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The integer quantum Hall transition (IQHT) is one of the most mysterious members of the family
of Anderson transitions. Since the 1980s, the scaling behavior near the IQHT has been vigorously
studied in experiments and numerical simulations. Despite all efforts, it is notoriously difficult to
pin down the precise values of critical exponents, which seem to vary with model details and thus
challenge the principle of universality. Recently, M. Zirnbauer1 [Nucl. Phys. B 941, 458 (2019)] has
conjectured a conformal field theory for the transition, in which linear terms in the beta-functions
vanish, leading to a very slow flow in the fixed point’s vicinity which we term marginal scaling.
In this work, we provide numerical evidence for such a scenario by using extensive simulations of
various network models of the IQHT at unprecedented length scales. At criticality, we show that
the finite-size scaling of the disorder averaged longitudinal Landauer conductance is consistent with
its recently predicted fixed-point value and a third-order expansion of RG beta functions. In the
future, our numerical findings can be checked with analytical results from the conformal field theory.
Away from criticality we describe a mechanism that could account for the emergence of an effective
critical exponents νeff , which is necessarily dependent on the parameters of the model. We further
support this idea by numerical determination of νeff in suitably chosen models.

I. INTRODUCTION

A two-dimensional electron gas subject to a strong per-
pendicular magnetic field exhibits the integer quantum
Hall effect. It is usually described in a non-interacting
approximation where the number of filled Landau levels
determines the (dimensionless) quantized Hall conductiv-
ity σxy. Disorder is essential as it broadens the otherwise
flat Landau bands and localizes eigenstates on a scale ξ,
so that beyond this scale the longitudinal conductivity
vanishes, σxx = 0. This holds except when the energy
E (or field) is tuned to a critical value Ec where ξ di-
verges. The associated integer quantum Hall transition
(IQHT)2 belongs to the family of Anderson transitions3

and is believed to be governed by a conformally-invariant
fixed point in the parameter space that includes σxx and
σxy.

For a long time the commonly accepted paradigm of
the IQHT fixed point4 was that of a conventional critical
point with renormalization group (RG) beta functions
whose expansions in the vicinity of the fixed point con-
tain linear terms. In this case the RG flow equations for
the deviations of the longitudinal and Hall conductivities
from their fixed-point values

δ−(l) ≡ σxx(l)− σ∗xx, δ+(l) ≡ σxy(l)− σ∗xy, (1)

take the form

dδ−
dl

= yδ− + ...,
dδ+
dl

= ν−1δ+ + ... . (2)

Here l is the logarithmic RG scale, and the fixed-point
values of the conductivities, which also serve as coupling
constants in the field theory, are σ∗xy = 1/2 and σ∗xx ' 0.6

where the latter is not known precisely.5 Here and in the
following, units of e2/h are implicit for σxx and σxy. The

ellipses denote higher order terms in δ± that are usually
neglected close to the fixed point δ± = 0.

Let us note in passing that in a finite system character-
ized by length L the RG scale l cannot exceed ln(L/L0).
The initial L0 (for which l = 0) is the scale beyond which
a continuum field-theory description becomes valid. In
numerical simulations of discrete models one has to care-
fully choose L0 ensuring that the system is sufficiently
close to the fixed point, and the RG equations with ex-
panded beta functions are valid. Upon choosing an ap-
propriate L0 we can extract universal data in the scaling
regime between L0 and L.

The critical exponents ν > 0 and y < 0 determine the
scaling behavior of observables in the vicinity of the fixed
point, e.g. the power-law divergence of the localization
length ξ(E) ∼ |E − Ec|−ν . In light of the notorious
difficulty with analytical approaches to the IQHT, this
relation is at the heart of a long history of numerical
finite-size scaling studies, mostly employing the Chalker-
Coddington (CC) network model.6–16 These works report
ν = 2.56–2.62 but the leading irrelevant exponent |y| '
0.4 is surprisingly small and comes with large error bars.
Consistent value of ν were also reported in a stroboscopic
model of the IQHT,17 as well as in a recent lattice model
simulations.18–20

In contrast, Zhu et al.21 reported a slightly different
but incompatible value ν = 2.46–2.50 obtained from scal-
ing the total number of conducting states in both lattice
and continuum models projected to the lowest Landau
level. Even larger deviations were reported in a struc-
turally disordered version of the CC model22,23 where ex-
ponents as low as ν ≈ 2.37(2) were observed. In a recent
study of models of disordered Dirac fermions, a collabora-
tion involving the present authors obtained ν ≈ 2.33(3)–
2.53(2) depending on the energy.24 Such disordered Dirac
fermions were conjectured before to be in the IQHT uni-
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FIG. 1. Estimates of relevant exponent ν from various numer-
ical studies carried between 2009 and present show statisti-
cally significant discrepancies between microscopic models in
the IQHT universality class.10–24 Studies before 2009 did not
take into account finite-size corrections to scaling, whose im-
portance in elucidating the true critical behavior was revealed
by Slevin and Ohtsuki in 2009.10

versality class.25 We summarize post-2009 results for ν
in Fig. 1.

To sum up, the IQHT sets itself apart from other An-
derson transitions in two ways: (i) A significant appar-
ent variability of numerical estimates of ν across different
models assumed to be in the same universality class; (ii)
A very small (and possibly vanishing12,16,18) leading ir-
relevant exponent |y|.

Although (i) might be rationalized by finite size effects
or the occurrence of novel universality classes, there is
a more radical and intriguing alternative explanation:
What if the conventional paradigm of a critical fixed
point with linear beta functions does not apply to the
IQHT? In Ref. 1, Zirnbauer proposed a concrete confor-
mal field theory (CFT) for the IQHT, which, in striking
contrast to all other proposals comes without relevant
or irrelevant perturbations. All physically allowed per-
turbations turn out to be marginal, implying ν−1 = 0
and y = 0. The theory moreover predicts the specific
fixed-point value

σ∗xx =
2

π
≈ 0.6366 (3)

for the longitudinal conductivity, which is related to one
of the coupling constants in the theory. These results
were partially based on earlier developments.26,27

In this work, we explore the consequences of such a
marginal scaling scenario on the level of the RG flow
equations, and present numerical evidence for its validity.
We set the stage by discussing the form of the sub-leading
terms on the right-hand sides of the flow equations (2)
once the linear terms vanish (Sec. II). Along the critical
line δ+ = 0, the equation for δ− can be solved analyti-
cally. The result is a logarithmically slow flow of σxx(L)
towards its fixed point value σ∗xx = 2/π, governed by

0.6 0.4 0.2 0.0 0.2 0.4 0.6
+ = + b4
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1|

FIG. 2. Flow diagram based on Eqs. (4) and (5). The flow
is depicted for the rescaled RG variables ∆± (see axis labels)
and some choice of the parameters bi. The fixed point at (0, 0)
is denoted by a dot.

a single universal number awaiting prediction from the
CFT.28

Using simulations of the well-established CC net-
work model6 and its much less studied two-channel
generalization,29,30 (described in Sec. III), we confirm the
marginal scaling prediction in Sec. IV and give a quantia-
tive estimate for the universal coefficient described above.
It is important that, unlike all previously studied mod-
els, the two-channel network model approaches the fixed-
point conductivity from above, σxx(L) > σ∗xx as system
size increases towards the thermodynamic limit.

Tuning away from criticality in Sec. V, we demon-
strate how the marginal flow equations can mimic the
conventional scaling with an effective exponent νeff, of-
fering a new perspective on the variability of numerically
determined ν discussed above. If this mechanism is in-
deed realized at the IQHT, why is the so-far-observed
variation of νeff only in the few percent range? Do
models with a drastically different value of νeff exist?
To answer these questions, we first show that νeff is
controlled by the longitudinal conductivity σxx in the
fixed point’s vicinity, which is numerically close in all
standard models for which high-accuracy estimates of ν
have been obtained. Crucially, as stated above, the two
channel network model is an exception and indeed re-
alizes νeff ' 3–4, consistent with the above mechanism
(Sec. VI). We present conclusions and directions for fu-
ture work in Sec. VII.

II. MARGINAL FLOW EQUATIONS

We now explore the consequences of Zirnbauer’s pro-
posal for the flow equations (2) and assume σ∗xx = 2/π ≈
0.6366 from now on. If the linear terms on the right-hand
side vanish, higher order contributions in δ± have to be
taken into account. Based on symmetries of the Pruisken
field theory31,32 (periodicity in σxy and behavior under
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reversal of the magnetic field), Khmelnitskii argued that
dδ−
dl must be even in δ+ and dδ+

dl must be odd, and pro-

posed a global flow diagram.33 To respect the topology of
the flow diagram we require that the flow is always away
from the axis δ+ = 0 for both signs of δ− (no term δ+δ−
in dδ+

dl ). Likewise, to get a fixed point which is stable

along the δ+ = 0 axis, no term δ2
− can appear in dδ−

dl .
Thus, we arrive at the RG equations

dδ−
dl

= b1δ
3
− + b2δ

2
+ + ..., (4)

dδ+
dl

= b3δ
2
−δ+ + b4δ

3
+ + ... . (5)

The expected phenomenology of the IQHT requires
b1,2 < 0 and b3,4 > 0. Despite recent analytical advances
with the candidate CFT,28 the parameters b1,2,3,4,... re-
main unknown. For a certain ad-hoc choice of these pa-
rameters the flow is depicted in Fig. 2. We note that
similar flow equations (with a different b2-term of the
form b2δ−δ

2
+) have been suggested.34

We emphasize that in the marginal scaling scenario,
the values of σ∗xx and the parameters b1,2,3,4 in Eqs. (4)
and (5) are the universal data that take over the role
of ν and y in defining the IQHT universality class, both
conceptually and from an applied point of view.

III. NETWORK MODELS

For numerical simulations of the IQHT in subsequent
sections we rely on network models originally introduced
based on semiclassical arguments6 and widely applied
due to their numerical efficiency.7 We work with the uni-
tary symmetry class variants of these networks models,
whose critical behavior is generally accepted to belong
to the IQHT universality class. The standard CC model
[abbreviated CC1, see Fig. 3(a)] is defined on a checker-
board lattice with inequivalent sites A,B (dots) at which
the incoming chiral states on the links (arrows) are scat-
tered quantum mechanically into two possible outgoing
states with scattering amplitudes

r =
1√

1 + e−2x
, t =

1√
1 + e2x

, (6)

controlled by the model’s single parameter x, which en-
codes the probabilities for right and left turns. The dis-
order is realized by U(1)-phases eiφj with φj ∈ [0, 2π)
associated randomly to each link j.

The two-layer (or two-channel) generalization of the
CC1, termed CC2, features two parallel chiral chan-
nels per link, see Fig. 3(b). Without loss of general-
ity, the scattering at the node is layer-preserving and
parametrized by the tuple (xa, xb) as above. The disor-
der, which causes both inter- and intra-layer scattering,
is modeled by Haar-random U(2) matrices acting on co-
moving states on the links (boxes). This model has been

A

B

A

B

(a) CC1 (b) CC2

C=0

C=1

C=2

(c) CC2

t
t r

-r

r
r t

-t

FIG. 3. Network models employed in this work. Panel (a)
shows the standard CC model (CC1). Panel (b) shows a two-
layer generalization of the CC1 termed CC2, which features
layer-preserving node scattering parametrized by the tuple
(xa, xb). Panel (c) shows the schematic phase diagram of
the CC2 in the xa-xb plane following Ref. [30]. The dotted
line indicates the (ensemble) symmetry under layer exchange
xa ↔ xb, the dashed line represents the symmetry of the bulk
phase diagram under (xa, xb) → (−xa,−xb) and C denotes
the number of edge states for a finite system with a specific
choice of boundary termination. The colored dots correspond
to the critical parameter values (xa, xb) = (−0.483, 3) (brown)
and (xa, xb) = (0.227, 0.227) (cyan) identified in Sec. VI.

introduced in Refs. [29, 30], where the qualitative struc-
ture of the phase diagram, reproduced schematically in
Fig. 3(c), was revealed.

The bulk phase diagram of the CCN , N = 1, 2 can be
understood by the mirror symmetry across a straight line
of links, mapping a disorder realization with parameter
x to one in the −x ensemble. Together with the fact
that the CCN generically has N+1 topologically distinct
phases with C = 0, 1, .., N edge states,33 this fixes the
critical point of the CC1 to x = 0. The above mirror
symmetry also gives rise to the dashed symmetry line in
the phase diagram for the CC2. The dotted symmetry
line for the CC2 phase diagram in Fig. 3(c) arises from
a statistical layer-exchange symmetry xa ↔ xb.

An important practical complication for the CC2 and
any even N is that the positions of critical lines are not
fixed by any symmetry argument but have to be found
numerically. We defer the description of our numerical
approach to this task to Sec. VI. On the other hand, due
to the two-dimensional parameter space, the CC2 offers
the possibility to tune along the critical line, a feature of
paramount importance to our study that is absent in the
CC1.

The critical properties of the CC2, so far assumed to
be in the IQHT universality class at all points along the
critical line, are not known with great accuracy due to
large localization lengths and the aforementioned uncer-
tainty about the critical (xa, xb). In Ref. [30], the authors
settled for a modified model with an ad-hoc weakening
of inter-layer scattering and reported ν = 2.45 from a
study of quasi-1d Lyapunov exponents at a certain point
on the critical line. No error bars were given. Our results
for the CC2 with full interlayer scattering presented in
Sec. VI are significantly different.

All observables defined and computed in subsequent
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sections are based on the steady-state, four-terminal scat-
tering matrix S of large network models. Each terminal
refers to the union of incoming and outgoing links along
one of the four sides of a rectangular-shaped network. To
numerically obtain S for systems of linear size up to or-
der 104 efficiently, we use an iterative patching approach,
concatenating the scattering matrices of four rectangular
subsystems with size Lx × Ly into the scattering matrix
of a single system of size 2Lx × 2Ly. We define

a = Ly/Lx (7)

as the aspect ratio. Note that unlike transfer matrix mul-
tiplication, the scattering matrix concatenation does not
require further numerical stabilization. The main com-
putational bottleneck limiting system sizes is the large
memory required to store the iteratively obtained matri-
ces S. A useful feature of this iterative approach is that
systems of exponentially different sizes are generated in
a single run.

IV. MARGINAL SCALING AT CRITICALITY

In this section, we focus on the critical line δ+ = 0.
In this case, the right-hand side of Eq. (5) vanishes while

Eq. (4) for δ−(l) = σxx(l)−σ∗xx becomes dδ−
dl = b1δ

3
−, and

we neglect higher order terms. This can be integrated up
to l = ln(L/L0):

δ−(L) =
δ−(L0)√

1 + 2|b1|δ2
−(L0) ln (L/L0)

. (8)

As we have already mentioned, the initial scale L0 has
to be chosen large enough for the expansion in Eq. (4) to
apply but is arbitrary beyond that requirement. In the
numerical tests of Eq. (8) that we perform in the following
we identify L with the minimum of the two lengths Lx
and Ly. That is,

L =

{
Lx, for a > 1

Ly, for a < 1.
(9)

We then fix the value of δ−(L0) from numerical data and
check if the form of the numerically obtained δ−(L) for
L > L0 follows Eq. (8).

An important remark is in order here. The exact CFT
prediction σ∗xx = 2/π and the yet unknown value of b1
that should be found from a bulk CFT describes the
flow of the coupling constant of the field theory, and,
a priori, is not directly related to transport properties of
a finite-size system with non-trivial geometry and spe-
cific boundary conditions at attached leads. Such trans-
port properties need to be independently computed from
Kubo formulas as certain correlators in the field theory.
At present, the only available result of this type is the av-
erage (dimensionless) conductance g∗xx of a cylinder with

two absorbing leads and arbitrary aspect ratio a, but only
at the fixed point,28 given by

g∗xx (a) = σ∗xxa
∑
m∈Z

(−1)me−π
2m2σ∗xxa. (10)

Note that for large aspect ratios a � 1, the fixed-point
bulk coupling constant and the conductance are simply
related by σ∗xx = g∗xx(a)/a.

The field theory result, Eq. (10), applies in the scaling
limit Lx, Ly → ∞. In contrast, our numerical simula-
tions are restricted to finite systems. In the following,
we use rectangular systems of finite size Lx × Ly where
Ly = a ·Lx. We attach absorbing leads attached in the x
direction and periodic boundary conditions in the y di-
rection, realizing a cylinder geometry. The two-terminal
scattering matrix defined in terms of the modes in the left
and right leads can be found from the four-terminal scat-
tering matrix of a Lx×Ly system by short-circuiting the
transverse leads. Then the two-terminal conductance can
be computed from the Landauer formula.35 It depends on
the specific disorder realization in the system and we re-
port the associated histograms in Appendix A. In the
following, we denote its disorder average by gxx(a, Lx).

To date, there is no field theory result for gxx away
from the fixed point. Therefore, to make progress for
numerically accessible finite system sizes, we resort to
the ad-hoc assumption that Eq. (10) remains valid in the
vicinity of the fixed point for 1 � L < ∞. We thus
assume

gxx(a, L) = σxx(L)a
∑
m∈Z

(−1)me−π
2m2σxx(L)a, (11)

with σxx(L) = σ∗xx + δ−(L), where δ−(L) is given by
Eq. (8). Note that Eq. (11) is at best an approximation
to the correct result, since in the field theory of Ref.
[28] not only the coupling constants but also the current
operators that enter Kubo formulas get modified away
from the fixed point.

Using the network models introduced in the previous
section, we numerically assess the validity of Eq. (11)
and determine the value of b1. While for CC1 the critical
point occurs at x = 0, for the CC2 we tune to (xa, xb) =
(−0.483, 3) [brown dot in Fig. 3(c)] which will be shown
to be on the critical line below in Sec. VI. We treat the
cases a < 1 and a > 1 separately.

We start with large aspect ratios a = 4, 6 where to very
high precision the exponential corrections in Eq. (11) are
negligible and we obtain gxx/a = σxx. We find approx-
imately Gaussian histograms for the conductances, see
App. A. This can be rationalized by the picture of a large
number ∼ a of effectively decoupled parallel conductors
with random conductances. The data in the top panel
in Fig. 4 shows a monotonously increasing (decreasing)
flow of gxx/a for CC1 (CC2) with the conjectured criti-
cal conductivity σ∗xx = 2/π consistently placed between
the two data sets. We remark that to the best of our
knowledge, this is the first numerical observation of a de-
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FIG. 4. Numerical assessment of marginal scaling of δ− =
σxx−σ∗

xx at criticality δ+ = 0 for large aspect ratios a = 4, 6.
The top panel shows the disorder averaged conductivity σxx
(dots) obtained from the Landauer conductance of wide slabs
with aspect ratio a & 4 for the CC1 and CC2 network model.
The CC1 data in the vicinity of σ∗

xx (gray box) connected
by solid lines follow the scaling prediction in Eq. (12) with
|b1| = 45.04± 0.18 (purple line, fitted for a = 6), see bottom
panel. We use L0 = 40 and 44 for a = 4 and 6, respectively.
The upward (downward) triangles denote the CC1 and CC2
data for ad-hoc variations of σ∗

xx by +0.01 (−0.006). CC1
data (blue triangles) show a clear L-dependence, while the
CC2 data move away from the purple line in the opposite
way compared with CC1. Data for the CC1 at small finite
x = 0.02 is also included in the top panel to show that the
constant b2 in Eq. (4) is negative.

creasing σxx(L) at a IQHT, hypothesized long ago in the
proposed flow diagram of Khmelnitskii.33

Due to the simple form of the conjectured Eq. (11) for
large aspect ratios, gxx/a = σxx, we can attempt a direct
numerical determination of the parameter b1. In Fig. 4
(bottom) we plot the numerically obtained quantity

|b1(L)| ≡
δ−2
− (L)− δ−2

− (L0)

2 ln (L/L0)
, (12)

which, according to Eq. (8) should be length-independent
and identified with the universal number |b1|. The only
freedom is the choice of the initial system length L0 which
must be large enough such that |δ−(L0)| is sufficiently
small to apply the expansion of the flow equations in
Sec. II. Indeed, if we consider the CC1 data points for
which |δ−(L0)| ≤ 0.085 (grey region, data points con-
nected by solid lines) we confirm that |b1(L)| in Eq. (12)

is practically a constant over almost two decades in L/L0.
A least-squares fit yields (purple line)

|b1| = 45.04± 0.18. (13)

We now investigate the stability of the so found param-
eter when (i) the CC2 model is considered and (ii), the
value of σ∗xx is varied.

(i) For the CC2 model at (xa, xb) = (−0.483, 3)
(brown), there are only two data points in the grey re-
gion, which are nevertheless consistent with Eq. (13).
Sliding along the CC2 critical line to the point (xa, xb) =
(0.227, 0.227), we observe σxx(L = 1920) ' 0.78 way out-
side the scaling region (data not shown). This is consis-
tent with the observation of very large localization length
in the CC2 model made in Refs. [29, 30]. Sliding along
the critical line in the other direction (towards larger xb)
did not lower σxx appreciably.

(ii) To further test the prediction σ∗xx = 2/π, we re-
peated the above analysis with ad-hoc variations of σ∗xx
by +0.01 (−0.006). This led to drastically different val-
ues of |b1(L)|, see upward (downward) triangles. The
resulting values for CC1 (blue triangles) exhibit a con-
siderable dependence on L. Significantly, for CC2 (brown
triangles) the resulting values shift in the opposite way
compared with CC1. Thus, the expected universality of
b1 in the marginal flow scenario holds only for the pre-
cise value σ∗xx = 2/π, lending additional support for the
prediction of Ref. 1.

Finally, in Fig. 4 (top) we also include data for the
CC1 at small, finite x = 0.02 (green crosses) which show
an initial increase toward σ∗xx for small L, but then curve
away from the fixed-point conductivity at large L. This
confirms the negative sign of the constant b2 in Eq. (4).

We next turn to small aspect ratios a < 1. Fig. 5
shows gxx/a (dots) at fixed small aspect ratios a =
1/3, 1/4, 1/5 as a function of system size Ly. Here we
limit ourselves to the CC1. The associated histograms
in Appendix A are approximately log-normal with a
hard cutoff at unit conductance. This peculiar behav-
ior is reminiscent of transport in quasi one-dimensional
systems36 and the associated paucity of conductances of
order unity requires at least 104 disorder realizations to
obtain acceptable error bars on the average conductances
reported in Fig. 5. The increase of gxx(a, Lx)/a (dots)
towards the CFT fixed point values in Eq. (10) (dashed
lines) is very slow, see the bottom panels of Fig. 5 for
a close-up. This slow change is potentially in agreement
with the marginal flow in Eq. (8). Attempts to extract
|b1| using Eq. (12) to fit the small-a data (not shown)
result in values of |b1| ∼ O(1), much smaller than for the
large-a data.

However, for a < 1 the exponential corrections in
Eq. (11) are significant and require a different approach
to assess the validity of the marginal scaling in Eq. (8).
We use the value of gxx/a at the smallest system size
Ly = 200 (red cross) on the left hand side of Eq. (11)
to fix δ−(Ly,0 = 200). Making the ad-hoc choice b1 =
−1.2, we compute the expected variation of gxx/a for
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FIG. 5. Numerical assessment of marginal scaling for the
critical disorder averaged Landauer conductance gxx (dots)
for small aspect ratios a = 1/3, 1/4, 1/5. The data is ob-
tained from the CC1 network model with x = 0 and the
solid lines are guides to the eye. The top panel compares
the numerical finite-size results with the CFT prediction for
the fixed point conductance, see Eq. (10) (dashed lines). The
three lower panels are close-ups on the numerical data (dots)
comparing the slow increase of conductance from the refer-
ence scale Ly = 200 to the postulated analytical form in
Eq. (11) using b1 = −1.2 (red line). The thin brown and
purple lines denote the analytical form with a 30% decreased
or increased value of b1, respectivley. The gray line is obtained
from Eq. (11) by neglecting the flow of σxx in the exponent.

Ly > Ly,0, see the solid red line in the bottom panels in
Fig. 5. We obtain excellent agreement with the numer-
ical data within error bars for all aspect ratios studied.
The gray lines are the result of a similar procedure where
in Eq. (11) only the prefactor σxx(Lx) is flowing accord-
ing to Eq. (8) (again with b1 = −1.2). The difference in
slope emphasizes the importance of a flowing σxx in the
exponential.

In summary, if our ad-hoc assumption (11) for the
relation between the finite-size Landauer conductance
gxx(a, Lx) and the bulk flow equation for δ−(L) in Eq. (8)
is reasonable, our numerical results for small aspect ra-
tios a < 1 predict b1 = −1.2. A possible reason why two
different b1 are obtained for large or small aspect ratios
a > 1 and a < 1, respectively, is the dominant role of
absorbing boundary conditions in the first case. Absorb-
ing boundaries strongly affect the interference of wave
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FIG. 6. Numerical solution of the rescaled flow equations
(15) and (16) with the parameter choice A = 2, B = 40,
∆−(0) = −0.1 (blue) and −0.08 (red), respectively. Various
∆+(0) = 10−3...10−1 are chosen as detailed in the bottom
panel. Each flow is stopped at l = lc defined as ∆+(lc) = 1
(dashed line in top panel). The relation between the initial
∆+(0) and lc shown in the bottom panel approximately fol-
lows lc ∼ −νeff ln ∆+(0) + const (solid lines) with νeff depen-
dent on ∆−(0).

packets injected by the leads.

V. MIMICRY OF RELEVANT SCALING FROM
MARGINAL RG FLOW

In this section, we demonstrate how the marginal flow
equations in Sec. II can give rise to an apparent conven-
tional scaling of the localization length, ξ ∼ |δ+(L0)|−νeff .
To reduce the number of constants in the flow equations
of Sec. II, we define rescaled variables ∆±(l) and (un-
known) universal numbers A, B:

∆−(l) ≡
√
|b1| δ−(l), ∆+(l) ≡

√
b4 δ+(l),

A =
√
|b1|
|b2|
b4
, B =

b3
|b1|

. (14)

In terms of these, and neglecting higher-order terms, the
RG Eqs. (4) and (5) become

d∆−
dl

= −∆3
− −A∆2

+, (15)

d∆+

dl
= B∆2

−∆+ + ∆3
+. (16)
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As usual, the localization length ξ is defined via
ln(ξ/L0) ∼ lc with lc the RG cutoff time given by
∆+(lc) = 1.

The qualitative behavior of the solutions of the flow
equations (15) and (16) very close the fixed point can
be obtained by neglecting the second terms on the right-
hand side. Then ∆−(l) flows logarithmically slow toward
zero (see Eq. (8) above), and the factor B∆2

−(l) can be
approximately treated as a constant in front of ∆+(l), as
in Eq. (2), resulting in

νeff ∼ [B∆2
−(l = 0)]−1. (17)

This is the mimicry of the conventional critical scaling as
defined above.

Eventually, RG trajectories leave the vicinity of the
fixed point and ∆+(l) grows large enough so that the
second terms on the right-hand side in (15) and (16) sig-
nificantly alter the global flow. The condition for the
mimicry of the conventional scaling is that the RG tra-
jectory spends a long time sufficiently close to the fixed
point where the powers of ∆+(l) higher than the linear
can be neglected, and ∆2

−(l) does not vary appreciably
across this range of l. This is easily achieved for A � 1
and B � 1 by starting the flow with |∆−(0)| � 1. In this
case we still expect that νeff ∼ [B∆2

−(0)]−1. This expec-
tation is confirmed by the exact solution of the system
(15) and (16) in the case A = 0, presented in Appendix
B, where Eq. (17) is shown to hold for B � 1.

The mimicry mechanism turns out quite robust and
can be confirmed by the full numerical solution of
Eqs. (15) and (16). The results of the previous section
suggest that typical values of ∆−(0) might be of order
−0.1. Employing ∆−(0) = −0.1 along with the ad-hoc
choice A = 2 and B = 40 for the universal parame-
ters, Fig. 6 shows a numerical solution, see blue lines.
A linear approximation to the data in the bottom panel
using ln ξ ∼ −νeff ln ∆+(0) + const yields νeff ' 2.62.
The red lines denote results when the initial value ∆−(0)
is slightly changed to −0.08, in this case νeff ' 3.93
emerges. Both values are slightly beyond the accuracy
of the estimate (17) (2.44 and 3.81, respectively), since
B = 40 is not quite large enough.

Larger values of B would reduce the curvature in Fig. 6
(bottom) and thus better approximate conventional scal-
ing, but also push towards smaller values of νeff. The
numerical value of A is of minor importance for νeff, as is
demonstrated by the exact solution for A = 0. The same
is true for the precise value of the constant used in the
definition of lc above, as long as it is of the order of unity.
This is clear from the steep slope (and the eventual diver-
gence) of ∆+(l) close to lc, see Fig. 6 (top). In addition,
we have confirmed (results not shown) that the mimicry
mechanism is qualitatively unchanged for the alternative
flow equations proposed in Ref. 34, indicating that the
precise nature of the higher-order terms does not play a
significant role. We stress, however, that for all known
numerical models of the IQHT, the quantitative validity
of the above truncation of the flow equations leading to

(15) and (16), is questionable. The reason is that in a spe-
cific model it is impossible to tune |∆−| =

√
b1 |σxx−2/π|

to arbitrarily small values. Thus, it may be necessary to
include higher order terms in Eqs. (4) and (5) to cap-
ture the flow of ∆± from their starting values. These
effects and their quantitative influence on the mimicry of
conventional scaling are left for future work.

In summary, we have shown how the conjectured
marginal flow equations (4) and (5) can approximately
mimic conventional scaling with an effective critical ex-
ponent νeff. There are two qualitative conclusions that
could serve as hallmark signatures of the marginal scaling
scenario:

(i) The dependence of the effective critical exponent
νeff on δ−(L0) and through it on the chosen model
and its parameter values, c.f. Fig. 6. Although the
relation is likely more complicated than the simple
estimate νeff ∼ δ−2

− (0), we should expect sizeable
variations of νeff between models for the IQHT if
they realize different δ−(0).

(ii) The relation ξ ∼ |δ+(0)|−νeff is only approximately
fulfilled. Indeed, Fig. 6 (bottom) reveals a small
residual curvature, that can be captured by the in-
troduction of a δ+(0)-dependent critical exponent.
Anticipating the relation δ+(0) ∼ δx ≡ x − xc for
the network models, we thus use the ansatz

ξ = λ|x− xc|−νeff(δx). (18)

Here λ is a non-universal parameter with the di-
mension of length.

In the next section, we investigate both signatures (i)
and (ii) with exact numerical simulations of the network
models. While we confirm a model and parameter de-
pendent critical exponent νeff, we can only put an upper
bound on a putative δx dependence of νeff(δx) in the CC1.

VI. NUMERICAL DEMONSTRATION OF
VARIABLE νeff IN MODELS OF THE IQHT

We now tune our numerical models away from their
critical points x = xc to study the divergence of the
localization length close to criticality which we assume
to be described by Eq. (18). We adopt the scattering-
matrix based observable Λ initially proposed by Fulga et
al., Ref. [13], and recently employed to study scaling for
the 2d Dirac model.24 This observable is qualitatively
similar to the scaling variable δ+ = σxy − 1/2 in that
they both change sign at the critical point. This prop-
erty provides a simple and precise method to determine
xc for models like the CC2 where the critical point is not
fixed by symmetry.

In this section, we fix the aspect ratio to a = 1 and
wrap the L×L system in one direction, called the trans-
verse direction, to form a cylinder. To define Λ(x, L)
for the cylinder, we attach a lead extended over the full
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FIG. 7. The left three panels show the scaling variable Λ(x, L) for x crossing the critical point xc and square systems of size
L = 100, 200, 400, 800, 1600. The right panel shows the slopes −∂xΛ(x, L) obtained from linear fits to each individual system

size L. They follow power-laws ∼ L1/νeff with various νeff indicated in the legend. The data points are offset in the vertical
direction for clarity.

width of the system to one of the open ends of the cylin-
der. Then we consider the reflection matrix r(φ) of the
lead as a function of the phase φ of twisted boundary
conditions in the transverse direction, or equivalently the
value of an Ahronov-Bohm flux piercing the cylinder. For
a given disorder realization, as we change x, the critical
point x = xc occurs when there exists a φ such that r(φ)
has a zero eigenvalue and thus det r(φ) = 0. This follows
directly from the definition of a reflection-matrix based
topological invariant in the unitary symmetry class.13

To obtain Λ, we generalize the transverse boundary
condition from a phase factor to an arbitrary complex
number z ∈ C. In terms of scattering states ψi,j de-
fined on all links of the network indexed by pairs of in-
tegers (i, j), the generalized boundary condition reads:
ψi,j=L−1 = z ψi,j=0 for all i = 0, 1, ..., L − 1. This addi-
tional freedom allows for solutions z0 of det r(z0) = 0 to
exist even away from criticality x 6= xc. However, gener-
alized zeros of this kind occur away from the unit circle,
|z0| 6= 1. To measure the distance to criticality, consider
log|z0| for the z0 closest to the unit circle. This quan-
tity indeed changes sign at x = xc and features a Gaus-
sian histogram in the ensemble of disorder realizations.24

Finally, the scaling observable is defined as Λ = ln |z0|
where the overline denotes disorder average.

We proceed with the conventional single-parameter
scaling hypothesis37 stating that a dimensionless observ-
able like Λ depends not on the system size L and the
dimensionless parameter x separately, but as Λ(x, L) =
Λ(L/ξ(x)), with the localization length ξ from Eq. (18).
Requiring that Λ(x, L) is analytic in δx ≡ x − xc and
using the property Λ(x = xc, L) = 0, we expand

Λ(x, L) = α1δx

(L
λ

)ν−1
eff (δx)

+α2δ
2
x

(L
λ

)2ν−1
eff (δx)

+ ... (19)

We now turn to the demonstration of the hallmark
signature (i) from the previous section: a sizeable model-

and parameter dependence of νeff. We anticipate the δx-
dependence of νeff [point (ii)] to be a comparatively small
effect which we neglect for now and revisit at the end of
this section. In Fig. 7, we report Λ for CC1 and CC2 net-
work models of size L = 100, 200, 400, 800, 1600, aspect
ratio a = 1 and several x around xc. While xc = 0 for
the CC1 by symmetry, for the CC2 we focus on two line-
cuts in the phase diagram of Fig. 3(c), (xa, xb) = (x, 3)
and (x, x), respectively. We take the range of x-values
small enough so that the higher order terms in Eq. (19)
do not contribute, see Fig. 7. For each L, we perform
a fit of Λ(x, L) linear in x (dotted line) and extract its
zero-crossing. Remarkably, these crossing points agree
for all L within an accuracy better than ∆xc = 0.001,
indicating the practical absence of corrections to scaling.
The average value xc is reported in Fig. 7 and was used
for the study of the critical longitudinal conductivity in
Sec. IV.

The CC2 is known to have localization lengths large
compared to CC1,30 reflected by a larger λ. In our study,
this leads to drastically smaller slopes for the CC2 when
compared to the CC1 at the same L, see Fig. 7. In prac-
tice, this requires hundreds of thousands of disorder re-
alizations to achieve an acceptable ratio between data
point separation and error bars.

To extract νeff, we employ the scaling prediction
Λ(x, L)/δx ∼ L1/νeff , valid for small enough δx and L,
c.f. Eq. (19). We approximate the left hand side by the
slopes of the linear fits mentioned above, and plot the
slopes in the right panel of Fig. 7 where we extract νeff.
For the CC1, our result νeff = 2.60(2) is compatible with
the generally accepted value, and in particular with the
value 2.56(3) obtained by Fulga et al.13 using the same
method and model but for a very different aspect ratio
a = 5. Our main result, however, is the demonstration
of very different exponents for the CC2: νeff = 3.42(4)
and νeff = 3.90(5) at the critical points (−0.483, 3) and
(0.227, 0.227), respectively.
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Finally, we turn to the second hallmark signature (ii),
according to which the exponent νeff in Eq. (18) should
depend on δx. We stress that a check of this prediction
requires an analysis of numerical data at several fixed
values of x, which is usually not attempted in the existing
literature. Such an analysis crucially relies on our ability
to represent Λ(x, L) as the expansion (19) with a non-
trivial exponent νeff(δx).

We focus on the CC1 for its numerical convenience,
exactly known xc = 0 (implying δx = x), and odd-in-δx
expansion [implying α2 = 0 in Eq. (19)], and select the
data for x = 0.01, 0.02, 0.03 from Fig. 7, left panel. In
Fig. 8 we show that the anticipated scaling relation

ln
Λ(L, x)

x
= lnα1 +

1

νeff(x)
ln
L

λ
(20)

holds with νeff(x) values that agree within error bars for
all chosen x and are, moreover, consistent with the value
of νeff obtained above using the slope of Λ extracted from
multiple values of x. Decreasing x further was found
not to be suitable due to enhanced statistical error bars,
while larger x would require including higher-order cor-
rections in Eq. (19) and the corresponding modifications
to Eq. (20).

Let us note here that in principle we can always trade
the dependence of the effective exponent νeff on δx for
the dependence of νeff on the system size L. Indeed,
any functional relation ξ(x) can be inverted to produce
a function x(ξ), see Eq. (B7) or (B12) in Appendix B
as an example. Then a scaling function f [L/ξ(x)] can
be traded for another scaling function F [x/x(L)]. Once
this replacement is done, the function x(L) can always
be written as x0L

−1/νeff(L), giving the scaling function of
the form F [xL1/νeff(L)] with an L-dependent effective ex-
ponent νeff(L). For the conventional power-law scaling,
when ξ ∝ |x|−ν , all these transformations are rather triv-
ial and well known: they correspond to the replacement
of f(L|x|ν) by F (xL1/ν).

In our case the empirical observation that νeff does
not depend on x is completely consistent with the visible
absence of any curvature in the right panel in Fig. 7, as
well as in Fig. 8.

In summary, using a variation of x by a factor of three,
we were not able to positively identify the proposed δx
dependence of νeff anticipated in the marginal scaling sce-
nario. However, it is not obvious to us that this should
be taken as a serious argument against the validity of
the latter. Indeed, the curvature of the data in the bot-
tom panel of Fig. 6 sensitively depends on the unknown
universal parameters in the flow equations. Detecting a
small curvature corresponding to a weak x-dependence
of νeff might very well require varying x by one or two
orders of magnitude. Likewise, detecting an L-dependent
νeff might require much larger system sizes L. Both op-
tions are currently beyond the capability of our numerical
approach.

102 103

L

101

2 × 101

3 × 101

(x
,L

)/x

eff(x = 0.03) = 2.6 ± 0.01
eff(x = 0.02) = 2.59 ± 0.02
eff(x = 0.01) = 2.61 ± 0.03

FIG. 8. Scaling plot for Λ(x, L)/x at fixed x computed from
the CC1 at aspect ratio a = 1 for L = 100, 200, 400, 800, 1600.
Data for x = 0.01, 0.02, 0.03 agree within error bars and the
power law fit [Eq. (20)] (dashed lines) yields compatible values
for νeff(x) for all three x.

VII. CONCLUSION AND OUTLOOK

In this work, we scrutinized the consequences of Zirn-
bauer’s marginal scaling scenario1 recently conjectured
for the IQHT. We proposed and analyzed a beyond-
linear-order expansion of the RG beta functions for the
longitudinal and Hall conductivities taking into account
the known topology of the flow diagram. At criticality,
our numerical simulations of the one- and two-channel
network models confirm that the resulting RG equation
indeed describes the flow of the critical longitudinal con-
ductance with the system size L. The RG flow depends
on a universal number |b1| which we determined numer-
ically to depend only on the aspect ratio a, |b1| ' 1.2
for small aspect ratio a � 1 and |b1| = 45.04 ± 0.18 for
large aspect ratio a � 1. We attribute this surprising
geometry dependence to the subtle role of the absorbing
boundary conditions imposed by the ideal leads. As the
bulk quantity |b1| is a unique and universal number for
the marginal scaling scenario of the IQHT, further ana-
lytical work is clearly needed to shed light on this issue.

Moving away from the critical point, we showed by a
proof-of-principle numerical solution of the conjectured
flow equations how an effective localization length expo-
nent νeff can arise from marginal scaling where formally
ν−1 = 0. The effective exponent depends on the critical
conductivity at short distances, albeit the detailed func-
tional relation probably requires an account of higher-
order terms in the flow equations, which is left for future
work. Interestingly, it appears that the selection of mod-
els for the IQHT studied in the literature so far conspired
to have very close critical conductivities and, accordingly,
only moderate (less than 10%) variations of νeff from the
value νCC1 = 2.6 accepted for the CC1. These varia-
tions were mostly blamed to uncertainties in the fitting
procedure or finite-size effects.

To reach larger variation of νeff, models with drasti-
cally increased tuning capabilities are required. One ex-
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ample is the 2d Dirac model,25 where energy and dis-
order strength can be varied independently. As shown
recently,24 νeff ' 2.33 was found at half-filling, E = 0,
and a certain disorder strength, the largest deviation
from νCC1 = 2.6 reported to date. As shown in the
present work, the two-channel network model CC2 whose
critical conductivity decays with increasing system sizes
produces very different results for νCC2 between 3 and 4
and thus provides strong evidence for the validity of the
marginal scaling picture.

We emphasize that according to the conjectured flow
equations, a larger absolute value of δ−(L0) = σxx(L0)−
2/π, i.e. a larger distance of short-length longitudinal
conductivity to the fixed point value 2/π should lead to a
smaller νeff. Naively, comparing our results for the CC1
and CC2 shows the opposite trend. This can be rational-
ized by the intrinsic difficulty in defining the length scale
L0 beyond which a beta-function description of σ(L) be-
comes possible at all. And even for L & L0, an expansion
of the beta functions beyond the order considered above
might be required.

Very recently, the IQHT was also studied in the frame-
work of dissipation-induced topological states38 and the
result ν ' 3 was interpreted as a signature of a novel
non-equilibrium universality class. Further work will be
necessary to see if this interpretation is correct or if dis-
sipative systems might also fit in the marginal scaling
framework advocated here.
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Appendix A: Histograms of two-terminal Landauer
conductance

In Fig. 9, we show the histograms for Landauer con-
ductance gxx(a) of a critical CC1 model (x = 0) at aspect
ratio a = 1/3 (top) and a = 4 (bottom). In the small
aspect ratio case, we observe gxx ≤ 1 with an approx-
imately log-normal distribution. The large aspect ratio
shows no such cutoff and follows an approximately gaus-
sian distribution of gxx with a mean proportional to a.
The well known histogram for a square sample7 (a = 1)
with a kink of the distribution function at gxx = 1 and a
small tail of gxx > 1 can be thought of as a interpolation
between the cases for large and small a reported here.
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FIG. 9. Histograms for Landauer conductance gxx(a) of a
critical CC1 model (x = 0) at aspect ratio a = 1/3 (top) and
a = 4 (bottom).

Appendix B: Exact solution of the flow equations
with A = 0

When we neglect the second term in the right-hand
side of Eq. (15), the flow equations become

d∆−
dl

= −∆3
−,

d∆+

dl
= B∆2

−∆+ + ∆3
+. (B1)

This system is exactly solvable. The first equation (B1)
is solved in the same way as in Section IV:

∆−(l) = ∆−(0)(1 + 2∆2
−(0)l)−1/2. (B2)

Then the second equation (B1) becomes a linear equation
in terms of the variable X(l) ≡ ∆−2

+ (l):

dX

dl
= −2B∆2

−(l)X − 2. (B3)
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FIG. 10. Analytical solution for ln ξ̃ given in Eq. (B8). This
figure is similar to the bottom panel in Fig. 6. As everywhere
in this appendix A = 0, while we chose B = 20 (green) and
B = 60 (brown) for the two data sets. The dots represent of

ln ξ̃ computed from Eq. (B8) for the same values of ∆+(0) as
in the bottom panel in Fig. 6, and ∆−(0) = −0.3.

This equation has the solution

X(l) = e−F (l)

(
X0 − 2

∫ l

0

eF (l′)dl′
)
,

X0 ≡ ∆−2
+ (0), F (l) = 2B

∫ l

0

∆2
−(l′)dl′. (B4)

Performing the integrals, we obtain

1

∆2
+(l)

=
[1 + 2∆2

−(0)l]−B

∆2
+(0)

−
[1 + 2∆2

−(0)l]− [1 + 2∆2
−(0)l]−B

(B + 1)∆2
−(0)

. (B5)

Rewritten in terms of ∆−(l) this equation describes the integral curves of the system (B1) in the ∆+–∆− plane:

∆2
+(0)

∆2
+(l)

=
(∆2
−(0)

∆2
−(l)

)−B
−

∆2
+(0)

(B + 1)∆2
−(0)

[
∆2
−(0)

∆2
−(l)

−
(∆2
−(0)

∆2
−(l)

)−B]
. (B6)

Notice that the resulting flow is even in ∆−(l), which is
a consequence of setting A = 0. This property is lost for
the full system (15), (16).

The RG flow described by Eq. (B5) begins at l = 0
with a very large left-hand side ∆−2

+ (0)� 1. As l grows,
the first term on the right-hand side decreases, while the
second (negative) term increases in magnitude. When
we reach the localization length, lc = ln(ξ/L0), the left-
hand side becomes one, and the resulting equation can be
numerically solved for ln(ξ/L0). However, for our current
analysis it is better to adopt a slightly different definition
of ln(ξ/L0) as the RG time for which ∆+(l̃c) =∞. With
this modification the terms on the right-hand side cancel
each other when l = l̃c. This gives a relation between

∆+(0) and ξ̃:

∆2
+(0) =

(B + 1)∆2
−(0)

[1 + 2∆2
−(0) ln(ξ̃/L0)]B+1 − 1

, (B7)

which can be inverted to give

ln
ξ̃

L0
=

1

2∆2
−(0)

([
(B + 1)

∆2
−(0)

∆2
+(0)

+ 1
] 1

B+1 − 1

)
. (B8)

This quantity is shown in Fig. 10 for B = 20 and B = 60,
together with linear fits resulting in effective exponents
νeff whose values are given in the legend.

Let us estimate νeff analytically. If we start the flow
sufficiently close to the critical line, ∆+(0)� 1, the first
term in the square brackets in Eq. (B8) dominates, and
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we get approximately

ln
ξ̃

L0
≈

[(B + 1)∆2
−(0)]

1
B+1

2∆2
−(0)

[∆+(0)]−
2

B+1 − 1

2∆2
−(0)

.

(B9)

Now comes the mimicry. If B � 1, the factor with ∆+(0)
has a very small exponent, and can be approximated by

[∆+(0)]−
2

B+1 = exp
(
− 2

B + 1
ln ∆+(0)

)
≈ 1− 2

B + 1
ln ∆+(0). (B10)

Notice that this approximation only works for
| ln ∆+(0)| � B, that is, sufficiently far from criti-
cality. When legitimate, this approximation leads to a
linear relation between ln(ξ̃/L0) and ln ∆+(0) with the
coefficient

νeff = [(B + 1)∆2
−(0)]−

B
B+1 ≈ [B∆2

−(0)]−1. (B11)

This analytical estimate is given in the legend of Fig. 10
for the same values of B and ∆−(0) as the actual values

of ln ξ̃. We see that the agreement between the analytical
estimates and the results of linear fits becomes reasonable
only for unrealistically large values of B (B & 50 for our
choice of ∆−(0) = −0.3 and the range of ∆+(0)).

The effective exponent in Eq. (B11) can also be ob-
tained directly from the L scaling. Indeed, following the
discussion at the end of Section VI, we replace ξ̃ in Eq.
(B7) by L and write

x2(L) =
(B + 1)∆2

−(0)

[1 + 2∆2
−(0) ln(L/L0)]B+1 − 1

. (B12)

Sufficiently close to criticality and for not too large L/L0

we can replace

(
1 + 2∆2

−(0) ln
L

L0

)B+1

≈ exp
(

2(B + 1)∆2
−(0) ln

L

L0

)
=
( L
L0

)2(B+1)∆2
−(0)

. (B13)

Then it immediately follows that for large B we obtain
x(L) ∝ L−1/νeff with νeff = [(B + 1)∆2

−(0)]−1.
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