+ 1
i𝜔2 i𝜔23

+ 1
i𝜔3 i𝜔31

= 0 with i𝜔3 = −i𝜔12.
For later reference (see Appendices C.1 and E.2), we define the con-

stants

Ĝ1,2 =
1
2

(
Š(123);1,2 + Š(132);1,3

)
(B8a)

Ĝ
Δ
1;2 = Ĝ

Δ
2;3 = Ĝ

Δ
3;1 = Š(132);1,3 − Š(123);1,2 (B8b)

such that Gma reads

Ĝ
ma
(i𝝎) = 𝛽

(
𝛿i𝜔1Δi𝜔2

Ĝ
Δ
1;2 + 𝛿i𝜔2Δi𝜔3

Ĝ
Δ
2;3 + 𝛿i𝜔3Δi𝜔1

Ĝ
Δ
3;1

)
+ 𝛽2𝛿i𝜔1𝛿i𝜔2 Ĝ1,2 (B8c)

We emphasize that Ĝ
Δ
i;j and Ĝ1,2 are nonzero only if the full PSFs Sp contain

fully anomalous contributions Sma
p , which is only the case for all operators

being bosonic. In the next section, the most general form of 3p correlators
is discussed.

Appendix C: Calculations for 3p Correlators

This appendix is devoted to computations for the analytic continuation of
3p correlators, complementing the discussions in Section 5. First, in Ap-
pendix C.1, we discuss the general structure of MF correlators, needed in
Appendix C.2 for the derivation of an explicit formula for partial MF cor-
relators and the subsequent extraction of PSFs. In Appendix C.3, we then
present manipulations needed to construct KF correlators from analyti-
cally continued MF correlators.
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C.1. Structure of 3p Correlators

For 3p correlators, Equation (A5) implies the general form

Gi𝜔1 ,i𝜔2 = G̃i𝜔1 ,i𝜔2 + Ĝi𝜔1 ,i𝜔2

Ĝi𝜔1 ,i𝜔2 = 𝛽𝛿i𝜔1 Ĝ1;i𝜔2
+ 𝛽𝛿i𝜔2 Ĝ2;i𝜔1

+ 𝛽𝛿i𝜔3 Ĝ3;i𝜔1
+ 𝛽2 𝛿i𝜔1 𝛿i𝜔2 Ĝ1,2

(C1)

Here, we used the subscript notation introduced in Section 4.
For the conversion of Matsubara sums to contour integrals we distin-

guish restricted from unrestricted sums (see e.g. Equation (35b)). There-
fore we explicitly distinguish terms with Δi𝜔 factors, writing (cf. Equa-
tion (73))

Ĝi;i𝜔j = Ĝ
–Δ
i;i𝜔j

+ Δi𝜔j
Ĝ
Δ
i;j (C2)

In Equation (B8b), we have identified the constants Ĝ
Δ
with (maximally

anomalous) PSFs. For alternative frequency parametrizations in Equa-
tions (B8), the constants in Equation (C2) read

Ĝ
Δ
1;2 = −ĜΔ

1;3 = −ĜΔ
2;1 = Ĝ

Δ
2;3 = Ĝ

Δ
3;1 = −ĜΔ

3;2 (C3)

such that, e.g., 𝛿i𝜔1Δi𝜔2 Ĝ
Δ
1;2 = −𝛿i𝜔1Δi𝜔3 Ĝ

Δ
1;2 = 𝛿i𝜔1Δi𝜔3 Ĝ

Δ
1;3, which fol-

lows from frequency conservation, i𝜔1…𝓁 = 0, and the 𝛿i𝜔i factor multi-

plying Ĝi.

C.2. Partial MF 3p Correlators

In this appendix, we present explicit calculations concerning Steps 1 and
2 of our 3-step strategy. First, we introduce two identities used for simpli-
fications in Step 1.

Consider the restricted Matsubara sum of Equation (35b) for f (i𝜔′) =
f̃ (i𝜔′)∕(i𝜔 − i𝜔′). Using Equation (37) for the residue term, one obtains

1
(−𝛽)

∑
i𝜔′

(
Δi𝜔−i𝜔′ −

𝛽

2
𝛿i𝜔−i𝜔′

)
f̃ (i𝜔′) = ∳z

nzf̃ (z)
i𝜔 − z

+ ( 1
𝛽

)
(C4)

Here, the restriction of the sum is implicit in theΔ symbol (Equation (32)),
and the first term of Equation (37) was incorporated into the sumusing the
Kronecker 𝛿. We can identify the summand on the left of Equation (C4) as
the singularity-free 2p kernel of Equation (A2a), and therefore this identity
constitutes the convenient cancellation in Equations (38) already on the
level of kernels. Following the same line of arguments, one can show that

1
(−𝛽)2

∑
i𝜔′

(
Δ2
i𝜔−i𝜔′ +

𝛽2

12
𝛿i𝜔−i𝜔′

)
f̃ (i𝜔′) = ( 1

𝛽

)
(C5)

In the following, we focus on evaluating

G̃(123)(i𝝎(123)) + ( 1
𝛽

)
= [K ⋆ G](i𝝎(123)) (C6)

using the 3p kernel given in Equation (A2b) (with 𝛀(123) = i𝝎(123) −
i𝝎′

(123)), and the general form of the 3p correlator displayed in Equa-
tion (C1). For convencience, we focus on the identity permutation p =
(123); all other permutations can be obtained by replacing indices with
their permuted ones, i → ī. We split the calculation of Equation (C6) into
regular (r) and anomalous (a) contributions from G:

G̃r
(123)(i𝝎(123)) + ( 1

𝛽

)
=

[
K ⋆ G̃

]
(i𝝎(123)) (C7a)

G̃a
(123)(i𝝎(123)) + ( 1

𝛽

)
=

[
K ⋆ Ĝ

]
(i𝝎(123)) (C7b)

The computations are presented in Appendices C.2.1 and C.2.2, re-
spectively, with the final result G̃(123) = G̃r

(123) + G̃a
(123) discussed in Ap-

pendix C.2.3. Additionally, we will use the super- and subscript notation
introduced in Section 4 and suppress the frequency argument of G̃r

(123)

and G̃a
(123).

C.2.1. Contributions from Regular Part

Step 1. Matsubara summation through contour integration: First, we con-
centrate on evaluating Equation (C7a):

G̃r
(123) + ( 1

𝛽

)
= K ⋆ G̃

= 1
(−𝛽)2

∑
i𝜔′1 ,i𝜔

′
12

[
ΔΩ12

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)

+𝛿Ω12

(
−Δ2

Ω1
− 𝛽
2
ΔΩ1

+ 𝛽
2

6
𝛿Ω1

)]
G̃i𝜔′1 ,i𝜔

′
12

= 1
(−𝛽)2

∑
i𝜔′1

≠i𝜔12∑
i𝜔′12

1
i𝜔12 − i𝜔′12

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
G̃i𝜔′1 ,i𝜔

′
12

+ 1
(−𝛽)2

∑
i𝜔′1

∑
i𝜔′12

𝛿Ω12

(
−Δ2

Ω1
− 𝛽
2
ΔΩ1

+ 𝛽
2

6
𝛿Ω1

)
G̃i𝜔′1 ,i𝜔

′
12

(C8)

The restricted sum over i𝜔′12 can be rewritten using Equation (C4), and
collecting all resulting terms ∼ 𝛿Ω12

yields

G̃r
(123) + ( 1

𝛽

)
= 1

(−𝛽)
∑
i𝜔′1

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
∳z12

nz12 G̃i𝜔′1 ,z12

i𝜔12 − z12

+ 1
(−𝛽)2

∑
i𝜔′1

∑
i𝜔′12

𝛿Ω12

(
−Δ2

Ω1
− 𝛽

2

12
𝛿Ω1

)
G̃i𝜔′1 ,i𝜔

′
12

(C9)

The i𝜔′1 sums can be further simplified with the help of Equations (C4) and
(C5) for the second and third line, respectively, reproducing Equation (39)
for 𝓁 = 3,

G̃r
(123) + ( 1

𝛽

)
=∳z1 ,z12

nz1nz12 G̃z1 ,z12

(i𝜔1 − z1)(i𝜔12 − z12)
+ ( 1
𝛽

)
(C10)

with ∳z1 ,z12 = ∳z1 ∳z12 .
Step 2. Extraction of PSFs: Next, we deform the contours away from the

imaginary axis, beginning with the contour integral over z12. During the
contour deformation, we have to carefully track possible singularities of
G̃z1 ,z12 = G̃(z1, z12 − z1,−z12). As explained in Section 4, possible branch
cuts in the complex z12 plane lie on the lines defined by Im(z12) = 0 or
Im(z12 − z1) = 0, see Figure C1a. The branch cut at Im(z12) = 0 is taken
into account by integrating infinitesimally above and below the real z12
axis, denoted by 𝜀±12 with Re(z12) = 𝜀12.

The second branch cut Im(z12 − z1) = 0 is included by substituting
z12 → z2 = z12 − z1, with z2 being the new integration variable. Therefore,
the contour is shifted onto the line Im(z12 − z1) = 0 → Im(z2) = 0, i.e.,
onto the real axis of the complex z2 plane, and integrating infinitesimally
above and below the real axis of z2, denoted by 𝜀±2 with Re(z2) = 𝜀2. The
substitution also affects the argument of the MWF in Equation (C10).
However, since the z1 contour encloses only the poles of nz1 , z1 can be

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (29 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH

 15213889, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300504, W

iley O
nline L

ibrary on [09/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure C1. a) Contour deformation used in Equation (C12) for fermionic z1 and z2, therefore bosonic z12. Black crosses denote the poles of nz12 on the
imaginary axis given by bosonic Matsubara frequencies. The blue, solid contour encloses all the poles on the imaginary axis. It is deformed into the blue,
dashed contour to integrate along the possible branch cuts of G̃z1 ,z12 denoted by the red, thick lines, located at Im(z12) = 0 and Im(z12 − z1) = 0. (b)
Contour deformation used to obtain Equation (C15). The branch cut at Im(z1 + 𝜀+2 ) = 0 lies infinitesimally close to the branch cut Im(z1) = 0. Therefore,
we integrate along the deformed blue, dashed contour, infinitesimally above and below the real axis, where the infinitesimal imaginary part of 𝜀−1 , with
Re(z1) = 𝜀1, has to be larger than that of 𝜀+2 , i.e., |Im(𝜀−1 )| > |Im(𝜀+2 )|. The thick, red, dashed line denotes the pole at Im(i𝜔12 − z1 − 𝜀2) coming from

the kernel. However, these poles only contribute at ( 1
𝛽

)
and can be neglected, see the discussion after Equation (C17).

treated as a Matsubara frequency, implying e−𝛽z1 = 𝜁1 and therefore

nz12 = 𝜁12

e−𝛽z12 − 𝜁12
z12→z1+z2= 𝜁1𝜁2

e−𝛽z1e−𝛽z2 − 𝜁1𝜁2

= 𝜁2

e−𝛽z2 − 𝜁2
= nz2 (C11)

Adding the contributions from both branch cuts, the z12 dependent terms
in Equation (C10) evaluate to

∳z12

nz12 G̃z1 ,z12

i𝜔12 − z12
= ∫𝜀12

n𝜀12 G̃
𝜀12
z1

i𝜔12 − 𝜀12
+ ∫𝜀2

n𝜀2 G̃
𝜀2
z1

i𝜔12 − z1 − 𝜀2
+ ( 1
𝛽

)
(C12)

see also Figure C1a. The term ( 1
𝛽

)
comes from the possible poles at

z12 = 0 or z2 = 0 (if z12 or z2 are bosonic) which do not contribute at(1),
see Equation (44).

Inserting Equation (C12) into Equation (C10) yields

G̃r
(123) + ( 1

𝛽

)
=∳z1

nz1
i𝜔1 − z1 ∫𝜀2

n𝜀2 G̃
𝜀2
z1

i𝜔12 − z1 − 𝜀2

+ ∳z1

nz1
i𝜔1 − z1 ∫𝜀12

n𝜀12 G̃
𝜀12
z1

i𝜔12 − 𝜀12
(C13)

Next we focus on the contour deformation of z1. For the first term, we
have illustrated possible branch cuts and the contours before and after
the deformation in Figure C1b. As the z1 contour is deformed away from
theMatsubara frequencies, we merely have to consider the singularities in
the integrand of the 𝜀2 integral. After Equation (C17), we will show that the
singularities at z1 = i𝜔12 − 𝜀2 contribute at order( 1

𝛽

)
. We can thus focus

on the branch cut in G̃𝜀2z1 . Previously we have taken the infinitesimal limit

for the imaginary shifts of 𝜀±2 . Thus, during the z1 contour deformation
we have to ensure |Im(𝜀±2 )| < |Im(𝜀±1 )|, see Figure C1b. The z1 contours
infinitesimally above and below Re(z1) are summarized in a discontinuity

G̃𝜀2 ,𝜀1 = G̃𝜀2
𝜀+1

− G̃𝜀2𝜀−1
(C14)

and we thus find for the first term in Equation (C13):

∳z1

nz1
i𝜔1 − z1 ∫𝜀2

n𝜀2 G̃
𝜀2
z1

i𝜔12 − z1 − 𝜀2
=∫𝜀1 ∫𝜀2

n𝜀1n𝜀2 G̃
𝜀2 ,𝜀1

(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)
+ ( 1
𝛽

)
(C15)

Repeating an analogous z1 contour deformation for the second term in
Equation (C13), we finally obtain

G̃r
(123) = ∫𝜀1 ,𝜀2

n𝜀1n𝜀2 G̃
𝜀2 ,𝜀1 + n𝜀1n𝜀12 G̃

𝜀12 ,𝜀1

(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)
(C16)

which resembles the spectral representation in Equation (14d) for 𝓁 = 3.
The term ( 1

𝛽

)
on the right of Equation (C15) originates from the pole

at z1 = i𝜔12 − 𝜀2 in the denominator on the left, yielding

( 1
𝛽

)
= −∫𝜀2

n𝜀2n−𝜀2 G̃
𝜀2
i𝜔12

i𝜔2 − 𝜀2
(C17)

with G̃𝜀2i𝜔12
= G̃(i𝜔12 − 𝜀+2 , 𝜀

+
2 ,−i𝜔12) − G̃(i𝜔12 − 𝜀−2 , 𝜀

−
2 ,−i𝜔12). That the

integral on the right indeed is ( 1
𝛽

)
, although it lacks an explicit prefactor

1∕𝛽, can be seen by the following argument: The product of two MWFs
n𝜀2n−𝜀2 has finite support on an interval 𝜀2 ∈ [−1∕𝛽, 1∕𝛽]. Therefore, the
integral scales as 1∕𝛽.

To demonstrate this claim more explicitly, we proceed as follows. We
note that we evaluated the imaginary-frequency convolution in Equa-
tion (C8) by evaluating first the𝜔′12 and then the𝜔

′
1 sum. Due to frequency

conservation, we could have also evaluated the convolution by first sum-
ming over, e.g., 𝜔′2 and then 𝜔

′
12, or 𝜔

′
1 and then 𝜔

′
2, yielding

𝜔′2, then 𝜔
′
12: K ⋆ G̃ = G̃r

(123) − ∫𝜀2
n𝜀2n−𝜀2 G̃

𝜀2
i𝜔1

i𝜔2 − 𝜀2
+ ( 1
𝛽

)

𝜔′1, then 𝜔
′
2: K ⋆ G̃ = G̃r

(123) − ∫𝜀2
n𝜀2n−𝜀2 G̃

𝜀2
i𝜔12

i𝜔2 − 𝜀2

+ ∫𝜀12
n𝜀12n−𝜀12 G̃

𝜀12
i𝜔1

i𝜔12 − 𝜀12
+ ( 1
𝛽

)
(C18)
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Equating the two expressions yields a proof for Equation (C17):

∫𝜀2
n𝜀2n−𝜀2 G̃

𝜀2
i𝜔12

i𝜔2 − 𝜀2

= ∫𝜀2
n𝜀2n−𝜀2 G̃

𝜀2
i𝜔1

i𝜔2 − 𝜀2
+ ∫𝜀12

n𝜀12n−𝜀12 G̃
𝜀12
i𝜔1

i𝜔12 − 𝜀12
+ ( 1
𝛽

)
= ∳z2

nz2n−z2 G̃i𝜔1 ,z2

i𝜔2 − z2
+ ( 1
𝛽

)
= − 1

(−𝛽)2

≠i𝜔2∑
i𝜔′2

G̃i𝜔1 ,i𝜔
′
2

(i𝜔2 − i𝜔′2)
2
− 1
12

G̃i𝜔1 ,i𝜔2 + ( 1
𝛽

)
= ( 1
𝛽

)
(C19)

We obtained the third line by a contour deformation in analogy to the
derivation of Equation (C12). Here, the second line can be expressed as a
contour integral along the branch cuts at Im(z2) = 0 and Im(z12) = 0 (blue
dashed lines in Figure C1a) and the contour in the third line encloses the
Matsubara frequencies (blue solid lines in Figure C1a). For the last step,
we used Equation (C5).

C.2.2. Contributions from Anomalous Parts

Step 1. Matsubara summation through contour integration: To evaluate
Equation (C7b), we first focus on 𝛽𝛿i𝜔′3

Ĝ3;i𝜔′1
, yielding G̃a

3;(123) in a decom-

position G̃a
(123) =

∑3
i=1 G̃

a
i;(123); the contributions from G̃a

1;(123) and G̃
a
2;(123)

follow from analogous calculations. Then, the imaginary-frequency convo-
lution of the 3p kernel with 𝛽𝛿i𝜔′3

Ĝ3;i𝜔′1
can be rewritten as

G̃a
3;(123) + ( 1

𝛽

)
= K ⋆ Ĝ3

= 1
(−𝛽)2

∑
i𝜔′1 ,i𝜔

′
12

[
ΔΩ12

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)

+ 𝛿Ω12

(
−Δ2

Ω1
− 𝛽
2
ΔΩ1

+ 𝛽
2

6
𝛿Ω1

)]
𝛽𝛿i𝜔′12

Ĝ3;i𝜔′1

= − 1
i𝜔12

1
(−𝛽)

∑
i𝜔′1

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
Ĝ3;i𝜔′1

= − 1
i𝜔12

1
(−𝛽)

∑
i𝜔′1

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
Ĝ
–Δ
3;i𝜔′1

− 1
i𝜔12

1
(−𝛽)

≠0∑
i𝜔′1

(
ΔΩ1

− 𝛽
2
𝛿Ω1

) Ĝ
Δ
3;1

i𝜔′1
(C20)

In the second step, we carried out the sum over i𝜔′12 and used 𝛿Ω12
𝛿i𝜔′12

=
𝛿i𝜔12 𝛿i𝜔′12

= 0, since we enforce the external Matsubara frequencies to be

nonzero. In the third step, we further split the anomalous part according
to Equation (C2).

The sums can be evaluated using Equation (C4) and yield

G̃a
3;(123) + ( 1

𝛽

)
= − 1

i𝜔12 ∳z1

nz1 Ĝ
–Δ
3;z1

i𝜔1 − z1
− 1
i𝜔12 ∳z1

nz1
(i𝜔1 − z1)

Ĝ
Δ
3;1

z1

+ 1
i𝜔12

Res
z1=0

⎛⎜⎜⎝
nz1

(i𝜔1 − z1)

Ĝ
Δ
3;1

z1

⎞⎟⎟⎠ + ( 1
𝛽

)
(C21)

where we excluded the contribution from i𝜔′1 → z1 = 0 by subtracting
the residue.

Step 2. Extraction of PSFs: The first contour integral in Equation (C21)
can be deformed analogously to the 2p case in Section 3.2. The integrand
of the second contour integral only has poles on the imaginary axis since

Ĝ
Δ
3;1 is a constant. Thus, the integral vanishes by closing the contour in the

left and right half of the complex z1 plane. Further evaluating the residue,
we then obtain

G̃a
3;(123) = − 1

i𝜔12 ∫𝜀1
n𝜀1 Ĝ

–Δ;𝜀1
3

i𝜔1 − 𝜀1
− 1
2

Ĝ
Δ
3;1

i𝜔1 i𝜔12

= ∫𝜀1 ,𝜀2
𝛿(𝜀12)n𝜀1 Ĝ

–Δ;𝜀1
3 − 1

2
𝛿(𝜀1)𝛿(𝜀12)Ĝ

Δ
3;1

(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)
(C22)

where we recovered the form of the spectral representation in Equa-
tion (14d) by introducing Dirac delta functions.

Similarly, the contributions from Ĝ1, Ĝ2, and also Ĝ1,2 to Equa-
tion (C7b) can be derived, leading to the general result

G̃a
(123) = ∫𝜀1 ,𝜀2

1
(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)

×
[
𝛿(𝜀1)n𝜀2 Ĝ

–Δ;𝜀2
1 + 𝛿(𝜀2)n𝜀1 Ĝ

–Δ;𝜀1
2 + 𝛿(𝜀12)n𝜀1 Ĝ

–Δ;𝜀1
3

+ 𝛿(𝜀1)𝛿(𝜀2)
(
Ĝ1,2 −

1
2
Ĝ
Δ
3;1

)]
(C23)

Here, only Ĝ
Δ
3;1 enters, since contributions from Ĝ

Δ
1;2 and Ĝ

Δ
2;1 cancel to

due Equation (C3).

C.2.3. Final Result

The main results of the previous sections are Equations (C16) and (C23),
yielding the spectral representation for G̃(123) = G̃r

(123) + G̃a
(123). The par-

tial MF correlator G̃p = G̃r
p + G̃a

p for a general permutation p is then ob-

tained by replacing any index by its permuted counterpart, i → p(i) = ī.
Thus, we obtain our final result

G̃p(i𝝎p) = ∫𝜀1 ,𝜀2
(2𝜋i)2Sp(𝜀1, 𝜀2)

(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)
(C24)

with the PSFs given by

(2𝜋i)2Sp(𝜀1, 𝜀2)

= n𝜀1
n𝜀2

G̃𝜀2 ,𝜀1 + n𝜀1
n𝜀12

G̃𝜀12 ,𝜀1 + 𝛿(𝜀1)n𝜀2 Ĝ
–Δ;𝜀2
1

+ 𝛿(𝜀2)n𝜀1 Ĝ
–Δ;𝜀1
2

+ 𝛿(𝜀3)n𝜀1 Ĝ
–Δ;𝜀1
3

+ 𝛿(𝜀1)𝛿(𝜀2)
(
Ĝ1,2 −

1
2
Ĝ
Δ
3;1

)
(C25)

PSFs for all six permutations are recovered by inserting the respective
i into above equation. They can be expressed in terms of analytic regions
(cf. Figure 4) using

G̃𝜀2 ,𝜀1 = −G̃𝜀13 ,𝜀1 = −G̃𝜀2 ,𝜀3 = G̃𝜀13 ,𝜀3 = G̃′[3] − G̃[1] − G̃′[1] + G̃[3] (C26a)

G̃𝜀1 ,𝜀2 = −G̃𝜀23 ,𝜀2 = −G̃𝜀1 ,𝜀3 = G̃𝜀23 ,𝜀3 = G̃′[3] − G̃[2] − G̃′[2] + G̃[3] (C26b)

G̃𝜀3 ,𝜀1 = −G̃𝜀12 ,𝜀1 = −G̃𝜀3 ,𝜀2 = G̃𝜀12 ,𝜀2 = G̃′[2] − G̃[1] − G̃′[1] + G̃[2]

(C26c)
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Ĝ
–Δ;𝜀2
1 = −Ĝ–Δ;𝜀3

1 = Ĝ
–Δ;[2]
1 − Ĝ

–Δ;[3]
1 (C26d)

Ĝ
–Δ;𝜀1
2 = −Ĝ–Δ;𝜀2

2 = Ĝ
–Δ;[1]
2 − Ĝ

–Δ;[3]
2 (C26e)

Ĝ
–Δ;𝜀1
3 = −Ĝ–Δ;𝜀2

3 = Ĝ
–Δ;[1]
3 − Ĝ

–Δ;[2]
3 (C26f )

Ĝ
Δ
1;2 = −ĜΔ

1;3 = −ĜΔ
2;1 = Ĝ

Δ
2;3 = Ĝ

Δ
3;1 = −ĜΔ

3;2 (C26g)

Ĝ1,2 = Ĝ1,2 (C26h)

with the definitions introduced in Section 5

G[1] = G̃(𝜀+1 , 𝜀
−
2 , 𝜀

−
3 ), G′[1] = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

+
3 ) (C27a)

G[2] = G̃(𝜀−1 , 𝜀
+
2 , 𝜀

−
3 ), G′[2] = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

+
3 ) (C27b)

G[3] = G̃(𝜀−1 , 𝜀
−
2 , 𝜀

+
3 ), G′[3] = G̃(𝜀+1 , 𝜀

+
2 , 𝜀

−
3 ) (C27c)

Ĝ
–Δ;[2]
1 = Ĝ

–Δ
1 (◦, 𝜀

+
2 , 𝜀

−
3 ), Ĝ

–Δ;[3]
1 = Ĝ

–Δ
1 (◦, 𝜀

−
2 , 𝜀

+
3 ) (C27d)

Ĝ
–Δ;[1]
2 = Ĝ

–Δ
1 (𝜀

+
1 , ◦, 𝜀

−
3 ), Ĝ

–Δ;[3]
2 = Ĝ

–Δ
1 (𝜀

−
1 , ◦, 𝜀

+
3 ) (C27e)

Ĝ
–Δ;[1]
3 = Ĝ

–Δ
1 (𝜀

+
1 , 𝜀

−
2 , ◦), Ĝ

–Δ;[2]
3 = Ĝ

–Δ
1 (𝜀

−
1 , 𝜀

+
2 , ◦) (C27f )

Here, we have inserted a ◦ at the position of the frequency arguments on
which the function does not depend. Note that Equations (C26a)–(C26c)
also imply, e.g., G̃𝜀2 ,𝜀1 = G̃𝜀1 ,𝜀2 + G̃𝜀3 ,𝜀1 . Relations of this form can be used
to simplify PSF (anti)commutators, which appear in Section 5.2.

One additional comment is in order for the regular contributions in
Equation (C25). Consider, e.g., permutation p = (123) and n𝜀1 a bosonic
MWF. Then, if the regular contributions G̃𝜀2 ,𝜀1 and G̃𝜀12 ,𝜀1 contain terms
proportional to Dirac 𝛿(𝜀1), the combination n𝜀1𝛿(𝜀1) is ill-defined as the
MWF diverges for vanishing frequencies. For their evaluation, however, we
can use Equations (C26a)–(C26c) to rewrite

(2𝜋i)2S̃(123)(𝜀1, 𝜀2)

= n𝜀1n𝜀2 G̃
𝜀2 ,𝜀1 + n𝜀1n𝜀12

(
G̃𝜀1 ,𝜀12 − G̃𝜀2 ,𝜀1

)
= −n−𝜀2n𝜀12 G̃

𝜀2 ,𝜀1 + n𝜀1n𝜀12 G̃
𝜀1 ,𝜀12 (C28)

Here, the first term does not include n𝜀1 , and the discontinuity G̃
𝜀1 ,𝜀12 in

the second term does not contain 𝛿(𝜀1) contributions (see, e.g., Equa-
tions (G10) and discussion thereafter), circumventing the occurrence of
bosonic n𝜀1𝛿(𝜀1) contributions.

C.3. Simplifications for KF Correlators for 𝓁 = 3

In the following, we show that the spectral representation of Keldysh com-
ponents can be recast into a form that is formally equivalent to Equa-
tions (19), but more convenient for the purpose of analytic continuation.
The new representation enables us to insert the PSFs in Equation (C25)
and obtain expressions for the Keldysh components in terms of analytic
continuations of MF correlators. This constitutes Step 3 of our three-
step strategy.

While the following calculations are demonstrated for explicit examples
of 3p KF components, they can be generalized to arbitrary KF components
and even to arbitrary 𝓁p functions (see Appendix F).

Table C1. 𝓁 = 3: Simplification of the Keldysh kernel (19c) for the KF cor-
relator G[13] for all permutations by application of the identity (58). For
permutations p = (123) and p = (321), manipulations presented in Equa-
tion (C30) were performed. Additionally, energy conservation and the con-
straints enforced by the 𝛿-functions allow us to express all denominators
through 𝜔−2 .

p kp [𝜂̂1 𝜂̂2] [𝜂̂1 𝜂̂2] K [𝜂̂1 𝜂̂2](𝝎p) = K̃(𝝎
[𝜂̂1]
p ) − K̃(𝝎

[𝜂̂2]
p )

(123) 212 [13] [13] K̃(𝝎[1]
(123)) − K̃(𝝎[3]

(123)) = 𝛿(𝜔1)
1
𝜔−2

− 𝛿(𝜔12)
1
𝜔−2

(132) 221 [12] [13] K̃(𝝎[1]
(132)) − K̃(𝝎[3]

(132)) = −𝛿(𝜔1)
1
𝜔−2

(213) 122 [23] [13] K̃(𝝎[1]
(213)) − K̃(𝝎[3]

(213)) = 𝛿(𝜔12)
1
𝜔−2

(231) 122 [23] [31] K̃(𝝎[3]
(231)) − K̃(𝝎[1]

(231)) = 𝛿(𝜔1)
1
𝜔−2

(312) 221 [12] [31] K̃(𝝎[3]
(312)) − K̃(𝝎[1]

(312)) = −𝛿(𝜔12)
1
𝜔−2

(321) 212 [13] [31] K̃(𝝎[3]
(321)) − K̃(𝝎[1]

(321)) = −𝛿(𝜔1)
1
𝜔−2

+ 𝛿(𝜔12)
1
𝜔−2

C.3.1. Simplifications for KF Correlator G[𝜂1𝜂2]

We begin with outlining the necessary steps to express the KF component
G[𝜂1𝜂2] in terms of analytically continued MF correlators on the example
G[13]. The simplifcations rely on repeated application of identity (58).

The spectral representation in Equations (19) serves as our starting
point. As a first step, we bring the Keldysh kernel K [𝜂̂1 𝜂̂2] in a more conve-
nient form, starting with permutation p = (123), where [𝜂̂1𝜂̂2] = [𝜂1𝜂2] =
[13] and therefore

K [13](𝝎(123)) = K̃(𝝎[1]
(123)) − K̃(𝝎[3]

(123)) =
1

𝜔
[1]
1 𝜔

[1]
12

− 1

𝜔
[3]
1 𝜔

[3]
12

(C29)

In the first term, all frequency combinations in the denominator acquire a
positive imaginary shift, whereas in the second term they obtain a negative
imaginary shift. Adding and subtracting 1∕(𝜔[1]1 𝜔

[3]
12), identity (58) leads to

K [13](𝝎(123)) =

(
1

𝜔
[1]
1

− 1

𝜔
[3]
1

)
1

𝜔
[3]
12

+

(
1

𝜔
[1]
12

− 1

𝜔
[3]
12

)
1

𝜔
[1]
1

= 𝛿(𝜔1)
1
𝜔−2

+ 𝛿(𝜔12)
1
𝜔+1

(C30)

The kernels for all other permutations can be simplified in a similar man-
ner, and the results are summarized in Table C1. Collecting all contribu-
tions proportional to either 𝛿(𝜔1)∕𝜔−2 or 𝛿(𝜔12)∕𝜔−2 yields Equation (75).
The PSF (anti)commutators therein are evaluated using the relations in
Equations (C26) and result in

S[1,[2,3]− ]+ = S(123) − S(132) + S(231) − S(321) (C31a)

= N𝜀1 G̃
𝜀1 ,𝜀2 − 2𝛿(𝜀1)Ĝ

–Δ;𝜀2
1 − 2𝛿(𝜀1)𝛿(𝜀2)Ĝ

Δ
1;2

S[[1,2]− ,3]+ = S(123) − S(213) + S(312) − S(321) (C31b)

= −N𝜀12 G̃
𝜀12 ,𝜀2 + 2𝛿(𝜀12)Ĝ

–Δ;𝜀2
3 + 2𝛿(𝜀1)𝛿(𝜀2)Ĝ

Δ
3;2

where we suppressed the frequency arguments of the PSFs.

C.3.2. Simplifications for KF Correlator G[𝜂1𝜂2𝜂3]

In Section 5.2.2 it was pointed out that the Keldysh component G[123] can
be computed by subtracting a fully retarded correlator, e.g. G[3], in order
to reuse identity (58).
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Table C2. 𝓁 = 3: Keldysh kernel for G[123] − G[3] in Equation (C32), evalu-
ated for all permutations.

p Kernel of G[123] − G[3]

(123) K [123](𝝎(123)) − K̃(𝝎[3]
(123)) = 𝛿(𝜔1)𝛿(𝜔2) + 𝛿(𝜔1)

1
𝜔−2

(132) K [123](𝝎(132)) − K̃(𝝎[3]
(132)) = −𝛿(𝜔1)

1
𝜔−2

− 𝛿(𝜔2)
1
𝜔−1

(213) K [123](𝝎(213)) − K̃(𝝎[3]
(213)) = 𝛿(𝜔1)𝛿(𝜔2) + 𝛿(𝜔2)

1
𝜔−1

(231) K [123](𝝎(231)) − K̃(𝝎[3]
(231)) = −𝛿(𝜔2)

1
𝜔−1

− 𝛿(𝜔1)
1
𝜔−2

(312) K [123](𝝎(312)) − K̃(𝝎[3]
(312)) = 𝛿(𝜔1)𝛿(𝜔2) + 𝛿(𝜔2)

1
𝜔−1

(321) K [123](𝝎(321)) − K̃(𝝎[3]
(321)) = 𝛿(𝜔1)𝛿(𝜔2) + 𝛿(𝜔1)

1
𝜔−2

The kernel of G[3] is simply given by K [3̂](𝝎p) = K̃(𝝎[3]
p ) and there-

fore permutation independent, as discussed before Equation (23). Since
G[123] = G222 implies kp = 222 and consequently [𝜂̂1𝜂̂2𝜂̂3] = [123] for any
permutation, the kernel for G[123] − G[3] reads

K [123](𝝎p) − K [3̂](𝝎p) = K̃(𝝎[1]
p ) − K̃(𝝎[2]

p ) + K̃(𝝎[3]
p ) − K̃(𝝎[3]

p ) (C32)

and therefore the effect of subtracting G[3] is permutation dependent.
We first consider permutation p = (123), for which the difference of ker-

nels simplifies to

K [123](𝝎(123)) − K [3](𝝎(123)) = K̃(𝝎[1]
(123)) − K̃(𝝎[2]

(123))

= 1

𝜔
[1]
1 𝜔

[1]
12

− 1

𝜔
[2]
1 𝜔

[2]
12

= 𝛿(𝜔1)
1
𝜔+2

(C33)

In the last step, we were able to use Equation (58) again, set 𝜔[1]12 = 𝜔
[2]
12 =

𝜔+12, and reduced 𝜔12 = 𝜔2 due to the 𝛿-function. For the comparison to
kernels of other permutations, it is convenient to additionally add and sub-
tract 𝛿(𝜔1)∕𝜔−2 to obtain

K [123](𝝎(123)) − K [3](𝝎(123)) = 𝛿(𝜔1)𝛿(𝜔2) + 𝛿(𝜔1)
1
𝜔−2

(C34)

For permutation p = (132), Equation (C32) yields

K̃(𝝎[1]
(132)) − K̃(𝝎[3]

(132)) + K̃(𝝎[2]
(132)) − K̃(𝝎[3]

(132))

= 𝛿(𝜔1)
1
𝜔+3

− 𝛿(𝜔13)
1
𝜔−1

(C35)

Using 𝜔+3 = −𝜔−2 due to energy conservation and the 𝛿–function, the
first term matches the second term in Equation (C34). Therefore,
PSFs of permutations p = (123), (132) can be expressed through PSF
(anti)commutators as in the previous section, motivating the manipula-
tion from Equation (C33) to (C34).

A summary of the kernels for all permutations is given in Table C2. In
these kernels, a total of three unique terms occur, given by 𝛿(𝜔1)𝛿(𝜔2),
𝛿(𝜔1)∕𝜔−2 , or 𝛿(𝜔2)∕𝜔

−
1 . Collecting all PSFs convoluted with the same ex-

pressions gives Equation (81), with the PSF (anti)commutators evaluating
to

S[[1,2]+ ,3]+ (𝜀1, 𝜀2) = (1 +N𝜀1N𝜀2 )G̃
𝜀2 ,𝜀1 +N𝜀12N𝜀1 G̃

𝜀12 ,𝜀1

− 2𝛿(𝜀1)N𝜀2 Ĝ
–Δ;𝜀2
1 − 2𝛿(𝜀2)N𝜀1 Ĝ

–Δ;𝜀1
2

− 2𝛿(𝜀12)N𝜀1 Ĝ
–Δ;𝜀1
3 + 4𝛿(𝜀1)𝛿(𝜀2)Ĝ1,2,

S[1,[2,3]− ]− (𝜀1, 𝜀2) = G̃𝜀1 ,𝜀2 ,

S[2,[1,3]− ]− (𝜀2, 𝜀1) = G̃𝜀2 ,𝜀1 (C36)

This concludes our appendix on additional computations for the ana-
lytic continuation of 3p correlators.

Appendix D: Partial MF 4p Correlators

In this appendix, we discuss purely fermionic partial MF 4p correlators.
However, we do not display explicit calculations here. Rather, we intro-
duce an iterative procedure to derive the structure of 4p PSFs from 3p
PSFs, based on our insights from 2p and 3p calculations. For a general
fermionic MF 4p correlator, only the sums of two fermionic frequencies
result in bosonic frequencies, which, in turn, might lead to anomalous
terms. According to Equation (A5), the general form of the correlator thus
reads

Gi𝜔1 ,i𝜔2 ,i𝜔3 = G̃i𝜔1 ,i𝜔2 ,i𝜔3 + 𝛽𝛿i𝜔12 Ĝ12;i𝜔1 ,i𝜔3

+ 𝛽𝛿i𝜔13 Ĝ13;i𝜔1 ,i𝜔2 + 𝛽𝛿i𝜔23 Ĝ23;i𝜔1 ,i𝜔2 (D1)

D.1. Regular Contributions

Step 1. Matsubara summation through contour integration: To derive par-
tial MF 4p correlators, we insert Equation (D1) and the singularity-free 4p
kernel (Equation (A2c)) into Equation (31):

G̃(1234)(i𝝎(1234)) + ( 1
𝛽

)
= [K ⋆ G](i𝝎(1234)) (D2)

Here,we again consider the permutation p = (1234) first, before obtain-
ing the general result by replacing all indices i → ī. By repeated use of
the identities in Equations (C4) and (C5), together with the analogously
proven new identity

1
(−𝛽)3

∑
i𝜔′

Δ3
i𝜔−i𝜔′ f̃ (i𝜔

′) = ( 1
𝛽

)
(D3)

the imaginary-frequency convolution can again be expressed through con-
tour integrals. Focusing on the regular contribution to the correlator, G̃,
first, we indeed recover Equation (39) for 𝓁 = 4:

G̃r
(1234)(i𝝎(1234)) + ( 1

𝛽

)
=

[
K ⋆ G̃

]
(i𝝎(1234))

= ∳z1
∳z12

∳z123

nz1nz12nz123 G̃z1 ,z12 ,z123

(i𝜔1 − z1)(i𝜔12 − z12)(i𝜔123 − z123)
(D4)

Step 2. Extraction of PSFs: For the deformation of the contour, it is in-
structive to recapitulate the 2p and 3p results for the regular contributions
to the PSFs. As a function of complex frequencies, a general 2p MF corre-
lator G̃z1 = G̃(z1,−z1) has one possible branch cut defined by Im(z1) = 0,
resulting in

(2𝜋i)Sr(12)(𝜀1) = n𝜀1 G̃
𝜀1 (D5)

In the 3p case, the additional frequency dependence of G̃z1 ,z12 =
G̃(z1, z12 − z1,−z12) introduces two further branch cuts at Im(z12) = 0 and
Im(z12 − z1) = Im(z2) = 0, additionally to Im(z1) = 0. According to Equa-
tion (C10), the contour of ∳z12 is deformed first, taking account of the latter
two out of the three branch cuts. This yields a sum of the discontinuities
G̃𝜀12z1

and G̃𝜀2z1 , multiplied with the respective MWFs (Equation (C12)). The
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subsequent contour deformation of ∳z1 reduces to an effective 2p calcula-
tion, i.e., only the branch cut at Im(z1) = 0 remains, resulting in

(2𝜋i)2Sr(123)(𝜀1, 𝜀2) = n𝜀2n𝜀1 G̃
𝜀2 ,𝜀1 + n𝜀12n𝜀1 G̃

𝜀12 ,𝜀1 (D6)

with the discontinuity in 𝜀1 to the right of 𝜀2 and 𝜀12.
In the 4p case, the new frequency z123 generates four additional

branch cuts (see discussion in Section 4.1), defined by vanishing Im(z123),
Im(z123 − z1), Im(z123 − z12) or Im(z123 − z12 + z1), yielding a total of
seven possible branch cuts together with Im(z12) = 0, Im(z12 − z1) = 0,
and Im(z1) = 0 from the 3p case. Since ∳z123 is deformed first according to
Equation (D4), the four new branch cuts are taken into account via a sum
of the discontinuities G̃𝜀3z12 ,z1 , G̃

𝜀123
z12 ,z1

, G̃𝜀13z12 ,z1
, and G̃𝜀23z12 ,z1

, multiplied with
the respective MWFs. For each of these discontinuities, the subsequent
contour deformations of ∳z12 and ∳z1 reduces to an effective 3p calcula-
tion. Consequently, we obtain

(2𝜋i)3Sr(1234)(𝜀1, 𝜀2, 𝜀3)

= n𝜀3n𝜀2n𝜀1 G̃
𝜀3 ,𝜀2 ,𝜀1 + n𝜀123n𝜀2n𝜀1 G̃

𝜀123 ,𝜀2 ,𝜀1 + n𝜀13n𝜀2n𝜀1 G̃
𝜀13 ,𝜀2 ,𝜀1

+ n𝜀23n𝜀2n𝜀1 G̃
𝜀23 ,𝜀2 ,𝜀1 + n𝜀3n𝜀12n𝜀1 G̃

𝜀3 ,𝜀12 ,𝜀1 + n𝜀123n𝜀12n𝜀1 G̃
𝜀123 ,𝜀12 ,𝜀1

+ n𝜀13n𝜀12n𝜀1 G̃
𝜀13 ,𝜀12 ,𝜀1 + n𝜀23n𝜀12n𝜀1 G̃

𝜀23 ,𝜀12 ,𝜀1 (D7)

We have also checked this result by explicit contour deformations in Equa-
tion (D4). There, the poles of the denominators can be ignored since
they only contribute at order ( 1

𝛽

)
, similarly to Equation (C17) in the 3p

case. To further simplify Equation (D7), we note that, for fermionic 4p
correlators, two consecutive bosonic discontinuities have to vanish, i.e.,
G̃𝜀13 ,𝜀12 ,𝜀1 = G̃𝜀23 ,𝜀12 ,𝜀1 = 0, since their kernels carry one bosonic argument
only (see Appendix E.1 for further details).

D.2. Anomalous Contributions

We do not present the derivations of the anomalous contributions of G to
Equation (D2) explicitly here, as these correspond to 3p calculations. There
is one crucial difference, however. The anomalous kernel in Equation (A4c)
for the fermionic 4p case reduces to

K̂
alt
(𝛀p) = − 𝛽

2
𝛿i𝜔12−𝜀12

1(
i𝜔1 − 𝜀1

)(
i𝜔3 − 𝜀3

) (D8)

and thus only depends on fermionic Matsubara frequencies. Therefore,
anomalous terms such as Ĝ13;i𝜔1 ,i𝜔2 only depend on the frequencies i𝜔1
and i𝜔2 separately, but not on their sum i𝜔12. In the complex frequency
plain, this implies that Ĝ13;z1 ,z2 has branch cuts only for Im(z1) = 0 and
Im(z2) = 0, but not for Im(z12) = 0, in contrast to the regular 3p case.
Additionally, since the denominators in Equation (D8) are non-singular
due to the fermionic Matsubara frequencies, we need not distinguish the

anomalous contributions by factors ofΔi𝜔, e.g., splitting Ĝ13, into Ĝ
–Δ
13 and

ĜΔ
13 terms, as was the case for 3p functions (Equation (C2)).

D.3. Final Result

Finally, the fermionic partial 4p correlators for general permutations p is
obtained from the full correlator via

G̃p(i𝝎p) = ∫𝜀1 ,𝜀2 ,𝜀3
(2𝜋i)3Sp(𝜀1, 𝜀2, 𝜀3)

(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)(i𝜔123 − 𝜀123)
(D9)

with the PSFs given by

(2𝜋i)3Sp(𝜀1, 𝜀2, 𝜀3)

= n𝜀3
n𝜀2

n𝜀1
G̃𝜀3 ,𝜀2 ,𝜀1 + n𝜀123

n𝜀2
n𝜀1

G̃𝜀123 ,𝜀2 ,𝜀1

+ n𝜀13
n𝜀2

n𝜀1
G̃𝜀13 ,𝜀2 ,𝜀1 + n𝜀23

n𝜀2
n𝜀1

G̃𝜀23 ,𝜀2 ,𝜀1

+ n𝜀3
n𝜀12

n𝜀1
G̃𝜀3 ,𝜀12 ,𝜀1 + n𝜀123

n𝜀12
n𝜀1

G̃𝜀123 ,𝜀12 ,𝜀1

+ n𝜀3
n𝜀1
𝛿(𝜀12) Ĝ

𝜀3 ,𝜀1
12

+ n𝜀2
n𝜀1
𝛿(𝜀13) Ĝ

𝜀2 ,𝜀1
13

+ n𝜀2
n𝜀1
𝛿(𝜀23) Ĝ

𝜀2 ,𝜀1
23

(D10)

For the anomalous parts, the order of discontinuities does not matter, as,
e.g., Ĝ

𝜀3 ,𝜀1
12

= Ĝ
𝜀1 ,𝜀3
12

.

For completeness, we express the discontinuities in Equation (D10) in
terms of analytic regions according to their definition in Section 6.1. This
gives

G̃𝜀1 ,𝜀2 ,𝜀3 = −G̃𝜀234 ,𝜀2 ,𝜀3 = −G̃𝜀1 ,𝜀2 ,𝜀4 = G̃𝜀234 ,𝜀2 ,𝜀4

= −G̃𝜀1 ,𝜀34 ,𝜀3 = G̃𝜀234 ,𝜀34 ,𝜀3 = G̃𝜀1 ,𝜀34 ,𝜀4 = −G̃𝜀234 ,𝜀34 ,𝜀4

= C(3) − C(4) + C(123) − C(124) − C(13)
III + C(14)

III − C(23)
III + C(24)

III (D11a)

G̃𝜀1 ,𝜀3 ,𝜀2 = −G̃𝜀234 ,𝜀3 ,𝜀2 = −G̃𝜀1 ,𝜀3 ,𝜀4 = G̃𝜀234 ,𝜀3 ,𝜀4

= −G̃𝜀1 ,𝜀24 ,𝜀2 = G̃𝜀234 ,𝜀24 ,𝜀2 = G̃𝜀1 ,𝜀24 ,𝜀4 = −G̃𝜀234 ,𝜀24 ,𝜀4

= C(2) − C(4) + C(123) − C(134) − C(12)
III + C(14)

III − C(23)
III + C(34)

III (D11b)

G̃𝜀1 ,𝜀4 ,𝜀2 = −G̃𝜀234 ,𝜀4 ,𝜀2 = −G̃𝜀1 ,𝜀4 ,𝜀3 = G̃𝜀234 ,𝜀4 ,𝜀3

= −G̃𝜀1 ,𝜀23 ,𝜀2 = G̃𝜀234 ,𝜀23 ,𝜀2 = G̃𝜀1 ,𝜀23 ,𝜀3 = −G̃𝜀234 ,𝜀23 ,𝜀3

= C(2) − C(3) + C(124) − C(134) − C(12)
III + C(13)

III − C(24)
III + C(34)

III (D11c)

G̃𝜀2 ,𝜀1 ,𝜀3 = −G̃𝜀134 ,𝜀1 ,𝜀3 = −G̃𝜀2 ,𝜀1 ,𝜀4 = G̃𝜀134 ,𝜀1 ,𝜀4

= −G̃𝜀2 ,𝜀34 ,𝜀3 = G̃𝜀134 ,𝜀34 ,𝜀3 = G̃𝜀2 ,𝜀34 ,𝜀4 = −G̃𝜀134 ,𝜀34 ,𝜀4

= C(3) − C(4) + C(123) − C(124) − C(13)
II + C(14)

II − C(23)
II + C(24)

II (D11d)

G̃𝜀3 ,𝜀1 ,𝜀2 = −G̃𝜀124 ,𝜀1 ,𝜀2 = −G̃𝜀3 ,𝜀1 ,𝜀4 = G̃𝜀124 ,𝜀1 ,𝜀4

= −G̃𝜀3 ,𝜀24 ,𝜀2 = G̃𝜀124 ,𝜀24 ,𝜀2 = G̃𝜀3 ,𝜀24 ,𝜀4 = −G̃𝜀124 ,𝜀24 ,𝜀4

= C(2) − C(4) + C(123) − C(134) − C(12)
II + C(34)

II + C(14)
IV − C(23)

IV (D11e)

G̃𝜀4 ,𝜀1 ,𝜀2 = −G̃𝜀123 ,𝜀1 ,𝜀2 = −G̃𝜀4 ,𝜀1 ,𝜀3 = G̃𝜀123 ,𝜀1 ,𝜀3

= −G̃𝜀4 ,𝜀23 ,𝜀2 = G̃𝜀123 ,𝜀23 ,𝜀2 = G̃𝜀4 ,𝜀23 ,𝜀3 = −G̃𝜀123 ,𝜀23 ,𝜀3

= C(2) − C(3) + C(124) − C(134) − C(12)
IV + C(13)

IV − C(24)
IV + C(34)

IV (D11f )

G̃𝜀2 ,𝜀3 ,𝜀1 = −G̃𝜀134 ,𝜀3 ,𝜀1 = −G̃𝜀2 ,𝜀3 ,𝜀4 = G̃𝜀134 ,𝜀3 ,𝜀4

= −G̃𝜀2 ,𝜀14 ,𝜀1 = G̃𝜀134 ,𝜀14 ,𝜀1 = G̃𝜀2 ,𝜀14 ,𝜀4 = −G̃𝜀134 ,𝜀14 ,𝜀4

= C(1) − C(4) + C(123) − C(234) − C(12)
I + C(34)

I − C(13)
II + C(24)

II (D11g)
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G̃𝜀3 ,𝜀2 ,𝜀1 = −G̃𝜀124 ,𝜀2 ,𝜀1 = −G̃𝜀3 ,𝜀2 ,𝜀4 = G̃𝜀124 ,𝜀2 ,𝜀4

= −G̃𝜀3 ,𝜀14 ,𝜀1 = G̃𝜀124 ,𝜀14 ,𝜀1 = G̃𝜀3 ,𝜀14 ,𝜀4 = −G̃𝜀124 ,𝜀14 ,𝜀4

= C(1) − C(4) + C(123) − C(234) − C(12)
II + C(34)

II − C(13)
I + C(24)

I (D11h)

G̃𝜀2 ,𝜀4 ,𝜀1 = −G̃𝜀134 ,𝜀4 ,𝜀1 = −G̃𝜀2 ,𝜀4 ,𝜀3 = G̃𝜀134 ,𝜀4 ,𝜀3

= −G̃𝜀2 ,𝜀13 ,𝜀1 = G̃𝜀134 ,𝜀13 ,𝜀1 = G̃𝜀2 ,𝜀13 ,𝜀3 = −G̃𝜀134 ,𝜀13 ,𝜀3

= C(1) − C(3) + C(124) − C(234) − C(12)
I + C(34)

I − C(14)
II + C(23)

II (D11i)

G̃𝜀4 ,𝜀2 ,𝜀1 = −G̃𝜀123 ,𝜀2 ,𝜀1 = −G̃𝜀4 ,𝜀2 ,𝜀3 = G̃𝜀123 ,𝜀2 ,𝜀3

= −G̃𝜀4 ,𝜀13 ,𝜀1 = G̃𝜀123 ,𝜀13 ,𝜀1 = G̃𝜀4 ,𝜀13 ,𝜀3 = −G̃𝜀123 ,𝜀13 ,𝜀3

= C(1) − C(3) + C(124) − C(234) − C(12)
IV + C(34)

IV − C(14)
I + C(23)

I (D11j)

G̃𝜀3 ,𝜀4 ,𝜀1 = −G̃𝜀124 ,𝜀4 ,𝜀1 = −G̃𝜀3 ,𝜀4 ,𝜀2 = G̃𝜀124 ,𝜀4 ,𝜀2

= −G̃𝜀3 ,𝜀12 ,𝜀1 = G̃𝜀124 ,𝜀12 ,𝜀1 = G̃𝜀3 ,𝜀12 ,𝜀2 = −G̃𝜀124 ,𝜀12 ,𝜀2

= C(1) − C(2) + C(134) − C(234) − C(14)
IV + C(23)

IV − C(13)
I + C(24)

I (D11k)

G̃𝜀4 ,𝜀3 ,𝜀1 = −G̃𝜀123 ,𝜀3 ,𝜀1 = −G̃𝜀4 ,𝜀3 ,𝜀2 = G̃𝜀123 ,𝜀3 ,𝜀2

= −G̃𝜀4 ,𝜀12 ,𝜀1 = G̃𝜀123 ,𝜀12 ,𝜀1 = G̃𝜀4 ,𝜀12 ,𝜀2 = −G̃𝜀123 ,𝜀12 ,𝜀2

= C(1) − C(2) + C(134) − C(234) − C(14)
I + C(23)

I − C(13)
IV + C(24)

IV (D11l)

G̃𝜀12 ,𝜀1 ,𝜀3 = −G̃𝜀34 ,𝜀1 ,𝜀3 = G̃𝜀12 ,𝜀3 ,𝜀1 = −G̃𝜀34 ,𝜀3 ,𝜀1

= −G̃𝜀12 ,𝜀2 ,𝜀3 = G̃𝜀34 ,𝜀2 ,𝜀3 = −G̃𝜀12 ,𝜀3 ,𝜀2 = G̃𝜀34 ,𝜀3 ,𝜀2

= −G̃𝜀12 ,𝜀1 ,𝜀4 = G̃𝜀34 ,𝜀1 ,𝜀4 = −G̃𝜀12 ,𝜀4 ,𝜀1 = G̃𝜀34 ,𝜀4 ,𝜀1

= G̃𝜀12 ,𝜀2 ,𝜀4 = −G̃𝜀34 ,𝜀2 ,𝜀4 = G̃𝜀12 ,𝜀4 ,𝜀2 = −G̃𝜀34 ,𝜀4 ,𝜀2

= C(13)
II − C(13)

III − C(14)
II + C(14)

III + C(23)
II − C(23)

III − C(24)
II + C(24)

III (D11m)

G̃𝜀13 ,𝜀1 ,𝜀2 = −G̃𝜀24 ,𝜀1 ,𝜀2 = G̃𝜀13 ,𝜀2 ,𝜀1 = −G̃𝜀24 ,𝜀2 ,𝜀1

= −G̃𝜀13 ,𝜀3 ,𝜀2 = G̃𝜀24 ,𝜀3 ,𝜀2 = −G̃𝜀13 ,𝜀2 ,𝜀3 = G̃𝜀24 ,𝜀2 ,𝜀3

= −G̃𝜀13 ,𝜀1 ,𝜀4 = G̃𝜀24 ,𝜀1 ,𝜀4 = −G̃𝜀13 ,𝜀4 ,𝜀1 = G̃𝜀24 ,𝜀4 ,𝜀1

= G̃𝜀13 ,𝜀3 ,𝜀4 = −G̃𝜀24 ,𝜀3 ,𝜀4 = G̃𝜀13 ,𝜀4 ,𝜀3 = −G̃𝜀24 ,𝜀4 ,𝜀3

= C(12)
II − C(12)

III + C(14)
III − C(14)

IV − C(23)
III + C(23)

IV − C(34)
II + C(34)

III (D11n)

G̃𝜀14 ,𝜀1 ,𝜀2 = −G̃𝜀23 ,𝜀1 ,𝜀2 = G̃𝜀14 ,𝜀2 ,𝜀1 = −G̃𝜀23 ,𝜀2 ,𝜀1

= −G̃𝜀14 ,𝜀4 ,𝜀2 = G̃𝜀23 ,𝜀4 ,𝜀2 = −G̃𝜀14 ,𝜀2 ,𝜀4 = G̃𝜀23 ,𝜀2 ,𝜀4

= −G̃𝜀14 ,𝜀1 ,𝜀3 = G̃𝜀23 ,𝜀1 ,𝜀3 = −G̃𝜀14 ,𝜀3 ,𝜀1 = G̃𝜀23 ,𝜀3 ,𝜀1

= G̃𝜀14 ,𝜀4 ,𝜀3 = −G̃𝜀23 ,𝜀4 ,𝜀3 = G̃𝜀14 ,𝜀3 ,𝜀4 = −G̃𝜀23 ,𝜀3 ,𝜀4

= −C(12)
III + C(12)

IV + C(13)
III − C(13)

IV − C(24)
III + C(24)

IV + C(34)
III − C(34)

IV (D11o)

Here, the analytic continuations of G̃ are labeled according to the analytic
regions in Figure 5

C(1) = G̃(𝜀+1 , 𝜀
−
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

+
14),

C(2) = G̃(𝜀−1 , 𝜀
+
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

−
14),

C(3) = G̃(𝜀−1 , 𝜀
−
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

−
14),

C(4) = G̃(𝜀−1 , 𝜀
−
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

+
14),

C(12)
I = G̃(𝜀+1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

+
14),

C(12)
II = G̃(𝜀+1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

−
14),

C(12)
III = G̃(𝜀+1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

−
14),

C(12)
IV = G̃(𝜀+1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

+
14),

C(13)
I = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

+
14),

C(13)
II = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

−
14),

C(13)
III = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

−
14),

C(13)
IV = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

+
14),

C(14)
I = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

+
14),

C(14)
II = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

+
14),

C(14)
III = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

+
14),

C(14)
IV = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

+
14),

C(23)
I = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

−
14),

C(23)
II = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

−
14),

C(23)
III = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

−
14),

C(23)
IV = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

−
14),

C(24)
I = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

−
14),

C(24)
II = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

+
14),

C(24)
III = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

+
14),

C(24)
IV = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

−
14),

C(34)
I = G̃(𝜀−1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

−
14),

C(34)
II = G̃(𝜀−1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

+
14),

C(34)
III = G̃(𝜀−1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

+
14),

C(34)
IV = G̃(𝜀−1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

−
14),

C(123) = G̃(𝜀+1 , 𝜀
+
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

−
14),

C(124) = G̃(𝜀+1 , 𝜀
+
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

+
14),

C(134) = G̃(𝜀+1 , 𝜀
−
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

+
14),

C(234) = G̃(𝜀−1 , 𝜀
+
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

−
14) (D12)
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The discontinuities in the anomalous parts Equation (D10) read

Ĝ
𝜀1 ,𝜀3
12 = −Ĝ𝜀2 ,𝜀312 = −Ĝ𝜀1 ,𝜀412 = Ĝ

𝜀2 ,𝜀4
12 = Ĉ

(13)
12 − Ĉ

(14)
12 − Ĉ

(23)
12 + Ĉ

(24)
12

(D13a)

Ĝ
𝜀1 ,𝜀2
13 = −Ĝ𝜀3 ,𝜀213 = −Ĝ𝜀1 ,𝜀413 = Ĝ

𝜀3 ,𝜀4
13 = Ĉ

(12)
13 − Ĉ

(14)
13 − Ĉ

(23)
13 + Ĉ

(34)
13

(D13b)

Ĝ
𝜀1 ,𝜀2
14 = −Ĝ𝜀4 ,𝜀214 = −Ĝ𝜀1 ,𝜀314 = Ĝ

𝜀4 ,𝜀3
14 = Ĉ

(12)
14 − Ĉ

(13)
14 − Ĉ

(24)
14 + Ĉ

(34)
14

(D13c)

with

Ĉ
(13)
12 = Ĝ12(𝜀

+
1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ), Ĉ

(24)
12 = Ĝ12(𝜀

−
1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ),

Ĉ
(14)
12 = Ĝ12(𝜀

+
1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ), Ĉ

(23)
12 = Ĝ12(𝜀

−
1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ),

Ĉ
(12)
13 = Ĝ13(𝜀

+
1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ), Ĉ

(34)
13 = Ĝ13(𝜀

−
1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ),

Ĉ
(14)
13 = Ĝ13(𝜀

+
1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ), Ĉ

(23)
13 = Ĝ13(𝜀

−
1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ),

Ĉ
(12)
14 = Ĝ14(𝜀

+
1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ), Ĉ

(34)
14 = Ĝ14(𝜀

−
1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ),

Ĉ
(13)
14 = Ĝ14(𝜀

+
1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ), Ĉ

(24)
14 = Ĝ14(𝜀

−
1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ) (D14)

The remaining terms follow from Ĝ34 = Ĝ12, Ĝ24 = Ĝ13, and Ĝ23 = Ĝ14.

Appendix E: Additional Spectral Representations

In this appendix, we derive spectral representations for discontinuities
(Appendix E.1) and for anomalous parts (Appendix E.2) for general 𝓁.
These are used in Appendix F.2 to relate Keldysh components G[𝜂1𝜂2] to
discontinuities of regular parts and analytic continuations of anomalous
parts, resulting in Equation (95) in Section 6.2.1. Additionally, they serve
as a key ingredient in Appendix G for consistency checks performed on our
results for the 2p, 3p, and 4p PSFs, where we express all occurring discon-
tinuities through PSF (anti)commutators. We use the notation introduced
in the beginning of Section 6.2 throughout this appendix.

E.1. Spectral Representation of Discontinuities

Here, we focus on the discontinuities of the regular MF correlator G̃, as
introduced in Section 4. The results carry over to anomalous contributions
Ĝ, as presented in Appendix E.2. We first consider discontinuities of 3p
correlators (Appendix E.1.1) and then their generalization to arbitrary 𝓁
(Appendix E.1.2).

E.1.1. Example for 𝓁 = 3

Let us consider the discontinuity in Equation (69) as an example for 𝓁 = 3.
Inserting the spectral representation in Equations (14) yields

1

(2𝜋i)2
G̃𝜔2
𝜔+1

= 1

(2𝜋i)2

(
G̃𝜔+2 ,𝜔

+
1
− G̃𝜔−2 ,𝜔

+
1

)
= ∫𝜀1 ∫𝜀2 ∫𝜀3 𝛿(𝜀123)

× 1
𝜔+1 − 𝜀1

[
1
𝜔−13 − 𝜀13

− 1
𝜔+13 − 𝜀13

]
S(132)(𝜀1, 𝜀3)

+ 1
𝜔+12 − 𝜀12

[
1
𝜔+2 − 𝜀2

− 1
𝜔−2 − 𝜀2

]
S(213)(𝜀2, 𝜀1)

+ 1
𝜔−23 − 𝜀23

[
1
𝜔+2 − 𝜀2

− 1
𝜔−2 − 𝜀2

]
S(231)(𝜀2, 𝜀3)

+ 1
𝜔−3 − 𝜀3

[
1
𝜔−13 − 𝜀13

− 1
𝜔+13 − 𝜀13

]
S(312)(𝜀3, 𝜀1)

]

= ∫𝜀1 ∫𝜀2 ∫𝜀3 𝛿(𝜀123)
[
𝛿(𝜔2 − 𝜀2)

1
𝜔+1 − 𝜀1

S[2,13]− (𝜀1, 𝜀2, 𝜀3)

+ 𝛿(𝜔2 − 𝜀2)
1
𝜔−3 − 𝜀3

S[2,31]− (𝜀1, 𝜀2, 𝜀3)

]

= −∫𝜀1
1
𝜔+1 − 𝜀1

S[2,[1,3]− ]− (𝜀1,𝜔2,−𝜀1 − 𝜔2) (E1)

where we used the identity (58) and energy conservation. The permuta-
tions p = (123), (321) do not contribute to the discontinuity as their ker-
nels only depend on the external frequencies 𝜔+1 and 𝜔−3 with imaginary
parts independent of 𝜔±2 .

For the discontinuity G̃𝜔2 ,𝜔1 = G̃𝜔2
𝜔+1

− G̃𝜔2𝜔−1
, Equation (E1) yields

G̃𝜔2 ,𝜔1 = (2𝜋i)2S[2,[1,3]− ]− (𝝎) ,

G̃𝜔12 ,𝜔1 = (2𝜋i)2S[[1,2]− ,3]− (𝝎) (E2)

The second identity for G̃𝜔12 ,𝜔1 follows from a similar derivation as for
G̃𝜔2 ,𝜔1 . Note that the above relations hold for permuted indices as well
(see Equation (G11)). Thus, consecutive discontinuities eventually give a
(nested) commutator of PSFs. For 𝓁 = 2, this corresponds to the standard
spectral function, −G̃𝜔1 = (2𝜋i)S[1,2]− = (2𝜋i)Sstd.

E.1.2. Generalization to Arbitrary 𝓁

For general 𝓁p functions, the discontinuity in Equation (67) can be com-
puted analogously by inserting the spectral representation. Then, only
those permutations survive the difference for which the frequency com-
binations 𝜔I or 𝜔Ic appear in the kernel K̃(zp), leading to

G̃𝜔I
žr

= G̃𝜔+I ,ž
r − G̃𝜔−I ,ž

r =
∑
I|Ic [K̃I|Ic ⋄ S[I,Ic ]− ]

(
z
I|Ic (𝜔I, žr)

)
(E3a)

K̃
I|Ic (zI|Ic (𝜔I, žr)) = K̃

(
z
I|Ic (𝜔+I , žr)

)
− K̃

(
z
I|Ic (𝜔−I , žr)

)
= 𝛿(𝜔I)K̃

(
zI(ž

r)
)
K̃
(
z
I
c (žr)

)
(E3b)

K̃(zĪ) =
∏|I|−1

i=1

1
𝜔Ī1⋯Īi

(E3c)

The set Ic = L∖I is complementary to I. Here, zp(𝜔I, ž
r) expresses the per-

muted vector zp in terms of 𝜔I and the remaining 𝓁 − 2 independent fre-
quencies žr, and similarly zI(ž

r) for the subtuple zI. Equation (E3c) defines
a regular kernel for the subtuple zI. In Equation (E3b), the difference of reg-
ular kernels leads to the Dirac delta factor due to 1∕𝜔+I − 1∕𝜔−I = 𝛿(𝜔I)
and 1∕𝜔+Ic − 1∕𝜔−Ic = −𝛿(𝜔I) (using Equation (58)). The definition of the
regular product kernel in Equation (E3b) implies K̃

I|Ic = K̃
I
c|I; thus, the cor-

responding PSFs from permutations I|Ic and I
c|I have been combined in

an PSF commutator in Equation (E3a).
Consider, e.g., the 3p discontinuity G̃𝜔2

𝜔+1
from Appendix E.1.1, where the

sets in Equation (E3) are given by I = {2}, Ic = {1, 3}, and žr = 𝜔+1 . Then,
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the sum over permutations p = I|Ic includes I|Ic ∈ {2|13, 2|31}, and we
obtain the PSF commutator contribution S[2,13]− in Equation (E1) from
Equation (E3).

For 𝓁 = 4, let us consider G̃𝜔13z1 ,z2
as an example. Then, the sets I = {1, 3}

and Ic = {2, 4} yield the permutations {13|24, 13|42, 31|24, 31|42}, result-
ing in

G̃𝜔13z1 ,z2
= ∫ d4𝜀

𝛿(𝜀1234)𝛿(𝜀13)
(z1 − 𝜀1)(z2 − 𝜀2)

S[[1,3]− ,[2,4]− ]− (𝜺) (E4)

where we summarized all terms with the same kernels.
To compute consecutive discontinuities, such as G̃𝜔2 ,𝜔1 (see Equa-

tion (E2)), we can iterate the above procedure: By analyzing the spec-
tral representation of the first discontinuity, we determine the branch cuts
which lead to non-vanishing second discontinuities, and then compute
these second discontinuities by use of identity (58). For fermionic 4p cor-
relators, this iterative procedure implies that double bosonic discontinu-
ities must vanish, e.g., G̃𝜔13 ,𝜔14

𝜔+1
= 0. This follows from the spectral rep-

resentation of G̃𝜔13z1 ,z2
in Equation (E4), where the kernels only depend

on fermionic frequencies z1, z2 in the denominators. Hence, there is no
Imz14 = 0 branch cut, and therefore G̃𝜔13 ,𝜔14

𝜔+1
must vanish.

E.2. Spectral Representation of Anomalous Parts

In this appendix, we focus on the spectral representation for contributions
to the MF correlator anomalous w.r.t. one frequency. We again start with
an example for 𝓁 = 3 (Appendix E.2.1), before generalizing to arbitrary 𝓁
(Appendix E.2.2).

E.2.1. Example for 𝓁 = 3

Consider 𝛽𝛿i𝜔1 Ĝ1(i𝝎) for 𝓁 = 3. Only those terms in the 3p kernel Equa-
tion (A4b) proportional to 𝛿Ω1

= 𝛿i𝜔1𝛿𝜀1 and 𝛿Ω23
= 𝛿i𝜔23𝛿𝜀23 = 𝛿i𝜔1𝛿𝜀1

can contribute to Ĝ1. Hence, the anomalous PSFs Sp must contain fac-
tors 𝛿(𝜀1), i.e.,

𝛽𝛿i𝜔1 Ĝ1(i𝝎)

= − 1
2
𝛽𝛿i𝜔1 ∫ d3𝜀 𝛿(𝜀123)

[
𝛿𝜀1S(123)(𝜀1, 𝜀2)Δi𝜔12−𝜀12

+ 𝛿𝜀1S(132)(𝜀1, 𝜀3)Δi𝜔13−𝜀13 + 𝛿𝜀23S(231)(𝜀2, 𝜀3)Δi𝜔2−𝜀2

+ 𝛿𝜀23S(321)(𝜀3, 𝜀2)Δi𝜔3−𝜀3

]
= − 1

2
𝛽𝛿i𝜔1 ∫ d3𝜀 𝛿(𝜀123)

[
𝛿𝜀1S[1,23]+ (𝜀1, 𝜀2, 𝜀3)Δi𝜔2−𝜀2

+ 𝛿𝜀1S[1,32]+ (𝜀1, 𝜀2, 𝜀3)Δi𝜔3−𝜀3

]
= − 1

2
𝛽𝛿i𝜔1 ∫ d3𝜀 𝛿(𝜀123)𝛿𝜀1S[1,[2,3]− ]+ (𝜀1, 𝜀2, 𝜀3)Δi𝜔2−𝜀2 (E5)

where we used the symbolic Kronecker notation fromAppendix B.1. The re-
maining contributions p = (213), (312) can only contribute to the anoma-
lous terms Ĝ2 and Ĝ3, as they are not proportional to 𝛿i𝜔1 .

Note that, in the spectral representation (E5), the decomposition of

Ĝ1;i𝜔2 = Ĝ
–Δ
1;i𝜔2

+ Δi𝜔2 Ĝ
Δ
1;2 follows from the PSF decomposition. Only PSF

terms proportional to 𝛿(𝜀2), 𝛿𝜀1𝛿𝜀2S[1,[2,3]− ]+ , contribute to Ĝ
Δ
1;2. In the ab-

sence of such 𝛿(𝜀2) contributions, we can evaluate Δi𝜔2−𝜀2 → 1∕(i𝜔2 −

𝜀2) and compute the discontinuity Ĝ
–Δ;𝜔2
1 = Ĝ

–Δ
1;𝜔+2

− Ĝ
–Δ
1;𝜔−2

:

𝛿(𝜔1)𝛿(𝜔2)Ĝ
Δ
1;2 = −𝛿𝜔1𝛿𝜔2S1[2,3]− (𝜔1,𝜔2,−𝜔12),

𝛿(𝜔1)Ĝ
–Δ;𝜔2
1 = (2𝜋i)𝛿𝜔1 (1 − 𝛿𝜔2 )S1[2,3]− (𝜔1,𝜔2,−𝜔12) (E6)

Here, we used 𝛿𝜔1S[1,[2,3]− ]+ = 2𝛿𝜔1S1[2,3]− due to the equilibrium condi-
tion (4). These commutator representations will be used for the 3p con-
sistency check in Appendix G.2.2.

E.2.2. Generalization to Arbitrary 𝓁

Now, we generalize the insights from the 𝓁 = 3 example to arbitrary 𝓁.
The result will be used in Appendix F to provide a general formula for the
construction of KF components G[𝜂1𝜂2] from MF functions.

In the 𝛽𝛿 expansion of the MF kernel K = K̃ + K̂
𝛽𝛿 + (𝛿2), the 𝛽𝛿 term

reads (see Equation (45) in ref. [23])

𝛽K̂
𝛽
(𝛀p) = − 𝛽

2

𝓁−1∑
i=1
𝛿Ω

1…i

𝓁−1∏
j=1
j≠i

ΔΩ
1…j

(E7)

which was originally derived for 𝓁 ≤ 4, but can be extended to arbitrary 𝓁
with the same line of arguments, starting from the results in ref. [30]. For
general 𝓁p functions and terms anomalous w.r.t. the frequency i𝜔I = 0,
with I ⊂ L = {1,… ,𝓁}, only permutations of the form p = I|Ic and p = I

c|I,
with Ic = L∖I again the complementary set to I, can lead to the 𝛽𝛿i𝜔I factor
coming from the anomalous kernel in Equation (E7), yielding

𝛽𝛿i𝜔I ĜI(i𝝎)

= − 1
2
𝛽𝛿i𝜔I

∑
I|Ic ∫ d𝓁𝜀p 𝛿(𝜀1…𝓁)

|I|−1∏
i=1

ΔΩI
1
…I

i

|Ic|−1∏
i=1

ΔΩIc
1
…Ic

i

× 𝛿𝜀IS[I,Ic ]+ (𝜺(𝜺I|Ic )) (E8)

Equation (E5) is a direct application of this formula for 𝓁 = 3, I = {1}, and
Ic = {2, 3}, where the permutations p = I|Ic run over I|Ic ∈ {1|23, 1|32}.

To make the connection to Keldysh correlators in the next appendix, we
replace any Δi𝜔 → 1∕(i𝜔) in the final expression for ĜI, which amounts to
replacing ΔΩ → 1∕Ω in the kernels, such that

ĜI;žr ≡ [
ĜI(i𝝎)

]
Δi𝜔→

1
i𝜔

,i𝝎→z(žr)

= − 1
2

∑
I|Ic ∫ d𝓁𝜀p 𝛿(𝜀1…𝓁)K̃(zI(ž

r) − 𝜺I)

× K̃(z
I
c (žr) − 𝜺

I
c ) 𝛿𝜀I

S
[I,I

c
]+
(𝜺(𝜺

I|Ic )) (E9)

where we identified a product of regular kernels (see Equation (E3c)).
The subscript žr again denotes 𝓁 − 2 independent frequencies parametriz-
ing the 𝓁 − 1 arguments z of ĜI(z(ž)) = ĜI;ž, with z independent of the
anomalous frequency 𝜔I.

The anomalous parts ĜI typically enter the Keldysh components with
prefactors depending on 4𝜋i 𝛿(𝜔I). Including this factor, the spectral rep-
resentation turns out to be particularly convenient, as we can make use of
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the definition in Equation (90a), leading to

4𝜋i 𝛿(𝜔I)ĜI;žr = −2 𝛿(𝜔I)ĜI;žr

=
∑
I|Ic ∫ d𝓁𝜀p 𝛿(𝜀1…𝓁)𝛿(𝜔I − 𝜀I)K̃

(
zI(ž

r) − 𝜺I

)
K̃
(
z
I
c (žr) − 𝜺

I
c

)
× 𝛿𝜀IS[I,Ic ]+ (𝜺(𝜺I|Ic ))
=

∑
I|Ic ∫ d𝓁𝜀p 𝛿(𝜀1…𝓁)K̃I|Ic

(
z
I|Ic (𝜔I, žr) − 𝜺

I|Ic
)
𝛿𝜀I
S
[I,I

c
]+
(𝜺(𝜺

I|Ic )). (E10)

In the second step, we used 𝜔I = 𝜔I and

𝛿𝜀I
S
[I,I

c
]+
(𝜺

I|Ic )𝛿(𝜔I) = 𝛿𝜀IS[I,Ic ]+ (𝜺I|Ic )𝛿(𝜔I − 𝜀I) (E11)

In the last line, we inserted the definition of the regular product kernel
(E3b). Equation (E10) is the representation needed in Equation (F10) to
express Keldysh components G[𝜂1𝜂2] in terms of analytically continued
anomalous parts of MF correlators.

Appendix F: Simplifications for KF Correlators

In this appendix, we derive reformulations of the spectral representa-
tion of KF components, presented in Sections 6.2.1 and 6.2.2, which are
amenable to finding relations between KF correlators and analytically con-
tinued MF correlators. First, we derive a convenient identity for particular
KF kernels for general 𝓁p correlators in Appendix F.1. This identity is then
applied in Appendix F.2 to obtain an alternative representation of KF com-
ponents G[𝜂1𝜂2], yielding a general analytic continuation formula (Equa-
tion (F10)) for these components (using the results from Appendix E).
This constitutes a generalization of Equation (23) for G[𝜂1] (𝛼 = 1) to
𝛼 = 2. An analogous procedure is then applied to KF componentsG[𝜂1…𝜂𝛼 ]

for 𝛼 = 3 and 𝛼 = 4 in Appendices F.3 and F.4, respectively (see Equa-
tions (98) and (F16)). In the following, we will use the notation introduced
in the beginning of Section 6.2 repeatedly.

F.1. Identity for K [𝜼̂1 𝜼̂2] for General 𝓁p Correlators

For 𝛼 = 2, Keldysh correlators G[𝜂1𝜂2] are determined by the KF kernel
K [𝜂̂1 𝜂̂2] = K [𝜂̂1] − K [𝜂̂2] in Equation (19d). For 𝛼 ≥ 2, such differences of fully
retarded kernels occur repeatedly in the spectral representation. In the fol-
lowing, we therefore derive a convenient identity for the kernel K [𝜂̂1 𝜂̂2].

According to Equations (19c) and (22), the kernel K [𝜂̂1 𝜂̂2] takes the form

K [𝜂̂1 𝜂̂2](𝝎p) = K [𝜂̂1](𝝎p) − K [𝜂̂2](𝝎p) = K̃(𝝎[𝜂̂1]
p ) − K̃(𝝎[𝜂̂2]

p ) (F1)

Note that 𝜂̂1 < 𝜂̂2, which holds by definition, does not imply 𝜂̂1 < 𝜂̂2.
For simplicity, we rename 𝜇 = 𝜂̂1 and 𝜈 = 𝜂̂2. Using Equations (19d)

and (21), the retarded kernels generally read

K [𝜇](𝝎p) =

(
𝜇−1∏
i=1

1
𝜔−
1…i

)⎛⎜⎜⎝
𝓁−1∏
i=𝜇

1
𝜔+
1…i

⎞⎟⎟⎠ = K−
1𝜇K

+
𝜇𝓁 ,

K±
xy =

y−1∏
i=x

1
𝜔±
1…i

(F2)

From this definition of K±
xy, the identities

K±
xyK

±
yz = K±

xz, K±
xx = 1, K [𝜇] = K−

1𝜇K
+
𝜇𝓁 (F3)

directly follow, which allow us to rewrite K [𝜇𝜈](𝝎p) as

K [𝜇𝜈] = K [𝜇] − K [𝜈] = K−
1𝜇

(
K+
𝜇𝜈 − K−
𝜇𝜈

)
K+
𝜈𝓁

=
𝜈−1∑
y=𝜇

K−
1𝜇

(
K+
𝜇y+1K

−
y+1𝜈 − K+

𝜇yK
−
y𝜈

)
K+
𝜈𝓁

=
𝜈−1∑
y=𝜇

K−
1𝜇K

+
𝜇y

⎛⎜⎜⎝ 1
𝜔+
1…y

− 1
𝜔−
1…y

⎞⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝛿(𝜔1…y)

K−
y+1𝜈K

+
𝜈𝓁 (F4)

In the second line, the terms y = 𝜇 and y = 𝜈 − 1 represent the first line,
the remaining contributions 𝜇 < y < 𝜈 − 1 cancel pairwise. In the last line,
we used identity (58) to obtain 𝛿(𝜔1…y), enforcing𝜔

±
1…i

= 𝜔±
y+1…i

for i > y.

Inserting this identity into the arguments of K−
y+1𝜈K

+
𝜈𝓁 yields

K [𝜇𝜈](𝝎p) =
𝜈−1∑
y=𝜇

K [𝜇](𝝎1…y)𝛿(𝜔1…y)K
[𝜈](𝝎y+1…𝓁)

=
𝜈−1∑
y=𝜇

K̃(𝝎[𝜇]

1…y
)𝛿(𝜔1…y)K̃(𝝎

[𝜈]

y+1…𝓁
)

=
𝜈−1∑
y=𝜇

K̃1…y|y+1…𝓁(𝝎
[𝜇][𝜈]

1…y|y+1…𝓁
) (F5)

The last equality follows from the definition (90a), with 𝛼 = 2, 𝜂1 = 𝜇,
𝜂2 = 𝜈, I

1
= 1… y, and I

2
= y + 1…𝓁. Note that, for 𝓁 = 3, Equation (F5)

readily yields the results of Table C1.

F.2. Simplifications for G[𝜼1𝜼2] for 𝓁p Correlators

After the preparations in Appendices E and F.1, we can now derive an al-
ternative representation of the Keldysh correlators G[𝜂1𝜂2], equivalent to
the spectral representation in Equation (19b) but more convenient for the
analytic continuation. This generalizes the concepts of Section C.3.1 from
𝓁 = 3 to arbitrary 𝓁.

We start by inserting Equation (F5) into the spectral representation in
Equation (19b),

G[𝜂1𝜂2](𝝎) =
∑
p
[K [𝜂̂1 𝜂̂2] ∗ Sp](𝝎p)

=
∑
p

𝜂̂2−1∑
y=𝜂̂1

(
K̃1…y|y+1…𝓁 ∗ Sp

)
(𝝎[𝜂̂1][𝜂̂2]

1…y|y+1…𝓁
) (F6)

Since 𝜂̂1 ≤ y < 𝜂̂2, the subtuples I = (1… y) and I
c
= (y + 1…𝓁) always

contain 𝜂̂1 and 𝜂̂2, respectively. Each of these in turn equals either 𝜂1 or 𝜂2,
since 𝜂̂i ∈ {p−1(𝜂1), p

−1(𝜂2)}, hence 𝜂̂i ∈ {𝜂1, 𝜂2}. Correspondingly, we will

denote the subtuple containing 𝜂1 as I
1
, and that containing 𝜂2 as I

2
. The

sum over y can then be interpreted as a sum over all possible partitions
of (1,… ,𝓁) for which each of the two subtuples contains either 𝜂1 or 𝜂2.
Defining 12 = {(I1, I2)|𝜂1 ∈ I1, 𝜂2 ∈ I2, I1 ∪ I2 = L, I1 ∩ I2 = ∅} as the set
of all possibilities to partition L = {1,… ,𝓁} into subsets I1 and I2 contain-
ing 𝜂1 and 𝜂2, respectively, we find

G[𝜂1𝜂2](𝝎) =
∑

(I1 ,I2)∈12

⎡⎢⎢⎣
∑
I
1|I2

(
K̃
I
1|I2 ⋄ SI1|I2

)
(𝝎[𝜂1][𝜂2]

I
1|I2 )

+
∑
I
2|I1

(
K̃
I
2|I1 ⋄ SI2|I1

)
(𝝎[𝜂2][𝜂1]

I
2|I1 )

⎤⎥⎥⎦ (F7)
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Table F1. Keldysh kernel of G[𝜂1𝜂2𝜂3] − G[𝜂3] (Equation (F11)) for different permutation classes depending on the order of the 𝜇i = p−1(𝜂i). Manipulations
similar to Equations (F12) and (F13) result in the alternative spectral representation in the third column, which can be further rewritten as Equation (98)
using Equation (F14) (and equivalent identities).

p K [𝜂̂1 𝜂̂2 𝜂̂3] − K [𝜇3] (G[𝜂1𝜂2𝜂3] − G[𝜂3])(𝝎) =
∑

p[(K
[𝜂̂1 𝜂̂2 𝜂̂3] − K [𝜇3]) ∗ Sp](𝝎p)

=
∑

(I1 ,I2 ,I3)∈123
𝜇1 < 𝜇2 < 𝜇3 K [𝜇1𝜇2] {

∑
I
1 |I2 |I3 [(K̃I

1 |I2 |I3 ⋄ S
I
1 |I2 |I3 )(𝝎[𝜂1][𝜂2][𝜂3]

I
1 |I2 |I3 ) + (K̃

I
1 |I2|3 ⋄ SI1 |I2|3 )(𝝎[𝜂1][𝜂3]

I
1 |I2|3 )]

𝜇1 < 𝜇3 < 𝜇2 K [𝜇1𝜇3] − K [𝜇3𝜇2] +
∑

I
1 |I3 |I2 [(K̃I

1 |I3|2 ⋄ SI1 |I3|2 )(𝝎[𝜂1][𝜂3]

I
1 |I3|2 ) + (K̃

I
1|3 |I2 ⋄ S

I
1|3 |I2 )(𝝎[𝜂3][𝜂2]

I
1|3 |I2 )]

𝜇2 < 𝜇1 < 𝜇3 K [𝜇2𝜇1] +
∑

I
2 |I1 |I3 [(K̃I

2 |I1 |I3 ⋄ S
I
2 |I1 |I3 )(𝝎[𝜂2][𝜂1][𝜂3]

I
2 |I1 |I3 ) + (K̃

I
2 |I1|3 ⋄ SI2 |I1|3 )(𝝎[𝜂2][𝜂3]

I
2 |I1|3 )]

𝜇2 < 𝜇3 < 𝜇1 K [𝜇2𝜇3] − K [𝜇3𝜇1] +
∑

I
2 |I3 |I1 [(K̃I

2 |I3|1 ⋄ SI2 |I3|1 )(𝝎[𝜂2][𝜂3]

I
2 |I3|1 ) + (K̃

I
2|3 |I1 ⋄ S

I
2|3 |I1 )(𝝎[𝜂3][𝜂1]

I
2|3 |I1 )]

𝜇3 < 𝜇1 < 𝜇2 −K [𝜇1𝜇2] +
∑

I
3 |I1 |I2 [(K̃I

3 |I1 |I2 ⋄ S
I
3 |I1 |I2 )(𝝎[𝜂3][𝜂1][𝜂2]

I
3 |I1 |I2 ) − (K̃

I
3|1 |I2 ⋄ S

I
3|1 |I2 )(𝝎[𝜂3][𝜂2]

I
3|1 |I2 )]

𝜇3 < 𝜇2 < 𝜇1 −K [𝜇2𝜇1] +
∑

I
3 |I2 |I1 [(K̃I

3 |I2 |I1 ⋄ S
I
3 |I2 |I1 )(𝝎[𝜂3][𝜂2][𝜂1]

I
3 |I2 |I1 ) − (K̃

I
3|2 |I1 ⋄ S

I
3|2 |I1 )(𝝎[𝜂3][𝜂1]

I
3|2 |I1 )]}

Here, we collected all terms in Equation (F6) proportional to 𝛿(𝜔
I
1 ) and

summed over all allowed partitions. Using the symmetry of the kernels
(90a) and the (anti)commutator notation from Equation (92), we finally
obtain

G[𝜂1𝜂2](𝝎) =
∑

(I1 ,I2)∈12
∑
I
1|I2

(
K̃
I
1|I2 ⋄ S[I1 ,I2]+

)
(𝝎[𝜂1][𝜂2]

I
1|I2 ) (F8)

Building on this expression, the KF component can be related to MF
functions for arbitrary 𝓁. For this purpose, we use the equilibrium condi-
tion to replace PSF commutators with anticommutators,

S
[I,I

c
]+
(𝜺

I|Ic ) = N𝜀I
S
[I,I

c
]−
(𝜺

I|Ic ) + 𝛿𝜀I S[I,Ic ]+ (𝜺I|Ic ) (F9)

N𝜀I
= 𝜁

Ie𝛽𝜀I + 1

𝜁 Ie𝛽𝜀I − 1
= coth(𝛽𝜀I∕2)

𝜁 I

where N𝜀I
is identical to the statistical factor in Equation (60), and we

used the symbolic Kronecker notation from Appendix B.1. The sign factor

is given by 𝜁 I = ±1 for an even/odd number of fermionic operators in the
set I. Inserting Equation (F9) into the representation (F8), we thus obtain

G[𝜂1𝜂2](𝝎) =
∑

(I1 ,I2)∈12
∑
I
1|I2 ∫

d𝓁𝜀 K̃
I
1|I2 (𝝎[𝜂1][𝜂2]

I
1|I2 − 𝜺

I
1|I2 )

×
(
N𝜀

I
1
S
[I
1
,I
2
]−
(𝜺

I
1|I2 ) + 𝛿𝜀I1 S[I1 ,I2]+ (𝜺I1|I2 )

)
𝛿(𝜀1…𝓁)

=
∑

(I1 ,I2)∈12
(
N𝜔I1 G̃

𝜔I1

ž
+ 4𝜋i 𝛿(𝜔I1 ) ĜI1;ž

)
with ž = {𝜔−i | i ≠ 𝜂1, i ≠ 𝜂2} (F10)

This remarkable formula generalizes Equation (23) for G[𝜂1], i.e. for 𝛼 = 1
and arbitrary 𝓁, to G[𝜂1𝜂2] (𝛼 = 2). To obtain its final form, we used that
the retarded product kernel (Equation (90a)) in the second line is propor-
tional to 𝛿(𝜔

I
1 − 𝜀

I
1 ) and thereby setsN𝜀

I
1
= N𝜔

I
1
= N𝜔I1 independent of

the integration variables. In the second step, we then identified the spec-
tral representations of discontinuities of the regular MF correlator G̃

𝜔I1

ž
(Equation (E3)) and of the anomalous contribution ĜI1;ž (Equation (E10)).
Note that the retarded product kernel coincides with the kernel (E3b) with
a suitably continued ž. In Equation (F10), the 𝓁 − 2 frequencies in ž carry
negative imaginary shifts, in accordance with the definition of 𝝎[𝜂1][𝜂2]

I
1|I2 .

F.3. Simplifications for G[𝜼1𝜼2𝜼3] for 𝓁p Correlators

The calculation in Appendix C.3.2, too, can be generalized to arbitrary 𝓁p
correlators, in particular for the spectral representation ofG[𝜂1𝜂2𝜂3] − G[𝜂3].
The Keldysh kernel forG[3] is given by K̃(𝝎[𝜂3]

p ) = K [𝜇3](𝝎p) for arbitrary per-
mutations p, with 𝜇3 = p−1(𝜂3). Then, the corresponding Keldysh kernel
for G[𝜂1𝜂2𝜂3] − G[𝜂3] reads

K [𝜂̂1 𝜂̂2 𝜂̂3] − K [𝜇3] = K [𝜂̂1] − K [𝜂̂2] + K [𝜂̂3] − K [𝜇3] (F11)

such that the effect of subtracting K [𝜇3] depends on the permutation. The
permutations can be divided into six categories, depending on the order
in which the 𝜇j = p−1(𝜂j) occur, see Table F1. This is important since plac-
ing the 𝜇j in increasing order yields [𝜂̂1𝜂̂2𝜂̂3], see discussion before Equa-
tions (19).

Here, we focus on the key steps in rewriting permutations with
𝜇1 < 𝜇2 < 𝜇3, denoted by

∑
p|𝜇1<𝜇2<𝜇3 . Defining 123 = {(I1, I2, I3)| 𝜂1 ∈

I1, 𝜂2 ∈ I2, 𝜂3 ∈ I3, Ib ∩ Ib
′ = ∅ for b ≠ b′} as the set of all possibilities to

partition L = {1,… ,𝓁} into three blocks, each of which contains one of
the indices 𝜂j ∈ Ij, we have

∑
p|𝜇1<𝜇2<𝜇3

[(
K [𝜂̂1 𝜂̂2 𝜂̂3] − K [𝜇3]

)
∗ Sp

]
(𝝎p)

=
∑

p|𝜇1<𝜇2<𝜇3
(
K [𝜇1𝜇2] ∗ Sp

)
(𝝎p)

=
∑

p|𝜇1<𝜇2<𝜇3
𝜇2−1∑
y=𝜇1

(
K̃1…y|y+1…𝓁 ∗ Sp

)
(𝝎[𝜂1][𝜂2]

1…y|y+1…𝓁
)

=
∑

(I1 ,I2 ,I3)∈123
∑

I
1|I2|I3

(
K̃
I
1|I2|3 ⋄ SI1|I2|3

)
(𝝎[𝜂1][𝜂2]

I
1|I2|3 ) (F12)

In the first step, we used that [𝜂̂1𝜂̂2𝜂̂3] = [𝜇1𝜇2𝜇3]. In the second step, we
inserted the kernel expansion Equation (F5) with 𝜇j = 𝜂j. In the third step,
we identified the sum over y as a sum over all possibilities to subdivide the

permutations into the form p = I
1|I2|I3 (which guarantees 𝜇1 < 𝜇2 < 𝜇3),

with the concatenation of I
2
and I

3
denoted by I

2|3
= I

2
1 … I

2|I2|I31 … I
3|I3|.

Further, we use

∑
(I1 ,I2 ,I3)∈123

∑
I
1|I2|I3

(
K̃
I
1|I2|3 ⋄ SI1|I2|3

)
(𝝎[𝜂1][𝜂2]

I
1|I2|3 )
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−
∑

(I1 ,I2 ,I3)∈123
∑

I
1|I2|I3

(
K̃
I
1|I2|3 ⋄ SI1|I2|3

)
(𝝎[𝜂1][𝜂3]

I
1|I2|3 )

=
∑

(I1 ,I2 ,I3)∈123
∑

I
1|I2|I3

(
K̃
I
1|I2|I3 ⋄ SI1|I2|I3

)
(𝝎[𝜂1][𝜂2][𝜂3]

I
1|I2|I3 ) (F13)

which again follows by inserting Equation (F5), to arrive at the result in
Table F1.

Contributions of different permutations can be further simplified, e.g.,
the second term of p|𝜇1 < 𝜇2 < 𝜇3 and the first term of p|𝜇1 < 𝜇3 < 𝜇2
can be collected, yielding∑
(I1 ,I2 ,I3)∈123

∑
I
1|I2|I3

(
K̃
I
1|I2|3 ⋄ SI1|I2|3

)
(𝝎[𝜂1][𝜂3]

I
1|I2|3 )

+
∑

(I1 ,I2 ,I3)∈123
∑

I
1|I3|I2

(
K̃
I
1|I3|2 ⋄ SI1|I3|2

)
(𝝎[𝜂1][𝜂3]

I
1|I3|2 )

=
∑

(I1 ,I23)∈1|23
∑
I
1|I23

[
K̃
I
1|I23 ⋄ SI1|I23

]
(𝝎[𝜂1][𝜂3]

I
1|I23 ) (F14)

with 1|23 defined in Equation (99a). Using the symmetry of retarded prod-
uct kernels, e.g., K̃

I
1|I23 = K̃

I
23|I1 , the spectral representation of G[𝜂1𝜂2𝜂3] −

G[𝜂3] finally results in Equation (98). Unlike for 𝛼 = 2 we don’t have a gen-
eral formula for the analytic continuation to G[𝜂1𝜂2𝜂3].

Equation (100) shows an example for 𝓁 = 4. Inserting Equation (88)
into the PSF (anti)commutators and abbreviating S′p = (2𝜋i)3Sp, we obtain
the following relations:

S′
[[[1,2]− ,3]+ ,4]+

= −N4

(
N3G̃
𝜀3 ,𝜀12 ,𝜀1 +N12G̃

𝜀12 ,𝜀3 ,𝜀1 − 2𝛿(𝜀12)Ĝ
𝜀3 ,𝜀1
12

)
,

S′
[[1,2]− ,[3,4]+ ]+

= N12

(
N4G̃
𝜀4 ,𝜀3 ,𝜀2 +N3G̃

𝜀3 ,𝜀4 ,𝜀2
)
− 2𝛿(𝜀12)N3Ĝ

𝜀1 ,𝜀3
12

(F15)

Inserting these into the alternative spectral representation (98), we can
evaluate the convolution integrals and obtain the relations in Equa-
tions (101g)-(101j), which express KF components in terms of MF func-
tions and MWFs.

F.4. Simplifications for G[1234] for 𝓁 = 4

For 𝛼 = 4, we can directly apply Equation (F5) on the Keldysh kernel, and
a straightforward calculation gives

G[1234](𝝎) =
∑
234

[K̃234|1 ⋄ S[234,1]+ ](𝝎[4][1]

234|1)

+
∑
134

[K̃134|2 ⋄ S[134,2]+ ](𝝎[4][2]

134|2)

+
∑
124

[K̃124|3 ⋄ S[124,3]+ ](𝝎[2][3]

124|3)

+
∑
123

[K̃123|4 ⋄ S[123,4]+ ](𝝎[3][4]

123|4)
+ [K̃4|12|3 ⋄ S[[4,[1,2]− ]− ,3]+ ](𝝎[4][2][3]

4|12|3 )
+ [K̃3|14|2 ⋄ S[[3,[1,4]− ]− ,2]+ ](𝝎[3][1][2]

3|14|2 )

+ [K̃1|23|4 ⋄ S[[1,[2,3]− ]− ,4]+ ](𝝎[1][3][4]
1|23|4 )

+ [K̃2|34|1 ⋄ S[[2,[3,4]− ]− ,1]+ ](𝝎[2][4][1]
2|34|1 )

+ [K̃4|2|13 ⋄ S[[4,2]+ ,[1,3]− ]− ](𝝎[4][2][3]
4|2|13 )

+ [K̃1|3|24 ⋄ S[[1,3]+ ,[2,4]− ]− ](𝝎[1][3][4]
1|3|24 )

+ (−2𝜋i)3
(
S[[[2,3]+ ,1]− ,4]− + S[[[3,4]+ ,2]− ,1]−

− S[[[3,4]− ,2]− ,1]+ − S[[[4,1]− ,3]− ,2]+ + S[[4,2]+ ,[1,3]+ ]+

)
(𝝎) (F16)

where
∑

I denotes a sum over permutations of the subset I ⊂ {1,… ,𝓁}.
All occuring PSF (anti)commutators can be identified with one of the fol-
lowing four forms,

S′
[[[1,2]− ,3]− ,4]+

= N4G̃
𝜀4 ,𝜀3 ,𝜀2 (F17a)

S′
[[1,2]− ,[3,4]+ ]−

= N4G̃
𝜀4 ,𝜀3 ,𝜀2 +N3G̃

𝜀3 ,𝜀4 ,𝜀2 (F17b)

S′
[[[1,2]+ ,3]−4]−

= N1G̃
𝜀2 ,𝜀4 ,𝜀3 +N2G̃

𝜀1 ,𝜀4 ,𝜀3 +N13G̃
𝜀13 ,𝜀1 ,𝜀2

+ N14G̃
𝜀14 ,𝜀1 ,𝜀2 − 2𝛿(𝜀13)Ĝ

𝜀1 ,𝜀2
13

− 2𝛿(𝜀14)Ĝ
𝜀1 ,𝜀2
14

(F17c)

S′
[[1,2]+ ,[3,4]+ ]+

= N1N3Ĝ
𝜀1 ,𝜀3
12

− (1 +N1N2)(Ĝ
𝜀1 ,𝜀2
13

+ Ĝ
𝜀1 ,𝜀2
14

)

− (1 +N1N2)(N3G̃
𝜀3 ,𝜀2 ,𝜀1 +N4G̃

𝜀4 ,𝜀2 ,𝜀1

+ N13G̃
𝜀13 ,𝜀2 ,𝜀1 +N23G̃

𝜀23 ,𝜀2 ,𝜀1 )

− N1N12(N3G̃
𝜀3 ,𝜀12 ,𝜀1 +N4G̃

𝜀4 ,𝜀2 ,𝜀1 ) (F17d)

where we abbreviated S′p = (2𝜋i)3Sp and Ni = N𝜀i , and we used Equa-
tion (88) to evaluated above expressions. Inserting these into Equa-
tion (F16) and after application of Cauchy’s integral formula, one obtains
Equation (101k).

Appendix G: Consistency Checks

In Equations (47), (74), and (88), we expressed the 2p, 3p and 4p PSFs in
terms of analytically continuedMF functions. While the derivation of these
important results extends over several pages, some consistency checks
can be presented compactly. In Appendix G.1, we first show that our for-
mulas fulfill the equilibrium condition (4). Since this was not explicitly im-
posed during the derivations, it serves as a strong test for our results. In
Appendix G.2, we further show, for 𝓁 = 2, 3, 4, that our formulas for Sp[G],
when expressing that G through PSFs, recover the input PSFs.

G.1. Fulfillment of the Equilibrium Condition

Here, we show that the results in (74) and (88) fulfill the equilibrium condi-
tion (4) (for the 2p case, this was already demonstrated in (50)). It suffices
to show that they are fulfilled for p𝜆 with 𝜆 = 2, i.e., that for p = (1…𝓁)
we have

S(1…𝓁)(𝜺(1…𝓁)) = 𝜁
1e𝛽𝜀1S(2…𝓁1)(𝜺(2…𝓁1)) (G1)

The result for general 𝜆 follows by induction.
We start with 𝓁 = 3 and separate the contributions to the PSFs in Equa-

tion (74) from the regular G̃ (denoted by Srp) and the anomalous Ĝ terms
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(denoted by Sap), Sp = Srp + Sap. Inserting Equation (74) into Equation (G1)
first yields

𝜁1e𝛽𝜀1 (2𝜋i)2Sr
(231)

= 𝜁1e𝛽𝜀1
[
n𝜀2

n𝜀3
G̃𝜀3 ,𝜀2 + n𝜀2

n𝜀23
G̃𝜀23 ,𝜀2

]
= 𝜁1e𝛽𝜀1

[
n𝜀2

(n𝜀3
− n𝜀23

)G̃𝜀3 ,𝜀2 − n𝜀2
n𝜀23

G̃𝜀2 ,𝜀1
]

= 𝜁1e𝛽𝜀1
[
−n𝜀12n−𝜀1 G̃

𝜀12 ,𝜀1 − n𝜀2
n−𝜀1

G̃𝜀2 ,𝜀1
]

= (2𝜋i)2Sr
(123)

(G2)

where we used in the second line G̃𝜀23 ,𝜀2 = −G̃𝜀3 ,𝜀2 − G̃𝜀2 ,𝜀1 (following
from Equations (C26)), in the third line n𝜀2

(n𝜀3
− n𝜀23

) = −n𝜀12n−𝜀1 , and
in the fourth line

𝜁1e𝛽𝜀1n−𝜀1
= 𝜁

1e𝛽𝜀1

𝜁1e𝛽𝜀1 − 1
= −n𝜀1 (G3)

For the Ĝ terms, we similarly obtain

𝜁1e𝛽𝜀1 (2𝜋i)2Sa
(231)

= 𝜁1e𝛽𝜀1
[
𝛿(𝜀2)n𝜀3

Ĝ
–Δ;𝜀3
2

+ 𝛿(𝜀3)n𝜀2 Ĝ
–Δ;𝜀2
3

+ 𝛿(𝜀1)n𝜀2 Ĝ
–Δ;𝜀2
1

+ 𝛿(𝜀2)𝛿(𝜀3)
(
Ĝ2,3 −

1
2
Ĝ
Δ
1;2

)]
= 𝜁1e𝛽𝜀1

[
−𝛿(𝜀2)n−𝜀1 Ĝ

–Δ;𝜀1
2

− 𝛿(𝜀3)n−𝜀1 Ĝ
–Δ;𝜀1
3

+ 𝛿(𝜀1)n𝜀2 Ĝ
–Δ;𝜀2
1

+ 𝛿(𝜀1)𝛿(𝜀2)
(
Ĝ1,2 −

1
2
Ĝ
Δ
3;1

)]
= (2𝜋i)2Sa

(123)
(G4)

In the last step, we used that Ĝ1 ≠ 0 and Ĝ1,2 ≠ 0 imply 𝜁1 = +1. Thus,
we find that our 3p formula (74) indeed fulfills the equilibrium condition.

For 4p PSFs, we confirmed the fulfillment of the equilibrium condition
by inserting the analytic regions (D11) for the discontinuities and by com-
paring the coefficients.

G.2. Full Recovery of Spectral Information

Equations (47), (74), and (88) contain formulas for PSFs, Sp[G], as func-
tionals of the MF correlator G for 𝓁 = 2, 3, 4. In this section, we explic-
itly perform the following consistency check: given an arbitrary set of
PSFs Sp as input, compute the MF correlator G =

∑
p K ∗ Sp and verify

that Sp[G] correctly recovers the input PSFs. To this end, we insert re-
sults from Appendix E to express the discontinuities in the formulas via
PSF (anti)commutators. From the resulting expressions, we then show
Sp[G] = Sp by use of the equilibrium condition (4).

G.2.1. For 𝓁 = 2

We first examine the relations between the MF correlator and the PSF con-
tributions. Using the decomposition of PSFs from Appendix B.1, the stan-
dard spectral function reads

Sstd(𝜀1) =S[1,2]− (𝜀1,−𝜀1) = S̃[1,2]− (𝜀1,−𝜀1) (G5)

For bosonic functions, 𝜁 = +1, there may be anomalous contributions
𝛿(𝜀1)Šp;1. However, the equilibrium condition implies Š(12);1 = Š(21);2, so
that the anomalous contributions cancel in the PSF commutator. Instead,
they solely enter the anomalous correlator, Ĝ(i𝜔1) = 𝛽𝛿i𝜔1 Ĝ1, via the spec-
tral representation with kernel (A4a), yielding

Ĝ1 = − Š(12);1 (G6)

Now, we can show that Equation (47) recovers the input PSFs from the
MF correlator. Inserting G̃𝜀1 = −G̃𝜀2 = (−2𝜋i)Sstd(𝜀1) (Equation (51)) and
Equation (G6) into Equation (47) yields

Sp[G] =
1
2𝜋i

[
n𝜀1

G̃𝜀1 + 𝛿(𝜀1)Ĝ1

]
= −n𝜀1 S̃[1,2]− + 𝛿𝜀1S(12) (G7)

(Here and in the following, we suppress frequency arguments of PSFs.) To
simplify the PSF commutator, we can use the equilibrium condition (4) to
obtain

−n𝜀1 S̃[1,2]− = −1
𝜁1e−𝛽𝜀1 − 1

[S̃(12) − 𝜁
1e−𝛽𝜀1 S̃(12)]

= S̃(12) = (1 − 𝛿𝜀1 )S(12) (G8)

For bosonic 2p functions, the MWF n𝜀1
is undefined for 𝜀1 = 0. But since

S̃p then has no 𝛿(𝜀1) contribution, the left and right side of Equation (47)
can only differ by zero spectral weight. We can nevertheless recover the
correct value for S̃p(𝜀1) at 𝜀1 = 0 if we demand that continuum contri-
butions are (piece-wise) continuous. Then, the correct value at 𝜀1 = 0
is obtained from the formula in Equation (47) by taking the appropriate
limit.

Inserting Equation (G8) into Equation (G7) results in

Sp[G] = (1 − 𝛿𝜀1 )S(12) + 𝛿𝜀1S(12) = S(12) (G9)

concluding our proof.

G.2.2. For 𝓁 = 3

Following the line of argument for 𝓁 = 2 from the previous section, we
now check that the formula Sp[G] recovers the input PSF Sp also for 𝓁 =
3. Analogously to Equation (G8), the MWFs can be eliminated using the
identity (suppressing frequency arguments)

S(123) = − n𝜀1
S[1,23]− + 𝛿𝜀1S(123) (G10a)

S(231) = n−𝜀1
S[1,23]− + 𝛿𝜀1S(231) (G10b)

Note that 𝛿(𝜀1) contributions cancel in S[1,23]− for 𝜁1 = + due to the equi-
librium condition (as before), i.e., S[1,23]− = (1 − 𝛿𝜀1 )S[1,23]− . Hence, such
terms must be treated separately to obtain the PSF on the left.

In Appendix E.1, we have already shown that the discontinuities in the
3p PSF are proportional to nested PSF commutators. Analogously to the
derivations for Equations (B8a), (E6), and (E2), we obtain the following
relations:

𝛿(𝜀1)𝛿(𝜀2)Ĝ1,2 = (2𝜋i)2 1
2
𝛿𝜀1
𝛿𝜀2

S1[2,3]+

𝛿(𝜀1)𝛿(𝜀2)Ĝ
Δ
3;1 = −(2𝜋i)2𝛿𝜀1𝛿𝜀2S1[2,3]− ,

𝛿(𝜀1)Ĝ
–Δ;𝜀2
1

= −(2𝜋i)2𝛿𝜀1 (1 − 𝛿𝜀2 )S1[2,3]− ,

𝛿(𝜀2)Ĝ
–Δ;𝜀1
2

= −(2𝜋i)2𝛿𝜀2 (1 − 𝛿𝜀1 )S2[1,3]− ,

𝛿(𝜀3)Ĝ
–Δ;𝜀1
3

= −(2𝜋i)2𝛿𝜀3 (1 − 𝛿𝜀1 )S[1,2]−3,
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G̃𝜀2 ,𝜀1 = (2𝜋i)2S[2,[1,3]− ]− ,

G̃𝜀12 ,𝜀1 = −(2𝜋i)2S[3,[1,2]− ]− (G11)

Inserting these into Equation (74) yields

Sp[G]

=
[
n𝜀1

(
n𝜀2

G̃𝜀2 ,𝜀1 + 𝛿(𝜀2)Ĝ
–Δ;𝜀1
2

+ n𝜀12
G̃𝜀12 ,𝜀1 + 𝛿(𝜀3)Ĝ

–Δ;𝜀1
3

)
+ 𝛿(𝜀1)n𝜀2 Ĝ

–Δ;𝜀2
1

− 1
2
𝛿(𝜀1)𝛿(𝜀2)

(
Ĝ
Δ
3;1 − 2Ĝ1,2

)]
1

(2𝜋i)2
(G12a)

= n𝜀1

(
n𝜀2

S[2,[1,3]− ]− − 𝛿𝜀2 (1 − 𝛿𝜀1 )S2[1,3]− − n𝜀12
S[3,[1,2]− ]−

− 𝛿𝜀3 (1 − 𝛿𝜀1 )S[1,2]−3
)
− n𝜀2
𝛿𝜀1

(1 − 𝛿𝜀2 )S1[2,3]−

+ 𝛿𝜀1𝛿𝜀2S(123) (G12b)

We can now checkwhether Equation (G12b) reproduces the full PSF, S(123),
by repeated application of Equations (G10). For this purpose, we use the
PSF decomposition in Appendix B.1 to separately consider the contribu-
tions in the PSF proportional to 𝛿(𝜀1), and those which are not. Note that
S[2,[1,3]− ]− and S[[1,2]− ,3]− in the first line of Equation (G12b) contribute to
both of these cases.

For PSF contributions not proportional to 𝛿(𝜀1), the last line of Equa-
tion (G12b) can be omitted (due to 𝛿𝜀1

), so that

(1 − 𝛿𝜀1 )Sp[G]

= −(1 − 𝛿𝜀1 )n𝜀1

(
−n𝜀2S[2,[1,3]− ]− + 𝛿𝜀2S2[1,3]−

+ n−𝜀3
S[3,[1,2]− ]− + 𝛿𝜀3S[1,2]−3

)
= −(1 − 𝛿𝜀1 )n𝜀1

(
S2[1,3]− + S[1,2]−3

)
= −(1 − 𝛿𝜀1 )n𝜀1S[1,23]− = (1 − 𝛿𝜀1 )S(123) (G13)

Here, we used Equations (G10) in the first and third step.
For PSF contributions proportional to 𝛿(𝜀1), the MWF n𝜀1

multiplying

S[2,[1,3]− ]− and S[[1,2]− ,3]− in Equation (G12b) seems to diverge in the
bosonic case. This issue was already discussed in Equation (C28) (for
unpermuted indices): There, G̃𝜀1 ,𝜀12 = (2𝜋i)2S[1,[2,3]− ]− does not contain
factors 𝛿(𝜀1) due to the equilibrium condition, and therefore only the first
term, expressed as −n𝜀12n−𝜀2S[2,[1,3]− ]− , needs to be considered. As this

PSF commutator does not contain factors 𝛿(𝜀2) due to the equilibrium
condition, we obtain (using n𝜀2

= n𝜀12
= n−𝜀3

and 𝛿𝜀2
= 𝛿𝜀12 = 𝛿𝜀3 due

to 𝛿𝜀1
)

𝛿𝜀1
Sp[G]

= 𝛿𝜀1

(
−n𝜀2n−𝜀2S[2,[1,3]− ]− − n𝜀12

(1 − 𝛿𝜀2 )S1[2,3]− + 𝛿𝜀2S(123)
)

= 𝛿𝜀1

(
−n𝜀2 (1 − 𝛿𝜀2 )S[1,3]−2 − n𝜀12

(1 − 𝛿𝜀2 )S1[2,3]− + 𝛿𝜀2S(123)
)

= 𝛿𝜀1

(
n−𝜀3

(1 − 𝛿𝜀3 )S[3,12]− + 𝛿𝜀3S(123)
)

= 𝛿𝜀1

(
(1 − 𝛿𝜀3 )S(123) + 𝛿𝜀3S(123)

)
= 𝛿𝜀1S(123) (G14)

Here, Equation (G10b) was applied in the first and the third step.

Therefore, we conclude that Equation (G12b) indeed recovers the input
PSF S(123), including terms proportional to 𝛿(𝜀1) in Equation (G14) and
those which are not in Equation (G13).

G.2.3. For 𝓁 = 4

Now, the same consistency check can be performed for fermionic 4p cor-
relators. Similarly to Equation (G10), for 4p PSFs, we have

S(1234) = −n𝜀1S[1,234]− (G15a)

S(1234) = −n𝜀12S[12,34]− + 𝛿𝜀12S(1234) (G15b)

Here, the symbolic Kronecker 𝛿 only arises in the latter case, since 𝜀1 is
the energy difference for a fermionic operator. Starting from the formula
in Equation (88), we obtain

Sp[G]

=
n𝜀

1
(2𝜋i)3

[
n𝜀2

(
n𝜀3

G̃𝜀3 ,𝜀2 ,𝜀1 + n𝜀123
G̃𝜀123 ,𝜀2 ,𝜀1 + n𝜀13

G̃𝜀13 ,𝜀2 ,𝜀1

+ n𝜀23
G̃𝜀23 ,𝜀2 ,𝜀1

)
+ n𝜀12

(
n𝜀3

G̃𝜀3 ,𝜀12 ,𝜀1 + n𝜀123
G̃𝜀123 ,𝜀12 ,𝜀1

)
+ n𝜀3
𝛿(𝜀12) Ĝ

𝜀3 ,𝜀1
12

+ n𝜀2
𝛿(𝜀13) Ĝ

𝜀2 ,𝜀1
13

+ n𝜀2
𝛿(𝜀23) Ĝ

𝜀2 ,𝜀1
23

]
= − n𝜀1

[
n𝜀2

(
n𝜀3

S[3,[2,[1,4]− ]− ]− + n𝜀123
S[[2,[1,3]− ]− ,4]−

+ n𝜀13
S[[1,3]− ,[2,4]− ]− − 𝛿𝜀13S[1,3]− [2,4]−

+ n𝜀23
S[[2,3]− ,[1,4]− ]− − 𝛿𝜀23S[1,4]− [2,3]−

)
+ n𝜀12

(
n𝜀3

S[3,[[1,2]− ,4]− ]− + n𝜀123
S[[[1,2]− ,3]− ,4]−

)
− n𝜀3
𝛿𝜀12

S[1,2]− [3,4]−

]
(G16)

= n𝜀1

[
n𝜀2

(
S3[2,[1,4]− ]−

+ S[2,[1,3]− ]−4
+ S[1,3]− [2,4]−

+ S[2,3]− [1,4]−

)
+ n𝜀12

(1 − 𝛿𝜀12 )
(
S3[[1,2]− ,4]−−

+ S[[1,2]− ,3]−4

)
− n𝜀3
𝛿𝜀12

(
S4[[1,2]− ,3]−

− S[1,2]− [3,4]−

)]
= n𝜀1

[
n𝜀2

S[[34,1]− ,2]−
+ n𝜀12

S[[1,2]− ,34]−
− 𝛿𝜀12 S[1,2]−34

]
= −n𝜀1S[1,234]

= S(1234) (G17)

In the first step, we inserted expressions for the discontinuities, de-
rived analogously to Equations (B8a), (E6), and (E2). We apply relations
(G15) to eliminate the MWFs in the remaining steps. For the second
step, we note that S[3,[[1,2]− ,4]− ]− and S[[[1,2]− ,3]− ,4]− contain terms with
and without 𝛿(𝜀12) factor. For the 𝛿(𝜀12) terms, the prefactor of n𝜀12

is

undefined at 𝜀12. Analogously to the 3p calculation, we evaluate Equa-
tion (G16) using 𝛿𝜀12

(S[3,[[1,2]− ,4]− ]− + S[[[1,2]− ,3]− ,4]− ) = 0 and n−𝜀34
(−n𝜀3 +

n−𝜀4
) = n−𝜀3

n−𝜀4
:

n𝜀12

(
n𝜀3

S[3,[[1,2]− ,4]− ]− + n𝜀123
S[[[1,2]− ,3]− ,4]−

)
= n𝜀12

(1 − 𝛿𝜀12 )
(
n𝜀3

S[3,[[1,2]− ,4]− ]− + n𝜀123
S[[[1,2]− ,3]− ,4]−

)
+ 𝛿𝜀12n−𝜀3n−𝜀4S[[[1,2]− ,3]− ,4]− (G18)
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To simplify the 𝛿𝜀12 terms in the third step, remember that the Kronecker
symbol extracts those PSF contributions proportional to a 𝛿(𝜀12), such
that the equilibrium condition allows for manipulations like 𝛿𝜀12S(1234) =
𝛿𝜀12S(3412). Finally, Equation (G17) shows that the formula in Equation (88)
fully recovers the input PSFs from 4p MF correlators.

Appendix H: Additional Hubbard Atom Material

H.1. Useful Identities

In this section, we prove the identities given in Equations (107a) and
(107b). The first identity follows from

lim
𝛾0→0+

(
𝜔 + i𝛾0

(𝜔 + i𝛾0)2 − u2
−
𝜔 − i𝛾0

(𝜔 − i𝛾0)2 − u2

)

= −i lim
𝛾0→0+

(
𝛾0

(𝜔 + u)2 + 𝛾20
+
𝛾0

(𝜔 − u)2 + 𝛾20

)
= −i𝜋[𝛿(𝜔 + u) + 𝛿(𝜔 − u)] (H1)

where we used Equation (58). Identity (107b) is derived via

lim
𝛾0→0+

(
1

(𝜔 + i𝛾0)2 − u2
− 1
(𝜔 − i𝛾0)2 − u2

)

= i
u

lim
𝛾0→0+

(
𝛾0

(𝜔 + u)2 + 𝛾20
−
𝛾0

(𝜔 − u)2 + 𝛾20

)

= i𝜋
u
[𝛿(𝜔 + u) − 𝛿(𝜔 − u)]. (H2)

H.2. Simplifications for 3p Electron-Density Correlator

In Section 7.2.1, we introduced the 3p electron-density correlator with reg-
ular and anomalous parts

G̃(i𝜔1, i𝜔2) =
u2 − i𝜔1 i𝜔2[

(i𝜔1)2 − u2
][
(i𝜔2)2 − u2

]
Ĝ3(i𝜔1) =

u t
2

1
(i𝜔1)2 − u2

(H3)

Here, we derive the explicit expressionG′[2] − G[3] given in Equation (114),

G′[2] − G[3] = G̃(𝜔+1 ,𝜔
−
2 ) − G̃(𝜔−1 ,𝜔

−
2 )

= u2

(𝜔−2 )
2 − u2

(
1

(𝜔+1 )
2 − u2

− 1
(𝜔−1 )

2 − u2

)

−
𝜔−2

(𝜔−2 )
2 − u2

(
𝜔+1

(𝜔+1 )
2 − u2

−
𝜔−1

(𝜔−1 )
2 − u2

)
(H4)

Using both identities (H1) and (H2), this expression can be further sim-
plified to

G′[2] − G[3] = 𝜋i
u + 𝜔−2

(𝜔−2 )
2 − u2
𝛿(𝜔1 + u) + 𝜋i

𝜔−2 − u

(𝜔−2 )
2 − u2
𝛿(𝜔1 − u) (H5)

Additionally multiplying both sides with N1 = N𝜔1 and using N−𝜔1 =
−N𝜔1 , we recover the first term in the second line of Equation (114),

N1
(
G′[2] − G[3]) = 𝜋i t

[
𝛿(𝜔1 − u)
𝜔−2 + u

−
𝛿(𝜔1 + u)
𝜔−2 − u

]
(H6)

Next, we consider the Keldysh component G[123]

d
↑
d†
↑
n
↑

. Since the regu-

lar part in Equation (H3) is independent of i𝜔3, we can set G′[1] = G[2]

and G′[2] = G[1] (see Figure 6b). Additionally using Equation (83) as well
as Ĝ1 = Ĝ2 for the 3p electron-density correlator, the last FDR in Equa-
tion (84) reduces to

G[123]

d
↑
d†
↑
n
↑

= G′[3] +N1N2
(
G′[3] − G[2] − G[1] + G[3])

+ 4𝜋i 𝛿(𝜔12)N1

(
Ĝ
[1]
3 − Ĝ

[2]
3

)
(H7)

Here, we show that all terms except G′[3] cancel out. To this end, we can
reuse Equation (H5) to obtain

G′[3] − G[2] − G[1] + G[3]

= G̃(𝜔+1 ,𝜔
+
2 ,𝜔

−
3 ) − G̃(𝜔−1 ,𝜔

+
2 ,𝜔

−
3 ) − G̃(𝜔+1 ,𝜔

−
2 ,𝜔

−
3 ) + G̃(𝜔−1 ,𝜔

−
2 ,𝜔

+
3 )

= 𝜋i 𝛿(𝜔1 + u)

(
1
𝜔+2 − u

− 1
𝜔−2 − u

)

+ 𝜋i 𝛿(𝜔1 − u)

(
1
𝜔+2 + u

− 1
𝜔−2 + u

)

= 2𝜋2[𝛿(𝜔1 + u)𝛿(𝜔2 − u) + 𝛿(𝜔1 − u)𝛿(𝜔2 + u)]

= 2𝜋2𝛿(𝜔12)[𝛿(𝜔1 + u) + 𝛿(𝜔1 − u)] (H8)

The discontinuity of Ĝ3 is easily evaluated with identity (H2)

Ĝ
[1]
3 − Ĝ

[2]
3 =u t

2

(
1

(𝜔+1 )
2 − u2

− 1
(𝜔−1 )

2 − u2

)

=𝜋i t
2
[𝛿(𝜔1 + u) − 𝛿(𝜔1 − u)] (H9)

Inserting all terms (exceptG′[3]) in Equation (H7) and using againNi =
N𝜔i = −N−𝜔i , we find

N1N2
(
G′[3] − G[2] − G[1] + G[3]) + 4𝜋i 𝛿(𝜔12)N1

√
2
(
Ĝ
[1]
3 − Ĝ

[2]
3

)
= −2𝜋2t2𝛿(𝜔12)[𝛿(𝜔1 + u) + 𝛿(𝜔1 − u)]

+ 2𝜋2t2𝛿(𝜔12)[𝛿(𝜔1 + u) + 𝛿(𝜔1 − u)] = 0 (H10)

Thus, Equation (H7) reduces to

G[123]

d
↑
d†
↑
n
↑

= G′[3] (H11)

corresponding to the last equality in Equation (115).
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H.3. Simplifications for Fermionic 4p Correlator

In this section, we present the steps needed to obtain the Keldysh compo-
nent G[12]

↑↓ in Section 7.3. The discontinuities can be easily evaluated after
rewriting the regular part in terms of general complex frequencies as

G̃(z) = − u
z22 − u2

[
1

z1 + u

(
1

z3 − u
+ 1

z4 − u

)

+ 1
z3 + u

(
1

z1 − u
+ 1

z4 − u

)
+ 1

z4 + u

(
1

z1 − u
+ 1

z3 − u

)]
(H12)

The discontinuity C(12)
III − C(2) in Equation (120) then reduces to

C(12)
III − C(2) = G̃(𝜔+1 ,𝜔

+
2 ,𝜔

−
3 ,𝜔

−
4 ) − G̃(𝜔−1 ,𝜔

+
2 ,𝜔

−
3 ,𝜔

−
4 )

= 2𝜋i u
(𝜔+2 )

2 − u2

[
𝛿(𝜔1 + u)

(
1
𝜔−3 − u

+ 1
𝜔−4 − u

)

+𝛿(𝜔1 − u)

(
1
𝜔−3 + u

+ 1
𝜔−4 + u

)]
(H13)

The second discontinuity C(12)
I − C(1) follows by exchanging𝜔1 → 𝜔2. Us-

ing the 𝛿-functions to replace u by𝜔1 andmultiplying withN1, the Keldysh
component G[12]

↑↓ takes the form

G[12]
↑↓ = 2𝜋i u t

(𝜔+2 )
2 − u2

[𝛿(𝜔1 − u) − 𝛿(𝜔1 + u)]

(
1
𝜔−13

+ 1
𝜔−14

)

+ 2𝜋i u t
(𝜔+1 )

2 − u2
[𝛿(𝜔2 − u) − 𝛿(𝜔2 + u)]

(
1
𝜔−23

+ 1
𝜔−24

)

+ 4𝜋i u2
𝛿(𝜔13)(t − 1) + 𝛿(𝜔14)(t + 1)[
(𝜔+1 )

2 − u2
][
(𝜔+2 )

2 − u2
] (H14)

Collecting terms proportional to t and replacing the 𝛿-functions of its co-
efficient using the identities in Equations (58) and (H2) yields

G[12]
↑↓ =

4𝜋i u2[𝛿(𝜔14) − 𝛿(𝜔13)][
(𝜔+1 )

2 − u2
][
(𝜔+2 )

2 − u2
]

− 2u2t

[
1

(𝜔+2 )
2 − u2

(
1

(𝜔+1 )
2 − u2

− 1
(𝜔−1 )

2 − u2

)(
1
𝜔−13

+ 1
𝜔−14

)

+ 1
(𝜔+1 )

2 − u2

(
1

(𝜔+2 )
2 − u2

− 1
(𝜔−2 )

2 − u2

)(
1
𝜔−23

+ 1
𝜔−24

)

+ 1[
(𝜔+1 )

2 − u2
][
(𝜔+2 )

2 − u2
]( 1
𝜔+13

− 1
𝜔−13

+ 1
𝜔+14

− 1
𝜔−14

)]
(H15)

By energy conservation, 𝜔1234 = 0, many terms in the bracket cancel, and
we obtain the final result

G[12]
↑↓ =

4𝜋i u2[𝛿(𝜔14) − 𝛿(𝜔13)][
(𝜔+1 )

2 − u2
][
(𝜔+2 )

2 − u2
]

+ 2u2t

[
1[

(𝜔+1 )
2 − u2

][
(𝜔−2 )

2 − u2
]( 1
𝜔−23

+ 1
𝜔−24

)
− c.c.

]
(H16)

where c.c. denotes the complex conjugate.

H.4. Results for Fermionic 4p Correlator

In this section, we summarize results for all Keldsyh components of the
four-electron correlator for both the G↑↓ and G↑↑ component. They can be
derived following similar calculations presented in the previous section.
Defining

G̃↑↓(z) =
2u

∏4
i=1(zi) + u3

∑4
i=1(zi)

2 − 6u5∏4
i=1

[
(zi)2 − u2

] (H17)

the results for G↑↓ read

G[]
↑↓(𝝎) = 0 (H18a)

G[1]
↑↓(𝝎) = G̃↑↓(𝜔

+
1 ,𝜔

−
2 ,𝜔

−
3 ,𝜔

−
4 ) (H18b)

G[2]
↑↓(𝝎) = G̃↑↓(𝜔

−
1 ,𝜔

+
2 ,𝜔

−
3 ,𝜔

−
4 ) (H18c)

G[3]
↑↓(𝝎) = G̃↑↓(𝜔

−
1 ,𝜔

−
2 ,𝜔

+
3 ,𝜔

−
4 ) (H18d)

G[4]
↑↓(𝝎) = G̃↑↓(𝜔

−
1 ,𝜔

−
2 ,𝜔

−
3 ,𝜔

+
4 ) (H18e)

G[34]
↑↓ (𝝎) =

2𝜋iu2[𝛿(𝜔14) − 𝛿(𝜔13)]
[(𝜔−1 )

2 − u2][(𝜔−2 )
2 − u2]

+ u2t

[
1

[(𝜔+3 )
2 − u2][(𝜔−4 )

2 − u2]

(
1
𝜔−24

+ 1
𝜔−14

)
− c.c.

]
(H18f )

G[24]
↑↓ (𝝎) =

2𝜋iu2𝛿(𝜔14)

[(𝜔−1 )
2 − u2][(𝜔−3 )

2 − u2]
+ u2t

[
1

[(𝜔+2 )
2 − u2][(𝜔−4 )

2 − u2]

(
1
𝜔−34

+ 1
𝜔−14

)
− c.c.

]
(H18g)
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G[23]
↑↓

(𝝎) =
−2𝜋iu2𝛿(𝜔13)

[(𝜔−1 )
2 − u2][(𝜔−4 )

2 − u2]
+ u2t

[
1

[(𝜔+2 )
2 − u2][(𝜔−3 )

2 − u2]

(
1
𝜔−34

+ 1
𝜔−13

)
− c.c.

]
(H18h)

G[14]
↑↓ (𝝎) =

−2𝜋iu2𝛿(𝜔13)
[(𝜔−2 )

2 − u2][(𝜔−3 )
2 − u2]

+ u2t

[
1

[(𝜔+1 )
2 − u2][(𝜔−4 )

2 − u2]

(
1
𝜔−34

+ 1
𝜔−24

)
− c.c.

]
(H18i)

G[13]
↑↓ (𝝎) =

2𝜋iu2𝛿(𝜔14)

[(𝜔−2 )
2 − u2][(𝜔−4 )

2 − u2]
+ u2t

[
1

[(𝜔+1 )
2 − u2][(𝜔−3 )

2 − u2]

(
1
𝜔−34

+ 1
𝜔−23

)
− c.c.

]
(H18j)

G[12]
↑↓ (𝝎) =

2𝜋iu2[𝛿(𝜔14) − 𝛿(𝜔13)]
[(𝜔−3 )

2 − u2][(𝜔−4 )
2 − u2]

+ u2t

[
1

[(𝜔+1 )
2 − u2][(𝜔−2 )

2 − u2]

(
1
𝜔−24

+ 1
𝜔−23

)
− c.c.

]
(H18k)

G[234]
↑↓

(𝝎) = G̃↑↓(𝜔
−
1 ,𝜔

+
2 ,𝜔

+
3 ,𝜔

+
4 ) + 2𝜋2u t [𝛿(𝜔2 − u) + 𝛿(𝜔2 + u)][𝛿(𝜔14) − 𝛿(𝜔13)]

1(
𝜔−1

)2 − u2
(H18l)

G[134]
↑↓ (𝝎) = G̃↑↓(𝜔

+
1 ,𝜔

−
2 ,𝜔

+
3 ,𝜔

+
4 ) + 2𝜋2u t [𝛿(𝜔1 − u) + 𝛿(𝜔1 + u)][𝛿(𝜔14) − 𝛿(𝜔13)]

1(
𝜔−2

)2 − u2
(H18m)

G[124]
↑↓ (𝝎) = G̃↑↓(𝜔

+
1 ,𝜔

+
2 ,𝜔

−
3 ,𝜔

+
4 ) + 2𝜋2u t [𝛿(𝜔4 − u) + 𝛿(𝜔4 + u)][𝛿(𝜔14) − 𝛿(𝜔13)]

1(
𝜔−3

)2 − u2
(H18n)

G[123]
↑↓ (𝝎) = G̃↑↓(𝜔

+
1 ,𝜔

+
2 ,𝜔

+
3 ,𝜔

−
4 ) + 2𝜋2u t [𝛿(𝜔3 − u) + 𝛿(𝜔3 + u)][𝛿(𝜔14) − 𝛿(𝜔13)]

1(
𝜔−4

)2 − u2
(H18o)

G[1234]
↑↓ (𝝎) = t

u

[
𝜔+1 G̃↑↓(𝜔

+
1 ,𝜔

−
2 ,𝜔

−
3 ,𝜔

−
4 ) + 𝜔

+
2 G̃↑↓(𝜔

−
1 ,𝜔

+
2 ,𝜔

−
3 ,𝜔

−
4 ) + 𝜔

+
3 G̃↑↓(𝜔

−
1 ,𝜔

−
2 ,𝜔

+
3 ,𝜔

−
4 ) + 𝜔

+
4 G̃↑↓(𝜔

−
1 ,𝜔

−
2 ,𝜔

−
3 ,𝜔

+
4 )

]
− 4𝜋3i t2 𝛿(𝜔12)[𝛿(u + 𝜔1) − 𝛿(u − 𝜔1)][𝛿(u + 𝜔3) − 𝛿(u − 𝜔3)] (H18p)

The same-spin correlator in the MF turns out to be purely anomalous

G↑↑(i𝝎) =
u2

(
𝛽𝛿i𝜔14 − 𝛽𝛿i𝜔12

)
∏4

i=1(i𝜔i) − u
(H19)

Therefore, the derivation of the corresponding Keldysh correlators is
straightforward and yields

G[]
↑↑(𝝎) = G[1]

↑↑(𝝎) = G[2]
↑↑(𝝎) = G[3]

↑↑(𝝎) = G[4]
↑↑(𝝎) = 0 (H20a)

G[34]
↑↑ (𝝎) = 2𝜋iu2

𝛿(𝜔14)

[(𝜔−2 )
2 − u2][(𝜔+4 )

2 − u2]
(H20b)

G[24]
↑↑ (𝝎) = 2𝜋iu2

𝛿(𝜔14) − 𝛿(𝜔12)
[(𝜔+2 )

2 − u2][(𝜔+4 )
2 − u2]

(H20c)

G[23]
↑↑ (𝝎) = 2𝜋iu2

−𝛿(𝜔12)
[(𝜔+2 )

2 − u2][(𝜔−4 )
2 − u2]

(H20d)

G[14]
↑↑ (𝝎) = 2𝜋iu2

−𝛿(𝜔12)
[(𝜔−2 )

2 − u2][(𝜔+4 )
2 − u2]

(H20e)

G[13]
↑↑ (𝝎) = 2𝜋iu2

𝛿(𝜔14) − 𝛿(𝜔12)
[(𝜔−2 )

2 − u2][(𝜔−4 )
2 − u2]

(H20f )

G[12]
↑↑ (𝝎) = 2𝜋iu2

𝛿(𝜔14)

[(𝜔+2 )
2 − u2][(𝜔−4 )

2 − u2]
(H20g)

G[234]
↑↑ (𝝎) = 2𝜋2u t 1

(𝜔−1 )
2 − u2

[𝛿(𝜔3 − u) + 𝛿(𝜔3 + u)] [𝛿(𝜔14) − 𝛿(𝜔12)]

(H20h)

G[134]
↑↑ (𝝎) = 2𝜋2u t 1

(𝜔−2 )
2 − u2

[𝛿(𝜔4 − u) + 𝛿(𝜔4 + u)] [𝛿(𝜔14) − 𝛿(𝜔12)]

(H20i)

G[124]
↑↑ (𝝎) = 2𝜋2u t 1

(𝜔−3 )
2 − u2

[𝛿(𝜔1 − u) + 𝛿(𝜔1 + u)] [𝛿(𝜔14) − 𝛿(𝜔12)]

(H20j)

G[123]
↑↑ (𝝎) = 2𝜋2u t 1

(𝜔−4 )
2 − u2

[𝛿(𝜔2 − u) + 𝛿(𝜔2 + u)] [𝛿(𝜔14) − 𝛿(𝜔12)]

(H20k)

G[1234]
↑↑ (𝝎) = −4𝜋3i t2 [𝛿(𝜔12) − 𝛿(𝜔14] [𝛿(𝜔1 + u)

− 𝛿(𝜔1 − u)] [𝛿(𝜔3 + u) − 𝛿(𝜔3 − u)]. (H20l)
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