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Abstract

Conceptually, the Matsubara formalism (MF) and the Keldysh formalism (KF) give equiv-
alent results for equilibrium systems which are invariant under time translations. However,
while the MF is more convenient for compact analytical calculations, the computation of
physical observables requires to continue functions from imaginary to real frequencies. The
latter is highly challenging in numerics. The KF, already formulated in real frequencies,
circumvents this problem at the cost of higher complexity. It is therefore desirable to con-
struct the various components of a KF function starting from an analytic result for a MF
function. In this thesis we show how one can construct the components of a KF correlator
with analytic continuations of the MF correlator, dubbed AC functions. We thereby extend
the work of other authors (Evans, Weldon, Baym and Mermin) and provide formulas (AC
formulas) for the analytic continuation of three-point and four-point functions. However,
most of our results actually hold for any multi-point correlator.

To obtain general results without any further assumptions than total energy conser-
vation and equilibrium, we use the spectral representation derived by Kugler, Lee and
von Delft. This representation divides the correlator into formalism-independent partial
spectral functions and formalism-specific kernels facilitating the search for relations be-
tween MF and KF correlators. Thereby we easily reproduce the familiar correspondence
of retarded KF correlators to certain AC functions. To express the remaining KF corre-
lators we have to expand them in a suitable way. This allows us to relate them to linear
combinations of AC functions by use of the equilibrium condition.

We then apply our AC formulas in various contexts. Due to the close relation of four-
point correlators to susceptibilities, the work done by Eliashberg and Oguri is particularly
interesting. They used the analytic continuation method in the MF to convert Matsubara
sums into contour integrals. Out of numerous vertex contributions that arise they identified
a single contribution which is in fact relevant for the susceptibility of their physical model
under consideration. We show that each of their vertex contributions has a counterpart in
the KF which is proportional to a single KF component in the R/A basis. For the Hubbard
atom we explicitly compute the vertex function in the KF. This exactly solvable model can
be used as benchmark for numerical works.
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Chapter 1

Introduction

Multi-point correlation functions are central objects of investigation in the field of many-
body physics. The one-particle correlator describes the propagation of a single particle,
containing information on the spectrum of single-particle excitations. Here we focus on
higher-point functions such as the two-particle correlator. The two-particle or four-point
(4p) correlator is associated with the effective interaction between two particles. Interesting
observables, such as the optical and magnetic response function, can be computed from it.
Moreover the closely related vertex function is an essential ingredient in numerous many-
body methods such as the functional renormalization group [1], the parquet formalism [2]
and diagrammatic extensions of dynamical mean field theory [3].

The most common formalism for the study of equilibrium systems at finite-temperature
T = 1/β is the imaginary-time Matsubara formalism (MF) [4,5]. It exploits the cyclicity of
the trace and the fact that the statistical weight of a thermal state e−βH corresponds to a
time-evolution e−iHt along the imaginary axis of the time argument. After a Wick rotation
t → −iτ the correlators are (anti-)periodic functions of imaginary times with period β.
Due to the periodicity the Fourier transform of a MF correlator is a function which has
to be evaluated on a discrete set of imaginary frequencies. To obtain a correlator of real
times or real frequencies one has to “unwind” the Wick rotation by performing a suitable
analytic continuation. However, numerically the analytic continuation to real frequencies
is a highly challenging problem [6,7].

The Keldysh formalism (KF) is another well-established theoretical framework. Unlike
the MF it is not restricted to equilibrium systems. Additionally, it directly works with real
times and frequencies obviating the need for an analytic continuation. However, this comes
at the cost of increased complexity: the KF is formulated on a doubled time contour, and
an `-point (`p) function involves 2` components [8, 9]. By contrast, every MF correlator
involves just one function.

On purely analytical grounds both MF and KF are expected to provide identical results
in equilibrium. Following the philosophy that, irrespective of the formalism, any function
should contain the same information we wish to transition from one formalism to the
other. This would allow us to “cherry-pick” advantages from either formalism. In this
thesis we show how to obtain a KF correlator by analytic continuation of a MF correlator.
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This procedure is well-known for two-point (2p) functions which effectively depend on a
single time or frequency argument, see e.g. Refs. [5, 10,11]. For higher-point functions the
analytic continuation becomes increasingly complicated. Nevertheless, it is always possible
analytically if the functional dependence on the imaginary frequencies is known explicitly
in closed form. We show this in the main part of this thesis in chapter 2. Thereby we
derive explicit formulas for the analytic continuation in some relevant cases.

Our analysis finally provides relations, not only between functions in the MF and the
KF, but also between different Keldysh components of the KF function. As an application
of the results we derive the generalized fluctuation dissipation relations (FDRs) for 3p and
4p functions. Our results reproduce those of Wang and Heinz [12], but go beyond theirs in
that we additionally identify the terms which cannot be reconstructed from FDRs. More-
over, our results are not restricted to real operators or to systems with specific assumptions
such as time-reversal symmetry.

We further apply our results on “translating” formulas from the MF to the KF: In
fact, already within the MF the analytic continuation is a common method for converting
Matsubara sums into contour integrals. This method has been successfully applied by
Eliashberg and Oguri to compute real-frequency susceptibilities from 4p MF functions
[13, 14]. While the analytic continuation initially produces several vertex contributions,
they identified a single one which is actually relevant for the linear response function of
the system under consideration. Later on, Heyder et al. derived Oguri’s formula by an
independent line of argument for the KF [15]. We close the gap between the MF and the
KF approach by directly “translating” Eliashberg’s and Oguri’s formulas to the KF. We
find that each MF vertex contribution by Eliashberg is proportional to a KF component
in the so-called R/A basis.

As a more specific example we present the 4p correlator of the Hubbard atom in chapter
5 which is already known in MF [16–20]. The Hubbard atom is exactly solvable and follows
from other models in the atomic limit. For these models it can be used as numerical bench-
mark. We first compute the correlators directly in a spectral representation. Afterwards
we show that the result obtained by analytic continuation is equivalent. The Hubbard
atom is also a good example for a model where the MF correlators contain contributions
with Kronecker symbols (anomalous contributions). The analytic continuation of such a
symbol is not unique in the first place. However, we will argue that it can be “continued”
to real frequencies by an appropriate substitution. In chapter 6 we then summarize and
reflect on the presented results.



Chapter 2

Preparations for the analytic
continuation

Our goal is to obtain relations between `-point correlators in the imaginary-time MF and
the KF. For this purpose we first introduce the theoretical frameworks in Sec. 2.1. Since
we seek general results, not limited to particular systems, our strategy will be to use the
spectral representations derived in Ref. [21] by Kugler, Lee and von Delft (KLD). They
serve as an analytically exact starting point which is fit to describe any equilibrium system
with time translation symmetry. Since the equilibrium condition is an assumption which is
not formalism-inherent in the KF, it is expected to be important for the search for relations
to MF correlators. In Sec. 2.2 we briefly present a consequence of the equilibrium condition
in the KF. The analytic continuation of Matsubara correlators is then investigated in
Sec. 2.3.

2.1 Spectral representation

In this section, we review the major results on the spectral representations derived by KLD.
In these representations `p correlators are expressed interms of kernel functions and partial
spectral functions (PSFs). The PSFs contain all system-specific spectral properties, while
the kernel functions encode the respective time-ordering conventions of the MF and KF.
This representation is especially suited for investigating analytic continuations because in
both MF and KF the very same PSFs are being used. By comparison, other representations
for KF correlators, involving Keldysh-rotated partial spectral functions and time-ordered
kernels [22–26], somewhat obfuscate the relations between correlators in MF and KF (cf.
Sec. 5.1.4 for the alternative spectral representation).

2.1.1 Definition of `-point correlators

We begin by defining the objects of interest, adopting the notation of KLD. Consider a
tuple O = (O1, ... ,O`) of ` operators, time-evolving as Oi(ti) = eiHtiOie−iHti . They can
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be fermionic (e.g. for vertex functions), bosonic (for susceptibilities) or mixed (for fermion-
boson vertices).

In the MF, `p correlators are defined as

G(τ ) = (−1)`−1〈T
∏̀
i=1

Oi(−iτi)〉, (2.1.1)

where τ = (τ1, ..., τ`) is a tuple of time arguments, each τi ∈ (0, β) and T denotes imaginary-
time ordering1. Moreover, 〈O〉 = Tr[%O] denotes thermal averaging, with density matrix
% = e−βH/Z and inverse temperature β.

KF correlators in the contour basis, Gc, are defined as

Gc(t) = (−i)`−1〈Tc

∏̀
i=1

Oi(tcii )〉, (2.1.2)

where t = (t1, ..., t`), t
ci
i ∈ R, and Tc denotes contour ordering. They carry a tuple of

contour indices c = c1 · · · c`, with ci = − or + if operator Oi resides on the forward or
backward branch of the Keldysh contour, respectively.

KF correlators in the Keldysh basis, Gk, carry a tuple k = k1 ···k` of Keldysh indices
ki ∈ {1, 2}. They are obtained from those in the contour basis by applying a linear
transformation, D, to each contour index [8],

Gk(t) =
∑
c1...c`

∏̀
i=1

[
Dki,ci

]
Gc(t), Dki,∓ = (±1)ki/

√
2. (2.1.3)

Time-dependent correlators are invariant under global shifts of all ` time arguments
because they only depend on the relative times. This time-translational invariance leads
to total frequency conservation. The discrete (MF) or continuous (KF) Fourier transforms
of the above correlators have the following forms, respectively:

G(iω) =

∫ β

0

d`τ G(τ ) eiω·τ = βδω1···`,0G(iω), (2.1.4)

Gk(ω) =

∫ ∞
−∞

d`tGk(t) eiω·t = 2πδ(ω1···`)G
k(ω). (2.1.5)

Here we have used the following notational conventions: Depending on context, ω =
(ω1, ... , ω`) denotes a set of discrete Matsubara frequencies (MF) or continuous real fre-
quencies (KF). Moreover, ω ·τ =

∑`
i=1 ωiτi and d`τ =

∏`
i=1 dτi. We use the shorthand

ωi···i′ =
∑i′

j=i ωj for a sum over frequencies. The discrete Kronecker symbol δω1···`,0 (for
MF) and the Dirac δ(ω1···`) (for KF) implement the frequency-conservation relations

ω1···` = 0, ω1···i = −ωi+1···`. (2.1.6)

1Note that operators in the MF are evolved in the imaginary time direction Oi(−iτi) = eHτiOie−Hτi .
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We use calligraphic symbols, G, K, S, for functions of all ` arguments, and roman symbols,
G, K, S, for functions of `− 1 independent arguments. We nevertheless write the latter as
G(iω) or Gk(ω), with ω containing ` components, it being understood that these satisfy
frequency conservation, ω1···` = 0. This convention leads to particularly compact formulas.

2.1.2 Spectral representation of MF correlators

The spectral representations derived by KLD involve sums over permutations of ordered
`-tuples, generated by the time-ordering prescription. We adopt KLD’s notation for these
permutations. A permutation of an ordered tuple such as ω = (ω1, ... , ω`) is denoted
ωp = (ω1,..., ω`), where the index permutation p(12...`) = (12...`) (or p = (12...`) for short)
acts on the index tuple (12...`) by replacing i by p(i) = ı at position i. Note that p
moves i to position j = p−1(i), replacing j by p(j) = i. For example, if p = (312), then
(ω1, ω2, ω3)p = (ω3, ω1, ω2). The sum

∑
p runs over all such permutations.

The spectral representation for MF correlators found by KLD exploits the following
observation: the time-ordered correlator G(τ ) of Eq. (2.1.1) can be expressed as a sum
over permutations yielding all possible operator orderings,

G(τ ) =
∑
p

ζp〈O1(−iτ1)...O`(−iτ`)〉K(τ p), (2.1.7)

where the kernel K(τ p) =
∏`−1

i=1

[
−θ(τı− τı+1)

]
is nonzero only if the permuted times τ p =

(τ1, ..., τ`) satisfy τi > τi+1. The sign ζp is +1 or −1 if the permuted tuple Op = (O1, ...O`)
differs from O by an even or odd number of transpositions of fermionic operators, respec-
tively.

The multiplicative structure of Eq. (2.1.7) gives rise to a convolution in the Fourier
domain. Exploiting time translational invariance and the resulting frequency conservation
conditions, G(iω) can be expressed as an (`−1)-fold convolution of the form (for details,
see [21]):

G(iω) =
∑
p

(
Sp ∗K

)
(iωp) =

∑
p

∫
d`−1ω′p Sp(ω

′
p)K(iωp − ω′p) . (2.1.8)

Here, ω = (ω1,..., ω`) are Matsubara frequencies and ω′ = (ω′1,..., ω
′
`) real frequencies. Both

tuples are understood to satisfy frequency conservation, ω1···` = 0 and ω′1···` = 0, implying
the same for all permuted versions ωp and ω′p, ω1···` = 0 and ω′

1···` = 0. Thus, G, K and
S each have only `−1 independent arguments, and the integral is over `−1 independent
components of ω′p.

The partial spectral functions (PSFs) Sp, obtained by Fourier transforming the per-
muted operator product in Eq. (2.1.7), have Lehmann representations of the form

Sp(ω
′
p) = ζp

∑
1,...,`

ρ1

`−1∏
i=1

[
Oı
i i+1 δ(ω

′
1···ı − Ei+1 1)

]
O`
`1. (2.1.9)



6 2. Preparations for the analytic continuation

Here, each underlined summation index i enumerates a complete set of many-particle
eigenstates |i〉 of H, with eigenenergies Ei, energy differences Eji = Ej−Ei, and matrix

elements Oij = 〈i|O|j〉, ρ1 = e−βE1/Z. Note that, different from KLD, we have included
the sign factor ζp in the definition of the PSF for notational convenience. In later sections
we can thereby write formulas without special consideration of the exchange symmetry of
the operators.

The MF kernelK is obtained by Fourier transformingK(τ p). It can be written as a sum,

K = K̃ + K̂, of regular and anomalous contributions. Expressed through Ωp = iωp − ω′p,
the regular contribution reads

K̃(Ωp) =
`−1∏
i=1

1

Ω1···ı
. (2.1.10)

It is an analytic function of its arguments Ωi on certain regions of the complex plane (see
Sec. 2.3). It diverges if Ω1··· → 0 for some j. However, then also Ωi+1···` → 0 (because
Ω1···` = 0), and the 1/Ω1···ı divergence turns out to be canceled by a −1/Ωi+1···` divergence
stemming from a cyclically related permutation in the sum

∑
p in Eq. (2.1.8). Their

cancellation can be tracked by a limiting procedure which treats these denominators as
infinitesimals [21].

Each denominator 1/Ω1···i in K̃ originates from an integral of the form −
∫ β

0
dτ1e

τ1Ω1···i ,
arising when Fourier transforming K. If Ω1··· = 0 for some j < `, this integral yields −β
instead. All such contributions are collected in the anomalous part of the kernel K̂. We
will only consider the case that for each Ωp at most one denominator vanishes. Examples
are bosonic 2p functions, or `p functions of fermionic operators with `≤4, such that ω1···i,

with i<`, produces at most one bosonic frequency. Then, K̂ has the form [16,21,27,28]

K̂(Ωp) =
`−1∑
j=1

K̂1···(Ωp), (2.1.11a)

K̂1···(Ωp) = −δΩ1···,0
β

2

`−1∏
i=1
i 6=j

1

Ω1···ı
. (2.1.11b)

Here, δΩ1···j ,0
is symbolic notation indicating that this term contributes only if Ω1··· = 0,

i.e. if both ω1··· = 0 and ω′
1··· = 0. The latter happens if the spectrum has a degeneracy,

Ej+1 = E1, since then the integral (2.1.8) over the factor δ(ω′
1···−Ej+11) in Sp(ω

′
p) sets

ω′
1··· to zero.

Equations (2.1.8) to (2.1.11) give the spectral representation for MF `p correlators de-
rived by KLD. For the purposes of analytic continuation, the main topic of this thesis,
we note that the regular part K̃ can readily be continued to a rational function. By con-
trast, the anomalous part K̂ contains Kronecker symbols and hence needs to be considered
separately.
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To prepare the ground for that discussion (presented in Sec. 3.1.3), we introduce com-

pact notation reflecting the structure of Eqs. (2.1.11) for K̂. For a given permutation
p = (1...`) and a specified term j, we express the permutation as p = I I

c
, where I = (1...j)

and I
c

= (j + 1...`) are the complementary subtuples formed from the first j or last `−j en-
tries of p, respectively. Since the Kronecker symbol in Eq. (2.1.11b) enforces ΩI = ΩI = 0,

implying Ω1···i = Ωj+1···i for the factors with i > j, we may express K̂1···j as

K̂I(ΩI I
c) = −δΩI ,0

β

2
K̃(ΩI)K̃(ΩI

c), (2.1.12)

where the argument ΩI = (Ω1,...Ωj) contains the first j entries of the permuted tuple

Ωp = (Ω1,...Ω`); similarly ΩI
c contains the last `−j entries. Here K̃(ΩI) and K̃(ΩI

c) both
have the form (2.1.10), with the product there involving j−1 or `−j−1 factors, respectively.
Now consider the permutation I

c
I, built from the same subtuples as I I

c
, concatenated in

opposite order. The identity δΩIc,0
= δΩI ,0

(ensured by frequency conservation) and the

product form of Eq. (2.1.12) imply

K̂I
c(ΩI

c
I) = K̂I(ΩI I

c) . (2.1.13)

2.1.3 Notation for restricted permutations

In Eq. (2.1.12) we encountered a kernel which factorizes into several kernels, each taking a
subtuple of the frequencies Ωp as arguments. The notation introduced in the last section
will be needed in a broader context. Given an `-tuple, say ωp, subtuples thereof will
be identified using notation such as ω(λ... λ′) = (ωλ, ... , ωλ′), with λ < λ′. For example,
ωp = (ω(1... λ),ω(λ+1... `)) and (ω1, ω4, ω3, ω2) = (ω(14),ω(32)). Similarly for more than two
subtuples, (ω4, ω3, ω5, ω1, ω2) = (ω(4),ω(35),ω(12)).

We will also consider permutations with a restricted substructure. Let L = {1, ... `}
be the set of all indices, and let I ( L and Ic = L\I be two complementary index
subsets, containing |I| and ` − |I| elements, respectively, where |I| denotes the number
of elements in I. Any index tuple of length |I| or `−|I|, built from elements of I or Ic,
will be denoted by I or I

c
, respectively. Then

∑
pI|Ic

denotes a sum over all permutations
with the concatenated structure p = I I

c
, containing the entries of I = (1, · · · j) followed

by those of I
c

= (j + 1, · · · `). For example, if for ` = 4 we choose I = {1, 4} and
Ic = {2, 3} as complementary subsets, with subtuples I = (14) or (41) and I

c
= (23) or

(32), then
∑

pI|Ic
=
∑

p{1,4}|{2,3}
runs over (1423), (1432), (4123), and (4132). Similarly, let

I1 ∪ I2 ∪ I3 = L be three complementary index sets, then
∑

pI1|I2|I3
denotes a sum over all

permutations with the structure p = I1I2I3.
For any function with p-dependent arguments the sum over all p can be organized in

terms of permutations within all pairs of complementary subsets,∑
p

Fp =
∑
I(L

∑
pI|Ic

FI Ic =
∑
I(L

∑
pI|Ic

1

2

[
FI Ic + FIcI

]
. (2.1.14)



8 2. Preparations for the analytic continuation

The sum is over all subsets I of L, and for each I over all concatenations I I
c

of subtuples
built from I and Ic; on the right, the factor 1/2 compensates for double counting.

Finally, we write ωI =
∑

i∈I ωi for a sum over the components of the subtuple ωI . Note
that ωI = ωI . If ω satisfies frequency conservation, ωL = 0, then any permutation of its
components, expressed through two complementary index subtuples as ωp = (ωI ,ωIc),
satisfies ωI = −ωIc . For example, ω1···4 = 0 implies ω14 = −ω23.

2.1.4 Compact notation for the MF correlator

The MF kernel decomposition K = K̃ + K̂ into regular and anomalous parts implies a
corresponding decomposition for the MF correlator, G = G̃+ Ĝ, with2

G̃(iω) =
∑
p

(
Sp ∗ K̃

)
(iωp), (2.1.15)

Ĝ(iω) =
∑
p

(
Sp ∗ K̂

)
(iωp) =

1

2

∑
I(L

ĜI(iω) . (2.1.16)

On the right, we evoked Eq. (2.1.14) to express the permutation sum through a sum over
subsets I ( L of indices, with

ĜI(iω) =
∑
pI|Ic

[(
SI Ic ∗ K̂I I

c

)
(iωI Ic) +

(
SIcI ∗ K̂I

c
I

)
(iωIcI)

]
=
∑
pI|Ic

(
S[I;I

c
]+
∗ K̂I

)
(iωI Ic). (2.1.17)

For the last step, we recalled Eq. (2.1.13) to factor out a common kernel K̂I(ΩI I
c), col-

lecting the remaining combination of PSFs using the PSF (anti-)commutator3 shorthand

S[I;I
c
]±

(ω′
I I

c) = SI Ic(ω
′
I I

c)± SIcI(ω
′
I
c
I
) . (2.1.18)

Each K̂I in the sum (2.1.17) for ĜI contains a δΩI ,0, thus ĜI is proportional to δωI ,0.
This may be regarded as its defining property. The fate of this Kronecker symbol during
analytical continuation will be discussed in Sec. 3.1.3.

Example: To demonstrate the notation we consider a 4p correlator of fermionic opera-
tors. Anomalous contributions arise for the composite bosonic frequencies iω12, iω13 and
iω14. The contribution proportional to δ0,ω13 is

Ĝ13(iω) =
∑

p{1,3}|{2,4}

(
S[(1 2);(3 4)]+ ∗ K̂(1 2)

)
(iω(12), iω(34)). (2.1.19)

2For a correlator which hosts both regular and anomalous contributions, see e.g. the 4p correlator G↑↓
of the Hubbard atom in Eq. (5.1.23).

3Henceforth we denote with “PSF commutator” (“PSF anti-commutator”) a linear combination of the
partial spectral functions S[I;I

c
]−

(S[I;I
c
]+

), irrespective of the actual exchange symmetry of the operators.
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The summation is performed over all orderings of {1, 3}, giving (13) or (31), and all
orderings of {2, 4} giving (24) and (42). In total the sum runs over the permutations
(1324), (1342), (3124) and (3142). The PSF anti-commutator automatically produces the

further orderings (2413), (4213), (2431) and (4231). To be explicit Ĝ13 is thus expressed
as follows (suppressing frequency arguments for brevity):

Ĝ13 =S[(13);(24)]+ ∗ K̂(13) + S[(13);(42)]+ ∗ K̂(13) + S[(31);(24)]+ ∗ K̂(31) + S[(31);(42)]+ ∗ K̂(31).

2.1.5 Spectral representation of KF correlators

We now turn to the spectral representation of Keldysh correlators in the Keldysh basis,
Gk. KLD obtained it via a permutation expansion of Gk(t) analogous to Eq. (2.1.7).

The results depend on the number and placement of 2’s (2-indices) in the Keldysh
tuple k = k1 ··· k`. It is therefore convenient to specify the latter through the ordered list
k= [η1 ···ηα], where ηj denotes the position of the j-th 2-index in k1 ··· k`, with ηj <ηj+1,
e.g. 1111=[ ], 1221=[23]. Correspondingly, a permuted Keldysh tuple can be specified as
kp=[η̂1... η̂α], where η̂j denotes the position of the j-th 2-index in k1 ··· k`, with η̂j<η̂j+1.
To find the η̂j’s describing kp given the ηj’s describing k, note that p moves a 2-index
from position ηj in k to position µj = p−1(ηj) in kp. The sequence [µ1... µα] lists the new
positions of the 2-indices’; putting its elements in increasing order yields [η̂1... η̂α]. For
example, if k = 1221 = [23], then p = (3412) yields [µ1µ2] = [41] and kp = 2112 = [14].

KLD’s spectral representation for Gk(ω) has the following form, written first in com-
pact, then explicit notation:

Gk(ω) =
2

2`/2

∑
p

(
Sp ∗Kkp

)
(ωp), (2.1.20)

G[η1...ηα](ω) =
2

2`/2

∑
p

∫
d`−1ω′pSp(ω

′
p)K

[η̂1...η̂α](ωp−ω′p).

The frequencies ω and ω′ are real, with ω1···` = 0 and ω′1···` = 0. The PSFs Sp are again
given by Eq. (2.1.9). The KF kernel is given by K [] =0 if α = 0, and for 1<α≤`,

K [η̂1... η̂α](ωp) =
α∑
j=1

(−1)j−1K [η̂j ](ωp) , (2.1.21)

where the K [η̂j ] are retarded kernels, having the following form (stated for superscript η in
the following definition; in (2.1.21), replace it by η̂j):

K [η](ωp) = K̃(ω[η]
p )

(2.1.10)
=

`−1∏
i=1

1

ω
[η]

1···i

. (2.1.22)

Here K̃ actually is the MF kernel from Eq. (2.1.10). Remarkably, the retarded Keldysh
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1
[4]

ω 2
[4]

ω 3
[4]

ω 4
[4]

ω 3
[4]

ω 1
[4]

ω 4
[4]

ω 2
[4]

ω 3
[2]

ω 1
[2]

ω 4
[2]

ω 2
[2]

ω

p(a) (c)(b)]η[ω ]η[ω p
]η[ω

Figure 2.1: Complex frequency tuples, for ` = 4, η = 4, p = (3142), in which case
p−1 = (2413), µ = p−1(η) = 3, η = p(η) = 2. (Reprinted from Ref. [21].)

kernel K [η] has the same functional form, just containing different arguments. The complex
frequency tuple ω[η] is defined to be the real tuple ω with its components shifted by the
imaginary parts γ [η]. These shifts are defined as follows (see Fig. 2.1(a)):

ωi → ω
[η]
i = ωi + iγ

[η]
i , γ

[η]
i 6=η < 0, γ[η]

η =
∑
i∈L
i 6=η

|γ[η]
i |. (2.1.23)

This assigns a positive imaginary part to ω
[η]
η while the remaining complex frequencies ω

[η]
i 6=η

have a negative imaginary part. The shifts are thus determined by the superscript η. By
construction γ

[η]
1···` = 0 holds. An explicit choice is γ

[η]
i 6=η = −γ0 and γ

[η]
η = (` − 1)γ0 where

γ0>0 is infinitesimal (or small but finite for numerics). The tuple ω
[η]
p = (ω

[η]

1
, ..., ω

[η]

`
),

is obtained by permuting the components of ω[η] according to p, including their imaginary
parts (see Fig. 2.1(b)). This moves ω

[η]
η , the component with positive imaginary part, to

the position µ = p−1(η). The complex frequency tuple ω
[η]
p in the definition of the retarded

kernel in Eq. (2.1.22) is then obtained by inserting the superscript η = p(η), which gives
the needed imaginary shifts for the kernel (see Fig. 2.1(c)): the imaginary part of the

frequency sum ω
[η]

1···i is negative for 1 ≤ i < µ and positive for µ ≤ i < `. Thus Eq. (2.1.22)
becomes4

K [η](ωp) =

η−1∏
i=1

(
ω−

1···i

)−1
`−1∏
i=η

(
ω+

1···i

)−1
, (2.1.24)

where the superscript in ω±
1···i = ω1···i ± i0+ denotes whether the frequency sum has a

positive or negative (infinitesimal) imaginary part. As usual, a product over an empty
set, with lower limit larger than upper limit, is defined to equal unity. K [η](ωp) is called
retarded since its inverse Fourier transform, K[η](tp), is retarded with respect to tη, i.e.,
nonzero only for ti < tη, i 6= η [21]. Equations (2.1.9) and (2.1.20) to (2.1.24) give the

4To see that this is indeed equivalent to the retarded kernel defined by KLD [21] in the time domain,

K[η](tp) =

η−1∏
i=1

[
iθ(ti+1 − ti)

] `−1∏
i=η

[
− iθ(ti − ti+1)

]
,

use that a step functions are retrieved via inverse Fourier transforms according to Eq. (2.3.5) below.
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spectral representation for KF `p correlators. Note that, by definition of the complex
frequency tuple ω[η], the kernels K [η](ωp) and K̃(ω

[η]
p ) are equivalent and can in fact be

used interchangeably. We use either of these depending on the convenience of notation.
Leaving a detailed discussion of the analytic structure to Sec. 2.3, we here just discuss

how the above relations reproduce well-known results for the correlators G[η1...ηα] with α=0
or 1. For α=0, where K [] = 0, we have G[ ] =G1...1 =0. For α=1 there is only one η, hence
η̂=µ=p−1(η) and η̂=η. Thus the permutation expansion for G[η] involves just a single
complex tuple ω[η]:

G[η](ω) =
2

2`/2

∑
p

∫
d`−1ω′p Sp(ω

′
p)K̃(ω[η]

p − ω′p). (2.1.25)

Moreover, G[η](ω) is an analytic function of the variable ωη in the upper half-plane. To see

this, note that K̃ is a product of denominators of the for (ω
[η]

1···i − ω
′
1···i)

−1. Whenever one

of these denominators contains ω[η]
η = ωη + iγ [η]

η as a term in the sum ω[η]

1···i (i.e. whenever

η ∈ {1, ..., i}), the latter has the form (ωη + iγ [η]

1···i + real frequencies)−1, with a positive

imaginary part, γ [η]

1···i>0. Therefore ωη can be analytically continued into the upper half of
the complex plane without encountering any singularities.

Accordingly, in the time domain G[η](t) is fully retarded with respect to tη (i.e. nonzero
only for ti<tη, i 6=η) [29, 30].

Comparing Eq. (2.1.25) for the KF correlator to the spectral representation (2.1.15) of
the regular MF kernel

G̃(iω) =
∑
p

∫
d`−1ω′p Sp(ω

′
p)K̃(iωp − ω′p), (2.1.26)

we see that they are related by the analytic continuation

2`/2−1G[η](ω) = G̃(iω)
∣∣
iω→ω[η] . (2.1.27)

Compactly encapsulating results known from Refs. [23, 26, 30, 31], this relation general-

izes the well known 2p relation G21/12(ω1) = G̃(iω1 → ω±1 ) (where we used conventional
notation, dropping the second argument, ω2 = −ω1).

Keldysh correlators with multiple 2-indices (α > 1) cannot be obtained from MF ones
by direct analytic continuation. The reason is that their kernels in Eq. (2.1.21) involve
two or more complex frequency tuples ω[η1], ω[η2], etc., having different imaginary parts.
They therefore do not have any well-defined region of analyticity in the space of complex
frequencies. We will discuss their properties in detail in Sec. 2.3-3.2.

For later use we define a primed correlator (cf. Eq. (3.16) of Ref. [32]):

G′
k
(ω) =21−`/2

∑
p

[
Sp ∗ (Kkp)∗

]
(ωp) . (2.1.28)
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It differs from Gk(ω) of Eq. (2.1.21) by the complex conjugation of the kernel (Kkp)∗

such that ω± → ω∓ in Eq. (2.1.24). In the time domain this corresponds to using a
reversed time-order on the Keldysh contour. For systems with special behavior under
time-reversal G′k = (Gk)∗ holds [33]. Since we are mostly interested in correlators of
creation and annihilation operators, a relevant case is covered by Hamiltonians which are
real functions of creation and annihilation operators. Since all matrix elements in the
occupation number basis are real [11, 19], all PSFs are real and hence G′k = (Gk)∗.

Clarification of the notation for products of kernels

We conclude this section by clarifying the notation for products of kernels. Above we
have summarized the spectral representation for general `p correlators. (All functions
are well-defined for any `.) In the course of later sections we construct functions which
have “substructures”. We will encounter kernels consisting of the product of regular MF
kernels or the product of retarded KF kernels. Each of these kernels takes a subtuple ωI
as arguments. For these substructures, the above formulas for regular and retarded kernels
can be used analogously by restricting the set L = {1, ..., `} to a subset I. However, to
avoid obscurities we clarify the notation here.

In fact, with the anomalous kernel in Eq. (2.1.12) we have already encountered a kernel

with such substructures: It involves the product of two regular MF kernels K̃(ΩI)×K̃(ΩI
c).

The arguments of the regular kernels are the frequency tuples ΩI and ΩI
c having j and

(` − j) components, respectively. Correspondingly, we have to use the definition of the

regular kernel K̃ in Eq. (2.1.10) for jp and (` − j)p functions. For example, writing out

the regular kernel on the subtuple (432) gives K̃(Ω(432)) = K̃(Ω4,Ω3,Ω2) = 1/(Ω4Ω43).

In Sec. 3.1.3 we show that the anomalous kernels have to be continued to a product
of retarded ones. Since the regular MF kernel is defined for subtuples so is the retarded
kernel: analogous to Eq. (2.1.22) the retarded kernel of a subtuple ωI is defined as

K [η](ωI) = K̃
(
ω

[η]

I

)
. (2.1.29)

The superscript on K [η](ωI) indicates that this kernel is retarded with respect to the η-th
component of the subtuple ωI . The η-th component of the subtuple I is η and the complex

frequency tuple ω
[η]

I
is defined according to Eq. (2.1.23) with the indices L = {1,...`}

restricted to those in I. For example,

K [2](ω(432)) = K̃(ω
[3]
(432)) = K̃(ω4 − iγ0, ω3 + i2γ0, ω2 − iγ0)

with infinitesimal γ0 > 0. Note that, for a fixed ν, the set of components {ω[ν]
i | i ∈ I } is

fixed, while the order in which the elements of I appear in a tuple I determines the order
in which they appear in ω

[ν]

I
. Having defined the complex frequency tuples ω

[η]

I
, the two

notations for the retarded kernel K [η](ωI) and K̃
(
ω

[η]

I

)
can again be used interchangeably.
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The retarded product kernel will be particularly useful. Using the abbreviation

δ̂(·) = −2πiδ(·),

the retarded product kernel is defined as

K
I
[η1]
1 I

[η2]
2 ...I

[ηα]
α

(ωI1I2...Iα) =
α−1∏
j=1

[
δ̂(ωIj)

] α∏
j=1

[
K̃
(
ω

[ηj ]

Ij

)]
(2.1.30)

for permutations of the type p = I1I2...Iα with complementary subsets Ij and ηj ∈ Ij
(1 ≤ j ≤ α). The functions K̃(ω

[ηj ]

Ij
) are retarded kernels and defined according to

Eq. (2.1.29). For example,

K(13)[3](42)[4](ω(1342)) = δ̂(ω13)K̃(ω
[3]
(13))K̃(ω

[4]
(42)) = δ̂(ω13)K [2](ω(13))K

[1](ω(42)).

Observe that, due to its product structure, retarded product kernels remain unchanged
under interchanging the subtuples, i.e. K(13)[3](42)[4](ω(1342)) = K(42)[4](13)[3](ω(4213)).

2.2 Consequences of the equilibrium condition in the

Keldysh formalism

While the MF is inherently a formalism for equilibrium, the KF is more general. The
equilibrium condition enters the KF via the density matrix within the PSFs which is
chosen to be the normalized Boltzmann factor % = e−βH/Z. By cyclicity of the trace the
PSFs in Eq. (2.1.9) are related under cyclic permutations. Let I and I

c
be tuples built

from the elements of the complementary sets I and Ic. Denoting two cyclically related
permutations by I I

c
and I

c
I the corresponding PSFs are related by

SI Ic (ω
′
I I

c) =ζIe
βω′I SIcI (ω

′
I
c
I
), (2.2.1)

where the sign factor

ζI =ζI I
c

/ζI
c
I (2.2.2)

only depends on the number of fermionic operators in the two sets I and Ic.5 Therefore
ζI is already unambiguously labeled by the index set I. The prime in eβω

′
I can be dropped

when these PSFs are multiplied with δ(ωI − ω′I). The Eqs. (2.2.1) and (2.1.18) imply the
relation

S[I;I
c
]±(ω′

I I
c) = (ζIe

βω′I ± 1)SIcI(ω
′
I
c
I
). (2.2.3)

5Amongst the operators O there has to be an even number of fermionic ones. Therefore the sign factor
ζI is +1 (−1) if I contains an even (uneven) number of fermionic operators.
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By means of the statistical factor

NI =
ζIe

βωI + 1

ζIe
βωI − 1

=

{
tanh(βωI/2), for ζI = −1,

coth(βωI/2), for ζI = +1,
(2.2.4)

PSF commutators and PSF anti-commutators are therefore related by

S[I; I
c
]+

(ω′) δ(ωI − ω′I) = NI S[I; I
c
]−

(ω′) δ(ωI − ω′I), (2.2.5)

provided that NI does not diverge. It does diverge for ζI = +1 and ωI = 0. So, if the
spectral function has a non-vanishing weight at ω′I = 0 it has to be considered with special
care. In this case one has to exclude the points with ωI = 0 from the application of
Eq. (2.2.5). However, this special case can be ignored for the major part of our discussion.
It will be treated in Sec. 3.1.3 where we find that it can be recovered by the analytic
continuation of the anomalous part of the MF correlator.

So, for a kernel of the form K(ωI Ic) ∝ δ(ωI), Eq. (2.2.5) can also be used on the level
of correlators, implying for non-divergent NI(

S[I;I
c
]+
∗K

)
(ωI Ic) = NI

(
S[I;I

c
]−
∗K

)
(ωI Ic). (2.2.6)

Before we can apply this relation we need a function with the corresponding PSF (anti-
)commutator structure. We obtain it if the following conditions are fulfilled: Two index
orderings are related by cyclic permutation, i.e. they can be written as I I

c
and I

c
I,

respectively. The two corresponding kernels K1 and K2 contain a suitable δ(ωI) and are
equal (up to a minus sign). Under these conditions we can collect the contributions in an
PSF (anti-)commutator, i.e.

K1(ωI Ic) = ±K2(ωIcI) ∝ δ(ωI) ⇒ SI Ic ∗K1 + SIcI ∗K2 = S[I; I
c
]±
∗K1, (2.2.7)

for which the relation in Eq. (2.2.5) can now be applied. Indeed we find in the following
sections that certain linear combinations of analytically continued MF functions (AC func-
tions) can be written as (nested) PSF commutators convolved with kernels which equal
retarded product kernels (up to a minus sign). Our strategy will thus be to express the
KF correlators through (nested) PSF (anti-)commutators and then to use the equilibrium
condition via Eq. (2.2.6) to express KF correlators in terms of AC functions.

2.3 Analytic structure of Matsubara correlators

In the following we investigate the analytic continuation of MF correlators. While doing
so, we solely consider the regular part of the MF kernel K̃, which is a rational function and
can thus be continued to complex frequencies. According to Eq. (2.1.12) the anomalous

part of the MF kernel K̂ contains Kronecker symbols which do not have a unique “analytic
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continuation”6. However, the kernel K̂ contains products of regular kernels K̃ for which
the considerations in this section can be applied again.

The analytic continuation of 2p correlators has been thoroughly studied by Baym and
Mermin [10], who proved the uniqueness of the analytic continuation and its relation to
retarded and advanced correlators. Later on Evans generalized their ideas to `p correla-
tors [23]. He identified analytic continuations of the MF correlator (AC functions), Φ(z),
which directly recover certain components (retarded correlators) in the KF, and advanced
correlators which are related to the retarded ones by conjugation of all complex frequencies,
ω+iγ → ω− iγ. He however found that there is no simple generalization of the well-known
results on 2p functions to higher-point functions. For ` ≥ 4 he found that there exist AC
functions which are neither retarded nor advanced. We will call them non-causal functions.
In fact, Weldon proved that these non-causal functions cannot be written in terms of a
linear combination of KF correlators [31]. We will show that the non-causal AC functions
are nevertheless needed to recover all KF components via analytic continuation from a
single MF correlator.

In the following we first summarize the known results which are relevant for the goal
of this thesis. (For a comprehensive presentation of the above-mentioned work we refer
to the literature [10, 13, 23].) We then extend Weldon’s work [26] and show that the
discontinuities of Φ(z) along branch cuts can be expressed in terms of PSF commutators
in the sense of Eq. (2.2.7). (These discontinuities are linear combinations of AC functions.)
Such a discontinuity is a function of ` complex frequencies again. We find that it has two
lower-dimensional substructures whose analytic properties can be regarded independently.
In anticipation of later results we use this property to identify linear combinations of AC
functions which are needed for the construction of KF correlators.

2.3.1 Regions of analyticity and AC functions

In Eq. (2.1.27) we have already stated the known analytic continuation of G̃ to the retarded
correlators G[η] [10, 23, 30]. One has to replace the tuple of imaginary frequencies iω by a
suitable complex frequency tuple ω[η]. For a general analytic continuation we continue the
imaginary frequencies to complex ones by replacing

iωi → zi = ωi + iγi (ωi, γi ∈ R), (2.3.1)

thereby obtaining the analytically continued function of complex frequencies

Φ(z) = G̃(iω)
∣∣∣
iω→z

. (2.3.2)

6See Sec. 3.1.3 for the resolution of this issue. There we argue that the factor βδω needs to be replaced
by 4πiδ(ω) to obtain a contribution to certain KF correlators.
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Writing out this function in the permutation expansion we obtain

Φ(z) =
∑
p

∫
d`−1ω′p Sp(ω

′
p)K̃(zp − ω′p)

=
∑
p

∫
d`−1ω′p Sp(ω

′
p)
`−1∏
i=1

1

z1···i − ω′1···i
.

(2.3.3)

The regular kernel is a rational function and thereby analytic on certain regions. The
integral over ω′ inserts poles (or branch cuts for a continuous spectrum) along the real axis,
more precisely, at the positions where Sp(ω

′
p) has finite weight according to Eq. (2.1.9).

We see that the branch cuts of the function Φ(z) lie along all those points for which a sum
of complex frequencies zI in the denominators of Eq. (2.3.3) is real,

{z| zI ∈ R for some I ( L }. (2.3.4)

Outside of this set Φ(z) is analytic. Equivalently, each subset I ( L defines a branch cut,
to be denoted BI , along which γI = 0.

Ultimately we want to regard Φ(z) as a function of real frequencies ω and, making
repeated use of the formula for the inverse Fourier transformation

lim
γ↘0

∫
R

dω

2π

e−iωt

ω ± iγ
= ±(−i)θ(±t), (2.3.5)

we indeed recover products of step functions θ in the real time domain. (Remember that
step functions are used to explicitly implement the contour ordering for KF correlators [21].)
For this reason the imaginary parts γi of the complex frequencies zi will henceforth be
regarded as infinitesimals. The limits γi → 0 have to be taken in a careful way. To
illustrate the issue, we regard z = ω ± iγ as a complex variable again, then the left side of
Eq. (2.3.5) corresponds to a contour integral along a path parallel to the real axis, shifted
along the imaginary axis by ±γ. In this sense, the limit γ ↘ 0 deforms the contour while
staying within a region of analyticity. Analogously, also for Φ(z) the limits γ → 0 have to
be taken while staying in one region of analyticity. So, each of these regions corresponds
to a different analytically continued function (AC function) of real frequencies ω,

Cγ(ω) = Φ(z)|z=ω+iγ , (2.3.6)

with the infinitesimals γ determining the corresponding region of analyticity. The label γ
on Cγ serves to identify this region; since the components γi are infinitesimal the identifi-
cation is fully determined by their signs.

We remark that the imaginary part γ underlies the constraint γ1···` = 0. The tuple of
complex frequencies z thus has only ` − 1 independent components, as expected for the
analytic continuation of a function of iω with only `−1 independent frequency arguments.

To visualize the regions on which Φ(z) is analytic we use diagrams whose construction
we exemplify for the cases ` = 3 and ` = 4. In Fig. 2.2 we illustrate the case for ` = 3,
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Figure 2.2: Regions of analyticity of three-point correlators (adapted from Ref. [23]): The
regions are distinguished by the imaginary parts of the complex frequencies γi = Im(zi).
In this diagram the parameters γ1 and γ2 are used as coordinate system. The branch
cuts BI are given by the points for which γI = 0 with I ( {1, 2, 3}. There are three of
them: The vertical solid line B1 where γ1 = −γ23 = 0; the horizontal solid line B2 where
γ2 = −γ13 = 0; and the diagonal dashed line B3 where γ3 = −γ12 = 0, i.e. where γ2 = −γ1.
They divide the γ1-γ2 plane into six distinct regions. Each such region is associated with
that retarded or advanced correlator G[η] or G′[η], respectively, functions of the complex
frequencies ω[η] or (ω[η])∗, respectively, for which the imaginary parts γ [η] or −γ [η] have
signs matching those of γ in the corresponding region.

using γ1 and γ2 as independent variables which define the coordinate axes, while γ3 = −γ12

is fixed by the choice of a point in this plane. There are three branch cuts B1, B2 and B3

along which γ1 = −γ23 = 0 or γ2 = −γ13 = 0 or γ3 = −γ12 = 0, respectively. These
branch cuts divide the plane into six separate regions, each associated with one of the
three retarded or advanced correlators, G[η] or G′[η]. These are functions of the complex
frequencies ω[η] = ω ± iγ [η], respectively. Each correlator is associated with that region
for which the signs of all γ

[η]
i (or −γ[η]

i ), the imaginary parts of its frequency arguments,
match the signs of all γi in the corresponding region. For example, G[1] requires a complex
frequency tuple ω[1] with γ1 > 0, γ2 < 0 and γ12 > 0, i.e. the region labeled G[1] in Fig. 2.2.
Similarly, G′[2] requires a complex frequency tuple (ω[1])∗ with γ1 > 0, γ2 < 0 and γ12 < 0,

i.e. the region labeled G′[1] in Fig. 2.2.

The construction of the diagram proceeds analogously for ` = 4 in Fig. 2.3. Here the
parameters γ1, γ4 and γ12 are chosen to be the coordinates. (The third dimension is for
γ12.) In each of the two diagrams of Fig. 2.3 we can assume a fixed γ12 ≶ 0 and draw
the remaining branch cuts. Due to γ1···4 = 0 there are only 7 independent branch cuts,
namely for γ1 = 0, γ2 = 0, γ3 = 0, γ4 = 0, γ12 = 0, γ13 = 0 and γ14 = 0. Having drawn
all the branch cuts one then sees in Fig. 2.3 the 32 connected regions of analyticity of 4p
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correlators (16 for each γ12).
In Fig. 2.3 the regions of analyticity are labeled by arabic numbers for the rectangular

sections. Roman numbers are used to differentiate regions which are separated by the
branch cuts B12, B13 or B14 at γ12 = 0, γ13 = 0 or γ14 = 0. The AC functions Cγ

are labeled correspondingly, e.g. CI
2.2. Some regions can be identified with the retarded

correlators G[η]. Their parametrization is given in the definition of the complex frequency
tuple ω[η] in Eq. (2.1.23). The regions for the advanced correlators G′[η] are the complex
conjugates of the retarded ones.

2.3.2 Discontinuities of AC functions

In our example with ` = 4 only 8 out of the 32 regions of analyticity are associated with
retarded or advanced correlators. So, there are 24 left whose significance have not been
clarified yet. Weldon proved that the retarded and advanced correlators are the only KF
correlators that can be directly expressed through AC functions Cγ(ω) [31]. We conclude
that it is at least necessary to combine different AC functions for the construction of the
remaining KF correlators. In Ref. [26] Weldon investigates, for ` = 4, the discontinuities of
Φ at branch cuts and computes explicit formulas. In the following we generalize the discus-
sion and give formulas for the functions which are relevant for the analytic continuation to
KF correlators. As we will see in later sections, the discontinuities Cγ

[I,+]
(ω)− Cγ[I,−]

(ω)
between two neighboring regions of analyticity separated by a branch cut BI are of great
importance for the construction of KF correlators.

To quantify these discontinuities we consider two arbitrary regions which are separated
by the branch cut BI where γI = 0 (I ( L). The corresponding AC functions on either side

of the branch cut are Cγ
[I,+]

(ω) and Cγ
[I,−]

(ω), with tuples γ [I,+] and γ [I,−] representing

the two regions such that the sums γ
[I,±]
I ≷ 0 are positive or negative on the respective side

of the branch cut BI . The discontinuity at the branch cut BI is defined as

∆CγI (ω) = Cγ
[I,+]

(ω)− Cγ[I,−]

(ω). (2.3.7)

Here the subscript in ∆Cγ
[I,±]

I indicates that this discontinuity is at the branch cut BI . In

App. A.1 we prove that the kernel of the discontinuity ∆Cγ
[I,±]

I (ω) is non-zero only for
permutations of the type I I

c
and I

c
I.7 Denoting the two complex frequencies on either

side of and infinitesimally close to the branch cut by z[I,±] = ω + iγ [I,±], the discontinuity
kernel is given by

∆K̃γ[I,±]

I (ωp) = K̃(z[I,+]
p )− K̃(z[I,−]

p ) =


+δ̂(ωI),

−δ̂(ωI),
0,

 K̃(zI)K̃(zIc)


for p = I I

c
,

for p = I
c
I,

else.

 ,

(2.3.8)

7It follows that any discontinuity at the branch cut BI splits the indices L into two complementary
subsets I and Ic.
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Figure 2.3: Regions of analyticity for 4p correlators (adapted from Ref. [13]): The indepen-
dent imaginary parts of the frequencies γ1, γ4 and γ12 are used as coordinate system (thick
lines with arrows). Thick and dotted lines indicate the branch cuts. Regions have been
marked which directly correspond to retarded and advanced Green’s functions. The in-
scriptions at the bottom and the right edge of each diagram are reading aids: the “γI = 0”
next to a line indicates the corresponding branch cut. The −/+ sign distinguishes on which
side of the line one has γI ≶ 0. Each region is labeled by arabic and roman numbers.
Let us explain the construction of these diagrams for the left one. Here γ12 > 0 is fixed to
a positive value. Consider γ2 = γ12−γ1. For fixed γ12 > 0, γ1 has to be a positive constant
if γ2 = 0. So, the line γ2 = 0 runs parallel to and left of γ1 = 0. To the left/right of this
line, γ2 is negative/positive. Similarly, one considers γ3 = −γ12 − γ4. The line γ3 = 0 runs
parallel and below the line γ4 = 0. Next, consider γ14 = −γ23. This equals zero along
the line γ1 = −γ4, or equivalently, along γ2 = −γ3, i.e. a diagonal intersecting the points
γ1 = γ4 = 0 and γ2 = γ3 = 0.
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where the delta function δ̂(·) = −2πiδ(·), and the regular kernel K̃ on the right depend
on subtuples of the complex argument evaluated on the branch cut, zp = ωp + iγp

∣∣
γI=0

=

zI Ic = (zI , zIc).
The discontinuity ∆CγI (ω) is obtained by collecting all contributions from the permu-

tation expansion, giving

∆CγI (ω) =
∑
pI|Ic

(
SI Ic ∗∆K̃γ

I

)
(ωI Ic) +

∑
pIc|I

(
SIcI ∗∆K̃γ

I

)
(ωIcI).

Collecting the PSFs contributing with kernels differing only by a sign (see Eq. (2.2.7)), we
obtain

∆CγI (ω) =
∑
pI|Ic

(
[SI Ic − SIcI ] ∗∆K̃γ

I

)
(ωI Ic) =

∑
pI|Ic

(
S[I;I

c
]−
∗∆K̃γ

I

)
(ωI Ic). (2.3.9)

The discontinuity has two independent substructures. For every permutation the kernel
of the discontinuity ∆K̃γ

I (zp) factorizes into two regular kernels, K̃(zI) and K̃(zIc), which

only depend on the complex frequencies of a single subtuple K̃(zI) and K̃(zIc), which
only depend on the complex frequencies of a single subtuple, zI or zIc . The analytic
structure of the two lower-dimensional substructures on the respective sets I and Ic can
now be considered independently. This has two important consequences. Firstly, the
kernels K̃(zI) and K̃(zIc) can be analytically continued to retarded kernels by a suitable
choice of γI and γIc (see below). Secondly, the above arguments may be used repeatedly
for subdividing one of the two sets (I or Ic) into smaller sets by considering discontinuities
of ∆CγI as function of zI and zIc . Both of these possibilities will be used later on to obtain
suitable AC functions for the construction of KF correlators (see Secs. 3.1.2 and 3.2).

In anticipation of the needs in the next sections we now define the notation for certain
discontinuities. For complementary subsets I1 ∪ I2 = {1, ..., `} we can pick an element
η1 ∈ I1 and η2 ∈ I2 from each subset. Exploiting the fact that the discontinuity kernel
∆K̃γ

I , factorizes into two kernels K̃(zI1) and K̃(zI2) (see Eq. (2.3.8)), we can pick the

imaginary parts of zIj as γIj = z
[ηj ]

Ij
for j = 1, 2, thereby ensuring that these are retarded,

kernels K̃(ω
[η1]

I1
) and K̃(ω

[η2]

I2
). Recall that the imaginary parts in ω

[η1]

I1
are fixed by the

choice of the set I1 and η1. The order of the elements in I1 only determines the order of
the components in the complex frequency tuple. Then K̃(ω

[η1]

I1
) is retarded with respect to

ωη1 for any permutation of I1 (and likewise for K̃(ω
[η2]

I2
)). With this choice of imaginary

parts, the discontinuity (2.3.9) can be expressed through a retarded product kernel of the
form (2.1.30) denoted as

∆C
[η1][η2]
I1

=
∑
pI1|I2

S[I1;I2]−
∗K

I
[η1]
1 I

[η2]
2
. (2.3.10)

The subscript to ∆C
[η1][η2]
I1

indicate that this is a discontinuity at the branch cut BI1 , with
an AC function with γI1 < 0 being subtracted from one with γI1 > 0. The superscript
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indicates that the kernels on the two subtuples are retarded with respect to η1 and η2,
respectively. We have thereby proven that such functions can be obtained by taking linear
combinations of AC functions.

A remaining task is the identification of the AC functions involved in a discontinuity.
Let us consider two examples: For ` = 4, Weldon has studied the discontinuity∑

p{2}|{1,3,4}

S[(2);(2 3 4)]− ∗K(1)[2](2 3 4)[1] ,

and by direct computation found an expression for it given by Eq. (4.15) of Ref. [26]. Since
the subtuples I1 and I2 are composed of the sets {2} and {1, 3, 4}, it is a discontinuity

at the branch cut B2. For a retarded kernel the complex frequency subtuple is ω
[1]
(134) =

(ω1 + i2γ0, ω3 − iγ0, ω4 − iγ0), implying γ1> 0, γ13> 0, γ14> 0, γ2 = −γ134 = 0 which is
only compatible with that part of the branch cut separating the regions C3.2 and CI

2.2 in
Fig. 2.3. We hence conclude that the above function is

∆C
[2][1]
2 =

∑
p{2}|{1,3,4}

S[(2);(2 3 4)]− ∗K(1)[2](2 3 4)[1] = CI
2.2 − C3.2, (2.3.11)

which matches the Eq. (4.15) in Ref. [26].
Now consider the discontinuity∑

p{2,3}|{1,4}

S[(1 2);(3 4)]− ∗K(1 2)[2](3 4)[1] .

This is a discontinuity at the branch cut B23 = B14. The complex frequency tuples ω
[2]
(23) =

(ω2 + iγ0, ω3 − iγ0) and ω
[1]
(14) = (ω1 + iγ0, ω4 − iγ0) having γ2>0, γ3<0, γ1>0, γ4<0, only

compatible with the region C2.2. So we have identified

∆C
[2][1]
23 =

∑
p{2,3}|{1,4}

S[(1 2);(3 4)]− ∗K(1 2)[2](3 4)[1] = CIV
2.2 − CI

2.2 = CIII
2.2 − CII

2.2, (2.3.12)

with the parts where γ23 = −γ14 is negative being subtracted from those where it is
positive. This matches Eq. (4.16) in Ref. [26] obtained by Weldon. Note that in this case
the involved regions are not unique. The discontinuity can be expressed in two ways. Once
the discontinuity along γ23 = 0 is computed for γ13 > 0 and once for γ13 < 0. This can
be explained on the basis of the regular kernel K̃: the factors (Ω13)−1 and (Ω23)−1 cannot
occur in the regular kernel in the same permutation. Hence, the parameter γ13 ≷ 0 has no
influence on a discontinuity at γ23 = 0.

In this section we have found that the discontinuities of AC functions ∆CγI in Eq. (2.3.9)
have a PSF commutator structure which fulfills the condition in Eq. (2.2.7). Due to the
factorization of the kernel, the analytic structure of a discontinuity is independent of the
two complementary subsets of complex frequencies {zi | i ∈ I} and {zi | i ∈ Ic}. In Sec. 3.2
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we take this process a step further by computing discontinuities of discontinuities, thereby
producing nested PSF commutators. In the following chapter we express KF components
like G[η1η2] in terms of nested PSF (anti-)commutators. Recalling that Eq. (2.2.6) relates
PSF commutators to PSF anti-commutators, we then express KF correlators in terms of
AC functions and statistical factors NI .



Chapter 3

Construction of KF correlators via
the analytic continuation method

In this chapter we derive how one can construct KF correlators from MF correlators, assum-
ing that the exact functional dependence on the frequency arguments of the latter is known.
We have seen that the retarded correlators G[η] can be directly obtained from the regular
MF correlator by analytic continuation to certain regions of analyticity [cf. Eq. (2.1.27)].
However, for the other KF components this simple prescription is not applicable anymore.
We find that the construction of KF correlators becomes increasingly complicated with the
number of 2-indices. Therefore we begin this chapter with the reconstruction of those with
only two 2-indices: the correlators G[η1η2].

3.1 Construction of G[η1η2] from AC functions

The exact expression (2.1.20) for the correlator G[η1η2] reads

G[η1η2](ω) =
2

2`/2

∑
p

(
Sp ∗K [η̂1η̂2]

)
(ωp), (3.1.1)

with η̂j ∈ {p−1(η1), p−1(η2)}. This expression can be expanded into functions for which
the equilibrium condition can be used via Eqs. (2.2.5) and (2.2.7). Thereby the correlator
G[η1η2] can be related to AC functions. In fact, we find that G[η1η2] is a linear combination
of the discontinuities ∆CγI which make up the difference G[η1] −G[η2].

For simplicity we will first disregard divergencies of the factor NI for which the relation
in Eq. (2.2.5) is ill-defined. These are separately treated in Sec. 3.1.3. There we show that
these problematic parts are in fact obtained by analytic continuation of the anomalous
parts of the MF correlators K̂I .
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3.1.1 Expansion of G[η1η2]

Consider a certain permutation p = (1, ..., `) and the corresponding kernel K [η̂1η̂2](ωp). As
we show in App. A.2, we can expand the kernel as

K [η̂1η̂2](ωp) =

η̂2−1∑
y=η̂1

K
(1···y)[η̂1](y+1···`)[η̂2](ωp), (3.1.2)

where the sum is over a range of y values, each yielding a different split-up of the same
permutation into left and right subtuples p = I I

c
, with I = (1...y) and I

c
= (y + 1...`),

and the range of y values depends on p, since η̂1 and η̂2 do. The retarded product kernel
is defined according to Eq. (2.1.30),

K
I
[µ]
I
c [ν](ωI Ic) = δ̂(ωI)K̃(ω

[µ]

I
)K̃(ω

[ν]

I
c ). (3.1.3)

with µ and ν shorthands for η̂1 and η̂2. Furthermore, the kernel K
I
[µ]
I
c [ν] factorizes into

two retarded kernels, K̃(ω
[µ]

I
) and K̃(ω

[ν]

I
c ), with frequency arguments ω

[µ]

I
or ω

[ν]

I
c . So, if

the kernel expansion for a given permutation p contains the split-up p = I I
c
, giving the

kernel K
I
[µ]
I
c [ν] , then there exists another cyclically related permutation p′, whose kernel

expansion contains the split-up p′ = I
c
I, giving the kernel K

I
c [ν]

I
[µ] . These two kernels are

equal and fulfill the condition to form an PSF anti-commutator according to Eq. (2.2.7).
Since the variable y governing the split p = I I

c
satisfies η̂1 ≤ y < η̂2, the subtuples I

and I
c

always contain η̂1 and η̂2, respectively. Each of these in turn equals either η1 or η2,
since η̂i ∈ {p−1(η1), p−1(η2)} hence η̂1 ∈ {η1, η2}. Therefore, the subtuples Ī and Īc contain
either η1 or η2, respectively. Correspondingly, we will denote the one containing η1 by I1,
and that containing η2 by I2, respectively. The expansion of the kernel K [η̂1η̂2] into several
contributions yields a corresponding expansion of the correlator G[η1η2].

G[η1η2](ω) =
2

2`/2

∑
p

η̂2∑
y=η̂1

Sp ∗K(1···y)[η̂1](y+1···`)[η̂2](ωp), (3.1.4)

From this sum we wish to collect all terms proportional to the same delta functions δ̂(ωI1) =
δ̂(ωI2), involving complementary subsets I1 ( L and I2 = L\I1 containing η1 and η2,
respectively. For each such pair of subsets I1 and I2 all permutations of the type I1I2 and
I2I1 yield contributions proportional to δ̂(ωI1), hence it is convenient to combine these in
an object defined as

2`/2−1G
[η1η2]
I1

(ω) =
∑
pI1|I2

(
SI1I2 ∗KI

[η1]
1 I

[η2]
2

)
(ωI1I2) +

∑
pI2|I1

(
SI2I1 ∗KI

[η2]
2 I

[η1]
1

)
(ωI2I1)

=
∑
pI1|I2

(
S[I1;I2]+

∗K
I
[η1]
1 I

[η2]
2

)
(ωI1I2), (3.1.5)
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p kp [η̂1η̂2] [η̂1η̂2] y K
I
[η̂1]
1 I

[η̂2]
2

I1 I2
I1={ 1 }
I2={ 2,3 }

I1={ 1,2 }
I2={ 3 }

(123) (212) [13] [13]
1 K(1)[1](23)[3] (1) (23) x

2 K(12)[1](3)[3] (12) (3) x

(132) (221) [12] [13] 1 K(1)[1](32)[3] (1) (32) x

(213) (122) [23] [13] 2 K(21)[1](3)[3] (21) (3) x

(231) (122) [23] [31] 2 K(23)[3](1)[1] (1) (23) x

(312) (221) [12] [31] 1 K(3)[3](12)[1] (12) (3) x

(321) (212) [13] [31]
1 K(3)[3](21)[1] (21) (3) x

2 K(32)[3](1)[1] (1) (32) x∑
p = G212

∑
p = G212

1

∑
p = G212

12

Table 3.1: Expansion of G212 according to Eq. (3.1.6): The indices [η̂1η̂2] are the positions of
the 2-indices in kp, and y is the summation variable in Eq. (3.1.4). The various summands
from the expansions of K [η̂1η̂2] contribute either to G212

1 or to G212
12 as indicated in the lowest

row. The latter two functions are related to different AC functions.

see Eq. (2.2.7). Finally, the KF correlator G[η1η2] is obtained by summing all contributions

G
[η1η2]
I which result from the kernel expansion. To identify these, recall that the split-up

into two subtuples is performed in all possible ways for which each of the two subtuples
contains either η1 or η2. Since G

[η1η2]
I1

accounts for both I1I2 and I2I1, the full correlator
is given by

G[η1η2](ω) =
∑
I1∈I1

G
[η1η2]
I1

(ω), (3.1.6)

where I1 = {I1 ( L|η1 ∈ I1, η2 6∈ I1} is the set of all subtuples of L containing η1 but not
η2. Accordingly, for each of these I1 the complementary set I2 contains η2. The sums over
I1 in (3.1.6) and p(I1|I2) in (3.1.5) together generate the same terms as the sums over p and
y in (3.1.4), but packaged in more convenient combinations.

In Table 3.1 we exemplify the kernel expansion of Eq. (3.1.4) for G212. Then [η1η2] =
[13], hence there are only two possible choices of I1, namely { 1 } with I2 = { 2, 3 }, or
{ 1, 2 } with I2 = { 3 }. For example, p = (123) yields

K [13](ω(123)) = K(1)[1](23)[3](ω(123)) +K(12)[1](3)[3](ω(123)).

The first term corresponds to the tuples I = (1) and I
c

= (23) yielding the original
permutation p = (123). The second term corresponds to the tuples I = (12) and I

c
= (3)

again yielding the original permutation p = (123). However, since the first and the second
term are proportional to δ̂(ω1) and δ̂(ω2), they belong to G212

1 and G212
12 , respectively, and

these are related to different AC functions. the first term belongs to the function G212
1

which will be related to a different AC function than the second one (which belongs to
G212

12 ). The other rows are generated analogously, enumerating all six possible permutations



26 3. Construction of KF correlators via the analytic continuation method

p = (123), the terms contributing to G212
12 have an “x” in the rightmost column. We have

contributions from the permutations p ∈ {(123), (213), (312), (321)}. These can be written
as combinations of permutations over the set I1 = {1, 2} giving I1 = (12) or (21), and
permutations over the set I2 ∈ {3} giving I2 = (3). To obtain all contributions we
construct the permutations I1I2 ∈ {(123), (213)} and I2I1 ∈ {(312), (321)}. Together,
they give the needed permutations p ∈ {(123), (213), (312), (321)}. Note that, for any
permutation of the type I1I2 there is also the permutation I2I1 with interchanged order of
the subtuples. The corresponding kernels K

I
[η1]
1 I

[η2]
2

and K
I
[η2]
2 I

[η1]
1

are equal, allowing us to

combine the corresponding PSFs into an PSF anti-commutator according to Eq. (3.1.5).
Altogether, we have (for ` = 3)

G212 = G212
1 +G212

12 (3.1.7)

G212
1 = 2−

1
2

∑
p{1}|{2,3}

S[(1);(2 3)]+ ∗K(1)[1](2 3)[3] (3.1.8)

G212
12 = 2−

1
2

∑
p{1,2}|{3}

S[(1 2);(3)]+ ∗K(1 2)[1](3)[3] . (3.1.9)

3.1.2 Relation of G[η1η2] to AC functions

In the previous section we have expanded the correlator G[η1η2] into several contributions
G

[η1η2]
I1

each involving a PSF anti-commutator see (3.1.5). The latter can be converted into

a PSF commutator using Eq. (2.2.5), thereby expressing G
[η1η2]
I1

in terms of discontinuities

∆C
[η1η2]
I1

[cf. Eq. (2.3.10)]. Temporarily neglecting the caveat due to diverging statistical
factors NI we obtain

2`/2−1G
[η1η2]
I1

(ω) = NI1

∑
pI1|I2

(
S[I1;I2]−

∗K
I
[η1]
1 I

[η2]
2

)
(ωI1I2)

= NI1 ∆C
[η1][η2]
I1

(ω).

(3.1.10)

The full correlator is thereby now a linear combination of AC functions

G[η1η2](ω) =
∑
I1∈I1

G
[η1η2]
I1

(ω) = 21−`/2
∑
I1∈I1

NI1 ∆C
[η1][η2]
I1

(ω). (3.1.11)

It is also helpful to explicitly identify the needed discontinuities and the involved regions
of analyticity. Due to the prescription for retarded kernels in Eq. (2.1.23) at least one of

the two regions involved in the discontinuity ∆Cγ
[I,±]

= Cγ
+ − Cγ− fulfills

γη1 > 0, γη2 > 0, γj 6=ηi < 0. (3.1.12)

The only exception is ` = 2, where there is no such region. However, the needed regions
for ` = 2 are trivial, such that we can disregard ` = 2 for the present discussion. So,
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these regions and adjacent discontinuities are needed for the construction of the correlator
G[η1η2]. For the 4-point correlator G[12] these are the central regions with arabic number
(2.2) and neighboring regions in the second diagram of Fig. 2.3.

The very same AC functions ∆C
[η1][η2]
I which are needed in Eq. (3.1.11) are obtained

by a kernel expansion of the combination G[η1] −G[η2], following a derivation analogous to
Sec. 3.1.1. This expansion leads to the relation

G[η1] −G[η2] =
∑
I1∈I1

∆C
[η1][η2]
I1

(ω). (3.1.13)

For 4p functions, this reproduces relation (4.20) given in Ref. [26]. Hence, we can under-

stand the discontinuities ∆C
[η1][η2]
I to be the ones lying between the regions which corre-

spond to G[η1] and G[η2].
The observations in Eqs. (3.1.11) to (3.1.13) allow us to give a simple prescription for

obtaining the AC functions needed for G[η1η2]:

1. First, identify the needed regions of analyticity. These are the regions for the retarded
correlators G[η1] and G[η2] and the regions which fulfill Eq. (3.1.12).

2. Collect every discontinuity ∆CγI between the regions for G[η1] and G[η2] and multiply
them with the appropriate prefactor NI . (Recall that the discontinuities are defined
as ∆CγI = Cγ |γI>0 − Cγ |γI<0.)

Example: Assuming that the MF correlator contains no anomalous parts, we next iden-
tify the AC functions which are needed for the construction of G2211 = G[12] (for ` = 4).
The possible choices for I1, including η1 = 1 but excluding η2 = 2 are { 1 }, { 13 }, { 14 }
and { 134 }. Evaluating the sum in Eq. (3.1.11) gives

2G[12] = N1∆C
[1][2]
1 +N13∆C

[1][2]
13 +N14∆C

[1][2]
14 +N134∆C

[1][2]
134

= N1(CIII
2.2 − C1.2) +N13(CI

2.2 − CII
2.2) +N14(CII

2.2 − CIII
2.2) +N134(C3.2 − CI

2.2).

(3.1.14)

The needed AC functions are obtained according to the explanation at the end of Sec. 2.3.2.
In total we can write the correlator G[12] (for ` = 4) as a linear combination of AC functions
with explicit labels for the regions according to Fig. 2.3.

3.1.3 Caveat: Analytic continuation of anomalous parts of the
MF correlator

In the previous section we used the equilibrium condition via Eq. (2.2.5) allowing us to
rewrite PSF anti-commutators in terms of PSF commutators. This enabled us to express
the function G

[µν]
I in terms of AC functions. However, we neglected a pathological case:

the possible divergence of a statistical factor NI for ωI = 0 and ζI = 1. Now we revisit the
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proof for Eq. (2.2.5) and focus on the pathological case by considering a PSF proportional
to δ(ω′I), i.e. SI Ic (ωI Ic)

′) ∝ δ(ω′I) and ζI = 1.
In this case we have to exclude the frequencies for which NI diverges and we obtain the

exact expression

S[I;I
c
]+

(ω′
I I

c)× δ(ωI − ω′I) =

{
NIS[I;I

c
]−

(ω′
I I

c)× δ(ωI − ω′I), for ωI 6= 0,

S[I;I
c
]+

(ω′
I I

c)× δ(ωI − ω′I), for ωI = 0.

The first line can be constructed from the regular part of the MF correlator according
to the previous section. The second line cannot be obtained on the same way since the
discontinuity yields zero. To obtain the second line one needs to remember that for ζI = 1

and SI Ic (ω
′
I I

c) ∝ δ(ω′I) the MF correlator additionally contains an anomalous part ĜI

which was explicitly computed for ` = 3 and ` = 4. Its permutation expansion involves
all permutations of the type p = I I

c
and p = I

c
I. For both p = I I

c
and p = I

c
I the

anomalous part of the MF kernel (see Eq. (2.1.12)) gives

K̂I(ΩI I
c) = K̂I

c(ΩI
c
I) = −β

2
δΩI ,0K̃(ΩI)K̃(ΩI

c),

with the abbreviation Ωi = iωi − ω′i . On the other hand, for the same permutations the

KF kernel of G
[µν]
I is (see Eq. (3.1.3))

K
I
[µ]
I
c [ν](ωI Ic) = K

I
c [ν]

I
[µ](ωIcI) = −2πiδ(ωI)K̃(ω

[µ]

I
)K̃(ω

[ν]

I
c ),

where the kernels K̃(ω
[µ]

I
) and K̃(ω

[ν]

I
c ) are retarded with respect to µ and ν respectively.

We conclude that the problematic terms of the KF correlator can be directly obtained from
the corresponding anomalous MF correlator ĜI1(iω) by the replacement1

βδωI ,0 → 4πiδ(ωI) (3.1.15)

and analytic continuation of the kernels K̃(ΩI) and K(ΩI
c) to retarded kernels according

to Eq. (2.1.29), yielding

iωI → ω
[µ]

I
, iωIc → ω

[ν]

I
c . (3.1.16)

Thereby we obtain a suitable analytic continuation of the anomalous part of the MF
correlator

ĜI(iω)→ Φ̂I(z), (3.1.17)

which has to be added to recover the full KF correlator. Hence, our previous result in
Eq. (3.1.10) needs to be supplemented and the full formula for the construction of the KF
function is

2`/2−1G
[η1η2]
I1

(ω) = NI1 ∆C
[η1][η2]
I1

(ω) + Φ̂I1(ẑ), (3.1.18)

where ẑ are the complex frequencies given by the analytic continuation according to
Eq. (3.1.16). For some relevant cases (` ∈ {3, 4}) we have summarized in App. B for
which correlators the analytic continuations of anomalous parts have to be included.

1This replacement might be surprising since a unity on the time domain yields βδ0,ω and 2πiδ(ω) in
the space of imaginary- and real-frequencies.
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3.2 Construction of further functions

In previous sections we have seen that certain AC functions, namely analytic continuations
of the regular part of the MF correlator Cγ and its discontinuities ∆CγI , are used to
construct the KF correlators G[η1···ηα] with α ≤ 2. Now we want to provide more AC
functions which are useful for the construction of KF correlators G[η1···ηα] with α ≤ 4

The construction of these AC functions works by the very same principle as for ∆CγI .
In Sec. 2.3.2 we considered an arbitrary discontinuity at a branch cut BI which divides the
set {1, ..., `} in in two complementary subsets I and Ic. We found that we only have to
consider permutations of the type I I

c
by summarizing the PSFs SI Ic and SIcI with a PSF

commutator S[I; I
c
]−

. This works because the kernels for these permutations are equal up to

a minus sign. Furthermore, the kernels factorize in two functions which can be analytically
continued independently on I and Ic according to the prescription for retarded correlators.

Due to the factorization of the kernel (see Eq. (2.3.8)) in two functions that depend
on complex frequencies of a single set (I or Ic) any discontinuity of ∆CγI can only occur
along a branch cut BI′ with either I ′ ( I or I ′ ( Ic. For this discontinuity one can
use the very same steps as in Eqs. (2.3.7)-(2.3.9). Thus, computing the discontinuity of
∆CγI splits one of the sets I or Ic in smaller subsets. The kernel now factorizes in three

regular kernels K̃(zIb), with b ∈ {1, 2, 3}, which only depend on frequency arguments of
the subset Ib and therefore can be analytically continued independently again. The PSFs
can be summarized by a nested PSF commutator, e.g. S[[I1;I2]−;I3]−

, such that one only has

to sum over permutations of the type p = I1I2I3. From each set Ib we can pick one index
ηb ∈ Ib and follow the prescription for analytic continuation to retarded kernels according
to Eq. (2.1.29) such that on every subtuple Ib we obtain a retarded kernel K(ω

[ηb]

Ib
).

Starting from α ≥ 3 it matters in which order the branch cuts are considered. Corre-
spondingly, in the following definition of the discontinuities the order of the subscripts is
important. We first exemplify this for α = 3 and pick three complementary sets I1, I2 and
I3 with ηb ∈ Ib. Then we can construct the AC function

∆C
[η1][η2][η3]
I1∪I2,I1 =

∑
pI1|I2|I3

S[[I1;I2]−;Î3]−
∗K

I
[η1]
1 I

[η2]
2 I

[η3]
3

(3.2.1)

by first computing ∆CγI1∪I2 , then computing its discontinuities along BI1 and lastly con-
tinuing each subtuple according to Eq. (2.1.29). Here the super-script [η1][η2][η3] makes

it explicit that these are chosen as the ηb ∈ Ib with respect to which the kernels K̃(ω
[ηb]

Ib
)

are retarded. The subscript I1 ∪ I2, I1 states in which order the branch cuts have to be
considered. We can also construct

∆C
[η1][η2][η3]
I1,I2

=
∑

pI1|I2|I3

S[I1;[I2;I3]−]−
∗K

I
[η1]
1 I

[η2]
2 I

[η3]
3

(3.2.2)

by first considering the branch cut BI1 and then BI2 .
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For these discontinuities it is again possible to make use of Eq. (2.2.5). Thereby, nested
PSF anti-commutators can be turned into nested PSF commutators for α = 3 by

S[I3;[I1;I2]+]+
∗K = NI3 · S[I3;[I1;I2]+]−

∗K
= −NI3 ·

(
S[I2;[I1;I3]−]+

+ S[I1;[I2;I3]−]+

)
∗K

= −NI3 ·
(
NI2 · S[I2;[I1;I3]−]−

+NI1 · S[I1;[I2;I3]−]−

)
∗K

= −NI3

(
NI2 ·∆C

[η2][η1][η3]
I2,I1

+NI1 ·∆C
[η1][η2][η3]
I1,I2

)
∗K,

(3.2.3)

where the kernels K are all equal to the retarded product kernel K
I
[η1]
1 I

[η2]
2 I

[η3]
3

(ωI1I2I3)

defined in Eq. (2.1.30). For the second line one needs to make use of an (anti-)commutator
identity which is easily checked by unfolding the nested (anti-)commutator. In the last line
we expressed the nested PSF commutators in terms of AC functions Eq. (3.2.2).

For α = 4 we e.g. obtain the discontinuities

∆C
[η1][η2][η3][η4]
I1,I2,I3

=
∑

pI1|I2|I3|I4

S[I1;[I2;[I3;I4]−]−]−
∗K

I
[η1]
1 I

[η2]
2 I

[η3]
3 I

[η4]
4

(3.2.4)

or

∆C
[η1][η2][η3][η4]
I1∪I2,I1,I3 =

∑
pI1|I2|I3|I4

S[[I1;I2]−;[I3;I4]−]−
∗K

I
[η1]
1 I

[η2]
2 I

[η3]
3 I

[η4]
4
. (3.2.5)

We identify the regions of analyticity which correspond to certain discontinuities and
exemplify this for ` = 3 for which the regions of analyticity are depicted in Fig. 2.2. The
function ∆C

[1][3]
1 is a discontinuity along B1. There are two possible discontinuities along

this branch cut. To pick the correct one, one needs to remember that e.g. ∆C
[1][3]
1 splits the

set {ω1, ω2, ω3} into {ω1} and {ω2, ω3}. For the subtuples (ω2, ω3) and (ω3, ω2) we need a
kernel which is retarded with respect to ω3. The corresponding complex frequency tuple is
given by Eq. (2.1.29). Thus the two regions of analyticity must have a negative imaginary
part for γ2 < 0 and and a positive one for γ3 > 0 which gives

∆C
[1][3]
1 = G′

[2] −G[3].

For ` = 3, the function ∆C
[1][2][3]
1,2 is a discontinuity of ∆Cγ1 along B2. Thus we have to

subtract the following discontinuities, yielding

∆C
[1][2][3]
1,2 = ∆Cγ1 |γ2>0 − ∆Cγ1 |γ2<0 = G′

[3] −G[2] +G[3] −G′[2]
. (3.2.6)

3.2.1 Construction of G[η1η2η3]

The correlators G[η1η2η3] can be written in terms of AC functions, too. We pursue a similar
strategy as for G[η1η2] by expanding the G[η1η2η3] in terms of nested PSF (anti-)commuta-
tors with suitable kernels. By use of the equilibrium condition via Eq. (2.2.5) these can
be related to nested PSF commutators which can be identified with AC functions. In
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kernel of G[η1η2η3] −G[η3]

a) µ1 < µ2 < µ3 K [η̂1] −K [η̂2] = K [η̂1η̂2]

b) µ3 < µ1 < µ2 −K [η̂2] +K [η̂3] = −K [η̂2η̂3]

c) µ2 < µ3 < µ1 K [η̂1] − 2K [η̂2] +K [η̂3] = K [η̂1η̂2] −K [η̂2η̂3]

d) µ2 < µ1 < µ3 K [η̂1] −K [η̂2] = K [η̂1η̂2]

e) µ3 < µ2 < µ1 −K [η̂2] +K [η̂3] = −K [η̂2η̂3]

f) µ1 < µ3 < µ2 K [η̂1] − 2K [η̂2] +K [η̂3] = K [η̂1η̂2] −K [η̂2η̂3]

Table 3.2: General kernels of G[η1η2η3] − G[η3] for different permutations. The indices
µb = p−1(ηb) are the positions of the indices ηb. Depending on their order we differentiate
between six cases.

p kernel of G222− G112

a) (123) K [12] = +K(1)[1](23)[2]

b) (312) −K [23] = −K(31)[1](2)[2]

c) (231) K [12] −K [23] = +K(2)[2](31)[3] −K(23)[3](1)[1]

d) (213) K [12] = +K(2)[2](13)[1]

e) (321) −K [23] = −K(32)[2](1)[1]

f) (132) K [12] −K [23] = +K(1)[1](32)[3] −K(13)[3](2)[2]

Table 3.3: Contributions to G[123] −G[3] for different permutations.

the following we make repeated use of the kernel expansion (3.1.2). Due to the kernel
expansion the problem is mostly reduced to the analytic continuation of 3p functions. The
generalization to arbirary `p functions is explained at the end of this section.

Firstly, recall that the Keldysh kernels in Eq. (2.1.20) give

K [η̂1η̂2η̂3] = K [η̂1] −K [η̂2] +K [η̂3],

where we have η̂1 < η̂2 < η̂3 by definition. The indices µb = p−1(ηb) are the positions of
the indices ηb. To reuse the kernel expansion K [µν] according to Eq. (3.1.2) we have to
subtract a retarded correlator from G[η1η2η3]. This is not problematic for the process of
analytic continuation since a retarded correlator itself can be expressed as an AC function.
In the following we choose to subtract G[η3]. The kernel of G[η3] equals one of the kernels
K [η̂1], K [η̂2] or K [η̂3]. On the level of kernels, the effect of subtracting G[η3] depends on the
permutation. For instance, assume that in a permutation the indices appear in the order
µ1 < µ2 < µ3. Then η̂3 is the position of η3, such that for this permutation the function
G[η1η2η3]−G[η3] has the kernel K [η̂1]−K [η̂2] = K [η̂1η̂2]. For the five remaining cases we have
summarized the kernels in Table 3.2.

For these kernels we can now perform the split-up according to Eq. (3.1.2). Before we
continue with the general construction, we first show the basic steps using the example of
the 3p correlator G222. Here each of the cases a)–f) exactly corresponds to one permutation
of the three indices. We obtain the contributions in Table 3.3 .
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p kernel of G[123] −G[3]

a) (123) +K(1)[1](2)[2](3)[3] +K(1)[1](23)[3]

b) (312) +K(3)[3](1)[1](2)[2] −K(31)[3](2)[2]

c) (231) +K(2)[2](31)[3] +K(23)[3](1)[1]

d) (213) +K(2)[2](1)[1](3)[3] +K(2)[2](13)[3]

e) (321) +K(3)[3](2)[2](1)[1] −K(32)[3](1)[1]

f) (132) +K(1)[1](32)[3] −K(13)[3](2)[2]

Table 3.4: Final version of contributions to G[123] −G[3] for different permutations.

The contributions

S(123) ∗K(1)[1](23)[2] + S(132) ∗K(1)[1](32)[3] − S(231) ∗K(23)[3](1)[1] − S(321) ∗K(32)[2](1)[1]

are almost identical to an AC function2. To equate this with a discontinuity it would be
necessary that the kernels taking frequencies from the subset {ω2, ω3 } are retarded with

respect to the same frequency throughout all permutations, e.g. K̃(ω
[3]
(23)). In the following

we choose retardation with respect to index 3. To adjust the kernel for the permutation
p = (123) we expand the kernel

S(123) ∗K(1)[1](23)[2] = S(123) ∗
(
K(1)[1](23)[2] −K(1)[1](23)[3]︸ ︷︷ ︸

δ̂(ω1)K̃(ω
[1]
(1)

)×K[12](ω23)

+K(1)[1](23)[3]

)
,

where for K [12](ω23) we can use the kernel expansion according to Eq. (3.1.2) yielding

S(123) ∗K(1)[1](23)[2] = S(123) ∗
(
K(1)[1](2)[2](3)[3] +K(1)[1](23)[3]

)
.

By performing analogous manipulations for the other cases we obtain the result in Table 3.4.
Now we can collect the contributions2 for the AC function ∆C

[1][3]
1 and for ∆C

[2][3]
2 . The

remaining contributions form the nested PSF anti-commutator

S(123) ∗K(1)[1](2)[2](3)[3] +S(312) ∗K(3)[3](1)[1](2)[2] +S(213) ∗K(2)[2](1)[1](3)[3] +S(321) ∗K(3)[3](2)[2](1)[1]

= S[[[1;2]+;3]+ ∗K(1)[1](2)[2](3)[3] .

In total, this yields the result

√
2(G222 −G112) =

∑
p{1}|{2,3}

S[(1);(2 3)]− ∗K(1)[1](2 3)[3] +
∑
p2|1,3

S[(2);(2 3)]− ∗K(2)[2](2 3)[3]

+ S[[[1;2]+;3]+ ∗K(1)[1](2)[2](3)[3] .

(3.2.7)

2Compare with the discontinuity

∆C
[1][3]
1 =

∑
p{1}|{2,3}

S[(1);(2 3)] ∗K(1)[1](2 3)[3]

= S(123) ∗K(1)[1](23)[3] + S(132) ∗K(1)[1](3)[3] − S(231) ∗K(23)[3](1)[1] − S(321) ∗K(32)[3](1)[1] .
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Using the identity (3.2.3) one can express the last line in terms of AC functions (up to
divergencies of statistical factors)

√
2(G222 −G112) = −N3(N1∆C

[1][2][3]
1,2 +N2∆C

[2][1][3]
2,1 ) + ∆C

[1][3]
1 + ∆C

[2][3]
2 . (3.2.8)

Let us return to general `. The only additional complication arises due to the further
possibilities to split up the indices {1, ..., `} in subsets according to the kernel expansion in
Eq. (3.1.2). Performing steps analogous to those for ` = 3 one obtains the general result

2`/2−1 (G[η1η2η3] −G[η3]) =
∑

(I1,I2,I3)∈I123

∑
pI1|I2|I3

S[[I1;I2]+;I3]+
∗K

I
[η1]
1 I

[η2]
2 I

[η3]
3

+
∑

(I1,I3)∈I13

∑
pI1|I3

S[I1;I3]−
∗K

I
[η1]
1 I

[η3]
3

+
∑

(I2,I3)∈I23

∑
pI2|I3

S[I2;I3]−
∗K

I
[η2]
2 I

[η3]
3

(3.2.9)

with I123 = {(I1, I2, I3)| η1 ∈ I1, η2 ∈ I2, η3 ∈ I3, Ib ∩ Ib′ = ∅ for b 6= b′} being the set
of all possibilities to split {1, ..., `} into three sets, each of which contains one of the
indices ηb ∈ Ib. The sets I13 = {(I1, I3)| η1 ∈ I1, η2, η3 ∈ I3, I1 ∩ I3 = ∅} and I23 =
{(I2, I3)| η2 ∈ I2, η1, η3 ∈ I3, I2 ∩ I3 = ∅} are defined analogously.

The last two lines in Eq. (3.2.9) involve a PSF commutator and can thus be identified

with the AC functions ∆C
[η1][η3]
I1

and ∆C
[η2][η3]
I2

. The nested PSF anti-commutators in
Eq. (3.2.9) have to be rewritten according to Eq. (3.2.3) to relate it to AC functions,
giving∑

pI1|I2|I3

S[[I1;I2]+;I3]+
∗K

I
[η1]
1 I

[η2]
2 I

[η3]
3

= −NI3

(
NI1 ·∆C

[η1][η2][η3]
I1,I2

+NI2 ·∆C
[η2][η1][η3]
I2,I1

)
.

(3.2.10)

The general result in Eq. (3.2.9) can be obtained by repeating the same steps as for ` = 3.
Another way to derive it is by repeatedly “inserting” additional arguments in the correlator.
Including an additional argument with Keldysh index 1 does not fundamentally change the
structure of the formula. In fact, one can infer the formula for `+1 arguments from the one
for ` arguments. Permutations over `+1 arguments can be inferred from the permutations
(1, ..., `) by inserting the new argument at any of the `+ 1 positions. For instance consider
` = 3. The final version of the contributions to G222 − G112 is in Table 3.4. Consider the
contribution

S(123) ∗K(1)[1](23)[3] .

We can systematically infer the corresponding contributions for ` = 4 by inserting the 4
at any position. Due to the way in which index sets are split up by the kernel expansion
according to Eq. (3.1.2) the contributions for permutations (4123), (1243) and (1234) are

S(4123) ∗K(41)[1](23)[3] + S(1243) ∗K(1)[1](243)[3] + S(1234) ∗K(1)[1](234)[3] ,
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such that the new contribution is simply the old one with the new index inserted corre-
sponding to its position in the permutation. Only when the new index 4 is inserted at the
boundary between two subtuples, i.e. in this case for (1423), one obtains two contributions,

S(1423) ∗
(
K(14)[1](23)[3] +K(1)[1](423)[3]

)
one for inserting 4 in the left subtuple and one for inserting it in the right subtuple. In total
one obtains the above five contributions for ` = 4. To infer the formula for `+ 1 from the
one for `, we sum over all possibilities for inserting the new index into existing subtuples,
above (1) and (23), and each subtuple is augmented by the new index 4 by inserting it at
any possible position. (This holds for an arbitrary number of subtuples.) Now recall how
permutations over `+ 1 indices can be inferred from permutations over ` indices. Thereby,
we obtain Eq. (3.2.9) for arbitrary ` by induction.

3.2.2 Construction of G[η1η2η3η4]

Rewriting G[η1η2η3η4] follows the very same principles as for G[η1η2η3]. For the sake of brevity
we only present the result for the most relevant case of ` = 4. The generalization to ` > 4
can be achieved analogously to the previous section. The result for ` = 4 is

2G2222 =
∑

p{2,3,4}|{1}

S[(1 2 3);(1)]+ ∗K(1 2 3)[4](1)[1] +
∑

p{1,3,4}|{2}

S[(1 2 3);(2)]+ ∗K(1 2 3)[4](2)[2]

+
∑

p{1,2,4}|{3}

S[(1 2 3);(3)]+ ∗K(1 2 3)[2](3)[3] +
∑

p{3,1,2}|{4}

S[(1 2 3);(4)]+ ∗K(1 2 3)[3](4)[4]

+
∑

p{4}|{1,2}|{3}

S[[(4);(2 3)]−;(3)]+ ∗K(4)[4](2 3)[2](3)[3] +
∑

p{3}|{4,1}|{2}

S[[(3);(2 3)]−;(2)]+ ∗K(3)[3](2 3)[1](2)[2]

+
∑

p{1}|{2,3}|{4}

S[[(1);(2 3)]−;(4)]+ ∗K(1)[1](2 3)[3](4)[4] +
∑

p{2}|{3,4}|{1}

S[[(2);(2 3)]−;(1)]+ ∗K(2)[2](2 3)[4](1)[1]

+
∑

p{4}|{2}|{1,3}

S[[(4);(2)]+;(3 4)]− ∗K(4)[4](2)[2](3 4)[3] +
∑

p{1}|{3}|{2,4}

S[[(1);(3)]+;(3 4)]− ∗K(1)[1](3)[3](3 4)[4]

+
(−2πi)3

2

(
S[[[1;2]+;4]−;3]− − S[[[1;2]−;4]−;3]+ + S[[[4;1]+;3]−;2]− − S[[[4;1]−;3]−;2]+

+ S[[[2;3]+;1]−;4]− − S[[[2;3]−;1]−;4]+ + S[[[3;4]+;2]−;1]− − S[[[3;4]−;2]−;1]+

+ S[[4;2]+;[1;3]+]+ + S[[4;2]+;[1;3]−]− + S[[1;3]+;[2;4]+]+ + S[[1;3]+;[2;4]−]−

)
.

(3.2.11)

For the expression in round brackets we evaluated the convolution with the kernelK(1)[1](2)[2](3)[3] =∏3
j=1 δ̂(ωj) for the sake of brevity. One can now rewrite the above expressions in terms
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of AC functions which only contain nested PSF commutators. To do so one can use the
following relations which are obtained by (anti-)commutator relations and repeated use of
Eq. (2.2.5)

S[[[A;B]+;C]−;D]− =S[[[A;C]−;D]−;B]+ + S[[[B;C]−;D]−;A]+ + S[[A;C]−;[B;D]−]+ + S[[A;D]−;[B;C]−]+

=−NBS[[[A;C]−;D]−;B]− −NAS[[[B;C]−;D]−;A]−

+NACS[[A;C]−;[B;D]−]− +NADS[[A;D]−;[B;C]−]− ,

(3.2.12)

S[[A;B]−;[C;D]+]− =S[[[A;B]−;C]−;D]+ + S[[[A;B]−;D]−;C]+

=−NDS[[[A;B]−;C]−;D]− −NCS[[[A;B]−;D]−;C]− ,
(3.2.13)

S[[A;B]+;[C;D]+]+ =NAB

(
S[[[A;B]−;C]−;D]− + S[[[A;B]−;D]−;C]−

− 2 · S[[[A;C]−;B]−;D]− − 2 · S[[[A;D]−;B]−;C]−

+NACS[[A;C]−;[B;D]+]− +NADS[[A;D]−;[B;C]+]−

+NBCS[[B;C]−;[A;D]+]− +NBDS[[B;D]−;[A;C]+]−

)
.

(3.2.14)

where A,B,C,D ∈ {1, ..., 4}. These (anti-)commutator relations can be checked explicitly
by unfolding the the (anti-)commutators. Using the PSFs Sp as basis vectors the search
for these relations is basically a problem which can be solved with linear algebra.

3.2.3 Caveat: Anomalous parts

Also for α = 3 and α = 4 we need to pay attention to the divergencies of the factors
NI . Similar to the case in Sec. 3.1.3 the divergencies indicate that these contributions can
only be recovered by Φ̂I , the analytic continuation of the anomalous part ĜI of the MF
correlator. There are different ways to expand the correlators which are all equivalent for
the continuation of the regular MF correlator. However, for the anomalous parts we need
to be cautious as we illustrate in the following example.

With Eq. (3.2.7) we have derived a formula to construct the function G222 − G112 via
analytic continuation. However, rewriting S[[1,2]+,3]+ in terms of AC functions is problematic
if O3 is a bosonic operator. When we apply Eq. (2.2.5) we have to exclude the point for
which N3 diverges and get

S[[1,2]+,3]+ =

{
−N3S[[1,2]+,3]− , for ω3 6= 0,

S[[1,2]+,3]+ , for ω3 = 0.
(3.2.15)

Using the AC function Φ̂3 we cannot reconstruct the second line since the discontinuities
of AC functions only produce (nested) PSF commutators. This problem does not arise
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if, instead, O1 is a bosonic operator. Then the divergence of N1 in Eq. (3.2.7) has to be
avoided and we get

S[1,[2,3]−]+ =

{
N1S[1,[2,3]−]− , for ω1 6= 0,

S[1,[2,3]−]+ , for ω1 = 0.
(3.2.16)

Here the second line can be constructed with Φ̂1, making use of the fact that the disconti-
nuity of AC functions produces PSF commutators.

In the following section we see that the various Keldysh components of a correlator are
not independent. For instance 4p correlators can all be expressed in terms of correlators
G[η1···ηα] with α ≤ 2. Hence, the easiest way to obtain all Keldysh components of a 3p or
4p correlator via analytic continuation is by use of the continuation formulas for α ≤ 2
and then computing the remaining correlators via the fluctuation dissipation relations.



Chapter 4

Applications of the analytic
continuation formula

In the previous chapter we have shown how KF correlators can be constructed from AC
functions. Thereby we have derived formulas for particularly relevant cases of 3p and 4p
functions. Our results do not rely on any assumptions about the nature of the operators
or about the physical system (apart from equilibrium and time-translational invariance).
In this chapter we apply the formulas to various cases. At first we use the known relations
between KF correlators and AC functions to derive relations between the KF correlators,
known as generalized fluctuation-dissipation relations (FDRs). In Sec. 4.2 we then transfer
the known results to vertex functions. These describe the effective interaction between
two particles and are obtained from certain 4p correlators. For this purpose we trans-
form the correlators to the R/A basis [34] and use the previously found FDRs. Lastly,
in Sec. 4.3 we consider the vertex contributions to susceptibilities. The computation of
real-frequency susceptibilities has been analyzed by Eliashberg [13] who used the analytic
continuation method to convert Matsubara sums into contour integrals. We then iden-
tify the KF functions which correspond to his vertex contributions and thereby enable
transfering Eliashberg’s arguments to the KF.

4.1 Generalized fluctuation-dissipation relations

Due to the double-contour technique an `-point correlator in KF can carry 2` different
tuples of Keldysh indices k (with ki ∈ {1, 2}). One of them, G[] = 0, is known to be
always zero. Due to the equilibrium condition also the remaining correlators may not
be independent. For ` = 2 the corresponding relation is known as Fluctuation-Dissipation
theorem. Generalized fluctuations-dissipation relations (FDRs) have been derived for ` ≤ 4
(see Refs. [12,33]) by employing further assumptions additional to the equilibrium condition
and invariance under time-translation.

In the following we derive the FDRs for ` ≤ 4 without invoking additional assumptions.
We deduce relations between Keldysh correlators Gk and the primed correlators G′k defined
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in Eq. (3.2.8). Thereby we reproduce the relations derived in Ref. [12], using that the
primed is equal to the complex conjugated correlator for bosonic operators, i.e. G′k =
(Gk)∗.1 To find the analogous relation for fermionic operators one simply has to redefine
the prefactors Ni according to Eq. (2.2.4). The FDRs hold for any correlator of bosonic
and fermionic operators. The exchange symmetry is fully respected via the definition of
the statistical factors NI according to Eq. (2.2.4).

Our derivation of the FDRs makes use of the fact that KF correlators and primed KF
correlators can be written as a linear combination of AC functions. For ` ≤ 3 the derivation
of the FDRs is particularly simple because all regions of analyticity can be identified with
retarded or advanced correlators (see Fig. 2.2). For ` ≥ 4 further regions of analyticity
exist which do not directly correspond to KF correlators. In this case one needs to solve a
set of linear equations to obtain the FDRs.

For the derivation of the FDRs we temporarily neglect the parts of the KF correlators
which are retrieved from the anomalous part of the MF correlator (see Sec. 3.1.3). One can
however include them afterwards and check that the FDRs still hold. One can also plug
the spectral representation of the KF correlators into the FDR and check explicitly that
they hold exactly up to frequencies for which the factors Ni in the FDR diverge. (This
is a lengthy calculation which involves the use of the equilibrium condition according to
Eq. (2.2.1) and has already been done by Haehl et al. in Ref. [24].) For the important case
of 4p correlators with only fermionic operators there are no such divergencies since all Ni in
the FDRs are tanh functions. For 2p correlators with bosonic operators or 3p correlators
with one bosonic and two fermionic operators we can add the appropriate functions to
obtain exact relations between the correlators. These are the analytic continuations of the
anomalous parts Φ̂I . In App. B we have summarized the corresponding formulas for 3p
and 4p correlators.

In the following we use some relations for the statistical factors NI (see definition in
Eq. (2.2.4)). The sum rules for tanh and coth give the relation

Nij =
1 +NiNj

Ni +Nj

.

Together with frequency conservation, this leads to the relation∏̀
i=1

(Ni + 1) =
∏̀
i=1

(Ni − 1)

which can be proven iteratively [24].

4.1.1 FDRs for three-point functions

For 3p functions all AC functions correspond to retarded or advanced correlators, see
Fig. 2.2. The correlators G[η1η2] are expressed in terms of discontinuities by Eq. (3.1.11).

1As remarked after Eq. (2.1.28), another important case for which G′ = G∗ holds, are Hamiltonians
which are real functions of creation and annihilation operators or systems with special behavior under
time reversal [33].
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At the end of Sec. 2.3.2 we have explained how to identify the corresponding AC functions.
This gives

G[12] =N13(G[1] −G′[3]
) +N1(G′

[3] −G[2]), (4.1.1)

G[13] =N3(G′
[2] −G[1]) +N1(G′

[2] −G[3]), (4.1.2)

G[23] =N3(G′
[1] −G[2]) +N2(G′

[1] −G[3]). (4.1.3)

Furthermore, we have expressed the correlator G[123] in terms of discontinuities in
Eq. (3.2.8), giving

G[123] −G[3] = ∆C
[1][3]
1 + ∆C

[2][3]
2 −N3(N1∆C

[1][2][3]
1,2 +N2∆C

[2][1][3]
2,1 )

= G′
[2] −G[3] +G′

[1] −G[3]

−N3

[
N1(G′

[3] −G[2] +G[3] −G′[2]
) +N2(G′

[3] −G[1] +G[3] −G′[1]
)
]

= (1 +N2N3)G′
[1]

+ (1 +N1N3)G′
[2]

+ (1 +N1N2)G′
[3]

+N2N3G
[1] +N1N3G

[2]

+ (N1N2 − 1)G[3]

(4.1.4)

In the second line we identified the AC functions which make up the discontinuities. This
process has been exemplified in Eq. (3.2.6). In the last step we used the relation

1 +N1N2 +N1N3 +N2N3 = 0,

which holds for ` = 3 due to frequency conservation.

4.1.2 FDRs for four-point functions

For 4-point correlators there are several regions of analyticity which cannot be identified
with a KF correlator. Unlike for ` ≤ 3 we thus cannot simply express any KF correlator in
terms of retarded and advanced correlators. Our strategy for ` = 4 relies on the comparison
of the AC functions with which KF correlators can be constructed. By writing a correlator
as a linear combination of AC functions it can be represented by a vector for which the
AC functions serve as the basis vectors êi. Thereby we are able to find relations between
KF correlators by solving linear equations. We demonstrate this method with the example
of the KF correlators G[12], G[123] and G[1234]. The FDRs for 4p correlators of fermionic
operators are summarized in Eqs. (B.2.3) and (B.2.3).

It is sufficient to choose the discontinuities of AC functions ∆CγI as basis vectors since

the construction of all correlators (except for G[η] and G′[η]) has been performed with the
discontinuities ∆CγI . In Fig. 4.1 we depict the discontinuities with short arrows which are

enumerated according to the basis vectors êi, such that e.g. ê1 = ∆C
[2][3]
124 . Note that every

region of analyticity and hence every AC function ∆CγI has a counterpart which is related
to it by conjugation of the complex frequencies ∆C ′γI = −∆C−γI .
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Figure 4.1: Regions of analyticity of four-point correlators: The 36 distinct discontinuities
∆CγI are indicated by short arrows. For the derivation of FDRs they are used as basis
vectors êi with 1 ≤ i ≤ 36. In the diagram the index i for êi is placed next to the
corresponding discontinuity.

We exemplify the derivation of an FDR first with G[12]. By Eq. (3.1.14) we have

G[12] = N1∆C
[1][2]
1 +N13∆C

[1][2]
13 +N14∆C

[1][2]
14 +N134∆C

[1][2]
134

= −N1ê13 −N13ê14 −N14ê18 −N2ê16.
(4.1.5)

These discontinuities are the ones adjacent to the regions labeled by the arabic numbers
(2.2) in Fig. 2.3. Thus, we may expect to find a relation to the correlator G′[34] since the
regions labeled by (4.4) are the complex conjugates to these. We find

G′
[34]

= N3∆C ′
[3][4]
3 +N31∆C ′

[3][4]
31 +N32∆C ′

[3][4]
32 +N321∆C ′

[3][4]
321

= N3∆C ′
[3][4]
3 −N31∆C

[1][2]
31 +N32∆C

[1][2]
14 +N321∆C ′

[3][4]
321

= N3ê15 +N13ê14 +N14ê18 +N4ê17.

(4.1.6)

The retarded and advanced correlators are represented by the basis ∆CγI via

G[1] −G′[3]
= −ê14 + ê16 + ê17,

G[1] −G′[4]
= ê15 + ê16 − ê18,

G[2] −G′[3]
= ê13 + ê17 + ê18.
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Thus the problem is reduced to the linear algebra problem of finding a solution x to
−N1

−N13

0
−N2

0
−N14

 =


0 0 0 1
N13 −1 0 0
N3 0 1 0
0 1 1 0
N4 1 0 1
N14 0 −1 1

x,

where the vector on the left represents G[12] according to Eq. (4.1.5) and the columns of

the matrix represent the functions G̃[34], G[1]−G′[3], G[1]−G′[4] and G[2]−G′[3]. One finds
the solution

xT =
(
N

(12)
(34) , N

(12)
(34)N3 −N2,−N (12)

(34)N3,−N1

)
with N

(ij)
(kl) =

Ni+Nj
Nk+Nl

. To see that this is indeed a solution one has to convince oneself that
the equations

N13 =N
(12)
(34) (−N13 +N3)−N2, and N14 =N

(12)
(34) (−N14 −N3) +N1,

hold which can be checked using the properties of hyperbolic functions and frequency
conservation. After regrouping the prefactors one obtains

G[12] = −N2G
[1] −N1G

[2] +N
(12)
(34)

(
N4G

′[3]
+N3G

′[4]
+G′

[34]
)
,

which agrees with the result in [12].
To obtain FDRs for G[234] −G[2] or G[1234] we can again write them in terms of discon-

tinuities ∆CγI , yielding the rather lengthy expressions

G[234] −G[2] = −ê1 − ê2 − ê12 − ê11 +N12[N3(ê28 − ê1) +N4(ê21 − ê12)]

+N2[N13(−ê2 − ê30) +N4(−ê21 + ê31)] +N2[N3(ê33 − ê28) +N14(−ê34 − ê11)],

and

G[1234]

= [N13(1 +N12N3)]ê1 + [N13 −N1(1 +N12N13)]ê3 + [N13(−N12 +N14)N2]ê4 − [N14]ê5

+ [N3 −N13(2 +N12N3 +N14N3)]ê6 − [N12N13N4]ê7 + [N2(−1 +N12N13)]ê9

+ [N13(−2 +N1(N12 +N14))]ê10 + [N14]ê11 + [N4(1 +N12N13 −N13N14)]ê12

+ [N13 −N1N13N14]ê13 + [N13 −N3 +N13N14N3]ê15 − [N13N14N2]ê16

+ [N4(−1 +N13N14)]ê17 − [N14]ê18 + [N12]ê19 − [N12]ê20 − [N4(1 +N12N13)]ê21

+ [N12N13N2]ê22 + [N1 − 2N13 +N13N1(N12 +N14)]ê23 + [N13N4(N12 −N14)]ê24

+ [−N3 +N13(1 +N12N3)]ê25 + [N13 −N1N12N13]ê26 + [N2(1−N12N13 +N13N14)]ê27

− [N13(2 +N12N3 +N14N3)]ê28 − [N2(1 +N13N14)]ê29 + [N13N14N4]ê31

+ [N13 −N1(1 +N13N14)]ê32 + [N13(1 +N14N3)]ê33 +N14ê34 −N12ê35 +N12ê36.
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These can be expressed in terms of G[η1η2] and (G[η1] −G′[η2]). Note that the latter
objects each have different representations in terms of êi (corresponding to different paths

between G[η1] and G′[η2]). We can hence set up a matrix equation analogously to the one
for G[12], using

G[1] −G′[2]
= ê6 + ê20 + ê24 = ê7 + ê36 + ê25,

G[1] −G′[3]
= −ê14 + ê16 + ê17 = ê7 + ê8 + ê9,

G[1] −G′[4]
= ê15 + ê16 − ê18 = ê4 + ê5 + ê6,

G[2] −G′[1]
= ê1 + ê19 + ê21 = ê12 + ê35 + ê28,

G[2] −G′[3]
= ê13 + ê17 + ê18 = ê10 + ê11 + ê12,

G[2] −G′[4]
= ê1 + ê2 + ê3 = ê13 + ê14 + ê15,

G[3] −G′[1]
= ê22 − ê2 + ê21 = ê31 + ê30 + ê29,

G[3] −G′[2]
= ê23 − ê5 + ê24 = ê31 − ê34 + ê32,

G[3] −G′[4]
= ê22 − ê19 + ê3 = ê23 − ê20 + ê4,

G[4] −G′[1]
= −ê11 + ê27 + ê28 = ê29 + ê33 + ê34,

G[4] −G′[2]
= ê26 − ê8 + ê25 = ê33 − ê30 + ê32,

G[4] −G′[3]
= ê27 − ê35 + ê10 = ê26 − ê36 + ê9,

G[12] = −N1ê13 −N13ê14 −N14ê18 −N2ê16,

G[34] = −N4ê31 −N3ê33 +N13ê30 +N14ê34,

G[13] = −N3ê6 −N1ê23 +N14ê5 +N12ê20,

G[24] = −N4ê12 −N2ê27 −N14ê11 +N12ê35,

G[14] = −N4ê7 −N1ê26 +N13ê8 +N12ê36,

G[23] = −N3ê1 −N2ê22 −N13ê2 +N12ê19.

This linear algebra problem can be solved to find

G[234] = (1 +N2N4 +N2N3 +N3N4)G′
[1] −N3N4G

[2]

−N2N4G
[3] −N2N3G

[4] −N4G
[23] −N3G

[24] −N2G
[34]

and

G[1234] = 2N2N3N4G
[1] + (N2N3N4 +N2 +N3 +N4)G′

[1]

+ 2N1N3N4G
[2] + (N1N3N4 +N1 +N3 +N4)G′

[2]

+ 2N1N2N4G
[3] + (N1N2N4 +N1 +N2 +N4)G′

[3]

+ 2N2N3N4G
[4] + (N1N2N3 +N1 +N2 +N3)G′

[4]

+N3N4G
[12] +N2N4G

[13] +N2N3G
[14] +N1N4G

[23] +N1N3G
[24] +N1N2G

[34],

which agrees with the result in Ref. [12].
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4.2 Vertex functions and the R/A basis

So far we have never specified the operators O = (O1, ...,O`) in the correlators. In this
section we choose them to be creation and annihilation operators and focus on vertex
functions F which describe the effective interaction between two particles. Based on our
knowledge about 2p and 4p correlators we can now infer the formulas for the analytic
continuation of vertex functions. We find that vertex functions have the same regions of
analyticity as correlators, the same FDRs and the Keldysh components can be constructed
with the same linear combinations of AC functions as for correlators. We find that for KF
functions the R/A basis, derived in Refs. [34, 35], is particularly convenient to work with.
In this basis every component can be expressed with a small number of AC functions.

The propagation of a single particle is described by the 2p correlator (propagator)
defined by

Gk1k2
σ (t1, t2) = −i〈Tcdσ(tk11 )d†σ(tk22 )〉. (4.2.1)

where the operators d†σ and dσ are creation and annihilation operators specified by the
index σ. Typically σ is a spin (↑ or ↓) as e.g. in our calculations on the Hubbard atom
in Sec. 5, and position or momentum. In the following we first focus on 4p functions with
solely outgoing particles2 defined by

Gk1k2k3k4
σ1σ2σ3σ4

(t) = (−i)3〈Tcdσ1(tk11 )dσ2(t
k2
2 )dσ3(t

k3
3 )dσ4(t

k4
4 )〉. (4.2.2)

It consists of a disconnected and a connected part, G = Gdis + Gcon. The disconnected
part Gkdis contains all the “factorizations” of the 4p correlator in propagators such as
(−i)3〈Tcdσ1(tk11 )dσ2(t

k2
2 )〉 〈Tcdσ3(tk33 )dσ4(t

k4
4 )〉 as they are obtained by Wick’s theorem for

non-interacting particles. It corresponds to the independent propagation of particles with-
out mutual scattering. Note that the disconnected part contributes to the anomalous
part in the MF. It can be analytically continued to the KF, based on the well-known
continuation of 2p functions.

The connected part of the 4p correlator Gcon is associated with the effective two-particle
interaction. The corresponding vertex function F is given by factorizing out four propaga-
tors [11] (henceforth hiding the indices σi again)

Gk1k2k3k4
con (ω) =

[
4∏
i=1

Gkik
′
i(ωi)

]
F k′1k

′
2k
′
3k
′
4(ω), (4.2.3)

where summation over the doubly occurring indices k′i is implied. These four propagators
Gkik

′
i(ωi) are called external legs in a diagrammatic language.3 For solely outgoing legs

they are all on the left of the vertex function.

2see below for incoming particles
3We denote the 2-point correlators Gkik

′
i(ωi) solely by the frequency argument of the first operator.

See Fig. 5.1 for a diagrammatic representation of the disconnected and connected part of the 4p correlator
of the Hubbard atom.
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Since we concentrate on outgoing legs, all 2-point correlators Gkik
′
i are on the left of F .

The Keldysh components are summarized in the matrix

G(ω) =

(
0 GA(ω)

GR(ω) GK(ω)

)
=

(
G11(ω) G12(ω)
G21(ω) G22(ω)

)
, (4.2.4)

where the retarded and advanced correlators (GR and GA) can be obtained from the MF
correlator by

GR/A(ωi) = G(iωi)|iωi→ωi±i0+ , GK(ωi) = Ni[G
R(ωi)−GA(ωi)].

The FDT for the Keldysh component holds true up to an anomalous contribution in MF.
It has to be considered for bosonic operators and corresponds to a constant in the time
domain. However, for fermionic creation and annihilation operators such an anomalous
part cannot exist.

To obtain the vertex function from the connected part of the correlator Gkcon one has
to amputate the external legs, i.e. the latter needs to be multiplied with the inverse of
the propagators Gkik

′
i . Since the propagator is a non-diagonal matrix, this can yield an

abundance of summands for certain vertex components in the Keldysh basis. It is therefore
convenient to switch to the R/A basis according to Refs. [34,35] in which the 2p correlator
in KF assumes a diagonal form

Q(ωi)G(ωi)P
−1(ωi) =

(
Ni 1
−1 0

)(
0 GA

GR GK

)(
1 Ni

0 −1

)
=

(
GR 0
0 GA

)
(ωi). (4.2.5)

Correspondingly, the transformation into the R/A basis with Λi ∈ {R,A} is performed
with the matrices Q(ωi) for correlators and with P (ωi) for vertex functions by

GΛ =
∑
k

[∏̀
i=1

QΛiki(ωi)

]
Gk, (4.2.6)

FΛ =
∑
k

[∏̀
i=1

PΛiki(ωi)

]
F k. (4.2.7)

Some correlators in the R/A basis are e.g.

GAAAA = 0, (4.2.8)

GRAAA = −G[1], (4.2.9)

GRRAA = G[12] +N1G
[2] +N2G

[1], (4.2.10)

GRRRA = −G[123] −N1G
[23] −N2G

[13] −N3G
[12] −N1N2G

[3] −N1N3G
[2] −N2N3G

[1]

(4.2.11)

Wang et al. explicitly showed in Ref. [12] that the FDRs for ` ≤ 4 are equivalent to the
relation

GΛ = G′
Λ ·

∏
Λi=R

(Ni + 1)∏
Λi=A

(Ni − 1)
(−1)`−1, (4.2.12)
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which was derived in Ref. [35] on the basis of diagrammatic rules. Here the bar over Λ
indicates conjugation of the R/A index, such that R = A and vice versa. From this, it
follows that GRRRR ∝ GAAAA = 0. Moreover, the expression for the component

GRRRA = (1 +N1N2 +N1N3 +N2N3)G′
AAAR

= −(1 +N1N2 +N1N3 +N2N3)G′
[4]

(4.2.13)

simplifies tremendously. It can be expressed in terms of the advanced correlator G′[4]

which directly corresponds to an AC function. For the correlators with two R’s and two
A’s, consider for instance the correlator GRRAA which we expressed in the Keldysh basis
in Eq. (4.2.10). By construction of G[12] (see Eq. (3.1.14)) the AC functions CI-IV

2.2 , C3.2

and C1.2 are involved. The latter two correspond to the correlators G[1] and G[2] and are
exactly canceled in GRRAA, giving

GRRAA = N4(CII
2.2) +N23(CII

2.2 − CIII
2.2) +N13(CIII

2.2 − CIV
2.2) +N3(CIV

2.2),

where we left out the anomalous parts for brevity4. Hence, this KF component can be
expressed with three AC functions (plus anomalous parts). Other KF compoents can be
expressed with a single AC function [see Eqs. (4.2.9) and (4.2.13)]. For comparison, in the
Keldysh basis the correlators G[η1···ηα] with α ≥ 3 involve a complicated linear combination
of AC functions.

Observe that in the R/A basis the involved regions of analyticity of the 4p correlator
GΛ1Λ2Λ3Λ4 are consistent with the analytic continuation of the external legs. By choice of
a KF component in the R/A basis the analytic continuation of the external legs GΛi(ωi) is
fixed. For example, for GRRAA the imaginary parts of ω+

1 and ω+
2 are positive while those

of ω−3 and ω−4 are negative. In Fig. 2.3 the signs of the imaginary parts of ω±i are constant
within the rectangular sections labeled by the same arabic numbers. So, by ignoring the
branch cuts B12 = 0, B13 = 0 and B14 = 0 one finds the regions of the diagram which are
consistent with a certain choice of the external legs.

The consistency with the external legs follows immediately for GAAAA = 0 = GRRRR,
and also for a correlator like GRAAA (which is proportional to the retarded correlator

G[1]) and a correlator like GRRRA (which is proportional to the advanced correlator G′[4]

according to Eq. (4.2.12)). For GRRAA note that all involved AC functions are labeled by
the same arabic numbers, namely (2.2).

Every non-vanishing KF component in the R/A basis corresponds to a rectangular
region carrying a label with the same arabic numbers.

Due to the diagonal form of the propagators in the R/A basis it is easy to compute the
vertex functions from the correlators. For instance we get FAARR = [GAGAGRGR]−1GAARR

con .
Since the FDRs according to Eq. (4.2.12) hold for the disconnected part Gdis and since the
analytic continuation of the external legs is consistent with the analytic continuation of

4See App. B for the anomalous parts in a 4p correlator of fermionic operators.
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the 4p correlator, we infer that the same FDRs

FΛ = F ′
Λ ·

∏
Λi=R

(Ni + 1)∏
Λi=A

(Ni − 1)
(−1)`−1 (4.2.14)

hold for the vertex functions due to G′R = GA. From the consistency of the analytic
continuation of the external legs and of the vertex function we furthermore deduce that
the vertex function is analytic in the same regions as already found in Ref. [13]. Hence
they can be constructed from the very same linear combination of AC functions as for
correlators. In the Keldysh basis the meaning of the Keldysh indices 1 and 2 interchange
for vertex functions, such that e.g. a retarded vertex function is given by F [1] = F 1222. This
is due to the fact that the transformation matrices are related by P−1 = σxQ

−1 where σx
is the Pauli matrix

σx =

(
0 1
1 0

)
.

The R/A basis for incoming legs: For completeness, we also give the corresponding
matrices for the transformation from the Keldysh to the R/A basis for incoming legs. The
correlator and the vertex are then related by

Gk1k2k3k4
con (ω) = F k′1k

′
2k
′
3k
′
4(ω)

[
4∏
i=1

Gk′iki(−ωi)

]
, (4.2.15)

where summation over k′i is implied. The transformation to the R/A basis is then given by

GΛ =
∑
k

Gk

[∏̀
i=1

[P−1(−ωi)]kiΛi
]
, (4.2.16)

FΛ =
∑
k

F k

[∏̀
i=1

[Q−1(−ωi)]kiΛi
]
. (4.2.17)

These transformation matrices are related to the ones for outgoing legs by

[P−1(−ωi)]T =

(
1 0
−Ni −1

)
= −σxQ(ωi), (4.2.18)

[Q−1(−ωi)]T =

(
0 1
−1 −Ni

)
= −σxP (ωi). (4.2.19)

Hence, reverting the direction of a leg implies interchanging the labels R and A and mul-
tiplication by a global factor of (−1). In general, one has both in- and outgoing legs. The
corresponding formulas are obtained from those for solely outgoing legs by reverting the
direction of legs.



4.3 Computation of susceptibilities in KF and MF 47
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F

Figure 4.2: Diagrammatic representation of the susceptibility consisting of a bare bubble
and a vertex contribution.

4.3 Computation of susceptibilities in KF and MF

In the following we compare the computation of real-frequency susceptibilities in the KF
and in the MF. On the part of the MF we review a method introduced by Eliashberg [13].
He performed the analytic continuation of a 4p function to convert Matsubara sums into
contour integrals. Thereby he obtained a formula with various vertex contributions (linear
combinations of AC functions). Working with Eliashberg’s method Oguri found that, out
of the many vertex contributions, only one is relevant for the particular response function
under his consideration [14].

We then translate the individual vertex contributions from Eliashberg’s method to the
KF. With these relations we are able to immediately convert Oguri’s formula to the KF. In
fact, Oguri’s formula has been reproduced in the KF already [15]. However in a completely
different line of argument. With the result in this section we are hence able to close a gap
between the two formalisms. A very convenient stepping stone for this purpose is the R/A
basis for the KF functions.

We first review Eliashberg’s formula in Ref. [13] where he considered the susceptibility
of a fermionic system. He obtained the retarded correlator KR(ν) = K21(ν) via the well-

known analytic continuation for the 2p function K(iν)
iν→ν+i0+−→ KR(ν). The retarded

correlator is defined via

Kk1k2(ν) =

∫
R

dt eiνt
〈
Tc
(
d†σ1dσ2

)k1(t)(d†σ3dσ4)k2(0)
〉

(4.3.1)

with d†σ and dσ being fermionic creation and annihilation operators specified by σ (in
Eliashberg’s case σ is a momentum). The composite operators (d†d) each carry a time
argument and a Keldysh index. Note that writing the contour index as a superscript to
the operator Oc(t) is equivalent to the previous notation Oc(t) = O(tc). In this section
we denote the contour indices by Oc to define operators in the Keldysh basis

√
2Ok =

O− + (−1)kO+ as linear combinations of those in the contour basis. Similarly, operators
in the R/A basis OΛ are defined by a linear combination, i.e.

O1 = −OA, O2 = NOA +OR, (4.3.2)

where N is the statistical factor from the transformation matrix Q(ω) in Eq. (4.2.5).
The corresponding MF function is defined as

K(iν) =

∫ β

0

dτ eiντ
〈
T
(
d†σ1dσ2

)
(τ)
(
d†σ3dσ4

)
(0)
〉
. (4.3.3)
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Figure 4.3: Regions of analyticity of vertex functions (adapted from Ref. [13]): The regions
are identical to those of the correlators. The frequencies are parametrized in the convention
ω = (−ε, ε + ν,−ε′ − ν, ε′). Following Ref. [13] we denote the rectangular parts by arabic
numbers. Roman numbers are used to differentiate between regions which are separated
by the diagonals. The notation of the analytically continued vertex functions follows that
of the regions, such that e.g. 2F [1] = F3.2.

This 2p correlator can be obtained from the 4p correlator

G(iω) =

∫ β

0

d3τ eiω·τ〈T d†σ1(τ1)dσ2(τ2)d†σ3(τ3)dσ4(0)
〉
. (4.3.4)

by summing over two fermionic frequencies ε and ε′, as represented in Fig. 4.2. This gives

K(iν) = − 1

β2

∑
ε,ε′

(
G(disc.)(iω) +

[
4∏
i=1

G(iωi)

]
F (iω)

)
, (4.3.5)

where we have split the 4p correlator into its disconnected and connected part. The
frequencies of the 4p correlator are parametrized by

ω1 = −ε, ω2 = ε+ ν, ω3 = −ε− ν, ω4 = ε′. (4.3.6)

The disconnected part can be treated with the analytic continuation of 2p functions
already. We therefore focus on the vertex contribution to K(iν). Eliashberg then made
use of the analytic continuation method to replace the sums over the frequencies ε and ε′

by contour integrals which pick up the pole contributions of tanh or coth functions. To
make sure that no other pole contributions are picked up, every contour has to stay within
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a region on which the correlator is analytic. Since the branch cuts of correlators and,
identically, of vertex functions run along the real axis and contour contributions at infinity
are zero, it remains to integrate along the real axis. For the poles which lie directly on the
branch cuts at Im(ω13) = 0 and Im(ω14) = 0 (see the diagonals in Fig. 4.3) one needs to
take the Cauchy principal value integral which avoids the points with ω13 = 0 and ω14 = 0,
respectively. The final result is given in Eqs. (9)-(12) of [35] where the vertex contributions
are sorted by the analytic continuation of the external legs.

Now we derive the KF formula for the computation of the retarded function K21 and
compare the contributions to those by Eliashberg. In the KF one not only needs to integrate
out the fermionic frequencies ε and ε′, but also has to account for the ordering due to the
two branches of the Keldysh contour. In the contour basis the two constituents of the
composite operator (AB) also need to be on the same (forward or backward) branch.
With c being the contour index, this amounts to

(AB)c = AcBc, c ∈ {−,+}. (4.3.7)

In the Keldysh basis this leads to the correspondence
√

2(AB)1 = A1B2 +A2B1,
√

2(AB)2 = A1B1 +A2B2. (4.3.8)

For a direct comparison of the resulting vertex contributions with the result of Eliash-
berg, it serves to group the contributions according to the analytic continuation of the
external legs. For this purpose it is convenient to transform the vertex contributions of the
retarded function K21 into the R/A basis. Inserting Eq. (4.3.2) into Eq. (4.3.8) gives

√
2(AB)1 = −(Na +Nb)AABA −AABR −ARBA,√
2(AB)2 = NaNbAABA +NaAABR +NbARBA +ARBR,

(4.3.9)

with the statistical factors Na and Nb defined according to Eq. (2.2.4) where the frequencies
ωa and ωb belong to the operators A and B. Hence the operator product in the definition
of the retarded function K21 gives

2(AB)2(CD)1

= −NaNb(Nc +Nd)AABACADA −NaNbAABACADR −NaNbAABACRDA

−Na(Nc +Nd)AABRCADA −NaAABRCADR −NaAABRCRDA

−Nb(Nc +Nd)ARBACADA −NbARBACADR −NbARBACRDA

− (Nc +Nd)ARBRCADA − (Nc +Nd)ARBRCADR − (Nc +Nd)ARBRCRDA.

(4.3.10)

Plugging creation and annihilation operators into this formula allows us to write the re-
tarded function as

KR(ν) = −1

2

∫
R

dεdε′

(2πi)2
I(ω)

with

I = −N1(N3 +N4)GARAA −N1G
ARAR −N1G

ARRA −N2(N3 +N4)GRAAA

−N2G
RAAR −N2G

RARA − (N3 +N4)GRRAA −GRRAR −GRRRA.

(4.3.11)
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Here we already used that GAAAA = G[] = 0 and that

∫ ∞
−∞

dεdε′N1N2 [GAAAR +GAARA] = 0. (4.3.12)

These integrals yield zero since the statistical factors N1 and N2 contain no poles for ε′.
Also, the functions GAAAR = −G[4] and GAARA = −G[3] are analytic functions on their
respective region. Each region extends to |Im(ε′)| → ∞. We can therefore close the contour
with a half-circle over the upper or lower complex half-plane of ε′ and get zero due to the
lack of poles.

Be aware that we always worked in theR/A basis according to Eq. (4.2.7) which assumes
that all external legs are outgoing, such that e.g.

GRRAA
con (ω) = GR(ω1)GR(ω2)GA(ω3)GA(ω4)FRRAA(ω). (4.3.13)

For our computations it is convenient to work in this basis. However, for a direct compar-
ison of the external legs with Eliashberg’s result we have to account for the fact that the
first and third leg are incoming. Following the remark after Eq. (4.2.19) we transform

GR/A(ωi)→ GA/R(−ωi), for i ∈ {1, 3}. (4.3.14)

Our above example in Eq. (4.3.13) now has the external legs

GA(−ω1)GR(ω2)GR(−ω3)GA(ω4) = GA(ε)GR(ε+ ν)GR(ε′ + ν)GA(ε′).

Adopting the notation of external legs from Ref. [13] we define

g1(ε, ν) = GR(ε+ ν)GR(ε),

g2(ε, ν) = GR(ε+ ν)GA(ε),

g3(ε, ν) = GA(ε+ ν)GA(ε),

g4(ε, ν) = GA(ε+ ν)GR(ε).

(4.3.15)

For the retarded correlatorKR(ν) the vertex contributions can be read off from Eq. (4.3.11)

KR
vertex(ν) = − 1

2(2πi)2

∫ ∞
−∞

dεdε′
∑
i,j

gi(ε, ν)Lij(ω)gj(ε
′, ν) (4.3.16)
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with

L11 = −N1F
ARAR = −N1(F [24] +N4Γ[2] +N2Γ[4]),

L12 = −N1(N3 +N4)FARAA = N1(N3 +N4)F [2],

L13 = −N1F
ARRA = −N1(F [23] +N3F

[2] +N2F
[3]),

L21 = −FRRAR = (1 +N1N2 +N1N4 +N2N4)F ′
[3]
,

L22 = −(N3 +N4)FRRAA = −(N1 +N2)F ′
AARR

=−(N1 +N2)[F ′
[34]

+N4F
′[3]

+N3F
′[4]

],

L23 = −FRRRA = (1 +N1N2 +N1N3 +N2N3)F ′
[4]
,

L31 = −N2F
RAAR = −N2[F [14] +N4F

[1] +N1F
[4]],

L32 = −N2(N3 +N4)FRAAA = N2(N3 +N4)F [1],

L33 = −N2F
RARA = −N2[F [13] +N3F

[1] +N1F
[3]]

(4.3.17)

where for L21, L22 and L23 we used the generalized FDRs to make the connection to
Eliashberg’s result more obvious.

The relations in Eq. (4.3.17) already show the one-to-one correspondence between
Eliashberg’s vertex contributions and the KF components. To see that these are in-
deed identical we have to express the Keldysh vertices in terms of AC functions using
Eqs. (B.2.2). For the primed correlators like G′34 the AC functions for constructing G[34]

are replaced by those with the opposite imaginary frequencies. Thereby we e.g. obtain the
vertex contributions

L12 = +1
2
N1(N3 +N4)F1.2,

L21 = +1
2
(1 +N1N2 +N1N4 +N2N4)F2.1,

L22 = −1
2
(N1 +N2)[N4(F II

2.2) +N23(F II
2.2 − F III

2.2) +N13(F III
2.2 − F IV

2.2) +N3(F IV
2.2)].

For all the AC functions which do not belong to the central region with the label (2.2) one
can then use the argument under Eq. (4.3.12) to cross out the summands which do not
contribute poles for both ε and ε′. By doing so, we obtain

L11 = −1
2
N1

[
N2�

��F III
1.1 +N4ΓI

1.1 +N14(F II
1.1 − F I

1.1) +N12(�
��F II
1.1 −��

�F III
1.1)
]

L12 = +1
2
N1(N3 +N4)F1.2

L13 = −1
2
N1

[
N2�

��F III
1.3 +N3F

I
1.3 +N13(F II

1.3 − F I
1.3) +N12(�

��F II
1.3 −��

�F III
1.3)
]

L21 = +1
2
(���

���1 +N1N2 +N1N4 +N2N4)F2.1

L22 = −1
2
(N1 +N2)

[
N4(F II

2.2) +N23(F II
2.2 − F III

2.2) +N13(F III
2.2 − F IV

2.2) +N3(F IV
2.2)
]

L23 = +1
2
(���

���1 +N1N2 +N1N3 +N2N3)F2.3

L31 = −1
2
N2

[
N1�

��F III
3.1 +N4ΓI

3.1 +N12(�
��F II
3.1 −��

�F III
3.1) +N13(F I

3.1 − F II
3.1)
]

L32 = +1
2
N2(N3 +N4)F3.2

L33 = −1
2
N2

[
N1�

��F III
3.3 +N3ΓI

3.3 +N12(�
��F II
3.3 −��

�F III
3.3) +N14(F I

3.3 − F II
3.3)
]

(4.3.18)
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Expressing the factors Ni = tanh[βωi/2] and Nij = coth[β(ωi + ωj)/2] in terms of the fre-
quencies ν, ε and ε′ we find that Eq. (4.3.18) exactly gives Eliashbergs vertex contributions.

Now, knowing the direct correspondence between vertex contributions by Eliashberg
and the KF components, one can directly translate formulas from one formalism to the
other. For instance, Oguri derived a formula for the linear conductance of quantum point
contacts with non-interacting leads in [14]. Working with Eliashberg’s method he was able
to apply simplifications on the general formula which allowed him to neglect all vertex
contributions but the central L22. From Eq. (4.3.17) we read off

L22 = −1
2
(N3 +N4)FRRAA = −1

2
(N3 +N4)[F [12] +N2F

[1] +N1F
[2]].

This agrees with the result which Heyder et al. derived separately in Eq. (23) of Ref. [15]
within the framework of the KF. However, instead of the ‘standard’ approach (computing
the susceptibility by integrating out two fermionic frequencies) they made use of an exact
flow equation from the functional renormalization group. We have thereby closed a gap
between the two formalisms on the two-particle level, showing that the KF is not just
conceptually expected to yield the same results as the MF. But also one also obtains a
result in the KF by first performing calculations in the MF and then analytically continue
to a KF function, here via the relations in Eq. (4.3.17).

At last, a short note on the anomalous contributions which have been neglected so far:
While we integrate out ε and ε′ we take care of the divergencies of the factors Nij by using
the Cauchy principal value integral in both the MF and the KF which avoids the points
with ωij = 0. This is necessary in the MF to take into account the pole contributions
of the regular MF correlator which lie directly on the branch cut. However, in the above
AC functions the anomalous contributions are not contained yet. They have to be added
separately to make sure that the Matsubara sum and the contour integral take on the
same value. From our construction of the KF correlator with AC functions we know that
these are exactly the points for which the reconstruction of an PSF anti-commutator fails
(see Sec. 3.1.3). This issue is reconciled by adding the anomalous contributions. Since
these are proportional to a delta function, e.g. δ(ε′ − ε), the integral or the sum over ε′ is
trivial and the correspondence of the MF and KF calculation is checked analogously to the
disconnected part of the susceptibility.



Chapter 5

The Hubbard atom in the Keldysh
formalism

In this chapter we compute the one-particle and two-particle correlator of the Hubbard
atom within the Keldysh formalism. The Hubbard atom describes a system of spin–1

2

fermions (electrons) which consists of a single lattice site. Due to the Pauli exclusion prin-
ciple only fermions with different quantum numbers can occupy this site simultaneously.
Two electrons on the same site interact via the Coulomb repulsion. This very simple
model is of high interest since it is one of the few which are accessible via analytically
exact computations. The Hubbard atom can be obtained from the Hubbard model and
the single-impurity Anderson model in the atomic limit. It can thus serve as a benchmark
for numerical methods. The difficulty of solving these models can be traced back to the
competition of the kinetic and interaction terms of the Hamiltonian which impedes analytic
calculations [5].

The one-particle and two-particle correlator of the Hubbard atom have already been
computed in the Matsubara formalism (MF) [16–20]. The vertex function of the Hubbard
atom has been used as a starting point for a perturbative expansion around strong coupling
[17, 36]. It has been found that (despite the simplicity of the model) the two–particle
irreducible (2PI) vertex functions display a complicated frequency dependence [37]. The
divergencies in these 2PI vertices are an object of ongoing research. Such divergencies have
been related to the breakdown of the perturbative expansion due to the multivaluedness
of the Luttinger-Ward functional [38–41].

The corresponding correlators in the Keldysh formalism can be computed directly via
a spectral representation. They can also be computed via our formula for analytic con-
tinuation (see App. B) which allows us to “recycle” formulas obtained within the MF.
The generalized fluctuation-dissipation relations (FDR) reduce the number of independent
components of the Keldysh correlator to 2` − 1 [12, 33] and can thus be used to facilitate
the computations.

In the remaining part of this chapter we first introduce the model and the results in
MF in Sec. 5.1. In Sec. 5.2 we introduce an alternative spectral representation for KF
correlators in which we then (in Sec. 5.3) compute the results directly. Next, in Sec. 5.4 we
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show, using the example of some Keldysh components, that analytic continuation of the
MF correlator delivers the same result. We confirm the consistency of the computed results
by checking the generalized fluctuation-dissipation relations and the SU(2) symmetry in
Sec. C.3. Lastly, in Sec. 5.5 we derive formulas for the vertex function in KF and investigate
the asymptotics of the vertex function for high frequencies.

5.1 Review of results on the Hubbard atom

5.1.1 The model

In the following we consider an interacting fermionic spin-1
2

system which consists of a
single site. The corresponding Hamiltonian reads

H = U n↑n↓ − µ · (n↑ + n↓) (5.1.1)

with nσ = d†σdσ being the number operators for spin σ ∈ {↑, ↓}. These are expressed in
terms of fermionic creation and annihilation operators d†σ and dσ. The parameter U > 0 is
the effective strength of the local interaction and µ the chemical potential. We use u = U/2
to minimize the factors of 1/2 in the following sections.

This very simple system can be obtained from the Hubbard model and the Single-
Impurity Anderson Model (SIAM) in the atomic limit [5,19,42]. For instance the one-band
Hubbard model is a tight-binding approximation of a crystal. It is assumed that electrons
can occupy the lattice sites which form a discrete set of points in space. The Hubbard
Hamiltonian is

H = −t
∑
〈i,j〉

d†idj + U
∑
i

ni,↑ni,↓ − µ
∑
i,σ

ni,σ (5.1.2)

with the creation and annihilation operators d†i,σ and di,σ for an electron at site i with spin

σ ∈ {↑, ↓}. The number operators ni,σ = d†i,σdi,σ are defined correspondingly. In the first
term the tunneling with amplitude t is restricted to neighboring lattice sites 〈i, j〉. We
only consider on-site interaction with strength U . The Coulomb interaction is assumed
to be screened on longer distances and µ is the chemical potential. An exact solution
for the correlation functions of the Hubbard model can be computed in two limits. In
the free theory (U = 0) Wick’s theorem allows to write any correlator in terms of one-
particle correlators and the Hamiltonian is diagonal in momentum space. In the atomic
limit (t = 0) the Hamiltonian is diagonal in position space, such that the individual sites
decouple and it remains to compute the correlations on a single site. The corresponding
Hamiltonian is given in Eq. (5.1.1).

The SIAM hosts a single interacting impurity which is coupled to a non-interacting
bath. Its Hamiltonian reads

H =
∑
`,σ

ε` c
†
`,σc`,σ +

∑
`,σ

V` (d†σc`,σ + c†`,σdσ) + U n↑n↓ − µ (n↑ + n↓). (5.1.3)
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Electrons are created, d†σ, and annihilated, dσ, at the impurity where they interact with
strength u. On the impurity the chemical potential is µ. The bath electrons occupy the
energy levels ε` and are created and annihilated with the operators c†`,σ and c`,σ. The
second term introduces a coupling between the impurity and the bath with hybridization
strengths V`. Similar to the Hubbard model both the free theory (u = 0) and the atomic
limit (V` = 0) can be solved analytically. In the latter case the impurity site decouples from
the bath such that it remains to compute the local correlations given by the Hamiltonian
in Eq. (5.1.1).

There are only a few energy eigenstates for the Hubbard atom. In the system according
to Eq. (5.1.1) it can only be either unoccupied, |∅〉, singly occupied, |↑〉 or |↓〉, or doubly
occupied |↓↑〉 such that the eigenenergies are given by

H
(
|∅〉 , |↓〉 , |↑〉 , |↓↑〉

)
=
(
0 |∅〉 ,−µ |↑〉 ,−µ |↓〉 , (U − 2µ) |↓↑〉

)
. (5.1.4)

Using the above basis any state can be expressed as a vector v = v1 |∅〉+ v2 |↓〉+ v3 |↑〉+
v4 |↓↑〉. We can also compute the matrix elements of the fermionic creation and annihilation
operators. These are given in the occupation number basis [11]

d†j |n1, n2, ..., nj, ...〉 = (−1)
∑
i<j ni · (1− nj) · |n1, n2, ..., nj + 1, ...〉 ,

dj |n1, n2, ..., nj, ...〉 = (−1)
∑
i<j ni · nj · |n1, n2, ..., nj − 1, ...〉 ,

(5.1.5)

where the fermionic sign factor (−1)
∑
i<j ni is defined for a fixed order of the states, given by

|n1, n2, ..., nj, ...〉. In the following we choose the order |n↓, n↑〉 for which we can represent
the operators with the matrices

d↑ =


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 , d↓ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , d†↑ = dT↑ , d†↓ = dT↓ . (5.1.6)

These operators fulfill the fermionic anti-commutation relations and allow us to compute
correlators directly via a spectral representation in the MF given in Refs. [13, 16, 21] and
as we derive for the KF in Sec. 5.1.4. Note that the matrix elements of these operators are
real. Since the Hamiltonian is a real function of the creation and annihilation operators, all
partial spectral functions are real in frequency space [see Eq. (2.1.9)]. Hence, the primed
KF correlators equal the complex conjugated ones, G′ = G∗ [see Eq. (2.1.28)].

5.1.2 Correlators and symmetries of the Hubbard atom

In the following sections we consider the one- and two-particle correlator of the Hubbard
atom. The general n-particle correlator in MF is defined as

Gσ1,...,σ2n(τ ) = (−1)`−1
〈
T
[
dσ1(τ1)d†σ2(τ2)...dσ2n−1(τ2n−1)d†σ2n(τ`)

]〉
(5.1.7)
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and correspondingly in the KF

Gk1...k2nσ1,...,σ2n
(t) = (−1)`−1

〈
Tc
[
dk1σ1(t1)d† k2σ2

(t2)...dk2n−1
σ2n−1

(t2n−1)d† k2nσ2n
(t`)
]〉
, (5.1.8)

where T and Tc denotes the imaginary time ordering and contour ordering, respectively.
The operators d†σi and dσi create and annihilate a fermion with spin σi ∈ {↑, ↓}. The time-
evolution of the operators in imaginary and real time is given in the Heisenberg picture

O(τ) = eHτOe−Hτ , O(t) = eiHtOe−iHt, (5.1.9)

with the time-independent full Hamiltonian H.
Following Refs. [19, 33] we summarize the general properties of the correlators. For

the sake of notational convenience the symmetry properties of the Hubbard atom and its
consequences on the correlators are presented for MF correlators only [19]. However, they
are not specific to the formalism. For KF correlators one obtains very analogous relations,
following the same lines of arguments. The Hubbard atom has several symmetries which
can be exploited to simplify the computation of correlators. It displays time-translational
invariance, time-reversal symmetry and SU(2) spin symmetry. A symmetry relation due
to the SU(2) spin symmetry is used in Sec. C.3.2 to check the consistency of the result
on the KF correlator. Furthermore we assume equilibrium at finite temperature T = 1/β.
For µ = U/2 we additionally have particle-hole symmetry and a further SU(2) symmetry.

Within the MF the assumption of an equilibrium system at finite temperature is built
into the formalism. The Boltzmann factor e−βH corresponds to a time-evolution e−itH along
the imaginary time axis. After a Wick rotation t → −iτ the MF correlator Eq. (5.1.7) is
(anti-)periodic in each time-argument. Due to the (anti-)periodicity of the MF correlator its
Fourier transform is given by an integration of all time variables τi over an interval of length
β. In the KF the equilibrium condition leads to the generalized FDRs allowing one to reduce
the number of independent KF correlators [12, 33]. Time-translational invariance yields
a further simplification of the calculation. Since correlators only depend on relative time
differences, one can translate all times by an arbitrary amount, e.g. setting one of the times
to zero. In the frequency domain this leads to the global factor of βδω1...`,0 or 2πδ(ω1...`)
which ensures total energy conservation as expected for a time-translationally invariant
system. The exchange symmetry (or crossing symmetry) is expressed in the time-ordering
by the sign factors ζp [see Eq. (2.1.7)]. One can thereby relate correlators which merely
differ in the permutation of their operators. For instance, by exchanging two fermionic
creation operators one finds that Gk1k2k3k4

σ1σ2σ3σ4
(ω1, ω2, ω3, ω4) = −Gk1k4k3k2

σ1σ4σ3σ2
(ω1, ω4, ω3, ω2).

In general, a given unitary operator U is associated with a symmetry if it commutes
with the Hamiltonian

[U ,H] = 0, ⇔ UHU−1 = H. (5.1.10)

In this case, one can transform the creation and annihilation operators

d′(†)σ = U−1d(†)
σ U , with d′(†)σ (τ) = eτHd′(†)σ e−τH, (5.1.11)
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where the time-evolution is defined with the untransformed Hamiltonian. One obtains the
transformed n-particle correlator

G′σ1...σ2n(τ ) = (−1)2n−1
〈
T [d′σ1(τ1)d′†σ2(τ2)...d′†σ2n(τ2n)]

〉
, (5.1.12)

Plugging the transformation in Eq. (5.1.11) and using the symmetry according to Eq. (5.1.10)
one finds

G′σ1...σ2n(τ ) = (−1)2n−1
〈
T [eτ1HU−1dσ1Ue−τ1Heτ2HU−1︸ ︷︷ ︸

e−τ1Heτ2H

d†σ2Ue
−τ2H...d′†σ2n(τ2n)]

〉
= (−1)2n−1

〈
T [eτ1Hdσ1e

−τ1Heτ2Hd†σ2e
−τ2H...d†σ2n(τ2n)]

〉
= Gσ1...σ2n(τ ).

(5.1.13)

Thus, given a symmetry U the correlator G′ with the symmetry-transformed operators d
′(†)
σi

is equal to the untransformed correlator G. This can be used to derive identities for the
correlators.

Let us now consider the spin symmetry. The spin operators are defined as

Sa = d†σ′σ
a
σ′σdσ, for a ∈ {x, y, z}, (5.1.14)

with σi being the corresponding Pauli matrix. They commute with the Hamiltonian of the
Hubbard atom

[Si,H] = 0 (5.1.15)

and are thus the generators of symmetry transformations

Ui(ϕ) = eiϕSi . (5.1.16)

From the commutation relation Eq. (5.1.15) follows that both matrices can be diagonalized
simultaneously. In a suitable basis, the eigenvalues of Si are hence conserved quantities
during time evolution. For spins one usually uses the operator Sz and the total spin S2 as a
maximal set of operators which can be simultaneously diagonalized with the Hamiltonian.
In this basis the total spin and the z-component are conserved quantities. For the one-
particle correlator Gσσ′ this means that it is non-vanishing only for σ = σ′ . Similarly,
most spin configurations for the two-particle correlator vanish.

Explicitly computing the symmetry transformation Uy(ϕ) one finds for ϕ = π/2 that
the transformed creation (annihilation) operators give [19]

d
′(†)
↑ =

1√
2

(d
(†)
↑ + d

(†)
↓ ), d

′(†)
↓ =

1√
2

(d
(†)
↓ − d

(†)
↑ ). (5.1.17)

Plugging these transformed operators in Eq. (5.1.12) and by use of the fermionic exchange
symmetry of the operators, Rohringer concluded in Ref. [19] that

G↑↑↑↑(ω1, ω2, ω3, ω4) = G↑↑↓↓(ω1, ω2, ω3, ω4)−G↑↑↓↓(ω1, ω4, ω3, ω2). (5.1.18)
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He concluded that G↑↑↓↓ is the only two-particle correlator which has to be computed.
All other spin configurations can be deduced by use of symmetry relations. We use this
equation as a consistency check for the computed correlators.

So, henceforth we define the four-point functions

Gσσ′(τ1, τ2, τ3, τ4) = (−1)3〈T
[
dσ(τ1)d†σ(τ2)dσ′(τ3)d†σ′(τ4)

]
〉 (5.1.19)

with τi ∈ [0, β], σ, σ′ ∈ {↑, ↓}. Given this definition, the symmetry relation in Eq. (5.1.18)
reads

G↑↑(ω1, ω2, ω3, ω4) = G↑↓(ω1, ω2, ω3, ω4)−G↑↓(ω1, ω4, ω3, ω2). (5.1.20)

The corresponding symmetry relation in the KF is obtained by additionally attaching a
Keldysh index to every operator, giving

Gk1k2k3k4
↑↑ (ω1, ω2, ω3, ω4) = Gk1k2k3k4

↑↓ (ω1, ω2, ω3, ω4)−Gk1k4k3k2
↑↓ (ω1, ω4, ω3, ω2). (5.1.21)

5.1.3 Results in the Matsubara formalism at half-filling

In this section we summarize results on the one- and two-particle correlators for the Hub-
bard atom at half-filling (µ = u) at inverse temperature β = 1/T in the imaginary-time
formalism (MF) [16–20]. To avoid factors of 1/2 in the subsequent formulas we intro-
duced the constant u = U/2 such that the energy eigenstates (|∅〉 , |↓〉 , |↑〉 , |↓↑〉) have the
eigenenergies (0,−u,−u, 0).

For the one-particle correlators it is conventional to express them only in terms of the
time and frequency argument of the first operator ω = ω1 = −ω2. Thus, the one-particle
correlator of the Hubbard atom at half-filling gives in frequency space

G(iω) = −
∫ β

0

dτ 〈T
[
dσ(τ)d†σ(0)

]
〉eiωτ =

iω

(iω)2 − u2
, (5.1.22)

which is identical for any spin σ ∈ {↑, ↓}. Hence we drop the spin indices for G(iω). Due
to SU(2)-symmetry the one-particle correlator is diagonal in spin space, i.e. correlators of
unequal spin like 〈T [d↑(τ)d†↓(0)]〉 vanish.

As mentioned at the end of the last section, it suffices to compute the 4p correlator G↑↓
to account for all other spin configurations. The two-particle correlator can be separated
in two contributions G↑↓ = G↑↓,dis +G↑↓,con (see Fig. 5.1). The disconnected part G↑↓,dis is
the product of one-particle correlators, i.e. in this case

G↑↓,dis(iω1, iω2, iω3, iω4) = −βδω12,0G(iω1)G(iω3)

and corresponds to the independent propagation of two particles without scattering. The
connected part of the two-particle correlator G↑↓,con gives in frequency space

G↑↓,con = G̃↑↓,con + Ĝ
(ω12)
↑↓,con + Ĝ

(ω13)
↑↓,con + Ĝ

(ω14)
↑↓,con, (5.1.23a)
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G↑↓ = G↑↓,dis +G↑↓,con =

↑ ω1

↓ ω3

−βδ0,ω12
−

↓ ω4

↑ ω1

↓ ω3

↑ ω2

F↑↓

Figure 5.1: Diagrammatic representation of the correlator G↑↓ which consists of a discon-
nected part G↑↓,dis and a connected part G↑↓,con. The latter consists of a vertex F↑↓ and
four external legs (one-particle correlators) G.

with the regular part

G̃↑↓,con(iω) =

2u
4∏
i=1

(iωi) + u3
4∑
i=1

(iωi)
2 − 6u5

4∏
i=1

[(iωi)2 − u2]

, (5.1.23b)

and the anomalous parts containing Kronecker symbols

Ĝ
(ω12)
↑↓,con(iω) =

βu2

4∏
i=1

[iωi − u]

δ0,ω12th, (5.1.23c)

Ĝ
(ω13)
↑↓,con(iω) =

βu2

4∏
i=1

[iωi − u]

δ0,ω13(th− 1), (5.1.23d)

Ĝ
(ω14)
↑↓,con(iω) =

βu2

4∏
i=1

[iωi − u]

δ0,ω14(th + 1), (5.1.23e)

where we used the abbreviation th = tanh(βu/2).

Furthermore, the interaction vertex F↑↓ is obtained from the connected part G↑↓,con

by factoring out the propagators G(iωi) (external legs in a diagrammatic language) of the
incoming and outgoing particles, yielding

F↑↓(iω1, iω2, iω3, iω4) =
G↑↓,con(iω1, iω2, iω3, iω4)

G(iω1)G(−iω2)G(iω3)G(−iω4)
= F̃↑↓ + F̂

(ω12)
↑↓ + F̂

(ω13)
↑↓ + F̂

(ω14)
↑↓ ,

(5.1.24a)
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with the regular part

F̃↑↓(iω) = 2u+

u3
4∑
i=1

(iωi)
2 − 6u5

4∏
i=1

(iωi)

, (5.1.24b)

and the anomalous parts containing Kronecker symbols

F̂
(ω12)
↑↓ (iω) = βu2

4∏
i=1

[iωi + u]

4∏
i=1

(iωi)

δ0,ω12th, (5.1.24c)

F̂
(ω13)
↑↓ (iω) = βu2

4∏
i=1

[iωi + u]

4∏
i=1

(iωi)

δ0,ω13(th− 1), (5.1.24d)

F̂
(ω14)
↑↓ (iω) = βu2

4∏
i=1

[iωi + u]

4∏
i=1

(iωi)

δ0,ω14(th + 1). (5.1.24e)

5.1.4 Susceptibilities

One of the main motivations for computing two-particle correlators is their close relation-
ship to susceptibilities. They are physical observables measurable by experiment. For
Hubbard-like interactions it has been shown [19,20] that the susceptibilities are related to
certain asymptotic functions of the vertex (see Sec. 5.5). Here we describe the standard
approach to the computation of a susceptibility. A susceptibility is for example obtained
from the MF function1

K(τ) = 〈T [n↑(τ)n↓]〉 − 〈n↑〉〈n↓〉,

which can be computed from the 2p and 4p correlator via the limit

K(τ) = lim
τ2→τ−
τ3→0−

〈T [d↑(τ1)d†↑(τ)d↓(τ3)d†↓]〉 − 〈T [d↑(τ1)d†↑(τ)]〉〈T [d↓(τ3)d†↓]〉.

In frequency space this limit can be taken by parametrizing the frequencies in a suitable
manner and then summing over the two fermionic frequencies. By use of frequency con-
servation we can express the 4-point correlator in terms of three independent frequencies

G↑↓(iν, iν
′, iω) =

∫ β

0

dτ1dτ2dτ3G↑↓(τ1, τ2, τ3, 0)eiν(τ2−τ1)+iω(τ2−τ3)−iν′τ3 ,

1The corresponding real-time response functions is obtained in frequency space via the well-known
analytic analytic continuation for retarded 2p functions KR(ω) = K(iω)|iω→ω+i0+ [10].
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such that the above susceptibility is obtained by summing over the fermionic Matsubara
frequencies ν and ν ′

K(iω) = −
∑
ν,ν′

[G↑↓(iν, iν
′, iω)− βδ0,ωG(iν)G(iν ′)]e−i(ν+ν′)0+ .

Different “pairings” of the four operators in Gσ1σ2σ3σ4 correspond to different generalized
susceptibilities [19,20]. Using the definition of the three channels in Ref. [43] they give

χa,σσ′(iνa, iν
′
a, iωa) = −Gσσ′(iνa, iν

′
a, iωa) + ζβδωa,0δσσ′G(iνa)G(iν ′a),

χt,σσ′(iνt, iν
′
t, iωt) = −Gσσ′(iνt, iν

′
t, iωt) + βδωt,0G(iνt)G(iν ′t),

χp,σσ′(iνp, iν
′
p, iωp) = −Gσσ′(iνp, iν

′
p, iωp),

(5.1.25)

for which we defined suitable frequency parametrizations by

ω1 = νa,

ω2 = −ν ′a,
ω3 = ν ′a + ωa,

ω4 = −νa − ωa,

ω1 = νt,

ω2 = −νt − ωt,
ω3 = ν ′t +−ωt,
ω4 = −ν ′t,

ω1 = νp,

ω2 = ν ′p + ωp,

ω3 = −νp − ωp,
ω4 = −ν ′p.

(5.1.26)

Hence, the physical susceptibilities are obtained by summing over the corresponding fermionic
frequencies, i.e.

χr,σσ′(iωr) =
∑
νr,ν′r

χr,σσ′(iνr, iν
′
r, iωr). (5.1.27)

These susceptibilities can be computed directly for the Hubbard atom and give for example

χa,↑↓(iωa) = −β
4
δωa,0(th + 1), (5.1.28a)

χt,↑↓(iωt) = −β
4
δωt,0th, (5.1.28b)

χp,↑↓(iωp) = −β
4
δωp,0(th− 1). (5.1.28c)

They are constants in the time domain. The factor of β is merely an artifact of the Fourier
transformation for which one integrates over an interval of length β. In the KF only the
Keldysh component is nonzero and e.g. gives for the a-channel χKa,↑↓ = −πiδ(ωa)(th + 1).
These results will be recovered in Sec. 5.5 by computing the vertex asymptotics according
to Wentzell et al. [20].

5.2 Another spectral representation for the KF

In this section we derive a spectral representation for Keldysh correlators which deviates
from the one used in chapter 2. It is however widely used in the literature [22–24,26]. Even
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though the final results are independent of the representation, the following one provided
simpler intermediate results. It shifts a part of the complexity to the partial spectral
functions, while the convolution kernels are exclusively time-ordered ones.

The idea behind this spectral representation is to attach the contour index not to
the kernel but to the operators. Hence, every operator carries a contour index Oi,ci(ti)
with ci ∈ {−,+}. Note that Oi,ci(ti) and Oi(tcii ) are in fact equivalent. In a spectral
representation the first notation is prefered when allocating the contour and Keldysh indices
to the PSF, the latter notation when allocating them to the kernel.

Both contour index and time determine the ordering of operators on the Keldysh con-
tour. The Keldysh contour consists of a time-ordered branch (associated with index ci = −)
followed by an anti-time-ordered branch (ci = +), such that the contour ordering operator
Tc sorts all operators with contour index + to the left of those with index −. The operators
on the time-ordered branch (ci = −) are ordered such that operators Oi,−(ti) with a smaller
time appear on the right of those with a bigger time. Operators on the anti-time-ordered
branch (ci = +) are ordered conversely. Thereby we obtain the Keldysh `-point correlator
in the contour basis

Gc1...c`(t1, ..., t`) = (−i)`−1〈Tc
[
O1,c1(t1)...O`,c`(t`)

]
〉. (5.2.1)

In the following we choose to work in the Keldysh basis in which the correlators are
given by linear combinations of correlators in the contour basis. The Keldysh indices
ki ∈ {1, 2} determine the exact linear combination via the transformation matrix D with
the entries A `-point correlator in the Keldysh basis is then given by

Gk1...k` =
∑

c1,...,c`∈{−,+}

(∏̀
i=1

Dki,ci

)
Gc1...c` , with Dki± =

(∓1)ki√
2

. (5.2.2)

Alternatively, one can define the operator Oi,ki with Keldysh index ki ∈ {1, 2} as

Oi,ki =
1√
2

(Oi,− + (−1)kOi,+) (5.2.3)

such that the correlator becomes

Gk1...k`(t1, ..., t`) = (−i)`−1〈Tc[O1,k1(t1)...O`,k`(t`)]〉. (5.2.4)

The Keldysh basis has the advantage that it exploits the linear dependence of correlators
in the contour basis. Thereby a correlator for which all Keldysh indices are ki = 1 is known
to give zero, i.e. G1...1 = 0. This fact is closely linked to a theorem of causality [22, 32]
by which the correlator vanishes if the operator with biggest time argument carries the
Keldysh index 1. The situation is demonstrated in Fig. 5.2 where the correlators are
independent of the contour index c1. For k1 = 1 the Keldysh rotation according to D
subtracts the correlators with c1 = − and with c1 = + to give zero.

Another advantage of the Keldysh basis is that it has a close relation to the results
in Matsubara formalism. As shown in chapters 2 and 3 one can express the correlators
in Keldysh formalism in terms of analytic continuations of the correlator in Matsubara
formalism.
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time t1 t2 t3 t4

O3O1

O4O2O1

−

+

Figure 5.2: Demonstration of the ordering on the Keldysh contour: The effect of
the ordering operator on the depicted situation Tc[O1,c1(t1)O2,+(t2)O3,−(t3)O4,+(t4)] =
O4,+(t4)O2,+(t2)O1,c1(t1)O3,−(t3) is independent of the contour index c1 ∈ {−,+} of the
operator O1 with the biggest time.

Spectral representation of KF correlators

For a systematic computation of Keldysh correlators we want to make use of a spectral
representation which explicitly takes into account the ordering structure of the Keldysh
contour. For brevity we write the arguments of an `-point correlator with tuples, e.g.
k = (k1, ..., k`). In the spectral representation the correlator is expressed as a sum over
all permutations p = (1, ..., `) of the indices (1, ..., `). A tuple which has been permuted
according to permutation p gives e.g. tp = (t1, ..., t`).

A simple spectral representation can be given for the time-ordered correlator (with
contour indices c = (−, ...,−)). It can be written as

G−...−(t) =
∑
p

Sp(tp)KT (tp) (5.2.5)

where the kernel

KT (tp) =
`−1∏
i=1

[−i θ(ti − ti+1)] (5.2.6)

is a product of step functions θ which explicitly implements time-ordering. It picks out the
correctly ordered partial spectral function for given times tp. The partial spectral function
(PSF) for the permutation p = (1, ..., `) of the operators is defined as

Sp(tp) = ζp〈O1(t1)...O`(t`)〉. (5.2.7)

We have included the sign factor ζp into the definition of the partial spectral function to
simplify our notation. It accounts for the bosonic or fermionic exchange symmetry of the
operators Oi and is +1 or −1 if the permutation p contains an even or uneven number of
transpositions of fermionic operators. By including the sign factor in the partial spectral
function Sp we avoid notational clutter when we take linear combinations of them by
(anti-)commutators

S[A;B]± = SAB ± SBA (5.2.8)
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where the tuples A and B have been combined to a permutation p once in the order AB
and once in the order BA.

We will argue that the Keldysh correlator is given by

Gk(t) = 21−`/2
∑
p

Skpp (tp)KT (tp) (5.2.9)

where the partial spectral function (with Keldysh indices kp) for permutation p = (1, ..., `)
is defined as

Skpp (tp) =

{
0, for k1 = 1,

S[...[[1;2]
(−1)

k
2

;3]
(−1)

k
3

;...;`]
(−1)

k
`

, for k1 = 2.
(5.2.10)

For purely bosonic (fermionic) operators we can write this more explicitly as

Skpp (tp) =

{
0, for k1 = 1,

ζP 〈[...[[O1(t1),O2(t2)]
ζ(−1)

k
2
,O3(t3)]

ζ2(−1)
k
3
, ...,O`(t`)]ζ`−1(−1)

k
`
〉, for k1 = 2.

(5.2.11)

with ζ = +1 (ζ = −1) where the (anti-)commutators of operators are defined in the usual
way as [O1,O2]± = O1O2 ± O2O1. Note that by including the sign factor ζp into the
definition of S we are able to express Eq. (5.2.9) without specifying for the bosonic and
fermionic exchange symmetry. Especially mixed systems with both bosonic and fermionic
operators would otherwise lead to a clutter of sign factors. The sign factor ζp is, of course,
only defined with respect to a standard ordering which is given by the definition of the
correlator in Eq. (5.2.4).

To derive the spectral representation in Eq. (5.2.9) we use the kernels KT only to obtain
a partition of R`. In each of these partitions the ordering of the times t is fixed. Now
consider one fixed time-ordering by picking a p = (1, ..., `) such that ti > ti+1.

By definition of the correlator in the Keldysh basis according to Eqs. (5.2.3) and (5.2.4)
we have to consider all possible contour indices c and add them with the correct sign factor.
Each configuration of c corresponds to a certain ordering. To depict the situation we can
align the operators along the time axis as in Fig. 5.2 and consider for each operator the
possibilities ci = − and ci = +. The operator O` with the smallest time argument appears
either on the right of all the others (for c` = −) or on the left of the others (for c` = +).
The latter partial spectral function Sp needs to be added with the sign factor (−1)k` . Such
a linear combination can be written with the (anti-)commutator notation introduced in
Eq. (5.2.8). In general, the operator Oj appears on the right of those Oi with i < j for
cj = − and on the left of them for cj = +. For the biggest time operator O1 one reproduces
the theorem of causality.

The spectral representation in Eq. (5.2.9) can also be used in frequency space. The
partial spectral functions Sp and the kernels KT can be Fourier transformed individually.
By the convolution theorem the multiplicative structure turns into a `-fold convolution of
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the partial spectral function and the kernel, giving

Gk(ω) = 21−`/2
∑
p

(
Skpp ∗ KT

)
(ωp) = 21−`/2

∑
p

∫
R`

d`ω′p
(2π)`

Skpp (ω′p)KT (ωp − ω′p),

(5.2.12)

where the kernel in frequency space is

KT (ωp) = 2πδ(ω1...`)
`−1∏
i=1

(ω+
1...i

)−1. (5.2.13)

Here we again abbreviate the sum of frequencies with ωI =
∑

i∈I ωi. The superscript of
such a sum of frequencies indicates whether the infinitesimal imaginary part of the sum is
positive or negative, i.e. ω±I = ωI ± i0+. The significance of the sign of the imaginary part
becomes obvious when one considers the inverse Fourier transformation of a step function
in Eq. (2.3.5) which is sensitive to this sign. It is thus important to recover the correct
kernel KT on the time-domain.

5.3 Explicit computation of the correlators

We use the spectral representation from the previous section to compute the connected
part of the KF correlator G↑↓,con of the fermionic Hubbard atom at half-filling. The full
4-point correlator is defined as

Gk1k2k3k4↑↓ (t1, t2, t3, t4) = (−i)3〈Tc
[
dk1↑ (τ1)d†,k2↑ (τ2)dk3↓ (τ3)d†,k4↓ (τ4)

]
〉. (5.3.1)

In App. C.1 we present explicit computations of selected the KF components. Defining
the function

Φ↑↓,con(z1, z2, z3, z4) =
1

2

2u
4∏
i=1

zi + u3
4∑
i=1

(zi)
2 − 6u5

4∏
i=1

[(zi)2 − u2]

. (5.3.2)

we obtain for the connected part of the correlator G↑↓,con:

G1111
↑↓,con(ω) = 0, (5.3.3a)

G2111
↑↓,con(ω) = Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 ), (5.3.3b)

G1211
↑↓,con(ω) = Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

−
4 ), (5.3.3c)

G1121
↑↓,con(ω) = Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 ), (5.3.3d)

G1112
↑↓,con(ω) = Φ↑↓,con(ω−1 , ω

−
2 , ω

−
3 , ω

+
4 ). (5.3.3e)

G1122
↑↓,con(ω) =

2πiu2[δ(ω14)− δ(ω13)]

[(ω−1 )2 − u2][(ω−2 )2 − u2]
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+ u2th×
[

1

[(ω+
3 )2 − u2][(ω−4 )2 − u2]

(
1

ω−24

+
1

ω−14

)
− c.c.

]
, (5.3.3f)

G1212
↑↓,con(ω) =

2πiu2δ(ω14)

[(ω−1 )2 − u2][(ω−3 )2 − u2]

+ u2th×
[

1

[(ω+
2 )2 − u2][(ω−4 )2 − u2]

(
1

ω−34

+
1

ω−14

)
− c.c.

]
, (5.3.3g)

G1221
↑↓,con(ω) =

−2πiu2δ(ω13)

[(ω−1 )2 − u2][(ω−4 )2 − u2]

+ u2th×
[

1

[(ω+
2 )2 − u2][(ω−3 )2 − u2]

(
1

ω−34

+
1

ω−13

)
− c.c.

]
, (5.3.3h)

G2112
↑↓,con(ω) =

−2πiu2δ(ω13)

[(ω−2 )2 − u2][(ω−3 )2 − u2]

+ u2th×
[

1

[(ω+
1 )2 − u2][(ω−4 )2 − u2]

(
1

ω−34

+
1

ω−24

)
− c.c.

]
, (5.3.3i)

G2121
↑↓,con(ω) =

2πiu2δ(ω14)

[(ω−2 )2 − u2][(ω−4 )2 − u2]

+ u2th×
[

1

[(ω+
1 )2 − u2][(ω−3 )2 − u2]

(
1

ω−34

+
1

ω−23

)
− c.c.

]
, (5.3.3j)

G2211
↑↓,con(ω) =

2πiu2[δ(ω14)− δ(ω13)]

[(ω−3 )2 − u2][(ω−4 )2 − u2]

+ u2th×
[

1

[(ω+
1 )2 − u2][(ω−2 )2 − u2]

(
1

ω−24

+
1

ω−23

)
− c.c.

]
, (5.3.3k)

G1222
↑↓,con(ω) = Φ↑↓,con(ω−1 , ω

+
2 , ω

+
3 , ω

+
4 )

+ 2π2u th× [δ(ω2 − u) + δ(ω2 + u)][δ(ω14)− δ(ω13)]
1(

ω−1
)2 − u2

, (5.3.3l)

G2122
↑↓,con(ω) = Φ↑↓,con(ω+

1 , ω
−
2 , ω

+
3 , ω

+
4 )

+ 2π2u th× [δ(ω1 − u) + δ(ω1 + u)][δ(ω14)− δ(ω13)]
1(

ω−2
)2 − u2

, (5.3.3m)

G2212
↑↓,con(ω) = Φ↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

+
4 )

+ 2π2u th× [δ(ω4 − u) + δ(ω4 + u)][δ(ω14)− δ(ω13)]
1(

ω−3
)2 − u2

, (5.3.3n)

G2221
↑↓,con(ω) = Φ↑↓,con(ω+

1 , ω
+
2 , ω

+
3 , ω

−
4 )

+ 2π2u th× [δ(ω3 − u) + δ(ω3 + u)][δ(ω14)− δ(ω13)]
1(

ω−4
)2 − u2

, (5.3.3o)

G2222
↑↓,con(ω) =

th

u

[
ω+

1 Φ↑↓,con(ω+
1 , ω

−
2 , ω

−
3 , ω

−
4 ) + ω+

2 Φ↑↓,con(ω−1 , ω
+
2 , ω

−
3 , ω

−
4 )
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+ ω+
3 Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 ) + ω+

4 Φ↑↓,con(ω−1 , ω
−
2 , ω

−
3 , ω

+
4 )

]
− i4π3th2 × δ(ω12)[δ(u+ ω1)− δ(u− ω1)][δ(u+ ω3)− δ(u− ω3)], (5.3.3p)

where c.c. is the complex conjugate and we abbreviated th = tanh(βu/2). In App. C.3 we
check the consistency of the results. There we verify that the components fulfill the FDRs
and the spin symmetry relation in Eq. (5.1.21). The disconnected part of the correlators
can be computed separately with the one-particle correlators Gk1k2 and Gk3k4 .

5.4 Derivation of the correlator G↑↓ via analytic con-

tinuation

An alternative way to compute the correlator in Keldysh formalism is by analytic contin-
uation of the Matsubara correlator. The corresponding formulas are derived in chapter 2.
To do so we first analyze the correlator in Matsubara formalism given in Eq. (5.1.23). It

consists of a regular part G̃↑↓,con which is analytic in its frequency arguments and several

anomalous parts Ĝ
(ωI)
↑↓,con ∝ δωI ,0.

The analytic continuation of the regular part to complex frequencies zi = ωi + iγ is
given by the function

Φ↑↓,con(z1, z2, z3, z4) =
1

2

2u
4∏
i=1

zi + u3
4∑
i=1

(zi)
2 − 6u5

4∏
i=1

[(zi)2 − u2]

. (5.4.1)

Here we have already included the global prefactor of 1/2 due to the Keldysh rotation.
Note that, as we discussed in 2.3.1, the analytic continuation of a 4p correlator Φ generally
has branchcuts at

Im(zi) = 0, i ∈ {1, .., 4}, and Im(zij) = 0, i, j ∈ {1, .., 4} with i 6= j.

However, for Φ↑↓,con in Eq. (5.4.1) there are no branchcuts of the type Im(ωij) = 0. Since
the function Φ↑↓,con is analytic at these branchcuts also the corresponding discontinuities of
Φ↑↓,con are zero. Therefore Φ↑↓,con is sufficiently characterized by specifying zi ∈ {ω±i } for

the four single complex frequencies, e.g. Φ↑↓,con(ω+
1 , ω

−
2 , ω

−
3 , ω

−
4 ) = G

[1]
↑↓,con(ω) is an analytic

continuation equivalent to a retarded correlator.
For the anomalous parts Ĝ

(ωI)
↑↓,con ∝ δωI ,0 in Eq. (5.1.23) we follow the prescription in

Sec. 3.1.3: we replace the Kronecker symbol by a Dirac delta function βδωI ,0 → 21−`/24πiδ(ωI),
thereby already including the factor due to the Keldysh rotation, and define the following
functions as the analytic continuations of the anomalous parts

Φ̂↑↓,dis(z1, z2, z3, z4) = − z1z3

4∏
i=1

[zi − u]

2πiδ(ω12), (5.4.2a)
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Φ̂
(12)
↑↓,con(z1, z2, z3, z4) =

u2

4∏
i=1

[zi − u]

2πiδ(ω12) tanh(βu/2), (5.4.2b)

Φ̂
(13)
↑↓,con(z1, z2, z3, z4) =

u2

4∏
i=1

[zi − u]

2πiδ(ω13)[tanh(βu/2)− 1], (5.4.2c)

Φ̂
(14)
↑↓,con(z1, z2, z3, z4) =

u2

4∏
i=1

[zi − u]

2πiδ(ω14)[tanh(βu/2) + 1]. (5.4.2d)

Note that the complex frequencies z are subject to the constraint of conservation of total
real frequency such that the imaginary parts have to be consistent, e.g. ω±1 = −ω∓234 must
hold. This is most easily ensured by demanding that also the imaginary frequencies add
up to zero, i.e. z1234 = 0. For the analytic continuations of the anomalous parts we have
the additional Dirac delta function, such that we get e.g. z12 = 0 = z34 for Φ̂

(12)
↑↓,con.

The correlators with up to two 2-indices can be easily obtained by analytic continuation
following the formula in App. B. In the following we already make use of the fact that the
AC functions for Φ↑↓,con are sufficiently specified by choosing zi ∈ {ω+

i , ω
−
i } for the four

single frequencies. Using the statistical factor Ni = tanh(βωi/2) the connected part of the
correlators are expressed in terms of the functions, defined in Eq. (5.4.1) and Eqs. (5.4.2),

G
[]
↑↓,con(ω) = 0, (5.4.3a)

G
[4]
↑↓,con(ω) = Φ↑↓,con(ω−1 , ω

−
2 , ω

−
3 , ω

+
4 ), (5.4.3b)

G
[3]
↑↓,con(ω) = Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 ), (5.4.3c)

G
[2]
↑↓,con(ω) = Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

−
4 ), (5.4.3d)

G
[1]
↑↓,con(ω) = Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 ), (5.4.3e)

G
[34]
↑↓,con(ω) = +N3

[
Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

−
3 , ω

+
4 )
]

+N4

[
Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 )
]

+ Φ̂
(13)
↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 ) + Φ̂

(14)
↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 ), (5.4.3f)

G
[24]
↑↓,con(ω) = +N2

[
Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

−
3 , ω

+
4 )
]

+N4

[
Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

−
4 )
]

+ Φ̂
(12)
↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

+
4 ) + Φ̂

(14)
↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

+
4 ), (5.4.3g)

G
[23]
↑↓,con(ω) = +N2

[
Φ↑↓,con(ω−1 , ω

+
2 , ω

+
3 , ω

−
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 )
]

+N3

[
Φ↑↓,con(ω−1 , ω

+
2 , ω

+
3 , ω

−
4 )− Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

−
4 )
]

+ Φ̂
(12)
↑↓,con(ω−1 , ω

+
2 , ω

+
3 , ω

−
4 ) + Φ̂

(13)
↑↓,con(ω−1 , ω

+
2 , ω

+
3 , ω

−
4 ), (5.4.3h)

G
[14]
↑↓,con(ω) = +N1

[
Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

−
3 , ω

+
4 )
]

+N3

[
Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

+
4 )− Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 )
]
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+ Φ̂
(12)
↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

+
4 ) + Φ̂

(13)
↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

+
4 ), (5.4.3i)

G
[13]
↑↓,con(ω) = +N1

[
Φ↑↓,con(ω+

1 , ω
−
2 , ω

+
3 , ω

−
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 )
]

+N3

[
Φ↑↓,con(ω+

1 , ω
−
2 , ω

+
3 , ω

−
4 )− Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 )
]

+ Φ̂
(12)
↑↓,con(ω+

1 , ω
−
2 , ω

+
3 , ω

−
4 ) + Φ̂

(14)
↑↓,con(ω+

1 , ω
−
2 , ω

+
3 , ω

−
4 ), (5.4.3j)

G
[12]
↑↓,con(ω) = +N1

[
Φ↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 )− Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

−
4 )
]

+N2

[
Φ↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 )− Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 )
]

+ Φ̂
(13)
↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 ) + Φ̂

(14)
↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 ), (5.4.3k)

In App. C.2 we demonstrate that these components agree with those obtained by a direct
computation. The remaining KF components can most easily be computed by use of the
generalized FDR in [12]. In Sec. C.3.1 we exemplify such a computation with some KF
components.

5.5 The vertex function

In Sec. 4.2 we already discussed vertex functions in general. We argued that they have the
very same analytic structure as the corresponding correlators and can be computed with
the same linear combinations of AC functions. We confirm this in App. C.4 with a direct
computation for the components with up to two 1’s in the Keldysh indices.

In the next step we consider the asymptotic behavior of the vertex. For this purpose it
is convenient to express the vertex in terms of the corresponding AC functions. Thereby
the asymptotics of a KF component of the vertex depends on the asymptotics of the AC
functions and the statistical factors needed for its construction. As we argued in Sec. 5.5
one obtains the KF vertex with the very same formulas as for KF correlators. The analytic
continuation of the regular and anomalous contributions in Eq. (5.1.24) reads

Φ̃
(F )
↑↓ (z) = u+

u3
4∑
i=1

z2
i − 6u5

2
4∏
i=1

zi

, (5.5.1a)

Φ̂
(F, 12)
↑↓,con (z1, z2, z3, z4) = u2

4∏
i=1

[zi + u]

4∏
i=1

zi

2πiδ(ω12) tanh(βu/2), (5.5.1b)

Φ̂
(F, 13)
↑↓,con (z1, z2, z3, z4) = u2

4∏
i=1

[zi + u]

4∏
i=1

zi

2πiδ(ω13)[tanh(βu/2)− 1], (5.5.1c)
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Φ̂
(F, 14)
↑↓,con (z1, z2, z3, z4) = u2

4∏
i=1

[zi + u]

4∏
i=1

zi

2πiδ(ω14)[tanh(βu/2) + 1]. (5.5.1d)

Using these functions one can express the vertex function conveniently using the same
linear combinations as for correlators. These are exactly the same linear combinations as
for correlators [see Eqs. (5.4.3)], the only difference being that for vertex functions the roles
of the Keldysh indices 1 and 2 interchange, such that e.g. a retarded vertex is given by

F
[1]
↑↓ = F 1222

↑↓ = Φ̃
(F )
↑↓ (ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 ).

For the statistical factors in Eq. (5.4.3) the low-temperature and high-frequency limit is
given by

| tanh(βωi)|
β→∞−→ 1, | tanh(βωi)|

ωi→±∞−→ 1. (5.5.2)

Hence, the asymptotic behavior of the vertex is mostly determined by the AC functions in
Eq. (5.5.1). While the regular part Φ̃

(F )
↑↓ is temperature-independent, the anomalous parts

depend on the expression tanh(βu/2)
β→∞−→ 1, leading to a vanishing Φ̂

(F, 13)
↑↓,con . Note that the

anomalous parts of the MF carry a factor of βδω which has to be replaced by a 2πiδ(ω)
as part of the analytic continuation to the KF correlator. So, unlike in the MF [19], there
is no divergence of the vertex at zero temperature. As we mentioned after Eq. (5.1.28),
the factors of β accompanying a Kronecker symbol are merely artifacts of the integration
interval in the MF.

In the following we consider the asymptotic behavior of the Hubbard atom, following
the discussion of Wentzell et al. in Ref. [20]. There the authors analyzed the asymptotics of
vertex functions diagrammatically and presented the asymptotic functions of the Hubbard
atom in MF. The bottom line of our discussion is that their results can be directly adopted
to the KF via our formula for analytic continuation. Wentzell et al. used a decomposition
of the full Matsubara vertex F↑↓ in four functions

F↑↓ = Fodd + Fa + Ft + Fp (5.5.3)

which is identical to our decomposition in regular and anomalous parts according to
Eq. (5.1.24)

Fodd(iω) = F̃↑↓(iω), Fa(iω) = F̂
(ω14)
↑↓ (iω), Ft(iω) = F̂

(ω12)
↑↓ (iω), Fp(iω) = F̂

(ω13)
↑↓ (iω).

(5.5.4)

The asymptotic behavior of these four functions can be analyzed separately. The Mat-
subara functions F and the corresponding AC functions in Eqs. (5.5.1) have very similar
asymptotic behavior. For the Keldysh correlators the AC functions are multiplied with

prefactors of tanh(x)
x→±∞−→ ±1 which do not significantly change the asymptotic behavior

of the functions.
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For a quick example we present an asymptotic Keldysh function in the a-channel by
adopting the results from Ref. [20]. Firstly, we realize that we indeed obtain the bare vertex
of the onsite-interaction in case all frequencies ωi are sent to infinity, giving

lim
|ωi|→∞
∀i∈{1,..,4}

Φ̃
(F )
↑↓ = u, ⇒ F k1k2k3k4

0,↑↓ =

{
u, if k1 + k2 + k3 + k4 is odd,

0, else.
(5.5.5)

These constant contributions can be subtracted when investigating the asymptotic behav-
ior. Using the a-channel frequency variables defined in Eq. (5.1.26) Wentzell et al. find
that the MF vertex has the asymptotic function

K1,a(iωa) = lim
|νa|,|ν′a|→∞

F↑↓(iω)− F0,↑↓

= lim
|νa|,|ν′a|→∞

Fa(iνa, iν ′a, iωa) = βu2δ(ωa)(th + 1).
(5.5.6)

The asymptotic behavior of the corresponding AC function is

K1,a(ωa) = lim
|νa|,|ν′a|→∞

Φ̂
(F, 14)
↑↓,con (νa, ν

′
a, ωa) = 2πiu2δ(ωa)(th + 1). (5.5.7)

Since all other AC functions decay in this limit and since K1,a belongs to the anomalous

contribution F̂
(ω14)
↑↓ we find the asymptotics of the Keldysh vertex by inserting K1,a in place

of F̂
(ω14)
↑↓ into the formula for analytic continuation, yielding

lim
|νa|,|ν′a|→∞

F k↑↓(iω)− F k0,↑↓ =

{
K1,a(ωa), for k ∈ {2211, 2121, 1212, 1122},
0, else.

(5.5.8)

For a proper motivation and interpretation of the asymptotic functions, one can make
use of diagrammatic relations. We summarize the properties of vertex functions which
are necessary for an interpretation of the asymptotic functions. For a complete and self-
contained discussion we however refer to the literature [18–20]. The asymptotic behavior
of the vertex function is related to the two-particle reducibility of the diagrams. A diagram
is called one-particle reducible if it consists of two parts which are connected by exactly
one propagator line. Cutting this line would make the diagram a disconnected one. This
characteristic is important because the self-energy consists of the one-particle irreducible
(1PI) two-point diagrams. Via the Dyson equation one obtains the full propagator by
resummation of the 1PI diagrams which the self-energy is comprised of. By considering
only diagrams with full propagators one finds that every diagrammatic contribution to the
vertex has to be 1PI since the external legs of the diagrams are amputated. We henceforth
only consider diagrams with full propagators which are also called skeleton diagrams.

The two-particle (ir)reducibility is a property which divides the set of vertex diagrams
in four disjoint classes. A diagram is two-particle reducible if it consists of two parts which
are connected by exactly one pair of full propagator lines, dubbed a bubble. It transfers
a bosonic frequency ω12 = ωt, ω13 = ωp or ω14 = ωa, depending on the orientation of
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↓ νa + ωa

↑ νa

ν ′a ↓

ν ′a + ωa ↑

F0 F0
+

↓ νa + ωa

↑ νa

ν ′a ↓

ν ′a + ωa ↑

F0 F0F↑↓

Figure 5.3: Diagrammatic contributions to the asymptotic function Ka,↑↓. Two pairs of
external legs enter the diagrams via the same bare vertex F0.

the bubble. One hence distinguishes two-particle reducibility in three different channels,
the anti-parallel (a), transverse-antiparallel (t) and the parallel (p) channel [43]. (See
Eq. (5.1.26) for the appropriate frequency parametrizations in the three channels.) Again,
there are diagrams which are two-particle irreducible (2PI) in any channel. The full vertex
is given by the parquet equation

F = R + γa + γt + γp (5.5.9)

with the 2PI diagrams R and the two-particle reducible diagrams γr in channel r ∈ {a, t, p}.
It has been shown that the 2PI diagrams R decay in all directions to the bare Hubbard
interaction F0 [18]. We can therefore neglect these for the investigation of the asymptotic
behavior.

Now consider the diagram in Fig. 5.3. The bare vertex is frequency-independent and
merely ensures conservation of frequencies in MF. Since the two external legs on the left
enter via the same bare vertex the diagram depends on the bosonic frequency ωa but not
on the fermionic frequency νa. The same holds for the other two external legs. Hence
this diagram is even independent of the other fermionic frequency ν ′a. The diagram is
obviously two-particle reducible in the a-channel. For different options of attaching two
(out of four) external legs to a bare vertex, one distinguishes three channels. For every
channel r ∈ {a, t, p} we hence define in the resp. frequency parametrization

K1,r(ωr) = lim
|νr|,|ν′r|→∞

γr(νr, ν
′
r, ωr), (5.5.10)

K2,r(νr, ωr) = lim
|ν′r|→∞

γr(νr, ν
′
r, ωr)−K1,r(ωr), (5.5.11)

K2,r(ν
′
r, ωr) = lim

|νr|→∞
γr(νr, ν

′
r, ωr)−K1,r(ωr). (5.5.12)

The K1,r-function is the collection of bubble diagrams with vertex corrections in the r-
channel, as shown for the a-channel in Fig. 5.3. The K2,r- and the K2,r-function correspond
to the collection of diagrams with exactly two external lines entering via the same bare
vertex. The other two external lines enter via different vertices, resulting in a dependence
on the two frequencies ωr and ν

(′)
r .

In the MF it has been shown that K1,r functions are proportional to the susceptibilities
χr in the resp. channels

K1,r(iωr) = −U2χr(iωr). (5.5.13)
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By comparison with Eq. (5.1.28a) we find that K1,a is indeed proportional to the suscepti-
bility χa. The very same diagrams contribute to the susceptibility and the K1,r function.
In the KF the bare vertex additionally ensures that all attached legs are on the same
(forward or backward) time-branch. Hence, the Keldysh structure of the bare vertex F0

gives our previous example in Eq. (5.5.8) its structure in Keldysh space. The asymptotics
is unchanged upon exchanging the Keldysh indices of the two external legs which enter
into the same bare vertex. By use of the asymptotic functions and its symmetries one can
simplify the parametrization of the vertex in the KF. A more detailed and general analysis
of the asymptotic functions in the MF and the KF can be found in Refs. [20,44].
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Chapter 6

Conclusion

In this thesis we investigated the analytic continuation of Matsubara multi-point correlators
to the Keldysh formalism (KF). Knowing the Matsubara correlator as a function of its
imaginary frequency arguments, the goal was to obtain the corresponding correlator in
the (real-frequency) Keldysh formalism. To answer the question in general, without any
further assumptions1, we used a spectral representation derived in Ref. [21]. It expresses
the correlator in terms of formalism-independent partial spectral functions (PSFs) and
formalism-specific kernels. Using this analytically exact starting point we have shown that
it is indeed possible to fully recover KF correlators from a MF function. Even though
most of our results hold for `-point (`p) correlators with any `, our focus was on the
particularly relevant cases of ` ≤ 4. For the latter we derived explicit formulas (AC
formulas) summarized in App. B.

We approached the problem in the following way: We first analyzed the consequences of
the equilibrium condition on KF correlators which gives rise to the statistical factors in our
formulas. After a review of the analytic structure of MF functions we used their analytic
continuations (AC functions) to construct discontinuities which are fit for the application
of the equilibrium condition. We showed that the KF components G[η1η2] can be expanded
into a sum of functions. Using the equilibrium condition, the latter can be identified with
discontinuities multiplied with an statistical factor. This expansion could be reused, such
that analogous steps yielded expressions for the KF components G[η1η2η3] and G[η1η2η3η4].

During our analysis we took special care of so-called anomalous parts of the MF cor-
relator, proportional to a factor of βδω,0. We have found that these have to be treated
separately. For instance, they do not contribute to the construction of the retarded cor-
relators via analytic continuation. However, they are required for fully recovering other
components of the KF correlator. While an “analytic continuation” of the Kronecker
symbol is not unique in the first place, we were able to make sense of these anomalous
contributions.

In the subsequent sections we applied the formulas in different contexts. Exploiting
the relations between KF correlators and AC functions, we presented in Sec. 4.1 a deriva-

1Time-translational symmetry and equilibrium are formalism-inherent assumptions of the Matsubara
formalism (MF).
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tion of the generalized fluctuation-dissipation relations (FDRs) for 3p and 4p correlators.
These establish relations between KF components and primed KF components. While our
derivation did not require any further assumption, we reproduce the results in Refs. [12,33]
under certain conditions for which primed correlators equal the complex conjugated ones,
i.e. G′ = G∗. In Sec. 4.2 we argued by use of the R/A basis that for vertex functions anal-
ogous formulas hold. The R/A basis is particularly convenient to work with. Propagators
are diagonal in this basis, facilitating diagrammatic computations. While the FDRs are
rather lengthy in the Keldysh basis, they have a very concise and general form in the R/A
basis. In combination with the FDRs every KF component is represented by very few AC
functions.

In Sec. 4.3 we compared the computation of response functions in MF and KF. These
are 2p functions which are typically obtained from 4p correlators by integrating out two
frequencies. Using the relations between MF and KF functions we find for every vertex
contribution from Eliashberg’s method the corresponding KF function. The latter is pro-
portional to a KF component in the R/A basis. Thereby the arguments by Eliashberg and
Oguri, based on the analytic continuations of MF correlators, can be directly transfered
to the KF. They found that only a single vertex contribution has to be considered for the
linear response of the model under their consideration.

In chapter 5 we directly computed the 4p KF correlator of the Hubbard atom, an
exactly solvable interacting model which can be used as benchmark for the Hubbard model
or Anderson impurity model. The results were summarized in Eqs. (5.4.3) and (C.3.3) for
the two relevant spin configurations. By application of the results of the previous chapters
we were able to reproduce the results via the AC formulas and via the FDRs. The AC
formulas enabled us to adopt the results on the high-frequency asymptotics for the vertex
of the Hubbard atom , computed by Wentzell et al. [20] in the MF.

In summary, our main result comprises the formulas (3.1.11) and (3.2.9) for the con-
struction of the `p KF components G[η1···ηα] for α < 4 and arbitrary `.2 We have shown
how to obtain the necessary building blocks from discontinuities [cf. 2.3.9]. For 3p and 4p
functions we summarized the AC formulas in App. B. Using a spectral respresentation our
results are exact and hold for any equilibrium system with time translation symmetry. In
particular, our result does not rely on any approximation. It also covers the anomalous
contributions of the MF correlator which arise if the spectrum has degeneracies (see e.g. the
Hubbard atom). Our formulas can be used for correlators of bosonic, fermionic or mixed
operators. Their exchange symmetry is fully respected via the the statistical factors.

We found that the complexity of the construction of KF correlators mostly increases
with the number of 2’s in the Keldysh indices. While the retarded components G[η] directly
correspond to an AC function, we found that the components G[η1η2] can be obtained via
a reasonably complicated formula. The length of the formulas increased quickly for the
components G[η1···ηα] with α ≥. However, it may be possible to focus on a subset of
the Keldysh components. As Eliashberg, Oguri and Heyder et al. have shown, certain

2In fact, our formula for the analytic continuation of the component G2222 can easily be generalized to
arbitrary ` by use of the kernel expansion as explained at the end of Sec. 3.2.1.
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observables require just the knowledge of a few [13–15]. For computation of 3p and 4p
functions via analytic continuation we recommend the procedure in App. B in which only
the components G[η1η2] are computed via analytic continuation. The remaining components
can be obtained more conveniently by use of the FDRs.

We note that similar formulas where also found by other authors: Guerin [45] computed
diagrams in the lowest order of the bare vertex and, with a careful analysis of the diagram-
matic rules in the R/A basis, derived formulas for the analytic continuation of KF vertices
with two R’s and an arbitrary number of A’s. Taylor [46] used a spectral representation
and transformed the KF correlator into the R/A basis, yielding frequency dependent co-
efficients in the permutation expansion of the correlator into PSFs and kernels. He then
made an ansatz by taking a linear combination of AC functions. By comparison of the
coefficients he deduced a formula for the analytic continuation of 4p correlators. However,
both authors do not cover the treatment of anomalous contributions. As demonstrated by
the example of the Hubbard atom, the latter cannot be neglected. For bosonic operators
an anomalous contribution arises even for 2p functions which has to be considered for
the diagonalization of the propagator. While these works either pertain to a perturbative
approximation or to the 4p case, our approach still seems to be the most general one.



78 6. Conclusion



Appendix A

Identities for kernels

A.1 Discontinuities of AC functions

In Sec. 2.3.2 we have discussed the discontinuities of analytically continued MF correlators
at the branch cuts. In this appendix we derive a general formula for discontinuities. Let I
and Ic be two non-empty complementary subsets of L = {1,...`}. To quantify these discon-
tinuities we consider two regions which are separated by the branch cut BI where γI = 0.
The corresponding AC functions are Cγ

[I,+]
(ω) and Cγ

[I,−]
(ω), with γ [I,±] representing the

two regions such that in the domain of all γs the sums γ
[I,±]
I ≷ 0 are positive or negative

on the respective side of the branch cut (or equivalently γ∓Ic ≷ 0, due to γI = −γIc). The
following fact is of great importance for the computation of discontinuities: Since γ [I,+]

and γ [I,−] are only separated by the branch cut γI = 0, all other sums γ
[I,±]
J with J 6= I

(J ( L) are equivalent, i.e. sgn(γ
[I,+]
J 6=I ) = sgn(γ

[I,−]
J 6=I ).

The discontinuity has been defined as [cf. Eq. (2.3.7)]

∆CγI (ω) = Cγ
[I,+]

(ω)− Cγ[I,−]

(ω). (A.1.1)

Using the permutation expansion of the AC function Cγ
[I,±]

(ω) according to Eq. (2.3.3),
the discontinuity can be computed by subtracting the corresponding two kernels for every
permutation, ∆K̃γ[I,±]

(ωp) = K̃(z
[I,+]
p ) − K̃(z

[I,−]
p ), where z

[I,±]
p = ωp + iγ [I,±] denote the

form of the complex frequencies infinitesimally close to and on either side of the branch
cut.

For any permutation p which is neither of the type I I
c

nor I
c
I, the difference of the

kernels gives ∆K̃γ[I,±]
= 0.1 The reason is that according to Eq. (2.1.10) the regular

kernel K̃(zp) consists of the factors z1...i, being sums of the first i components of the

permuted tuple zp = (z1,...z`). The regular kernels K̃(z
[I,+]
p ) and K̃(z

[I,−]
p ) are identical

since they contain neither the factor z
[I,±]
I nor z

[I,±]
Ic (since neither p = I I

c
nor p = I

c
I).

Hence, the only non-vanishing contributions in the permutation expansion are those for

1Remember that by our notation I is an index tuple built from the elements of I. And I I
c

is a tuple
containing the entries of I followed by those of I

c
.
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the permutations of the type I I
c

and I
c
I. Consider as an example for ` = 3 the branch

cut B13 = B2 along γ13 = γ2 = 0. On either side of the branch cut we have the sums
z

[I,±]
13 = ω13± i0+, all other frequency sums are equivalent on both sides. Hence K̃(z

[I,±]
132 ) =

1/[z1(ω13± i0+)] is different on both sides while K̃(z
[I,±]
123 ) = 1/[z1z12] yields the same result

on both sides of B13.
For a permutation of the type p = I I

c
we obtain for the kernel of the discontinuity

∆K̃γ[I,±]

I (ωI Ic) = K̃(z
[I,+]

I I
c )− K̃(z

[I,−]

I I
c ) (A.1.2a)

=

|I|−1∏
i=1

(z1...i)
−1[(z

[I,+]
I )−1 − (z

[I,−]
I )−1]

`−1∏
i=|I|+1

(z1...i)
−1 (A.1.2b)

=

|I|−1∏
i=1

(z1...i)
−1δ̂(ωI)

`−1∏
i=|I|+1

(z|I|+1...i)
−1 (A.1.2c)

= δ̂(ωI)K̃(zI)K̃(zIc). (A.1.2d)

The second line is obtained since all factors z
[I,+]

1...i
= z

[I,−]

1...i
are equivalent except for z

[I,±]
I =

ωI ± i 0+. Hence we only have to treat the latter separately and drop the superscript for
the other factors. For the third line we need

lim
γI→0

(
1

z
[I,+]
I

− 1

z
[I,−]
I

)
= lim

γ↘0

(
1

ωI + iγ
− 1

ωI − iγ

)
= −2πiδ(ωI) = δ̂(ωI). (A.1.3)

In the factors with i> |I|, we exploit δ̂(ωI) to set ω1···|I| = 0, and also set γ1···|I|=γI =0, since
these factors are equal on either side of the branch cut. Together, these two simplifications
imply z1···i = z|I|+1···i for i > |I|. In the last line, the tuple of complex frequencies zI Ic has

been separated into subtuples as (zI , zIc).
A similar computation as for Eq. (A.1.2d) gives for a permutation of the type p = I

c
I

∆K̃γ[I,±]

I (ωIcI) = K̃(z
[I,+]

I
c
I

)− K̃(z
[I,−]

I
c
I

) = −δ̂(ωI)K̃(zI)K̃(zIc). (A.1.4)

This result differs from the one in Eq. (A.1.2d) only by a minus sign. So, in total we can
summarize

∆K̃γ[I,±]

I (ωp) = K̃(z[I,+]
p )− K̃(z[I,−]

p )

=


+δ̂(ωI),

−δ̂(ωI),
0,

 K̃(zI)K̃(zIc)


for p = I I

c
,

for p = I
c
I,

else.

 (A.1.5)

On the right-hand side the kernels give equivalent results for z
[I,+]

I
(c) and z

[I,−]

I
(c) . By taking

the limit γ
[I,±]
I → 0 this kernel is now a function of `− 2 independent complex variables γ

satisfying γI = 0 and γIc = 0.
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A.2 Proof for the expansion of K [µν]

Here we prove Eq. (3.1.2), which expands the kernel K [µν] = K [µ]−K [ν] in a manner allowing
KF correlators to be related to AC functions. Using the notation according to Eq. (2.1.24)
this difference is proportional to

∏ν−1
i=µ (ω+

1···i)
−1−

∏ν−1
i=µ (ω−

1···i)
−1. The latter can be expressed

as a sum
∑ν−1

y=µ, with each summand proportional to (ω+
1···y)

−1 − (ω−
1···y)

−1 = δ̂(ω1···y).

For a compact exposition, we introduce the shorthand:

K±µν(ωp) =
ν−1∏
i=µ

1

ω±
1...i

, (µ < ν), K±µµ = 1 . (A.2.1)

Then, the following identities hold for any argument ωp:

K±µyK
±
yν = K±µν , K [η] = K−1ηK

+
η` . (A.2.2)

Using these, we can express K [µν](ωp) as follows:

K [µν] = K [µ] −K [ν] = K−1µ

[
K+
µν −K−µν

]
K+
ν`

=
ν−1∑
y=µ

K−1µ

[
K+
µ y+1K

−
y+1 ν −K+

µyK
−
yν

]
K+
ν`

=
ν−1∑
y=µ

K−1µK
+
µy

[
1

ω+
1...y

− 1

ω−
1...y

]
︸ ︷︷ ︸

δ̂(ω1...y)

K−y+1νK
+
ν` .

In the second line, the terms with y = ν − 1 or µ represent the first line, the remaining
terms cancel pairwise. In the last line, where δ̂ enforces ω1...y = 0, we may substitute
ω±

1...i
= ω±

y+1...i
for i > y in the arguments of K−y+1νK

+
ν`. This leads to a form equivalent to

Eq. (3.1.2),

K [µν](ω(1···`)) =
ν−1∑
y=µ

K [µ](ω(1···y))δ̂(ω1...y)K
[ν−y](ω(y+1···`)) (A.2.3)

=
ν−1∑
y=µ

K̃(ω
[µ]

(1···y)
)δ̂(ω1...y)K̃(ω

[ν]

(y+1···`)) (A.2.4)

=
ν−1∑
y=µ

K(1...y)[µ](y+1...`)[ν](ω(1...`)). (A.2.5)

In the second to last line we used the definition of the retarded kernel in Eq. (2.1.29). And
in the last line we inserted the definition of the retarded product kernel Eq. (2.1.30).
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Appendix B

Explicit formulas for analytic
continuation

In the following we summarize the results for the most relevant cases of 3-point and 4-point
functions. The following functions hold both for correlators G and for vertex functions Γ.
For brevity we only write the version for correlators. The version for vertex functions is
obtained by replacing the symbol G by Γ and by exchanging all 1’s for 2’s and vice versa.

We defined the analytic continuation Φ(z) which is obtained from the regular part of
the correlator in MF by the simple replacement

iωi −→ zi = ωi + iγi

G̃(iω) −→ Φ(z) = 21−`/2 × G(iω))
∣∣
iω→z . (B.0.1)

Here we have already included the global factor 21−`/2 originating from the Keldysh rota-
tion. A retarded correlator is obtained by analytic continuation to the complex frequency
ω[η] according to Eq. (2.1.23), i.e.

G[η] = Φ(ω[η]). (B.0.2)

The corresponding advanced correlators G′[η] are then obtained by conjugating all complex
frequencies.

B.1 Three-point functions

For three-point functions the situation is still relatively simple. All analytic continuations
of the (regular) MF correlator correspond directly to retarded or advanced KF correlators,

G[η] and G′[η] (see Fig. 2.2). Any other KF correlator can be computed from the generalized
fluctuation-dissipation relations (FDR). One just has to take special care of divergencies of
the factors Ni which indicate that we additionally need to include an analytic continuation
of an anomalous MF correlator.
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Let us assume that the first operator, O1, is bosonic and the last two, O2 and O3,
are fermionic. Then N1 = coth(βω1/2) can diverge for ω1 = 0. According to Sec. 3.1.3

the corresponding anomalous MF correlator Ĝ1 ∝ βδω1,0 can be analytically continued
independently for the frequencies {iω1} and for {iω2, iω3}. However, for a single frequency

the regular kernel is one, K̃(iω1) = 1, which makes the analytic continuation of iω1 su-
perfluous. For the frequencies {iω2, iω3} the analytic structure is identical to that of 2p
functions. Hence, it suffices to specify for a single frequency e.g. z2 = ω+

2 or z2 = ω−2 . We
obtain an analytic continuation of the anomalous part according to Sec. 3.1.3 by

βδω1,0 −→ 23/2πiδ(ω1),

Ĝ1(iω)−→Φ̂1(z).
(B.1.1)

The exact Keldysh correlators can be computed from these functions via the following
formulas:

G122 = N2(G′
[1] −G[2]) +N3(G′

[1] −G[3]), (B.1.2a)

G212 = N1(G′
[2] −G[3]) +N3(G′

[2] −G[1]) + Φ̂1(ω−2 ), (B.1.2b)

G221 = N1(G′
[3] −G[2]) +N2(G′

[3] −G[1]) + Φ̂1(ω+
2 ), (B.1.2c)

G222 = (1 +N2N3)G′
[1]

+ (1 +N1N3)G′
[2]

+ (1 +N1N2)G′
[3]

+N2N3G
[1] +N1N3G

[2] +N1N2G
[3] −N3

[
Φ̂1(ω+

2 )− Φ̂1(ω−2 )
]
,

(B.1.2d)

These are basically the same formulas as in Ref. [12]. Additionally we have included the

functions Φ̂ which cannot be obtained from the retarded or advanced correlators. The very
same formulas hold for vertex functions as discussed in Sec. 4.2.

B.2 Four-point functions

Here we focus on the most relevant case in which all four operators are fermionic. This
assumption restricts the possible anomalous terms in the MF correlator according to
Sec. 2.1.2.

There are four retarded correlators G[η] (1 ≤ η ≤ 4) which are easily obtained by
analytic continuation according to Eq. (2.1.23). The correlators G[η1η2] are still rather
easily obtained via analytic continuation. However, for Gη1...ηα with α = 3, 4 it is advisable
to reuse those components with α ≤ 2 via the FDR. Since the FDR only relate 8 correlators
to the rest we have to at least compute 3 correlators of the type G[η1η2].

Note that in the following we express the Keldysh components in terms of the AC
functions which correspond to the individual regions in Fig. 2.3. They labeling with arabic
and roman numbers is thus identical for the region and the AC function. However, the
representation by these AC functions is not unique. As explained after Eq. (2.3.12) we for
example have the identity 0 = CI

2.2 − CI
2.2 + CIII

2.2 − CIV
2.2 .
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We define the analytically continued anomalous parts of the MF correlator ĜI(iω) ∝
δωI ,0 according to Sec. 3.1.3 by

βδωI ,0 −→ 2πiδ(ωI),

ĜI(iω) −→ Φ̂I(z)
(B.2.1)

for I ∈ {12, 13, 14}. For instance, the analytic continuation of the frequencies in Φ̂12 is
performed independently on the sets {z1, z2} and on {z3, z4}. The analytic structure of
each of these corresponds to a two-point function, in which frequency conservation ensures
ω±1 = −ω∓2 and ω±3 = −ω∓4 . It is hence sufficient to declare the analytic continuation by the

imaginary parts of single frequencies, e.g. Φ̂12(ω+
1 , ω

−
2 , ω

+
3 , ω

−
4 ). Corresponding statements

hold also for Φ̂13 and Φ̂14.

G[34] = N3

(
CIV

4.4 − C4.1

)
+N4

(
CII

4.4 − C4.3

)
+N13

(
CII

4.4 − CI
4.4

)
+N14

(
CIV

4.4 − CI
4.4

)
+ Φ̂13(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 ) + Φ̂14(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 ), (B.2.2a)

G[24] = N2

(
CIII

1.1 − C4.1

)
+N4

(
CI

1.1 − C1.2

)
+N12

(
CII

1.1 − CIII
1.1

)
+N14

(
CII

1.1 − CI
1.1

)
+ Φ̂12(ω−1 , ω

+
2 , ω

−
3 , ω

+
4 ) + Φ̂14(ω−1 , ω

+
2 , ω

−
3 , ω

+
4 ), (B.2.2b)

G[23] = N2

(
CIII

1.3 − C4.3

)
+N3

(
CI

1.3 − C1.2

)
+N12

(
CII

1.3 − CIII
1.3

)
+N13

(
CII

1.3 − CI
1.3

)
+ Φ̂12(ω−1 , ω

+
2 , ω

+
3 , ω

−
4 ) + Φ̂13(ω−1 , ω

+
2 , ω

+
3 , ω

−
4 ), (B.2.2c)

G[14] = N1

(
CIII

3.1 − C4.1

)
+N4

(
CI

3.1 − C3.2

)
+N12

(
CII

3.1 − CIII
3.1

)
+N13

(
CI

3.1 − CII
3.1

)
+ Φ̂12(ω+

1 , ω
−
2 , ω

−
3 , ω

+
4 ) + Φ̂13(ω+

1 , ω
−
2 , ω

−
3 , ω

+
4 ), (B.2.2d)

G[13] = N1

(
CIII

3.3 − C4.3

)
+N3

(
CI

3.3 − C3.2

)
+N12

(
CII

3.3 − CIII
3.3

)
+N14

(
CI

3.3 − CII
3.3

)
+ Φ̂12(ω+

1 , ω
−
2 , ω

+
3 , ω

−
4 ) + Φ̂14(ω+

1 , ω
−
2 , ω

+
3 , ω

−
4 ), (B.2.2e)

G[12] = N1

(
CIII

2.2 − C1.2

)
+N2

(
CI

2.2 − C3.2

)
+N13

(
CI

2.2 − CII
2.2

)
+N14

(
CII

2.2 − CIII
2.2

)
+ Φ̂13(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 ) + Φ̂14(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 ), (B.2.2f)

The AC functions in round brackets are discontinuities, e.g. in the first line
(
CIV

4.4 − C4.1

)
is a discontinuity at the branchcut Im(z3) = 0 [see Sec. 2.3.2].

The above correlators are related by the FDRs given in Eqs. (53) in Ref. [12]. Since
we are considering a fermionic system we have to redefine the statistical factors Ni =
tanh(βωi/2) according to Eq. (2.2.4). This gives

G[12] = −N1G
[2] −N2G

[1] +N
(12)
(34) [N3G

′[4]
+N4G

′[3]
+G′

[34]
], (B.2.3a)

G[13] = −N1G
[3] −N3G

[1] +N
(13)
(24) [N2G

′[4]
+N4G

′[2]
+G′

[24]
], (B.2.3b)

G[14] = −N1G
[4] −N4G

[1] +N
(14)
(23) [N2G

′[3]
+N3G

′[2]
+G′

[23]
], (B.2.3c)

with N
(ij)
(kl) =

Ni+Nj
Nk+Nl

.
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With the above components the remaining ones can be computed via the FDRs, giving

G[123] = (1 +N1N3 +N1N2 +N2N3)G′
[4] −N2N3G

[1] −N1N3G
[2] −N1N2G

[3]

−N3G
[12] −N2G

[13] −N1G
[23],

(B.2.4a)

G[124] = (1 +N1N4 +N1N2 +N2N4)G′
[3] −N2N4G

[1] −N1N4G
[2] −N1N2G

[4]

−N4G
[12] −N2G

[14] −N1G
[24],

(B.2.4b)

G[134] = (1 +N1N4 +N1N3 +N3N4)G′
[2] −N3N4G

[1] −N1N4G
[3] −N1N3G

[4]

−N4G
[13] −N3G

[14] −N1G
[34],

(B.2.4c)

G[234] = (1 +N2N4 +N2N3 +N3N4)G′
[1] −N3N4G

[2] −N2N4G
[3] −N2N3G

[4],

−N4G
[23] −N3G

[24] −N2G
[34],

(B.2.4d)

G[1234] = 2N2N3N4G
[1] + (N2N3N4 +N2 +N3 +N4)G′

[1]

+ 2N1N3N4G
[2] + (N1N3N4 +N1 +N3 +N4)G′

[2]

+ 2N1N2N4G
[3] + (N1N2N4 +N1 +N2 +N4)G′

[3]

+ 2N2N3N4G
[4] + (N1N2N3 +N1 +N2 +N3)G′

[4]

+N3N4G
[12] +N2N4G

[13] +N2N3G
[14]

+N1N4G
[23] +N1N3G

[24] +N1N2G
[34].

(B.2.4e)

Note that a primed correlator is equivalent to a complex conjugated one (such that G′ =
G∗) for certain correlators as mentioned after Eq. (2.1.28).



Appendix C

Explicit calculations on the Hubbard
atom

C.1 Explicit calculation of the four-point correlator

In the following we explicitly compute components of the (connected part of the) 4p cor-
relator G↑↓,con for the Hubbard atom at half-filling. The final results are summarized in
Eq. (5.3.3).

For the computation of the correlators in frequency space we draw attention to the
subtlety of the infinitesimal imaginary parts of the complex frequencies ω±i in the KF.
(In the MF there is no such problem.) Previously we have elucidated the importance of
these infinitesimal parts already. However, when we encounter a sum like ω+

1 + ω−2 , it is
ambiguous whether this sum has a positive or negative imaginary part. This ambiguity can
be avoided when one only allows to sum complex frequencies with the same imaginary parts.
While we simplify expressions it is advisable to exclusively work with frequency sums ω+

I

carrying positive imaginary parts (or exclusively with frequency sums ω−I carrying negative
imaginary parts, I ( {1, .., `}). In this case one can perform simplifications in the same
way as with purely real frequencies. For instance, one can simplify the following sum by

1

ω−23

[
1

ω−2
+

1

ω−3

]
=
ω−2 + ω−3
ω−23ω

−
2 ω
−
3

=
1

ω−2 ω
−
3

. (C.1.1)

Above relation can also be verified in the time domain where it translates to

−θ(t1 − t3)θ(t3 − t2)− θ(t1 − t2)θ(t2 − t3) = −θ(t1 − t3)θ(t1 − t2).

Due to the conservation of the total frequency one can express the sum over frequencies
in terms of the complementary ones, e.g. for 4p functions ω−1 = −ω+

234.

C.1.1 The two-point correlator Gk1k2

As an introductory example, we first compute the two-point (2p) function. Both the direct
computation and the analytic continuation from the MF correlator are easily done. For
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any σ ∈ {↑, ↓} the 2p correlator is defined as

Gk1k2(t, 0) = −i〈Tc[dk1σ (t)d†,k2σ (0)]〉 (C.1.2)

and obtain the PSFs for the permutations p ∈ {(12), (21)}

S(12)(t, 0) = +〈dk1σ (t)d†,k2σ (0)〉 = +
eiut + eβue−iut

2(1 + eβu)
,

S(21)(0, t) = −〈d†,k2σ (0)dk1σ (t)〉 = −e
βueiut + e−iut

2(1 + eβu)
.

(C.1.3)

Plugging these into the spectral representation Eq. (5.2.9) gives the correlators

G11(t1, t2) = 0,

G12(t1, t2) = S[2;1]−(t2, t1)×KT (t2, t1) = −1

2
e−it12u(e2it1u + e2it2u)KT (t2, t1),

G21(t1, t2) = S[1;2]−(t1, t2)×KT (t1, t2) =
1

2
e−it12u(e2it1u + e2it2u)KT (t1, t2),

G22(t1, t2) = S[1;2]+(t1, t2)× (−i) = −i
th

2
e−it12u(−e2it1u + e2it2u).

(C.1.4)

Here we used the abbreviation tI =
∑

i∈I ti for sums. Expressing 2-point functions only in
terms of the frequency argument of the first operator ω = ω1 = −ω2 we obtain

G(ω) =

(
0 GA(ω)

GR(ω) GK(ω)

)
=

(
G11(ω) G12(ω)
G21(ω) G22(ω)

)
=

(
0 ω−

(ω−)2−u2
ω+

(ω+)2−u2 −πith×
[
δ(ω − u)− δ(ω + u)

]) (C.1.5)

where we used the abbreviation ω± = ω ± iγ with infinitesimal γ > 0. One can easily
check that GR = G21 is obtained from the MF correlator in Eq. (5.1.22) via the analytic
continuation iω → ω + iγ and GA = G12 is obtained by iω → ω − iγ. Furthermore the
fluctuation-dissipation theorem

GK = G22 = tanh(βω/2)
[
G21 −G12

]
(C.1.6)

is fulfilled.

C.1.2 The retarded correlators G2111
↑↓ , G1211

↑↓ , G1121
↑↓ and G1112

↑↓

The correlators with only one 2 in the Keldysh indices (2-index) are also called retarded
correlators. We first compute the retarded correlators directly by use of the spectral
representation in Eq. (5.2.9) and e.g. get

G2111
↑↓ (t) =

e−it1234u

4

∑
P,1=1

(e2it1u − e2it2u)(e2it3u + e2it4u)×KT (t1, t2, t3, t4), (C.1.7)
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where we restricted permutations P = (1, 2, 3, 4) to those with 1 = 1. In frequency space
this gives, after use of simplifications of the type in Eq. (C.1.1),

G2111
↑↓ (ω) =

1

4

[
1

ω+
1 + u

− 1

ω+
1 − u

]
×
[

1

ω−2 + u

(
1

ω−3 − u
+

1

ω−4 − u

)
+

1

ω−3 + u

(
1

ω−2 − u
+

1

ω−4 − u

)
+

1

ω−4 + u

(
1

ω−3 − u
+

1

ω−2 − u

)]
=

1

2

2u · ω+
1 ω
−
2 ω
−
3 ω
−
4 + u3 · [(ω+

1 )2 + (ω−2 )2 + (ω−3 )2 + (ω−4 )2]− 6u5

[(ω+
1 )2 − u2][(ω−2 )2 − u2][(ω−3 )2 − u2][(ω−4 )2 − u2]

.

(C.1.8)

In the last step we used ω−234 = −ω+
1 . It has been shown that each of these retarded

correlators can be directly obtained from the Matsubara correlator by a certain choice of
analytic continuation [10,23,30]. We find that this can indeed be related to the Matsubara

correlator. Therefore we isolate the regular part of the Matsubara correlator G̃↑↓,con in
Eq. (5.1.23b) which is the part without Kronecker symbols and define the analytically
continued function of complex frequencies zi

Φ↑↓,con(z1, z2, z3, z4) =
1

2

2u
4∏
i=1

zi + u3
4∑
i=1

(zi)
2 − 6u5

4∏
i=1

[(zi)2 − u2]

. (C.1.9)

Then the above retarded correlator can be expressed as

G2111
↑↓ (ω) = Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 ). (C.1.10)

A complete derivation of the Keldysh correlator via analytic continuation from the Mat-
subara correlator will be delivered in Sec. 5.4.

C.1.3 Other Keldysh correlators

In the following we compute the connected parts G1212
↑↓,con, G2221

↑↓,con and G2222
↑↓,con. For correlators

with more than one 2-index we might have a non-vanishing disconnected part. It can be
computed separately with our previous result in Eq. (C.1.5) and subtracted to obtain the
connected part of the correlators.

For instance the disconnected part of the correlator G1212
↑↓ is

G1212
↑↓,dis(ω) = −2πiδ(ω12)G12(ω1, ω2)G12(ω3, ω4) = −

(
1

ω−12

+
1

ω−34

)
ω−2 ω

−
4

[(ω−2 )2 − u2][(ω−4 )2 − u2]
(C.1.11)
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Using the spectral representation in Eq. (5.2.9) the full correlator is

G1212
↑↓ (t) =

th×
4
e−it1234u

[
(e2iut1 − e2iut2)(e2iut3 − e2iut4)[KT (t1, t2, t4, t3) +KT (t3, t4, t2, t1)]

− (e2iut1 − e2iut4)(e2iut2 − e2iut3)[KT (t1, t4, t2, t3) +KT (t3, t2, t4, t1)]

]
+
e−it1234u

4

[
(e2iut1 + e2iut2)(e2iut3 + e2iut4)[KT (t1, t2, t3, t4) +KT (t3, t4, t1, t2)]

+ (e2iut1 + e2iut3)(e2iut2 + e2iut4)[KT (t1, t3, t2, t4) +KT (t3, t1, t2, t4)

+KT (t1, t3, t4, t2) +KT (t3, t1, t4, t2)]

+ (e2iut1 − e2iut4)(e2iut2 − e2iut3)[KT (t1, t4, t3, t2) +KT (t3, t2, t1, t4)]

]
(C.1.12)

where we abbreviated th = tanh(βu/2). After subtracting the disconnected part G1212
↑↓,dis

and after simplifications the connected part gives in frequency space

G1212
↑↓,con(ω) = u2th×

[
1

[u2 − (ω+
2 )2][u2 − (ω−4 )2]

(
1

ω−34

+
1

ω−14

)
− 1

[u2 − (ω−2 )2][u2 − (ω+
4 )2]

(
1

ω+
34

+
1

ω+
14

)]
+

2πiu2δ(ω14)

[u2 − (ω−1 )2][u2 − (ω−3 )2]

= u2th×
[

1

[u2 − (ω+
2 )2][u2 − (ω−4 )2]

(
1

ω−34

+
1

ω−14

)
+ c.c.

]
+

2πiu2δ(ω14)

[u2 − (ω−1 )2][u2 − (ω−3 )2]
.

(C.1.13)

where c.c. stands for the complex conjugate. The other correlators with two Keldysh
indices ki = 2 (and ki = 1 else) give similar results.

For the correlators with three Keldysh indices ki = 2 (and ki = 1 else) we have a
disconnected part like

G2221
↑↓,dis(ω) = −2πiδ(ω12)G22(ω1, ω2)G21(ω3, ω4)

= −2π2th× δ(ω12)[δ(ω1 − u)− δ(ω1 + u)]
−ω−4

(ω−4 )2 − u2

(C.1.14)
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The corresponding full correlator is

G2221
↑↓ (t)

=
e−it1234u

4

∑
P,4=4

(e2it1u + e2it2u)(e2it3u − e2it4u)×KT (t1, t2, t3, t4)

+ th× e−it1234u

4

×
{

(e2it1u − e2it2u)(e2it3u + e2it4u)[KT (t1, t2, t4, t3) +KT (t2, t1, t4, t3)

−KT (t3, t4, t1, t2)−KT (t3, t4, t2, t1)]

+ (e2it1u − e2it4u)(e2it2u + e2it3u)[KT (t1, t4, t2, t3) +KT (t1, t4, t3, t2)

−KT (t2, t3, t4, t1)−KT (t3, t2, t4, t1)]

+ (e2it2u − e2it4u)(e2it1u + e2it3u)[KT (t1, t3, t4, t2) +KT (t3, t1, t4, t2)

−KT (t2, t4, t1, t3)−KT (t2, t4, t3, t1)]

}
,

(C.1.15)

where, in the second line, we restricted the permutations p = (1, 2, 3, 4) to those with
4 = 4. The second line yields very analogous expressions in frequency space as for G2111

in Eq. (C.1.8). It produces the advanced correlator Φ↑↓,con(ω+
1 , ω

+
2 , ω

+
3 , ω

−
4 ) = [G1112

↑↓ (ω)]∗.
After subtracting the disconnected part we obtain for the connected part

G2221
↑↓,con(ω) = Φ↑↓,con(ω+

1 , ω
+
2 , ω

+
3 , ω

−
4 )

+ 2π2uth× [δ(ω3 − u) + δ(ω3 + u)][δ(ω13)− δ(ω14)]
1

u2 −
(
ω−4
)2 .

(C.1.16)

The correlators G2212
↑↓,con, G2122

↑↓,con and G1222
↑↓,con are computed analogously.

Now the remaining correlator is, using the spectral representation in Eq. (5.2.9),

G2222
↑↓ (t) = −th× e−it1234u

4

∑
p

(e2it1u + e2it2u)(e2it3u + e2it4u)×KT (t1, t2, t3, t4) (C.1.17)

By comparison of its Fourier transform with the retarded correlator in Eq. (C.1.7) we
find that this can be written in terms of the function Φ↑↓,con again. For instance, for the
permutations p = (1, 2, 3, 4) with 1 = 1 we can reuse Eq. (C.1.8) and only have to replace
the factor [

1

ω+
1 + u

− 1

ω+
1 − u

]
=

2u

u2 − (ω−1 )2

by the factor

−th×
[

1

ω+
1 + u

+
1

ω+
1 − u

]
= th× 2ω−1

u2 − (ω−1 )2
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This gives for the full correlator

G2222
↑↓ =

th

u

[
ω+

1 Φ↑↓,con(ω+
1 , ω

−
2 , ω

−
3 , ω

−
4 ) + ω+

2 Φ↑↓,con(ω−1 , ω
+
2 , ω

−
3 , ω

−
4 )

+ ω+
3 Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 ) + ω+

4 Φ↑↓,con(ω−1 , ω
−
2 , ω

−
3 , ω

+
4 )

]
.

(C.1.18)

C.2 Comparison of direct computation and analytic

continuation

Next we demonstrate that the results of the analytic continuation agree with those from
direct computation. Since the fulfillment of the FDR is checked separately in App. C.3.1
it suffices to confirm agreement of the results for correlators with two 2-indices. For these
components the analytic continuation proceeds analogously. Here we use the example of
G1122
↑↓,con. To do so we have to get explicit formulas for the discontinuities. Above formulas in

Eqs. (5.4.3f)-(5.4.3k) contain the factors Ni. To compare these with the direct computation
we have to evaluate the frequency in Ni = tanh(βωi/2) at certain energies ±u. We hence
expect the discontinuities to contain suitable Dirac delta functions.

These delta functions are easily obtained after rewriting Φ↑↓,con e.g. as

Φ↑↓,con(z) =
1

4

[
1

z4 + u
− 1

z4 − u

] [
1

z1 + u

(
1

z2 − u
+

1

z3 − u

)
+

1

z2 + u

(
1

z1 − u
+

1

z3 − u

)
(C.2.1)

+
1

z3 + u

(
1

z1 − u
+

1

z2 − u

)]
. (C.2.2)

When subtracting two AC functions which differ by the frequency ω±3 we can consider
every summand of the type [(z4 + u)(z1 + u)(z2− u)]−1 individually. Then, a discontinuity
can be read off from Eq. (C.2.1) to be

N3[Φ↑↓,con(ω−1 , ω
−
2 , ω

+
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

−
3 , ω

+
4 )]

=
N3

4

[
1

ω+
4 + u

− 1

ω+
4 − u

]
×
[
− 2πiδ(ω3 − u)

(
1

ω−1 + u
+

1

ω−2 + u

)
− 2πiδ(ω3 + u)

(
1

ω−1 − u
+

1

ω−2 − u

)]
and using the delta functions we obtain

= πi th
u

(ω+
4 )2 − u2

[
δ(ω3 − u)− δ(ω3 + u)

](
1

ω−13

+
1

ω−23

)
.

(C.2.3)

Other discontinuities are computed analogously and in total we obtain

G1122
↑↓,con(ω) = N3

[
Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

−
3 , ω

+
4 )
]
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+N4

[
Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 )
]

+ Φ̂
(13)
↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 ) + Φ̂

(14)
↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )

= th
−2πi

4

−2u

(ω+
4 )2 − u2

[δ(ω3 − u)− δ(ω3 + u)]

(
1

ω−13

+
1

ω−23

)
+ th

−2πi

4

−2u

(ω+
3 )2 − u2

[δ(ω4 − u)− δ(ω4 + u)]

(
1

ω−14

+
1

ω−24

)
+

2πiu2

[(ω+
3 )2 − u2][(ω+

4 )2 − u2]
[δ(ω13)[th− 1] + δ(ω14)[th + 1]] ,

and sorting the expressions by the factor th = tanh(βu/2) we get

=
2πiu2[δ(ω14)− δ(ω13)]

[(ω+
3 )2 − u2][(ω+

4 )2 − u2]

+ th
2πi

4

[
−2u

(ω+
4 )2 − u2

[δ(ω3 + u)− δ(ω3 − u)]

(
1

ω−13

+
1

ω−23

)
+

−2u

(ω+
3 )2 − u2

[δ(ω4 + u)− δ(ω4 − u)]

(
1

ω−14

+
1

ω−24

)
+

4u2

[(ω+
3 )2 − u2][(ω+

4 )2 − u2]
[δ(ω13) + δ(ω14)]

]
,

by writing out the delta functions e.g. as 2πi[δ(ω3 + u)− δ(ω3 − u)] = −2u
(ω−3 )2−u2 −

−2u
(ω+

3 )2−u2

we can cancel many terms and recover

=
2πiu2[δ(ω14)− δ(ω13)]

[(ω+
3 )2 − u2][(ω+

4 )2 − u2]
+

th

4

[
−2u

(ω+
3 )2 − u2

−2u

(ω−4 )2 − u2

(
1

ω−24

+
1

ω−14

)
− c.c.

]
which is exactly the result from direct computation Eq. (5.3.3f).
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C.3 Consistency checks

C.3.1 Generalized fluctuation dissipation relations

In this appendix we verify that our result for the KF correlator in Eq. (5.3.3) fulfills the
generalized Fluctuation-Dissipation Relations (FDRs) and have been derived in Ref. [12,32]
and in 4.1. They are summarized in Eqs. (B.2.3) and (B.2.4) for the fermionic operators.
As we mentioned at the end of Sec. 5.1 the primed correlator equals the complex conjugated
one (G′ = G∗) since the Hamiltonian is a real function of the creation and annihilation
operators.

We only consider the connected part of the correlator since the disconnected part also
fulfills them. The FDR for G2211

↑↓,con and G1122
↑↓,con can be easily verified by use of the formulas

obtained from analytic continuation in Eqs. (5.4.3f) and (5.4.3k). The formulas obtained
from direct computation are not well suited for an analytical check of the FDR. In the cor-
relators G1122 and G2211 the statistical factors Ni have been evaluated at certain frequencies
which empedes a direct comparison with frequency-dependent factors Ni.

The right-hand side of Eq. (B.2.3a) gives for G2211
↑↓,con

−N2G
2111
↑↓,con(ω)−N1G

1211
↑↓,con(ω) +

N1 +N2

N3 +N4

(
N4G

1121
↑↓,con(ω) +N3G

1112
↑↓,con(ω) +G1122

↑↓,con(ω)

)∗
and plugging in the relations in Eqs. (5.4.3) we find

= −N2Φ↑↓,con(ω+
1 , ω

−
2 , ω

−
3 , ω

−
4 )−N1Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

−
4 )

+
N1 +N2

N3 +N4

(
N4Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 ) +N3Φ↑↓,con(ω−1 , ω

−
2 , ω

−
3 , ω

+
4 )

+N4

[
Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 )
]

+ Φ̂
(13)
↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )

+N3

[
Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

−
3 , ω

+
4 )
]

+ Φ̂
(14)
↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )

)∗
= −N2Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 )−N1Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

−
4 )

+
N1 +N2

N3 +N4

(
(N3 +N4)Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )

+ Φ̂
(13)
↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 ) + Φ̂

(14)
↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )

)∗
= −N2Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 )−N1Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

−
4 )

+ (N1 +N2)Φ↑↓,con(ω+
1 , ω

+
2 , ω

−
3 , ω

−
4 )

− N1 +N2

N3 +N4

(
Φ̂

(13)
↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 ) + Φ̂

(14)
↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 )

)
,

using Φ̂
(14)
↑↓,con ∝ δ(ω14) and N1+N2

N3+N4
δ(ω14) = −δ(ω14) and similar relations for Φ̂

(14)
↑↓,con we find

= +N2

[
Φ↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 )− Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 )
]

+N1

[
Φ↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 )− Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

−
4 )
]
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+ Φ̂
(13)
↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 ) + Φ̂

(14)
↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 )

Eq. (5.3.3k)
= G2211

↑↓,con(ω).

We also check the FDR for G1222
↑↓,con for which the right-hand side of Eq. (B.2.4d) gives

(1 +N2N3 +N2N4 +N3N4)[G2111
↑↓,con(ω)]∗ −N3N4G

1211
↑↓,con(ω)−N2N4G

1121
↑↓,con(ω)

−N2N3G
1112
↑↓,con(ω)−N4G

1221
↑↓,con(ω)−N3G

1212
↑↓,con(ω)−N2G

1122
↑↓,con(ω)

plugging in the relations in Eqs. (5.4.3) we find

= Φ↑↓,con(ω−1 , ω
+
2 , ω

+
3 , ω

+
4 ) +N3N4[Φ↑↓,con(ω−1 , ω

+
2 , ω

+
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

+
2 , ω

+
3 , ω

−
4 )

− Φ↑↓,con(ω−1 , ω
+
2 , ω

−
3 , ω

+
4 ) + Φ↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

−
4 )]

+N2N4[Φ↑↓,con(ω−1 , ω
+
2 , ω

+
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )

− Φ↑↓,con(ω−1 , ω
+
2 , ω

+
3 , ω

−
4 ) + Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

−
4 )]

+N2N3[Φ↑↓,con(ω−1 , ω
+
2 , ω

+
3 , ω

+
4 )− Φ↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )

− Φ↑↓,con(ω−1 , ω
+
2 , ω

−
3 , ω

+
4 ) + Φ↑↓,con(ω−1 , ω

−
2 , ω

−
3 , ω

+
4 )]

+N3[Φ̂
(12)
↑↓,con(ω−1 , ω

+
2 , ω

+
3 , ω

−
4 )− Φ̂

(12)
↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

+
4 )]

+N2[Φ̂
(13)
↑↓,con(ω−1 , ω

+
2 , ω

+
3 , ω

−
4 )− Φ̂

(13)
↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )]

+N2[Φ̂
(14)
↑↓,con(ω−1 , ω

+
2 , ω

−
3 , ω

+
4 )− Φ̂

(13)
↑↓,con(ω−1 , ω

−
2 , ω

+
3 , ω

+
4 )].

The discontinuities in square brackets can be computed similarly to the one in Eq. (C.2.3).
They give delta functions which allow to evaluate the factors Ni to ±th = ± tanh(βu/2).

= Φ↑↓,con(ω−1 , ω
+
2 , ω

+
3 , ω

+
4 ) +N3N42π2 u

(ω−1 )2 − u2
[δ(ω4 − u) + δ(ω4 + u)]δ(ω34)

+N2N42π2 u

(ω−1 )2 − u2
[δ(ω2 − u) + δ(ω2 + u)]δ(ω24)

+N2N32π2 u

(ω−1 )2 − u2
[δ(ω2 − u) + δ(ω2 + u)]δ(ω23)

−N3th 2π2 u

(ω−1 )2 − u2
[δ(ω4 − u)− δ(ω4 + u)]δ(ω34)

−N2(th− 1) 2π2 u

(ω−1 )2 − u2
[δ(ω2 − u)− δ(ω2 + u)]δ(ω24)

−N2(th + 1) 2π2 u

(ω−1 )2 − u2
[δ(ω2 − u)− δ(ω2 + u)]δ(ω23)

= Φ↑↓,con(ω−1 , ω
+
2 , ω

+
3 , ω

+
4 ) + th 2π2 u

(ω−1 )2 − u2
[δ(ω2 − u) + δ(ω2 + u)][δ(ω24)− δ(ω23)]

Eq. (5.3.3l)
= G1222

↑↓,con(ω).

We see that for the above components our result fully agrees with the FDRs.
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C.3.2 SU(2) spin symmetry

Due to the SU(2) spin symmetry of the Hubbard model we only need to compute the 4p
correlator G↑↓. It has been shown in Ref. [19] that every other spin configuration can be
obtained by use of the fermionic exchange symmetry and the SU(2) symmetry. In the
following we demonstrate that the corresponding relation in the KF [see Eq. (5.1.21)] is
fulfilled for our result for the Hubbard atom.

In Ref. [19] the correlator G↑↑ has been computed in the Matsubara formalism in which
its disconnected part gives

G↑↑,dis(iω1, iω2, iω3, iω4) = −βδω12,0G(iω1, iω2)G(iω3, iω4) + βδω14G(iω1, iω4)G(iω3, iω2)
(C.3.1)

and the connected part is

G↑↑,con(iω1, iω2, iω3, iω4) =
u2β[δω14,0 − δω12,0]

4∏
i=1

[iωi − u]

. (C.3.2)

Since the disconnected part fulfills Eq. (5.1.21) separately, we can focus on the connected
part of the correlator. By direct computation of the correlators, as discussed for G↑↓, we
obtain

G1111
↑↑,con(ω) = G1112

↑↑,con(ω) = G1121
↑↑,con(ω) = G1211

↑↑,con(ω) = G2111
↑↑,con(ω) = 0, (C.3.3a)

G1122
↑↑,con(ω) = 2πiu2 δ(ω14)

[(ω−2 )2 − u2][(ω+
4 )2 − u2]

, (C.3.3b)

G1212
↑↑,con(ω) = 2πiu2 δ(ω14)− δ(ω12)

[(ω+
2 )2 − u2][(ω+

4 )2 − u2]
, (C.3.3c)

G1221
↑↑,con(ω) = 2πiu2 −δ(ω12)

[(ω+
2 )2 − u2][(ω−4 )2 − u2]

, (C.3.3d)

G2112
↑↑,con(ω) = 2πiu2 −δ(ω12)

[(ω−2 )2 − u2][(ω+
4 )2 − u2]

, (C.3.3e)

G2121
↑↑,con(ω) = 2πiu2 δ(ω14)− δ(ω12)

[(ω−2 )2 − u2][(ω−4 )2 − u2]
, (C.3.3f)

G2211
↑↑,con(ω) = 2πiu2 δ(ω14)

[(ω+
2 )2 − u2][(ω−4 )2 − u2]

, (C.3.3g)

G1222
↑↑,con(ω) = 2π2u th

1

(ω−1 )2 − u2
[δ(ω3 − u) + δ(ω3 + u)][δ(ω14)− δ(ω12)], (C.3.3h)

G2122
↑↑,con(ω) = 2π2u th

1

(ω−2 )2 − u2
[δ(ω4 − u) + δ(ω4 + u)][δ(ω14)− δ(ω12)], (C.3.3i)

G2212
↑↑,con(ω) = 2π2u th

1

(ω−3 )2 − u2
[δ(ω1 − u) + δ(ω1 + u)][δ(ω14)− δ(ω12)], (C.3.3j)
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G2221
↑↑,con(ω) = 2π2u th

1

(ω−4 )2 − u2
[δ(ω2 − u) + δ(ω2 + u)][δ(ω14)− δ(ω12)], (C.3.3k)

G2222
↑↑,con(ω) = −i4π3th2 × [δ(ω12)− δ(ω14][δ(u+ ω1)− δ(u− ω1)][δ(u+ ω3)− δ(u− ω3)].

(C.3.3l)

A convenient way to reproduce these results is by use of the formulas for analytic contin-
uation and the FDR. We have the analytically continued functions

Φ↑↑(z1, z2, z3, z4) = 0, (C.3.4)

Φ̂
(12)
↑↑,con(z1, z2, z3, z4) = −u

22πiδ(ω12)
4∏
i=1

[zi − u]

, (C.3.5)

Φ̂
(14)
↑↑,con(z1, z2, z3, z4) = +

u22πiδ(ω14)
4∏
i=1

[zi − u]

. (C.3.6)

The correspondence between these functions and the correlators is directly visible for those
with two Keldysh indices ki = 2. And the remaining correlators are conveniently checked
with the FDRS.

One can now check whether Eq. (5.1.21) is fulfilled. This is easily done for the retarded
correlators since Φ↑↓,con is symmetric under exchange of frequency arguments. To give an
explicit example we consider the correlator G1122

↑↑,con(ω) for which we have to subtract

G1122
↑↓,con(ω1, ω2, ω3, ω4) =

2πiu2[δ(ω14)− δ(ω13)]

[(ω−1 )2 − u2][(ω−2 )2 − u2]

+ u2th×
[

1

[(ω+
3 )2 − u2][(ω−4 )2 − u2]

(
1

ω−24

+
1

ω−14

)
− c.c.

]
,

(C.3.7)

and

G1221
↑↓,con(ω1, ω4, ω3, ω2) =

−2πiu2δ(ω13)

[(ω−1 )2 − u2][(ω−2 )2 − u2]

+ u2th×
[

1

[(ω+
3 )2 − u2][(ω−4 )2 − u2]

(
1

ω−24

+
1

ω−14

)
− c.c.

]
.

(C.3.8)

So we obtain the result

G1122
↑↓,con(ω1, ω2, ω3, ω4)−G1221

↑↓,con(ω1, ω4, ω3, ω2) = 2πiu2 δ(ω14)

[(ω−2 )2 − u2][(ω+
4 )2 − u2]

(C.3.9)

= G1122
↑↑,con(ω1, ω2, ω3, ω4), (C.3.10)

which fulfills the relation in Eq. (5.1.21) due to SU(2) spin symmetry.
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C.4 The vertex function

Given the one- and the two-particle correlator we can extract an interaction vertex. It
can be obtained from the connected part of the Keldysh correlator G↑↓,con by factoring out
the four one-particle propagators (in diagrammatic terms this is called ”amputation” of
external legs). In Sec. 4.2 we already discussed vertex functions in general. We argued that
they have the very same analytic structure as the corresponding correlators and can be
computed with the same linear combinations of AC functions. However, in this appendix
we use a more direct approach to confirm the results of Sec. 4.2 .

The amputation of the external legs reads

F k(ω) =
∑
{k′}

[G−1(ω1)]k1k
′
1 [G−1(ω3)]k3k

′
3Gk′1k

′
2k
′
3k
′
4

con (ω)[G−1(−ω2)]k
′
2k2 [G−1(−ω4)]k

′
4k4 .

(C.4.1)

For a fermionic one-particle correlator the fluctuation-dissipation theorem GK(ωi) =
Ni

(
GR(ωi)−GA(ωi)

)
is exactly fulfilled. The inverse is in general

G−1(ωi) =

(
[G−1(ωi)]

K [G−1(ωi)]
R

[G−1(ωi)]
A 0

)
=

(
Ni

(
[GR(ωi)]

−1 − [GA(ωi)]
−1
)

[GR(ωi)]
−1

[GA(ωi)]
−1 0

)
.

(C.4.2)

For comparison we also directly invert the one-particle correlator in Eq. (C.1.5), giving

G−1(ω) =

(
tanh(βu/2) 4iuωγ

ω2+γ2
(ω+iγ)2−u2

ω+iγ
(ω−iγ)2−u2

ω−iγ
0

)
, (C.4.3)

where we use the parametrization of the complex frequency ω± = ω±iγ with γ > 0. By use
of Eq. (C.4.1) we can now directly compute the vertex function F k↑↓(ω) from the four-point

correlator Gk↑↓,con(ω). Note however that, analytically, one must not take the limit γi → 0
or use a delta distribution yet since this is only sensible for the final expression, e.g. we
incautiously cannot take the limit

lim
γ↘0

[G−1(ω)]K ∝ lim
γ↘0

iγω

ω2 + γ2
= 2πiδ(ω)ω = 0.

These infinitesimal regularizations cannot be neglected. In this simple example even the
one-particle correlator would not be recovered, otherwise. Vertex functions are used to
construct more complicated diagrams for which they are multiplied with propagators and
other vertex functions. In particular the vertex function F has to recover the connected
part of the correlator Gcon when multiplied with the one-particle correlators.

Since [G−1(ω)]k1k2 is not diagonal in Keldysh space the sum over k′ in Eq. (C.4.1) can
give several contributions. Due to [G−1]22 = 0 and G1111 = 0 the number of contributions
increases with the number of Keldysh indices ki = 1 in F k. One finds that F 2222 = 0
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always holds. Similarly, for a retarded vertex function (with a single Keldysh index ki = 1
and ki = 2 else) the only non-vanishing contribution is e.g.

F 1222(ω) = [GR(ω1)]−1[GA(ω3)]−1G2111
con (ω)[GR(−ω2)]−1[GR(−ω4)]−1. (C.4.4)

Since the retarded correlator G2111
↑↓ (ω) is the analytic continuation Φ↑↓,con(ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 )

we see that the analytic continuation of the propagators (the external legs)

GR(ω) = G(iω)|iω→ω+i0+ , GA(ω) = G(iω)|iω→ω−i0+ , (C.4.5)

is consistent with that of the correlators. Hence we can define the analytic continuation of
the regular part of the vertex function in Eq. (5.1.24b) as

Φ̃
(F )
↑↓ (z) = u+

u3
4∑
i=1

z2
i − 6u5

2
4∏
i=1

zi

, (C.4.6)

such that the above vertex functions can be written as F 1222
↑↓ (ω) = Φ̃

(F )
↑↓ (ω+

1 , ω
−
2 , ω

−
3 , ω

−
4 ).

Those vertex functions with two Keldysh indices ki = 1 (and ki = 2 else) give three
contributions, e.g.

F 1122(ω) = [GR(ω1)]−1[GA(ω3)]−1G2211
con (ω)[GA(−ω2)]−1[GR(−ω4)]−1

+ [G−1(ω1)]K [GA(ω3)]−1G1211
con (ω)[GA(−ω2)]−1[GR(−ω4)]−1

+ [G−1(ω1)]R[GA(ω3)]−1G1211
con (ω)[G−1(−ω2)]K [GR(−ω4)]−1.

(C.4.7)

We can write these in terms of AC functions by plugging in the right-hand side of Eq. (5.4.3k)
for G2211

↑↓,con and by use of [G−1(ωi)]
K = Ni

(
[GR(ωi)]

−1 − [GA(ωi)]
−1
)

we find that

F 1122
↑↓ (ω)

=

[
N1

[
Φ↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 )−

(((
((((

(((
((

Φ↑↓,con(ω−1 , ω
+
2 , ω

−
3 , ω

−
4 )
]

+ Φ̂
(13)
↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 )

+N2

[
Φ↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 )−

((((
(((

((((
(

Φ↑↓,con(ω+
1 , ω

−
2 , ω

−
3 , ω

−
4 )
]

+ Φ̂
(14)
↑↓,con(ω+

1 , ω
+
2 , ω

−
3 , ω

−
4 )

]
×
[
GR(ω1)GA(ω3)GA(−ω2)GR(−ω4)

]−1

+ Φ↑↓,con(ω−1 , ω
+
2 , ω

−
3 , ω

−
4 )N1

[
���

���[GR(ω1)]−1 − [GA(ω1)]−1

]
[GA(ω3)GA(−ω2)GR(−ω4)]−1

+ Φ↑↓,con(ω+
1 , ω

−
2 , ω

−
3 , ω

−
4 )[GR(ω1)GA(ω3)GR(−ω4)]−1N2

[
���

���
�

[GA(−ω2)]−1 − [GR(−ω2)]−1

]
.

(C.4.8)

The canceled contributions are those for which the analytic continuation of the 4-point
correlator is inconsistent with the analytic continuation of the external legs. We see that
indeed only the consistent contributions remain and they can be expressed in terms of AC
functions again. For the vertex functions with more than two 1’s in the Keldysh indices
the FDRs can be used to guarantee this property.
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