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Abstract

The renormalized interactions of particles in quantum many-body systems and
general field theories are described by one-particle-irreducible (1PI) vertices.
The numerical calculation and treatment of these objects are challenging be-
cause of their high dimensionality and complicated frequency and momentum
structure. To address these problems, multiple solutions have been proposed: a
frequency parametrization using asymptotic classes; the single-boson exchange
(SBE) formalism, which uses only physical correlation functions, thereby avoid-
ing vertex divergencies in the parquet formalism; and symmetric estimators
which avoid the amputation of Green’s functions, to name a few. In this work
we present a unified framework based on the inverse Legendre transform of the
composite field effective action, that generalizes asymptotic classes, symmetric
improved estimators, the SBE and the parquet formalism. We demonstrate that
these representations of the four-point vertex correspond to different choices of
composite fields and naturally extend to more general theories and any-order
vertices via simple tree diagrams.
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Chapter 1

Introduction

Strongly correlated electron systems exhibit a wide range of emergent phenomena,
such as unconventional superconductivity, quantum magnetism, and metal-insulator
transitions. These phenomena arise from the intricate interplay of electronic degrees
of freedom, which generally cannot be adequately described by non-interacting or
mean-field theories. The essential physics of these systems is encoded in the renor-
malized interaction vertex, which captures the effects of many-body correlations
beyond single-particle properties. Understanding and accurately computing the ver-
tex function is therefore central to the theoretical description of strongly correlated
matter.

Recent advances in many-body theory have led to the development of power-
ful new methods for computing vertex functions. These include, for example, fully
frequency- and momentum-dependent parquet approaches [1–7], functional renor-
malization group methods [8], and dynamical mean-field theory (DMFT) extensions
such as the Dynamical Vertex Approximation (DΓA) [9, 10] and the DMFT+fRG
(DMF2RG)[11–13], as well as methods like TRILEX [14, 15] and QUADRILEX [16].
However, the full frequency and momentum dependence of the vertices presents sig-
nificant computational challenges, which limit the applicability of these advanced
numerical methods.

To address these challenges, several innovative approaches have been proposed in
recent years, including frequency asymptotic parameterization [17], the single boson
exchange formalism [18–23] and the (a)-symmetric estimators for vertex functions
[24–26]. While these approaches have been developed from different perspectives,
they share a common functional foundation.

The frequency asymptotic parameterization addresses the challenge of interpo-
lating and extrapolating the frequency (and momentum) dependence of vertex func-
tions to high frequencies (or momenta) by classifying them into asymptotic classes
whose behavior at high frequencies (or momenta) can be predicted.

The single boson exchange formalism reduces computational complexity by re-
constructing higher-order vertex functions from lower-order objects, effectively ap-
proximating multi-frequency dependencies through simpler building blocks. It also
circumvents vertex divergences that can arise in numerical parquet calculations in
the strong coupling regime [27].

Symmetric estimators eliminate numerical artifacts in vertex calculations by pro-
viding explicit expressions that avoid problematic disconnected contributions and
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1. Introduction

external leg amputations.
Each method addresses different problems that arise during vertex calculations:

frequency extrapolation, computational scaling and numerical stability, respectively.
Although these three approaches are often used in combination, their derivation

is based on seemingly distinct theoretical paradigms. The frequency asymptotic pa-
rameterization categorizes diagrams by the connectivity of their external arguments
to bare interaction vertices; the single-boson exchange approach is formulated in
terms of U -reducibility [18]; and the concept of (a)-symmetric estimators builds
on the use of equations of motion to rewrite vertex functions in terms of Green’s
functions.

In this thesis, we present a unified framework based on functional methods that
links asymptotic classes, symmetric estimators, single-boson exchange and parquet
equations, and generalizes them to vertex functions of arbitrary order and for a
broad class of underlying theories. This unification is made possible by generalizing
the tree expansion and the simple structure of the one-particle-irreducible (1PI)
effective action when expressed via nPI effective action using an inverse Legendre
transform.

Throughout this work we employ a superfield notation. To make the derivations
simpler to follow, we choose to do the calculations using a fundamental field with
fixed statistics.

The thesis is organized as follows. Ch. 2 reviews the fundamental results for
renormalised interactions, also known as 1PI vertices. In Ch. 3, we explain how an
inverse Legendre transformation of the composite field effective action can be used to
study 1PI vertices non-perturbatively. As an example, we consider the three-particle
irreducible (3PI) effective action to derive self-energy estimators, Bethe-Salpeter
equations, as well as parquet and asymptotic class decompositions of the four-point
vertex. Subsequent chapters develop these results in different ways and can be read
independently. In Ch. 4, we show how renormalised interactions can be decomposed
via composite fields using simple tree diagrams. When these fields are connected
correlation functions we get a decomposition in terms of multi-particle Green’s func-
tions, recreating the parquet equations, while for local (in time) averaged bilinear
fields we get a decomposition in terms of the exchange of single bosons. Ch. 5
follows a different path to study 1PI vertices, using two- and three-point Green’s
functions as composite fields in a theory with up to quartic interactions. We show
how to express asymptotic classes and 1PI vertices in terms of Green’s functions of
composite field operators.
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Chapter 2

1PI effective action

Analogous to how bare interactions are defined through derivatives of the classi-
cal action, renormalized interactions are determined by the quantum effective ac-
tion. Perturbatively, the latter is represented as a sum of connected one-particle-
irreducible (1PI) diagrams in the presence of external fields. In this chapter, we
adopt the non-perturbative definition of the effective action via a Legendre trans-
form and review a standard result of the 1PI formalism: the tree expansion, which
expresses arbitrary connected Green’s functions in terms of derivatives of the 1PI
effective action. The material presented here can be found in many textbooks, such
as [8, 28, 29].

Consider a theory described by the classical action S[φ], where the field φ has
fixed statistics. We explicitly retain a factor ζ with ζ = 1 for bosonic systems and
ζ = −1 for fermionic systems.

The generating functional W of the connected Green’s functions is defined as
e−W [J ] =

∫
Dφe−S[φ]−Jaφ

a
. Here, the Einstein summation convention is used for

each contraction of one lower and one upper index. We use DeWitt’s notation [28]:
each index a is a multi-index that can consist of multiple discrete and continuous
quantum numbers. For example: Jaφ

a =
∑

i

∫
d4xJi(x)φ

i(x). From W we can
calculate connected correlation functions of the fundamental field φa via functional
derivatives

Ga1...an ≡ δ

δJa1
...

δ

δJan
W [J ] = (−1)n−1⟨φa1 ...φan⟩c, (2.1)

where the average of an arbitrary operator A[φ] built out of the φa is defined as

⟨A[φ]⟩ ≡ eW
∫
DφA[φ]e−S[φ]−Jaφ

a
, (2.2)

and the subscript c in ⟨. . . ⟩c indicates that only the connected part is taken.

For the two-point correlation function, it is convenient to use lowercase notation,
gab ≡ Gab. Calculating the right side of Eq. (2.1) for gab, we obtain

gab ≡ Gab = φ̄aφ̄b − ⟨φaφb⟩, (2.3)

where φ̄a ≡ δW
δJa

= ⟨φa⟩.
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2. 1PI effective action
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Figure 2.1: Diagrammatic definitions of connected Green’s function Ga1...an (see
Eq. (2.1)) and 1PI vertex Γ1PI

a1...an (see Eq. (2.6)).
.

The 1PI effective action Γ1PI[φ̄] is defined as the Legendre transformation of W
with respect to the source Ja

1,

Γ1PI[φ̄] =W − Jaφ̄
a, (2.4)

where Ja as a functional of φ̄a is the solution of δWδJa = φ̄a.

It is well-known [29] that Γ1PI is given by a sum of all connected one-particle
irreducible (1PI) diagrams with external lines contracted by φ̄a, where one-particle
irreducible diagram means that one cut of any internal line cannot make the diagram
disconnected. The fundamental result of the 1PI effective action formalism is that
any connected correlation function Ga1...an of order n > 2 can be written as a sum
of tree diagrams, where the internal lines are one-particle propagators ga1a2 and the
vertices are functional derivatives of Γ1PI (called 1PI vertices). This result is the
so-called tree expansion. Although the derivation of the tree expansion is textbook
knowledge (see [8], for example), we include it here to emphasize the recursive
structure generating the expansion, that we use in the next chapters.

We start with the equation of motion that follows from Eq. (2.4), the definition
of Γ1PI,

Γ1PI
,a ≡ δ

δφ̄a
Γ1PI = −ζJa, (2.5)

where ζ comes from commuting Jaφ̄
a = ζφ̄aJa. Comma notation is used for deriva-

tives of the functional with respect to its variables. In particular, the general 1PI
vertex is defined as

Γ1PI
,a...b ≡

δ

δφ̄a
...

δ

δφ̄b
Γ1PI. (2.6)

Note that the order of indices is the same on both sides. It is convenient to drop
the commas by defining the corresponding vertex. For example, Γ1PI

a...b ≡ Γ1PI
,a...b.

1We could also use W ′ = −W and define Green’s functions as derivatives of W ′. Definition
Γ1PI = Jaφ̄

a −W ′ then leads to additional minus signs in the tree expansion for our main results
(Fig. 6.1).
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Diagrammatic definitions of the bare and 1PI vertices as well as the connected
Green’s function are shown in Fig. 2.1.

The transformation matrix δJa
δφ̄b and its inverse δφ̄a

δJb
(in which φ̄a is a functional of

Jb) give the identity δφ̄b

δJa
δJc
δφ̄b = δac , where δ

a
c is a Kronecker-delta for discrete indices

and a Dirac-delta for continuous indices. Using gab = δφ̄b

δJa
and the equation of motion

(2.5), the identity becomes

gabΓ1PI
bc = −ζδac . (2.7)

As another consequence of gab = δφ̄b

δJa
, the chain rule δ

δJa
= δφ̄b

δJa
δ
δφ̄b can be written as

δ

δJa
= gab

δ

δφ̄b
. (2.8)

Tree expansion

Now, let us find expressions for higher order connected correlation functions Ga1...an

in terms of 1PI vertices. To illustrate the recursive structure of the derivation, it is
sufficient to consider the bosonic case. Therefore, we set ζ = 1 for the rest of this
chapter.

It is convenient to further condense our notations and write, instead of the
sequence of indices a1...an, only their number n (and omit them completely for
φa and gab), so, in particular, gabΓ1PI

bc = gΓ1PI
2 . To reduce ambiguity, we place

contracting indices as close together as possible. For example, G3 = (g)2Γ1PI
3 g

stands for Gabc = gaa
′
gbb

′
Γ1PI
a′b′c′g

c′c 2. Equations without indices effectively describe
a zero-dimensional system, however recovering the proper index structure in the end
is trivial.

This notation allows us to write Eq. (2.1) for n > 2 as

Gn =
( δ

δJ1

)n−2
g =

(
(−Γ1PI

2 )−1 δ

δφ̄

)n−2
(−Γ1PI

2 )−1, (2.9)

where for the second equality we used Eq. (2.8) and

g = (−Γ1PI
2 )−1 (2.10)

(as follows from Eq. (2.7) above for ζ = 1). For n = 3 one finds

G3 = (g)3Γ1PI
3 . (2.11)

Apply Eq. (2.8) one more time to get the four-point correlation function

G4 = (g)4Γ1PI
4 + P3(g)

2Γ1PI
3 gΓ1PI

3 (g)2, (2.12)

where P3 indicates three terms coming from the derivative of (g)3. More specifically,
Pn denotes a sum over all n distinct permutations of the external indices in the
associated term (with a factor ζ inserted if permutation involves interchange of an
odd number of indices). As the simplest example, consider P2φ

aφb = φaφb+ ζφbφa.

2Here we implicitly used that G3 is connected, so gabgb
′a′

Γ1PI
a′b′c′g

c′c is not possible.
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2. 1PI effective action
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Figure 2.2: Tree expansions of the connected Green’s functions G3 and G4 (see
Eqs. (2.11) and (2.12)), using the recursive rule in Eq. (2.13).

Although there are 4! possible permutations of the four external indices in Eq. (2.12),
symmetries of the tensors involved reduce this number to only three.

As shown in Fig. 2.2, Eqs. (2.11), (2.12) can be represented as tree diagrams
where an open circle with two legs denotes g and a black circle with n legs repre-
sents the vertex Γ1PI

n . To perform further differentiations with respect to J1, it is
convenient to employ the following recursive rules: the derivative of an internal prop-
agator (i.e., one without external indices) yields δ

δJ1
g = (g)3Γ1PI

3 (recall Eq. (2.11))

and the derivative of a product (g)nΓ1PI
n+m with n external indices in (g)n and m

internal indices (i.e., ones that contract with internal propagators) gives

δ

δJ1
[(g)nΓ1PI

n+m] =(g)n+1Γ1PI
1+n+m + Pn(g)

n−1Γ1PI
n+mgΓ

1PI
3 (g)2, (2.13)

where Pn comes from the derivative of (g)n. A diagrammatic representation of
Eq. (2.13) is given in the bottom of Fig. 2.2. The figure highlights that differentiation
of a diagram with respect to J1 corresponds to the insertion of an external line
with propagator in all possible ways both at already existing vertices and into each
propagator, thereby yielding a new three-point vertex attached to that propagator.
Iterating these rules, starting with Eq. (2.11), shows that every correlation function
is expressible as a sum of all tree graphs with a fixed number of external lines,
where the indices at the free ends are permuted (via Pn) such that the sum is (anti)-
symmetric with respect to the exchange of any two external indices. The result for
Green’s functions up to fifth order is presented in the top row of Fig. 6.1.

This concludes the derivation of the 1PI tree expansion. In chapter 4, we show
how the same 1PI vertices can be further expressed using a similar tree expansion
but in terms of derivatives of the composite field effective action. This analogy
is illustrated in Fig. 4.1. Before that, however, Chapter 3 discusses the connection
between 1PI and composite field effective actions via the inverse Legendre transform.
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Chapter 3

Inverse Legendre transform of
composite field effective action to

1PI action

The Legendre transformation is a powerful technique in classical mechanics and
field theory for constructing a function (or functional) that describes a system in
terms of its relevant degrees of freedom. It allows to define a quantum analog of the
classical action, the 1PI effective action, which is a functional of the fundamental
field average φ̄a. By introducing source terms coupled to nonlinear combinations of
fundamental fields (i.e., φaφb), we can define functionals of composite fields ψ, such
as the full propagator g 1. This can be useful in two distinct but related ways.

First, we can classify contributions to 1PI vertices in terms of objects with a
certain irreducibility that depends on the choice of the composite fields ψ. These
are then typically used to justify approximations. For example, as was first shown by
Eckhardt et al. [31], we can use φ̄ and a full propagator g as variables to reproduce
the well-known parquet decomposition, which was previously only derived using
diagrammatic arguments [2, 30]. It groups contributions to the 1PI four-point vertex
in terms of two-particle reducible diagrams, which can be disconnected by cutting
two internal propagator lines, and fully two-particle irreducible diagrams, which
are commonly approximated in various practical schemes (Parquet Approximation,
DΓA, . . .)

Second, appropriate composite fields allow us to reveal non-perturbative struc-
tures of the composite field effective actions themselves. As will be demonstrated in
this chapter, these structures can be related to the 1PI effective action through an
inverse Legendre transformation. To achieve this, it is essential to retain φ̄ as one
of the variables.

As an important example, consider the choice ψa = φ̄a together with the con-
nected Green’s functions ψab = gab and ψabc = Gabc. The corresponding functional
Γ[φ̄, g,G3] is known as three-particle irreducible (3PI) effective action, and is for-
mally defined (in section 3.2) as a Legendre transform similarly to 1PI action. For
non-relativistic systems with cubic and quartic interactions the 3PI action was first

1For a historical sketch on development of functional Legendre transforms including composite
fields, see the end of the section 6.2.1 in [30]
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3. Inverse Legendre transform of composite field effective action to 1PI action

investigated by De Dominicis and Martin in [1] and [2]. Their results can be ex-
tended [32, 33] to general classical actions of the form

S[φ] =
N+1∑
n=2

1

n!
φan ...φa1Sa1...an [0], (3.1)

where Sa1...an ≡ S,a1...an
2. For a theory with cubic and quartic interactions (N = 3)

there is a simple dependence of the effective action Γ[φ̄, g,G3] on φ̄ [2, 33]

Γ[φ̄, g,G3] = S[φ̄] +
3∑

n=2

GnFn[φ̄] + Λ[g,G3], (3.2)

Fa1...an ≡ San...a1(−1)n−1/n!, (3.3)

where GnFn stands for Ga1...anFa1...an . The same Fn holds for the choice ψa = φ̄a

and ψab = gab in case only cubic interactions are present (for S3[0] ̸= 0 the system
with fixed statistics can be only bosonic, ζ = 1).

Eq. (3.2) can be viewed as the definition for Λ[g,G3]. It was shown in [2] that
Λ consists of −1

2 ln det g plus a sum of all possible 3PI diagrams3. In that sense
Λ modulo the ln det g part, can be seen as a generalization of the Luttinger-Ward
functional and can be exactly identified with the Luttinger-Ward functional for the
choice ψa = φ̄a and ψab = gab. For completeness we derive Eq. (3.2) from the path
integral definition of the theory in Appendix A.1.

Γ[φ̄, g,G3] can be related to the 1PI effective action Γ1PI[φ̄] by an inverse Leg-
endre transform. We find the remarkably simple result

Γ1PI[φ̄] = S[φ̄] + Ω[gφ̄, G
3
φ̄] , (3.4)

where

Ω[g,G3] = Λ[g,G3]−
3∑

n=2

Gn
δΛ

δGn
(3.5)

is the Legendre transform of Λ with respect to g and G3. The subscript φ̄ in Gnφ̄
means that the latter are functionals of φ̄ obtained from the equations of motion
δΓ
δg = 0 and δΓ

δG3 = 0. This will be explained in detail in section 3.2. We see from

Eq. (3.4) that Γ1PI expressed in terms of φ̄ and Green’s functions has an even simpler
dependence on φ̄ than Γ[φ̄, g,G3].

In what follows, we use this new insight to demonstrate how properties of
Γ[φ̄, g,G3] can be transferred to the 1PI effective action by explicitly calculating
the first four derivatives of Eq. (3.4). These results motivate further developments
in the next chapters. To make it easier to follow, we restrict ourselves to bosonic
systems and postulate functional identities for Γ. These relations will be derived
rigorously in section 3.2 within our general formalism. Readers preferring a more
self-contained treatment may wish to skip ahead and return to the following section
afterward.

2The order of indices in Eq. (3.1) can be confirmed by taking functional derivatives of both
sides w.r.t. φ and then setting φ = 0.

3Such graphs can be disconnected by cutting three lines (represented by a full propagator) into
only two parts, one of which must be a three-point 1PI vertex.
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3.1. Preliminary results: self-energy estimator, Bethe-Salpeter equations, parquet
and asymptotic class decompositions from 3PI effective action

3.1 Preliminary results: self-energy estimator,
Bethe-Salpeter equations, parquet and asymptotic
class decompositions from 3PI effective action

Consider a bosonic theory with up to quartic interactions, so that the formulas (3.2)
and (3.4) apply. The functional Γ[φ̄, g,G3] possesses two properties that lead to
useful non-perturbative results for 1PI vertices, as derived in this section.

First, three-particle irreducibility of the functional Γ[φ̄, g,G3] allows us to classify
contributions to the four-point 1PI vertex and derive Bethe-Salpeter-type equations
for its reducible part. For an even theory (i.e., one with vanishing odd-order Green’s
and vertex functions) we recover the well-known parquet formalism [2]. This moti-
vates us, in the next chapter 4, to decompose 1PI vertices of arbitrary order using
general composite fields.

Second, the structure (3.2) allows us to classify contributions to 1PI vertices by
the connectivity of their external legs to the bare interactions. These groupings are
referred to as asymptotic classes [17], as they govern the high-frequency behavior of
the vertex functions. In chapter 5 this result is used to derive representations for
asymptotic classes and 1PI vertices via Green’s functions of composite field operators
(the so-called a-symmetric estimators). Here, we reproduce such a formula for the
self-energy.

Step 1: First functional derivative of the effective action

Let us start by taking the first functional derivative of Eq. (3.4) with respect to φ̄

Γ1PI
1 [φ̄] = S1[φ̄] +

3∑
n=2

Gnφ̄,1
δΩ

δGn
= S1[φ̄]−

3∑
n,m=2

g−1
φ̄ G1n

φ̄ G
m
φ̄

δ2Λ

δGmδGn
, (3.6)

where we used Gnφ̄,1 = g−1
φ̄ G1n

φ̄ with the help of Eq. (2.8). The dependence of G4
φ̄ on

φ̄ is defined via the tree expansion formula (2.12). All derivatives of Λ are evaluated
at Gn = Gnφ̄.

To proceed, we need functional relations that connect derivatives of Γ (or Λ) to
Green’s functions, similar to Eq. (2.7). As shown in Sec. 3.2 we can write

g−1
3∑

n=2

G1n δ2Λ

δGnδGm
= −Fm,1. (3.7)

Eq. (3.6) becomes

Γ1PI
1 = S1 +

3∑
m=2

Gmφ̄ Fm,1. (3.8)

The last term in Eq. (3.8) contains an implicit φ̄-dependence in Gnφ̄ as well as an
explicit one in Fn,1[φ̄] (see Eq. (3.3)).

By taking derivatives δ
δφ̄ = g−1 δ

δJ1
of Eq. (3.8), we reproduce Schwinger-Dyson

(SD) equations. Indeed, the first differentiation gives

−g−1
φ̄ = S2 −

1

2
gφ̄S4 + g−1

φ̄

3∑
m=2

G1m
φ̄ Fm,1, (3.9)

9



3. Inverse Legendre transform of composite field effective action to 1PI action

where we used Eq. (2.5) and GbaFba,cd = −1
2g
baSabcd in condensed form (note that

Fm,2 vanishes for m > 2).

Step 2: Chain rule and general formula for np 1PI vertex

Another way to generate 1PI vertices (first proposed in [34]) is to use the chain rule
δ
δφ̄ = δ

δψ +
∑3

l=2G
l
φ̄,1

δ
δGl . We use ψ in place of φ̄ to distinguish φ̄, the variable of

Γ1PI[φ̄], from ψ, the variable of the effective action Γ[ψ, g,G3] (which is the same
functional as (3.2)).

Eq. (3.7) gives for Glφ̄,1 = g−1
φ̄ G1l

φ̄ ,

Glφ̄,1 =

3∑
k=2

Fk,1K
k|l, (3.10)

where we defined Kk|l as the inverse of (− δ2Λ
δGlδGm ):

3∑
l=2

Kk|l δ2Λ

δGlδGm
= −δkm. (3.11)

With the help of Eq. (3.10), the chain rule becomes

δ

δφ̄
=

δ

δψ
+

3∑
k,l=2

Fk,1K
k|l δ

δGl
. (3.12)

To calculate Γ1PI
n , we differentiate Eq. (3.8) (n− 1) times using Eq. (3.12) for all

terms except S1,

Γ1PI
n = Sn + (

δ

δψ
+

3∑
k,l=2

Fk,1K
k|l δ

δGl
)n−1

3∑
m=2

GmFm,1. (3.13)

After taking all functional derivatives, we substitute Gn = Gnφ̄.
Evaluating only the ψ-derivatives in Eq. (3.13) generates groups of terms with

different connectivities of the external legs to the bare vertices (contained in Fn,m[φ̄]);
these groups can be identified with asymptotic classes. To see this, we calculate
Eq. (3.13) with n = 2, 3, 4 in the next steps.

Step 3: Second derivative of the effective action - Self-Energy estimator

For n = 2 we get

Γ1PI
2 = S2 + gφ̄F2,2 +

3∑
k,l=2

Fk,1K
k|lFl,1. (3.14)

For an even theory, S2 = S2[0] and the last term simplifies to F3,1K
3|3F3,1. When

expressed in terms of composite field operators, Eq. (3.14) then reduces to the
symmetric estimator for the self-energy established by Kugler [25]. To show this,
we need another functional relation (proved in section 3.2)

K3|3 = −⟨φ3φ3⟩ − ⟨φ3φ⟩g−1⟨φφ3⟩. (3.15)
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3.1. Preliminary results: self-energy estimator, Bethe-Salpeter equations, parquet
and asymptotic class decompositions from 3PI effective action

The contraction F3,1⟨φ3...⟩ in Eq. (3.14) defines the following composite operator in
correlation functions: Fbcd,aφ

bφcφd = δ
δφaSint, where Sint is the interacting (quartic)

part of the action in an even theory. Applying this identity to expression (3.14)
yields the self-energy estimator

−g−1 − S2[0] = ⟨δ
2Sint
δφ2

⟩ − ⟨δSint
δφ

δSint
δφ

⟩ − ⟨δSint
δφ

φ⟩g−1⟨φδSint
δφ

⟩, (3.16)

where we also used Eqs. (2.7) and gF2,2 = 1
2⟨φ

2⟩S4 = ⟨ δ
2Sint
δφ2 ⟩. Equation (3.16)

corresponds to Eq. (12) of [25].

Step 4: Derivative of
∑3

l=2K
k|lFl,1 - Bethe-Salpeter equations

For n > 2, the combination
∑3

l=2K
k|lFl,1 appears frequently in Eq. (3.13). It is

convenient to evaluate its derivative as follows

δ

δφ̄

3∑
l=2

Kk|lFl,1 =

(
δ

δψ
+

3∑
n=2

Gnφ̄,1
δ

δGn

) 3∑
l=2

Kk|lFl,1

=

3∑
l=2

Kk|lFl,2 +

3∑
l,n=2

Gnφ̄,1

(
δ

δGn
Kk|l

)
Fl,1

=

3∑
l=2

Kk|lIl|2, (3.17)

Il|2 ≡ Fl,2 +
3∑

n,m=2

Gnφ̄,1
δ3Λ

δGnδGlδGm
Gmφ̄,1. (3.18)

where we used Eq. (3.10).
Now, consider Eq. (3.10) for l = 2. Differentiating both sides with respect to φ̄,

and using Eq. (3.17), we obtain

G2
φ̄,2 =

3∑
k=2

K2|kIk|2, (3.19)

where the right side is a functional of φ̄ after substituting Gn = Gnφ̄ (recall that

Km|n and Ik|2 are defined in terms of derivatives of Γ[φ̄, g,G3]).
For an even theory, Eq. (3.19) is precisely the Bethe-Salpeter equation for I2|2

after we relate K2|2 to composite field Green’s functions as in Eq. (3.15). In that
case, the expression for K2|2,

Kab|cd = gaa
′
gbb

′
Γ1PI
a′b′c′d′g

c′cgd
′d − gacgbd − gadgbc, (3.20)

is known as the two-particle Green’s function. Using Eqs. (2.8) and (2.12), the left
side of Eq. (3.19) becomes G4

φ̄g
−2
φ̄ = gφ̄gφ̄Γ

1PI
4 . We get

gφ̄gφ̄Γ
1PI
4 = K2|2I2|2. (3.21)

By taking a further derivative, we can obtain an equation that describes three-
particle scattering processes (as will be shown in the next chapter 4). In this way,
we recover Bethe-Salpeter-type equations first introduced by Weinberg in [35].

11



3. Inverse Legendre transform of composite field effective action to 1PI action

Step 5: Calculation of the 4p 1PI vertex - Parquet decomposition

Now, differentiate Eq. (3.14) using Eq. (3.19) to get the three-point 1PI vertex

Γ1PI
3 = S3 + P3(gφ̄,1F2,2) +

3∑
n,m,l=2

Gnφ̄,1G
m
φ̄,1

δ3Λ

δGnδGmδGl
Glφ̄,1, (3.22)

where we used
∑3

n′=2K
n|n′

Fn′,1 = Gnφ̄,1.

Next, we evaluate the four-point 1PI vertex by taking the derivative of Eq. (3.22).
All terms involving derivatives of Gnφ̄,1 =

∑3
n′=2K

n|n′
Fn′,1 (including gφ̄,1 = G2

φ̄,1)
are evaluated using Eq. (3.19); their sum yields

P3

3∑
k,l=2

(Fk,2 +

3∑
n,m=2

Gnφ̄,1G
m
φ̄,1

δ3Λ

δGnδGmδGk
)Kk|lIl|2 = P3

3∑
k,l=2

Ik|2K
k|lIl|2 (3.23)

We get

Γ1PI
4 = I4 + P3

3∑
k,l=2

Ik|2K
k|lIl|2, (3.24)

I4 ≡ S4 +

3∑
n,m,l,k=2

Gnφ̄,1G
m
φ̄,1

δ4Λ

δGnδGmδGlδGk
Glφ̄,1G

k
φ̄,1 (3.25)

For even theories, one recalls the Bethe-Salpeter equation (3.21) to obtain I2|2K
2|2I2|2 =

I2|2gφ̄gφ̄Γ
1PI
4 . Eq. (3.24) then reduces to the parquet decomposition [2]. Note that

it has the tree expansion form given by Eq. (2.12). This result will be extended to
any order vertex and using arbitrary composite fields in the next chapter 4.

Step 6: Asymptotic class decomposition of the 4p 1PI vertex

Finally, let us expand Eq. (3.24), using definition (3.18), as follows,

Γ1PI
4 = S4 + P3K1

4 + P6K2
4 +K3

4, (3.26)

where we defined asymptotic classes

K1
4 ≡ F2,2K

2|2F2,2 (3.27)

K2
4 ≡ F2,2

3∑
n,m,l=2

K2|n δ3Λ

δGnδGmδGl
Gmφ̄,1G

l
φ̄,1 (3.28)

K3
4 ≡

3∑
n,m,l,k=2

Gnφ̄,1G
m
φ̄,1G

l
φ̄,1G

k
φ̄,1

( δ4Λ

δGnδGmδGlδGk

+ P3

3∑
n′,m′=2

δ3Λ

δGnδGmδGn′K
n′|m′ δ3Λ

δGm′δGlδGk

)
. (3.29)
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3.2. General formulation with condensed notations

In Eq. (3.29), P3 permutes derivatives δ
δG... with external indices4. The upper index

m in Km
4 denotes the number of independent time (or frequency) arguments, assum-

ing time-translational invariance and that the action S is local in time. For example,
in the class K2

4, two indices are contained in F2,2 = −1
2S4, which forces their time

components to be equal; the total number of independent time arguments is then
4 − 1 − 1 = 2, where the second reduction by one comes from time-translational
invariance.

Equations (3.27) and (3.28) correspond to Eqs. (B1) and (B2) of [17], respec-
tively5.

One may notice that the asymptotic classes K2
4 and K3

4 contain the tree expansion
(see Eqs. (2.11) and (2.12)) with derivatives of Λ as vertices and Kn|m as internal
lines. This structure allows us to express asymptotic classes in terms of Green’s
functions of composite field operators (like δSint

δφ in Eq. (3.16)), similarly to how the

tree expansion in derivatives of Γ1PI yields Green’s functions of fundamental field φ.
In chapter 5, we demonstrate this result for general asymptotic classes and apply it
to 1PI vertices.

Before developing these ideas further, we clarify and extend two key concepts.
First, we introduce the composite-field effective action and derive the functional
relations it satisfies. Then, we perform its inverse Legendre transform to recover the
1PI effective action. These steps are carried out in the following section.

3.2 General formulation with condensed notations

Let us define the functional for connected Greens functions W [Ja] more generally
from

e−W [Ja] =

∫
Dφe−S[φ]−Jbϕ

b[φ]−S[Ja], (3.30)

by adding source terms with two main requirements: 1) sources Ja couple linearly to
the composite fields ϕa[φ]; 2) the field-independent part S[Ja] and its first derivative
vanish for Ja = 06. With this definition, one can calculate the connected correlation
function of the fundamental field φ as well as the composite ones,

Ga1...an ≡ δ

δJa1

...
δ

δJan

W [Ja] = (−1)n−1⟨ϕa1 ...ϕan⟩c + Sa1...an [Ja]. (3.31)

We similarly define ϕ̄a ≡ δW
δJa

Jb→0−→ ⟨ϕa⟩. The bold index a means a vector of
fundamental field index a and multi-indices of the composite fields. We leave them
unspecified for the moment and denote by the placeholder index (•), so a =

(
a, (•)

)
.

The contraction Jaϕ̄
a can be written as

Jaϕ̄
a = Jaφ̄

a + J(•)ϕ̄
(•) (3.32)

4It agrees with the definition of Pn if we consider external indices in δ
δG... as a single composite

external index. Another way to make this precise is to expand the brackets in Eq. (3.29) and then
apply P3 to the external indices in products of G...

φ̄,1.
5Note that definition (3.18) and BS equation (3.21) imply K2

4 = F2,2ggΓ
1PI
4 − F2,2K

2|2F2,2 for
an even theory. The last term in Eq. (3.29) is denoted as R in [17] (see also Fig. 5).

6The term S[Ja] gives more freedom in constructing effective actions; it is needed to recover
the single-boson exchange decomposition in section 4.2.
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3. Inverse Legendre transform of composite field effective action to 1PI action

As an example, let us consider two composite fields ϕ(a1...an) = φa1 ...φan for n =
2, 3. In this case (•) is a vector of (ab) and (abc) (in condensed notations (2) and
(3) respectively), and the contraction becomes J(•)ϕ̄

(•) = J(ab)ϕ̄
(ab) + J(abc)ϕ̄

(abc) =

J(2)ϕ̄
(2) + J(3)ϕ̄

(3). It is convenient to use condensed notation ϕ for ϕa (to avoid
confusion with ϕ = φ for ϕa = φa) and similarly for the sources.

The effective action Γ[ϕ̄] is defined via generalized Legendre transformation

Γ[ϕ̄] =W − Jaϕ̄
a, (3.33)

where Ja as a functional of ϕ̄a is the solution of δWδJa = ϕ̄a.

Vertices are defined as derivatives of the effective action Γ[ϕ̄]:

Γa1...an ≡ Γ,a1...an =
δ

δϕ̄a1
...

δ

δϕ̄an
Γ. (3.34)

Γ[ϕ̄] obeys relations similar to those of the 1PI effective action Γ1PI[φ̄]. In
particular, the equation of motion becomes

Γ,a ≡ δ

δϕ̄a
Γ = −γbaJb , (3.35)

where we interchanged Jaϕ̄
a = ϕ̄aγbaJb using the matrix7

γba = ζNaδba , (3.36)

where Na is the number of indices in a (recall that ζ keeps track of fermionic signs).
Another relation, similar to Eq. (2.7), is

GabΓbc = −γac . (3.37)

From the definition (3.36) we have γabγ
b
c = δac . We can then multiply Eq. (3.37)

from the left by γda to get (γdaG
ab)Γbc = −δdc , or more explicitly for Γbc(

Γ2 Γ1(•)
Γ(•)1 Γ(•)(•)

)
= −

(
ζg ζG1(•)

γ
(•)
(•)G

(•)1 γ
(•)
(•)G

(•)(•)

)−1

. (3.38)

To avoid ambiguities, contracted bullet indices (one lower and one upper) are placed
as close together as possible.

Using a block-matrix identity for the right side of Eq. (3.38)(
A B
C D

)−1

=

(
... ...
... (D − CA−1B)−1

)
, (3.39)

we get

(−Γ(•)(•))
−1 = γ

(•)
(•)(G

(•)(•) −G(•)1g−1G1(•)), (3.40)

which is the analogue of Eq. (2.10).

7Our notation for the composite index a and matrix γa
b is taken from [36].
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Figure 3.1: Diagrammatic definitions of connected composite field Green’s function
Ga1...an (see Eq. (3.31)) and corresponding vertex Γa1...an (see Eq. (3.34)).

We may want to use other variables ψa[ϕ̄] instead of ϕ̄ ≡
(
φ̄, ϕ̄(•)

)
, while keeping

the fundamental field φ̄a as one of them. It means that ψa = ϕ̄a = φ̄a, and for other
components we choose ψ•, where the bullet index • takes the same values as in
ϕ(•). For example, when the composite fields are connected correlation functions,
we take ψ• = G• with • =

(
2, 3
)
, which corresponds to (•) =

(
(2), (3)

)
in ϕ(•). The

chain rules are δ
δϕ̄a

= ψb
,a

δ
δψb and δ

δϕ̄(•)
= ψ•

,(•)
δ
δψ• , using

δψ
δϕ̄(•)

= 0. Placing brackets

around • allows us to distinguish the field ϕ̄(•) from ψ• in the comma notation, as
in ψ•

,(•) in the second chain rule.

Expressing ϕ̄(•) in Γ
[
φ̄, ϕ̄(•)

]
in terms of ψ ≡

(
φ̄, ψ•), we get a new functional

Γ[ψ] ≡ Γ
[
φ̄, ϕ̄(•)[ψ]

]
which we denote with the same symbol. The definition and

graphical representation of the composite field effective action is summarized in
Fig. 3.1.

Functional relation (3.40) can be expressed via derivatives of Γ[φ̄, ψ•], using
δ

δϕ̄(•)
= ψ•

,(•)
δ
δψ• . We have

K•|• ≡ (−Γ••)
−1 = ψ•

,(•)(G
(•)(•) −G(•)1g−1G1(•))ψ•

,(•), (3.41)

where the last equality holds for either J(•) = 0 or linear relation between ψ• and

ϕ̄(•).

Inverse Legendre transformation to 1PI effective action

Since we are interested in 1PI vertices – defined as functional derivatives of Γ1PI[φ̄]
– we need to make a connection between Γ1PI[φ̄] and the composite field effective
action Γ[ϕ̄]. We can obtain the 1PI effective action Γ1PI[φ̄] from Γ[ϕ̄] by doing an
inverse Legendre transformation from ϕ̄(•) to J(•) and then setting J(•) = 0. This
procedure is possible only if we retain φ̄ as one of the variables in ϕ̄.

Let us show this more explicitly by keeping J(•) nonzero. Substituting W from
the definition of Γ[ϕ̄] (Eq. (3.33)) into the definition of the 1PI effective action
(Eq. (2.4)), one performs an inverse Legendre transform of the composite field ef-
fective action Γ[φ̄, ϕ̄(•)] to 1PI

Γ1PI[φ̄] = Γ[φ̄, ϕ̄
(•)
φ̄ ] + J(•)ϕ̄

(•)
φ̄ . (3.42)
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3. Inverse Legendre transform of composite field effective action to 1PI action

Here, ϕ̄
(•)
φ̄ is the solution of

δΓ[φ̄,ϕ̄
(•)
φ̄ ]

δϕ̄
(•)
φ̄

= Γ(•) = −γ(•)(•)J(•) for ϕ̄
(•); it is still a functional

of φ̄, which we denote as a subscript, and J(•). Note that the dependence of Γ1PI[φ̄]
on J(•) is not explicitly shown.

Let us return to the example ϕ(n)[φ] = φn and ψn = Gn with n = 2, 3. There
exists a linear relation between G• and ϕ̄(•) (see Eqs. (A.1) and (A.2))

ϕ̄(•) = ϕ(•)[φ̄] +G•ϕ̄
(•)
,• . (3.43)

Eq. (3.43) together with J(•) = −γ(•)(•)Γ(•) then give J(•)ϕ̄
(•)[φ̄, G•

φ̄] = J(•)ϕ
(•)[φ̄]−

G•
φ̄ϕ̄

(•)
,• Γ(•)

8 and allow us to change basis in ϕ̄
(•)
,• Γ(•) = Γ•, such that Eq. (3.42)

becomes

Γ1PI[φ̄] = Γ−G•
φΓ• + J(•)ϕ

(•)[φ̄], (3.44)

where Γ = Γ[φ̄, G•
φ̄]. Using Eq. (3.2) for the first two terms on the right side and

setting J(•) = 0 (so the last term vanishes), we arrive at the result given in Eq. (3.4).
Generally, the 1PI effective action can be calculated from Γ[φ̄, ψ•

φ̄] by substituting

ϕ̄
(•)
φ̄ = ϕ̄(•)[φ̄, ψ•

φ̄] in Eq. (3.42), where ψ•
φ̄ is the solution of Γ• = −ϕ(•),• γ(•)(•)J(•) (as

follows from Γ• = ϕ
(•)
,• Γ(•) and Γ(•) = −γ(•)(•)J(•)). In this case, Eq. (3.42) becomes

Γ1PI[φ̄] = Γ[φ̄, ψ•
φ̄] + J(•)ϕ̄

(•)[φ̄, ψ•
φ̄], (3.45)

which is an inverse Legendre transform of the composite field effective action Γ[φ̄, ψ•]
to the 1PI.

Now we can derive the second functional relation, in addition to (3.41), and
prove the identities used in the previous section. To this end, consider equation of
motion Γ• = 0 at ψ• = ψ•

φ̄ for J(•) = 0. Applying derivative δ
δφ̄ to both sides of this

equation and multiplying from the right by K•|• = −(Γ••)
−1, we get for J(•) = 0

ψ•
φ̄,1 = Γ1•K

•|•. (3.46)

For the choice ψ• = G•, Eqs. (3.46) and (3.41) coincide with Eqs. (3.7) and
(3.15), respectively, provided we use the structure (3.2) and G3

,(3) = δ33 for a bosonic

theory with S[J ] = 0. In Appendix A.2, we present an efficient method to express
K•|• in terms of connected Green’s functions, thereby recovering Eq. (3.20).

The derivation of 1PI effective action from Γ[φ̄, ψ•
φ̄] via Eq. (3.45) will be used in

the next chapter 4 to decompose 1PI vertices into contributions whose irreducibility
is determined by the choice of composite fields ψ•, and in chapter 5, focusing on
ψ• = G• with • =

(
2, 3
)
, to derive a representation of 1PI vertices via Green’s

functions of composite field operators.

8When we move γ
(•)
(•)Γ(•) to the right through G•

φ̄ϕ̄
(•)
,• another γ

(•)
(•) appears due to the to-

tal exchange of contracted (•) indices. The product of two γ
(•)
(•) then gives δ

(•)
(•) , so we have

γ
(•)
(•)Γ(•)G

•
φ̄ϕ̄

(•)
,• = G•

φ̄ϕ̄
(•)
,• Γ(•)
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Chapter 4

Decomposition of 1PI vertices via
composite fields

There are two widely used approaches to deriving equations of motion for one-
particle-irreducible (1PI) vertices and closing the Schwinger–Dyson (SD) hierarchy.
The diagrammatic approach classifies vertex contributions by irreducibility, as in the
parquet [2] or single-boson exchange [22] decompositions. The n-particle irreducible
(nPI) approach [37] obtains them from the stationarity of the nPI effective action.

These methods can be combined: 1PI vertices can be decomposed using deriva-
tives of the nPI effective action. Eckhardt et al. [31] demonstrated this for the
four-point vertex using the 2PI action, and we found analogous results in section
3.1 with the 3PI action. This yields two advantages: (i) vertex components are
rigorously defined via effective-action derivatives, and (ii) the framework extends
systematically to arbitrary-order vertices and general composite fields ψ•, as shown
below.

In this chapter, we differentiate Eq. (3.45) and obtain a simple rule for de-
composing a general n-point 1PI vertex (see Fig. 4.1): sum over all possible tree
diagrams built from vertices In and In|•|...|• (n > 1), connected by K•|• as internal
lines. In and In|•|...|• are defined through derivatives of Γ[φ̄, ψ•] (see Eqs. (4.4),
(4.6) and (3.46)). Bethe-Salpeter-type equations for these new vertices follow from
analogous differentiation of Eqs. (3.46) and (3.41). The parquet and single-boson
exchange decompositions are recovered in the first two sections. In the final section,
we present an efficient method to calculate composite field effective action and prove
its irreducibility using these decompositions.

For simplicity, we assume that ϕ(•) and ψ• are bosonic fields, so that γ
(•)
(•) = δ

(•)
(•)

and γ•• = δ•• . For fermionic systems (ζ = −1), we further assume that only even
correlation and vertex functions are nonzero.

We begin by differentiating Eq. (3.45) with respect to φ̄a:

Γ1PI
a = ψa

φ̄,a(Γa + J(•)ϕ̄
(•)
,a ), (4.1)

where ψa
φ̄ ≡

(
φ̄ ψ•

φ̄

)
and we have used

δJ(•)
δφ̄ = g−1 δJ(•)

δJ1
= 0. The matrix ψ•

φ̄,1 is
related to derivatives of Γ[φ̄, ψ•] via Eq. (3.46).

For a = •, the bracketed term in Eq.(4.1) vanishes because Γ• = −J(•)ϕ̄
(•)
,• . Con-

sequently, when differentiating Eq.(4.1) with respect to φ̄b, the term proportional
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4. Decomposition of 1PI vertices via composite fields

to ψa,ba = ψ•
,baδ

a
• drops out. We thus obtain:

Γ1PI
ba = ψb

φ̄,bψ
a
φ̄,a(Γba + J(•)ϕ̄

(•)
,ba), (4.2)

where in the fermionic case, we treat ψa
φ̄,a and ψb

φ̄,b as bosonic because they are
nonzero only when the indices a and b are not composite.

The bracketed term in Eq. (4.2) vanishes whenever one external index is com-
posite and the other is contracted with the matrix ψφ̄,1. To see this, we differentiate

the equation of motion Γ• = −J(•)ϕ̄
(•)
,• at ψ• = ψ•

φ̄ with respect to φ̄ (analogous to

the proof of Eq. (3.46)), noting that
δJ(•)
δφ̄ = 0. As a result, differentiating Eq. (4.2)

with respect to φ̄ acts only on the bracketed terms (as in Eq. (4.1)), yielding

Γ1PI
a1...an = Ia1...an , n = 1, 2, 3, (4.3)

where Ia1...an , the fully irreducible vertex with respect to the composite fields, is
defined as

Ia1...an = ψa1
φ̄,a1 ...ψ

an
φ̄,an(Γa1...an + J(•)ϕ̄

(•)
,a1...an). (4.4)

Applying δ
δφ̄ to Eq. (4.3) for n = 3 yields the four-point 1PI vertex:

Γ1PI
4 = I4 + P3ψ

•
φ̄,2I2|• (4.5)

where In|•|...|• is defined as

Ia1...an|•|...|• = ψa1
φ̄,a1 ...ψ

an
φ̄,an(Γa1...an•...• + J(•)ϕ̄

(•)
,a1...an•...•), (4.6)

with the same number of external bullet indices on both sides. We recall that a
bullet index • denotes differentiation with respect to ψ•. We refer to In|• simply as
the irreducible vertex with respect to the composite fields.

To simplify the analysis, we set J(•) = 0 (the sources J(•) will be retained only in
section 4.3). The four point vertex decomposition, Eq. (4.5), can then be cast into a
tree expansion form analogous to Eq. (2.12). For this, we need Bethe-Salpeter-type
equation for I2|•:

ψ•
φ̄,2 = I2|•K

•|•, (4.7)

derived in Appendix B.1 from Eq. (3.46).
When we apply δ

δφ̄ on In..., the derivative acts on the bracketed term (producing
In+1...) and on n factors of ψ•

φ̄,1, giving

δ

δφ̄
In... = In+1... + Pnψ

•
φ̄,2In−1|•.... (4.8)

Using Eq. (4.7), we obtain

δ

δφ̄
In... = In+1... + PnI2|•K

•|•In−1|•|.... (4.9)

Together with δ
δφ̄K

•|• = K•|•I1|•|•K
•|•, Eq. (4.9) generates the tree expansion (see

Fig. 4.1), in direct analogy to Eq. (2.13).
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4.1. 1PI vertices via two-particle scattering
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Figure 4.1: Tree expansions of the 1PI vertices Γ1PI
3 and Γ1PI

4 (see Eqs. (4.3) and
(4.10)), using the rule in Eq. (4.9), with internal lines given by K•|• = −(Γ••)

−1.
The definition of Ia1...an|•|...|• is provided in Eq. (4.6).

Applying the rule (4.9) to Γ1PI
n = ( δδφ̄)

n−3I3 (see Eq. (4.3)) shows that an n-point
1PI vertex can be expressed as the sum of all tree diagrams constructed from In and
In|•|...|•, with internal bullet indices connected by K•|•.

For n = 4, this casts the decomposition (4.5) into the symmetric form

Γ1PI
4 = I4 + P3I2|•K

•|•I2|•. (4.10)

For n = 5, one finds

Γ1PI
5 = I5 + P10I3|•K

•|•I2|• + P15I2|•K
•|•I1|•|•K

•|•I2|•, (4.11)

where we have also used δ
δφ̄K

•|• = K•|•I1|•|•K
•|•.

As a side note, applying the rule (4.8) to ψ•
φ̄,n = (I2|•K

•|•),n−2 (see Eq. (4.7))
yields Bethe-Salpeter-type equations for In|•. For n = 3, this gives:

ψ•
φ̄,3 = (I3|• + P3ψ

•
φ̄,2I1|•|•)K

•|•. (4.12)

In the following sections, we consider two important choices for ψ•:

1. Connected correlation functions G•: In this case, In acquires an interpretation
in terms of nPI diagrams, and K•|• becomes a multi-particle Green’s function.

2. Bilinear fields local in time: Here, In corresponds to the sum of composite-
particle–irreducible diagrams, and K•|• becomes the propagator of the com-
posite boson particle.

4.1 1PI vertices via two-particle scattering

It is natural to decompose 1PI vertices either in terms of 1PI vertices themselves or
via connected Green’s functions. These two choices for composite fields are equiva-
lent, as they are directly related through the tree expansion (see Eqs. (2.7), (2.11)
and (2.12)). The functional Γ[φ̄, ψ•] is then known as the nPI effective action.
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4. Decomposition of 1PI vertices via composite fields
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Figure 4.2: Depiction of the two-particle Green’s function, also known as the gen-
eralized susceptibility for an even theory, as given by Eq. (4.13).

In this section, we consider the simplest choice, ψ• = g and ϕ(•) = φ2 for • = 2,
in order to recover the parquet decomposition [2, 31]. We further set S[J ] = 0 and
J(•) = 0.

In the vertex decompositions, each internal line K•|• = (−Γ••)
−1 becomes a

two-particle Green’s function χ•|• (see Fig. 4.2):

Kab|cd = χab|cd ≡ gaa
′
gbb

′
gcdφ̄,a′b′ − gadgbc − ζgacgbd, (4.13)

gcdφ̄,ab = (Γ1PI
abhk + Γ1PI

ahfg
feΓ1PI

ebk + ζΓ1PI
abfg

feΓ1PI
ehk)g

hcgkd, (4.14)

as previously noted in Eq. (3.20) for an even theory. This follows from Eqs. (3.41)
by expressing G(•)(•) and G(•)1 in terms of connected correlation functions, using the
higher-order analogue of Eq. (2.3). Formula (4.13) is closely related to the linked-
cluster decomposition principle [29]. An efficient method for decomposing K•|• is
presented in Appendix A.2.

For an even theory, Eqs. (4.14) and (2.12) give

gφ̄,2g
−2 = Γ1PI

4 , (4.15)

and χab|cd = Gabcd−gadgbc−ζgacgbd is also known as the generalized susceptibility [7].
When the four-point vertex Γ1PI

4 cannot be treated perturbatively, we decompose
it using Eq. (4.5):

Γ1PI
4 = I4 + P3I2|•g

•
φ̄,2. (4.16)

The Bethe-Salpeter equation (4.7), together with Eq. (4.13), can be written as

gφ̄,2g
−2 = 2I2|2 + g•φ̄,2I2|•. (4.17)

Equations (4.16), (4.17) and (4.15) constitute the well-known parquet equations1.
A less general functional derivation of them was already given by Eckhardt et al.
[31] 2.

1To bring Eq. (4.17) into the conventional form, one can redefine I ′2|2 ≡ 2I2|2, giving gφ̄,2g
−2 =

I ′2|2 +
1
2
g•φ̄,2I

′
2|•.

2In [31], the parquet decomposition of the four-point vertex (our Eq. (4.16), their Eq. (33))
was obtained for an even theory and dealing directly with derivatives of the 2PI effective action.
In our approach, the new vertices (4.4) and (4.6) allow for extensions to other choices of composite
fields and vertices of arbitrary order. Agreement with their results requires I2|2 = g−2 + 2Γ••,
which follows by multiplying Eq. (4.13) from the left by Γ•• and using Γ••gφ̄,2 = −I2|• from the
Bethe-Salpeter equation (4.7).

20



4.2. 1PI vertices via exchange of composite boson particles

For an even theory, Eq. (4.4) with ψa
,a = δaa yields

I4 = Γ4[φ̄, g]. (4.18)

Here, I4 coincides with the fully (two-particle) irreducible vertex [2] of standard par-
quet theory, whose diagrammatic expansion consists of all two-particle-irreducible
diagrams with four external legs and full propagators as internal lines. This also
follows directly from Eq. (4.18) together with the well-established fact that the in-
teracting part of Γ[φ̄, g], the Luttinger-Ward functional, contains only 2PI diagrams.

4.2 1PI vertices via exchange of composite boson particles

Choosing Green’s functions as composite fields to decompose 1PI vertices is com-
putationally expensive. Although In|• can be viewed as (n + 1)-point vertex, it is
of higher order because • contains at least two indices and is therefore nonlocal in
time. A way to reduce the order of these vertices is to choose a composite field local
in time, while still capturing the non-trivial φ̄-dependence of the 1PI effective action
(as in Eq. (3.4) for Green’s functions).

In a theory with quartic interactions only, such a choice can be motivated by the
Schwinger-Dyson (SD) equation (3.9), which relates connected Green’s functions to
φ̄ (similarly as Gnφ̄ in Eq. (3.4)). We can introduce the local composite field 1

2S4⟨φ
2⟩

to incorporate some of the φ̄-dependence. Indeed, in Eq. (3.9), the first two terms
(S2 − 1

2S4g) can be written as S2[0] +
1
2S4⟨φ

2⟩, using Eq. (2.3). The SD equation
(3.9) then becomes

−g−1 = S2[0] +
1

2
S4⟨φ2⟩+ g−1

3∑
n=2

G1nFn,1 + J(•)ϕ
(•)
,2 , (4.19)

where we have recovered the source term by adding J(•)ϕ
(•)
,2 [φ̄] to S2[φ̄]. In what

follows, we define 1
2S4⟨φ

2⟩ as a composite field via a Legendre transform with this
source term, and then study the decomposition (4.10).

To make the discussion concrete, consider a theory of fermions fi(τ) and f
†
i (τ)

with i = x⃗, σ. We take a = τni, where n = f, f † denotes the field type, and set
φτfi ≡ fi(τ) and φ

τf†i ≡ f †i (τ).
The interacting part of the action is Sint =

∫
dτLint, with

Lint = −1

4

∑
ijkl

Uijklf †i (τ)f
†
j (τ)fk(τ)fl(τ). (4.20)

Because Sint is local in time, the field S4φ
2 contains a Dirac delta function (which we

do not want to include in our composite field). There are three distinct components
of 1

2S4φ
2, corresponding to index types ff , f †f † or f †f (also denoted by pp, pp

and ph respectively). To make this explicit in S4 while avoiding redundant delta
functions, we set • = τijµ with µ =

(
ff f †f † f †f

)
and define U•|• as

U τ1ijµ|τ2klν ≡ δ(τ1 − τ2)

 0 Uijkl 0
Uklij 0 0
0 0 2Uikjl

µν

. (4.21)
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4. Decomposition of 1PI vertices via composite fields

We then express 1
2S4φφ as

1

2
Sabcdφ

dφc = γab|•ϕ
(•),

ϕ(•)[φ] ≡ 1

2
φaφbγab|•U

•|•, (4.22)

where the metric

γab|τijnm ≡ 1

2
(δτina δτjmb + ζδτinb δτjma ) (4.23)

ensures proper contraction. For example, for µ = ff we have a gap field ϕ(τijµ) =
1
2

∑
kl Uijklfk(τ)fl(τ).
The source term, J(•)ϕ

(•)
,2 [φ̄] = γ2|•U

•|•J(•), in the Schwinger-Dyson equation
allows us to rigorously introduce ψ•, the variable of effective action, in place of
1
2S4⟨φ

2⟩. We define

ψ• ≡ 1

2
⟨φ2⟩γ2|•U•|• − J(•)U

•|•, (4.24)

so 1
2S4⟨φ

2⟩+ J(•)ϕ
(•)
,2 = γ2|•ψ

• in the SD equation, which becomes

−g−1
ψ = S2[0]− γ2|•ψ

• + g−1
ψ

3∑
n=2

G1n
ψ Fn,1. (4.25)

Together with the tree expansions (2.11) and (2.12), and the decompositions (4.3)
and (4.10), Eq. (4.25) defines the functionals gψ and Gnψ for n = 2, 3.

To obtain the simple relation ψ• = ϕ̄(•), we choose

S[J ] = −1

2
J(•)U

•|•J(•). (4.26)

The right side of Eq. (4.24) then equals to ϕ̄(•) = δW
δJ(•)

. This way, we achieve

Hubbard-Stratonovich (HS) bosonization. In the next section, we calculate the
effective action and show this explicitly. For now, we focus on the decomposition
(4.10).

We have for the internal line, using Eqs. (3.41) (3.31) and ϕ̄
(•)
,• = δ•• ,

K•|• =
1

4
U•|•γab|•χ

ab|cdγcd|•U
•|• − U•|•, (4.27)

where χ2|2 = −⟨φ2φ2⟩c − ⟨φ2φ⟩cg−1⟨φφ2⟩c (see Eq. (4.13)).

K•|• is interpreted as the propagator of the composite field ϕ(•) 3. It is an internal
line for the reducible parts of the vertex. Removing a bare vertex U•|• disconnects
such contributions, implying that, besides the reducible parts Γ1•K

•|•, the vertex
In contains only U -irreducible diagrams (those that remain connected even if a bare
vertex is removed). A complete proof is given in the next section.

3For an even theory, K•|• = ϕ̄(•)ϕ̄(•) − ⟨ϕ(•)ϕ(•)⟩ is analogous to g = φ̄φ̄− ⟨φφ⟩.
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4.3. Calculation of the effective action
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Figure 4.3: Depiction of the propagator of a composite boson particle, as given by
Eq. (4.27).

To obtain an equation for I2|• from Eq. (4.7), we first compute

ψ•
φ̄,2 =

1

2
(φ̄2 − gφ̄),2γ2|•U

•|• = −1

2
g−2χ2|2γ2|•U

•|•, (4.28)

using definition (4.24) and δ
δJ1
J(•) = 0. Combining Eqs. (4.7), (4.27) and (4.28) (see

Appendix B.2) yields

Iab|• = −γab|• +
1

2
(gcdφ̄,ab − Iab|•K

•|•Ic′d′|•g
c′cgd

′d)γcd|•. (4.29)

This shows the partial irreducibility of Iab|•: removing a bare vertex cannot discon-
nect the two external indices a, b from the composite index •.

Equations (4.10), (4.27) and (4.29) correspond to the single-boson exchange
(SBE) equations (8), (6) and (B3) of [22], respectively4.

4.3 Calculation of the effective action

While rules for the diagrammatic content of the Luttinger-Ward functional in terms
of the full propagator g are well established, the corresponding rules for Γ[φ̄, ψ•] for
a general ψ• are less straightforward. For the choice ψ• = G•, the nPI community
has made considerable efforts to derive loop expansions of the effective action using
successive Legendre transformations [1, 37].

In our approach, we obtain the same result by relating the Schwinger-Dyson
(SD) equations and the decompositions for 1PI vertices to the equations of motion
J(•) = −Γ(•).

To illustrate the idea, let us use the 1PI effective action. The SD equation (3.8)
already has the form Γ1PI

1 = −ζJ1. It is fully expressed in terms of derivatives of
Γ1PI, if we use gφ̄ = (−ζΓ1PI

2 )−1 and G3
φ̄ = g3φ̄Γ

1PI
3 . Iterating the SD equation (3.8),

starting from Γ1PI ≈ S, yields Γ1PI as a sum of only 1PI diagrams [28].
To construct the composite-field effective action in an analogous way, we must

recover the sources J(•) in the SD equations and substitute J(•) = −Γ•ψ
•
,(•). This

can be done by applying the simple replacement rule

Sn[φ̄] → Sn[φ̄] + J(•)ϕ
(•)
,n [φ̄]. (4.30)

4Our I4, K
•|• and I2|• correspond to φfirr,α − 2Uα, ωα and λα of [22], respectively.
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4. Decomposition of 1PI vertices via composite fields

In what follows, we use this procedure to calculate the effective actions employed
in Secs. 4.1 and 4.2.

Two-particle irreducibility

To calculate the 2PI effective action Γ[φ̄, g], we set S[J ] = 0 and choose ψ• = g with
ϕ(2) = φ2. The sources in the SD equation (3.9) are recovered via the replacement

S2 → S2 + J(•)ϕ
(•)
,2 .

We obtain

Γ• = −1

2
S2 −

1

2
g−1 +

1

4
gS4 −

1

2

3∑
m=2

g−1G1m
ψ Fm,1, (4.31)

using ϕ
(2)
,2 = 2δ22 and J(•) = Γ•, which follows from J(•) = −Γ(•) = −Γ•ψ

•
,(•) and

ψ•
,(•) = −δ•• . The functionals Gnψ are defined via the tree expansions (2.11) and

(2.12), and the decompositions (4.3) and (4.10). To close the system, we still need
an expression for Γ1 from the SD equation (3.8).

For a bosonic (ζ = 1) theory with only cubic interactions, this last step is
unnecessary: the φ̄-dependence is trivial due to the structure (3.2). In this case
Γ2 = S2, Γ1• = −1

2S3 and Γ• = −1
2S2 + Λ•, so Eq. (4.31) reduces to

Λ• = −1

2
g−1 +

1

4
S3ggΓ

1PI
3 , (4.32)

where Γ1PI
3 as a functional of g follows from the decomposition (4.3) for n = 3. Using

ϕ̄
(•)
,abc = 0 and the structure (3.2), one finds

Γ1PI
3 = S3 + Λ•••(ggΓ

1PI
3 )3. (4.33)

Equations (4.32) and (4.33) non-perturbatively define Λ[g] through a functional
integro-differential equation depending on g and S3. While these equations cannot be
solved exactly, they admit an iterative scheme generating the perturbative expansion
of Λ[g]. Starting with Λ ≈ −1

2 ln det g and Γ1PI
3 ≈ S3, the first iteration yields

Λ ≈ −1
2 ln det g +

1
12S3g

3S3 and Γ1PI
3 ≈ S3 − (S3g)

3. The next iteration gives the
three-loop approximation

Λ ≈ −1

2
ln det g +

1

12
S3g

3S3 +
1

24
(S3)

4g6. (4.34)

This reproduces the well-known perturbative expansion of the Luttinger-Ward func-
tional [38].

U-irreducibility

Let us return to the fermionic system introduced in Sec. 4.2. We set S[J ] =
−1

2J(•)U
•|•J(•) and choose ψ• = ϕ̄(•), where ϕ(•)[φ] is defined in Eq. (4.22).

Multiplying Eq. (4.24) by (U•|•)−1 and using J(•) = −Γ•, we obtain (U•|•)−1ψ• =
1
2⟨φ

2⟩γ2|• + Γ•. With ⟨φ2⟩ = φ̄2 − g, this becomes

Γ• = (U•|•)−1ψ• − 1

2
φ̄2γ2|• +

1

2
gψγ2|•, (4.35)
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4.3. Calculation of the effective action

where gψ is defined in Eq. (4.25) using the tree expansions for the Green’s func-
tions (2.11) and (2.12), together with the 1PI vertices (4.3) and (4.10). Note that
ψ•
φ̄,1 = Γ1•K

•|• remains valid even for nonzero sources J(•) (recall the derivation of
Eq. (4.3)).

To determine the φ̄-dependence of Γ[φ̄, ψ•], we recall the equations of motion
Γa = −Jaϕ̄a,a = −Jaζ and −ζJ1 = Γ1PI

1 , which imply Γ1 = Γ1PI
1 . We recover the

source in the SD equation (3.8) by adding J(•)ϕ
(•)
,1 = (12⟨φ

2⟩S4 − γ2|•ψ
•)φ̄. This

leads to

Γ1 = S1 −
1

2
φ̄3S4 − φ̄γ2|•ψ

• +
1

6
S4G

3
ψ, (4.36)

where G3
ψ = (gψ)

3Γ1PI
3 .

To compute Γ[φ̄, ψ•], we iterate Eqs. (4.25), (4.35) and (4.36) using the de-
compositions for the first two 1PI vertices. In the first-order approximation, gψ ≈
(S2[0] + γ2|•ψ

•)−1 and Γ1 ≈ S1 − 1
2 φ̄

3S4 − φ̄γ2|•ψ
•. This, together with Eq. (4.35),

yields

Γ[φ̄, ψ•] ≈ S − 3Sint −
1

2
φ̄2γ2|•ψ

• +
1

2
ψ•(U•|•)−1ψ• +

1

2
ln det

(
S2[0] + γ2|•ψ

•),
(4.37)

which is the one-loop 1PI effective action for the theory bosonized via the Hubbard-
Stratonovich transformation [39].

Now let us show that Γ[φ̄, ψ•], when expanded in powers of φ̄, contains only
diagrams that cannot be disconnected by removing a bare vertex U•|•. To this end,
consider Eqs. (4.35), (4.36), (4.27) and (4.29).

Assume that Γ at some iteration is given by a sum of U -irreducible diagrams
with external legs contracted by φ̄. This implies that In and In|• can be disconnected
into two parts by removing a bare interaction, provided that each part contains at
least one external index from n 5. When gψ = (I2)

−1 is expanded in powers of φ̄,
this property is preserved: gψ can still be disconnected (by removing a bare vertex)
into two parts, each containing one external index. In the next approximation for
Γ obtained from Eqs. (4.35) and (4.36), new contributions arise from

∫
gψγ2|•dψ

•

and
∫
dφ̄S4(gψ)

3I3. From the properties of gψ and I3 stated above, it follows that
these contributions are U -irreducible 6. Since the lowest-order approximation of Γ,
Eq. (4.37), is U -irreducible, it follows by induction that all higher-order corrections
preserve this property. Therefore, Γ is given by a sum of U -irreducible diagrams
only.

5For I2|• this follows directly from Eqs. (4.29) and (4.27). For In, the result follows from the fact

that Γ1•K
•|• is a sum of connected but U -reducible diagrams. For I2 this agrees with Eq. (4.25).

6The key point is that both gψ and (gψ)
3I3 disconnect, after removing bare vertex, into two

parts each containing an external index. Contraction of their external indices with a bare vertex
makes them U -irreducible.
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Chapter 5

1PI vertices via Green’s functions
of composite field operators

The standard way to nonperturbatively compute the 1PI vertices is to calculate
them in terms of the amputated correlation functions using the tree expansion (see
Eqs. (2.11)-(2.13)). When one computes a 1PI vertex in this manner, the uncertainty
in the inversion of g arising from non-exact numerical data contributes for each
external index. To reduce the effect of the amputations, one may instead use an
alternative formula (called estimator) for the 1PI vertex expressed solely in terms
of the correlation functions and the self-energy [24–26]. At the end of this chapter,
we present a simple rule (Fig. 5.2) to get such an estimator from the expression of
the 1PI vertex in terms of the amputated correlation functions.

For theories with only cubic interactions, such as QED, this result is well-known1:
when computing the connected part of the scattering matrix involving photons, one
can use a current operator in place of the product of the inverse bare propagator
(with an external index) and a photon field operator in the connected correlation
function. For theories with quartic interactions involving fermions, the correspond-
ing result is known as the symmetric improved estimators [26] (shown in Fig. 5.2 for
the first two vertices).

To express the 1PI vertex in terms of Green’s functions of composite field oper-
ators, we use

Γ1PI
n = Sn + (

δ

δψ
+ F•,1K

•|• δ

δG• )
n−1F•,1γ

•
•G

•, (5.1)

which is the formula (3.13) written in condensed form and generalized to fermions. It
holds for a theory with cubic and quartic interactions. To simplify the derivations,
we assume that for fermionic systems (ζ = −1) only even correlation and vertex
functions are nonzero.

The right side of Eq. (5.1) can be evaluated as follows. First, compute all deriva-
tives δ

δψ , which act only on F•,1 containing the external index (since δ
δψΓ••... =

δ
δψΛ••... = 0). The remaining derivatives are of the form F•,nK

•|• δ
δG• . Analogously

1It can be found in many QFT textbooks; for example, see Chapter 14.8.3 in [40].
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Figure 5.1: Definitions of composite field Green’s functions as given by Eqs. (5.3),
(5.7) and (5.8)

to g δ
δφ̄ = δ

δJ1
, we have from Eq. (3.41)

K•|• δ

δG• = G•
,(•)(

δϕ̄(•)

δJ(•)
−G(•)1g−1 δϕ̄

(•)

δJ1
)

δ

δϕ̄(•)

= G•
,(•)(

δ

δJ(•)
−G(•)1g−1 δ

δJ1
), (5.2)

where we added a zero term G•
,(•)(

δφ̄
δJ(•)

−G(•)1g−1 δφ̄
δJ1

) δδφ̄ to the expression and used

δϕ̄a

δJb
δ
δϕ̄a

= δ
δJb

(recall that ϕa = φa).

Contracting (5.2) with F•,n naturally introduces the following composite field
operators and their corresponding Green’s functions.

The first one is δ
δφa1 ...

δ
δφan Sint, where Sint[φ] is the interacting part of the action

S[φ]. This operator corresponds to the lower index (a1...an) (or just (n) if condensed)
in the correlation function

G(a1...an) ≡ F•,a1...anG
•
,(•)

δ

δJ(•)
W = ⟨Sint,a1...an [φ]⟩, (5.3)

where we evaluated F•,a1...anG
•
,(b1...bm) = 1

m!Sa1...anbm...b1 [0], using Eqs. (3.3), (A.1)

and (A.2). In a theory with cubic and quartic interactions, G(n) vanishes for n > 2.
We extend the definition of the Green’s function (2.1) to include the lower index

(n), with the order of indices matching the order of operators in the expectation
value. For example, Ga(b) = ζG(b)

a = −⟨φa δSint

δφb ⟩c. Using this, the SD equation

(3.9) can be rewritten as

Σ2 = G(1)
1g−1 = −⟨δSint

δφ
φ⟩cg−1, (5.4)

where the self-energy is defined as Σ2 ≡ −g−1 − ζS2[0]. This formula is known as
the asymmetric estimator [24]; and for completeness we derive it in Appendix C.

When contracted with F•,1, the derivative (5.2) becomes

δ

δJ1
≡ F•,1G

•
,(•)(

δ

δJ(•)
−G(•)1g−1 δ

δJ1
) (5.5)

= F•,1G
•
,(•)

δ

δJ(•)
− Σ2

δ

δJ1
, (5.6)
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5.1. Estimators for asymptotic classes

where we used Eq. (5.4). The first term on the right side generates the operator δSint
δφ

when applied to W . This motivates the introduction of the second composite field
operator ( δSint

δφa − Σabφ
b), which corresponds to the lower index a in the correlation

function

Ga ≡
δ

δJa
W = ⟨δSint

δφa
− Σabφ

b⟩. (5.7)

We further extend the Green’s function definition (2.1) to include the lower
indices (n) and 1, with the order of indices again corresponding to the operator

ordering in the expectation value. General connected (w.r.t. φ, δ
2Sint
δφ2 and δSint

δφ −
φΣ2) Green’s function Gm(2)kl is

Gm(2)kl ≡ (−1)m+k+l−1
〈
φm
(δ2Sint
δφ2

)k(δSint
δφ

− φΣ2

)l〉
c
. (5.8)

Diagrammatic definitions are summarized in Fig. 5.1.
For example, using Eq. (5.4), we get

G2 = −⟨δSint
δφ

δSint
δφ

⟩c − ⟨δSint
δφ

φ⟩cg−1⟨φδSint
δφ

⟩c. (5.9)

This coincides with the right side of Eq. (3.16). The symmetric estimator for the
self-energy can then be written as (see Appendix C)

ζΣab = Sabc[0]φ̄
c +G(ab) +Gab. (5.10)

In what follows, we present two approaches for obtaining estimators for 1PI
vertices. In section 5.1, following the idea outlined above, we first evaluate the ψ-
derivatives in Eq. (5.1), yielding the asymptotic class decomposition. We then derive
simple rules to express each class in terms of Green’s functions of composite field
operators. In section 5.2, we show how to get estimators for 1PI vertices directly
from their representation in terms of amputated Green’s functions, as illustrated in
Fig. 5.2.

5.1 Estimators for asymptotic classes

Generalizing Eqs. (3.22) and (3.26), the 1PI vertices can be parametrized as

Γ1PI
m>2 = Sm +

⌊m/2⌋∑
k=0

Pcmk K
m−k−1
m , (5.11)

where Kn
m is an asymptotic class depending on n external frequencies and momenta,

assuming frequency- and momentum- independent bare interactions S3[0] and S4[0].
The coefficient cmk = m!

2kk!(m−2k)!
counts the number of ways to choose k unordered

pairs from n indices, and ⌊x⌋ denotes the greatest integer less than x. We have

Km−k−1
m = (F•,2)

k(F•,1)
m−2kK•m−k

(5.12)

K•n = (K•|• δ

δG• )
nΩ[G•]

= (K•|• δ

δG• )
n−2K•|•γ•• , (5.13)
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5. 1PI vertices via Green’s functions of composite field operators

where the order of external (composite) indices is the same on both sides of Eqs. (5.12)-

(5.13); and the order of bullet indices in K•m−k
is the same as order of products of

F•,n. For example, K1
abcd =

∑3
n,m=2 Fe1...en,abFf1...fm,cdK

e1...en|f1...fmζm.

Eq. (5.13) has a structure analogous to Gnφ̄ = (gφ̄
δ
δφ̄)

n−2gφ̄ (see Eq. (2.9)). Thus,

K•n admits its own tree expansion. For example, if all external bullet indices are
bosonic (• = 2), so that no factors of ζ appear, the first two expansions are

K•3 = (K•|•)3Γ•3 (5.14)

K•4 = (K•|•)4Γ•4 + P3(K
•|•)2Γ•3K

•|•Γ•3(K
•|•)2. (5.15)

To express Km
n in terms of Green’s functions of composite field operators, we

start from its definition (5.12) and use Eq. (5.2) to calculate K•m :

K•m = (G•
,(•))

m−2(
δ

δJ(•)
−G(•)1g−1 δ

δJ1
)m−2K•|•γ•• . (5.16)

To evaluate derivatives in (5.16), we will derive below a simple rule (5.22) that
generates the tree expansion, in analogy with Eq. (2.13). It is convenient to focus
on

Kn−1
n = (F•,1)

nK•n , (5.17)

from which K•n can be obtained by removing F•,1 for each external index (this step
will be explained shortly).

Using Eqs. (5.16) and (5.5), we find

Kn−1
n = (

δ

δJ1
)n−2K•|•(F•,1)

2. (5.18)

From Eq. (3.40) and (5.18) for n = 2, we obtain

K1
2 = K•|•(F•,1)

2 = G1(1). (5.19)

Using G1
1 = δφ̄

δJ1 = 0, we find G2 = G1(1), hence K1
2 = G2. Equation (5.18) then

reduces to

Kn−1
n = (

δ

δJ1
)n−2G2. (5.20)

Since G1
1 = 0, we have δ

δJ1G2 = G3, and therefore

K2
3 = G3. (5.21)

We obtain the rule for δ
δJ1G

...
n :

δ

δJ1
Gn

m = Gn+1
m − Pn

δ

δJ1
(G(1)

1g−1)G1
n−1

m
= Gn+1

m − PnG2
1g−1G1

n−1
m
,

(5.22)

where only lower external indices are permuted by Pn and we used

δ

δJ1
(F•,1G

•
,(•)) = 0. (5.23)
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5.1. Estimators for asymptotic classes

Noticing that the recursive relation (5.22) is effectively the same as Eq. (2.13),
we conclude that Kn−1

n is given by the sum of all tree diagrams constructed from
Gml, where internal upper indices contracted using (−g−1).

For example, for K4
3 one finds:

K3
4 = G4 − P3G2

1g−1G1
2. (5.24)

From the rule (5.22), it follows that each external index in Kn−1
n will appear

in a Green’s function of the form G......1, or more precisely in F•,1 (see Eqs. (5.7),
(5.4) and (5.3)). To obtain K•n from Kn−1

n , we remove one contraction F•,1 for each
external index.

For example, from K1
2 = G2 = K•|•(F•,1)

2 we remove two contractions F•,1,
recovering K•|•.

The general asymptotic class Kn−1
m can be obtained from K•m (see definition

(5.12)), or more simply fromKm−1
m by making the necessary replacements F•,1 → F•,2.

For each such replacement in G1
..., formulas (5.3)-(5.7) imply

G1
... → G(2)

... −G(2)
1g−1G1.... (5.25)

For example, starting from K1
2 = G2 = K•|•(F•,1)

2, replacing one F•,1 → F•,2
(equivalently, applying (5.25) to one lower index) yields:

G2 → G(2)1 −G(2)
1g−1G1

1 = G(2)1, (5.26)

where we used G1
1 = 0. Thus

K1
3 = G(2)1. (5.27)

Similarly:

K1
4 = G(2)(2) −G(2)

1g−1G1
(2), (5.28)

K2
4 = G(2)2 −G(2)

1g−1G1
2. (5.29)

To obtain the Green’s function representation of the 1PI vertices in terms of
composite field operators, we substitute these results for asymptotic classes into the
decomposition (5.11).

From Γ1PI
3 = S3 + P3K1

3 +K2
3, we find

Γ1PI
3 = S3 + L3, (5.30)

where L3 ≡ P3G(2)1 +G3.
From Eq. (3.26) we obtain:

Γ1PI
4 = S4 + L4 − P3L2

1g−1L1
2, (5.31)

where L4 = G4 + P6G(2)2 + P3G(2)(2) and L
1
2 = G1

2 + G1
(2). For the even theory

(L1
2 = 0) with only quartic interactions, this result reduces to Eq. (131) of Lihm

[26]2.
Estimator (5.31) has the tree expansion form as in Eq. (5.24) or, equivalently,

for Γ1PI
n , when expressed in terms of amputated correlation functions (see Fig. 5.2)

via Eqs. (2.11)-(2.12). We will prove this result for the general vertex in the next
section.

2Specifically, we choose fermionic system of section 4.2. The operators δSint
δfi

and δSint

δf
†
i

then

correspond to qσ = [dσ, Hint] and (−q†σ) of [26], respectively.
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Figure 5.2: Three- and four-point 1PI vertices expressed in terms of the amputated
correlation functions (left side) and their corresponding symmetric estimators (right
side) for a theory with cubic and quartic interactions. To obtain the estimator for
an np vertex from the left side expression, we add a bare vertex Sn ≡ ( δδφ̄)

nS[φ̄]
and apply the rule in the left upper corner. Diagrammatic definitions are given in
Fig. 5.1.

5.2 Estimators for 1PI vertex from its expression in terms
of the amputated Green’s functions

Here, we show that the symmetric estimator for the N -point 1PI vertex can be
obtained directly from its representation in terms of amputated correlation functions
by applying the following simple rules (see Fig. 5.2):

1. Add the bare vertex SN [φ̄]

2. Replace each amputated correlation function with n external and m internal
indices, Gm+ng−n, by Lmn defined as

Lmn ≡ Gmn +

⌊n/2⌋∑
k=1

PcnkG
m

(2)kn−2k, (5.32)

where cnk = n!
2k(n−2k)!k!

is the same as in Eq. (5.11) and only lower indices are per-

muted by Pcnk . The sum in Eq. (5.32) runs over all possible unique pairings of n
indices in Gmn into composite ones.

For an even theory, from the expression Γ1PI
6 = g−6G6 − P10g

−6(G4g−1G4), we
immediately obtain the estimator for the six-point 1PI vertex:

Γ1PI
6 = L6 − P10L3

1g−1L1
3, (5.33)

where L6 = G6 + P15G(2)4 + P45G(2)(2)2 + P15G(2)(2)(2) and L
1
3 = G1

3 + P3G
1
(2)1.

In P3G
1
(2)1, only lower indices are permuted by P3.

We begin the proof with the symmetric estimator for the self-energy, Eq. (5.10),
which can be written as

Γ1PI
2 = S2 + L2 − 1

2S4φ̄
2, (5.34)

where L2 = G2 +G(2).
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5.2. Estimators for 1PI vertex from its expression in terms of the amputated
Green’s functions

We now seek a general formula for the evaluated derivative δ
δφ̄L

m
n. Here, ”eval-

uation” (denoted by =⇒ ) means that δ
δψ in δ

δφ̄ = δ
δψ + δ

δJ1 acts only on F•,1
containing the external index (see Eq. (5.1)).

By following a derivation similar to Eq. (5.22), we obtain:

δ

δφ̄
Lmn =⇒ Lmn+1 − PnL2

1g−1Lm+1
n−1. (5.35)

A more detailed derivation is given in Appendix C.
One can then check that the estimator for the three-point vertex, Eq. (5.30),

follows from Eq. (5.34) by applying3 (5.35) and using L1
1 = G1

1 = 0. Applying the
rule a second time yields the estimator for Γ1PI

4 , Eq. (5.31).
For higher-order vertices, we need the derivative of the internal g−1:

δ

δφ̄
g−1
φ̄ = −g−1(

δ

δJ1
g)g−1 =⇒ −g−1L1

2g−1. (5.36)

Using this and the rule (5.35), we can compute

Γ1PI
n = Sn + (

δ

δφ̄
)n−3L3. (5.37)

We find that the symmetric estimator for N -point 1PI vertex is obtained by adding
to the bare vertex SN all tree diagrams constructed from Lmn, where internal upper
indices are contracted with (−g−1).

Thus, a 1PI vertex can be expressed in terms of correlation functions by summing
all tree diagrams constructed either:

1. From Gm+ng−n only and (−g−1) as internal line – this gives the standard
representation in terms of amputated Green’s functions; or

2. Lmn only and (−g−1) as internal line – this gives the symmetric estimator.

This implies a simple transformation rule to obtain the estimator from the ampu-
tated representation: add the bare vertex SN and replace each amputated correlation
function Gm+ng−n (having n external and m internal indices) with Lmn given by
Eq. (5.32).

For the first two vertices, Γ1PI
3 and Γ1PI

4 , this correspondence is illustrated in
Fig. (5.2).

In a theory with only cubic interactions, Lmn = Gmn, so the substitution
amounts to reducing each product of the field operator φ with the inverse bare
propagator (−S2[0]) by the composite operator δSint

δφ = 1
2φ

2S3[0] for each external

amputation g−1 = −S2[0]− Σ2. For a gauge field, δSint
δφ is the current to which the

field couples.
When quartic interactions are present, this reduction also affects the already

reduced external indices, yielding additional terms involving the composite operators
δ2Sint
δφ2 .

3For the last term in Eq. (5.34), note that external indices are in S4 and δ
δJ1 φ̄ = 0, so it drops

out when one differentiates.
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Chapter 6

Summary of main results

Our central result is that, similarly as connected Green’s function are constructed
from 1PI vertices via tree graphs, the vertex functions themselves admit tree expan-
sions with respect to composite fields. This is shown in Fig. 6.1.

The single-boson exchange decomposition, symmetric estimator, the parquet de-
composition and asymptotic classes are all special cases of this tree expansion for
different choices of composite fields. Independent of the choice of composite indices,
the tree-like structure of the resulting equations remains the same.
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Figure 6.1: Overview of the main results. Rows show different tree expansions of
n-point objects, with n increasing across the columns. While the structure of the
decomposition remains the same, the details depend on the choice of independent
variables ψ of the effective action Γ[ψ], which are given on the left. Row 1: Tree ex-
pansion of connected Green’s functions in terms of 1PI vertices (Ch. 2). Row 2: Tree
expansion of 1PI vertices in terms of 2PI vertices, yielding the parquet decomposition
(Sec. 4.1). Row 3: Tree expansion of 1PI vertices in terms of U -reducible vertices,
yielding the single-boson exchange decomposition (Sec. 4.2). Row 4: Tree expansion
of asymptotic classes in terms of 3PI vertices (Sec. 5.1). Row 5: Decomposition of
1PI vertices in terms of asymptotic classes (Sec. 5.1). Row 6: Tree expansion of the
non-bare part of 1PI vertices in terms of Green’s functions of composite field oper-
ators, yielding symmetric-improved estimators (Sec. 5.2). Diagrammatic notations
are explained in Figures. 2.1, 3.1, 4.2, 4.3 and 5.1.
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Chapter 7

Conclusion

In this work, we have shown how non-perturbative equations for 1PI vertices in
strongly correlated electron systems can be unified using the inverse Legendre trans-
form of the composite field effective action.

In Sec. 3.1, starting from the 3PI effective action, we derived the symmetric
self-energy estimator, the Bethe-Salpeter equations, the parquet formalism, and
asymptotic class decomposition. In Sec. 4.2, we demonstrated that the single-boson
exchange (SBE) decomposition can be also recovered using a local composite field.
Then, in Sec. 5.2, we reproduced the symmetric estimator for the four-point 1PI
vertex.

This unification enabled us to extend the results in two main directions:

1. Generalization to higher-order vertices, using simple tree diagrams (Fig. 6.1).
In particular, we can obtain a decomposition for the six-point vertex, which
plays a key role in nonlinear responses [41–43]. For such a vertex, combina-
torial counting in diagrammatic approaches is challenging [44], making the
functional formulation particularly attractive.

2. Extension to alternative decompositions – as shown in Ch. 4, the parquet and
SBE formalisms can be generalized to composite fields, which may be highly
non-linear in terms of field expectation values. Such choices arise naturally in
situations with symmetry breaking. For example, in superconductors under
external electromagnetic fields, the Goldstone mode can be introduced via a
gauge transformation of the order parameter [39]. Using this mode as the
composite field then suggests a new decomposition analogous to SBE.

In QCD, the effective action defined via a Legendre transform in terms of
both fundamental fields (quarks, gluons, ghosts) and non-linear composite
fields (hadrons) has already been computed within the functional renormal-
ization group (fRG) framework [45, 46]. A natural direction for future work
is to extend the combined parquet–fRG framework [47, 48] to such non-linear
composite fields.

We emphasize that many of the techniques used for correlated electron systems
have direct analogues in other strongly interacting theories. Bethe–Salpeter-type
equations, central to both parquet and SBE schemes, were first developed in parti-
cle physics to describe bound states [49] and multi-particle scattering [35]. Similarly,
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7. Conclusion

the study of infrared dynamics and out-of-equilibrium phenomena in QCD also de-
mands non-perturbative methods, for which n-particle irreducible (nPI) techniques
[37] provide controlled approximations. Finally, the rule for deriving symmetric es-
timators has an analogue in QED, where the photon field is replaced by the current
it couples to [40]. Our results can be straightforwardly adapted to such systems
with mixed statistics.

In summary, the combination of the inverse Legendre transform of composite-
field effective actions with tree-expansion rules offers a unified functional framework
for strongly interacting systems of widely different kinds—from QCD to correlated
electrons. Its universality makes it possible to express diverse diagrammatic schemes,
such as parquet, SBE, or symmetric estimators, in a single algebraic language. This
opens the door to building dedicated computer algebra systems that operate directly
on these functional objects, rather than on individual Feynman diagrams. Such a
system could automate the derivation of flow equations, manage the combinatorics
of high-rank tensors, and handle the Keldysh structure of vertices and Green’s func-
tions—tasks that become prohibitively tedious when done by hand. By embedding
the functional non-perturbative rules into symbolic computation, one could stream-
line real-frequency calculations and make higher-order vertex treatments tractable
across fields as diverse as condensed matter and high-energy physics1.

1While tools like DoFun [50] exist in particle physics, no comparable project is available for
strongly correlated electron systems

38



Appendix A

Structure of 3PI effective action
and cluster decomposition formula

A.1 Proof of the structure (3.2)

To derive Eq. (3.2), we use ϕ(a1...an) ≡ φa1 ...φan for n = 2, 3 and set S[J ] = 0 (see
Eq. (3.30)). The two-point correlation function (Eq. (2.3)) can then be written as

gab = φ̄aφ̄b − ϕ̄(ab). (A.1)

Similarly, for Gabc one finds

Gabc = 2φ̄aφ̄bφ̄c − P3φ̄
aϕ̄(bc) + ϕ̄(abc), (A.2)

where the definition of Pn is explained in Sec. 2 (see Eq. (2.12)). From relations
(A.1)-(A.2), one can express ϕ̄a as a functional of φ̄ and Gn. This allows to verify
Eq. (3.43) and ϕ̄a,d = ⟨ϕa,d[φ]⟩.

We also need the relation ⟨ϕa,d[φ]⟩γbaJb = −⟨S,d[φ]⟩, which follows from the

trivial identity
∫
Dφ δ

δφd (e
−S[φ]−Jaϕa[φ]) = 0. We then obtain the Schwinger-Dyson

equation (SDE)

Γ,d[φ̄, g,G
3] = ϕ̄a,dΓ,a = −ϕ̄a,dγbaJb

= ⟨S,d⟩ = S,d[φ̄]−
1

2
gcbS,bcd[φ̄] +

1

3!
GcbaS,abcd[φ̄]. (A.3)

Formally integrating this equation, with integration constant Λ[g,G3], yields Eq. (3.2).

A.2 Cluster decomposition formula

Let us choose ψ• = g and ϕ(2)[φ] = φ2 for • = 2. Here, we show how to relate
K•|• to connected Green’s functions via Eq. (3.41). The resulting formula does not
depend on the action, as it is merely a relation between Green’s functions. It is
convenient to perform the calculation in a theory with only cubic interactions, since
in this case we can exploit the structure (3.2).

The derivatives K•|• δ
δg and δ

δφ̄ = δ
δψ + F•,1K

•|• δ
δg commute, because K•|• =

(−Λ••)
−1 is ψ-independent and F2,1 = −1

2S3[0] is constant. The two-point 1PI
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vertex Γ1PI
2 can then be evaluated either as (−g−1) from Eq. (2.7), or as δ2

δφ̄2 (S +

Ω)+ϕ
(2)
,2 J(2) using Eq. (3.4), with the source recovered via S → S+ϕ(•)J(•). Applying

derivative K•|• δ
δg to both representations yields

K•|• δ

δg
(−g−1) = (K•|• δ

δg
)
δ2

δφ̄2
(S +Ω)− 2δ•2 , (A.4)

where we used K•|• δ
δg (J(•)ϕ

(•)
2 ) = 2K•|•Γ••δ

•
2 = −2δ•2 together with J(•) = Γ•.

Evaluating δ
δg gives K•|•g−2 on the left side. On the right side, we first commute

the derivatives K•|• δ
δg and δ2

δφ̄2 , and then use K•|• δ
δgΩ = g• to identify gφ̄,2. The

relation (A.4) then simplifies

K•|2g−2 = g•φ̄,2 − 2δ•2 , (A.5)

which is precisely Eq. (4.13). In an even theory this further reduces to Eq. (3.20)
with the help of Eqs. (2.8) and (2.12).
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Appendix B

Bethe-Salpeter-type equations

In this Appendix we derive the Bethe-Salpeter equations (4.7) and (4.29).

B.1 Proof of Eq. (4.7)

We consider Γ•• and Γ1• as functionals of φ̄ at ψ• = ψ•
φ̄.

From K•|• = (−Γ••)
−1 and Eq. (3.46), we obtain K

•|•
,1 Γ•1 = K•|•(Γ••),1ψ

•
φ̄,1.

Substituting this result into ψ•
φ̄,2 yields the Bethe-Salpeter equation for I2|•, Eq. (4.7):

ψ•
φ̄,2 = K•|•[(Γ•1),1 + (Γ••),1ψ

•
φ̄,1] = K•|•I2|•, (B.1)

where we have used the decomposition Iab|• = Γ•abψ
a
φ̄,aψ

b
φ̄,b = Γ•abψ

b
φ̄,b+Γ••bψ

b
φ̄,bψ

•
φ̄,a.

B.2 Proof of Eq. (4.29)

Using ψ•
φ̄,2 = I2|•K

•|• and Eq. (4.28), we obtain −1
2U

•|•γ2|•χ
2|2g−2 = K•|•I2|•.

Thus, Eq. (4.27) can equivalently be written as

K•|• = −U•|• − 1

2
K•|•I•c′d′g

c′cgd
′dγcd|•U

•|•. (B.2)

Together with Eq. (4.28) this reduces the BS equation ψ•
φ̄,ab = Iab|•K

•|• to

−1

2
(gcdφ̄,ab − 2δcdab)γcd|•U

•|• = −(Iab|• +
1

2
Iab|•K

•|•I•c′d′g
c′cgd

′dγcd|•)U
•|•. (B.3)

Finally, multiplying both sides from the right by (−U•|•)
−1 yields Eq. (4.29).
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Appendix C

Estimators for self-energy and
general vertex

In this appendix, we derive estimators for the self-energy (Eqs. (5.4) and (5.10)) and
then prove Eq. (5.35). We set J(•) = 0.

C.1 Self-energy estimators

Using relation (3.43), one can rewrite Eq. (3.8) as

Γ1PI
1 = S1 +G(1) − ϕ(•)G•

,(•)F•,1, (C.1)

which also holds for fermionic systems.

We apply δ
δφ̄ to both sides of Eq. (C.1):

Γ1PI
2 = S2 +

δ

δφ̄
(G(1) − ϕ(•)G•

,(•)F•,1), (C.2)

and, depending on how the last two terms are handled, derive the asymmetric
(Eq. (5.4)) and symmetric (Eq. (5.10)) estimators for the self-energy Σ2, defined
as

Σ2 ≡ −g−1 − ζS2[0] = ζ
(
Γ1PI
2 − S2[0]

)
. (C.3)

Asymmetric estimator

To obtain the asymmetric estimator, we use G•
,(•)F•,1 = 1

2!δ
(2)
(•)S3[0] +

1
3!δ

(3)
(•)S4[0]

(as in Eq. (5.3)) for each term in the brackets, which gives δ
δφ̄(ϕ

(•)G•
,(•)F•,1) =

φ̄S3[0] +
1
2! φ̄

2S4[0]. Using δ
δφ̄ = g−1 δ

δJ1
, we get δ

δφ̄G(1) = g−1G1
(1). Substituting

these results into Eq. (C.2) yields Eq. (5.4):

ζΣ2 = g−1G1
(1), (C.4)

where for the left side of Eq. (C.2), we also used Γ1PI
2 = (−ζg)−1 (see Eq. (2.7)).
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Symmetric estimator

To obtain the symmetric estimator, we write δ
δφ̄ = δ

δψ + δ
δJ1 for the last two terms

in Eq. (C.2) and find

Γ1PI
2 = S2 +G(2) +G1(1) − ϕ(•)G•

,(•)F•,2, (C.5)

where we used that δ
δψ acts only on F•,1 with the external index (see Eq. (5.1)), and

that δ
δJ1 (F•,1G

•
,(•)) = 0, so δ

δJ1 (F•,1G
•
,(•)ϕ

(•)) = 0 and δ
δJ1G(1) = G1(1).

Using S2 −F•,2G
•
,(•)ϕ

(•) = S2[0] + φ̄S3[0] and the definitions (5.3) and (5.7), one

then obtains the symmetric self-energy estimator, Eq. (5.10),

Σ2 = S3[0]φ̄+G(2) +G(1)(1) −G(1)
1g−1G1

(1). (C.6)

C.2 Proof of Eq. (5.35)

We have for δ
δψGn:

δ

δψ
Gn =⇒ PnF•,2G

•
,(•)(G

(•)
n−1 −G(•)1g−1G1

n−1)

= PnG(2)n−1 − PnG(2)
1g−1G1

n−1. (C.7)

In total, using also Eq. (5.22),

δ

δφ̄
Gn =⇒ Gn+1 + PnG(2)n−1 − PnL2

1g−1G1
n−1, (C.8)

where L2
1 = G(2)

1 +G2
1. Note that this formula can easily be generalized to cases

where additional upper indices or lower composite ones (2) are added to Gn, since
the derivative δ

δψ will not act on F•,2.
From Eq. (C.8), it is then straightforward to prove Eq. (5.35), using definition

(5.32).
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