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Abstract

Helical states are a special state of matter with a lock-in relation between
momentum and spin of electrons or quasi particle excitations. It has recently
been shown, that many body effects can lead to the formation of helical edge
states in one dimensional quantum wires. This results in highly interesting
transport properties, like the ideal transport of charge and spin, for future
electronic devices [1–5]. However, there is no direct experimental evidence
confirming the helical transport in 1D. Therefore, it is highly important to
develop new theoretical suggestions, which could help to find smoking gun
evidence of helical states in 1D wires. In this work we have investigated the
Aharonov-Bohm (AB) effect in helical systems as a tool to detect the helical
nature in 1D wires. We have considered two possible setups, a helical AB-
ring connected to helical leads and a helical AB-ring connected to metallic
non-helical leads, and have shown, that the latter setup yields oscillations
under certain conditions, whereas they are absent in the full helical setup.
We believe our results can be used as a hint to develop reliable tools and
thus proof helical transport in 1D quantum wires.
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1 Introduction

1.1 The road to helical edge states

Our everyday experience shows that matter appears in different phases. In
1937, Lev Landau suggested a principle which characterizes states in terms
of symmetries that are spontaneously broken. This allows to distinguish
different phases of matter with local order parameters, a local measurement
reveals whether a symmetry is broken or not. [6]

Klaus von Klitzing discovered the quantum hall effect (QHE) in the
early 1980s, which illuminated a new aspect of phases of matter. He placed
a two dimensional electron gas (2DEG) in a strong magnetic field at very
low temperatures. [7] The quantization of the electron’s orbital motion per-
pendicular to the magnetic field with the cyclotron frequency ωc leads to
the existence of quantized Landau levels with energy Em = ~ωc(m + 1/2).
If N Landau levels are occupied and the rest are empty, then an energy
gap separates the occupied and empty states just like in an insulator. A
skipping motion of the edge’s electron’s orbit leads to the formation of one
dimensional transport channels with a quantized conductance of e2/h per
channel. Unlike an insulator, an external electric field causes the cyclotron
orbits to drift leading to a (transverse) Hall current characterized by the
quantized Hall conductivity

σxy = Ne2/h. (1)

This very exact quantization could be explained by a fundamentally different
approach to classify states which involves the concept of topology. The state
responsible for the QHE does not break any underlying symmetries, except
for time reversal symmetry (TRS) but it defines a topological phase in the
sense, that smooth changes in the materials parameter do not effect the
quantized value of the Hall conductance. It is reflected by the possibility
to be characterized by a topological invariant, which can only take integer
multiples of e2/h. In mathematics the concept of topology defines different
equivalence classes of shapes, which only differ by a smooth deformation of
the shapes, especially without creating a hole in the deformation process, or
ripping the object apart, or glueing it. In condensed matter physics one can
consider a general crystal Hamiltonian H(k) with an energy gap separating
the valence and the conduction band. All Hamiltonians, which only differ
by a smooth transformation of its parameters, which does not close the gap,
can be seen as members of the same topological class. They belong to the
same topological equivalence class characterized by a topological invariant n.
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This invariant is referred to as the Chern number or TKNN number [8]. The
Chern number can be understood physically in terms of the Berry phase. A
closed path in k-space contributes as an extra phase to the electrons wave
function as a line integral of Am = i 〈um|∇k|um〉, where um stand for the
Bloch wave functions. It can also be expressed as a surface integral of the
Berry flux. The Chern invariant can be expressed as integral over the Berry
flux in one Brioullin zone.

nm =
1

2π

∫
dk2Fm Fm = ∇×Am. (2)

The total Chern number summed over all occupied bands n =
∑N

m=1 nm
is a topological invariant in the sense that it can not change when the Hamil-
tonian varies smoothly.

Every QH state with a different Hall conductance can be seen as a dis-
tinct phase of matter and corresponds to ground states which can not be
reached without closing the gap, and respectively going through a plateau
at the level of the conductance. One can show that N in Eq.(1) equals n.
Furthermore it can be showed that the trivial insulator is equivalent to the
vacuum since the vacuum has, according to Diracs’s relativistic quantum
theory, an energy gap (for the pair production), the electrons forming the
conductance band and the positron forming a valence band. One peculiarity
of topological insulators is the existence of an insulating bulk and metallic
edge states. Let us consider an interface of a material with different Chern
numbers for example n=1 and n=0, which can be seen as the interface of a
QH material and the vacuum. If we slowly interpolate the gap between the
QH state and the vacuum as a function of the distance, somewhere along the
interface the energy gap has to vanish, because this is the only possibility
for the Chern number to change. This explains the robustness of the quan-
tization of σxy. The existence of low energy gapless states near the edge is
therefore inevitable if the topological invariant changes. Another remarkable
fact is that the quantization of σxy is still accurate in disordered samples. In
the integer QHE the Chern number simply is the number of gapless modes
at the edge or the value of the Hall conductance in multiples of e2/h. One
says that the edge states are topologically protected by the bulk property.
This means that the freedom of the electrons at the edges (moving left or
right) is spatially separated on opposite edges. Backscattering at one edge
is therefore forbidden due to a lack of electrons moving with the opposite
direction of motion. Since the direction of motion of the electrons are fixed
(depending on the sign of the magnetic field) they are referred to as chiral.
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The QH state belongs to a topological class which breaks time reversal
symmetry (TRS), for example due to the presence of magnetic fields. It is
therefore natural to ask whether the breaking of time reversal symmetry is
a necessary condition for topological nontrivial states. One of the first who
theoretically predicted this new phase of matter in two dimensions were
Kane and Mele [9] and Bernevig, Andrei and Zhang [10]. In the 2D case it
is called Quantum spin hall insulator (QSH) or synonymously 2D topological
insulator. The QSH state does not require a magnetic field which leads to the
TRS breaking and is expected to have robust quantized properties. It can
be seen (approximately) as two copies of the QHE with opposite chiralities
at the edge, with one copy for each spin (see figure 1).

↑
↓

↑
↓

Figure 1: Opposite spins are moving in opposite directions at edges of the
QSH material

This gives the same robustness against backscattering as in the QH state,
because the backscattering would need to cause a spin flip to backscatter
the electron. The resulting edge states are termed as helical, since there
is a fixed relation between the electrons momentum and the spin. Since
the QSH state is robust to disorder in the presence of TRS and it has
an insulating bulk and gapless edge modes it is a new topological state of
matter. Because the charge Hall conductance vanishes the Chern number
is not good to classify this type of topological insulator. It can be shown
that all TR invariant insulators in nature belong to ten different classes,
characterized by a either a Z, Z2 or no topological order parameter [11]. In
the 2D case, the Z2 parameter can take the value 0 or 1. The topologically
nontrivial state has a full insulating gap in the bulk , but has gapless edge
or surface states consisting of an odd number of Dirac fermions. This can
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be seen from figure 2. The T operator is defined as T = eiπσyK̂, where σy
denotes the 2nd Pauli matrix and K̂ stands for the complex conjugation.
This fulfills our expectation of a time reversal since it flips the spins and
inverts the direction of motion p→ −p etc. For spin 1/2 fermions, T fulfills
the property T 2 = −1. This leads to an important fact, known as Kramer’s
theorem, which states that all eigenstates of a T invariant Hamiltonian are
at least twofold degenerate. In the absence of spin orbit interaction (SOI)
it is simply the degeneracy between up and down spins. In the presence of
SOIs, which is part of the model description and needed for the appearance
of surface states, it has nontrivial consequences. A T invariant Hamiltonian
has to satisfy the following relation TH(k)T−1 = H(−k). This holds only
at certain points in the Brioullin zone, for example Γa = 0 and Γb = π/a. At
the T invariant momenta, Kramer’s theorem guarantees that the states are
twofold degenerate and the T invariance shows that they must have the same
energy. Everywhere else the SOI splits up this degeneracy. If the number of
surface states is even then one can get rid of them by adiabatically changing
the band structure and the position of EF , whereas this is not possible for
an odd number of surface states. If a state is a trivial insulator or not can
be seen by looking at the topological class of the bulk band structure (see
figure 2). Since TRS guarantees every electron with k to have a partner
at -k, we can see the Z2 invariant is the number of Kramer pairs modulo
2. One can therefore conclude that the 2D topological insulator must have
topologically protected edge states. [12] [8]
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Γa Γb

(a) E

Valence band

Conduction band

EF

Γa Γb

(b) E

Valence band

Conduction band

EF

Figure 2: Electronic dispersion between the T invariant momenta Γa = 0
and Γb = π/a. The number of surface states crossing EF is even in (a)
and odd in (b). The odd number leads to topologically protected boundary
states. Only one half of the BZ is shown, because T symmetry requires the
other half to be a mirror image.

The QSH insulator was first experimentally observed in HgTe/CdTe
quantum wells by König et al [13]. The QSH in the HgTe/CdTe quantum
well is characterized by an insulating bulk and a pair of helical edge states
(HES). There is a quantum phase transition when the thickness of the ma-
terial is under the critical thickness from a topological insulator to a trivial
insulator. For the thicker quantum wells they could measure a longitudinal
conductance of 2e2/h, which corresponds to each edge mode contributing a
conductance of e2/h for each helicity.

More recent approaches to helical systems are based on the formation of
interaction induced helical modes in InAs or GaAs quantum wires.

One possible theoretical model which explains for example, the appear-
ance of helical modes in wires is the Kondo chain. It consists of elec-
trons on a one-dimensional lattice, which interact with localized magnetic
moments. The indirect exchange interaction, known as Ruderman-Kittel-
Kasuya-Yosida interaction, can be found in the second-order perturbation
theory, where the magnetic moments of the atoms interact with the spin of
the conduction electrons through the hyperfine interaction. This electron
can then interact with other nuclear spins, which can lead to a correlation
between the nuclear magnetic moments and an ordering of the conduction
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electron’s spins. Tsvelik and Yevtushenko showed in [3] that there is a phase
transition in the wire, due to the spontaneous breaking of Z2 symmetry be-
tween sectors with different helicity of the fermions. The coupling J between
the magnetic moment and the electron’s spin is considered isotropic in the
x-y-plane: Jx = Jy = J⊥. The model shows two different regimes which dif-
fer by the predominant direction of the spins orientation under interaction,
namely the easy axis (EA), Jz > J⊥, and the easy plane (EP), Jz < J⊥,
anisotropy. If the anisotropy has the EA form, the band structure of the
wire is gapped. The electrons are localized by the magnetic impurities and
the transport of charge, carried by the quasi particle excitations, is therefore
blocked. Jz = J⊥ is the point of the quantum phase transition. In the EP
phase the quasi particles with a given helicity acquire a gap, whereas the
other helical branch remains gapless (see figure 3).

↑, ↓

(a)

↑

↑ ↓

(b)

↓

↓ ↑
(c)

↑ ↓

(d)

Figure 3: This figure shows the partial gap opening presented in Ref. [3].
The idealized degenerate dispersion relation can be seen in (a). Figure (b)
and (c) show that a gap opens for the spin up and spin down particles of a
given helicity. The resulting dispersion relation can be seen in (d), where a
gap has opened for spin down particles. This corresponds to the breaking
of the Z2 symmetry, since every partner with the momentum k should have
a partner at -k with the opposite spin.

If spin conservation is respected in the wire, the helical ordering of the
electrons make single-particle backscattering impossible. This leads to a
symmetry protection for helical edge states, due to many-body effects com-
parable to those in the QSH insulator, where the protection arises to the
topologically nontrivial bulk. It has been shown in ref. [4], that a new order
parameter can be introduced, which distinguishes the EP and the EA phase.
This parameter Ac = εabc〈Sa(1)Sb(1 + ξ0)〉 can be written as the average of
the vector product of two neighboring spins. For the EA case the Sx and
Sy components of the spins are uncorrelated. In the EP case the Sx and Sy

components of the spin are correlated and form a helix in the Sx-Sy space
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plotted over kF . The asymmetry between the spontaneously broken helical
states can be seen when computing the in-plane susceptibility 〈S+(1)S−(2)〉.
In the EA phase it has peaks at 2kF and −2kF , whereas in the EP phase it
has a peak only at either 2kF or −2kF , depending on the helix orientation.

One possible experimental realization is a cleaved edge overgrowth GaAs
quantum wire, see [2]. Scheller et al showed, that at temperatures above 10
Kelvin the quantum wires showed the quantized conductance 2G0 = e2/h
(one mode of conductance for each spin), which means that the electrons
were not gapped. Below 100 mK the conductance showed a drop by the
factor of two, which suggests a potential gap opening and spin ordering.
This remained constant for further cooling.

Another possible realization can be found in quantum wires with a strong
spin-orbit interaction(SOI). This interaction is a relativistic effect, where an
electron travelling through an electric field experiences a magnetic field, that
interacts with the electron’s magnetic moment, in its rest frame. This inter-
action is the basis for the spin-orbit coupling (SOC), which causes a splitting
of the electrons in atoms depending on their spin state. In semiconductor
devices, the difference in the conduction-band energies between to different
materials give rise to an electric field, which leads to a SOI. The resulting
effect is termed Rashba effect. [14]

Quay et al. have shown, that applying magnetic fields along the wire,
perpendicular to the magnetic field seen by the electrons from the SOC can
open a gap in the dispersion relation, such that, when the Fermi energy lies
inside the gap, one gets HES. See figure 4 and ref. [5].
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↑, ↓

(a) E

k

↑ ↓

(b) E

k

↑↓ EF

(c) E

k

Figure 4: (a) The free electron dispersion relation, which is degenerate for
up-and down spins. (b) The dispersion relation under the influence of the
SOI. The degeneracy is removed, displacing the spin sub bands with respect
to each other. (c) Opening of a SOI gap, when a magnetic field along the
length of the wire is applied, which creates a spin mixing of the subband
and thus a anticrossing. Tuning EF to the SOI gap allows one to obtain
right moving particles with e.g. spin up and left moving particles with spin
down.

Heedt et al measured the conductance of such nanowires and found ev-
idence for the formation of helical states in the lowest 1D subband of InAs
wires [1]. The HES appear because of the Rashba SOI. Other than expected
it is not necessary to apply an external field perpendicular to the spin-orbit
field. Although the effect is enhanced, when a magnetic field is applied to
the wire, the field does not seem necessary to open a gap.

2 Motivation and Statement of Problem

Helical states are a hot topic in modern solid state physics. Their unique
electronic properties, like the ideal transport of charge or spin, make them
a potential candidate for modern electronic semiconductor devices and for
quantum computing [8–10, 12]. A possibility to realize HES in 1D wires
attracts a growing attention. However, a smoking gun evidence, confirming
the helical transport in 1D wires, is still absent [1–5, 15]. It is extremely
important to develop reliable tools, which allows one to identify the HES in
real experiments. In this thesis, we focus on quantum interference effects,
namely the Aharonov-Bohm effect, and look at the peculiarities which arise
due to the helical nature of the states. The following questions will be
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addressed in this project.

• Will one observe AB-oscillations in a helical ring setup, connected to
helical leads?

• Will one observe AB-oscillations in a helical ring setup, connected to
non-helical leads?

• Is there a difference between the conductance of the above setups,
compared to a normal ring, especially regarding the period of the os-
cillations?

• Can the AB setup be used to distinguish HES and normal wires?

3 Main part

3.1 The Y-junction of helical wires

In a first attempt to investigate quantum interference effects in helical sys-
tems, we want to build an Aharonov-Bohm ring made out of helical quantum
wires. A basic element of the circuit is the beam splitter which divides and
merges the electrons into two paths (see Figure 5). This Y-junction consists
of 3 wires with different helicities of the wires. We can think of two different
setups. One where the outgoing arms have equal chirality, which we will
denote as Sa setup, and one where they have different chirality, which will
be denoted as Sb. Figure 5 shows the labeling of our states.

We use the S-matrix formalism to find a possible solution for the Y-
junction. Our system provides three transport channels and therefore, we
need a 3x3 S-Matrix [16]. The S-Matrix has the general form:

S =

r11 t12 t13

t21 r22 t23

t31 t32 r33

 , (3)

where rii is the amplitude of the following process: the electron approaching
the junction in the transport channel i is reflected back to the same channel i.
Consequently, |rii|2 is the probability of this process. tij is the amplitude of
the following process: the electron approaching the junction in the transport
channel i is transmitted in the channel j, with |tij |2 being the probability of
this process. The scattering matrix relates the in going and outgoing states
in the following way: ψout = Sψin. To guarantee the conservation of the
particle number, we require the reflection and transmission probabilities in
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Sb3, ↓

3, ↑

1,
↑

1,
↓

2, ↓2, ↑

Sa3, ↓

3, ↑

1,
↑

1,
↓

2, ↑2,↓
Figure 5: Channel number and helicity of two different beam splitters.

each channel to add up to one, which is equivalent to the statement that
our S-Matrix is unitarity:

SS† = S†S = 1. (4)

Equipped with this knowledge, one can try to guess the correct S-matrix
for the helical Y-junction, which fulfills the requirements above. In heli-
cal wires, we expect no backscattering, since there is no transport channel
which carries electrons with the opposite velocity, but with the same spin.
Furthermore we exclude electron-electron interaction which could cause a
spin flipping during the scattering process. This helps us to restrict the
S-Matrix, because we can assume that the diagonal entries of the S-matrix
have to be zero.

Sa setup

Since channel two has no outgoing mode with spin down, the probability
of transmission in this channel from channel one is zero. Following this
pattern, checking if tij 6= 0, simply from the matching of the spins of the in
states and out states, gives us the S-Matrix:
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S =

 0 0 t13

0 0 t23

t31 t32 0

 . (5)

An attempt to check the unitarity condition, yields:

SS† =

 0 0 t13

0 0 t23

t31 t32 0

·
 0 0 t∗31

0 0 t∗32

t∗13 t∗23 0

 =

t13t
∗
13 t13t

∗
23 0

t23t
∗
13 t23t

∗
23 0

0 0 t31t
∗
31 + t32t

∗
32

 ,

which obviously can never be equal to 1. Therefore, a unitary S-Matrix
cannot be constructed.

Sb setup

Since channel two has no outgoing mode with spin up the probability of
transmission in this channel from channel three is zero. Analog to the setup
above, we get the S-Matrix through checking if scattering from one channel
into another is possible or not. This gives:

S =

 0 t12 t13

t21 0 0
t31 0 0

 . (6)

An attempt to check the unitarity condition, yields:

SS† =

 0 t12 t13

t21 0 0
t31 0 0

·
 0 t∗21 t∗31

t∗12 0 0
t∗13 0 0

 =

t12t
∗
12 + t13t

∗
13 0 0

0 t21t
∗
21 t21t

∗
31

0 t31t
∗
21 t31t

∗
31

 ,

which obviously can never be equal to 1. Therefore, a unitary S-Matrix
cannot be constructed.

Almost helical S-Matrix

In a second attempt (Appendix B), we have analyzed a possible parameteri-
zation for a S-Matrix which requires all reflection coefficients to be zero. The
result is a matrix which shows that single transport channels have to be con-
nected with perfect transmission. In the case of the full helical Y-junction,
one possible experimental result could be that two wires are connected with
perfect transmission, whereas the third wire is disconnected from the whole
setup.
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3.2 Conductance of the normal-helical-normal setup

In this section, we will further investigate the AB-effect on HES systems.
To understand the AB-effect, we consider a one-dimensional motion e.g. in
a certain transport channel. If an electron travels through a region with a
smooth electromagnetic potential V (x, t), such that no scattering occurs, it
acquires a phase. The Hamiltonian of this system reads H = H0 + V (x, t),
where H0 is the Hamiltonian without an extra potential. If Ψ0 is a solution
for H0, then the solution for H will be

Ψ = Ψ0e
−iΘ/~, Θ =

∫
V (x, t)dt, (7)

which can be seen from inserting this in the Schrödinger equation. If we
consider a setup, where the electrons are split up into two different paths,
their wave function can be written as

Ψ = Ψ0,1e
−iΘ1/~ + Ψ0,2e

−iΘ2/~, (8)

Θ1 =

∫
V1(x, t)dt, Θ2 =

∫
V2(x, t)dt. (9)

It is apparent, that the interference of the two parts at some point will
depend only on the phase difference Θ1 − Θ2. Thus, there is a physical
effect of the potentials even though no force ever acts on the electron. As
noticed by Aharonov and Bohm 1959, there are two different contributions
depending on the form of the potential. The phase shift depending on the
electric potential yields:

∆Θel = e

∫
Φeldt (10)

This phase shift due to potential is called dynamical phase. It has an im-
portant property: if an electron takes a time-reversed path, lets say from x2

to x1, the phase shift accumulated is the same as going from x1 to x2. In
contrast to this, the phase shift due to magnetic fields are more complicated.
The magnetic phase accumulated along the trajectory depends on the vector
potential A(x)and is opposite for the time reversed path.

∆Θmag =
e

c

∫
Adx. (11)

Shifting the vector potential by an arbitrary gradient A→ A +∇χ(x) field
will lead to precisely the same physical situation. The phase shift will depend
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explicitly on χ(x), which makes it unobservable. The phase difference can
also be evaluated as the integral around a closed circuit in space time, where
the potentials are evaluated at the place of the center of the wave packet.
This gauge-invariant observable quantity is the magnetic phase accumulated
along a closed path, where the electron returns to the same point. It is
proportional to the magnetic flux Φ enclosed by this trajectory,

∆Θmag =
e

c

∮
Adx =

e

c

∫
BdA =

2πφ

φ0
, (12)

where φ0 = hc/e is the magnetic flux quantum. In general, any periodic
dependence on φ/φ0 is called Aharonov-Bohm (AB) effect [16,17].

We consider a setup of an Aharonov-Bohm ring which provides helical
edge states connected to metallic non-helical leads. The calculation basically
follows Maciejko et al [18], who looked at a ring made of a QSH insulator
material connected to spin polarized metal leads. Let us emphazise the
difference between Maciejko’s paper and this project. The metal lead in our
setup is modelled as the combination of two helical edge states with different
chirality. This means that, in contrast to the paper [18], we only consider
full loop contributions (figure 6), since only electrons with the same spin
contribute to the conductance in the same transport channel.
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ML ML

Figure 6: Phenomenological analysis of the interference paths: Since spin
up can only go clockwise in our setup (depends on the convention we took),
there is only one possible type of interference (Same for spin down, but
going counterclockwise). The red path shows a half-loop, the phase shift
gathered here is equal to λ + Θ1, where λ stands for the dynamical phase.
The green path shows one and a half loop, the phase shift is equal to
2(λ + Θ1) + λ + Θ2 . Even the interference of these two trajectories yields
the AB-effect. The transmission probability contains an interference term of
the form Pred,green = 2Re[tredt

∗
green] ∝ cos(2λ+ Θ1 + Θ2) = cos(2λ+ ΘAB).

Contributions of this type depend on the dynamically phase and under-
lie universal conductance fluctuations, because for identical nanostructures,
these phase shifts are random. So, this contribution is individual for each
nanostructure and will disappear, if we average over a large ensemble of
nominally identical ones [16].

This is a difference to Ref. [18] since it addresses spins mixing at the
junction, where the HES are connected to spin full polarized wires.

Our scattering problem at the junction is therefore equivalent to a helical
X-junction or corner junction. We have four in going helical states and four
outgoing helical states, where two helical states form our non-helical metal-
lic lead, since, in combination, they transport spin up and down in every
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direction. This can be seen in Figure 7. We want to obtain an expression
for the 4x4 S-matrix S which relates the in going amplitudes to the outgoing
amplitudes in the form:

ml,↑
ml,↓
mr,↑
mr,↓


out

= S


ml,↑
ml,↓
mr,↑
mr,↓


in

with S =

(
r t′

t r′

)
, (13)

where ml and mr are the current amplitudes far from the junction. The
S-matrix has therefore the dimensions 4 × 4. The submatrices r, r′, t, t′ are
2× 2 matrices and describe the reflection and transmission of a given state.
Our Aharonov-Bohm ring consists of a left beam splitter, which divides
the electron’s path in an upper and a lower arm, and a right beam splitter,
which merges the beams again. Between the upper and lower arm we place a
magnetic flux confined to a long solenoid. We define the scattering matrices
SL and SR for the left and right junction of the ring. They relate the
amplitudes at the junction in the following way (see figure 7):


m↑
m↓
h↑
h↓


out,left

= SL


m↑
m↓
h↑
h↓


in,left

,


h↑
h↓
m↑
m↓


out,right

= SR


h↑
h↓
m↑
m↓


in,right

(14)
Here m and h refer to the two-component spinors of the metallic lead’s

and the helical edge state’s current amplitudes. This is equal to unfolding
the setup in the following way. This can be seen in figure 8.
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Figure 7: In- and out states of the Aharonov-Bohm ring
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
m↑
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h↑
h↓
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
m↑
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h↑
h↓
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

Figure 8: Unfolding of the Aharonov-Bohm ring scattering problem. m↑,↓
stands for the HES in the metallic leads. h↑,↓ denote the HES in the helical
wire. The red dotted lines indicate the phase shift between the out states
of the left scattering matrix and the in states of the right scattering matrix
and the other way round.

The amplitudes are related through the Aharonov-Bohm phase ϕ =
2πφ/φ0, where φ is the magnetic flux and φ0 = hc/e is the flux quan-
tum, which is opposite for each spin polarization due to the fact, that spin
up electrons only pass the ring clockwise, whereas spin down electrons go
anticlockwise. The arms are symmetric in length. The dynamical phase
λ = 2kF l is the same for both electron spins, l being the distance trav-
eled by the edge electrons from the left to right junction and kF being the
edge-state Fermi wave vector. The helical in-states of the right and left
beam splitter are the helical out-states from the left and right beam splitter
related through the phase shift in the following way:{

hr,↑,↓
hl,↑,↓

}
in

= ei
λ
2 e∓i

ϕ
2

{
hl,↑,↓
hr,↑,↓

}
out

, (15)

where the upper sign corresponds to spin up. Using Eq.(14) and Eq.(15)
gives us (

e−i
λ
2 Φ†hl,in
mr,out

)
= SR

(
ei
λ
2 Φhl,out
mr,in

)
, (16)

where we define Φ ≡ e−iϕ
σz
2 , with σz being the Pauli matrix. Using the first

term in Eq.(14) together with Eq.(16) allows us to eliminate the amplitudes
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hl,in, hl,out and obtain the relations between ml,in,ml,out,mr,in,mr,out. This
yields the S-Matrix.

From the relations(
m
h

)
out,left

= SL

(
m
h

)
in,left

,

(
e−i

λ
2 Φ†hl,in
mr,out

)
= SR

(
ei
λ
2 Φhl,out
mr,in

)
, (17)

we obtain (see Appendix C)

t = tR[1− eiλΦr′LΦrR]−1Φei
λ
2 tL. (18)

The conductance of the ring can be determined by using the Landauer for-
mula. Eq.(51) expresses G in terms of the scattering matrices at the junc-
tions. As before, we use rather heuristic methods to guess the right S-matrix
(for the construction see the figure 8). The convention we took for the in-
and out-states gives a S-matrix of the form

S =


r1 0 t1 0
0 r2 0 t2
t3 0 r3 0
0 t4 0 r4

 . (19)

A further restriction for this matrix appears if the system has TRS. The
time reversal operator, is T = eiπσyK̂, where σy denotes the second Pauli
matrix and K̂ stands for the complex conjugation, acting on the in-states
and out-states gives the following relations TΨin(out) = QΨout(in), with Q

= 1 ⊗ σy. This results in the following relation S = −QSTQ [19, 20]. This
leads to a S-matrix, up to an overall phase, in the form of

S =


r1 0 t1 0
0 r1 0 t2
t2 0 r3 0
0 t1 0 r3

 . (20)

The unitarity condition reads

SS† =


r1r
∗
1 + t1t

∗
1 0 r1t

∗
2t1r

∗
2 0

0 r1r
∗
1 + t2t

∗
2 0 t2r

∗
2 + r1t

∗
1

t2r
∗
1 + r2t

∗
1 0 r3r

∗
3 + t2t

∗
2 0

0 r2t
∗
2 + t1r

∗
1 0 r3r

∗
3 + t1t

∗
1

 = 1. (21)

We choose r = r1 = r∗3 and t = t2 = −t∗1 to fulfill Eq.(21) and obtain
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S =


r 0 −t∗ 0
0 r 0 t
t 0 r∗ 0
0 −t∗ 0 r∗

 . (22)

The conductance G takes the form (see Appendix D)

G =
2e2

h
tRt
†
RtLt

†
L

(
1

1− ei(λ−ϕ)rRr∗L − e−i(λ−ϕ)r∗RrL + |rR|2|rL|2
+ (23)

+
1

1− ei(λ+ϕ)rRr∗L − e−i(λ+ϕ)r∗RrL + |rR|2|rL|2

)
.

We now consider a symmetric setup with an inversion symmetry. The
conductance should not change if we send a current from the right or left
through the AB-ring. This means that rR = rL = a and tR = tL = b. This
leads to further simplifications in the conductance.

G =
2e2|b|4

h

1

1− 2|a|2cos(λ− ϕ) + |a|4
+

1

1− 2|a|2cos(λ+ ϕ)|a|4
. (24)
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Figure 9: Conductance for the specific set of parameters |a|2 = 1/2, |b|2 =
1/2, λ = 0

An example of the AB-oscillations is shown in figure 9. We can see
that the conductance of the Aharonov-Bohm ring is 2π−periodic in ϕ, and
therefore periodic in the magnetic flux with a period of φ0. This is in
compliance with Ref. [18], despite of different interfering trajectories, in the
case of vanishing magnetization of the wire.

4 Conclusion and main results

In this work, we have analyzed the quantum interference effect, namely the
AB effect, in different setups which can be used to distinguish normal wires
from the recently found helical wires. Our theoretical results can be used
as an additional tool confirming the existence of interaction induced helical
states. The main result of this work are:

• In Section 3.1, we have shown that there is no possible solution for a
full helical Y-beamsplitter, one basic component of the AB-ring, under
the assumption, that the S-matrix conserves the particle number and
the spin. Therefore, if one tries to build an Aharanov-Bohm ring made
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entirely out of helical wires, it should not be possible to see any AB-
oscillations. The absence of the AB-oscillations in the purely helical
setup may confirm the helical nature of the electrons.

• In section 3.2, we have considered an Aharonov-Bohm ring connected
to normal non-helical metallic leads. We have shown that, if the arms
of the AB-ring have opposite chirality, then one can see AB-oscillations
with a period of ϕ = 2πφ/φ0 = 2π. This means that the oscillations
are periodic in the magnetic flux send through the ring with a period
of φ0, integer multiples of the flux quantum. The HES’s behavior is
similar to the AB-oscillations in normal wires or to the oscillations in
the QSH material [18].

• If the arms of the ring have the same chirality, then there are no
oscillations. The S-Matrix of the System would take the same form as
the S-Matrices in section 3.1 plus an additional 4th wire, which is not
connected to anything

The absence of oscillations in the normal-helical-normal setup with equal
chirality can also be used to distinguish helical wires from normal wires.
Recent studies have shown that the HES can originate from spontaneous
symmetry breaking [4]. If one manufactures Aharonov-Bohm rings, the
chirality of the arms would be uncontrollable random. If a sufficiently large
number of rings is produced, both setups, with equal and opposite chirality
of the arms, should appear with the same probability. The setup with
equal chirality of the arms should show no AB-oscillations. The setup with
opposite chirality of the arms should show AB-oscillations with a period
of φ0. Therefore, the probability to see oscillations in a large number of
nominally identical experiments is a proof for the helical nature of the 1D
wires.
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6 Appendices

A The Landauer formula

One can describe the transport properties of a multi-terminal nanostruc-
ture by using the scattering approach. Our finite-size scattering region is
connected to 3 reservoirs (kept at fixed voltages V1, V2, V3). The wave func-
tions in the waveguides are described as plane waves. For each waveguide
α we now introduce a set of local coordinates xα > 0, yα, zα, where xα is
directed along the waveguide from the scattering region to the reservoir. If
we consider a current flowing through the cross section of the waveguide
α in the direction from the scattering region to the reservoir, the electrons
with kx < 0 originated from reservoir α, are described by the distribution
function fα(E). The electrons with kx > 0 come from various reservoirs(see
figure 10).

V3 Sk1
x > 0

k1
x < 0

V1

V2

Figure 10: Labeling of kx.

The fraction of particles that are incident from the reservoir β in the
transport channel m and that end up in the waveguide α in the transport
channel n, is given by |Sαn,βm|2, their distribution function being fβ(E).
The filling factor is given by

29



∑
βm

|Sαn,βm|2fβ(E) (25)

We can write the current in terminal α as follows

Iα = 2se
∑
n

∫ 0

−∞

dkx
2π

vx(kx)fα(E) +

∫ ∞
0

dkx
2π

vx(kx)
∑
βm

|Sαn,βm|2fβ(E)


= 2se

∑
n

∫ ∞
0

dkx
2π

vx(kx)
∑
βm

(
|Sαn,βm|2 − δαβδmn

)
fβ(E). (26)

Changing variables from kx to E gives:

Iα = −
GQ
e

∫ ∞
0

dE
∑
βmn

(
δαβδmn − |Sαn,βm|2

)
fβ(E)

= −
GQ
e

∫ ∞
0

dE
∑
β

Tr
[
δαβ − S†αβSαβ

]
fβ(E), (27)

where the trace is taken over the transport channels n and m. The matrix
Sαβ is a block of the matrix S, which describes the transmission of electrons
from terminal β to terminal α (for α 6= β) or their reflection back to α (for
α = β) [16].

The unitarity condition guarantees the current conservation. The cur-
rent of all terminals add up to zero, which is consistent with Kirchoff’s first
law,

∑
α Iα = 0. We keep all chemical potentials equal to the Fermi energy,

except for one terminal γ, µγ = EF + eVγ . This voltage induces a current in
all other terminals. The only surviving term in the sum in Eq.(27) is then
for β = γ. We obtain Iα = GαγVγ with

Gαγ = −GQTr
[
δαγ − S†αγSαγ

]
, (28)

which is referred to as the multi-terminal Landauer equation.

B General parameterization of a S-Matrix

A general parameterization for the S-Matrix has been done to understand
at which point the unitarity of the S-Matrix contradicts the assumption of
a full helical beam splitter. An arbitrary S-matrix can be represented, up
to an overall phase, as follows [21]:
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S = Ueiλ5θU ′eiλ8α4

√
3

2 ,

U = eiλ3
α2
2 eiλ2

χ
2 eiλ3

Ψ
2 ,

U ′ = eiλ3
φ′
2 eiλ2

χ′
2 eiλ3

α3
2 .

(29)

Here the λ matrices are called Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 (30)

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 ,

and θ, α2, α3, α4, χ, χ
′,Ψ, φ′ are Euler angles. If we consider the limit of

linear conductances, it is possible to rewrite the Landauer equation in terms
of density matrices. The current in the jth wire is given by
Ij(x) = evf [〈ρj,in(x)〉 − 〈ρj,out(−x)〉]. The linear response theory yields

Ij(x) =
∫ 0
−∞ dy [〈ρj,in(x)ρk(y)〉 − 〈ρj,out(−x)ρk(y)〉]Vk. In the static limit

the response function can be evaluated as Gjk = δjk − Tr[ρj,outρj,in] =
δjk − |Sjk|2 [22]. For a multiplet of incoming fermions Ψ = (ψ1, ψ2, ψ3), the
incoming density ρj = Ψ†ρ̂Ψ is given by the simple diagonal matrix

ρ̂1 =

1 0 0
0 0 0
0 0 0

 , ρ̂2 =

0 0 0
0 1 0
0 0 0

 , ρ̂3 =

0 0 0
0 0 0
0 0 1

 . (31)

We can rewrite the density matrices in terms of the Gell-Mann matrices.
Which gives

ρ̂1 =
1

2
(

√
2

3
λ0 +

1√
3
λ8 + λ3),

ρ̂2 =
1

2
(

√
2

3
λ0 +

1√
3
λ8 − λ3), (32)

ρ̂3 =
1√
6
λ0 −

1√
3
λ8.
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Here λ0 =
√

2
31 is proportional to the unit matrix. The outgoing density is

given by ρ̃j = Ψ†S†ρjSΨ or in terms of the density matrix ˜̂ρj = S†ρ̂jS. We
can now implement this in the formula we obtained for the linear conduc-
tance. This gives us the following relation:

Gjk = δjk − Tr[ρj,outρj,in] = δjk − Tr[ρ̃jρj ] (33)

We wish to reduce the redundancies of our conductance matrix and there-
fore define, consistent with the current conservation laws

∑
j Gjk = 0 and∑

kGjk = 0 , certain combinations of voltages. We define (Ia, Ib, I0) =
G̃(Va, Vb, V0) with

Va = (V1 − V2), Ia = (I1 − I2),

Vb = (V1 + V2 − 2V3)/2, Ib = (I1 + I2 − 2I3), (34)

V0 = (V1 + V2 + V3)/3, I0 = (I1 + I2 + I3).

The connection between G̃ and G is given by G̃ = AR†GRA with A =

diag( 1√
2
,
√

2
3 ,
√

3) and

R =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −2√
6

1√
3

 , (35)

such that R†R = 1. We obtain

G̃ =

 1
4(G11 −G21 +G22 −G12) . . .

1
6(G11 +G21 − 2G31 −G12 −G22 + 2G32) . . .

0 . . .

. . . 1
6(G11 −G21 +G22 −G12 −G13 +G23) 0

. . . 1
9((G11 +G21 − 2G31 +G12 +G22 − 2G32− 2(G13 +G23 − 2G33)) 0

. . . 0 0

 .

(36)

The third row and column are equal to zero, because of charge conservation
and because applying equal voltages will not produce a current. The re-
maining components are nonzero. We obtain the reduced 2x2 conductance
Matrix, which takes the form:
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G̃ =


1
2(1− 1

2Tr(λ̃3λ3)) − 1
2
√

3
Tr(λ̃3λ8) 0

− 1
2
√

3
Tr(λ̃8λ3) 1

2(1− 2
3Tr(λ̃8λ8)) 0

0 0 0

 , (37)

with λ̃i = S†λiS. The general S-matrix contains eight Euler angles, however,
the conductance includes only traces of products of λ3(8) and S†λ3(8)S. Since
λ3 and λ8 commute with each other, the angles α4, α3, α2 drop out of any
observable quantity. One can also redefine the angles in such way, that φ′

can be set to zero. [23]. Our result is a S-matrix which can be parameterized
by four angles:

S = eiλ2
χ
2 eiλ3

(π−Ψ)
2 eiλ5θeiλ2

χ′
2 . (38)

or equivalently

S =


ei
π−Ψ

2 cos(θ) cos
(χ

2

)
cos
(
χ′

2

)
− e−i

π−Ψ
2 sin

(χ
2

)
sin
(
χ′

2

)
. . .

−ei
π−Ψ

2 cos(θ) sin
(χ

2

)
cos
(
χ′

2

)
− e−i

π−Ψ
2 cos

(χ
2

)
sin
(
χ′

2

)
. . .

− sin(θ) cos
(
χ′

2

)
. . .

. . . ei
π−Ψ

2 cos(θ) cos
(χ

2

)
sin
(
χ′

2

)
+ e−i

π−Ψ
2 sin

(χ
2

)
cos
(
χ′

2

)
ei
π−ψ

2 sin(θ) cos
(χ

2

)
. . . −ei

π−Ψ
2 cos(θ) sin

(χ
2

)
sin
(
χ′

2

)
+ e−i

π−Ψ
2 cos

(χ
2

)
cos
(
χ′

2

)
−ei

π−ψ
2 sin(θ) sin

(χ
2

)
. . . − sin(θ) sin

(
χ′

2

)
cos(θ)


(39)

We now want to integrate the helical transport in the S-matrix, as much as
the unitary condition allows it. We want to set r33 = 0 to 0, since we do
not allow backscattering in the same channel. Therefore we choose θ = π

2 .

S =


−e−i

π−Ψ
2 sin

(χ
2

)
sin
(
χ′

2

)
e−i

π−Ψ
2 sin

(χ
2

)
cos
(
χ′

2

)
ei
π−ψ

2 cos
(χ

2

)
−e−i

π−Ψ
2 cos

(χ
2

)
sin
(
χ′

2

)
e−i

π−Ψ
2 cos

(χ
2

)
cos
(
χ′

2

)
−ei

π−ψ
2

− cos χ
′

2 ) − sin
(
χ′

2

)
0

 .

(40)
In a next step we would like to eliminate r22 = 0 and therefore choose χ = π
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S =


−e−i

π−Ψ
2 sin

(
χ′

2

)
e−i

π−Ψ
2 cos

(
χ′

2

)
0

0 0 −ei
π−ψ

2

− cos χ
′

2 ) − sin
(
χ′

2

)
0

 . (41)

In the last step we can eliminate r11 = 0, χ′ = 0 and get

S =

 0 e−i
π−Ψ

2 0

0 0 −ei
π−ψ

2

−1 0 0

 . (42)

If all reflection coefficients are set to zero, there is a trivial solution, where
single channels are connected with perfect transmission (Figure 11).

S3

3

1

1

2

2

Figure 11: The S-Matrix connects single channels with perfect transmission.
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C Transmission coefficient in Section 3.2

From the following Eqs.(43) we can compute the transmission coefficient in
Section 3.2.(

m
h

)
out,left

= SL

(
m
h

)
in,left

,

(
e−i

λ
2 Φ†hl,in
mr,out

)
= SR

(
ei
λ
2 Φhl,out
mr,in

)
, (43)

hl,out = tLml,in + r′Lhl,in, (44)

e−i
λ
2 Φ†hl,in = rRe

iλ
2 Φhl,out + t′Rmr,in. (45)

Let us insert Eq.(44) in Eq.(45). This yields

e−i
λ
2 Φ†hl,in = rRe

iλ
2 Φ(tLml,in + r′Lhl,in) + t′Rmr,in, (45a)

e−i
λ
2 Φ†hl,in − rRei

λ
2 Φr′Lhl,in = rRe

iλ
2 ΦtLml,in + t′Rmr,in, (45b)

hl,in − eiλΦrRΦr′Lhl,in = ΦrRe
iλΦtLml,in + ei

λ
2 Φt′Rmr,in, (45c)

hl,in = [1− eiλΦrRΦr′L]−1
(

ΦrRe
iλΦtLml,in + ei

λ
2 Φt′Rmr,in

)
. (45d)

Eliminating hl,in in Eq.(44) gives

hl,in = [1− ΦrRΦr′L]−1
(

ΦrRe
iλΦtLml,in + ei

λ
2 Φt′Rmr,in

)
,

hl,out = tLml,in + r′L

(
[1− ΦrRΦr′L]−1

(
ΦrRe

iλΦtLml,in + ei
λ
2 Φt′Rmr,in

))
.

(46)

We can compare the definition of ml,out we get from the S-Matrix:

ml,out = rml,in + t′mr,in, (47)

and from the S-matrix at the junction:

ml,out = rLml,in + t′Lhl,in. (48)

We now insert hl,in in Eq.(48) and compare the expressions Eq.(47) and
Eq.(48). This gives us

t′ = t′L[1− eiλΦrRΦr′L]−1Φei
λ
2 t′R, (49)

t = tR[1− eiλΦr′LΦrR]−1Φei
λ
2 tL. (50)
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D Explicit calculation on the conductance in Sec-
tion 3.2

The Landauer formula can be evaluated using Eq.(18)

G =
e2

h
Tr[t†t]

=
e2

h
Tr

[(
tR[1− eiλΦr′LΦrR]−1Φei

λ
2 tL

)† (
tR[1− eiλΦr′LΦrR]−1Φei

λ
2 tL

)]
=
e2

h
Tr

[
tRt
†
RtLt

†
L

(
[1− eiλΦr′LΦrR]−1

)†
[1− eiλΦr′LΦrR]−1

]
. (51)

For the inverted Matrix in equation 51 we get

[
1− eiλ

(
e−iϕ/2 0

0 eiϕ/2

)(
r∗L 0
0 r∗L

)(
e−iϕ/2 0

0 eiϕ/2

)(
rR 0
0 rR

)]−1

(52)

=

[
1− eiλ

(
e−iϕrRr

∗
L 0

0 eiϕrRr
∗
L

)]−1

(53)

=

[(
1− eiλe−iϕrRr∗L 0

0 1− eiλeiϕrRr∗L

)]−1

(54)

=

(
1

1−eiλe−iϕrRr∗L
0

0 1
1−eiλeiϕrRr∗L

)
. (55)

For
(
[1− eiλΦr′LΦrR]−1

)†
[1− eiλΦr′LΦrR]−1 we get(

1
1−eiλe−iϕrRr∗L

0

0 1
1−eiλeiϕrRr∗L

)†( 1
1−eiλe−iϕrRr∗L

0

0 1
1−eiλeiϕrRr∗L

)
(56)

=

(
1

1−ei(λ−ϕ)rRr
∗
L−e−i(λ−ϕ)r∗RrL+|rR|2|rL|2

0

0 1
1−ei(λ+ϕ)rRrL−e−i(λ+ϕ)r∗RrL+|rR|2|rL|2

)
.

(57)
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E Explicit calculation of S = −QSTQ in Section 3.2

If our setup has TRS the S-Matrix satisfies the following relation [19,20]:

SΨin = −QSTQΨin (58)

= −QT−1UKSTKU−1TQΨin (59)

= −QT−1US†U−1TQΨin (60)

= −QT−1US†U−1T 2Ψout (61)

= QT−1US†U−1Ψout (62)

= QT−1Ψin (63)

= Q2TQΨin = Ψout = SΨin, (64)

where we used that T 2 = −1 for fermions, which gives the relation above.
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