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Zusammenfassu ng (Summary in German)

Stark korrelierte Elektronensysteme rufen eine Vielzahl faszinierender physikalischer Phénomene
hervor und werfen erhebliche Herausforderungen in ihrer theoretischen Analyse auf. Die Herausfor-
derungen sind begriindet in der inhdrenten Komplexitit des Quanten-Vielteilchenproblems — kein
klassischer Computer wird diese Systeme jemals vollstdndig simulieren kénnen — und dem mangeln-
den effektiven Einteilchen-Bild, da die Elektronen aufgrund starker gegenseitiger Wechselwirkung
nicht als unabhéngig voneinander betrachtet werden kénnen. Folglich kénnen die meisten Systeme
korrelierter Elektronen nur naherungsweise und rechnergestiitzt behandelt werden. In dieser Arbeit
entwickeln wir einen Satz solcher numerischer Methoden fiir stark korrelierte Elektronen inspiriert
durch die Renormierungsgruppen-(RG)-Idee der sukzessiven Hinzunahme von Freiheitsgraden von
hohen zu niedrigen Energien. Dies erméglicht eine effiziente Gliederung der verschiedenen Fluktua-
tionen und ist essentiell fiir eine akkurate Beschreibung von wechselwirkenden Quantensystemen, bei
welchen kollektives Verhalten und zusammengesetzte Objekte bei Energieskalen deutlich unerhalb
jener der mikroskopischen Bestandteile entstehen.

In einem ersten Teil betrachten wir die funktionale Renormierungsgruppe (fRG), welche den Fluss
von Korrelationsfunktionen unter Variation der zugrundeliegenden Wirkung beschreibt. Obgleich
weit verbreitet fungiert fRG oftmals eher als qualitative denn als quantitative Methode wegen der
intransparenten Naherung hervorgerufen durch die Trunkierung der Hierarchie von Flussgleichungen.
Mittels eines iterativen “Multiloop”-fRG-Verfahrens kénnen wir diese Ndherung verbessern und viele
bisherige Nachteile der fRG-Methode eliminieren. Insbesondere wird so die Unabhéngig der Resultate
von der Wahl des RG-Regulators wiederhergestellt und ein rigoroser Zusammenhang zum Parquet-
Formalismus etabliert. Weiterhin zeigen wir, wie die Flussgleichungen direkt aus selbstkonsistenten
Vielteilchen-Relationen hergeleitet werden kénnen. Dies schafft eine Form der diagrammatischen
Resummation auf dem Zweilteilchenlevel, welche singulére, zweiteilchen-irreduzible Vertizes umgeht.
Eine Anwendung auf das prototypische zwei-dimensionale Hubbard-Modell illustriert, wie unser
Multiloop-Schema fRG-Behandlungen korrelierter Elektronensysteme zu quantitativer Aussagekraft
verhilft.

Zweitens benutzen wir die numerische Renormierungsgruppe (NRG), basierend auf der ite-
rativen Diagonalisierung von Storstellen-Hamilton-Operatoren, zusammen mit der dynamischen
Molekularfeldtheorie (DMFT), um lokale Korrelationen in multi-orbitalen Systemen zu beschreiben.
Der Zugang zu beliebig kleinen Temperaturen und Energien macht die NRG-Methode zu einem
einzigartigen Realfrequenz-Storstellen-Solver fiir DMFT. Sie hat entscheidend zum Verstdndnis
Hundscher Metalle, bei denen starke Korrelationen durch die Hundschen Regeln selbst bei moderater
Coulomb-Abstofung entstehen, beigetragen. Aufbauend auf jiingsten methodischen Fortschritten
koénnen wir den Anwendungsbereich von DMFT+NRG von orbital-entarteten Modellen zu realisti-
scheren Problemstellungen erweitern: Zunéchst undersuchen wir die orbitale Differenzierung in einem
drei-orbitalen Modell fiir Hundsche Metalle und erklaren Schliisseleffekte des orbital-selektiven Mott-
Ubergangs. Im Zusammenhang realistischer Materialien nehmen wir dann die Bandstruktur aus der
Dichtefunktionaltheorie (DFT) hinzu und analysieren ein urbildliches Material eines Hundschen
Metalls, SroRuQOy4. Dabei beschreiben wir insbesondere den RG-Fluss ins Fermifliissigkeits-Regime
bei zuvor unerreichbar niedrigen Temperaturen und prasentieren generell DFT+DMFT+NRG als
neues Musterbeispiel zur rechnergestiitzten Analyse stark korrelierter Materialien.

Als Nebenprojekt unserer fRG-Studien entwickeln wir einen Algorithmus zum Abzédhlen von
Feynman-Diagrammen ausgehend von einem geschlossenen Satz an Vielteilchen-Relationen, welcher
iiberraschenderweise offenbart, dass total irreduzible Beitrige verantwortlich fiir den faktoriellen
Anstieg der Anzahl an Diagrammen sind. Auflerdem nutzen wir NRG zur Untersuchung von
Transport durch Dreilevel-Quantenpunkt-Kontakte und stellen Vergleichsdaten fiir andere RG-
Methoden, welche zusétzlich darauf abzielen, diese Systeme im Nichtgleichgewicht zu beschreiben,
bereit.
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S umm ary (Summary in English)

Strongly correlated electron systems host a plethora of fascinating physical phenomena and pose
formidable challenges in their theoretical analysis. The challenges originate from the inherent
complexity of the quantum many-body problem—mno classical computer will ever be able to fully
simulate these systems—and the lack of an effective single-particle picture, as the strong mutual
interactions make it impossible to regard the electrons as independent from each other. As a
consequence, most systems of correlated electrons can only be tackled approzimately and numerically.
In this thesis, we develop a set of numerical methods for strongly correlated electrons, which are
inspired by the renormalization group (RG) idea of including degrees of freedom successively from
high to low energies. This enables an efficient organization of the diverse fluctuations and is key for
an accurate treatment of interacting quantum systems, where collective behavior and composite
objects emerge at energy scales far below those of the microscopic constituents.

In a first part, we consider the functional renormalization group (fRG), a versatile framework to
study the flow of correlation functions upon modulating the underlying action. Though widely used,
it has often acted more as a qualitative rather than quantitative method, due a nontransparent
approximation induced by truncating the hierarchy of flow equations. We develop an iterative
multiloop fRG (mfRG) scheme, which ameliorates this approximation and eliminates many of the
drawbacks of fRG experienced hitherto. In particular, it restores the independence of results on the
choice of RG regulator and establishes a rigorous relation to the parquet formalism. Furthermore,
we show how to derive the flow equations directly from self-consistent many-body relations. This
establishes a form of diagrammatic resummations at the two-particle level which circumvents
ill-behaved two-particle-irreducible vertices. An application to the prototypical two-dimensional
Hubbard model illustrates how our multiloop scheme elevates the fRG approach to correlated
electron systems to a quantitative level.

Secondly, we employ the numerical renormalization group (NRG), based on the iterative
diagonalization of impurity Hamiltonians, in conjunction with the dynamical mean-field theory
(DMFT) to describe local correlations in multiorbital systems. Having access to arbitrarily low
temperatures and energies, NRG is a unique, real-frequency impurity solver for DMFT. It has
been pivotal to the understanding of Hund metals, where strong correlations arise from Hund’s
rules even at moderate Coulomb repulsion. Building on recent methodological advances, we
extend the range of application of DMFT+NRG from orbital-degenerate models to more realistic
setups: We first study orbital differentiation in a three-orbital Hund-metal model and unravel key
effects of the orbital-selective Mott transition. In a real-materials setting, we then incorporate
the bandstructure from density functional theory (DFT) and analyze the archetypal Hund-metal
material SroRuQO4. We particularly follow its RG flow to the Fermi-liquid regime at previously
inaccessible low temperatures and generally present DFT+DMFT+NRG as a new computational
paradigm for strongly correlated materials.

As a side project of our fRG work, we develop an algorithm to count Feynman diagrams
from closed many-body relations, which reveals the surprising outcome that totally irreducible
contributions are responsible for the factorial growth in the number of diagrams. Additionally, we
use NRG to study transport through three-level quantum dots and provide benchmark data for
other RG methods, which aim at further describing these systems in nonequilibrium.
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1 Introduction

1.1 Motivation

Strongly correlated electron systems are a continuous source of major scientific discovery in
condensed-matter physics. Prominent examples are high-temperature superconductivity, metal—
insulator transitions, colossal magnetoresistance, the fractional quantum Hall effect, or frustrated
quantum magnetism. A recent case is the spectacular appearance of superconductivity upon
twisting bilayers of graphene [CFDT18, CFFT18]. Some of these effects have already and others
will likely find their way into technological applications.

The long list of fascinating experiments comes with a similarly long list of challenges for
theoreticians. Still, numerous properties of strongly correlated materials remain elusive and cannot
be reliably predicted. In fact, many of the above effects are not even understood on a qualitative
level. The reason is that strongly correlated systems lack an intuitive, “single-particle” picture.
Instead, the mutual interactions between an extremely large number of particles give rise to
emergent phenomena that are not explainable by the individual constituents alone. Here, the
inherent complexity of quantum physics is at full display; hardly any exact solutions are possible
and meaningful approximations must be devised. This thesis follows the route of renormalization
group approaches to strongly correlated electron systems.

What kind of electron systems?—A complete description of strongly correlated materials,
including all electrons with all their types of interactions (and possibly the atomic nuclei) is an
overwhelming—and often not even desired—task. In order to understand their characteristic
properties and the key mechanisms, one should find an abstract, reductionist version of the problem.
Strong correlations typically arise in materials which have partially filled d or f shells with narrow
energy bands, where the magnitude of electron—electron interactions is comparable to their kinetic
energy. Hence, one focuses on the electrons in those shells, considers their motion on the lattice
set by the crystal structure and their interactions partially screened by all the remaining electrons.
If we further approximate the crystal lattice and the screened electronic interactions in a simple,
prototypical form, we arrive at models for strongly correlated electrons. Ideally, these are simple
enough to have a (reasonably approximate) solution and yet complex enough to mimic a fair portion
of the actual observation. An archetypal model for strongly correlated electrons is the single-orbital
two-dimensional (2D) Hubbard model. Deceptively simple-looking, it has kept physicists busy for
more than half a century [Edil3] and has inspired various theoretical techniques, most of which can
only be pursued numerically. It has become a model of such prominent status that experiments,
using setups of ultracold atoms in optical lattices, are even designed, as “quantum simulators”, to
probe the model as accurately as possible [GB17].

Two hallmark phenomena of correlated electrons, which can be described by Hubbard-like
models and especially motivate the efforts of this thesis, are the Mott—Hubbard metal-to-insulator
transition and unconventional superconductivity. The former is a phase transition between a
metal and an insulator which cannot be explained by traditional band theory but is driven by
the interactions between electrons. Understanding the Mott transition in one-band systems has
been a breakthrough achievement in condensed-matter physics. However, the Mott transition in
systems with multiple active orbitals remains a topic of current research. Even more so, the puzzle
of high-temperature superconductivity remains unsolved in a decades-long quest. Again, one can
distinguish systems whose electronic properties are dominated by a single orbital (cuprates) and
those with multiple active orbitals (iron-based superconductors). The central question is: What is
the precise pairing mechanism that makes electrons form Cooper pairs—and thereby enables them
to conduct current without resistivity? To approach this problem, it is of paramount importance to
understand these strongly correlated systems first in their normal, i.e., non-superconducting state.
From there, one can tune external parameters, such as temperature and doping, to study the onset
of superconductivity.
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Why renormalization group approaches?—Direct approaches to interacting electron systems
are impeded by the exponentially large Hilbert space of many-body systems or the fermionic sign
problem in Monte Carlo samplings. Strong correlations make theoretical treatments particularly hard
because one has to go beyond an effective single-particle description. In fact, one can define strong
correlations as those arising beyond a Hartree—Fock description in the model context or the local-
density approximation within the density functional theory (DFT) applied to materials. Another
complication is that these systems exhibit their key effects at distinct energy scales, with, e.g.,
kinetic energy and Coulomb repulsion of a few electron volts (eV), magnetic exchange interactions
below 1eV, and transitions temperatures in the meV regime. In other words, collective behavior
and composite objects emerge at energy scales far below those of the microscopic Hamiltonian.

A very powerful framework, designed to deal with diverse energy scales, is given by the
renormalization group, invented from the 1950s to '70s. It has revolutionized the way we think
about physics, introducing fundamental concepts such as running coupling constants in particle
physics or universality in statistical physics. On top of that, it has influenced—and continues to
influence—mumerical approaches in condensed-matter physics. The latter aspect is the cornerstone
of this thesis: We develop numerical approaches, inspired by the renormalization group idea, to
provide the means to address the most challenging problems of strongly correlated electrons and
use these methods to elucidate some of the intriguing effects listed above.

1.2 Scope

We focus on two different and almost complementary realizations of the renormalization group
applied to correlated electron systems. The first is the functional renormalization group (fRG)
[MSH™12], a versatile action- or Green’s function-based quantum field-theoretical approach. It can
deal with general lattice or continuum systems, possibly treated directly in the thermodynamic limit;
yet, it requires degrees of freedom that are in some sense weakly coupled. The second approach
is the numerical renormalization group (NRG) [BCPO08], which is a Hamiltonian- or state-based
method. It is completely nonperturbative, such that the size of coupling and interaction parameters
is almost irrelevant to its accuracy, but it can only be applied to the special class of impurity
models. Statements about lattice systems are possible with the help of the dynamical mean-field
theory (DMFT) [GKKR96], where the lattice problem is mapped onto a self-consistently determined
impurity model, at the cost of neglecting nonlocal correlations.

The fRG method, having its origin in the high-energy community, is nowadays used widely also
in condensed-matter physics. Adding to previous results of diagrammatic techniques, it has been
instrumental in elucidating the formation of a superconducting instability by antiferromagnetic
fluctuations [Scal2, MSHT12]. There, an fRG flow, unbiased between all two-particle channels,
compares to a similarly channel-unbiased, “parquet” resummation of Feynman diagrams [Bic04].
However, the fRG approach to strongly correlated electrons has throughout been used in a rather
crude approximation. For 2D lattice systems, it has acted more as a qualitative rather than
quantitative tool, and its relation to other techniques, like the parquet formalism, remained obscure.

The NRG method and its efficient implementation have been optimized in the von Delft
group, pioneered by A. Weichselbaum [WvDO07, Weil2a, Weil2b, SMvDW16, LW16]. For instance,
the combination of DMFT and NRG was used for a highly accurate description of the single-
orbital Hubbard model [LvDW17] as well as to unravel the key mechanisms in Hund metals
[SYvDT15, SKWvD19, DSK*19]. However, the DMFT+NRG approach has so far only been
applied in the model context and to three-orbital systems with full, SU(3) orbital symmetry. In
Hund metals, the disparate (low-energy) behavior of different orbitals is an important aspect, and
a realistic material description actually requires taking the bandstructure as input from DFT.

The guiding questions for this thesis are thus:

1. Can we use fRG as a quantitative tool? What is the precise relation between fRG flows and
the more traditional, diagrammatic parquet theory?

2. Can we use DMFT+NRG for a realistic description of multiorbital systems?

A central result of this work is the invention of multiloop fRG (mfRG), which improves fRG
algorithms, elevates fRG results to a quantitative level, and establishes a rigorous relation to
the parquet theory. The main target for mfRG is the 2D Hubbard model, used to describe
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cuprates, for which a first test-bed analysis is presented. Another important result is that we
are able to significantly extend the range of application of DMFT+NRG. We first study the
effects of orbital differentiation in three-orbital models of Hund metals and drive the system
close to an orbital-selective Mott transition, which is argued to be a key aspect of the iron-based
superconductors [{MGC14]. Secondly, we shed light on the Fermi-liquid state of the unconventional,
yet low-temperature superconductor SroRuO4 [MRS01, MSHM17] in a novel DFT+DMFT+NRG
approach.

1.3 Outline

The focus of this thesis is on the development of methods, used to tackle strongly correlated
electron systems. In Chapter 2, we give the necessary methodological background to put the
new developments into context. Specifically, we first introduce fRG as a computationally viable
and advantageous realization of Wilson’s successive mode elimination [Wil75, Sha94]. Then, we
provide a compact derivation of the parquet equations and give special attention to properties of
the so-called parquet approximation. Subsequently, we briefly review DMFT and NRG and recap
the modeling of Hund metals from a DMFT+NRG point of view. Finally, we give a short overview
of diagrammatic extensions of DMFT [RHTT18] targeted at long-range electronic correlations.

Chapter 3 deals with the development of mfRG and constitutes the main part of this thesis. We
start by considering a toy model, the X-ray—edge singularity, and subsequently extend the formalism
to the general fermionic many-body problem, while establishing a diagrammatic equivalence between
mfRG and the parquet approximation. Next, we present a refined numerical study of the half-filled
2D Hubbard model. Ultimately, we generalize the whole framework and formulate it more abstractly
by showing how to algebraically derive flow equations from the self-consistent parquet relations.

The following two chapters contain side projects conducted within the time frame of this thesis.
First, the publication presented in Chapter 4 builds on the previous diagrammatic characterization
of mfRG. It develops an algorithm to count Feynman diagrams from many-body relations, applicable
to exact as well as approximate approaches. Second, the works of Chapter 5 can be understood as
preparatory for the later application of DMFT+NRG to three-orbital systems. Numerically, they
deal with the simplified setting of spinless three-level impurity systems; generally, they describe
transport through multilevel quantum dots.

Chapter 6 is devoted to DMFT+NRG analyses of Hund metals. First, we consider a simplified
model to study orbital differentiation and particularly the orbital-selective Mott transition. Then,
we apply the method in the real-material context, characterizing the Fermi-liquid state of SroRuOy4
at arbitrarily low temperatures and energies.

In Chapter 7, we summarize the results of all publications and provide additional information
on the interpretation or extension of the respective methods. The general conclusion of this thesis
is found in Chapter 8. We close with an outlook on a possible combination of the rather different
RG approaches of DMFT+NRG and mfRG, which could provide a unique handle on strong and
long-range electronic correlations.



2 Methodological background

This chapter covers technical aspects of using fRG and NRG to treat strongly correlated electron
systems and provides the necessary background to put the developments of the subsequent chapters
into context. We start with preliminary aspects of the (fermionic) many-body problem, before
introducing fRG from the traditional Wilsonian perspective. Next, we give a compact introduction
to the parquet formalism, which allows us, as shown in publication [P5] and further elaborated
in Sec. 7.1.2, to find the additional interpretation of (multiloop) fRG as differential form of the
parquet equations. Then, we briefly discuss DMFT, NRG as impurity solver, and the DMFT+NRG
perspective on Hund metals. Finally, we give an overview of various diagrammatic extensions
of DMFT, which, in addition to the impurity-based description of DMFT, take correlations of
arbitrarily long wavelength into account.

2.1 Preliminaries on many-body theory

Minimal models for strongly correlated electrons often describe electrons in partially filled atomic
shells, moving on a lattice originating from the atomic crystal structure, with screened, or even
purely local interactions. A compact formulation is possible through second-quantized Hamiltonians,
H [¢f,¢é,], phrased in terms of operators, éf,é,. These respectively create or annihilate fermionic
degrees of freedom, whose quantum numbers are encoded in the index x. A prime example of this

category is the single-orbital Hubbard model,

H = —t Z é;oéjﬁ +U Z%m%,y (2.1)

(,4),0 i

Here, é;a creates an electron of spin o on lattice site ¢, and 7; , = é;oéi,g counts the number of
such electrons. The first term describes hopping of amplitude ¢ between nearest-neighbor sites (2, j);
the second one a local Coulomb repulsion of size U. Similarly, one can set up Hubbard models
for electrons in multiple atomic orbitals, simply by adding an orbital index m to the collection of
quantum numbers. Figure 2.1 gives two material-specific examples for orbital degrees of freedom.
Considering a general tunneling matrix ¢;; and a local interaction H'int, the Hamiltonian reads

Hy=— " [tislom & olimro + D Hinil[e] s imoo]- (2:2)

i,7,m,m’,o %

The equilibrium properties of such systems are most easily described in the grand canonical
ensemble at temperature T and chemical potential u. The partition function Z can then be
represented as a path integral over (anticommuting) Grassmann fields, ¢, ¢, depending on
imaginary time 7 [NO9S]:

B
Z- / Dle, e, S[g ¢ = /O dr 3" [e(r)(0s — wea(r)] + Hlea(r), ea(r)].

x

Here, we denote the measure of the functional integral, for fields antiperiodic in 7 between 0 and /3,
by [ Dl¢,c] = [De] [ D], the action by S, and 8 =1/T (setting h =1 = kg).
In this framework, we formulate the general fermionic many-body problem more abstractly by

the action
S[E, C] - — Z Em/ [Gal]x,)ICm - i Z Fo;m/7y/;x,y6m/5y/cyc$, (23)
x’,x z’,x,y’ Yy
with bare propagator Gy and bare four-point vertex I'y, which is antisymmetric in its first and last
two arguments. The sums over indices z, z’, etc. should be considered as generalized sums (either
sums or integrals), properly normalized, with z additionally containing imaginary time, 7 € (0, 8),



2.1 Preliminaries on many-body theory 5

(a) 0 Cu (b)
/ ) 0 Ru
T L \7%\ % ’%‘

xy orbital xz orbital yz orbital

Figure 2.1 (a) The cuprates are often modeled by the single-orbital Hubbard model (2.1), as electrons
mainly hop between the Cu-3d,2_,2 orbitals (hybridized with O-2p states) in the two-dimensional copper-
oxide planes [KKN'15]. (b) In strontium ruthenate (SrzRuQy), electronic properties are dominated by the
three zy, xz, yz orbitals of Ru-4d and O-2p character [MRS01].

or (imaginary) Matsubara frequency, iv € (2Z + 1)izT [NO98]. In fact, choosing a representation
in terms of Matsubara frequency, momentum, and spin, with = = (iv, k, o) = (k, o), the Hubbard
model of Eq. (2.1) with dispersion €, is recovered as

6k/,k60",0'

Gow,er = =
T, Wt — e

FO;ac'l,x’z;xl,acz = _U50'1,52 (501701605,02 _50’170250;701) 5k’1+k’2,k1+k2' (24)

Using a representation adapted to the system (such as frequency and momentum in a system
translationally invariant in time and space) eliminates some redundant arguments. However, we
purposely keep the notation of general indices z, z’, etc., so that the following derivations remain
fully general and equally applicable to systems without such symmetries or even with more degrees
of freedom.

The operators, ¢, é,, and Grassmann fields, &, ¢, can be considered as auxiliary objects—what
is measured experimentally are correlation functions. Correlation functions of fields, corresponding
to time-ordered expectation values of operators, are given by [NO9S|

1
{Cor o) = /D[a | Coy - Cae. (2.5)

Of particular relevance are correlations functions of two and four fields, describing single- and two-
particle properties. On the one hand, their results can be directly compared to the parameters of the
bare action (2.3) in terms of, e.g., an effective mass and an effective interaction. On the other hand,
they are directly measurable in experiments, single-particle correlations through photoemission
spectroscopy and two-particle correlations in the form of, say, optical or magnetic susceptibilities.
Their analysis is simplified by introducing one-particle-irreducible (1PI) vertices [KBS10]. Firstly,
the two-point correlation function is represented by the (full) propagator G = G®). Via Dyson’s
equation, G is expressed in terms of the bare propagator Go and the self-energy ¥ (or 1PI two-point
vertex, ¥ = I'®) according to

Gao = —(CaCar), Gaa = Gowar + Gowy Xy yGyor (2.6)
This is illustrated diagrammatically in Fig. 2.2(a). In obvious matrix-product notation, we have
G=Gy+Gy-X-G & Gil:Gal—E.

Secondly, four-point correlation functions, denoted by G, can be expressed via the 1PI four-point
vertex I = '),

G oy = (CayTy ) = GowGyy — Guy Gy + Go oGyl wiewGaa Guyyy  (2.7)
see Fig. 2.2(b). Similar to the bare vertex, Ty, G*) and T" are antisymmetric in their first and last
two arguments, a property known as crossing symmetry [Bic04]. Higher-point correlation functions
G™ and vertices I'™ can be defined analogously.

Our discussion of fRG in later parts of this thesis and the derivation of the parquet equations
will be mostly based on the general many-body problem (2.3). However, for the following, more
traditional motivation of fRG via Wilson’s RG, we temporarily consider a simple ¢* theory. In
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(a) () ¥ Y

e e T =" -4+ [T

Figure 2.2 (a) Definition of the self-energy, ¥, through Dyson’s equation (2.6). Dark and light lines denote
the full (G) and bare (Go) propagator, respectively. (b) Definition of the full four-point vertex, I', via the
four-point correlation function, G“ , according to Eq. (2.7). The color coding indicates that the external
legs are part of G, but they do not belong to I'. Instead, I is obtained from G by subtracting the
disconnected parts and amputating the external legs.

the discussions related to DMFT and NRG, we come back to Hubbard models of the type (2.1),
(2.2), which are also targeted by the diagrammatic extensions of DMFT discussed at the end of
this chapter.

2.2 Functional renormalization group from a Wilsonian
perspective

The fRG framework is a modern and very versatile quantum field-theoretical RG approach [KBS10,
MSHT12]. Its cornerstone is the exact, functional flow equation known as Wetterich equation
[Wet93], which can be expanded into an infinite hierarchy of flow equations for the 1PI vertices
[Mor94]. Moreover, fRG can be understood in the tradition of Wilson’s RG [Wil75, Sha94], with
the guiding principle to treat fluctuations successively from high energy (or short length scale) to
low energy (or large length scale). In the following, we elaborate on this connection, and we show
how the goal of using Wilsonian renormalization as a numerical tool in condensed-matter physics
naturally leads to fRG.

2.2.1 Recap of Wilson’s momentum-shell RG

Wilson’s RG scheme has put the revolutionary RG ideas on solid footing. It is not only an essential
tool to study critical phenomena, it has also shaped the way we think about physics, explaining,
e.g., concepts such as universality [Wil75]. Here, we will be very brief in summarizing the key
points of Wilson’s momentum-shell RG, for the purpose of providing a natural transition towards
fRG. To make the arguments most transparent, we employ a scalar, real p* theory in D dimensions.
It is compactly stated via the partition sum

2= Dl Slel= - [APho®GoR) Te(-k) + Sulel  (28)
with field variable ¢ : RP? — R. The bare propagator, G, and interaction, Siy, read
Golk) " = —(K2+7),  Swile] = u/decp(a:)4.

We denote k = |k|, use ¢ in the momentum (k) and real-space (x) representation, and have
incorporated all potential prefactors into redefenitions of the mass and interaction parameters, r
and u, respectively. Considering the plain, unbounded k2 dependence of Gy, it is clear that, for any
condensed-matter application, Eq. (2.8) is to be understood as an effective theory with an intrinsic
ultraviolet (UV) cutoff Ag. Thus, all fields are implicitly understood to be restricted to momenta
k < Ag, as is symbolized by ¢(k) = po<k<a, (k).

The (bare) action (2.8) describes properties at high energy scales, Ay, with bare parameters r
and u. A central aspect of Wilson’s RG is to look for an effective action that similarly describes
properties at low energy scales. To this end, one starts by separating contributions to the functional
integral between slow and fast degrees of freedom, using a variable scale parameter A and

Po<k<o (k) = O(A —k)p(k) + Ok — A)p(k).

wo<k<a(k) PA<k<Ag (k)
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(a) e o k2 + kZ (b) €r, < —cos(kga) — cos(kya)

ke

Figure 2.3 Illustration of successive mode elimination in a momentum or energy shell from Ag to A
(dark and light blue lines) towards low energies (red region). (a) In ¢* theory, low-energy properties are
determined by k — 0 and the coupling constants r(k = 0), u(k; = 0) ( =1,...,4). (b) In condensed-matter
systems (with lattice spacing a), e, = p defines the Fermi surface (here one-dimensional). Low-energy
excitations have small &, = e — v and are subject to coupling functions defined on the Fermi surface.

The crucial idea is then to perform the functional integral over only the fast modes to obtain an
effective action, Seg, for the slow modes:

Z = /D[<P] e = /D[$00§k<A] /D[WASMAO]673[“"05"'<A“’AS’°<A0].

e~ SeftlPo<k<Al

Only this effective action and no bare parameters of the original theory are needed to continue the
integration over lower energy scales. Moreover, knowledge of Seg is sufficient to compute correlation
functions of slow modes. For instance, the two-point correlator at momenta p < A is obtained as

(o(D)o(—p)) o / D] o(@)p(~p)e ¥ / Dlgocken] p(p)p(—p)eSonleosrzal

So far, degrees of freedom in the momentum shell [A, Ag] have been integrated out, where Ag
is the intrinsic UV cutoff. Clearly, this step can be repeated for any two scales taking the role of
A and Ay. The calculation is simplified if we only include momenta within a thin shell, by using
Ag/A = e! with small, or even infinitesimal I. We then have a flowing effective action as a function
of a continuously decreasing scale parameter A. For analytic arguments in the spirit of [Wil75], it
is beneficial to have an autonomous differential equation, which implies the notions of fixed points,
stable and unstable manifolds, etc. The explicit dependence on A can be removed by rescaling
momenta and fields,! k' = e'k and ¢/ (k') = e!®v (k' /e!) = e!Pe (k) [WilT5, Shad4], to get

Sett[po<k<al = S'[Po<rr<no)-

The new action S’ has the original UV cutoff Ay, and the rescaling exponent A, is chosen such
that the k2 terms maps to k’? with no change in prefactor. Compared to S, S’ is then composed
of running coupling constants, r’, u’, and possibly infinitely many more. Due to the rescaling,
dr/dl = lim;_,o(r’' — )/l depends only on the couplings r, u, ... and Ag. Hence, the momentum-shell
integration needs to be performed only once, and one proceeds via a fixed-point analysis.
Whereas this type of an analytical RG approach has been instrumental in understanding critical
phenomena [Wil75], it has a number of limitations when applied to condensed-matter systems:

e Working directly with the functional integral can only be done analytically. However, per-
forming the momentum-shell integration accurately, say, by expanding the interaction to high
“loop” orders, becomes increasingly involved. Hence, it is advisable to devise a numerical
procedure that operates directly on the level of correlation functions.

e The technique of rescaling to reproduce the original action requires working, from the outset,
with the effective low-energy theory, containing the intrinsic UV cutoff Ag < 1/a, instead

1 An autonomous differential equation can also be obtained through a A-dependent rescaling of the coupling constants
after their explicitly A-dependent flow equations have been obtained [KBS10].
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of the microscopic theory with Ay ~ 1/a (a being the lattice spacing). However, in many
condensed-matter applications, the effective low-energy theory is not known a priori. Thus,
the formalism should be set up more generally.

o Furthermore, the effective action obtained upon iterative rescaling aims at the “ultimate” long-
wavelength fluctuations: Consider n consecutive rescalings with A = Ag/e™, k(") = ek,
0™ (k™) = e"A% p(k), such that

&8
<S0(p)go(_p)> p<é\( /D [SOOS’C<A<1):| sp(p)go(_p)e_seff[ﬁp]
x /D[%gk/</\o]<ﬁ/(€lp)<p/( - elp)e‘s/[g"]
@ o
T /D[@agk’</\<1)} ¢ (e'p)¢’ (- e'p)eSenl?’]

> / D[‘ngk/</xo]<ﬂ"(62lp)<ﬂ"(*6211’)675”[@”]

<A™ n N " " g [p(m)
" /D[wég)k(mdo]@( )(em'p)e™ (= entp)e s,

After rescaling n times, the effective action S(™ describes fluctuations restricted to increasingly
small momenta p, requiring p < A = Ao/e™ — 0 as n — co. Yet, one would like to also
keep track of renormalized correlation functions at finite momenta.

o In Wilson’s RG, one often restricts oneself to a few coupling constants r, u, arguing that r(k =
0) and u(k; =0) (i = 1,...,4) are the most relevant for low-energy properties. Put simply, the
iterative rescaling of momenta suppresses all arguments as (") (k(™) = eM&rp (k) /e — ().
However, in condensed-matter physics, low-energy properties are determined by quasiparticle
excitations, where |e, — u| instead of e ~ k? is small. Now, €, = p defines the (D — 1)-
dimensional Fermi surface, and one must renormalize towards and expand r(k), u(k;) around
the Fermi surface [Sha94], as illustrated in Fig. 2.3. Then, r and u become coupling functions
instead of constants, and the whole procedure must be set up in a functional form.

2.2.2 Functional renormalization

In the preceding discussion, the successive renormalization was achieved by integrating out degrees
of freedom in the momentum-shell [A, Ag] within the functional integral expression,

eSeff[cpogMA] = /'D[g@Agk<Ao} e—S'

However, the functional integral is numerically inaccessible. Loosely speaking, the functional integral
contains an infinite load of information reflecting the exponentially large Hilbert space, but only
correlation functions with a small number of arguments are experimentally relevant. One should
therefore translate the mode separation from the functional integral into correlation functions. To
this end, we denote the quadratic part of the action explicitly and rewrite the fast-mode integral as

D -1 _ 1N _ a. D A -1 1N _ aq.
/D[%\gk/\o]efd ko(k)Go(k)™ ¢(—k) — Sing :/D[<P0§k<Ao]efd ko(k)Gi (k)™ o(—k) = St

The separation of fast and slow modes is achieved through the scale-dependent (negative-definite)
bare propagator,

Gé\(k)ilyk</\ = =00, Gé\(k)71|k21\ = Go(k)il < Gf)\(k) = @(k - A)GO(k)a

and the functional-integral measure reverts to its original form, [ D[po<k<n,] = J D[p].



2.3 Parquet theory 9

Tr] = ¢~ + Tr[[[r] + & Tl [r] +¢
—L ) LT -

Figure 2.4 Diagrammatic representation of the fRG hierarchy of flow equations for n-point 1PI vertices, up
to n =4 (for complex or Grassmann fields). The flow of the self-energy, YA = 943, is determined by the
four-point vertex, I'*; I'* = 9,I"* further involves the six-point vertex, I'®**. Lines with a vertical dash
denote the single-scale propagator S* = OyG™|5a_cons; Pairs of propagators with a vertical line denote
the single-scale two-particle propagator G*S* + SAG™. Finally, we use ¢ = %1 for bosons and fermions,
respectively. For real (bosonic) fields, where the lines are not directed, one has identical prefactors for all
pair combinations of vertices and conventionally uses a prefactor of % for all terms on the r.h.s. [KBS10].

Scale-dependent n-point correlation functions in their full functional form follow from
(1) p(pa))® / Dl p(pr) - plpy) e 17FARCT B R =S

Finding the scale dependence of correlation functions, G™)A, or coupling functions (1PT vertices),
(™A amounts to evaluating these objects using the scale-dependent bare propagator, GA. The
effect of eliminating modes in the shell [A, Ag] is encoded in the evolution T'(")-40 — T("):A The
full renormalization, i.e., evaluating the full functional integral, corresponds to solving the flow
equation

r®Ak)
on | T akarks) | — (DO (1), TN (ky hp, k), G (R), G (R)), (2.9)

where Gi and Gf} = 9,G} are known. As we work with general vertices T'™), we need not assume
a specific form of the action—the initial point of the flow can be an effective or any microscopic
theory. At A; = co and Glo\'i = 0, one can read off T(™A: from the bare action, as follows, e.g.,

from a diagrammatic expansion. At the final point Ay = 0, the original theory with Gf)\f =Gy is
recovered, and the vertices are fully renormalized.

It remains to find a suitable expression for the r.h.s., f, of the flow equation (2.9). The most
common choice in fRG is to exploit the Wetterich equation [Wet93], the exact flow equation for
the generating functional of 1PI vertices, and expand this functional flow equation into an infinite
hierarchy of flow equations for all T(™) [Mor94]. In this hierarchy, the flow of an n-point vertex, '),
involves all other vertices up to the (n + 2)-point level. The derivation of the Wetterich equation
and its vertex expansion have been reprocessed at several instances [KBS10, MSH 12, Kug16], and
there is no need to repeat this here. For illustration, we show the diagrammatic representation of
the fRG flow equations [for complex or Grassmann fields as in Eq. (2.3)] up to n =4 in Fig. 2.4; the
underlying structure will become more transparent once the parquet formalism is worked out. An
important point is that the flow of the four-point vertex, I'®), depends on the six-point vertex I'(6).
However, a six-point vertex has at least five arguments and is almost impossible to treat numerically.
This observation is one of our motivations to explore the parquet formalism, which contains at
most four-point objects. Then, in publication [P5], we show how to derive the mfRG flow equations
directly for the most interesting objects ¥ = I'® and I' = T'¥ from the self-consistent parquet
equations, thus circumventing the reliance of standard fRG on higher-point vertices.

2.3 Parquet theory

The correlation functions G(™ are full, interacting, or renormalized correlation functions. In fact,
one can imagine the perturbation series, obtained by separating the noninteracting part of the
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Figure 2.5 Illustrations of the diagrammatic expansion. (a) Low-order diagrams of the propagator, G .
The third diagram on the r.h.s. is one-particle reducible (1PR). (b) Corresponding diagrams of the (1PI)
self-energy, ¥,/ . (the external legs are amputated). Being built from Gy lines, these are bare diagrams. (c)
Instead, using full G lines (which themselves contain self-energy insertions) yields bold or skeleton diagrams.
There are only two skeleton diagrams for ¥ up to second order. If one of the bare vertices in the second
diagram is replaced by a full one, the series actually terminates. This is (d) the Schwinger-Dyson equation
for the self-energy. Labels exploit the energy-momentum representation k = (iv, k) of a translationally
invariant system. Given the vertex I', the double sum over p and ¢ for each k can be performed at cost
O(N?), see Sec. 2.3.1.7. (e) Throughout, we use Hugenholtz diagrams [NO98] in terms of the antisymmetric
bare vertex I'o, simultaneously encoding direct and exchange interactions [cf. Eq. (2.4)]. (f) Skeleton
expansion of I'. The second-order diagrams can be separated into two parts by cutting two antiparllel,
parallel, or transverse antiparallel lines.

action, Sy, and expanding in the interaction, Siy¢, to renormalize the correlators. Accordingly, we
write

... C —Sint

(Cor -y, ) = %/D[a oy - -, e~ So+Sm) — (Cay <6f§:f>0 >o,
employing the noninteracting averages (---)g = Z%, [Dle,c] ---e %, with (1)g = 1. The latter
reduce to Gaussian integrals and can be evaluated using Wick’s theorem [NO98]. The resulting
perturbation series can then be organized w.r.t. irreducible parts and represented by (Feynman)
diagrams. For instance, G and G* are fully determined by ¥ and T' through Egs. (2.6) and (2.7).
Exemplary diagrams for ¥ and I" are shown in Fig. 2.5. More details on the diagrammatic expansion
can be found in [P6]. Here, we point out that going from the expansion of G in terms of bare Gg
lines in Fig. 2.5(a) to the bold or skeleton expansion of ¥ (using full G lines) in Fig. 2.5(c) already
renders the diagrammatic series much more compact. We also see that the self-energy diagrams are
indeed 1PI—they cannot be separated into two valid diagrams by cutting one line (i.e., removing a
line, leaving two more amputated legs). Regarding the series of bold vertex diagrams in Fig. 2.5(d),
we detect already at second order another characteristic property, which will be of major importance
for the discussion below: There are two-particle-reducible (2PR) diagrams, which can be separated
into two valid diagrams by cutting two lines (i.e., removing two lines, leaving four more amputated
legs). These lines can be either antiparallel, parallel, or transverse antiparallel, giving rise to the
definition of the three two-particle channels r € {a,p,t}. Often, a and ¢ are called particle-hole
channels, while p is the particle-particle channel.

In principle, one could obtain the exact solution for the G(™ or T'("™) by summing all diagrams.
However, this is not only practically impossible, often the series does not even converge [NO9S].
Hence, general relations between ¥ and I, allowing for suitable, infinite resummations of subsets
of diagrams, are needed. The parquet formalism provides such relations and enables particularly
powerful diagrammatic resummations; their radius of convergence is further discussed in [P6]. The
purpose of this section is to give a compact derivation of the parquet equations, which form the
basis for the algebraic derivation of the mfRG flow equations in [P5].

2.3.1 Derivation of the parquet equations

The parquet formalism was developed in the 1950’s by the Soviet school [LAKS54] and in the 1960’s
by Western physicists [DDM64a, DDM64b]. Early on, it has been successfully used in analytical
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studies of meson—meson scattering [DSTM57], the Kondo problem [Abr65], and the X-ray—edge
singularity [RGNGY]. Later on, it was used as a basis for approximate numerical approaches by
Bickers and coworkers [BSW89, BS89, BW91]. Recently, with increased numerical resources, the
parquet equations have been applied in their full form, albeit only to finite-size (or impurity) systems
(see e.g. [YFLT09, RVT12, TFY*13, VST*15, WLT*16, LWP*16, LKPH19, PTV*19, PKHL19)).
For a reader unfamiliar with the parquet formalism, the derivations in the original articles may seem
somewhat obscure. Conversely, a popular review article by Bickers [Bic04] gives a nice background
of the parquet equations but refrains from deriving them.

In this section, we give a compact derivation of the parquet equations, proceeding in three
steps: (i) By examining the partition function in the presence of sources coupling to the fields
¢, ¢, we derive the Schwinger-Dyson equation relating the 1PI vertices ¥ and I'. (ii) A similar
analysis in the presence of sources coupled to bilinears of the fields ¢, ¢ yields the Bethe—Salpeter
equations involving two-particle-irreducible (2PI) vertices I, in the three two-particle channels
r € {a,p,t}. (iii) Finally, the vertices from different two-particle channels are related to one another
using diagrammatic arguments. When combing the 2PR vertices to the full vertex, I', through the
central parquet equation, one is directly led to the most fundamental, diagrammatic building block
of the parquet formalism: the totally irreducible vertex R. By making an approximation for R, the
set of parquet equations closes, enabling the search for a solution self-consistent on the one- and
two-particle level.

In the following parts, we use ¢ € {£1} (as in Figs. 2.4, 2.5) to derive the parquet equations
simultaneously for anticommuting (¢ = —1) and commuting ({ = 1) fields. Moreover, we employ
Einstein’s convention, where a sum over repeated indices is understood.

2.3.1.1 Schwinger—Dyson equation

First, we derive the Schwinger-Dyson equation (SDE) for the self-energy, which is illustrated
diagrammatically in Fig. 2.5(d). To this end, we consider the partition function in the presence of
sources coupling to the fields ¢, c,

Z[j, ]} — /D[E, C] e—S[E,c]+jmcm+El,/jw/-

Its logarithm, G[7, j] = In Z[7, j], is the generating functional for connected correlation functions
[NO98]. Taking derivatives w.r.t. 7, j, we first have

6%G

= <Cméz’>j,j - <Cm>j,j <EI’>j,j'

In the absence of sources, (c,) = 0 = (¢,+), and we find that the two-point correlator is automatically
connected (disconnected parts in (c;zC,) are canceled by the denominator, Z [NO98]):

52G

Gosnst = =507, =0 =

—<CIEI/> = Gm,m’ .

In the particle-conserving phase where (cc,) = 0 = (¢/¢,), we further find, inserting Eq. (2.7),

4
(4) _ 0°G B _ _ _ _ _
ey = W|M:o = {CaCyCy Car) = (Caluar){CyCyr) — ((Caly){Caly)
=G Gy Lo wizwGaw Gy (2.10)

Whereas the self-energy is specifically motivated as 1PI, this applies automatically to I', as follows
from particle conservation: By cutting a line in I", the number of open ends increases from four to
six. Since the external legs of I' are amputated, it is not possible to split off a two-point, self-energy
diagram in this way [Fig. 2.6(a)]. Accounting for the six open ends thus requires two three-point
vertices [Fig. 2.6(b)], which do not exist in a purely fermionic system. However, higher-point vertices
are not automatically 1PI, for cutting a line in, e.g., the six-point vertex can leave two four-point
vertices [as indeed occurs below, see Fig. 2.16(b)].

The SDE is a model-dependent equation of motion and can be derived by shifting the field
variables ¢ — ¢ + A in the functional integral [KBS10]. In the general many-body problem (2.3),
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(a) (b)
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Figure 2.6 (a) The four-point vertex does not contain trivial 1PR contributions at its external legs since
these are actually amputated. (b) Hence, a 1PR diagram of the four-point vertex would require two
three-point vertices, which do not exist in a purely fermionic theory. (c¢)—(e) Illustrations of vertices obtained
from functional derivatives of the self-energy, see Sec. 2.3.1.3. (c) The vertex 0%,/ ,/0G, , is obtained by
removing G, , lines in ¥,/ , diagrams. Assume the vertex were 2PR in the ¢ channel [separable into two
parts while the index pairs (z',z) and (y',y) remain connected]. Then, the original self-energy diagrams
would have to contain self-energy insertions (dashed box) on internal lines. However, these are absent in the
skeleton expansion X[G, T'o]. (d) Similarly, vertex diagrams 6%,/ ,/0G, ,» which are 2PR in the a channel
[separable with index pairs (z’,y) and (z,3y’) connected] would require self-energy insertions on internal
lines. (e) The analogous argument in the p channel with 6%,/ /G4,y requires anomalous diagrams with
two in- or two out-going legs. Only here, we change the position of the labels ¢’ and y for better readability.

we assume only a bare four-point interaction. To linear order in A, we then need

Sle, ] = —Ex/(Gal)xgxcx - %Fo;zgy/;x,yézléy/cycx, (2.11a)
0S _ _
oy —(Gy 1>w’,wcz - %FO;z’,y’;x’yCy’Cycw' (2.11b)
Cyr

The invariance of Z[7, j] upon shifting ¢ is reflected in
205.4) = [ Dle.cemSeettimesttui — [ ple, e SEdel e ie S,

For infinitesimal A (i.e., to linear order in A), this implies

05 e
0= /D[E, C] (]r’ — 52 )G*S[C,C]JUICIJFC%,]E,'

Cy/

Differentiating w.r.t. j,, setting the sources to zero, and inserting Eq. (2.11b) gives
0= /D[E, c] (5;5/,@/ + (Gy M yCyCor + %Fo;x/7y/;z7w5y/cwczévl>efs

Multiplying by 1/Z, inserting Eq. (2.7), and using the (anti)symmetry of Iy yields

—1 1 -
0 =000 = (Gy )ar Gy + (500 g5z, (C2CwCyr Cor)
-1 1
= 5?5/,1)’ - (Go )m/,yGy,v/ + <§F0;r’,y’;z,w (2Gz,v’Gw,y’ + Gz,z/Gw,w’Fz’,w’;v,va,v’Gy,y/) .

Finally, we multiply by (G™1),/ ., to get the algebraic form of the SDE,
Yo = (G_l)x’,m - (Gal)x’,m = CFO;I’,y’;w,yGy’y’ + %CFO;I’,y’;z,wa,y’Gw,w’Gz,Z’FZ’,w’;x»y- (212)

As characteristic for an SDE, the expression (2.12) combines bare (I'g) and renormalized (') vertices.
Moreover, I'y and T" appear in a specific order (I'y attached to 2’ and T" to z). Since variations of
this order are exploited in [P5], we further show in App. 9.1 that Eq. (2.12) can be analogously
derived with the reversed order of I'g and I" when c instead of ¢ is varied.

2.3.1.2 Two-particle reducibility

In Fig. 2.5, we have already seen vertex diagrams which are 2PR in a two-particle channel r € {a, p, t}.
There are precisely three two-particle channels since cutting two antiparallel, parallel, or transverse
antiparallel lines leaves as connected pairs of external legs either (2/,y)-(z,y"), (2',y')-(z,y), or
(', 2)-(y',y), respectively, see Fig. 2.7. Generally, any 2PR diagram must have the form of two
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Figure 2.7 The general form of 2PR diagrams in one of the three two-particle channels r € {a,p,t}. As
one removes two lines in a vertex diagram, there are three possibilities for pairs of external legs to remain
connected: Cutting two antiparallel, parallel, or transverse antiparallel lines leaves as connected pairs
(@' y)-(z, "), (@', y')-(z,y), or (z',x)-(v',y), respectively. Combining the 2PI (1) and full (T') vertices with
the appropriate prefactors, the above relations are the Bethe—Salpeter equations for the 2PR vertices ;.

four-point objects connected by two lines. The connecting pair of propagators for channel r is called
two-particle propagator II,. (II, is shown explicitly in Fig. 2.7). For the discussion below, we define

— - () o, o, =1l o, = Rl
Ha;fc,@;i’,z}’ = Gx,x'Gyw/v Hp;%y;x',y' - sz,x’Gyﬂ/v Ht;x,y;wﬂy’ = CGw,y’Gy,x'- (2~13)

The equations shown in Fig. 2.7 anticipate the Bethe—Salpeter equations (BSEs) in their most
compact representation. We will derive below that the 2PR vertex +,, comprising all 2PR diagrams
of the r channel, is obtained by combining the 2PI vertex I, and the full vertex, I', with the
appropriate prefactors (like % and ¢). Further, I' = I, + v, for each channel r. It can be intuitively
understood that, in Fig. 2.7, one has to exclude 2PR contributions in channel r in one of the vertices
(i.e., use I, instead of I') to avoid overcounting of diagrams.

The BSEs can be derived for generalized susceptibilities x, as well as for vertices [RHTT18].
We will first consider the x, and generate 2PI vertices by functional derivatives of the self-energy.
Then, the BSEs on the vertex level directly follow from those of the y,. by amputating external legs.

2.3.1.3 Bethe—-Salpeter equations for generalized susceptibilities

We begin by deriving the BSE for the generalized susceptibility in the transverse or ¢t channel, ;.
This will be done by examining the partition function, Z, in the presence of a source J coupled to
¢ and ¢ [RIM15],

Z[J] = /D[E, o e Sleet o oCurea, (2.14)
Taking derivatives of G[J] = In Z[.J] yields the propagator G and generalized susceptibility x:,
6G _
Gim/ = 7C6J — = —{(CaCar) g, Gix, Jo = Gaar, (2.15a)
X = G | (CpCyCyr Cyr) — (CuCyr ) (CyCyr) (2.15b)
tiz,ys’y = 1 71 |j=0  \Cz 1Cyt) — \CxCqg’ ’]e .
A W W PE yCy yCy

Compared to GW in Eq. (2.10), only one disconnected contribution is subtracted in x;. Evidently,
we have
(3G
Xtizysaly' = — 7
0Jy y

o (2.16)
This simple relation is in fact the origin of the BSE. Our goal is to get rid of the explicit appearance
of J, such that we can directly set J = 0. For this reason, we will express G through the self-energy
and find another instance of §G/dJ, ultimately giving rise to a self-consistent equation for y;.

In order to rephrase Eq. (2.16) in terms of X, we use the trivial identity

8G7 s(G—1Y,
J , —1 J/ — 5:16 R x,z —1 J/ J , 22 . 21
Gﬂc»z (G )Z sZ ) = 5Jy’,y (G )z 2 + G:c,z 6Jy’,y 0 ( 7)

Upon multiplying by G ,» and summing over z, this is rephrased as

5G1 o o G )is
5Jy’,y J=0 Y=,z z,I’W’J:O- ( . )
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Figure 2.8 Bethe—Salpeter equation in the a channel for (a) the generalized susceptibility, Eq. (2.28), and
(b) the vertex, Eq. (2.32). As in Fig. 2.2, the color coding indicates that x, contains the external legs,
whereas they are amputated for the vertices I, and I'. Green lines denote the two-particle propagator II,
[Eq. (2.13)]. Using the energy-momentum representation k = (iv, k) in translationally invariant systems,
the index contractions of Eq. (2.28) reduce to simple matrix multiplications for each transfer argument g,
which can thus be computed at numerical cost O(Nj), see Sec. 2.3.1.7.

Now, Dyson’s equation allows us to incorporate the self-energy via
G hH =@y -2 =gt +7-%7. (2.19)

Moreover, ¥ has a bold perturbation series in terms of only G (and the bare vertex) [LWG60]:

55, ol 86,
= 7 .
6JZ/,Z 6Gy,y/ 6JZ',Z

¥/ = %[G7, Ty = (2.20)

This relation will later introduce x; o< §G/§J on the r.h.s. of Eq. (2.16). For the time being,
we observe that 52] o/ 505 Y yields a four-point vertex: The functional derivative of ¥ w.r.t. G
amounts to cutting one line in all self- energy diagrams at all positions. This produces two more
legs and thus a total of four amputated external legs. The index pairs attached to ¥ and G, (2, x)
and (y',y), are the same index pairs that remain connected when separating a diagram which is
2PR in the t channel (cf. Fig. 2.7). Indeed, it turns out that the vertex 525,’16/56*;@, is 2PI in the
t channel: As illustrated in Fig. 2.6(c), a diagram obtained from 5Zi,’m/6Giy/ that is 2PR in the ¢
channel could arise only if diagrams of ¥ contained self-energy insertions. These are, however,
absent in the skeleton expansion X[G”, o] [cf. Fig. 2.5(c)]. We thus obtain a particle-hole 2PT
vertex as [BK61]

525/,1 ‘ Cézx’,m

5Gi,y’ J=0 0Gy

Ttz = € (2.21)

Here, we can set J = 0 even before taking the functional derivative, since J does not lead to any

symmetry breaking in Eq. (2.14). This is different for the parallel or p channel treated in App. 9.2.
By combining Egs. (2.20) and (2.21) with Eq. (2.19), we find

CHPFE 820 46 0Ty s 820 40 I O 2.22
WL]:O_ 2y’ z,y_m’Jzo— 2y Ozy Ctz sw’;z,w 5Jy,y |J 0° ( . )

Next, inserting Eq. (2.22) into (2.18) as well as Eq. (2.18) into (2.16), we eventually get the BSE
for the generalized susceptibility,

Xt;z,y;2’y" = CGCva/Gyvm/ + CG;C,Z'GZ,QT/ ItJZ/ﬂU/%ZﬂH Xt;w,y;w’,y’ - (223)

Using the two-particle propagator II; from Eq. (2.13), it is intuitive (and explicitly shown in
[P3, P5]) that the index contractions are (generalized) matrix multiplications. We can thus state
Eq. (2.23) compactly as

=TI + ;0 I; o x4 & JAES | (2.24)
The generalized susceptibility in the antiparallel or a channel is defined as

J
_we
5Jy/,x6t]x’,y J=0 6:]3/73;

(2.25)

Xazya'y' = G

analogous to Eq. (2.15b) for y; with a change of indices « ++ y. This direct connection can be
understood in the context of crossing symmetry: Diagrams of y; and x, are translated into one
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Figure 2.9 Illustration of ®-derivability at the first two orders in the bare vertex I'g. The functional
derivative is performed by cutting a full line, leaving two more amputated legs. From the (particle-
conserving) diagrammatic series of (a) the LW functional ®[G, I'g] follow the skeleton expansion of (b) the
self-energy [cf. Fig. 2.5(c)] and (c) the 2PI vertex I;. At the first two orders of 6®/0G, cutting any line in
one of the diagrams yields the same contribution due to the (anti)symmetry of the bare vertex. Similarly,
the second and third vertex diagrams are equivalent by (anti)symmetry of T'g, such that the expansion of I;
indeed reproduces the vertex diagrams from Fig. 2.5(f) without the last contribution, which is reducible in
the ¢ channel. In panel (c), the external legs of the self-energy were used as legs (z’, ) of the vertex. By
exchanging two external legs, which amounts to using the external self-energy legs as vertex legs (z’,y) or
(y',x), we get (I, as required by crossing symmetry.

another by exchanging two in- or two out-going legs. The same applies to II,., 7., I.. Indeed, next
to the simple relation Il,.q 407y = (Iiy o0y in Eq. (2.13), we have

Xasz,yia'y' = CX byl = (CaCyCyCar) — ({CaCyr ) (CaCy), (2.26a)
0

1,. oy = Clt. . = v,

a;z’ YT,y ¢ tix’,y'sy,x 5Gz,y/

(2.26D)

The vertex 0%, ,/0Gy,,, with index pairs (z’,y) and (x,y’), is indeed 2PI in the a channel, as
verified in Fig. 2.6(d). Inserting Eq. (2.26) into (2.23), we obtain the BSE in the a channel as

Xa;z,y;a’y' = G%x/GyJ/ + GyaZ'GZJf/ Ia%/vwl;zaw Xa;z,wiw',y’ - (227)

The a channel is also chosen for the diagrammatic representation of the BSE in Fig. 2.8(a). Finally,
by using a generalized matrix multiplication adapted to the a channel, Eq. (2.27) is stated compactly
[and perfectly analogous to Eq. (2.24)] as
w=Hg+T,07I,0xq & I,=T =yt (2.28)

Note that the order of I, and x, on the r.h.s. of Egs. (2.24) and (2.28) can be reversed by
interchanging the order of the J derivatives in Eqs. (2.15b) and (2.25). For the derivation of
the BSE in the p channel in App. 9.2 and 9.3, we must introduce sources that couple to two
¢ and two ¢ fields. Accordingly, I, can be obtained by a functional derivative of ¥ only when
allowing for variations in the extended space of anomalous, non-particle-conserving propagators
[see also Fig. 2.6(e)]. However, when the functional differentiation is performed in an analytical,
Feynman-diagrammatic context (as in [P6]), one typically cuts lines connecting in- and out-going
legs of vertices in the standard, particle-conserving diagrams, thus yielding I; or I,.

Before translating the BSEs from the generalized susceptibilities to the vertices, we use the
present context for an intermezzo on ®-derivability.

2.3.1.4 Remark on ®-derivability

According to Eq. (2.26b), the 2PI vertices I; and I, do not have the full (anti)symmetry of T
but are mapped onto each other by permuting two indices (crossing symmetry). Still, they are
symmetric upon exchanging both the in- and out-going legs, It.z y:a’ .y = Ity 21y .27- As pointed out
by Baym [Bay62], the combination of this symmetry with the functional derivative (2.21) implies a
“vanishing curl condition”,

0 2 0%y,

6Gyy  6Guu’
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Figure 2.10 Illustrations for the T-matrix and RPA approaches, both breaking crossing symmetry by
including only direct or exchange interactions (wiggly lines), respectively. They can be understood by
starting from a first-order LW functional ®, taking functional derivatives to get skeleton expansions of
Y and I,, and using the BSE to get I'. The actual T-matrix or RPA self-energy ¥’, related to another
functional ®’, is then obtained by inserting I" into the SDE. Note that the factor 1/2 in Fig. 2.5(d) does
not occur if only the direct or exchange part of I'g is kept. If we cut the green line in ¥, we recover the
original 2PI vertex I,. If we also cut the blue line, we actually get the full vertex, I'. However, further
cutting red lines yields a vertex much more complicated than any of the original ones.

and thus the existence of a functional ®[G,Ty] from which the self-energy follows by functional
differentiation,
0P

0Gy

Here, ®[G,T] is the Luttinger-Ward (LW) functional [LW60]. Accordingly, “®-derivable” solutions
are those where a diagrammatic approximation is made for ®, and the skeleton expansions of %
and I; are deduced by functional derivatives. Figure 2.9 illustrates this strategy at low orders.
The physical propagator, GG, at which the functionals ¥ and I; are to be evaluated, is found from
Dyson’s equation; susceptibilities like y; follow from BSEs. The advantage of ®-derivable (also
called conserving) approaches is that they ensure (i) that macroscopic observables, like particle
number, momentum, energy, as computed from the correlation functions, fulfill conservation laws
(continuity equations) and (ii) that thermodynamic expectation values, like particle number, energy,
pressure, can be equivalently computed from the correlation functions or the partition function, Z
(related to @) [BK61, Bay62].

The ®-derivable procedure starts from the abstract ® and uses functional derivatives to first get
> and then I;. Sometimes, however, one proceeds the other way round: One uses an auxiliary vertex,
different from 0% /0G, and the SDE to practically construct a self-energy, which is conceptually
related to an LW functional. Two examples are the T-matrix and RPA self-energy, illustrated in
Fig. 2.10: The auxiliary 2PI vertex (we choose I, for better illustration) is the bare interaction. It
relates to the first-order ® and (skeleton) X. Through the BSE, one builds from I, a ladder-type
vertex I". Now, inserting I" into the SDE yields a much more refined self-energy ¥’ than the
first-order . Further, ¥’ is conceptually related to another, infinite-order LW functional ®’. In this
combination of vertex and self-energy, conservation laws are only fulfilled on the one-particle level.
As shown in [P5], the same applies to the parquet approximation, albeit, in this case, the 2PI vertex
is not derivable from any LW functional (but the self-energy likely is). These examples illustrate a
practical dilemma of approaches aiming to be ®-derivable for both one- and two-particle correlation
functions: The structure of the vertex is inherited from that of the self-energy. If one can easily
construct the vertex, the approximation for the self-energy is too crude. For a refined self-energy,
the functional derivative, yielding the vertex, is very challenging. Moreover, simultaneous fulfillment
of both the SDE and the functional derivative I; = (§%/dG can only be achieved in the exact
solution of the problem [Smi92, P5].

S |G, To] = (2.29)

2.3.1.5 Bethe-Salpeter equations for two-particle-reducible vertices

Since a functional derivative is numerically inaccessible, the BSEs for the generalized susceptibilities,
Xr, do not provide a useful connection between the one- and two-particle level. They rather
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Figure 2.11 (a) Consider a diagram reducible in, e.g., the a channel, which can thus be expressed via two
vertices A and B connected by antiparallel lines. If the diagram were also reducible in the ¢ channel, the
upper and lower two external legs could be separated. However, this would require A and B to be 1PR,
which is impossible due to particle conservation [see Fig. 2.6(a,b)]. (b) The fourth-order, envelope vertex
diagram is irreducible in all three two-particle channels. Thus, it is not included in the PA, see Sec. 2.3.1.7.
To evaluate it in k representation, one can associate three independent integration variables with the blue
lines while the remaining variables on the green lines are fixed by energy-momentum conservation. This
amounts to a numerical cost O(N}). (c) Self-energy diagrams missing in the PA start at fifth order and
similarly are at least of complexity O(NY). (d) Four-point diagrams built from a bare six-point vertex,
which are irreducible in all two-particle channels.

introduce the 2PI vertices, I,., for a refined computation of susceptibilities. In fact, even though the
X differ from each other only by trivial disconnected contributions, approximations in the vertices
I, result in very different four-point correlators G(*). The crucial benefit of the BSEs comes into
play when combining all three of them to find a two-particle self-consistent, channel-unbiased vertex
I'. To realize this, we first translate the BSEs from the generalized susceptibilities to vertices.
Comparing the definition of x; [Eq. (2.15b)] to e [Eq. (2.10)], we obtain its relation to I':
Xtz y;x!y! = CGz,y’Gy,z’ + G(4) = CGr,y/Gy,m’ + Gz,z’Gy,v’Fv/,z’;v,sz,m’Gv,y’ .

cay;a’y
If we now insert the BSE (2.23) for x;, we get

Ga:7z’Gy,v’Fz’,v’;szz,a:’G'u,y’ = Gw,z’Gz,a:’It;z’,w’;z7w
X (Gw,y’Gy,w’ + CGw,u’Gy,v’FU’,u’;U,uGu,w’GU,y’)- (230)

We remove the external legs, i.e., multiply by (G™1)z »(G™1) 2 (G 1) g 4 (G™1)y 5, to find the
vertex BSE in the ¢ channel,

Pz 539 = Ine 3.9 + Clia 03,0Gow Guo Uy wigu = Ina gria,g + Va0 ,5053,9- (2.31)

For a given I, this is a self-consistent equation in I'. Furthermore, we introduced the 2PR vertex
¢, precisely in the form anticipated in Fig. 2.7: The full vertex I" can be divided into 2PI (I;) and
2PR () contributions of the ¢ channel, and the 2PR part can be fully expressed by combining I,
and I'. By permuting indices, we find the analogous equation in the a channel,

Fm’,y’;m,y - Ia;a:’,y’;m,y + Ia;m/,z/;z,sz,v’Gv,z’rv’,y/;x,v = Ia;z/,y/;m,y + Va;x’,y’;m,ya
which is illustrated in Fig. 2.8(b). As shown in App. 9.2, the p channel fulfills

r

_ 1 —
'y, y = ]p;w’,y’;w,y + ilp;w’,y’;z,sz,z’Gv,v'FZ’,v’;w,y = Ip;w’,y’;x,y + Vpiz' oy s,y

In the compact notation of channel-dependent generalized matrix multiplications, we can simulta-
neously write for all channels

=1I+1Io0lol & rt=r-1-TI,. (2.32)
N————

Ir

2.3.1.6 Parquet equation

The parquet formalism combines the SDE and all three BSEs. The relation between the different
2PR vertices is made via diagrammatic arguments [Bic04]: As illustrated in Fig. 2.11(a) (similar
to [RVT12]), a diagram cannot be simultaneously reducible in more than one channel [DDM64b,
RGNG69, RVT12]. Having established that the 5, contain disjunct classes of diagrams, it is natural
to add all reducible vertices to get the full vertex. What is missing are diagrams irreducible in all
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Parquet algorithm ~» from BSE | > [Parquet equation:
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input: iteration |I, = R+ ...V
Y¥=0= Tr
I'=R=1, convergence: 2P-SC

% from SDE / output: ¥, T

Figure 2.12 Illustration of the parquet algorithm, which takes as input the totally irreducible vertex, R.
A two-particle self-consistent (2P-SC) solution of the vertex, I', and self-energy, 3, is found by iteratively
solving the Bethe—Salpeter equations (BSEs) and the Schwinger-Dyson equation (SDE).

three channels. Next to the bare vertex, totally irreducible contributions start at fourth order in
the interaction with the “envelope” diagram, see Fig. 2.11(b). By collecting diagrams of this type
in the totally irreducible vertex, R, the parquet equation can be understood as a classification of
diagrams w.r.t. two-particle reducibility:

I=R+) 7. (2.33)

Altogether, the parquet formalism gives us a unique handle on approximations on the two-
particle level: One approximates the most fundamental diagrammatic object R and solves the BSEs
(2.32) for the three vertices 7, self-consistently. This can be understood in a skeleton (functional)
sense and practically done for any fixed G. At the same time, the self-energy in G is related
to T' through the SDE (2.12), rendering the parquet formalism self-consistent on the one- and
two-particle level. The solution is typically obtained by iteration, as illustrated in Fig. 2.12.

In contrast to the SDE, the derivation of the BSEs was completely general and did not assume
a specific form of the action (i.e., whether it also contains six- or even higher-point vertices).
The parquet equation itself is also general; one basically defines R =T' — )" ~,. However, the
diagrammatic expansion of R becomes more complicated for models with higher-order bare vertices,
see Fig. 2.11(d). The simplest approximation for the totally irreducible vertex is R = I'g. This is
the famous parquet approximation, which we discuss next.

2.3.1.7 Parquet approximation

The parquet approximation (PA) is the simplest possible solution of the full set of parquet equations,
defined by the approximation R = I'y. Its original motivation is to sum up all leading contributions
in logarithmically divergent perturbation series, as found, e.g., in the Kondo [Abr65] or X-ray—
edge [RGNG69] problem. It can be understood as an iterative replacement of bare vertices by
the singular particle-hole and particle-particle bubbles in two-particle diagrams. On top of this
essential low-energy feature, the PA also fulfills a variety of properties spanning all energy scales.
For instance, the structure of the BSEs entails certain diagrammatic identities, such that, in
Hubbard-like models, response functions like susceptibilities, x,., and three-point vertices, I‘ﬁ?’), are
encoded in high-frequency asymptotics of the vertex [WLT 16, P2]: Xpiq = limy,| 17|00 Yrsg ke JUZ,
Ff’g p = L4 1impr | So0 Yrsq,k,k /U. Moreover, ongoing work shows numerical evidence that the PA
fulfills sum rules of susceptibilities [Chal9]. For instance, in the Hubbard model, such a sum rule
reads Zq Xooiq = Mo (1 — ng) for the local, equal-spin susceptibility [RHT'18]. Via the SDE, this
ensures the correct high-frequency tail of the self-energy [RHT 18], X5 ~ Un, + U?n, (1 —n,)/(iv)
as v — o0o. The fact that only the single-particle quantity n, appears in a sum rule of the two-
particle object x,, is fundamentally related to the Pauli principle, dictating that each mode be
occupied at most once, as seen through the operator identity 7 = 7, and Y-, Xoo:q = (12) — (7).

In the field-theoretical language, the Pauli principle translates into the anticommutativity of
Grassmann fields, which implies the crossing symmetry of correlators G(™ or vertices I'™ upon
exchanging two in- or out-going legs. Through the parquet equations, crossing symmetry is fulfilled
by construction. Vilk and Tremblay [VT97] relate this to the fulfillment of the fundamental
Mermin-Wagner theorem [MW66], which forbids, e.g., antiferromagnetic order in the 2D Hubbard
model at finite temperature. Furthermore, Bickers and Scalapino [BS92] have shown that the PA
fulfills the Mermin-Wagner theorem by comparing the necessary diagrams in the effective bosonic
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and in the original fermionic theory, finding that the latter are indeed the two-particle-reducible
diagrams of the PA.

The PA can also be characterized from the perspective of diagrammatic complexity. In the
common case of translationally invariant systems, it comprises all diagrams of complexity O(N}!),
where N, = N, N, = N, N, - - - Ni, denotes the number of grid points for each argument k = (iv, k).
This is in fact the maximal complexity feasible for numerical approaches. Diagrams more complex
than this start at O(N?), see Fig. 2.11(b) and (c), and have only been computed for certain slices
of the external arguments [RVT12]. On the two-particle level, where each vertex already has three
arguments, diagrams of complexity O(N;!) are iterative two-vertex combinations, as obtained by
iterating the BSEs (Fig. 2.8). On the one-particle level, where ¥ has only one external argument,
nested integrations are possible, as they already occur in the SDE [Fig. 2.5(d)]. Consequently, if one
compares the PA to perturbation theory, one finds discrepancies from the exact (ex) expressions
starting at rather high orders: '™ = I'PA 4+ O(U*), ¢ = ¥PA + O(U®). This holds not only in
terms of bare propagators, G, and bare interactions, I'g or U, but also in terms full propagators,
G, and even full interaction vertices, I', underlining the fully self-consistent structure.

Indeed, the SDE relates the one- and two-particle level self-consistently and encodes the effect
of collective fluctuations on single-particle excitations. Their back reaction is incorporated through
self-energy dressing of the propagators connecting the vertices in the BSEs. The coupling of all
BSEs together with the parquet equation provides self-consistency on the two-particle level, as
required for an unbiased treatment of competing instabilities. This implies crossing symmetry but
is a stronger statement, since crossing symmetry would remain intact if one, e.g., fully neglected a
vertex like 7,, which is crossing symmetric itself.

Finally, our recent results [P5] show that the PA fulfills conservation laws on the one- but not
on the two-particle level. If, e.g., the nonequilibrium current is computed from the one-particle
propagator, it fulfills the continuity equation, but if, say, the equilibrium linear conductance is to be
inferred from the vertex, particle conservation may be violated. Correspondingly, Ward identities
in the PA exhibit deviations at O(U*), where the self-energy is still exact but envelope vertices
have already been neglected. Since the simultaneous fulfillment of the functional Ward identity,
I, = (06X /6G, and the SDE requires the exact solution [Smi92, P5], evaluating Ward identities
can be used to check the accuracy of the PA. This, in turn, can be used to gauge the influence of
higher-order contributions to R, within the parquet formalism itself, i.e., even if benchmark results
from other methods are not available.

In summary, the PA fulfills a list of important properties:

1. Tt contains all leading logarithmic contributions in logarithmically divergent perturbation
series.

2. Tt obeys various diagrammatic identities (relating, e.g., susceptibilities to high-frequency
asymptotics of the vertex) and is numerically found to fulfill sum rules of susceptibilities and
thus the exact high-frequency asymptote of the self-energy.

3. It is crossing-symmetric by construction and fulfills the Mermin—Wagner theorem.

4. Tt contains all diagrams of numerical complexity O(N}!), where Ny, is the number of energy-
momentum grid points for translationally invariant systems. Thus, discrepancies from
perturbation theory start at O(U*) for vertices and O(U®) for the self-energy, each expressed
through renormalized propagators and interactions.

5. Tt self-consistently relates the one- and two-particle level through the SDE and all two-particle
channels through the coupled BSEs.

6. It fulfills conservation laws on the one- but not on the two-particle level. However, Ward
identities can be used to gauge the accuracy of the PA within the formalism itself.

Generally, a solution to the self-consistent parquet relations is obtained by iteration (Fig. 2.12).
As typical in the context of iterating self-consistent equations, it is unclear whether a unique solution
exists, and a suitable choice of the initial condition and update rule in the self-consistency cycle is
crucial to its success. From this point of view, a reformulation of the self-consistent equations as,
e.g., differential equations is highly desirable. This goal was achieved in [P5] and is further discussed
in Sec. 7.1.2. It constitutes a major improvement of the formalism and promises to ensure unique,
physical solutions, found by following an RG flow on a two-particle self-consistent trajectory.
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2.4 Dynamical mean-field theory and the numerical
renormalization group

In this section, we give a very brief overview over dynamical mean-field theory (DMFT) and
the numerical renormalization group (NRG). The DMFT method has acquired a central role
in condensed-matter physics, with the outstanding successes of explaining the Mott—Hubbard
metal-to-insulator transition and of bridging the gap from model studies to material science
[GKKR96, KSH*06]. It is used by a huge number of groups, and there is no need to provide a
detailed description here. In our short synopsis, we write the most important (single-particle)
relations, directly in terms of retarded, real-frequency correlation functions, G(w) = G(iv — w+i0™"),
but revert to the imaginary-time formalism when evoking an underlying action or the diagrammatic
origin through the LW functional. Using NRG as impurity solver has been optimized in the von
Delft group, pioneered by A. Weichselbaum, for a long time and was already discussed in a number
of theses. Hence, we are again brief in the description and mostly list technical aspects, relevant to
the code used in [P9, P10]. Finally, we introduce Hund metals from a DMFT+NRG perspective
and deduce the necessary ingredients for a minimal model of Hund metals.

2.4.1 Dynamical mean-field theory in a nutshell

The guiding principle of DMFT [GKKR96], originating from the study of perturbation theory in
large dimensions [MV89, GK92], is to neglect spatial fluctuations but take full account of local,
temporal (or quantum) fluctuations. Its approximation becomes exact in the limit of infinite
dimension, and one can imagine it to be a good approximation for lattices of large coordination
number, where the large number of neighbors of a given site can be treated as a bath without
spatial structure [GKKR96]. The neglect of spatial fluctuations is reflected in the central DMFT
approximation of a local, momentum-independent self-energy:

Zij (OJ) = 5ij2(w) = Zk(w) = E(OJ) (234)

Crucial to the success of DMFT is not only the fact that it is exact in infinite dimensions, but
also that it becomes exact in the two opposite cases of the noninteracting limit, U = 0, where the
self-energy vanishes completely, and the atomic limit, ¢;; = 0, where the collection of independent,
identical atoms clearly fulfills Eq. (2.34). Therefore, DMFT is able to tune through the whole range
of interactions and is a powerful tool to study metal-insulator transitions [GKKRI6].

Since DMF'T focuses on a single site on a lattice and approximates the effect of its neighbors
through a bath of electrons, there is an immediate connection to impurity physics. Using Grassmann
fields d,, d, corresponding to operators that create or annihilate an electron on the impurity, an
impurity problem can be defined through the imaginary-time action

P ] o i
Sty = — / dr / A" 3" 0y (7) Gy (7 = 7) do (') + / dr Hympldo (7), dy (7).
0 0 . 0

The bare propagator, G imp, henceforth written as retarded correlation function,
G(iilmp(w) =w+p—€— A(w)7

contains the hybridization function A. In the present context, it characterizes the dynamical mean
field. A Hamiltonian formulation is provided by Anderson-type impurity models [And61]

H = Hinp + Hyyp, + Hpatn,

where the hybridization is realized by an explicit account of bath degrees of freedom. For instance,
these can be conduction electrons with dispersion €g, coupled to the impurity via matrix elements
Vi, such that

Hygt, = > (Vidlcon + Vich 1do),  Hoatn = Y €kCl j.Co. (2.35)
o,k o,k
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The hybridization, fully specified by its imaginary part due to Kramers—Kronig relations, then
reads?

Ax(w) = —1ImA(w Z V|28 (w + 11 — ex). (2.36)
k

It is a priori unclear how to choose a bath that properly mimics the neighbors of a given lattice
site. As typical in mean-field approaches, one demands that the degrees of freedom represented by
the bath have the same properties as the site singled out. Hence, the impurity propagator

1
w4+ p—es— Alw) — E(w)

Gimp(w) - (237)

should equal the local propagator on the lattice, computed within the approximation (2.34),

(DM_FT) 1
Gloc(w Z Grlw) = Ek: PET—T (2.38)

Thus, one arrives at the DMFT self-consistency condition Gimp(w) . Gioc(w), implying
Alw)=w+p—€e5 — B(w) — Ggi(w) & Aa(w) = %Im [GIOC( )+ X(w )] (2.39)

A conceptually useful, yet more abstract definition of DMFT is possible through the LW
functional ®, introduced in Sec. 2.3.1.4. The DMFT approximation, again exact in the respective
limits D =00, U =0, t =0, is stated as

(I)DMFT G F Z (b G217 I—‘0 uu] (240)

Here, ®PMFT is the DMFT LW functional with the full propagator, G, and the Hubbard-like, local
bare vertex, ['g; ¢ is the ezact LW functional of an impurity model in terms of the local propagator
and vertex at a given lattice site.

To elaborate on this, we consider again the LW functional up to second order from Fig. 2.9(a).
Tts general expression (Einstein’s summation convention used) is given by

_ 1 1
(G, o] = §F0;r’,y’;z,yGr,z’Gy,y’ + §F0;f6’lyyi;w1,y1 Gzl,r;GzzyrﬁGm Y Gyz y1F0 @l yhiwayz T

Hubbard-like models have a local interaction: I'y is only nonzero if all legs are at the same site.
If we suppress spin indices for clarity (though they are needed for the antisymmetry of I'g) and
resolve lattice-site and frequency arguments, we get

D[G, Toj0c] = 5 Z o401 Gii (iv) Gy (iv')
% Z To,ii6iGij (1v)Gij (i )G (iv + iw)Gji(iz/ +iw)loyj455 + -+,

0,5,V w

with (normalized) lattice-site and frequency summations. By contrast, the impurity LW functional
involves only frequency (and spin) variables. Its frequency-dependent propagators and its vertices
can be taken as those from a given lattice site 7, such that

G, Tosiiis] = %Zro;iiiiGii(iV)Gii(iV/)
+ 3 Z Lo.44iiGii (1) G (i) Gii (iv + iw) Gii (iv' + w)Dosiiss + -+ -
Clearly, ®[G,Tg10c] and >, ¢[Gii, Toyiiii] differ already at second order. Hence, although ¢ in

Eq. (2.40) is the exact LW functional on each lattice site, the approximation comes in through the
arguments.

2 Sums yielding local quantities should be considered normalized by the number of k points in the Brillouin zone.
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DMFT Gloc(w) = A(w)
o-o0-0- >
O . t O iteration
000 ~—e—

input: X =0 Y(w)

Aa(w) output at convergence:
Y (w) corresponding to
& ®PMFT[G To] with
Gl (@) = Grh(w) - ZW)

Figure 2.13 Illustration of the DMFT algorithm. The lattice model (with hopping amplitude t) is mapped
onto an impurity model with a hybridization function A [Eq. (2.36)], self-consistently determined from Gioc
and ¥ through Eq. (2.39). An impurity solver is used to find the (frequency-dependent) self-energy of this
Anderson-type impurity model. Convergence is achieved by iteration, starting, e.g., from the uncorrelated
problem with ¥ = 0. The resulting self-energy of the self-consistent impurity model corresponds to the
functional derivative of the (lattice) LW functional ®°MT[G,T'o] = 3", ¢[Gis, To], evaluated at Gii, the
local part of the physical propagator fulfilling Dyson’s equation on the lattice.

If we deduce the self-energy from the LW functional according to X[G,T'g] = 69/0G [Eq. (2.29)]
and denote the skeleton self-energy as ¥ = X[G, o], the DMFT approximation (2.34) immediately
0®  (DMFT)

follows: 56
YR = ———— = G
”( ) (5Gij(iy) *J (SGii(iV)
An important consequence is that DMFT is a conserving approximation in the sense of Baym and
Kadanoff [BK61, Bay62] (which is summarized very briefly in Sec. 2.3.1.4). From this perspective,
the impurity model is a tool for summing all (local) diagrams of the functional X[G;;, U], evaluated
as Y(w) for a propagator G;;(w) realized by Gimp(w). The space of local propagators is explored by
iteratively varying the hybridization function of the auxiliary impurity model. All intermediate
solutions fulfill Dyson’s equation on the impurity. However, the solution to the lattice problem is
the one that fulfills Dyson’s equation on the lattice,

G,;l(w) = G(I,lc(w) —Y(w) = Groc(w) = Z [GO_}C(w) — E(w)]
&

= 5ijESk(iV).

—1

Since the local propagator (Gloc = Gj;) under consideration is the one of the impurity model, this
means

1
Cmp () = zk: wtp—ep —B(w)’
which is precisely the DMFT self-consistency condition of Eqs. (2.37)—(2.39). We illustrate the
DMFT algorithm in Fig. 2.13.
Finally, the above relations can be directly generalized to the multiorbital context. If the
hopping matrix t;; in Eq. (2.2) is diagonal in orbital space (as in [P9]), so are G and X. The local
propagator can be obtained using the lattice density of states D,,(¢) of orbital m as

1 Dm(e)
oc,m = - d )
Gloc,m (w) zk:w+ﬂ_€k,m_2m(w) / ew—l—,u—e—zm(w)

The impurity energy levels are €4, = [ de Dy, (¢)e. However, if the dispersion €, has offdiagonal
components, as typically arises in material calculations (like [P10]), the momentum sum has to be
performed explicitly,

Gloc(w) :Z [w—l—,u—ek—E(w)]_l, €4 :Zek.
k

k

This applies even if the crystal symmetry implies that the local quantities G, X, A, and €4 are
orbital diagonal [P10].
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2.4.2 Numerical renormalization group in a nutshell

The numerical renormalization group (NRG) was invented by K. Wilson to solve the Kondo problem
[Wil75]. Remarkably, it constitutes a fully nonperturbative RG transformation, and is still unique
as a real-frequency impurity solver at arbitrarily low temperatures and energies [BCP08]. The
renormalization group flow is realized by successively including bath degrees of freedom at decreasing
energy scales. It is not characterized by renormalized couplings (for any restriction to a finite set
of couplings would violate the fully nonperturbative character) but by the (low-energy) spectrum
of the Hamiltonian. Rescaling of the Hamiltonian after each inclusion of another bath degree of
freedom allows for a transparent flow diagram with various types of fixed points. However, the
rescaling is conceptually not needed for the impurity solver to work; it rather brings numerical
benefits and facilitates the interpretation.

As mentioned before, an impurity problem is fully characterized by the (imaginary part of the)
hybridization function. Even if Aa (w) originates (in the thermodynamic limit) from a continuum
of bath states [Eq. (2.36)], a diagonalization-based approach like NRG has to represent this
hybridization (for the whole range of energies within the bandwidth) by a finite number of states
[BCPOS],

Aa(w) = AR<(w) =D (i)W -&7), & >0, & <o,
n,t

In interacting quantum systems, the relevant energy scales often span several orders of magnitude
[BCPO08]. Hence, full diagonalization of the system with a linear discretization of the bath is
impossible, as the required number of bath sites exceeds all numerical resources. However, a
logarithmic discretization of the bath ensures an exponential decay of the hopping amplitudes in a
semi-infinite one-dimensional representation of the bath (Wilson chain, see below). This has two
important consequences: (i) exponentially small energy scales become accessible with only linear
increase of the chain length; (ii) to find the low-energy spectrum, an iterative diagonalization with
an intermediate truncation of high-energy states is possible.

The semi-infinite Wilson chain of the bath is obtained through a tridiagonalization of the
discretized bath Hamiltonian, transforming Eq. (2.35) into

disc + * disc ~
thb = E : (tnca,n—lctfﬂl + tnczTT,nCU»'fL—l)’ Hbath = E GHCJLJ'JLCUJL? (241)
on

o,n

where n = 1...N and ¢, = d,. This corresponds to a continued fraction expansion of the
hybridization function:

Adisc(w) _ , wtf=w + 7;0""7 €n = €p — M. (242)

wt —e —
wt — €9 —
of’ — €EN

The first hopping amplitude encodes the overall hybridization strength, t§ = > L(E)? =
J dw A (w). The logarithmic spacing (using a discretization parameter A > 1) of the representative
energies, {& ~ A™", implies the same asymptotic behavior for the spectral weights, (yF)? ~ A™™,
as well as an exponential decay of the Wilson-chain parameters, t,, €, ~ A~"/2. The important
property t,4+1 < t, (and similarly for €,) is called energy-scale separation and makes the iterative
diagonalization possible: Successively adding sites of the Wilson chain changes the system on lower
and lower energy scales. Upon adding site n + 1 of the Wilson chain, only those states of the n-site
chain with energies comparably small to ¢,,+1 and ¢,1 contribute to the low-energy spectrum of
the longer chain. Hence, to find the low-energy spectrum of the (n + 1)-site chain, high-lying states
from the previous iteration can be discarded, such that the size of the Hamiltonian matrix to be

diagonalized remains bounded from above. This procedure is illustrated in Fig. 2.14.

In the full-density-matrix NRG [WvDO07], one combines the states discarded at each iteration
(more precisely, not further resolved in energy) with “environmental” contributions for the remainder
of the chain, to construct a complete many-body basis of approzimate eigenstates [AS05]. Then,
static expectation values and dynamic correlation functions are computed from the density matrix
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Figure 2.14 Illustration of the iterative diagonalization in NRG. The hybridization function A of an
impurity model is discretized on a logarithmic grid centered around the Fermi energy, and the resulting
Hamiltonian is tridiagonalized. Consequently, the hopping amplitudes t,, along the semi-infinite Wilson
chain decay exponentially. This allows for an iterative diagonalization, successively discarding energetically
high-lying states, to find the low-energy spectrum. Combining the discarded states with their “environmental”
contributions yields a complete many-body basis of approximate eigenstates [AS05, WvDO07].

and the Lehmann representation at any temperature in an accurate and unambiguous fashion
[WvDO07]. Moreover, the one-dimensional geometry of the Wilson chain is perfectly suited for an
efficient representation in terms of matrix product states (MPS) [Weil2b]. For the NRG results
presented within this thesis, we use the QSpace tensor library developed by A. Weichselbaum,
which provides such an MPS representation [Weil2b] with a general implementation of Abelian
and non-Abelian symmetries [Weil2a]. Use of these symmetries enables a tremendous gain in
efficiency of NRG by factorizing the matrix diagonalizations and tensor contractions into the
symmetry-multiplet and the Clebsch—Gordan-coefficient space, exploiting the Wigner—Eckhardt
theorem [Weil2a]. For models with reduced symmetry, an interleaved geometry of the Wilson chain,
which shifts the discretization grids among different flavors, was proposed [MGWF 14, SMvDW16].
This provides an additional energy-scale separation between different degrees of freedom of a single
Wilson-chain site, such that high-lying states can be truncated even after adding a subset of degrees
of freedom. If this subset is only a single spinful fermionic degree of freedom, the Hilbert space grows
by a constant factor of 4 w.r.t. to the states that have been kept from the previous diagonalization.
This interleaved NRG (iNRG) procedure is crucial to make multiorbital models with reduced orbital
symmetry tractable [P9, P10].
The shifted discretization grids in iNRG are inspired from the z-averaging trick, already
employed for the single-orbital model [SMvDW16]. At high energies, the logarithmic discretization
in Eq. (2.41) or (2.42) is rather crude: Choosing slightly different representative states at high
energies would yield an appreciable change in the results. The idea of z averaging is to use several
shifted logarithmic grids [0094, BCP08], with &5, (7:5)2 ~ A~"% parametrized by z € (0, 1] under
the constraint ) o
Aa(w) = / dz AJ%% (w) ~ ni DAY (w). (2.43)

0 2 =1
The NRG algorithm clearly is a highly nonlinear process, and one cannot expect the z-averaged
NRG results to truly represent the continuum limit of the continuous hybridization Aa, despite
the requirement (2.43). However, z averaging does help to significantly improve the resolution at
high energies and removes discretization artifacts (such as spurious oscillations with period o In A).

Finally, NRG spectral functions obtained from the Lehmann representation are at first only a
collection of discrete § peaks. Since these are spaced on the logarithmic grid of energy differences
E, — E,,, one employs a log-Gaussian broadening kernel [WvDO07]. Recently, Lee and Weichselbaum
[LW16] developed an adaptive broadening scheme, where the effect of an infinitesimal z shift to
the final spectrum is tracked efficiently (using the Hellmann—Feynman theorem) in order to find a
suitable broadening width at the respective energies: Only if the resulting eigenenergies depend
strongly on the discretization (i.e., the z-dependent representative energy levels of the bath), the
corresponding spectral features should be strongly broadened; otherwise, a finer broadening width
can be used. For the NRG results presented in this thesis, we use Zitko’s and Pruschke’s version of
z averaging [ZP09] (in the numerically stable procedure developed by K. M. Stadler, see Sec. 2.2.3
in [Stal9]), the adaptive broadening scheme [LW16], and an iNRG routine, as implemented by
S.-S. B. Lee, on top of the QSpace tensor library, developed by A. Weichselbaum.
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2.4.3 Minimal models for Hund metals

The DMFT framework combines the local, atomic description (exact in the limit of ¢ = 0) with
the coherent metallic state (as trivially obtained for U = 0). Generally, in strongly correlated
metals, both the atomic and the coherent aspects are present, yet at distinct energy scales: The
degenerate spectrum of fluctuating spin and orbital moments is visible at high temperatures and
energies, and the nondegenerate Fermi-liquid state with coherent quasiparticle excitations is found
at low temperatures and energies. From this point of view, NRG is an ideal tool for revealing this
crossover as an RG flow from atomic constituents to a collective Fermi-liquid state, which can
be understood as a self-consistent (multistage) Kondo screening process [SYvD 15, DSK*19] of
charge, possibly orbital, and spin degrees of freedom.

From the DMFT+NRG perspective, the single-orbital Hubbard model exhibits charge fluctua-
tions at high energies and spin fluctuations at low energies. The former manifest themselves in the
Hubbard (side) bands; the latter in the quasiparticle peak of the local spectral function. Once the
charge fluctuations are screened, the system can be described by an effective Kondo model. If the
spin fluctuations of the local moments are screened as well, the Kondo singlet, corresponding to the
electronic Fermi-liquid state, is formed. This process occurs below the energy scale of the (spin)
Kondo temperature 7%, which decreases with increasing U. In the correlated-metal regime at large
U, Typ is strongly suppressed and the Fermi liquid only found at very small energy scales.

In multiorbital Hubbard models, the situation is more complex. After the charge fluctuations
have been screened, there remains an effective Kondo model with spin and orbital degrees of freedom
[AK15, HZM16]. In the Hund-metal phase, the orbital fluctuations are screened at much higher
energies than spin fluctuations—a phenomenon called spin—orbital scale separation and expressed in
terms of Kondo scales as Ty, > Ty, [GAMM13, SYvDT15]. As thoroughly explained in [SKWvD19],
upon increasing Hund’s coupling J (see below) at a fixed size of the bare gap (i.e., the spectral gap
in the atomic limit as a measure of Mott physics, which reduces to U in the single-orbital case), T,
decreases while 75,1, remains of similar magnitude. Thus, J can induce strong correlations through
a reduced spin coherence scale. Hund metals [YHK11] are then multiorbital systems with strong
correlations primarily arising from the Hund’s coupling J, even at moderate Coulomb repulsion U
[GAMM13]. In fact, for a long time, Hubbard U or the proximity to a Mott insulator, well known
from the single-orbital Hubbard model, was considered the main source of electronic correlations.
However, recently, it has become clear that, in Hund metals, J is the key player [SKWvD19].

What is needed for a minimal model of Hund metals? Generally, in Hubbard models, the
interaction is approximated to be local. In Eq. (2.1) and (2.4), we have already seen the local
Coulomb repulsion for the single-orbital model, with Hubbard U as its single parameter,

Higy = Unyiny = LU " didl,dyrd,. (2.44)
oo’
In multiorbital systems, the antisymmetric interaction vertex I'y can be much more complex. We
can immediately write down an interaction with an additional coefficient J,

I:[int,2 = %U Z Jinadjn/alczm/a’czmo + % J Z Czingdjn/g/ﬁzmo’(jm/ov (245)

mm'oo’ mm’oo’

fulfilling SU(2) spin symmetry and SU(M) orbital symmetry (where M is the number of orbitals).
The first term in Eq. (2.45), proportional to Hubbard U, looks very similar to Eq. (2.44) and
encodes density—density terms, as the creation and annihilation operators are labeled in the same
way by orbital and spin indices. By contrast, the second term in Eq. (2.45), proportional to Hund
J, includes exchange processes that are only possible with more than one orbital.

To understand the effect of J, we rewrite Eq. (2.45) with as many number operators 7, =
djmcfma as possible,

Hio =U Y ittty + U Y fomgiiry + (U =) Y fumotiore —J D db admydl, dyt,
m m#m/ m<m/’,o m#m/

(2.46)

where U’ = U — J. We find that J reduces the density—density interaction between electrons in

different orbitals, most strongly for electrons with aligned spin. Further, it introduces a spin-flip
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term, as seen in the last summand in Eq. (2.46). An even more transparent expression is obtained
by using the total charge and spin operators, N =% fi,,, and § = % Y o moo’ dimrm,,dmal, where
T are the Pauli matrices. Then, the Hamiltonian reads

Higo = 2N+ LU = 21N (N —1) - J§. (2.47)

Here, the first summand is merely a shift of the chemical potential; the second penalizes large
occupation due to the mutual repulsion of each of the N electrons from its N — 1 partners. The last

term, —J 5'2, favors a large, local spin. It induces long-lived spin fluctuations and thus a reduced
spin coherence scale Ty,. The energetically favorable maximization of the total spin is known as
the first rule due to F. Hund [Hun25].

From Eq. (2.46), it is obvious that Hund-metal physics can only be observed in multiorbital
systems. Further, the spin operator S, used in Eq. (2.47), distinguishes different ground-state
sectors only if their average occupation N exceeds unity and different combinations of spins can be
formed. Finally, by using either the particle or hole representation (such that N < M), it is clear
that the Coulomb repulsion %]\7 (]\7 — 1) acts most prominently at half filling, with the maximal
number of either particles or holes—a configuration inducing Mott physics of localized charges. We
thus conclude that a minimal setting for Hund metals (multiple orbitals with 1 < N < M) at the
experimentally most relevant integer filling requires three orbitals at a filling of N = 2 (particles
or holes). This is indeed the case for the ruthenates, with four electrons distributed among the
three ¢4 orbitals [GAMMI13]. The Fe-SCs have five correlated (f24 and eg) orbitals occupied by
four electrons, similarly enabling a strong effect of J [dM14].

The minimalist interaction (2.47) already describes the dominant effect of spin alignment in
Hund metals. In total, there are three Hund rules, the second of which dictates the maximization
of the total angular momentum at the given, maximized total spin. For the three-orbital case of ta,
physics, the angular-momentum operator has components Itm = izamm, emm/muﬁm,gcimugf, with
the Levi-Civita symbol €7~ [GAMM13]. To incorporate L, the orbital SU(3) symmetry of the
interaction (2.45)—(2.47) (with M = 3) must be reduced to SO(3)-symmetric form [GAMM13],

Hines =U Y fimgfimy + U Y gy + (U = J) D fimolimo

m m#m/ m<m/,o
—-J Z CiTdemJ,Cﬁm/‘Ldm’T + Jp Z dTmTCiTmidm’idm’% (248)
m#m/ m#m/

including an additional pair-hopping term with prefactor Jp = U — U’ — J. In the physically
relevant setting, Jp = J and thus U’ = U — 2J [GAMM13]. Then, from the equivalent expression

His = 2JN + 3(U = 3J)N(N —1) — 278" — LJE?, (2.49)

the hierarchy in the first two Hund rules (first maximize total spin and then total angular momentum)
can be directly understood from the respective coefficients, 2J > %J . Finally, the third rule requires
the inclusion of spin-orbit coupling via a term proportional to LS. Regarding DMFT treatments,
this drastically increases the numerical effort in Monte Carlo solvers due to the sign problem, and
appears challenging but feasible with NRG [Leel9] (see [LZH'19] for a recent work using matrix
product states). However, a discussion of spin-orbit coupling exceeds the scope of this work.

2.5 Diagrammatic extensions of dynamical mean-field theory

The DMFT framework has enabled a breakthrough in the understanding of strongly correlated
electron systems, including phenomena such as quasiparticle renormalization and metal-insulator
transitions. Yet, it only describes local correlations, whereas many fascinating effects, like high-
temperature superconductivity or quantum criticality, crucially depend on nonlocal correlations.
To treat those, while building on the success of DMFT and its power as nonperturbative method
exact in both opposite limits U = 0 and ¢ = 0, nonlocal extensions of DMFT have to be explored.

For that purpose, a natural and important approach is to extend the exact treatment from
a single site to a cluster of a few sites. These cluster extensions of DMFT [MJPHO5] have the
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advantage that they possess a clear control parameter: the cluster size. However, due to the
exponential growth of the Hilbert space with system size, numerical results are limited to clusters
of about 10 x 10 sites, and correlations remain more or less short-ranged [RHT18]. For the same
reason, inclusion of multiple orbitals in cluster DMFT appears very challenging. Additionally,
using Quantum Monte Carlo as cluster solver in the presence of complicated interactions or lattice
geometries (such as frustrated lattices) soon becomes impossible due to the sign problem.

An alternative approach, which we focus on in this section, is given by diagrammatic extensions
of DMFT [RHTT18]. There, nonlocal correlations are computed via Feynman diagrams, often
directly in the thermodynamic limit, allowing for truly long-ranged correlations. The inclusion of
multiple orbitals comes with additional arguments of vertex functions—a significant but feasible
complication. Nevertheless, diagrammatic extensions of DMFT are harder to control than their
cluster counterparts. One has to make a selection in the classes of diagrams to include, based on
physical or heuristic arguments.

In our view, the most promising candidates for diagrammatic extensions of DMFT, for models
with competing instabilities originating from local interactions, are the dynamical vertex approxi-
mation (DT'A) [TKHO07, HKTO08], a functional RG flow starting from DMFT (DMF2RG) [TAB*14],
and the dual fermion (DF) formalism [RKLO8]. Below, we give a short and strongly simplified
overview of these approaches, using a chain of arguments from nonlocal susceptibilities in DMFT via
ladder and parquet DI'A [RHT 18] towards DMF?RG and briefly anticipate multiloop DMF2RG
(introduced in Chapter 3). Furthermore, we argue that the DF formalism, albeit conceptually
appealing, may not be optimal from a computational point of view. We here mention only briefly
that methods with auxiliary bosonic degrees of freedom, such as the dual boson [RKL12] or TRILEX
[AP15] approach, are useful for models with nonlocal interactions or a single, known instability.
However, in the presence of competing instabilities, one still needs to accurately resolve the fermionic
four-point vertex [P1], and the locality approximation of the three-point vertex in TRILEX seems
too severe of an approximation.

2.5.1 Nonlocal susceptibilities in DMFT

In DMFT, correlations are approximated as local, but one can still compute nonlocal propagators
and (generalized) susceptibilities [GKKR96]. Technically, the locality approximation is

PPV T o] = Z¢[Gn‘, Loiiiil, YPMET =3 IDNET = T -

Here, we use a representation in terms of Matsubara frequencies and momenta (suppressing spin
and possible orbital indices for clarity) via fermionic and bosonic energy-momenta k = (iv, k) and
q = (iw, q), respectively. We consider the particle-hole vertex in the a channel for concreteness.
The nonlocal propagator follows from the local (1PI) self-energy [cf. Fig. 2.2(a)],

Gl=Gyt-% & Gp=Gok+ GorX,Gy.

The nonlocal generalized susceptibility is obtained from the local 2PI vertex I,

—1 —1
Xo =1, =1, & Xask,k',q = Hak k' q + E Wask kg Lasvn va 0 Xaska, b g5 (2.50)
ki1,k2

where gk kg = GrGriqOr i [cf. Fig. 2.8(a)], and the sums are considered normalized. The
(nonperturbative) ¥ and I,, used in these relations, are computed from the self-consistent (), G =
G™P) impurity model either directly or through inversion,

_ ~imp,—1 imp,—1 — 1rimp,—1 imp,—1
YX=G,"" T =G I, =11, - Xa .

The inversion related to the single-particle self-energy can easily be done. However, the inversion
of the two-particle generalized susceptibility (usually performed in a spin-resolved representation) is
much harder and gave rise to a fundamental observation [SRG*13, SCW 16, GRS*17, CGST18,
TGCRI8]: For certain (infinitely many) parameters, the nonperturbative x,.,, ,, viewed as matrix
in v and ¢/ for fixed transfer frequency w, has vanishing eigenvalues. This implies divergences of
the 2PI vertex I,, even in the absence of a (physical) phase transition. These divergences only
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occur for the auxiliary object I, and not for the full vertex, I': Only I, involves a matrix inverse
while T" is simply obtained by amputating legs (“reg.” denotes regular terms):
I, o< x; '+ reg., Fi,r,nﬁw X Xaw,w' w/(G‘mpG;nj};GlmpGlumiw) + reg.

In the decomposition I' = I,. + ~,., divergences of I,. and -, thus cancel. This indicates an intrinsic
barrier for many-body frameworks that employ 2PI vertices taken from a nonperturbative solution.

For the ladder-type construction in Eq. (2.50), one can circumvent the potentially divergent 2PI
vertex by using the BSE not for the generalized susceptibility but on the vertex level [Eq. (2.32)].
To explain this trick, known from ladder DT'A applications [RHT'18], we isolate the 2PT vertex,

Ffl + Ha _ I;l _ Fimp,fl + Hilmp’
and then define d11, = II, — III™P to get
=t =rme=t 1, & [ = TP 4 TP o 6T, o T (2.51)

Hence, we can use I'™P as “irreducible building block” in the vertex BSE if the corresponding
two-particle propagator is adjusted to 6Il,. Finally, Eq. (2.51) can also be written via purely
nonlocal propagators, Gr = Gi — G™P and thus Ha kg = Gkékﬂék,k/. Since the vertex I
depends only on the transfer momentum g, one finds at DMFT self-consistency (3, G = GIP)
that

imp 2 : imp imp ~imp
FVJ";Q FV vw + FV v, w k+q G Gu+w) v, ,q

_ Funp o + Z Filmypw k+q G G1mp - GlmpG;;_;,_q + G1mPGLT1F:u)FD7D/7q

v, v+w
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_ Flmp + Z rimp A Gk+qF’7 Vg (2.52)
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2.5.2 Ladder DT'A

Having a momentum-dependent ladder vertex I', . , available, it is an intuitive step of ladder DI'A
[TKHO7, HKTO08] to compute a momentum-dependent self-energy through the self-consistent SDE
(2.12),
Yr=YXu+U Z Gk/GkuqukJrqPZ?L’V’q. (2.53)
k' .q
Here, ¥y = Un, is the Hartree part at density n, and spin symmetry was assumed. The resulting

G, can be used for a modified self-consistency condition of the impurity model, >, G . Gmp,

Local susceptibilities, e.g., Xo0 (T) = (Trfie (T)4(0)) —n2, with time-ordering operator T, can be
computed both from the impurity model and on the lattlce. Thelr results (even at self- consmtency)
can generally be different,

= Z Xa;k,k!,q = ZGka+q+ Z Gka+q Vl/’,qu’Gk’+q

k.k'.q k.k'.q

= Z GlmpGLn—q&-E) + Z Gka-i-quV’,qu/Gk%q
k,k'.q

imp imp imp imp imp imp 1mp 1mp
#3 GIPGR 4+ GEPGIR T GUPGET = X
v

v,

Indeed, due to the crude approximation in the vertex I', ./ 4, they often differ considerably. What
is more, sum rules of local susceptibilities are determined by local equal time correlators, such
as the previously mentioned Zw Xoow = No(l —ny). In ladder DT'A, one introduces auxiliary
parameters—the “Moriyaebque A correction”—in the susceptibility for each channel r through
the transformation x;.; — x;.4 + Ar and tunes the A, to fulfill such sum rules [RHT"18]. The
SDE (2.53) can be rewritten to incorporate the transformation as well [RHT*18]. This heuristic
correction is responsible for a number of helpful properties in ladder DI'A; particularly, it reduces the
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susceptibility and ensures the absence of a finite-temperature phase transition in the 2D Hubbard
model [RHTT18]. However, it is surely not fully satisfying from a conceptual point of view and
might serve as a motivation to further refine the nonlocal vertex.

2.5.3 Parquet DT'A

The parquet formalism provides a recipe for a channel-unbiased treatment of self-energy and
vertex. It combines all diagrammatic contributions of the maximally feasible numerical complexity
O(N, ,f), while assuming as input a given totally irreducible vertex, R. Previously, we discussed the
purely diagrammatic PA with R = T'y. Parquet DI'A [TKHO07, HKTO08] goes much beyond this
by merely approximating R to be local, i.e., by taking the fully nonperturbative R™P from the
exact solution of a self-consistently chosen impurity model.> Compared to DMFT, parquet DA
thus reduces the locality approximation from 3 and I, to the most fundamental diagrammatic
building block on the two-particle level, R. By solving the parquet equations with R™P on the
lattice, one obtains nonlocal correlation functions on the one- and two-particle level, subject to the
parquet self-consistency. Often the impurity model from DMFT is used, but one can also impose
self-consistency between lattice and impurity on Gy resulting from the parquet iteration. The
QUADRILEX formalism [AP16] (derived from a functional point of view) additionally provides a
self-consistency condition for a retarded interaction on the impurity.

The numerical challenge of parquet DI'A consists of the following aspects: (i) multiple solutions
of an impurity model, which also provide the full vertex, I'™P  at self-consistency; (ii) inversions of
the parquet equations on the impurity to deduce the totally irreducible vertex, Ri™P, from I''™P; and
(iii) solutions of the parquet equations on the lattice using R = R™P. Given the enormous advance
of impurity solvers over the last decades [GKKR96, RHT 18], the hardest step is (iii), solving
the parquet equations with fully frequency- and momentum-dependent vertices. In principle, such
costly objects are already present for any solution of the lattice parquet equations, including the PA
with R = I'g. However, additional difficulties for the parquet solver arise due to the complicated
starting point taken from DMFT. On the one hand, at strong coupling, R™P is expected to be
large, making it hard to converge a solution of the parquet equations. On the other hand, the
divergences of 2PI vertices inherent in a nonperturbative solution—although hidden in the physical
and regular 1PI vertex I'—are at full display in R™P. If the system parameters are close to such
divergences, the parquet algorithm then starts from ill-defined diagrammatic objects.

2.5.4 DMF*RG

Instead of disassembling the nonperturbative vertex I'™P from DMFT into a possibly ill-defined
diagrammatic object R'™P in order to reassemble lattice correlators, a more elegant approach is to
continuously evolve the solution from the self-consistently determined impurity model towards the
lattice problem. In 2014, the method of DMF?RG was introduced [TAB*14], where a functional
RG flow is used for that purpose. The RG parameter A in the bare propagator G, normally used
to distinguish energy scales, is now used to interpolate between the impurity and lattice problem.
A simple realization of an fRG flow, going from the DMFT solution with self-consistent A at A; to
the lattice model with dispersion € at Ay, is given by [TAB*14]

1

A

= Ai=1, A;=o0. 9.54
Go iv+pu—(1—ANex — AA,’ 1 =0 (2.54)

The evolution of * and T from the impurity to the lattice is governed by the fRG flow equations.

In the original article [TABT14], promising results were obtained despite a coarse parametrization
of the vertex. Since then, much progress has been achieved in this regard, most notably by adapting
the parametrization to each two-particle channel individually. This allows one to (i) single out
the high-frequency asymptotics [WLT116], as illustrated in Fig. 2.15, and (ii) expand the weak
dependence on “fermionic” momenta in form factors [LSAIPR*17]. Moreover, Vilardi et al. [VTM19]
proposed a refined interpolation scheme, which employs a function g2, numerically determined for

3 Pioneering computations indeed suggest a weak momentum dependence of R in the Hubbard model [MJS06].
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(a)

Figure 2.15 (a) Illustration of an efficient frequency parametrization of

the vertex by including high-frequency asymptotics [WLT*16]. The to-
;,7 V=00 tally irreducible vertex, R, decays in all frequency arguments. By contrast,
the 2PR vertices, 7,, only vanish when their respective bosonic transfer
frequency w is taken to infinity. In the parametrization of [WLT16], we
write (suppressing indices 7 and using ©),|<q = ©(Q2 — |v|) for brevity, cf.
supplement of [P2]) 600 = K10Owj<; + Kg;w,y@lwkﬂg@‘ukﬂg +

K2/;w,w@‘w\<szg@|D/|<Q£ + KB;W,V,V/e‘wkng@|V|<Q§@|V,|<Q£, with Q1 >

Q‘;’f > Qg’f. This implies an overarching Ki,, = lim|,||v/|= 00 Vriw,v,v’
, : dependence (gray line), extending through the whole three-dimensional
space. Rectangles of Ky0) potn = lim‘,j(,)l_)oo Vriw vt — Kiiw, (red and
blue) take the dominant two-dimensional frequency dependence into
account, and the actual three-dimensional K3 dependence is restricted
to a small (green) box. (b) For each slice at fixed w, K1 gives a back-
ground value, K, lines describe the one-dimensional dependence, and
(b) I_ K3 contributions are confined to a small rectangle. Importantly, the
channel-dependent high-frequency asymptotes K; , and K. 2(n , can also
be determined from the full vertex, I' [WLT16]. The intricate K3,
decays in all frequency directions; it need not be channel-resolved but can
be gathered as K3 = R+ ZT K3, after subtracting the asymptotics from
I'. Hence, the parametrization is well suited for DMF?RG, too, where
one wants to avoid dividing the DMFT vertex into two-particle channels.

all A before the flow, such that

G Ly P A)l e Aelal (2.55)
w+p—(1-ANe — ghA, —

With this choice, the single-scale propagator S2 = 8AG |z: Aconst 18 Purely nonlocal at the initial

scale A;, i.e., Y SA = (0. Then, the flow actually starts with YA = 0 and T'A = 0 before Gy
incorporates the k dependence at A < A;. Likewise, the initial contribution of the six-point vertex
to the flow of the four-point vertex, Zk Fl(,?)’,g,ys,w,Sk, vanishes.

Nevertheless, the six-point vertex acquires nonlocal contributions during the flow, and ), S A
does not hold at A < A; because of the self-energy contribution. The neglect of T'®) is thus the
crucial approximation which limits the accuracy of the DMF?RG flow. In Chapter 3, we present a
multiloop fRG (mfRG) flow, which incorporates all contributions of the contracted six-point vertex
at the complexity O(N, ,3) of the parquet algorithm, using iterative combinations of differentiated
four-point vertices. We expect this to significantly improve the DMF?RG flow and achieve the
same accuracy as parquet DI'A, while the approach retains the numerically efficient structure of a
differential equation and avoids any appearance of 2PI vertices.

Finally, since part of the 1PI six-point vertex appearing in the fRG hierarchy of flow equations
can be replaced by four-point objects in the mfRG reformulation of the parquet equations, we draw
the important conclusion that the influence of three-particle (and higher) interactions is formalism
dependent. In the following, we discuss how the dependence on the six-point vertex (even involving
1PR contributions) is responsible for computational challenges of the DF formalism.

2.5.5 Bare vertices in the DF formalism

The dual fermions [RKLO08] are auxiliary degrees of freedom introduced by a Hubbard—Stratonovich
decoupling of the quadratic (instead of the usual quartic) part of the action into a local and nonlocal
part. The local part can be integrated out, giving rise to the DMFT solution; the nonlocal part is
carried by the dual fermions. However, the bare action of the dual fermions is highly nontrivial
and consists of all local DMFT vertices [RHTT18]. The bare dual propagator (purely nonlocal at
DMEFT self-consistency) is given by

_ 1 _
Coe = - —am S G TE (2.56)
k
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Figure 2.16 (a) Illustration of the SDE for the self-energy including bare six-point vertices, as it occurs for
dual fermions. In fact, the infinite number of bare vertices in the dual action implies infinitely many more
terms. By using a modified self-consistency condition, Zk Gr =0, the terms with green lines contracting
local, bare vertices can be forced to vanish. (b) Contributions to the bare dual (i.e. renormalized impurity)
six-point vertex start with this second-order diagram, 1PR in the impurity (i.e. DMFT local) propagator.

The bare vertices are given by fgn24) = I‘if;?jr(fpzé). Importantly, these include 1PR contributions

(except for the four-point vertex). The translation from the dual to the actual self-energy reads
Sy

Ypy=xmr gy =
g 1+ GU"PYy

(2.57)

While 3 is 1PT w.r.t. G lines, it does contain contributions that are 1PR in G'™P lines. These are
then canceled by the denominator to yield a 1PI self-energy of the original fermions [RHT18].

The DF formalism provides a conceptually appealing perturbation theory around DMFT, using
nonlocal (dual) degrees of freedom and without reference to bare parameters of the system. By
contrast, the SDE in DI'A retains the bare interaction, U. However, since the dual action contains
bare n-point vertices of arbitrarily high n, it is computationally very challenging. In other words,
the clean formulation of DF comes at the price of a profound influence of high-point vertices.

For instance, recalling the derivations in Sec. 2.3, one understands that an infinite-order bare
action yields an SDE for the self-energy that includes an infinite number of terms. Already the
six-point vertex gives rise to a number of additional terms, as illustrated in Fig. 2.16(a). While
some of them can be forced to vanish by imposing a modified self-consistency condition in terms
of the full dual propagator, >, G = 0 [cf. Eq. (2.56)], other terms contribute in the same way
as those parts involving four-point vertices only. As the 1PR six-point vertex starts already at
second-order in the (effective) interaction [see Fig. 2.16(b)], its first contribution to ¥ then starts at
third order. Hence, if we briefly consider the bare perturbation theory of the self-energy, the DF
formalism requires the six-point vertex already at order U3, whereas DI'A (and even the PA) yields
the exact self-energy up to corrections of order U®, using only four-point vertices.

An infinite resummation of dual diagrams has so far only been obtained in ladder form [RHT " 18].
The simplest self-energy diagram involving the six-point vertex has been considered for testing
purposes, showing that it actually yields significant contributions in some parameter regimes
[RRH17, RGIT17]. Furthermore, it has been argued that the denominator in Eq. (2) should be
neglected when six- and higher-point vertices are not included in the perturbative series, since it
otherwise introduces rather cancels spurious 1PR contributions [Kat13]. Yet, numerical results
show that this actually deteriorates agreement of DF results with benchmark data [GKH17]. One
might interpret this as evidence that the diagrammatic treatment of the dual problem has not yet
matured sufficiently. Finally, in the presence of competing instabilities, any ladder approximation
breaks down, and a dual parquet approach is needed. However, the bare six- and higher-point
vertices also complicate the vertex part of the parquet algorithm, as they produce contributions
to R starting already at lower orders than the envelope diagram [cf. Fig. 2.11(d)]. This might be
related to the tentative observation that the parquet equations are harder to converge in the dual
theory (neglecting six- and higher-point vertices) than for the original fermions (in DI'A) [Rib18].

In summary, we have provided a list of arguments that advocate multiloop DMF?RG as an
advantageous diagrammatic extension of DMFT. This approach promises the accuracy of parquet
DI'A in a numerically more efficient setting and, particularly, circumvents potentially divergent 2PI
vertices (see Chapter 3). The DF formalism, a conceptually appealing alternative, does not require
2P1 vertices either, but poses a number of computational challenges for accurate solutions in the
dual theory.
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3 Multiloop functional renormalization group

3.1 Overview

Strongly correlated electron systems pose formidable challenges for computational methods: Strong
correlations require treatments beyond the mean-field level, and nonlocal correlations even those
beyond DMFT. Finite-size approaches reach their limitations to resolve long-range fluctuations, and
the specialized tools of one dimension [e.g. Bethe Ansatz and the density-matrix renormalization
group (DMRG)] fail to work in the physically most relevant case of two and three dimensions.
A class of methods suitable to deal with these systems is given by quantum field-theoretical
techniques. From the diagrammatic perspective, strong correlations demand going beyond finite-
order perturbation theory, and competing instabilities beyond simple, single-channel resummations.
Proper diagrammatic resummations are formulated in terms of the self-consistent parquet equations,
which are, however, numerically very challenging.! From the RG point of view, fRG flows are a
viable tool for a channel-unbiased description reaching beyond the weak-coupling regime. However,
fRG has been plagued by a limited predictive power due to the nontransparent approximation in
the truncation of the infinite hierarchy of flow equations, which is responsible for results depending
on the choice of regulator, ambiguous ways to compute response functions, and spurious vertex
divergences.

This raises major conceptual questions: Can we eliminate these flaws of fRG while keeping its
versatile and efficient structure? Can we find a rigorous relation between the parquet and fRG
frameworks? Can we make the self-consistent parquet algorithm numerically more robust and fRG
flows quantitative?

The following series of papers documents the development of the multiloop functional renor-
malization group (mfRG), which achieves precisely that. In the first article [P1], we investigate
whether a simple truncation of an fRG flow following a multichannel Hubbard-Stratonovich (HS)
transformation, as proposed by [LDSK15], can provide a resummation of the parquet diagrams—
finding that this is not the case. Instead, we show that the HS transformation does not save one
from having to calculate the fermionic four-point vertex. On top of that, with or without the
HS transformation, the parquet diagrams include 1PI n-point vertices of arbitrarily high n in the
standard, one-loop fRG hierarchy of flow equations. In the subsequent publications, we diagram-
matically construct the mfRG flow, which does sum up all parquet diagrams, using an iterative
multiloop construction of differentiated vertices. In [P2], we provide a transparent derivation of
the mfRG vertex flow for the prototypical X-ray—edge singularity, demonstrate numerically the
improvement over the truncated one-loop fRG, and prove the equivalence of mfRG and the PA
by an analytical enumeration of all involved diagrams. In [P3], we extend the mfRG construction
to the general fermionic many-body problem. There, the—in principle—exact fRG self-energy
flow has to be amended, too, when working with the vertex in the PA, in order to reproduce all
diagrams of the parquet equations in conjunction with the SDE for the self-energy. The following
article? [P4] first presents the diagrammatic derivation of mfRG flow equations for response function,
and then applies the formalism to the 2D Hubbard model. Next to the multiloop extension, it
combines several methodological advances in the numerical implementation and demonstrates how
fRG results can be brought under quantitative control, even for models as challenging as the 2D
Hubbard model. Finally, publication [P5] presents an algebraic derivation of flow equations from
self-consistent many-body relations. It develops a clear framework for constructing (multiloop
functional) RG flows in diverse settings, particularly for nonlocal extensions of DMFT. It also shows

1 As explained in Sec. 2.5, the parquet equations with input from DMFT suffer from parameter regimes that
constitute an ill-defined diagrammatic starting point, where nonperturbative 2PI vertices diverge. Intriguingly,
this is directly related [GRST17] to the multivaluedness of the LW functional [KFG15, VWFP18], hampering bold
diagrammatic Monte Carlo approaches.

2 The implementation of the mfRG code for the 2D Hubbard model and the analysis of the results are mainly due
to A. Tagliavini and C. Hille. The author of this thesis played an important role in deriving the multiloop flow
equations for the response functions and contributed to writing the manuscript.
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how two-particle diagrammatic resummations can be performed without potentially divergent 2PI
vertices and resolves long-standing questions on the fulfillment of conservation laws in the PA.
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Fermi-edge singularity and the functional renormalization group
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(Dated: May 15, 2018)

We study the Fermi-edge singularity, describing the response of a degenerate electron system
to optical excitation, in the framework of the functional renormalization group (fRG). Results for
the (interband) particle-hole susceptibility from various implementations of fRG (one- and two-
particle-irreducible, multi-channel Hubbard-Stratonovich, flowing susceptibility) are compared to
the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the
parquet equations. For the (zero-dimensional) special case of the X-ray-edge singularity, we show
that the leading log formula can be analytically reproduced in a consistent way from a truncated,
one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this
derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the

X-ray-edge singularity and does not generalize.

I. INTRODUCTION

Fermi-edge singularities describe infrared divergences
in optical spectra arising from the discontinuity of the
electronic distribution. The advance in the experimental
techniques of cavity quantum electrodynamics [1-3] has
renewed the need for a precise understanding of such
response functions of degenerate Fermi systems to opti-
cal excitation. From a theoretical perspective, the study
of the X-ray-edge singularity serves as a prototypical
fermionic problem which exhibits a logarithmically di-
vergent perturbation theory [4]. Whereas a solution of
the (interband) particle-hole susceptibility via parquet
equations [5, 6] amounts to rather involved computational
effort, Lange et al. [7] have recently suggested to perform
this resummation via simple approximations in a func-
tional renormalization group (fRG) scheme. Here, we
confirm that it is, indeed, possible to reproduce the (first-
order) parquet result from a truncated, one-loop fRG flow
without further approximations. However, a detailed anal-
ysis of the underlying diagrammatic structure shows that
this conclusion relies on fortuitous partial cancellations
special to the X-ray-edge singularity.

In more detail, experimentally, X-ray absorption in
metals has been a topic of interest for a long time. Simi-
lar measurements with infrared light can be performed
using heavily doped semiconductors. Whereas photon
absorption in metals typically excites a localized deep
core electron, effects due to the mobility of valence-band
electrons in semiconductors can significantly alter the
absorption spectrum [2]. When a quasi-two-dimensional
layer of such a semiconducting material is placed inside an
optical cavity, the reversible light-matter coupling leads
to the formation of half-light, half-matter excitations,
attributed to the so-called polariton [8]. Properties of
the microcavity system are deduced from the polariton,
i.e., from the photon dressed by light-matter interaction,
bringing its self-energy into focus [9-11]. To leading or-
der in the coupling, this self-energy is proportional to
the particle-hole susceptibility, well-known from the stan-
dard literature on the Fermi-edge singularity [5, 6, 12-15].

The effect of light-matter interaction on the photon is
thus governed by a correlation function of the fermionic
system.

The basic theoretical formulation of the X-ray-edge
singularity involves a localized scattering impurity, corre-
sponding to a deep core level of a metal. In this form, the
problem is exactly solvable in a one-body approach, as per-
formed by Nozieres and De Dominicis [12]. This approach
is, however, limited to the special case that the scattering
impurity is structureless. If the problem is tackled in a
many-body treatment, the solution can be generalized to
more complicated situations and has relevance for other
problems involving logarithmic divergences. This includes
the Kondo problem [16, 17] as well as the generalization to
scattering processes involving a finite-mass valence-band
hole, as necessary for the description of optical absorption
in semiconductors [13, 14].

In a diagrammatic treatment of the Fermi-edge sin-
gularity, logarithmic divergences appear at all orders,
demanding resummation procedures. A suitable resum-
mation, containing all leading logarithmic (log) diagrams,
can be phrased in terms of parquet equations. These con-
sist of coupled Bethe-Salpeter equations in two-particle
channels; here, distinguished by antiparallel or parallel
conduction-valence-band lines [5]. Parquet equations can
be used in a variety of theoretical applications [18], and
it is worthwile to explore whether results comparable
or even equivalent to solving those can be obtained by
alternative resummation techniques, such as fRG.

The functional renormalization group is a versatile
many-body framework, which has proven to give accu-
rate results for low-dimensional fermionic systems [19, 20].
Different realizations and approximations of an exact hi-
erarchy of differential equations for vertex functions allow
for rich resummations in the calculation of correlation
functions. Inspired by Lange et al. [7], we study the Fermi-
edge singularity and show that, for the (zero-dimensional)
special case of the X-ray-edge singularity, it actually is
possible to analytically derive the (first-order) parquet
result from a one-loop fRG scheme. However, this deriva-
tion relies on fortuitous partial cancellations of diagrams



and cannot be applied to more general situations. We
further show that various truncated fRG flows (see below)
do not provide a full summation of parquet diagrams.
Though this conclusion may seem disappointing, we be-
lieve that the analysis by which it was arrived at is very
instructive and motivates the extension of one-loop fRG
by multiloop corrections. Indeed, in two follow-up pub-
lications [21, 22], we present a multiloop fRG flow that
does succeed in summing all parquet diagrams for generic
many-body systems.

The paper is organized as follows. In Sec. II, we give the
standard formulation of the Fermi-edge and X-ray-edge
singularity. The basics of the parquet solution are briefly
reviewed in Sec. III, before, in Sec. IV, we introduce
the fRG framework in its one-particle- and two-particle-
irreducible form. In Sec. V, we apply the fRG flow to the
fermionic four-point vertex and construct the particle-hole
susceptibility at the end of the flow. Furthermore, we
briefly consider the potential of computing this suscepti-
bility using a Hubbard-Stratonovich transformation. In
Sec. VI, we rephrase the particle-hole susceptibility as
a photonic self-energy to obtain a “flowing susceptibil-
ity”; we compare results from using a dynamic and static
four-point vertex and use the latter approach to analyti-
cally reproduce the parquet formula. We also relate our
findings to the work by Lange et al. [7] and show how
their treatment can be simplified. Finally, we present our
conclusions in Sec. VII.

II. FERMI-EDGE SINGULARITY

In this section, we review the standard formulation
of the Fermi-edge singularity for a two-band electron
system. We are interested in the (interband) particle-hole
susceptibility, describing the response to optical excitation.
A typical absorption process, where a photon lifts an
electron from the lower to the upper band, is shown
in Fig. 1(a). There, we anticipate the simplification to
the X-ray-edge singularity, ignoring kinetic energy in the
lower band, thereby considering a static, photo-excited
scattering impurity.

Before going into detail, let us state more generally the
Hamiltonian of the Fermi-edge singularity,

U
H' =Y eche, + Y Bydld, + v > gl gl
k k kpq
(1)

describing a two-band electron system with interband
(screened) Coulomb interaction of the contact type (Uq =
U > 0). The operator ¢k (dg) annihilates an electron in
the conduction (valence) band, V' is the volume, and the
dispersion relations eg, Fk, account for any intraband
interaction in a Fermi-liquid picture. This is supposed to
work well when electronic energies close to the Fermi level
1, which we take to be on the order of the conduction-
band width, dominate. Using the effective electron and

—Eg

FIG. 1. (Color online) Bandstructure illustrations for two-
band electron systems with chemical potential x4 and band
gap Eq¢. (a) X-ray absorption in metals typically excites a
localized, deep core level to the conduction band. The flat
band acts as a two-level scattering impurity for conduction
electrons. (b) A similar process occurs with infrared light in
(direct-gap) heavily doped semiconductors. Only in the limit of
infinite valence-band (hole) mass, one reverts to the situation
of (a). Accounting for the mobility of the hole, scattering
processes of conduction electrons on top of the Fermi surface
cost a finite amount of energy, the recoil energy Eg.

hole masses, m and my, one has (h=1)
Eg > 0. (2)

Note that we further ignore Auger-type interactions con-
taining three ¢ or d operators, since such transitions are
suppressed by the size of the band gap Eg. This allows
us to treat electrons from both bands as different fermion
species, each with conserved particle number. With the
targeted (leading log) accuracy (cf. Sec. IIT), including
spin degeneracy (while keeping the density-density in-
teraction) only results in a doubled density of states p
[12]. In two space dimensions, the free density of states is
m/(27); in other cases, one approximates p by its value
at the Fermi level [cf. Eq. (11)].

The particle-hole susceptibility is a two-particle corre-
lation function, given by

T(q,0) = 3 SUTa 0k (kg (000, (0, (3)

k.p

with time-ordering operator 7. It exhibits an infrared
divergence—the Fermi-edge singularity—which is cut by
the (valence-band) recoil energy [11, 13] at Fermi momen-
tum, equal to - m/my, [cf. Fig. 1(b)].

For the case of a polariton experiment using, e.g., a
GaAs semiconductor [2], one has a ratio of effective masses
between the conduction and heavy-hole-valence band [11]
of m/my, ~ 0.14. Considering X-ray absorption in metals,
one usually encounters the excitation of a localized, deep
core level to the conduction band [cf. Fig. 1(a)]. This
motivates the severe simplification of an infinite valence-
band (hole) mass, corresponding to a two-level scattering
impurity, resulting in the Hamiltonian known from the
X-ray-edge singularity, (¢4 = —Eg < 0)

U
H =Y eche, +ead'd+ v > chepdtd.  (4)
k kp



Momentum dependencies in interband quantities are com-
pletely absorbed by the infinitely heavy hole, and only
the local conduction-band operators play a role:

iTL(t) = (Td! (H)e(t)ct (0)d(0)), c—\%zk:ck. (5)

Without the intrinsic infrared cutoff of the recoil energy,
the (infinite-mass) particle-hole susceptibility shows a
true divergence. In a zero-temperature calculation and
for small interaction, this takes the form [5, 6, 12]

Here, —£; = p — eq = p+ E¢ is the threshold frequency
and &y ~ p an intrinsic ultraviolet cutoff of the order of
the conduction-band width [cf. Eq. (11)]. Note that, for
absorption processes, one has an initially fully occupied
valence band (Eg > kgT), such that II(¢) is automati-
cally retarded. Analogously, the valence-band propagator
iG(t) = (Td(t)d') is purely advanced. Although our cal-
culations will proceed in a finite-temperature formalism,
we aim to reproduce the result (6). Hence, we numer-
ically consider very low temperatures and perform the
zero-temperature limit in analytic calculations. As we
attribute the constant Hartree part of a fermionic self-
energy to the renormalized band gap F¢, a diagrammatic
expansion using G%(t) o« ©(—t) (with the Heaviside step
function) directly shows that conduction-band propaga-
tors are not further renormalized by interband interaction.
As already mentioned, the particle-hole susceptibility
can also be viewed as the leading contribution (in the
light-matter coupling p|M|?, M being the dipole matrix
element) to a photon self-energy. In the regime under con-
sideration, electronic processes happen on a timescale 1/
much shorter than typical times of absorption and emis-
sion of a photon 1/(p|M|?) [11]. For p > p|M|?, one can
thus approximate the photon self-energy by an interacting
particle-hole bubble, given the standard coupling

T(w) )_zu}, u=pU. (6)

1
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epl = A5 Z ( Cpiqlpiq + dpcp+qaq)’ (7)
Vpa

where a4 annihilates a photon. For infinite hole mass, the
momentum dependence of the photon absorption can no
longer be resolved, and we use the simplified coupling

Hept = Mclda + M*d'cal, Y ag=a. (8
q

Having defined the system under consideration [Eq. (4)]
and the quantity of interest [Eq. (5)], our analysis
will proceed in an imaginary-time action formalism.
We transform the Grassmann fields for both bands
(¢,¢ d,d) to Matsubara frequencies according to ¢, =
foﬁdr c(T)e7 /\/B, etc., where 8 = 1/(kgT). For the
X-ray-edge singularity, a change to the position basis im-
mediately shows that conduction-band fields other than

the local ones [cf. Eq. (5)] can be integrated out, leading
to the action

S = —/GS’LIENCW - /Gﬁ;;lciwdw
w/ i w
+U/ dwd,/é@+l,cuj+w. (9)

Here, we have introduced a notation where fwis a sum over
Matsubara frequencies, bosonic Matsubara frequencies
are denoted by a bar, and each prime on an integral sign
represents a prefactor of 1/5. The zero-temperature limit
is then conveniently obtained as

i [ = [Ere, (10)

It is worth noting that the action of the more gen-
eral Fermi-edge singularity, defined by the Hamiltonian
(1), is perfectly analogous to the one of the X-ray-edge
singularity [Eq. (9)]. One merely has to identify each
Matsubara frequency with a double index for frequency
and momentum (w, k) and Matsubara summations with a
double sum over frequencies and momenta, the prefactor
being 1/(BV) instead of 1/5. Hence, all diagrammatic
and fRG arguments apply simultaneously to the case of
finite and infinite hole mass. Only for numerical as well
as analytic computations, we restrict ourselves to the
(zero-dimensional) special case of the X-ray-edge singu-
larity, such that we can readily ignore any momentum
dependence.

Whereas for finite hole mass, the propagator of va-
lence (conduction) electrons is given by 1/(iw 4+ p — Eg)
[1/(iw+ p — €g)], for infinite mass, the valence-band prop-
agator simply reads G , = 1/(iw — &1). As we use a
parabolic dispersion in the conduction band, we introduce
an ultraviolet cutoff € < p+ &g in momentum space. The
choice of a half-filled conduction band, i.e., & = p, yields
the particularly simple local propagator

G _1Z 1 B 5°d§ 1
O"‘“_VkiwfekJru_p & | Iw—§

= —2iparctan(§p/w) = —impsgn(w)0(§ — |w|). (11)

In the last step, we have ignored any details of the ultravi-
olet cutoff, which are of no physical relevance. Note that
different leading log diagrams typically contain the energy
range of occupied (u) or unoccupied conduction band
states (§o) in the argument of the logarithm. Minor devi-
ations from half-filling, still in the regime of |u —&y| < o,
have only subleading effects.

Including photon fields (a, @) into the theory, one might
perform a simple transformation for dimensional reasons
of the type v = Ma, ¥ = M*a, resulting in a rescaled
coupling term

1 _
SC = 7/ Co wdw’)/w + dwca wY@)- 12
pl VB Js (Cat +0o) (12)
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FIG. 2. Particle-hole susceptibility IT [Eq. (13)] up to second
order in the interaction, consisting of the first three ladder
diagrams [L(0), L(1), L(2)] and the crossed diagram [C(2)].
Full (dashed) lines denote propagators of conduction (valence)
electrons. Dots represent bare vertices with a factor —U.

Then, in the limit of M — 0, i.e., GJ o |M|*> = 0, one
obtains the leading contribution to the photon self-energy
II7 as precisely the particle-hole susceptibility

!
lim TI = IT, = / (odyBoroinsn).  (13)
M—0 wr
Again, the formula is similarly applicable for the more
general Fermi-edge singularity, where w denotes frequency
and momentum (&, q). According to the rules of analytic
continuation, iw — w + i07, the X-ray-edge singularity
written in terms of Matsubara frequencies can directly be
inferred from Eq. (6):

I, = i [1 - (M_Jgfd)m] (14)

It is our goal to reproduce this result, originating from
a (first-order) solution of the parquet equations, using an
fRG scheme. Before getting into the details of fRG, let us
briefly review the basics of the parquet solution leading
to Eq. (14).

IIT. FIRST-ORDER PARQUET SOLUTION

We already mentioned that the X-ray-edge singularity
has been exactly solved in a one-body approach [12] con-
taining the parquet result (6) in the weak-coupling limit.
For the sake of generalizability to actual fermionic many-
body problems, one is interested in other (approximate)
solutions obtained from a many-body treatment. Roulet
et al. [5] have achieved such a solution of the X-ray-edge
singularity in leading order of the logarithmic singularity.
This first-order parquet solution sums up all perturbative
terms of the type u™*? In"*! |&,/(w 4 £4)], where p = 0.
These correspond to the leading log (or parquet) diagrams;
subleading terms with p > 0 are neglected. Such an ap-
proximation is applicable for small interaction, v < 1,
and frequencies not too close to the threshold —&4. Yet,
a subsequent work [6] as well as the exact solution [12]
show that, for small coupling, the result actually holds
for frequencies arbitrarily close to the threshold.

The lowest-order diagrams for the particle-hole suscep-
tibility, corresponding to the first terms of an expansion
of Eq. (14) in u, are shown in Fig. 2. Full lines denote
conduction-band (c¢) and dashed lines valence-band (d)
propagators. Self-energy corrections, affecting the d prop-
agator, can be ignored, as discussed later. A bare vertex,
symbolized by a solid circle, demands energy(-momentum)
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FIG. 3. (a) (Color online) Leading log formula in terms of
Matsubara frequencies [Eq. (14)] at increasing orders in the
coupling u. Numerical parameters are u = 0.28, [£q4/&0| =
1/25, and the grid for Matsubara frequencies is set by 3¢ =
500. (The same parameters are used throughout this work.)
Here, we show (connected) lines for clarity. (b) The particle-
hole susceptibility II (full circle) can be expressed via the bare
bubble and the 1PI four-point vertex I'®, denoted by a full
square, according to Eq. (16).

conservation and multiplication by —U. Apart from that,
there are no combinatorial or sign factors attached to
diagrams. Free variables are to be integrated over with
dimension-full integrals [cf. Eq. (10)].

The first three diagrams in Fig. 2 are called ladder
diagrams. It is easy to see that taking into account only
ladder diagrams leads to the false prediction of a bound
state [14]. Crossed diagrams, such as the last diagram in
Fig. 2, are crucial for an accurate description and encode
screening effects (conduction-band holes) of the Fermi
sea. Figure 3(a) shows how the leading log result is built
up in an expansion of Eq. (14), exemplified by the real
part. Numerical results in Sec. V and Sec. VI aim to
reproduce this form. Note that, written in terms of Mat-
subara frequencies, the particle-hole susceptibility (14) is
no longer singular. The seemingly quick convergence of
the perturbative curves to the full solution at an inter-
action parameter u = 0.28 in Fig. 3(a) is also due to a
rapid decay of the expansion coefficients.

Though, for real frequencies, &; acts as a frequency
shift, it is a property of the analytic continuation that,
in imaginary-frequency space, different values for &4
stretch/flatten the curve. Since we have incorporated
the physical effect of the size of the band gap already
in the choice of the interaction in the Hamiltonian (1),
we can choose any value for &; in our calculations. In
order to have a pronounced peak in the Matsubara curve,
we take |€4/&| = 1/25, implying wln |§y/&q] = 0.9. Note
that, as can be seen from the simple computation of the
particle-hole bubble, zero-temperature calculations are
discontinuous w.r.t. to £; at £ = 0. Choosing £; = 0, one
loses analytic properties and only obtains the real part of
the logarithmic factors depending on |©] (cf. App.).

The four-point correlation function in the particle-hole
susceptibility can be rephrased by cutting external legs (in
general, as dressed propagators G¢, G¢) in the connected
part according to [cf., e.g., Eq. (6.92) of Ref. 20]

<czwdy5@+yc@+w> = G(‘f)G&CI)—l»de,V + GgGg
X Gg+wG§1+uFf§g{|—w,D+l/,u/ﬂ' (15)
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FIG. 4. Bethe-Salpeter equations for both two-particle chan-
nels, where 7, and 7, are reducible while I, and I, are irre-
ducible vertices in antiparallel and parallel conduction-valence-
band lines, respectively. The vertices are further related via
Eq. (17a).

This introduces the one-particle-irreducible (1PI) four-
point vertex I'¥®?, Consequently, the particle-hole sus-

ceptibility is fully determined by I'®) = Ddeed yiq

/ GlGE, ., + / GLGIG G T, o i

(16)

the graphical representation of which is shown in Fig. 3(b).
The parquet equations are then focused on the four-
point vertex and use a diagrammatic decomposition in
two-particle channels. For the Fermi-edge singularity, the
leading log divergence is determined by the two chan-
nels characterized by parallel and antiparallel conduction-
valence-band lines:
P(4) =R+ ’Yp‘i")/aa

L =R+, Io=R+7, (17a)

/
J— C
7a;w,@+w,®+u,1/_/Ia;w,w-&-w@-ﬁ—w’,w’G Gerw
w/

« T
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(17b)
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w/

XI5 (17¢)
Here, R is the totally (two-particle-) irreducible vertex;
Yo and 7y, are reducible while I, and I,, are irreducible ver-
tices in the antiparallel and parallel channel, respectively.
Note that a T'® diagram can be reducible in exclusively
one of the two channels [5]; diagrams irreducible in both
channels belong to R. The Bethe-Salpeter equations for
Yo (17b) and v, (17c), which are the crucial components
of the parquet equations, are illustrated in Fig. 4.

The parquet equations (17) as such are exact and merely
represent a classification of diagrams. In the first-order
solution [5] (also referred to as parquet approximation
[18]), one approximates the totally irreducible vertex by
its bare part, i.e., R = —U. To be consistent with the
leading log summation (of the X-ray-edge singularity), one
further neglects any fermionic self-energies [5, 6]. In fact,
it is easily shown that the lowest (non-constant) contribu-
tion to ¢ involves the subleading term u?In [£/(w +&4)|.
Similarly, higher-order corrections to R are subleadingly
divergent. From the exact solution [12], it is known that
extensions of the first-order parquet scheme just lead to
the replacement of u by more complicated functions of
u in the characteristic form of the particle-hole suscep-
tibility [Eq. (6)]. For weak coupling, it is thus justified
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FIG. 5. Parquet graphs for the four-point vertex '™ con-
sisting of diagrams reducible in (left) antiparallel lines and
(right) parallel lines, up to third order in the interaction. Note
that all diagrams are obtained by successively replacing bare
vertices by antiparallel and parallel bubbles.

to focus on the leading-order result. We will henceforth
ignore all fermionic self-energies and omit the index 0 on
fermionic propagators when referring to the X-ray-edge
singularity. (It should be noted that these arguments
do not directly apply to any Fermi-edge singularity. In
particular, considering a finite-mass valence-band hole, it
was shown that X% has a crucial effect on the particle-
hole susceptibility and encodes the influence of indirect
transitions [11, 13].)

From the parquet equations (17), one can also extract
the diagrammatic content of the emergent four-point ver-
tex T4, All leading log diagrams (parquet graphs) are
obtained by successively replacing bare vertices (starting
from the first-order, bare vertex) by parallel and antipar-
allel bubbles (cf. Fig. 5). Note that such a parquet resum-
mation is the natural extension to two channels of what
the ladder summation is to one channel. Having gained
insight into the structure of the parquet equations and
the leading log diagrams, let us move on to the formalism
used in the remainder of this paper.

IV. FUNCTIONAL RENORMALIZATION
GROUP

The functional renormalization group (fRG) is a many-
body framework, which in principle allows one to examine
the renormalization group flow of all coupling constants
in their full functional dependence and to obtain diagram-
matic resummations of vertex and correlation functions.
Its basic idea is to consider the change of a many-body
generating functional upon the variation of an artificially
introduced scale parameter, which can act as an effective
infrared cutoff and allows to successively integrate out
high-energy degrees of freedom. This procedure of “zoom-
ing out” from microscopic to many-body physics, i.e., the
evolution of physical quantities upon lowering the scale
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FIG. 6. 1PI fRG flow: The flow parameter A, introduced
in the quadratic part of the action, makes the theory evolve
from a trivial to the original, full one. At the initial scale,
the (quantum) effective action I' can directly be read off from
the interacting part of the action Sins. Finally, the desired
generating functional for 1PI vertices I' is obtained.

parameter A, modulating from a trivial to the full theory
(cf. Fig. 6), is described by an exact functional differential
equation.

Most commonly, one incorporates the scale parameter
in the bare propagator of the theory. Since we are in-
terested in interband quantities such as the particle-hole
susceptibility, it is sufficient to modify the propagator of
one band alone. As G¢  follows the typical 1/(iw — &)
behavior (cf. Sec. II), it is convenient to choose the lower
band. The appropriate boundary conditions, to initially
(A; = 00) extinguish all interband diagrams and finally
(Ay = 0) revert to the original theory, are Gg,Ai =0,
Gg, A = Ga.

We will use two alternative realizations with particu-
larly useful computational properties, namely the § regu-
lator,

Owl = A)
d - _ _ d _
Gl p = O] - 1), = T
—0(lw] — A
01 = —0(lwl — )G, = .y
and the Litim [23] regulator,
1

d —
GO,A,w -

isgn(w) max(|w|, A) — &
" _ —isgn(w)O(A — |w|)
OnGire = Tramwh &P "

In an exact solution of the flow, all regulators give
identical results since, at the end of the flow (Ay = 0),
the original theory is restored. However, once approxima-
tions are made, the outcomes might differ significantly.
In particular, this will happen once the flow of certain
quantities does not form a total derivative of diagrams,
e.g., due to truncation.

One can consider different functionals paraphrasing
the many-body problem under the fRG flow. Two com-
mon choices are the (quantum) effective action and the
Luttinger-Ward functional serving as generating func-
tionals for one-particle-irreducible (1PI) and two-particle-
irreducible (2PI) vertices, respectively. Our study is fo-
cused on 1PI fRG flows. We will only briefly mention the

2PI formulation to show that this provides no benefit for
our treatment.

A. One-particle-irreducible formulation

The (quantum) effective action I' is obtained from the
(log of the) partition function—in the presence of sources
coupled directly to the fields (Sgc = fa Japa)—by a
Legendre transformation. Its behavior under the flow
is given by the (so-called) Wetterich equation [24]. In
the notation of Ref. 20, particularly useful for mixed
(fermionic and bosonic) theories, it is stated as

OaT[7] = —%S”ﬁ{ (9rG54)

: <K%>T - G&R} Ty GO,A> }
(20)

Here, the super trace runs over multi-indices «, which
specify field as well as conjugation indices and all further
quantum numbers, and contains a minus sign when sum-
ming over fermionic degrees of freedom. If the propagator
of all fields is set to zero at the beginning of the flow, the
initial condition for I' is given by the interacting part of
the action [20], T'a, = Sint (no renormalization of vertices
by propagating degrees of freedom is possible). Although
we choose only the bare valence-band propagator to be
A-dependent, all interband quantities are still given by
the bare interactions of Sins.

In order to tackle the fundamental and in general un-
solvable flow equation (20), I can be expanded in terms
of 1PI n-point vertices I'™ | where we set

§"T'lg]
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(21)

The functional differential equation (20) is transformed
into a hierarchy of infinitely many coupled ordinary dif-
ferential equations with an interesting structure [20]:
IAT (™ depends on other vertices only up to T'("+2) and,
then, always via STr{I'"*2)S}. Here, S is the (so-called)
single-scale propagator S = —G(9,Gy )G, adding self-
energy corrections to a differentiated bare line. Since,
with logarithmic accuracy (cf. Sec. III), we can neglect
fermionic self-energies, we have the notable simplification
S = 0rGh.

The most common truncation of the still unsolvable hi-
erarchy of flow equations is to leave higher-order vertices
constant (I'}”" = FX?"”) yielding a finite set of differen-
tial equations. This has a weak coupling motivation, as
higher-order vertices typically are of increasing order in
the interaction. Furthermore, for a four-point interaction
as in our fermionic theory, the only non-zero initial condi-
tion of a 1P interband vertex is I'*®¢ = —U/. Note that,
when specifying a vertex, we usually omit the superscript
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FIG. 7. (a) Diagrammatic representation of the flow equation
(22) for I'¥“®® upon neglecting the six-point vertex. The dot
denotes the differentiated vertex; lines with a vertical dash
symbolize the single-scale propagator. (b) Three-particle ver-
tices ®9°dedd and $9°eddd regponsible for the 2P fRG flow of
I, and I,, respectively, at second order in U.
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(n) and, instead, write field indices as superscripts and
quantum numbers as indices. With the photon included
in the theory, we have the additional non-trivial initial
condition Ff\d"w wow =1= F/d\”w Do
three-point vertex.

The flow equations of the individual vertices are ob-
tained by performing the vertex expansion (21) on both
sides of the Wetterich equation (20). Given a certain trun-
cation and the above mentioned initial conditions, the set
of differential equations can be solved by standard meth-
ods, possibly requiring further approximations. Solutions
for the self-energy [F(2)] or higher-order vertex functions
[[(">2)] can be used to compute correlation functions,
such as the particle-hole susceptibility [cf. Eq. (16)].

For future reference, let us already state the 1PI fRG
flow equation for the four-point vertex in the purely
fermionic theory [in the matrix notation of Eq. (20),
we omit the second index for one-particle quantities:
G, = G5, etc]. To describe the leading logarithmic
divergence of the Fermi-edge singularity, we only consider
interband combinations of four-point vertices and obtain

for the mixed
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Without fermionic self-energies, the propagators G€,
G?, and S? are known functions. If the fRG hierarchy
is further truncated by discarding the six-point vertex,

F(G) 1"(6) 0, the resulting flow equation is closed in
1tself and can be solved as such. Figure 7(a) illustrates
this flow equation, where we denote a single-scale prop-
agator, i.e., a differentiated d line, by a vertical dash
next to the arrow. Evidently, the 1PI fRG scheme does
not yield separate flow equations for four-point vertices
distinguished in two-particle channels, in contrast to the
parquet equations (17). However, one immediately sees
in Fig. 7(a) that contributions from the first summand
are reducible in antiparallel lines, whereas contributions
from the second one are reducible in parallel lines. To-
tally irreducible diagrams are still present in Eq. (22) as
initial condition (the bare vertex) and encoded in I'(®),
but, importantly, contributions from STr{F(G)S } are also

relevant for higher-order parquet diagrams in both chan-
nels (cf. Sec. V). To explore the possibility of treating
the two-particle channels separately from the outset, let
us sketch the applicability of 2PI fRG to the Fermi-edge
singularity.

B. Two-particle-irreducible formulation

The 2PI formulation of fRG is based on the Luttinger-
Ward functional ®, obtained by a Legendre transforma-
tion from the (log of the) partition function with sources
coupled to two fields (Sac = [, PadaarPar). It can be
shown [25] and is intuitive from its diagrammatic expan-
sion that, contrary to I', ® does not explicitly depend on
the bare propagator of the theory. The scale dependence
is only given by its argument G, representing the full
propagator. Therefore, one immediately derives the flow
equations

1
oxvig] = 55TH{ 2 0nG ), (23a)
(2n) _ 1 P2n+2)
a ®A 0y (1 a0 - 75 Z Ao 0,1 ana%&{ilaAGd&”
(23b)

where G is the physical propagator G| ;—¢. Equation (23a)
has a much simpler structure compared to the Wetterich
equation (20). The 2PI n-particle vertices, as coefficients
of ® when expanded around the physical propagator,

\ ond
(I)(Q’L) /anl ,
0000, lg—c
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are primarily suited (to compute correlation functions)
for a purely fermionic theory, where vertices only connect
an even number of fields.

Unlike the totally antisymmetric 1PI four-point vertex
(where particularly T'9?d = ['¢d¢) e have @dede = |,
and ®¢ = [ implying the desired distinction between
the two-particle channels. (Note that the parquet approxi-
mation, which considers only the bare vertex as the totally
irreducible contribution in I, and I, has not yet been
made.) In contrast to the parquet equations, the 2PI flow,
however, does not interrelate these two-particle vertices;
instead, it demands the computation of corresponding
three-particle vertices. Moreover, since the 2PI vertices
®") are not necessarily 1P, their initial conditions are
more complex than those of T'(™): We have ,1)(271) # 0 for
infinitely many n, namely for all ") which contaln dia-
grams without mternal valence-band lines [cf. Fig. 7(b)].
Therefore, truncation schemes need to be devised more
carefully in the 2PI formulation.

The flow equations for I, and I,, deduced from
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require knowledge about six-point vertices, for which an
exact consideration is numerically out of reach (similar to
I'®). The lowest-order diagrams of ®9cdcdd and Pdecddd
are depicted in Fig. 7(b). The simplest way of generating
a non-perturbative flow is to replace bare vertices with
interacting four-point vertices, which are then part of the
flow. As opposed to previous proposals, namely to replace
the bare interaction Uy, asasay DY @&?azam [26] or by
an average over ®) with different index permutations
[25], we suggest that the diagrammatically most sensible
choice is the 1PI four-point vertex. Here, this amounts to
replacing —U by ['4¢¢d = pdede 4 pdeed _ R [cf. Eq. (17a)].
The 1PI four-point vertex I'%°® incorporates all possible
diagrams; since both 2PI vertices contain the totally irre-
ducible vertex R, it must be subtracted. I'*®? also has
the full crossing (index-permutation) symmetry as the
bare interaction. Overcounting does not occur since both
vertices are separated by an open d line and connecting
O G to this approximation of ®cdedd and Gdeeddd jpdyces
diagrams reducible in antiparallel and parallel lines, re-
spectively. Since no further totally irreducible diagram
for the 2PI vertices on top of the initial condition will be
generated, it is consistent to use R = —U in the relation
for I'4ee [Eq. (17a)].

It is possible to evolve I, and I, separately, using
the above described approximations in Eq. (25), and
check the consistence with the parquet equations (17),
interrelating both of them, during the flow. However, in
the ultimately interesting combination [cf. Eq. (16) and
(17)], one has the flow OzI'°? = 95 I,,+OpI,. Combining
the diagrams of Fig. 7(b) with full vertices and attaching
the scale-derived propagator (here, equal to the single-
scale propagator), we find exactly the same flow equation
for the four-point vertex as given in the truncated 1PI
system [Fig. 7(a)]. The replacement of Sy by 9oG in the
flow of the four-point vertex when neglecting the six-point
vertex, which is very natural in the above prescription,
is a well known correction [19] that has been found to
lead to smaller errors in Ward identities [27]. Finally,
we conclude that the above simple 2PI fRG flow does
not enrich the possibilities for an fRG treatment of the
Fermi-edge singularity compared to the 1PI framework.

V. CORRELATOR FROM EVOLVED VERTICES

In this section, we start to present the results of our fRG
treatment of the X-ray-edge singularity. First, we perform
the fRG flow of vertices and construct the particle-hole
susceptibility at the end of the flow. More precisely, we
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FIG. 8. (Color online) (a) Particle-hole susceptibility IT com-
puted via T [Eq. (16)], which is obtained from a numerical
solution of the truncated flow [cf. Fig. 7(a)]. Different results
are generated using a Litim or § regulator [cf. Egs. (18), (19)]
and compared to the leading log formula (14). (b) II obtained
from a numerical solution of the flow in the light-matter system
[Figs. 7(a), 12]. Stronger deviations (for both regulators) from
the parquet curve compared to (a) occur since the truncated
photon flow neglects derivatives of parallel bubbles.

examine the flow equation (22) in more detail and com-
pare the resulting form of the particle-hole susceptibility,
obtained from the relation (16), with the leading log result
(14). We briefly check whether it is useful to perform a
(multi-channel) Hubbard-Stratonovich transformation to
generate parquet diagrams in the particle-hole suscepti-
bility from combining several 1PI vertices, finding that
this is not the case.

A. Fermionic four-point vertex

According to Eq. (16), the fermionic four-point vertex
is sufficient to compute the particle-hole susceptibility. In
Eq. (22), we have already given its flow equation. Since a
vertex with more than four arguments (and a meaningful
resolution in frequency space) is numerically intractable,
we neglect the six-point vertex by truncation and obtain
the simplified flow for I'®) illustrated in Fig. 7(a).

Solving this flow equation numerically with the initial

condition FS\? = —U, the final form of the particle-hole
susceptibility [using Eq. (16)] is shown in Fig. 8(a). We
find overall qualitative agreement between both the nu-
merical and the analytic curve. Quantitatively, there are
disagreements to the leading log result depending on the
choice of regulator, which originate from neglecting I'(®)
in the flow of Fig. 7(a). The reason why the ¢ regulator
yields much better results than the Litim regulator has
recently been clarified in Ref. 21: The former gives less
weight to multiloop corrections that are neglected in the
present approach.

Let us briefly indicate which types of differentiated
diagrams are missing in the flow equation when neglecting
I'®): One can easily check, by inserting the second-order
diagrams of T™® (cf. Fig. 5) on the Lh.s. and the bare
vertex on the r.h.s., that the truncated flow equation
[Fig. 7(a)] is satisfied at second order in the interaction.
Note that (without fermionic self-energies) a diagram is
simply differentiated by summing up all copies of this
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FIG. 9. Third-order contributions from the six-point vertex
to the flow of I'®) via STr{I'® S}, neglected by the truncated
flow in Fig. 7(a). (S is graphically separated for clarity.)

diagram in which one d line is replaced by a single-scale
propagator S = 9pGy at any position (product rule).
At third order, however, the simplified flow equation is
no longer fulfilled since the six-point vertex [neglected
in Fig. 7(a)] starts contributing. Indeed, the four terms
coming from STr{T(®) S}, depicted in Fig. 9 (but neglected
in the present scheme), generate the remaining derivatives
of third-order parquet diagrams (cf. Fig. 5).

We emphasize that all (differentiated) diagrams gener-
ated by the truncated flow [Fig. 7(a)] are of the parquet
type. Indeed, totally (two-particle-) irreducible diagrams
of T exceeding the bare vertex [corresponding to higher-
order contributions of R in the parquet equations (17)]
require proper inclusion of the six-point vertex (and in-
traband four-point vertices). Similar to the recipe given
in Sec. III, the truncated flow builds on the bare vertex
by incorporating antiparallel and parallel bubbles and
therefore only generates parquet graphs. Within the class
of leading log diagrams, the six-point vertex is needed
to provide all derivatives of diagrams of ') starting at
third order in U (cf. Fig. 9). In fact, it is easy to see
that, in the fRG hierarchy, the parquet graphs comprise
(1P as well as 2PI) n-point vertices of arbitrarily large
n: Cutting a valence-band line (without leaving a single
conduction-band line in the case of a 1PI description)
generates a vertex of order two higher without leaving the
class of parquet graphs. The corresponding higher-point
vertices are required in the flow via the universal contribu-
tion STH{T "2 S5} or STr{®"™0,Gr} [cf. Egs. (20),
(23b)]. Simply truncating the (purely fermionic) fRG
hierarchy of flow equations will thus always dismiss con-
tributions to parquet graphs.

The question of how to sum up all parquet diagrams
in the fermionic four-point vertex via fRG is beyond the
scope of the present work and is addressed in Ref. 21 using
a multiloop flow. Here, instead, we explore various other
ways of computing II; by using one-loop fRG, proceeding
with auxiliary bosonic fields.

B. Hubbard-Stratonovich fields

Hubbard-Stratonovich (HS) transformations are used
in the context of several approximation techniques in
many-body problems. Such an exact transformation refor-
mulates the fermionic two-particle interaction in terms of
propagating auxiliary particles. For instance, the lowest-
order contribution to a bosonic self-energy already encodes
a ladder summation in the corresponding susceptibility.
For a parquet resummation, it seems therefore sensible
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FIG. 10. Particle-hole susceptibility after a HS transformation,
determined by HS three-point vertices and the four-point
vertex ng) (white square). Wavy and zig-zag lines denote
dressed bosonic propagators. Both three-point vertices [edx
and I'°*¥ /; are depicted by a triangle and can be distinguished
by the attached bosonic line.

to perform a multi-channel HS transformation [7]. With
bosonic fields for the exchange (x) and pairing (1) chan-
nels, one has the identification
Sus = [ Uy ! Cotwd d, X
HS = X XoXa + NN (Cotwduwxo + duCotwXe)
1
\/B ww
/
Sint = U/ deuéw+yc@+w — SHS, UX + Uw =U.
(26)

+ /_U;l%w@ + (Ew+wﬂiw¢@ - dwcw+w1/?uv)7

Note that one can also set U, or Uy to zero, such that
one HS field effectively decouples from the system.

The more general relation between the particle-hole sus-
ceptibility and 1PI vertices in the presence of bosonic fields
[cf. Eq. (6.92) of Ref. 20] is illustrated in Fig. 10. Three-
point vertices (denoted by triangles) and full bosonic
propagators (wavy and zig-zag line) contribute to the
correlation function. This proves beneficial in terms of
computational effort as, next to the bosonic self-energies,
the three-point vertices Fi‘ﬁ,@@ and Fi‘?g,w@/i (with
initial condition unity) contain less arguments compared
to the four-point vertex. However, in Fig. 10, we see that
the particle-hole susceptibility is still directly affected
by the fermionic four-point vertex (which is one-particle-
irreducible in fermionic as well as bosonic lines). The
second and third summand on the r.h.s. take the role
of a four-point vertex reducible x and v lines, respec-
tively, and the actual four-point vertex still covers all
contributions irreducible in these lines. Although the
HS transformation by construction ensures that the four-
point vertex does not contribute to first order, it does
comprise indispensable diagrams starting at second order
in the interaction.

In Fig. 11(a), we show the simplest diagrams of ng)
after the transformation, which now start at second order
in U. The lowest-order contributions to these diagrams,
obtained by using bare bosonic propagators, represent the
second-order ladder [with weight U2 = (G)?] and second-
order crossed diagram [with weight U2 = (G§)?], known
from Fig. 2 [cf. Figs. 3(b) and 5]. The main contributions
of the exchange (x) and pairing () boson in Fig. 10 are
reducible in the antiparallel and parallel (two-particle)
channels, respectively. Correspondingly, the lowest-order
diagrams of ng) in Fig. 11(a) built from y and v lines are
reducible in the complementary channels, i.e., in parallel
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FIG. 11. (Color online) (a) After a HS transformation, l"g%
contributes with the above diagrams, starting at second order,
where white circles denote the bare three-point vertices, equal
to unity. It is therefore needed to produce all parquet graphs
in the correlator. (b) Whereas diagrams of the four-point
vertex in (a) that are built from x lines are irreducible in
the (corresponding) antiparallel channel, starting at fourth
order, diagrams with x lines that are reducible in antiparallel
(fermionic) lines occur, too. (c) Particle-hole susceptibility
II computed via the relation in Fig. 10 without F%S, where
bosonic self-energies and three-point vertices are obtained from
the truncated fRG flow (27), (28), and the interaction strength
is divided equally between both channels, Uy = U/2 = Uy.

and antiparallel (fermionic) lines, respectively. However,
starting at fourth order in the interaction, also four-point-
vertex diagrams with x lines reducible in the antiparallel
channel exist, as is demonstrated in Fig. 11(b) and anal-
ogously occurs with ¢ lines in the parallel channel. In
fact, the diagrams in Fig. 11(a) can be used as building
blocks that replace the bare interaction in the original
parquet diagrams [cf. Fig. 5] to construct diagrams of

Iy 4) Yet, this still covers only a fraction of the possible
dlagrams We conclude that obtaining the full weight for
higher-order parquet contributions to II via the relation in
Fig. 10 requires a complicated, parquet-like resummation
of diagrams containing fermionic and bosonic lines in the
four-point vertex.

The flow equations for the HS self-energies and three-
point vertices can be deduced from the fundamental flow
equation (20). When neglecting four-point and higher
vertices, they take a form which has already been given
in Egs. (44), (45) of Ref. 7. We repeat them here for the
sake of completeness and later purposes. The flow of the
self-energies is given by

cd 2
ONTIY /SA WG (TS wm) (27a)
~d N2
/SAw 1"21‘{: www/z) N (27b)
For the three-point vertices, one obtains
/
cd d d
aAF?\,)fu,wfw,C) = //SA,w’F?\ >§J+u} ,w’ ,wGw+w
w
edip edp :
1—‘?\ 4w w—o,wtw’ /ZGA wHw’ F?\ w,w’ ,wtw’ /Z7
(28a)
edyp d
F?\ww ww/z /SAwrxifzwww/ZGzCD—w
cd cd
Pf\i(u W w—w,w— w’GA w—w’ f\)fu,w’,w—w" (28b)
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FIG. 12. Truncated flow equations for (a) the photon self-
energy II (depicted as circle) and (b) the photon three-point
vertex I'°® (depicted as triangle), where the contributions
of T [Eq. (29a)] and I [Eq. (29b)] are neglected.
External (rapidly oscillating) wavy lines denote amputated
photon legs. Note that the truncated flow of the four-point

vertex [9ee is still given by Fig. 7(a).

To gauge the importance of the HS four-point ver-
tex, we have numerically solved the fRG flow in the
HS-transformed system [Egs. (27), (28)]. The result-
ing particle-hole susceptibility shown in Fig. 11(c), which
is computed using the relation of Fig. 10 without ng),
shows much stronger deviations from the leading log re-
sult than Fig. 8(a), which was obtained using only T'4).
This provides additional, numerical evidence that a HS
transformation does not save us from having to calculate
the fermionic four-point vertex.

VI. FLOWING SUSCEPTIBILITY

An alternative approach to calculating the particle-hole
susceptibility from renormalized 1PI vertices is based
on the identification of II as a bosonic self-energy. In
Eq. (13), we have shown how II is obtained from the
self-energy of a rescaled photon field in the limit of its
propagator (containing the dipole matrix element) going
to zero. Flow equations for the photon self-energy without
internal photon propagation thus describe the flow of
the particle-hole susceptibility. It should be noted that
this appears natural given the interpretation of polariton
physics, but can also be seen as a mere computational
trick in order to directly include a susceptibility in the
fRG flow. In this section, we consider the flow of the
photon self-energy in different levels of truncation and
comment on the related publication by Lange et al. [7].

A. Dynamic four-point vertex — numerical solution

In the extended theory of the light-matter (photon
and fermion) system, we derive from the fundamental
flow equation (20) the flow of the photon self-energy and
three-point vertex:

!
_ d edy yydd
aAHA,D = /SA,w[ @+w (PA W+w,w w) + FA,E;,Q,w,w]’
w

(29a)

’
cdy _ d cdry
8AFA,w,w—J)LD _/ SA,w (FA 4w’ w’ wGw+w
w’
Jccd cdrydd
FA w \wHw' ,w,w—w + FA w,w—&),w,w’,w')‘
(29b)
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FIG. 13. (a) Schwinger-Dyson equation between photon self-
energy and three-point vertex, where the small white circle
denotes a bare photon three-point vertex, equal to unity. (b)
Second-order diagram of the three-point vertex, which [accord-
ing to (a)] is responsible for the crossed diagram in the photon
self-energy, viz., the particle-hole susceptibility (cf. Fig. 2).

The flow of I'%%  relevant for the second differential
equation (29b), is still given by Eq. (22). In general, three-
point vertices connecting bosons and fermions would alter
the flow of ['%*®? but in the limit G — 0 these terms drop
out. Similarly, in the absence of propagating photons, one
finds that the (interband) flow of I'"7¢ is only determined
by five- and six-point vertices. At our level of truncation

FE\">4) = I‘EC>4) = 0, it is therefore consistent to set
7% = 137% = 0 alongside I3 = 137" = 0. The
resulting simplified flow is illustrated in Fig. 12.

Note that the diagrammatic expansion of the three-
point vertex I'** is immediately deduced from the
Schwinger-Dyson equation [cf., e.g., Fig. 11.6(b) of
Ref. 20] shown in Fig. 13(a). As a consequence of trun-
cation, the connection between II and I'%®? generated
by the flow (via I'*®', cf. Fig. 12) violates the basic re-
lation between susceptibility and four-point vertex that
was given in Eq. (16). This is, however, intended in or-
der to obtain new resummations, given an approximate
four-point vertex, from the explicit photon flow.

The numerical solution of the triple set of flow equa-
tions for II, ['*® (Fig. 12) and I'**? [Fig. 7(a)] results in
the particle-hole susceptibility shown in Fig. 8(b). The
agreement between the numerical solution and the par-
quet formula is worse compared to Fig. 8(a), where only
I'® was used to compute II. The reason is that the
additional flow equations in Fig. 12 exclusively contain
antiparallel S?-G¢ lines. They therefore induce an im-
balance between the two-particle channels and neglect
important contributions of diagrams with parallel lines.
This begins with the crossed diagram at second order
(cf. Fig. 2), which is known [15] to give a positive contri-
bution to the particle-hole susceptibility and thus reduce
the infrared divergence.

So far, the more complicated way to generate the
particle-hole susceptibility from the four-point vertex,
namely the additional photon flow [Eq. (29), Fig. 12]
instead of the direct relation [Eq. (16), Fig. 3(b)], has led
to worse agreement with the leading log formula. It is an
underlying expectation of (vertex-expanded) fRG that, by
incorporating more vertices in the flow, one improves the
results, coming closer to the exact, infinite hierarchy of
flow equations and having agreement with higher orders
in perturbation theory. By contrast, in the next section,
we show that if we approximate I'%®d in the simplest
fashion possible—namely by the bare vertex—we actually
reproduce the precise leading log result.

11
B. Static four-point vertex — analytic solution

The enormous simplification of using the bare four-point
vertex throughout the flow has hardly any justification.
Yet, we will show that, with this simplification, the flow
equations can be solved analytically to yield the parquet
result without further approximations. This demonstrates
that one cannot judge about the content of the diagram-
matic resummation solely based on the final result for a
specific quantity. We will first present a purely algebraic
derivation of the leading log formula for the particle-hole
susceptibility and then illustrate the steps to diagram-
matically understand the underlying structure.

Let us adopt a harsh but concise truncation of the
flow equations: we keep all 1PI vertices starting from
the four-point vertex at their initial value. The only
(interband) contribution with a non-vanishing value at
A; is the fermionic four-point vertex F‘f\CEd, which thus
remains equal to —U throughout the flow. The simplified
flow equations [cf. Eq. (29)] then read

/
cd- 2
8AHA,JJ = / SX,WGA%-HU (FX],’ZD-&-w,w,G;) ) (303‘)
cd ) ! cd
aAFf\,’ZJ,UJ—LD,JJ = _U/,Sg,w’GACD-Fw’Ff\,’ZD-Q—w’,w',LD' (30b)
w

The important observation is that the first derivative (and
consequently any higher derivative) of Ff\dv is independent
of w, i.e., completely independent of the first argument.
(The second argument is fixed by conservation, anyway.)
Since also the initial condition is independent of the first
argument, the vertex only depends on @, but not on w,
for all scales. (This is a consequence of our truncation
as diagrams of 15 such as the one in Fig. 13(b), cor-
responding to the crossed diagram in the particle-hole
susceptibility, do depend on the fermionic frequencies.)
Since Ff\d'y is independent of w, the differential equations
(30) can be dramatically simplified: Using the definition

gne = (T3 )7, we get

!/
OAgA, @ = *QUgA,@/ Sﬁﬂngw, (31a)
! “ 1
a/\1_[1\,&1 =g\, @ / Sﬁ,ng+w = 7ﬁaAgAyw. (31b)

Evidently, ga, o is given by an exponential of an auxiliary
function fj, w,

A /
IA, & = g/\i’@672qu‘5’7 fA"w = / dAl/ SX/7NG‘%+M/P,
A; w
(32)
and the self-energy becomes
HA,@ :IIAiYuj*gA#@[eizqu’D *1] (33)

2U

Inserting the boundary conditions II5, = 0 and g, =1,
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FIG. 14. (a) Flow equation for an approximate I'°®Y (at order
n) when T'%*? is reduced to its bare part [cf. Fig. 12(b)]. (b)
Its solution, given by sequence of bubbles with a prefactor
1/n!, a bare photon three-point vertex (equal to unity) and n
bare electronic interaction vertices.

when A flows from oo to 0, we get

0 /
HD:%[l_eigu‘f@]? f@Z/OOdA/wSX,wGEJ+w/p
(34)
So far, fermionic self-energies have not been neglected,
yet. However, for the X-ray-edge singularity, we can use
S¢ = 9,G4 and the A-integration becomes trivial. Using
the bare bubble, computed in App., Eq. (A.3), we arrive
at the remarkable conclusion that our harsh truncation
directly yields the leading log result:

fo= [t =m (2250),

I — ﬁ{l B (zw+€d> 2u:|.
2u —&o

How is this possible? We have argued above that, in
the combined, truncated system of flow equations for
I'¥eed and photon quantities, a large class of parquet con-
tributions is missed by the approximate flow due to a
mistreatment of parallel bubbles. We will now show dia-
grammatically why the parquet result could nevertheless
be obtained and will find that this is only possible for the
X-ray-edge singularity.

The diagrammatic solution of the simplified flow makes
extensive use of the property that ladder diagrams fac-
torize into a sequence of (particle-hole) bubbles and that,
with leading log accuracy, we can ignore fermionic self-
energies and use S¢ = 8AG3. If we use the bare four-point
vertex in the flow of the three-point vertex [Fig. 12(b)],
we obtain the flow equation shown in Fig. 14(a), which
interrelates contributions to I'*®Y from subsequent orders.
Due to factorization, the solution to this flow equation
can be expressed diagrammatically as a three-point vertex
which, at order n, consists of n consecutive particle-hole
bubbles multiplied by a prefactor 1/n! [Fig. 14(b)]. The
simple ladder structure is directly related to the fact that

f\dl ‘w—.o 18 independent of w.

Insertlng this three-point vertex in the flow equation of
the photon self-energy [Fig. 12(a)], we get, at order n, a
sequence of n+ 1 bubbles with one single-scale propagator
(cf. Fig. 15). Again using factorization, this is a fraction
[1/(n 4+ 1)] of the derivative of the whole ladder diagram.
By computing the sum > _1/[m!(n — m)!] = 2"/n!
in Fig. 15, one ends up with a proportionality relation
(at arbitrary order n) between the derivative of the self-
energy, OAII™, and the derivative of a ladder-diagram,

(35a)

(35b)
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FIG. 15. Inserting the approximate I'°“” from Fig. 14(b) in
the simplified flow of II [Fig. 12(a)], we obtain a proportion-
ality relation between ladder diagrams and the particle-hole
susceptibility at arbitrary order n, in exact agreement with
the leading log result [cf. Eq. (37)].

- (7L+1)'

OAITM(™) | As these quantities also agree at the initial scale
(both vanish when G = 0), we extract an equality at all
scales. Using the bare bubble as in Eq. (35a), we get
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It remains to sum all orders H( ), i.e., sum all ladder

diagrams with the appropriate prefactor [cf. Eq. (36)].
Indeed, we precisely reproduce the leading log result
—2u fw n+1

N
m_;%_'wz (n+1)!

7%(672#@ B 1) _ % {1 B (wazfﬂ_h}.
(37)

We observe that only ladder diagrams are generated
by the flow while crossed diagrams do not contribute at
all. However, the ladder diagrams come with prefactors,
such as 1/n! in Fig. 14(b) and 2"/(n + 1)! in Eq. (36).
That the correct form of the particle-hole susceptibility
is obtained at every order is then possible due to propor-
tionality relations present in the X-ray-edge singularity,
such as IT*(?) = —311°() [cf. Fig. 2], as already shown by
Mahan [15] fifty years ago. Yet, these relations only hold
with logarithmic accuracy, and in the more general Fermi-
edge singularity, where the assumption of an infinite hole
mass is lifted, they hold only in a very narrow paramet-
ric regime (namely for m/m;, being exponentially small
in the coupling w) [11, 13]. For other problems, surely
such relations will only hold, if at all, subject to further
assumptions. We therefore conclude that obtaining the
exact first-order parquet result from a truncated fRG flow
with a static four-point vertex is only possible due to a
fortuitous partial cancellation of diagrams, specific to the
X-ray-edge singularity.

C. Comparison to a work by Lange et al.

In a recent publication, Lange, Drukier, Sharma, and
Kopietz [7] (LDSK) have addressed the question of using
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FIG. 16. Diagrams for the x self-energy IT%, expressed with
bare three-point vertices (small white circles), equal to unity.
At zeroth order in U, ITX is given by a bare particle-hole bubble;
the only first-order contribution arises from the second diagram
using Gy = —Uy,. Starting at second order in the interaction,
IIX contains diagrams with internal x lines, as in the third
diagram above.

fRG to tackle the X-ray-edge singularity. In fact, it is
their paper which has drawn our attention to the problem
at hand and deeply inspired our approach. LDSK, too,
obtain the (first-order) parquet formula for the particle-
hole susceptibility [our Eq. (14) and their Eq. (54)] and
from this draw conclusions about the relation between
parquet summations and fRG. We hope that our analy-
sis has further elucidated the derivation of the analytic
result and added valuable arguments to the discussion
about fRG and parquet graphs. Let us comment on some
interesting points from LDSK’s treatment in detail.

LDSK extract the particle-hole susceptibility from a
bosonic self-energy (ITX) arising from a multi-channel
Hubbard-Stratonovich (HS) transformation in the ex-
change (x, Uy) and pairing (1, Uy) channel. They choose
(i) equal weights in both channels, U, = Uy, while we will
argue that only the choice U, = 0 allows the particle-hole
susceptibility to be extracted correctly from the x self-
energy. We will (ii) further show that, with the choice
U, = 0, one can avoid one of the approximations made
by LDSK, namely to take uIn(§o/|w|) < 1. We will (iii)
comment on the similarity between our approximate flow
in the light-matter system and LDSK’s flow in the HS-
transformed system and demonstrate numerically that
including the HS-bosonic self-energies weakens the agree-
ment with the parquet result. Furthermore, LDSK use an
approximation scheme where all frequency dependencies
are initially neglected and finally restored by stopping
the RG flow at a final value of Ay = @. We will (iv) give
an argument, using the § regulator, for why this scheme
successfully leads to the parquet result.

(i) From the actions in Eqgs. (12) and (26), it is clear that
the HS field in the exchange channel, x, couples similarly
to fermions as the photon field 7. However, just as for the
photon [cf. Eq. (13)], it is crucial that the particle-hole
susceptibility II be fully represented by only the leading
part of the y self-energy IIX, i.e., the part without internal
X propagation. This is easily seen in terms of diagrams
(Fig. 16): IIX at zeroth order is given by a conduction-
valence-band particle-hole bubble, representing the zeroth-
order contribution to II. At first order in the interaction,
11X is affected solely by ¥ propagation, for an intermediate
x line would result in a reducible diagram. Hence, for ITX
to fully account for the first-order ladder diagram of II,
the bare 1 propagator must have full weight, Uy = U. On
the other hand, at second and higher orders, IIX contains
irreducible diagrams with internal x lines. If one chose
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U, > 0, one would overcount these contributions and not
properly generate the second-order order contribution to
II. Hence, the exact parquet graphs for II can only be
reproduced from IIX by using Uy = U and U,, = 0.

(ii) Interestingly enough, with the latter choice, the
approximate analytic approach of LDSK can be simplified.
LDSK use U, = Uy = U and arrive at an integration of
the frequency-independent, squared y three-point vertex
gi from a logarithmic scale parameter [ = 0 up to I* =
In(&o/|@]). There, they approximate cosh(2ul) by unity
[their Eq. (52)], although ul < 1 holds no longer when
[ reaches the upper integration limit, since in the first-
order parquet regime ul* = wln(§/|0]) < 1. If one
avoids this approximation and instead uses the actual
g1 = e**1/ cosh(2ul) for the integral in LDSK’s Eq. (52),
one obtains

N 2ul 4ul*
+1
mx = — A L P (e o
¥ '0/0 cosh(2ul) 2 2
= —pl* — pul™® + O(u®), (38)

This contains no second-order term and thus deviates
already at second order in U from the parquet result
(14). Note that, with g = 0 (as chosen by LDSK),
one can only obtain the real part of the particle-hole
susceptibility, solely depending on |@| (cf. App.). In this
case, an expansion of Eq. (14) yields

P ‘w| 2 P ul™
5d=_2u{1(£0) }_m(leQ )

pul*? = 2pu21*® + O(W®). (39
3

Re Hw

= —pl* —

The reason why performing the integral more accurately
leads to an incorrect result is that the expression g; =
e?"/ cosh(2ul) is inaccurate at second order, since it was
obtained using U, # 0. (Consequently, IIX deviates
from II starting at second order, consistent with our
diagrammatic argument above.) If, instead, one uses
Uy =0 and Uy, = U, then Eq. (49a) of LDSK naturally
yields g; = e®* instead of g; = ¢**/ cosh(2ul), so that
the integration in their Eq. (52) reads

J*
Iy = —p/o dl e* = %(1 — GQUl*) (40)

and precisely reproduces the result of Eq. (39).

(iii) If one sets U, = 0 in LDSK’s flow equations (44),
(45) [our Egs. (27), (28)], the three-point vertex T'°4¥ /i re-
mains equal to unity, since GX = 0 implies 9, = 0. If
one further omits bosonic self-energy reinsertions (as done
by LDSK), one has G¥ = —Uy = —U. Hence, the result-
ing flow equations for IIX and I'°¥X reduce to exactly the
form of our Eq. (30) (replacing y by x). As we have shown,
this flow yields the leading log result for the particle-hole
susceptibility without further approximations. Actual
effects of the multi-channel HS transformation become no-
ticeable only if one actually includes bosonic self-energies
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FIG. 17. (Color online) Self-energy of x, ITX, as obtained from
the flow in the HS-transformed system (neglecting T'(">)
[cf. Egs. (27), (28)]. The interaction strength is divided ac-
cording to (a) Uy = 0, Uy = U and (b) Uy = U/2 = Uy.
Since x propagation affects ITX only starting at second order
(cf. Fig. 16), the result in (b) is more similar to the leading
log formula with U/2.

on the r.h.s. of the HS flow [Egs. (27), (28)]. Figure 17
shows (a) that, in the case of Uy = 0, Uy, = U, this spoils
the agreement with the leading log result and (b) the
strikingly different outcome when using U, = Uy, = U/2.
In the latter case, I'®¥ contributes non-trivially, and the
result is more similar to that of the leading log formula
with U/2, since the effect of using U, > 0 enters only at
second and higher orders (cf. Fig. 16). We conclude that
a (multi-channel) HS transformation has no advantage
over the version advocated in Sec. VI of this work, based
on a flowing susceptibility in the fermionic system.

(iv) In their analytic solution of the flow, LDSK use
an approximation scheme where frequency dependencies
in all 1PI vertices were omitted initially. Viewing this as
a low-energy approximation, they let A flow from &y to
w instead of the expected range oo to 0. From another
perspective, this integration range for A can be obtained
by computing the “single-scale” bubble [Eq. (41)] with
the § regulator. As explained above, LDSK’s system of
flow equations with U, = 0 and G¥ = —U can be directly
related to our photon flow in Eq. (30). We have shown
that the w-dependence enters only in the (integrated)
single-scale bubble [f; in Eq. (34)], which can also be
integrated first w.r.t. frequency and then w.r.t. A. Making
use of the § regulator, £; = 0 (such that |@| < &), and
the (simplified) local ¢ propagator [Eq. (11)], one readily
obtains

3(jwl - A)
2w

. 0wl = A)
~ /_&dw sgn(w+w)T

/ §o—w
[$8.Goto= [ dwsm@+w)
w

—§o—w

sgn(w + w)
=0 — o\
(60 A) Z 2w
w==%A
_ 06 —A)O(A -~ |w])
A .
Using this as a factor in the relevant flow equations,

similarly as in Eq. (31), naturally restricts the integration
range for A precisely in the way chosen by LDSK.

(41)
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VII. CONCLUSIONS

We have analyzed the X-ray-edge (zero-dimensional
Fermi-edge) singularity—an instructive fermionic prob-
lem with simplified diagrammatics focused on two-particle
quantities, an analytic parquet and exact one-body solu-
tion. Our goal was to use the functional renormalization
group to achieve a partial resummation of diagrams, to
be compared to the (first-order) solution of the parquet
equations. We compared results for the particle-hole
susceptibility with the leading log formula in terms of
Matsubara frequencies and examined the diagrammatic
structure of the flow equations. We found that different
realizations of a truncated, one-loop fRG flow do not fully
generate the leading log diagrams.

Focusing on the flow of the fermionic four-point ver-
tex T first, we argued that, in the fRG hierarchy, the
parquet diagrams comprise (1PI and 2PI) vertices of any
order, and that these higher-order vertices, obtained by
cutting appropriate scale-dependent lines, universally con-
tribute to the flow. Hence, simply truncating the fRG
hierarchy of flow equations will always miss contributions
to parquet graphs. We further showed that a (multi-
channel) Hubbard-Stratonovich transformation does not
remedy this problem: Although the transformation en-

sures that ng) does not contribute to the particle-hole
susceptibility IT at first order, it does contribute impor-
tant, parquet diagrams to II starting at second order in
the interaction, which are lost when the four-point vertex
is neglected.

As a different approach, we included II in the fRG flow
as a (leading contribution to a) photon self-energy (i.e.,
as a flowing susceptibility). We showed that the relation
between I'® and II generated by truncated flow equations
systematically misses contributions from parallel bubbles.
However, in contrast to the underlying philosophy of fRG,
we found an improved result for II when treating the
four-point vertex less accurately. In fact, we analytically
reproduced the leading log formula using a truncated fRG
flow that keeps four-point and higher vertices constant.
We showed that, in this way, one effectively only sums
up ladder diagrams, but with a set of prefactors that
fortuitously turns out to precisely yield the correct form
of II. This is possible thanks to proportionality relations
of ladder and crossed diagrams, which, however, only
hold with logarithmic accuracy and are violated when
extending the theory, e.g., to a finite-mass valence-band
description. Our derivation of the (first-order) parquet
result from a truncated fRG flow using a static four-
point vertex is thus only possible due to a fortuitous
partial cancellation of diagrams specific to the X-ray-edge
singularity.

In related publications [21, 22], we show how the trun-
cated flow equations can actually be extended to capture
all parquet graphs. This multiloop fRG flow simulates the
effect of the six-point vertex on parquet contributions and
iteratively completes the derivative of diagrams in the
flow equations of both four-point vertex and self-energy.



ACKNOWLEDGMENTS

We thank D. Pimenov, D. Schimmel, and L. Weidinger
for useful discussions and P. Kopietz for a helpful cor-
respondence. We acknowledge support by the Cluster
of Excellence Nanosystems Initiative Munich; F.B.K. ac-
knowledges funding from the research school IMPRS-
QST.

Appendix: Particle-hole bubble

In this section, we explicitly compute the bare (inter-
band) particle-hole bubble, needed in Sec. VI, Eq. (35).
We also show that this bubble is discontinous w.r.t. the
bandgap —&4 at &g = 0. Thus, we choose £, suitably small
(cf. Sec. III) but nonzero in our numerical calculations.

The bare bubble is given by the integral

Mo = [ Gi(w+ w)Gi(w)
— inp /’sgn(ov +w)OE — @ +wl)
w w — gd
=115 g, (A1)

which we divide into three parts: Ilp o = I1 +Io +Is. We
first consider w > 0, revert to frequency integrals in the
zero-temperature limit [cf. Eq. (10)], and obtain

Eo—w ;
_ P dw _r iw—£&y
b= 2i/a w2 (i§0 fmfgd)’ (A-22)

po[¢ dw P (—iw—Ea
I, == =ZIn(— 2= A2
2790 ) Liw—¢ 2n(iw—§d ) (A.2b)
e &d . w
Ih=1 dw ——>——= =iparctan [ — |, A.2¢
? p/o G2+ @2 * (ﬁd) (A-20)
ip [7% dw p i+ &q
Jo = 2 =_In{——————). (A.2
T e siw—& 2 n(i§o+iw+§d> (A4.2d)

In the form of Eq. (A.2c), one can directly see that the
integral I5 is discontinuous w.r.t. {; at {; = 0. Essentially,
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the contribution from I is needed to produce the correct
phase in the susceptibility, when summing I7, I3, and Is.
Using the fact that, upon analytic continuation to real
frequencies, one has [i0 + &4 — |w + &4 + 07| < &, we
obtain the approximate form

~ gt (S + g (M)
1 (M’ +fd), (A.3)
-GS0

which also holds for negative frequencies according to the
symmetry relation Iy o = II§ _.

If, instead, one sets £; = 0 in the first place, one in effect
omits the contribution from I [cf. Eq. (A.2¢)]. With the
approximation |iw| < &y, one then obtains from Iy + I3:

o —lln(L)+lln(7zw )
09 m0.e50 2 \ig—iw/ 2 \i& + i@

~In (%) (A4)

Reverting to positive and negative frequencies via
Eq. (A.1) again, we finally get

6o =1In (%)

Having set £; = 0, one only obtains the real part of the
particle-hole bubble, solely depending on |@|. Moreover,
in contrast to the real-frequency calculations of Roulet
et. al [5], who focus on the real part and argue that the
imaginary part can be reconstructed by Kramers-Kronig
relations, this is not possible in the Matsubara framework,
where one does not have such relations between Re 11
and Im II. We conclude that one should therefore refrain
from setting £; = 0.

Iy (A.5)
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We present a multiloop flow equation for the four-point vertex in the functional renormalization
group (FRG) framework. The multiloop flow consists of successive one-loop calculations and sums up all
parquet diagrams to arbitrary order. This provides substantial improvement of FRG computations for the
four-point vertex and, consequently, the self-energy. Using the x-ray—edge singularity as an example, we
show that solving the multiloop FRG flow is equivalent to solving the (first-order) parquet equations and

illustrate this with numerical results.
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Introduction.—Two-particle correlations play a funda-
mental role in the theory of strongly correlated electron
systems. Most response functions measured in condensed-
matter experiments are two-particle quantities such as
optical or magnetic susceptibilities. The behavior of the
two-particle (or four-point) vertex has even been used to
distinguish “weakly” and “strongly” correlated regions in
the phase diagram of the Hubbard model [1]. Moreover, the
four-point vertex is a crucial ingredient for a large number of
theoretical methods to study strongly correlated electron
systems, such as nonlocal extensions of the dynamical
mean-field theory [2]—particularly, via dual fermions [3],
the 1PI [4], and QUADRILEX [5] approach, or the dynami-
cal vertex approximation [6]—the multiscale approach [7],
the functional renormalization group [8,9], and the parquet
formalism [10,11].

The parquet equations provide an exact set of self-
consistent equations for vertex functions at the two-particle
level and are thus able to treat particle and collective
excitations on equal footing. In the first-order [10] (or so-
called parquet [11]) approximation, they constitute a viable
many-body tool [11-13] and, in logarithmically divergent
perturbation theories, allow for an exact summation of all
leading logarithmic diagrams of the four-point vertex
(parquet diagrams [10]). It is a common belief [14] that
results of the parquet approximation are equivalent to those
of the one-loop renormalization group (RG). However,
there is hardly any evidence of this statement going beyond
the level of (static) flowing coupling constants [15].

Recently, the question was raised [16] whether it is
possible to sum up all parquet diagrams using the functional
renormalization group (FRG), a widely used realization of a
quantum field-theoretical RG framework [8,9]. The parquet
result for the x-ray—edge singularity (XES) [10,17-19] was
indeed obtained [16], but using arguments that work only for
this specific problem and do not apply generally [20]. In fact,
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the common truncation of the vertex-expanded FRG flow
completely neglects contributions from the six-point vertex,
which start at third order in the interaction. Schemes have
been proposed for including some contributions from the six-
point vertex [21-23]; however, until now it was not known
how to do this in a way that captures all parquet diagrams.

In this work, we present a multiloop FRG (MFRG) scheme,
which sums up all parquet diagrams to arbitrary order in the
interaction. We apply it to the XES, a prototypical fermionic
problem with a logarithmically divergent perturbation theory
[24]; in a related publication [25], we develop the MFRG
framework for general models. The XES allows us to focus on
two-particle quantities, as these are solely responsible for
the leading logarithmic divergence [10,17], and exhibits
greatly simplified diagrammatics. In fact, it contains the
minimal structure required to study the complicated interplay
between different two-particle channels. We demonstrate
how increasing the number of loops in the MFRG improves
the numerical results with respect to the known solution of the
parquet equations [10,17,18]. We establish the equivalence
of the MFRG flow to the parquet approximation by showing
that both schemes generate the same number of diagrams
order for order in the interaction [26].

Model.—The minimal model for the XES is defined by
the Hamiltonian

H= Zeczce +eudid+Ucted’d, U>0. (1)
€

Here, d and c,, respectively, annihilate an electron from a
localized, deep core level (¢, <0) or a half-filled conduc-
tion band with constant density of states p, half-bandwidth
&o, and chemical potential 4 = 0, while ¢ = >_, ¢, annihi-
lates a band electron at the core-level site. In order to
describe optical properties of the system, one examines the
particle-hole susceptibility iT1() = (T d"(¢)c(t)ct(0)d(0)).
It exhibits a power-law divergence for frequencies close

© 2018 American Physical Society
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FIG. 1. Low-order diagrams for (a) the vertex reducible in
antiparallel lines, y,, and (b) the totally irreducible vertex R. Solid
(dashed) lines denote G¢ (G¢), and a dot the bare vertex —U. The
first-order or so-called parquet approximation only retains the
bare vertex for R.

to the absorption threshold, as found both by the solution
of parquet equations [10,17] and by an exact one-body
approach [18].

In the Matsubara formalism, the bare level propagator
reads G4 = 1/(iw — €,), and, focusing on infrared proper-
ties, we approximate the local band propagator as
G = —inpsgn(w)O(&, — |w|). The particle-hole suscep-
tibility takes the form (at a temperature 1/ < |e,])

P{]_<i&)+ed)“’(“)} w=pU. @

M. =
“ a(u) —&

where a(u) = 2u + O(u?) and ¢, is considered as a renor-
malized threshold. The corresponding retarded correlation
function is obtained by analytic continuation i® — w + 0™,
in which case the summands leading to the power law are
logarithmically divergent as u"In"*!(&/|w + ¢4|). For
imaginary frequencies, however, the perturbative parameter
is finite, with a maximal value of u In(&y/|e4|) = 0.9, for our
choice of parameters. Our goal will be to reproduce Eq. (2)
using the FRG.

Parquet formalism.—The particle-hole susceptibility is
fully determined by the one-particle-irreducible (1PI) four-
point vertex via the following relation (using the shorthand

notation T') . = Tdeed " [20]):

m ZGZl)GZJ+w ﬁz ZGZG(L/H»&) .V, deG;quu (3)

In principle, G¢ and G are full propagators. However, for
the XES, electronic self-energies do not contribute to the
leading logarithmic divergence [10,17], and we can restrict
ourselves to bare propagators.

Diagrams for the four-point vertex are exactly classified
by the central parquet equation

F(4>:R+ya+yp, I,=R+y,, 1,=R+y, (4)

The leading divergence of the XES is determined by only
two two-particle channels [10,17]: y, (cf. Fig. 1(a) [29])
and y, contain diagrams reducible by cutting two anti-
parallel or parallel lines, respectively, whereas /, and 1,
contain diagrams irreducible in the respective channel. The
totally irreducible vertex R [cf. Fig. 1(b)] is the only input
into the parquet equations, as the reducible vertices are
determined self-consistently via Bethe-Salpeter equations

> -
o LL-T- Ml TL-T-T M
-« < < -« < < - < - <
° —
> > > >
M B W K W Ry A
] - a s - < ” < et
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FIG. 2. (a) Bethe-Salpeter equations in the antiparallel (a) and
parallel (p) channels. A full square denotes the full vertex I'*).
(b) FRG flow equation for both channels relating 9,I'* to I'*)
and I'®). The conventional approximation is to set I'®) = 0.

[cf. Fig. 2(a)]. Similarly as for the self-energy, terms of R
beyond the bare interaction only contribute subleadingly to
the XES and can hence be neglected [10,17].

In this (parquet) approximation, Eq. (4) together with the
Bethe-Salpeter equations for reducible vertices [Fig. 2(a)]
form a closed set and can be solved. The analytic solution,
employing logarithmic accuracy, provides the leading term
of the exponent in Eq. (2). Our numerical solution, to which
we compare all following results, is both consistent with the
power-law-like behavior of Eq. (2) for small frequencies
[cf. Fig. 4(c)] and with the corresponding exponent a(u)
[cf. Fig. 4(d)].

Multiloop FRG flow.—The functional renormalization
group provides an exact flow equation for the four-point
vertex as a function of a RG scale parameter A, serving as
infrared cutoff. Introducing A only in the bare d propagator,
the flow encompassing both channels [26] is illustrated in
Fig. 2(b), where the dashed arrow symbolizes the single-
scale propagator S¢. Neglecting self-energies, we have
84 = 9,G4, and 9,T'™ only depends on I'® and T'®
The boundary conditions G§ = 0 and Gj‘(f = G* imply

ry =-vandry =o.

For almost all purposes it is unfeasible to treat the six-
point vertex exactly. Approximations of I'® thus render the
FRG flow approximate. The conventional approximation is
to set I'®) and all higher-point vertices to zero, arguing that
they are at least of third order in the interaction. This affects
the resulting four-point vertex starting at third order and
neglects terms that contribute to parquet diagrams [20].
Since, however, the parquet approximation involves only
four-point vertices, it should be possible to encode the
influence of six- and higher-point vertices during the RG
flow by four-point contributions and, still, fully capture all
parquet graphs.

In the following, we show how this can be accomplished
using the MFRG. The first observation is that all the
diagrammatic content of the truncated FRG (i.e., without
F<6)) is two-particle reducible, due to the bubble structure in
the flow equation [first two summands of Fig. 2(b)], very
similar to the Bethe-Salpeter equations [Fig. 2(a)]. The only
irreducible contribution is the initial condition of the vertex,

Ffi) = —U. Hence, diagrams generated by the flow are

always of the parquet type. It is then natural to express I'*)
as follows, using the channel classification of the parquet
equations:
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FIG. 3. Multiloop FRG flow equations, 0y, = Zlej/y), for the four-point vertex reducible in channel r, with r = @ or p,and 7 = p
or a. The subscript r in the diagrams further symbolizes antiparallel or parallel c-d lines, respectively. (a) One-loop, (b) two-loop,

(c) three- and higher-loop flows. (d) One-loop calculation of y

r

=31 (5

1

I =-U+y,+7,.

Here, r stands for a or p and j/(f) for diagrams involving ¢
loops connecting full vertices. We will show that ;'/@ can be
constructed iteratively from lower-loop contributions.
The conventional (or one-loop) FRG flow in channel r is
formulated in Fig. 3(a), where full vertices are connected by
an r “single-scale” bubble, i.e., either antiparallel or parallel
G¢-S9 lines. [Detailed diagrams with all arrows and their
mathematical translations are given in Ref. [26], Fig. S2,
Eq. (S2).] If one inserts the bare vertex for I ) on the rhs of
such a one-loop flow equation [Fig. 3(a)], one fully obtains
the differentiated second-order vertex. However, inserting
first- and second-order vertices on the rhs will miss some
diagrams of the differentiated third-order vertex, because
these invoke an 7 single-scale bubble that is not generated

by 7'/9) (an overbar denotes the complementary channel:
a = p, p = a). An example of such a missing third-order
diagram is that obtained by differentiating the rightmost d
propagator of the third diagram in Fig. 1(a) (cf. Fig. S1 of
Ref. [26]). All such neglected contributions can be added to
the rhs of the flow equation by hand (replacing bare by full
vertices), resulting in the construction in Fig. 3(b). It uses
an r “standard” bubble [(anti)parallel G¢-G¢ lines] to
connect the one-loop contribution from the complementary
channel, y'/(;l), with the full vertex, thus generating two-loop
contributions. These corrections have already been sug-
gested from slightly different approaches [21,23].

The resulting third-order corrected flow will still miss
derivatives of parquet graphs starting at fourth order in the
interaction. These can be included via two further additions
to the flow, which have the same form for all higher loop

orders, ;'/<,f+2) with £ > 1 [cf. Fig. 3(c)]. First, for the flow

of ;'/<,f+2), an r bubble is used to attach the previously

computed (¢ + 1)-loop contribution from the complemen-

tary channel, J'/(;f+]), to either side of the full vertex, just as

in the two-loop case. Second, by using two r bubbles, we
include the differentiated #-loop vertex from the comple-

mentary channel, ;'/Ef), to the flow of j'/(,“z). Double
counting of diagrams in all these contributions does not
occur due to the unique position of the single-scale

propagator [26]. Note that the central term in Fig. 3(c)

(?2), using the previously computed 7, p * or ¥

. (£+1)
rL

- (£+1)

can be computed by a one-loop integral, too, using the
previous computations from the same channel, as shown in
Fig. 3(d). Consequently, the numerical effort in the multi-
loop corrections scales linearly in 7.

By its diagrammatic construction, organized by the
number of loops connecting full vertices, the MFRG flow
incorporates all differentiated diagrams of a vertex reduc-
ible in channel r, built up from the bare interaction, and
thus captures all parquet graphs of the full four-point
vertex. Indeed, in Ref. [26], we prove algebraically for the
XES that the number of differentiated diagrams in the
MFRG matches precisely the number of differentiated
parquet graphs. An Z-loop FRG flow generates all parquet
diagrams up to order n = ¢ + 1 in the interaction and,
naturally, generates an increasing number of parquet
contributions at arbitrarily large orders in U.

Numerical results.—In Fig. 5, we show numerical results
for the XES particle-hole susceptibility. Using four differ-
ent regulators (see below), we compare the susceptibility
obtained from an /-loop FRG flow to the numerical
solution of the parquet equations. We find that the one-
loop curves differ among each other and deviate strongly
from the parquet result. With increasing loop order Z, the
multiloop results from all regulators oscillate around and
approach the parquet result, with very good agreement
already for # = 4. For ¢ > 7, the oscillations in the relative
deviation (at @ = 0) are damped to <2% (insets, solid line).
A similar behavior is observed for the identity [30] I1; =
im0 a0/ U? (@ is the exchange frequency, and o,
v are two fermionic frequencies), which the parquet
solution is guaranteed to fulfill (cf. Ref. [26], Eq. (S4)
and following) (insets, dashed line).

As regulators, we choose the Litim regulator [31], and
propagators of the type G4 (0) = 0(w/A — 1)G?(w), where
0(x) is either a sharp, smooth, or oscillating step function
(cf. Figs. 4(a) and 4(b); Eq. (S8) of Ref. [26]). The fact that
different regulators give the same result in the MFRG flow is
a strong indication for an exact resummation of diagrams.

Let us note that the MFRG flow also increases the
stability of the solution towards larger interaction. Whereas,
in the one-loop scheme, the four-point vertex diverges for
u > 0.4, higher-loop schemes converge up to larger values
of u. The reason is that the one-loop scheme contains the
full ladder series of diagrams (in any channel), but only
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FIG. 4. (a) Noninteracting “standard” particle-hole bubble I1§
and propagator G (inset) for different regulators (cf. Eq. (S8) of
Ref. [26]) and A/&, = 0.2. (b) Same as (a) for the “single-scale”
bubble IT3 and propagator S¢. (c) Double-logarithmic plot for the
particle-hole susceptibility I1, obtained from solving the parquet
equations. (d) IT;_q(u) computed via the parquet equations [e4,
as in (c)] and according to Eq. (2) with different choices for a(u).
The comparison between these guide-to-the-eye lines and the
numerical solution confirms that a(u) ~ 2u, but also shows that
subleading contributions become sizable for larger u. These are
present since internal numerical calculations go beyond loga-
rithmic accuracy.

parts of nonladder diagrams. Whereas the (imaginary-
frequency) pure particle-hole ladder already diverges at
u ~ 0.3, higher-loop extensions approaching the parquet
summation are needed for the full feedback between both
channels to eliminate the divergence.

The equivalence between the MFRG flow and parquet
summation allows us to explain how the quality of FRG
results depends on the choice of regulator. Whereas the
one-loop scheme only involves a single-scale bubble
Hg =3 G<S?, all extensions invoke successive standard
bubbles I1§ = >~ G°G“. By minimizing the weight of I1§
compared to IT3, one minimizes the effect of the multiloop
corrections and thus the difference between low-level MFRG
and parquet. Indeed, from Figs. 4(a) and 4(b) we see that a
regulator with small (large) weight in TT§ and large (small)
weight in IT3, such as the oscillating-step (Litim) regulator,
gives comparatively good (bad) agreement with parquet
for low 7. Accordingly, the sharp-step regulator performs
slightly better than its smooth counterpart.

Generalizations.—The MFRG flow can be readily
extended to more general models, where one normally does
not treat two particle species separately, as done here for ¢
and d electrons. If three two-particle channels (antiparallel,
parallel, and transverse) are involved, the higher-loop flow
must incorporate feedback from both complementary chan-
nels via 72 = >",,7% [25]. The self-energy ¥ enters the

'™ flow via full propagators, and, in the one-loop flow of
the four-point vertex [Fig. 3(a)], one should follow the
usual practice [8,21] of using the derivative of the full
propagator (0,G,) instead of the single-scale propagator

10 0.50\ © L parquett T o5t
= 3 [ 20 5 kA
SN NERRY
> T LI SN SN T
E TS~ N
= 2, s I : 7, 8
21 (a) Litim t (b) sharp

10 0.5¢ 0.5+

—_— ,* —_—
= S g
A AN

E 3 a \\‘ RS s 9 \‘\ =N
= 01 =47 01 T
T 2 ¢ 8 2 ¢ 8
21(c) smooth

0 o/% 02 0 o/6 02

FIG. 5. (a)-(d) Numerical solutions for the particle-hole sus-
ceptibility II, obtained from the parquet equations and from
MEFRG with different regulators [cf. Figs. 4(a) and 4(b)], using
the parameters of Fig. 4(c). Insets: Relative deviation between
parquet and MFRG results for IT (solid line) and between IT and
limy, j~c0¥a/U? (dashed line), all evaluated at @& = 0.

(SA=0AGp|s—const) Which excludes any differentiated self-
energy contributions. The reason is that, in the exact FRG
flow equation [Fig. 2(b)], those diagrams of 9, that
involve J,X are encoded in the six-point vertex.
Evidently, an improved flow for I'®) also improves FRG
calculations of the self-energy. In the parquet formalism, X is
constructed from the four-point vertex by an exact, self-
consistent Schwinger-Dyson equation [11]. In order to
obtain the same self-energy diagrams from the (in principle)
exact FRG flow equation for X, with only the vertex in the
parquet approximation at one’s disposal, multiloop exten-
sions to the self-energy flow, similar to those introduced
here, can be performed [25]. Given the self-energy, all
arguments about capturing parquet diagrams (which now
consist of dressed lines) with the multiloop FRG flow remain
valid since they only involve generic, model-independent
statements about the structure of two-particle diagrams.
The MFRG flow is applicable for any initial condition

FX‘[). An example where one would not start from GA’ =0,

as done here, arises in the context of dynamical mean-field
theory (DMFT) [2]. There, the goal of adding nonlocal

correlations, with the local vertex from DMFT (F](;‘IEAFT) as
input, can be pursued using the FRG [32]. Alternatively,
this goal is also being addressed by using the parquet
equations in the dynamical vertex approximation (DI"A)
[6]. However, the latter approach requires the diagram-
matic decomposition of the nonperturbative vertex [33]

FSK,IFT = R+ >_,7,, which yields diverging results close to
a quantum phase transition [1,35]. In contrast, the MFRG
flow is built from the full vertex I’ ]()41\)/IFT and could thus be
used to scan a larger region of the phase diagram.
Conclusion.—Using the x-ray—edge singularity as an
example, we have presented multiloop FRG flow equa-
tions, which sum up all parquet diagrams to arbitrary order,
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so that solving the MFRG flow is equivalent to solving the
(first-order) parquet equations. Our numerical results dem-
onstrate that solutions of an #-loop flow quickly approach
the parquet result with increasing ¢. This applies for a
variety of regulators, confirming an exact resummation of
diagrams. The MFRG construction is generic and can be
readily generalized to more complex models.

The MFRG-parquet equivalence established here shows
that one-loop FRG calculations generate only a subset of
(differentiated) parquet diagrams and that a multiloop FRG
flow is needed to reproduce parquet results. From a
practical point of view, the MFRG appears advantageous
over solving the parquet equations since solving a first-
order ordinary differential equation is numerically more
stable than solving a self-consistent equation. Moreover,
one can choose a suitable regulator and flow from any
initial action. Altogether, the MFRG scheme achieves, in
effect, a solution of the (first-order) parquet equations while
retaining all treasured FRG advantages: no need to solve
self-consistent equations, purely one-loop costs, and free-
dom of choice for regulators.
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This supplement consists of four parts. First, we show
detailed equations for the mfRG flow, the identity between
susceptibility and reducible vertex, and the regulators we
used. Second, we provide the numerical details of our
computations. Third, we prove algebraically for the XES
that the mfRG flow generates all parquet diagrams at
arbitrary order, based on expanding the parquet and flow
equations in the interaction and counting diagrams. Last,
we briefly mention that many quantities appearing in
this proof happen to have an interpretation as giving the
number of special paths on a triangular grid.

In this supplement, citations and references without
the extra label “S” refer to those given in the main text.

S-I. DETAILED EQUATIONS

Figure S1 illustrates how the two-loop corrections of
mfRG cure the flow of the vertex ~, at third order in
the interaction. Figure S2 shows the detailed form of the
mfRG flow equations from Fig. 3. In principle [25], the
flow equations also contain contributions from a third
(transversal) channel, where the interband vertex T'%°%? ig
connected to an intraband vertex 1'% by valence band
lines G4 and S?. However, one can easily see that, for the
XES, all such terms contribute subleadingly and belong
to higher-order diagrams of R in the parquet treatment
[10]. Hence, they are neglected throughout this work.

The mathematical translation of our flow equations
only requires the formula for an r bubble connecting two
vertices (where r = a,p). This is most compactly written
in a notation adapted to the respective channel: The
three independent frequencies necessary to describe a full
vertex can be chosen to include two fermionic frequencies
combined with either the bosonic exchange frequency
(g, suited for the antiparallel channel, or the bosonic

pairing frequency @,, suited for the parallel channel.

This is, however, merely a choice of parametrization
and does not require any properties of the vertex

itself. We choose the parametrization according to
Wy w v
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FIG. S1. First row: All third-order contributions to 7y,. Its flow
is described by the six diagrams obtained by differentiating
each dashed line once. In the mfRG scheme, these six diagrams
are encoded in 4" (second and third rows) and 52 (last two
rows), the one- and two-loop flow equations [cf. Fig. S2| for va,
respectively. The third-order contributions are obtained by
inserting first- and second-order diagrams for the full vertex.

where the bosonic frequencies are related via
Dp = Bg +w + V.
In this notation, an r bubble V,. connecting the vertices

V" and V" can be computed as follows:
d c "
7 w,V,wp ﬁ Z w,w’ @, G G +o,w’vw’,u,wrv (82)

with 0, = 1 and 0, = —1.

The channel notation (S1) is also used in the identity
between particle-hole susceptibility II and reducible vertex
v, considered in Fig. 5. If we, more generally, denote
the susceptibility in the antiparallel channel by II, = II
and the one in the parallel channel by II,, the relation
between susceptibility and 1PI vertex, already used in
Eq. (3), reads

T 3Wr Z GiGi)T-koTw (1+% Z FE:'I,)V,&)TGdGE)T-FoTU)

(83)
The identity between susceptibility and reducible vertex
[30] is given by
Yriwwa, = U, . (54)
|w],|v|—o0
To see that a solution of the parquet equations with
any approximation for the totally irreducible vertex R is
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FIG. S2. Multiloop flow equations in the (left) antiparallel and (right) parallel channels, corresponding to Fig. 3.

guaranteed to fulfill Eq. (S4), we note first that, by the
very fact that R is totally irreducible, we have

lim R, ., =-U. (S5)

|w]—o0

Regarding the reducible vertices, we can perform the limit
in the Bethe-Salpeter equations [Fig. 2(a)] and obtain

lim Ywpe. =0, = lm I.,,q =-U, (S6a)
|w|]—00 |w|—o0
lim 'Vr;w,u,zDT = ZGd Wr+op w’FEu4)u LWy (S6b)

|w|—0o0

By symmetry [cf. Eq. (S11)], Egs. (S5), (S6) also hold
for w <> v, and we further deduce

4 —

lim )7, o = lim Ry e + lim v e,
|v|—o00 T [v]—o0 |v]—o00
(4) d c
_ U@ g ge
B Z w’ w' @y r+or
(S7)

Adding the limit limj,| to Eq. (S6b) and using
Egs. (S3) and (S7) yields the identity (S4).

Next, we give the mathematical definition of the regu-
lators, which we have used in the numerical calculations
(Fig. 5) and already illustrated in Figs. 4(a) and 4(b):

1
d,L
Gia= isgn(w) max(|w|, A) — €’ o)
1
d,sharp — — A
Gw,A O(|w] )iw — o (S8b)
Gd,smooth — |:1 _ C_(%) :| i 1 , a= 2, (880)
W — €q
Gd osc. _ e—(ﬁ)a[l—ibsgn(w)]; (1:27 b=1.
W — €q
(S8d)

The regulator in Eq. (S8a) is known as Litim regulator [31].
Note that the parameters in Eqgs. (S8¢) and (S8d), a > 0
and b, can also be chosen differently, keeping the boundary
conditions Gf{i:m =0 and Gfl\fzo = G fulfilled.
Finally, we remark that, in principle, the band gap is
the largest energy scale in the XES. This would require

lea| > &. However, in the choice of the Hamiltonian
[Eq. (1)], we have already restricted ourselves to an inter-
band density-density interaction, which implies individual
particle-number conservation. As a consequence, we are
free to choose any numerical value for €4, the only ex-
ception being €4 = 0, which violates analytic properties
of the (bare) susceptibility [20]. In fact, we find small
values for |e4| most suitable to visualize the power-law
divergence in the particle-hole susceptibility for imaginary
frequencies [cf. Eq. (2)].

S-II. NUMERICAL DETAILS

We have solved the self-consistent parquet equations
[Eq. (4), Fig. 2(a)] by an iterative algorithm. For that,
we use the initial values 7, = 0 and an update rule that
combines the previous value and the predicted value from
the Bethe-Salpeter equations according to

ARew — ypred' + (1 =z, 2502 (S9)

The mfRG flow equations are solved by an adaptive-
step Runge-Kutta algorithm. The numerical costs of the
mfRG flow and the parquet algorithm are similar: In
both scenarios, one computes bubbles of vertices multiple
times—either to evaluate the flow equations during the
mfRG flow or to evaluate the Bethe-Salpeter equations
during a self-consistency loop in the parquet algorithm.
In either case, we use a parametrization of four-point
vertices which accounts for the important high-frequency
asymptotics [13,30]. This parametrization [30] is adapted
to the channel in which a vertex is reducible: We ap-
proximate the frequency dependence of a vertex reducible
in channel r, using the respective channel notation from

Eq. (S1), b

Yriw,v,o, — G(Q - |{I}|)K} (Slo)
+O(Q2 — @, )0 — [W)KZ |
+0(Q — |0, )02 — V) EZ |

+0(Q3 — |w))0(Q23 — |w)© (93 — WDKZ, w0

Note that the first summand in this parametrization al-
ready incorporates the limit used in Eq. (S4). We have



chosen the cutoffs ©; in Eq. (S10) such that we keep 1000,
500, and 100 positive frequencies on each axis for K1, K2
and K2, and K3, respectively. Using the symmetries for
vertices [30],

(Vw,u,wr)* = V—w,—u,—wﬁ (Sll)

Vw,t/,wr = Vu,w,ww
further reduces the computational effort. Note that, while

the latter symmetry holds for yﬁw and 77(,%, it does not

hold for ’yﬁﬁi and '\/ﬁ% individually. Instead, one has

) ©)

fYr,L;w,u,cDT = VT,R;V,W,(I)T'

The Matsubara summations in all our calculations are
naturally restricted to a finite frequency interval, since
we approximate the ¢ propagator using a sharp cutoff:

&o
G = p/ de- LI —2ip arctan (@)
gy w—e w
) w
= —impsgn(w)O(& — |w|) + O(—) (S12)
€o

At an inverse temperature of 3£, = 500, this yields about
160 summands.

S-III. PROOF OF EQUIVALENCE

We prove below for the XES that solving the full mfRG
flow is equivalent to solving the (first-order) parquet equa-
tions. We also show that a solution of an ¢-loop fRG flow
fully contains all parquet graphs up to order n = ¢ + 1.
In order to check that the parquet vertex is a solution
of the mfRG flow equation (viz., an ordinary differential
equation), one has to verify that the initial condition is
fulfilled and that the differential equation is fulfilled (dur-
ing the whole flow). At the initial scale (A; = 0o, G§ =0,

ng) = —U) the parquet vertex is trivially given by the
bare vertex; thus the initial condition is fulfilled. At an
arbitrary scale parameter A during the flow, inserting all
parquet diagrams for the vertex into, e.g., the one-loop
flow equation generates only a subset of all differenti-
ated parquet diagrams (cf. Fig. S1), i.e., the differential
equation is not fulfilled. However, inserting all parquet
diagrams into the full mfRG flow equation yields all differ-
entiated parquet diagrams, i.e., the differential equation
is fulfilled.

To show that, indeed, all differentiated parquet dia-
grams are generated in mfRG, we proceeds in two steps:
First, we argue that, by the structure of the mfRG flow,
the differentiated diagrams are of the parquet type with-
out any double counting. Second, we show (without caring
about the specific form of a diagram) that the number
of differentiated diagrams in mfRG exactly matches the
number of differentiated parquet graphs order for order
in the interaction.

No double counting in mfRG

The only totally irreducible contribution to the four-
point vertex contained in the multiloop (or conventionally
truncated) fRG flow is the bare interaction stemming from
the initial condition of the vertex. All further diagrams
on the r.h.s. of the flow equations are obtained by itera-
tively combining two vertices with parallel or antiparallel
propagators. Hence, they correspond to differentiated
parquet diagrams in the respective channel.

The fact that there is no double counting in mfRG is eas-
ily seen employing arguments of diagrammatic reducibility
and the unique position of the single-scale propagator in
differentiated diagrams. To be specific, let us consider
here the channel reducible in antiparallel lines (cf. left
side of Fig. S2); the arguments for the other channel are
completely analogous.

First, we note that diagrams in the one-loop term
always differ from higher-loop ones. The reason is that,
in higher-loop terms, the single-scale propagator appears
in the vertex coming from d57,. This can never contain
vertices connected by an antiparallel G¢-S¢ bubble, since
such terms only originate upon differentiating ~,.

Second, diagrams in the left, center, or right part of
an /-loop contribution always differ. This is because the
vertex 'yl(f) is irreducible in antiparallel lines. The left part
is then reducible in antiparallel lines only after the single-
scale propagator appeared, the right part only before, and
the center part is reducible in this channel before and
after S<.

Third, the same parts (say, the left parts) of different
loop contributions (¢ # ¢') are always different. Assume
they agreed: As the antiparallel bubble induces the first
(leftmost) reducibility in this channel, already %(f) and

’y;(,zl) would have to agree. For these, only the same parts
can agree, as mentioned before. The argument then
proceeds iteratively until one compares the one-loop part
to a higher-loop (|¢ — ¢'| + 1) one. These are, however,
distinct according to the first point.

To summarize: All mfRG diagrams belong to the par-
quet class and are included at most once. To show that all
differentiated parquet diagrams are included, it remains
to compare their number to the number of diagrams in

mfRG.

Counting the number of diagrams

To count the number of diagrams generated by the
parquet equations and mfRG, we expand the parquet
(Bethe-Salpeter) and flow equations in the interaction. As
we need not consider the specific form of a diagram, the
calculation is identical for both channels.

Let us denote the number of parquet diagrams of T'*)
at order n by Py(n) (mnemonic: P for parquet). A



'™ diagram of order n contains n — 1 scale-dependent
d lines. Differentiating an n-th order diagram by A thus
produces n — 1 differentiated diagrams, and, in total, we
have Py(n)(n — 1) differentiated diagrams. Let us further
denote the number of differentiated diagrams at order n in
one channel, generated by mfRG at loop order ¢, by Fy(n)
(mnemonic: F for flow). The ¢-loop contributions start
at order n = £ + 1 in the interaction, i.e., Fy(n) = 0 for
n < £. To show that all parquet diagrams are generated
by the (full) mfRG flow, we thus have to establish the
following equality:

e’} n—1
Py(n)(n—1) =2 Fi(n)=2> Fi(n).  (S13)
=1 =1
In order to sum the parquet graphs up to order n, it
suffices to solve the multiloop fRG flow up to loop order

{=n—1.

First, let us count the number of parquet diagrams.

From the Bethe-Salpeter equations [cf. Fig.2(a)], one
can directly deduce the number of diagrams at order n
inherent in v (of any channel), P, (n), given the number
of diagrams in I, Py, and in T Py:

n—1

- 3 o

As both I and T' start at order 1, the order on the

)Po(n — m). (S14)

Lh.s. exceeds the maximal order of a diagram on the r.h.s.

From the parquet equations, we further know

(S15)

Inserting this, we obtain a closed relation for Py:

S

Let us solve this recursion by the method of generating
functions. We define the generating function pg(z) for
the sequence Py(n) by

)Po(n—m)+FPy(n—1), n >2. (S16)

= i Po(n)z"~ (S17)
and calculate -
apo(r)’ = i Po(n) Po(m)z"+m~?
=1
= i Zl Po(m)Po(n — m)
= i Z Py(n— 1)z
2
:iP() —1—xZP0 ~1 (S18)

3
Il
—

From this, we find the defining equation for the gener-
ating function,

zpo(x)? + (z — Dpol(z) + 1 =0, (S19)

to which the solution with positive Taylor coefficients is

1—2—+v1—6x+22
2z ’

po(x) = (520)

~ is the generating func-
1(¢) [27], we find

Recognizing that (1 — 2tz + 22)
tion for Gegenbauer polynomials C)_

1
Po(n) = —5C,12(3), n>2 (S21)
and can read off Py(n) from a tabulated sequence:
Py: 1,2, 6,22, 90, 394, 1806, 8558, ... (S22)

Note that Py(n) grows exponentially for large n. This
is much less than the number of all, i.e., parquet and
nonparquet diagrams of '™ | which grows faster than n!.

The defining equation for the generating function (S19)
can be used to find the generating function g(x) of the
related sequence Py(n)(n —1):

S

n=1

—1

(S23)

Y(n—1)a" " = app(z).

Differentiating Eq. (S19), we find the expression

0 = po(z)* + po(x) + [1 — = + 2xpo(x)]pj (),
po(x) +1

11—z —2zpo(x)’ (524)

= q(z) = zpo(x)

Next, we count the number of differentiated diagrams
generated by mfRG. For this purpose, we consider the
auxiliary vertices in Fig. S3, which can be seen as the
building blocks of the multiloop flow equations (Fig. S2).
Denoting the number of diagrams of V; at order n by
Py(n), we find, given all parquet diagrams in the full
vertex T similar to Eq. (S14) the relation

n—1

-5

This convolution of two sequences can be expressed in
terms of the product of their generating functions, defined

Pngl P() n— ) (825)

by pe(z) = 307, Pe(n)a™ 1
ape(z)po(z) = = Z Py(n) Py(m)z" T2
— Zzn 1 Z PZ PO n— )
n=2
= Z Pryi(n)x = pes1(z). (S26)
n=2
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FIG. S3. One-loop equations for auxiliary vertices, which can
be seen as building blocks for the multiloop flow equations
(Fig. S2).

As a direct consequence, we have
0 0
pe(x) = 2py™ (2);

To relate this to mfRG, note that the flow of n-th order
diagrams is only determined by lower-order diagrams,
and that the equivalence (S13) as well as our arguments
using generating functions hold for all orders individually.
Building the series from the bare interaction, we can
therefore assume the parquet diagrams of the vertex on
the r.h.s. to be given.

At the one-loop level [Fig. 3(a)], the definitions for 40
and V; are identical, hence we also have Fy(n) = Py(n).

For 4%

Pyn)=0, ¢>n. (S27)

[Fig. 3(b)], the one-loop contribution from the
complementary channel, #1(,1)7 is inserted on the left and
right side of the full vertex. Both of these parts have
the same number of diagrams, which is precisely the
number of diagrams in V, (cf. Fig. S3). Hence, we get
F5(n) = 2P,(n). For all higher loops, 456+2) [Fig. 3(c)],
the previous term is similarly inserted on both sides of the
full vertex, however the center part is constructed with
ﬁ,(p from loop order ¢, and the proportionality relation
becomes more complicated. We use an inductive argu-
ment, starting at ¢ = 3, and that the number of diagrams
contributing to the lower-loop vertices, '3/;(,1> and ﬁ,(f) , is
obtained by multiplying the number of diagrams of the
auxiliary vertices by a counting constant (which keeps
track of the different ways to combine vertices at fixed
loop order):
Fi(n)=c1Pi(n), c1 =1; Fy(n) = caPe(n), ca = 2.

(S28)
Using further the equation illustrated in Fig. S4, we simi-
larly obtain for all higher loops:

{>1.

(S29)
The recursion relation for ¢, with the initial conditions c¢;
and c¢g is known to define the so-called Pell numbers [28,
A000129], which are explicitly given by

VR (- VO
Co = 2\/5 .

To summarize, the number of diagrams at order n of
the full vertex, generated by mfRG at loop order ¢, is
given by 2Fy(n), where Fy(n) = ¢;Pe(n), with generating
functions fy(z) = cepe(x). Summing all loops, we find by

Foro(n) = cop2Prga(n), cop2 = 2ci41 + o,

(S30)

T >~ > =
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FIG. S4. Relation between the number of diagrams contained
in f'yl(f”) in Vet2, where # symbolizes that we count the
number of diagrams of the subsequent vertex.

using Eqgs. (S27) and (S30):

oo

2ng(x) = %po(x) O'Z [zpo(x)(l + Jﬁ)}f

=1 o=+1 (=1

1 o
= ﬁpo(l‘) Zill*l’po(l')(l‘i’gﬂ)

o=

— - 1

T %p0(0) — 220 (@)? q(z),  (S31)
where the last equality follows by repeated use of Eq. (S19).
Consequently, the sequences corresponding to ¢(z) and
2>~ fe(x) are also equal. Using Fy(n) =0 for £ > n
[cf. Eq. (S27)], this means

0o n—1
Py(n)(n—1) =2 F(n)=2> Fyn).  (S32)
(=1 (=1

We thus have shown that the number of differentiated
diagrams produced by mfRG at any order n matches
the number of differentiated parquet diagrams at this
order, and that an ¢-loop fRG flow includes all parquet
graphs up to order n = ¢ + 1. The details of the proof
rely on properties of the XES. However, generalizing
the above strategy to more general models should be
straightforward.

S-IV. RELATION TO PATHS ON A
TRIANGULAR GRID

As a mathematical curiosity, we mention that the se-
quences appearing in the previous section have a certain
meaning when counting paths on a triangular grid. We are
not aware of an underlying connection which goes beyond
coincidental properties of the recursion relations of the
sequences Py(n). Nevertheless, the details are sufficiently
intriguing that we present them here.

The sequence Py(n) of Eq. (S22), giving the number
of parquet graphs at order n, happens to be known in
the mathematical literature by the name of the (large)
Schréder numbers. These denote the number of paths on
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FIG. S5. (a) The (large) Schroder numbers count the number
of paths on a triangular grid (in the half-plane) between two
points on a line. For n = 4, these are 22. 16 of these have a
peak at the first level, 6 at the second, and only 1 at the third
level [cf. Eq. (S38)]. (b) The Pell numbers count the number
of paths on a triangular grid (not restricted to the half-plane)
from a point to a vertical line. For n = 3, these are 5.

a half-triangular grid beginning and ending on the hori-
zontal axis [28, A006318][cf. Fig. S5(a)]. The sequences
Py(n) give the number of these paths with a peak at level
£ 28, A006318-A006321], or the number of paths starting
from the left corner and ending at level ¢ on the right
triangle leg (see below). The Pell numbers [cf. Eq. (S30)]
count the number of paths on a triangular grid (not re-
stricted to a half-plane) from a point to a vertical line [28,
A000129][cf. Fig. S5(b)].

The interpretation for Py(n), £ > 0, as paths ending
on the right triangle leg can be understood from a re-
cursion relation between Py(n) with neighboring ¢ and
n [cf. Eq. (S35)]. For this purpose, let us first derive
the relation and construct Py(n) as a matrix. By using
Eq. (S25) twice and reordering summation indices, we
obtain for /,n > 1:

Pr(n+1) = ZP[ YPo(n+1—m)
m=1
n m—1
=Y Pra(k)Po(m—k)Py(n+1-m)
m=1 k=1
n—1

0 3

VPo(n+1—m—k).

= Z Py
m=1

(S33)
Via Egs. (S22) and (S25), this yields
Prii(n+1) = ZPg 1(m)[Po(n +1—m) — Py(n — m)]
n—1
=Y Pry(m)Py(n+1—m)— Py(n)
=Y Pea(m)Po(n+1—m) = Pr_y(n) — Po(n)
= Pg(n + 1) Pg,l( ) — Pg(n) (834)

We can combine this recursion

Py(n+1)=Pr_1(n) + Py(n) + Pey1(n+1)  (S35)
with the relation known from Eq. (S16),
Py(n+1)=Py(n)+ Pi(n+1), (S36)
and Eq. (S27), which implies
P,(n) =1, Py(n)=0, ¢£>n (S37)

These equations suffice to build the following matrix,
defined as A,, ¢ = Pp(n), with n > 1 and £ > 0:

(S N N S
o N = D
N e =
o N
o w
=
ot

=1, 2, 5 12, 29 (S38)

If one distorts the matrix slightly, e.g. by raising the ¢-th
column by ¢ times half the width between subsequent rows
and ignores all vanishing entries, one obtains a triangle
structure as in Fig. S5. We might consider the entry Ag 1
as the starting point of paths, for which the steps

n—n+1, =, (S39)
n—n+l, =041,
n—n, l+1—=/

are allowed. Then, the entry A,, ; indeed gives the number
of such paths ending at the corresponding point on the
triangular grid.

The equality between the number of differentiated par-
quet and mfRG diagrams shown in Sec. S-III, Eq. (S32),
translates into

(n—1) (S40)

n—1
An,O =2 Z C[Anyg.
=1

While many relations for the matrix A [Eq. (S38)] are
known [28, A033877], we have not found a proof of
Eq. (S40) in the literature.
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necessary corrections to the self-energy flow in order to complete the derivative of all diagrams involved in
the truncated fRG flow. Due to its iterative one-loop structure, the multiloop flow is well suited for numerical
algorithms, enabling improvement of many fRG computations. We demonstrate its equivalence to a solution of
the (first-order) parquet equations in conjunction with the Schwinger-Dyson equation for the self-energy.
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I. INTRODUCTION

Two of the most powerful generic methods in the study
of large or open many-body systems at intermediate coupling
strength are the parquet formalism [1,2] and the functional
renormalization group (fRG) [3,4]. As is commonly known,
these frameworks are intimately related. However, their equiv-
alence has only recently been established via multiloop fRG
(mfRG) flow equations, introduced in a case study of the x-ray-
edge singularity [5]. In this paper, we consolidate this equiva-
lence and formulate the mfRG flow for the general many-body
problem. For this, we generalize the multiloop vertex flow from
Ref. [5], and, to ensure full inclusion of the self-energy, we
present two multiloop corrections to the self-energy flow. Al-
together, the mfRG flow is shown to fully generate all parquet
diagrams for the vertex and self-energy; it is thus equivalent to
solving the (first-order) parquet equations in conjunction with
the Schwinger-Dyson equation (SDE) for the self-energy.

The parquet equations (together with the SDE) provide
exact, self-consistent equations for the four-point vertex and
self-energy, allowing one to describe one-particle and two-
particle correlations [1]. The only input is the totally irreducible
(four-point) vertex. Approximating it by the bare interaction
yields the first-order parquet equations [2] (or parquet
approximation [1]), a solution of which generates the so-called
parquet diagrams for the four-point vertex and self-energy.

The functional renormalization group provides an infinite
hierarchy of exact flow equations for vertex functions, depend-
ing on an RG scale parameter A. During the flow, high-energy
(Z A) modes are successively integrated out, and the full
solution is obtained at A = 0, such that one is free in the
specific way the A dependence (regulator) is chosen [3,4]. If
one restricts the fRG flow equations to the four-point vertex
and self-energy, one is left with the six-point vertex as input.
In the typical approximation, the six-point vertex is neglected,
implying that all diagrams contributing to the flow are of the
parquet type [5,6]. However, due to this truncation, the flow
equations (for both self-energy and four-point vertex) no longer
form a total derivative of diagrams with respect to the flow
parameter A. This limits the predictive power of fRG and yields
results that actually depend on the choice of regulator.

2469-9950/2018/97(3)/035162(11)
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The mfRG corrections to the fRG flow simulate the effect
of six-point vertex contributions on parquet diagrams, by
means of an iterative multiloop construction. They complete
the derivative of diagrams in the flow equations of both
self-energy and four-point vertex, which are otherwise only
partially contained. As it achieves a full resummation of all
parquet diagrams in a numerically efficient way, the mfRG flow
allows for significant improvement of fRG computations and
overcomes weaknesses of the formalism experienced hitherto.

The paper is organized as follows. In Sec. II, we give the
setup with all notations, before we recall the basics of the
parquet formalism in Sec. III. In Sec. IV, we present the mfRG
flow equations for the four-point vertex and self-energy. We
show that they fully generate all parquet diagrams to arbitrary
order in the interaction and comment on computational and
general properties of the flow equations. Finally, we present
our conclusions in Sec. V.

II. SETUP

We consider a general theory of interacting fermions,
defined by the action

1
_ O\— 0 _
S=- : :Cx/[(G ) l]x’,xcx - Z : : Fx’,y’;xyycx/cy/cycx’
X' x xXx, )y
(1)

with a bare propagator G° and a bare four-point vertex I',
which is antisymmetric in its first and last two arguments. The
index x denotes all quantum numbers of the Grassmann field
c.. If we choose, e.g., Matsubara frequency, momentum, and
spin, with x = (iw,k,0) = (k,0), and consider a translation-
ally invariant system with interaction Uy, the bare quantities
read

0 e.g. 0
Gx’,x = Gk,a(skﬂ,k 817’,0 s (23)
0 EA_gA
_Fx]’.xé;xl,xz - (U\kﬁ_kl\(s"f’”la”z’ﬁz
— Uk, —k,1007.0,801.0,) Sk k., 44, (2D)

Correlation functions of fields, corresponding to time-
ordered expectation values of operators, are given by the path

©2018 American Physical Society
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FIG. 1. (a) Dyson’s equation relating the full propagator G,
(black, thick line) to the bare propagator G° (gray, thin line) and
the self-energy X (circle). (b) First-order diagram for the self-energy
using the bare vertex I'° (solid dot).

integral
_ 1 . 5 =S
(CXI"'Cxu):E DIEIDIc]cy, - - Cxe”5, 3)

where Z ensures normalization, such that (1) = 1. Two-point
correlation functions are represented by the full propagator
G. Via Dyson’s equation, G is expressed in terms of the
bare propagator G° and the self-energy X [cf. Fig. 1(a)],
according to

Giv=—(cé), G=G"+G"- %G, “

using the matrix product (A - B), » = Zy Ac By v

In a diagrammatic expansion, the lowest-order contribution
to the self-energy is given by the diagram in Fig. 1(b), making
use of the bare objects G°, I'°. For later purposes, we define a
self-energy loop (L) as

LIN.G)yx ==Y TuyuyGyy. )
v,y

With this, we can write the first-order contribution from
Fig. 1(b) generally and in the above example as

o = LI°,G0 (6a)
= (Uo PG IEDS U‘kfl}ngﬂ)Sk/,k&,/,g. (6b)
k.6 k

Four-point correlation functions can be expressed via the
full (one-particle-irreducible) four-point vertex I'":

(C’Clcxzéxééxi) = GJ‘]X; zexé - Gx,xézex{
+ Gy G Uy 3y 3, Gy Gy (1)

Note that we omit the superscript compared to the usual
notation (I'®) [3-6] and often refer to the four-point vertex
simply as the vertex. Our definition of I" [7] agrees with that of
Ref. [4] and therefore contains a relative minus sign compared
to Ref. [3].

The diagrammatic expansion of I" up to second order in
the interaction is shown in Fig. 2. In such diagrams, the
position of the external legs will always be fixed and labeled
in correspondence to the four arguments of a vertex. Let us
define bubble functions (B), distinguished between the three
two-particle channels r € {a, p,t}, as

Ba(rsr/)x;,xé;xl,xz

!
- : : inv.VEZ,Vlwsz)’h)‘iGYzw)'ﬁry;A,xé;x,,yz’ (8a)
NBIRLR
I
BP(F,F )x[,xé;xl,xz
] ’
= 5 E Lt xiivin Oy G,vz,yéryg,yg;x,,xz’ (8b)

Y01V Y2

2 2 Ny ;
> > . ) O~ W
W +1 — (e
1

FIG. 2. Diagrammatic expansion of the four-point vertex I’
(square) up to second order in the interaction (i.e., these diagrams
define I'*"Y), The positions of the external (amputated) legs refer to
the arguments of | RV

-

Bt(FaF/)x{,xé;xl,xz

2 : ’
- FYI,XQQ}'IJZG,VT.V; G)'Mérxi,yé;xl,yz' (8¢c)

Y0Y1Y:Ya
The translation of Fig. 2 is then simply given by
r2d =043 B.(rro. )

Following the conventions of Bickers [1], the factor of 1/2
in Eq. (8b) (Fig. 2) makes sure that, when summing over all
internal indices, one does not overcount the effect of the two
indistinguishable (parallel) lines. The minus sign in Eq. (8c)
(Fig.2) stems from the fact that the antiparallel bubbles (8a) and
(8c) are related by exchange of fermionic legs. Indeed, using
the antisymmetry of I" and I" in their arguments (crossing
symmetry), we find that

B, (T, F,)xi XXXy

The channel label r € {a, p,t} refers to the fact that the
individual diagrams are reducible—i.e., they fall apart into
disconnected diagrams—by cutting two antiparallel lines, two
parallel lines, or two transverse (antiparallel) lines, respec-
tively. (The term transverse itself refers to a horizontal space-
time axis.) In using the terms antiparallel and parallel, we adopt
the nomenclature used in the seminal application of the parquet
equations to the x-ray-edge singularity by Roulet et al. [2].
Equivalently, a common notation [8,9] for the channels a, p,¢
is ph,pp, ph, referring to the (longitudinal) particle-hole, the
particle-particle, and the transverse (or vertical) particle-hole
channel, respectively. One also finds the labels x, p,d in the
literature [10], referring to the so-called exchange, pairing, and
direct channel, respectively.

In the context of fRG (cf. Sec. 1V), functions such as
G, X, T" develop a scale (A) dependence (which will be
suppressed in the notation). If we write the bubble functions
also symbolically as

_Bt(F’F,)xé,x;;xl,xz' (10

B,(I\[)=[ToGoGol, (11)

we can immediately define bubbles with differentiated propa-
gators (but undifferentiated vertices) according to

B, (T,T") = [T 0 (9o(G 0 G)) o T}, (12)

In the fRG flow equations, we will further need the (so-called)
single-scale propagator, defined by (1, = dx,,)

S = aAG|E=const. = (]1 + G- E) . (8AG0) . (E -G+ ]1)
(13)

Before moving on to the mfRG flow, let us next review the
basics of the parquet formalism.
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FIG. 3. (a) Vertex diagram irreducible in all two-particle channels
(i.e., it belongs to R) and thus not part of I" in the parquet approxima-
tion. (b) Schwinger-Dyson equation, relating the self-energy to the
four-point vertex self-consistently.

(b)
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III. PARQUET FORMALISM

The parquet formalism [1,2] provides exact, self-consistent
equations for both four-point vertex and self-energy. Focusing
on the vertex first, the central parquet equation represents a
classification of diagrams distinguished by reducibility in the
three two-particle channels:

PT=R+Y v L=R+) v (14)
r r'#r

Diagrams of I are either reducible in one of the three channels
(i.e., part of y, for r € {a,p,t}; cf. Fig. 2), or they belong to
the class of totally irreducible diagrams R [cf. Fig. 3(a)]. (The
notation again refers to Ref. [2].) As a diagram cannot simulta-
neously be reducible in more than one channel [2], one collects
diagrams that are not reducible in r lines into the irreducible
vertex I, of that channel. Reducible and irreducible vertices are
further related by the self-consistent Bethe-Salpeter equations
(BSEs)

Yr = Br(Irvl—‘)s (15)

the graphical representations of which are given in Fig. 4.

The BSEs (15) are computed with full propagators G. Thus,
they require knowledge of the self-energy, which itself can
be determined by the self-consistent SDE depending on the
four-point vertex [cf. Fig. 3(b)]:

% = L(T°.G)+ L[B,(".I",G]
=L(I°G)+ %L[B,,(FO,F),G]. (16)

The only input required for solving the parquet equations
is the totally irreducible vertex R. All remaining contributions
to the vertex and self-energy are determined self-consistently.
The simplest way to solve the parquet equations is to approx-
imate R by the bare vertex I'’. This is called the first-order
parquet solution [2], or parquet approximation [1], and corre-
sponds to a summation of the leading logarithmic diagrams in
logarithmically divergent perturbation theories.

The diagrams generated by the first-order parquet solution
are called parquet diagrams. For I', these can be obtained by
successively replacing bare vertices by one of the three bubbles
from Eq. (8) (connected by full lines), starting from the bare
vertex. For X, the parquet diagrams are obtained by inserting
the parquet vertex into the SDE. They can also be characterized
by the property that one needs to cut at most one bare line to
obtain a parquet vertex with possible dressing at the external
legs. By this, we mean that, instead of an ingoing or outgoing
amputated leg, the external line is of the type 1 + X - G or
1+ G - X, respectively, using again a parquet self-energy.

> -

~ < > ta
,W - < >
== ; =2 -« e
Tp

< e <

FIG. 4. Bethe-Salpeter equations in the three two-particle chan-
nels, relating the reducible (y,) and irreducible (/) vertices self-
consistently in the parquet formalism.

IV. MULTILOOP FRG FLOW

The functional renormalization group [3,4] provides a hier-
archy of exact flow equations for vertex functions, depending
on an RG parameter A, serving as infrared cutoff in the
bare propagator. A typical choice for the A dependence, in
order to flow from the trivially uncorrelated to the full theory,
is characterized by the boundary conditions G,, = 0 and
G, = G, implying I'5, = I'’. Restring the flow to T and
I", the six-point vertex remains as input and is neglected in the
standard approximation.

Here, we view fRG as a tool to resum diagrams which does
not necessarily rely on the original fRG hierarchy deduced
from the flow of the (quantum) effective action. In previous
works [5,6], we have used the x-ray-edge singularity as an
example to show that the standard truncation of fRG restricts
the flow to parquet diagrams of the vertex, and that the
derivatives of those diagrams are only partially contained.
Using the same model, we have introduced multiloop fRG
flow equations for the vertex which complete the derivative of
parquet diagrams in an iterative manner, as organized by the
number of loops connecting full vertices, and thus do achieve
a full summation of all parquet diagrams [5]. The x-ray-edge
singularity facilitates diagrammatic arguments as it allows one
to consider only two two-particle channels and to neglect
self-energies. Here, we give the details of how the mfRG flow of
the vertex is generalized to all three two-particle channels with
indistinguishable particles (as already indicated in Ref. [5])
and formulate the mfRG corrections to the self-energy flow
(not discussed in Ref. [5]).

We first pose the mfRG flow equations and motivate them
by showing examples of diagrams, which are otherwise only
partially contained. Then, we justify the extensions of the
truncated fRG flow by arguing that all diagrams are of the
appropriate type without any overcounting. Subsequently, we
give arecipe for counting the number of diagrams generated by
the parquet and mfRG flow equations. This allows one to check
that the mfRG flow fully captures all parquet diagrams order
for order in the interaction. Finally, we discuss computational
and general properties of the flow equations.

A. Flow equations for the vertex

The mfRG flow of the vertex proposed in Ref. [5] makes use
of the channel classification known from the parquet equations
and is organized by the loop order £. We write

W= daw daver=) 3" %=}y’ (D

=1 r'#r
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FIG. 5. Multiloop flow equations for the four-point vertex in a general fermionic model. (a) Standard truncated, one-loop flow, where a line
with double dashes denotes d, G. (b) Two-loop correction (upon inserting the one-loop contributions, one obtains two loops connecting full
vertices). (c) Higher-loop corrections starting from £ + 2 = 3, which contain the additional contribution (center part) where vertices from the

complementary channels are connected by two bubbles.

where 79 contains differentiated diagrams reducible in chan-
nel » with € loops connecting full vertices and will be con-
structed iteratively; 7 represents the complementary channels
to channel r. Using the bubble functions (8) and the channel
decomposition, the multiloop flow for I' is compactly stated
as(l>1)

J}r(l) _ B,(F,F), (18a)
® = B,(.1) + B (r.31"), (18b)
P =B (D) + v+ BA(CTY). (180)
&P = B,[I,B,(5".1)] = B,[B,(T,5").T] (18d)

and illustrated in Fig. 5.

The standard truncated, one-loop flow of I" is simply given
by Eq. (18a) [Fig. 5(a)]. A simplified version of this equation,
in which one uses the single-scale propagator S (13) instead
of 9, G in the differentiated bubble (12), corresponds to the
result obtained from the exact flow equation upon neglecting
the six-point vertex [11]. The form given here, with d,G
instead of S (also known as Katanin substitution [3,12]),
already includes corrections to this originating from vertex
diagrams containing differentiated self-energy contributions.
In the exact flow equation, these contributions are contained in
the six-point vertex I'® and excluded in S; omitting I'©, they
are incorporated again by 0,G = S+ G - (0, X) - G.

Comparing Eqs. (9), (11), (12) with Eq. (18a) [or Fig. 2
with Fig. 5(a)], it is clear that the one-loop flow is correct
up to second order, for which only bare vertices are involved.
Indeed, all differentiated diagrams of I'>"¢, which are obtained
by summing all copies of diagrams in which one G° line
is replaced by 9,G°, are contained in ), V. However,

starting at third order, the one-loop flow (18a) does not fully
generate all (parquet) diagrams, since, in the exact flow, the
six-point vertex starts contributing. In mfRG, the two-loop flow
[Eq. (18b), Fig. 5(b)] completes the derivative of third-order
diagrams of I" (i.e., it contains all diagrams needed to ensure
that y + y fully represent 3, y,>). An example is given
in Fig. 6(a), which shows a parquet diagram reducible in
channel a. The differentiated diagram in Fig. 6(d), as part of
the derivative of Fig. 6(a), is not included in the one-loop flow.
The reason is that {1’ only contains vertices connected by
antiparallel G°-9, G lines, and not parallel ones, as would
be necessary for this differentiated diagram. It is, however,
included in the two-loop correction to the flow, as can be seen
by inserting the lowest-order contributions for all vertices into
the first summand on the right-hand side of y,® (using ") in
Fig. 5(b).

At all higher loop orders (£ + 2 > 3) [Eq. (18c), Fig. 5(c)],
we iterate this scheme and further add the center part (18d)
of the vertex flow. This connects the ¢-loop flow from the
complementary (7) channels by r bubbles on both sides, and is
needed to complete the derivative of parquet diagrams starting
at fourth order. Since )}r(,lcﬂ) raises the loop order by two, it
was still absent in the two-loop flow. The three summands
in 2, including ))r(,zcﬂ), exhaust all possibilities to obtain
differentiated vertex diagrams in channel r at loop order ¢ + 2
in an iterative one-loop procedure. The mfRG vertex flow up
to loop order ¢ therefore fully captures all parquet diagrams up
to order n = £ + 1 in the interaction (cf. Sec. IVD).

B. Flow equation for the self-energy

The self-energy has an exact fRG flow equation, which
simply connects the four-point vertex with the single-scale
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FIG. 6. (a)-(c) Some diagrams that are included in the parquet
approximation and only partially contained in one-loop fRG. (d)—(f)
One particular differentiated diagram for each of the diagrams (a)—(c)
[the (gray, thin) line with a dash stands for 3, G°] that is not part of
the standard truncated flow, but included in mfRG.

propagator (cf. Fig. 7). However, if a vertex obtained from the
truncated vertex flow is inserted into this standard self-energy
flow equation, it generates diagrams that are only partially
differentiated. In fact, even after correcting the vertex flow via
mfRG to obtain all parquet diagrams of T, Sq does not yet
form a total derivative. Although S I8 in principle exact [as
is the SDE (16)], using the parquet vertex in this flow gives a
less accurate result than inserting it into the SDE: All diagrams
obtained from Y are of the parquet type, but their derivatives
are not fully generated by the standard flow equation.

This problem can be remedied by adding multiloop correc-
tions to the self-energy flow, which complete the derivative of
all involved diagrams. The corrections consist of two additions
that build on the center parts (18d) of the vertex flow in the a
and p channels,

vie =2 (e +7,0)- 19)
1
Using the self-energy loop (5), the mfRG flow equation for ¥
is then given by (cf. Fig. 7)

WD =g+ T+, Zga = LT,S), (20a)

¥ = L(ic,G), %, =L(IG-3-G). (20b)

Note that self-energy diagrams in 3, and 37 are reducible and
irreducible in the ¢ channel, respectively. However, here, this
property is not exclusive; X4, too, contains diagrams that are
reducible and irreducible in the ¢ channel, as is directly seen
by inserting the second-order vertex from Fig. 2 into the first
summand of Fig. 7. . .

To motivate the addition of X7 and X,, let us consider the first
examples where multiloop corrections are needed to complete
the derivative of diagrams, which occur at fourth and fifth order,
respectively. The diagram in Fig. 6(b) is obtained by inserting
the y, diagram from Fig. 6(a) (and the symmetry-related y;
diagram) into the SDE [Fig. 3(b)]. The differentiated diagram
in Fig. 6(e) is part of the derivative of Fig. 6(b), but not
contained in the standard flow. In fact, the vertex needed for this
diagram to be part of Xy [i.e., the vertex obtained by cutting
the differentiated line in Fig. 6(e)] is a so-called envelope
vertex, the lowest-order realization of a nonparquet vertex
[cf. Fig. 3(b)] [13]. The diagram from Fig. 6(e) is, however,
included in the first correction 37, as can be seen by inserting
the lowest-order contributions of all vertices in the center part
of y (using again ") in Fig. 5(c) and connecting the top
lines.

- € = — - Yic| —
-« -« e
-« -«
Zstd Ef Ef,

FIG. 7. Multiloop flow equation for the self-energy, adding two
corrections (X7, X,) to the standard fRG flow, Xq4. The (black, thick)
line with a dash denotes the single-scale propagator S.

Inserting the self-energy diagram from Fig. 6(b) into the full
propagator of the first summand in the SDE [Fig. 3(b)] yields
the diagram in Fig. 6(c). Similar to the previous discussion,
one finds that the differentiated diagram in Fig. 6(f), needed
for the full derivative of Fig. 6(c), is neither contained in Sad
nor i};. It is, however, included in the second mfRG correction,
2,, as one of the lowest-order realizations of the last summand
in Fig. 7.

The two extra terms of the mfRG self-energy flow, 3; and
3., incorporate the whole multiloop hierarchy of differentiated
vertex diagrams via yrc [Eq. (19)]. As is discussed in the
following subsections, they suffice to generate all parquet
diagrams of X and, therefore, provide the full dressing of the
parquet vertex in return.

C. Justification

We will now justify our claim that the mfRG flow fully
generates all parquet diagrams for I and . We will first show
that all differentiated diagrams in mfRG are of the parquet type
and that there is no overcounting of diagrams. Concerning the
vertex, this has already been done for the two-channel case of
the x-ray-edge singularity [5]. The arguments for the general
case are in fact completely analogous and repeated here for the
sake of completeness. The self-energy is discussed thereafter.

The only totally irreducible contribution to the four-point
vertex in the mfRG flow is the bare interaction stemming
from the initial condition of the vertex, T's, = I'°. All further
diagrams on the right-hand side of the flow equations are
obtained by iteratively combining two vertices by one of
the three bubbles from Eq. (8). Hence, they correspond to
differentiated parquet diagrams in the respective channel.

The fact that there is no overcounting in mfRG, i.e., that
each diagram occurs at most once, can be seen by employing
arguments of diagrammatic reducibility and the unique posi-
tion of the differentiated line in the diagrams. To be specific,
let us consider here the a channel; the arguments for the other
channels are completely analogous.

First, we note that diagrams in the one-loop term always
differ from higher-loop ones. The reason is that in higher-loop
terms, the differentiated line appears in the vertex coming
from 9, y;. This can never contain two vertices connected
by an a G-9, G bubble, since such terms only originate upon
differentiating y,, the vertex reducible in a lines.

Second, diagrams in the left, center, or right part [first,
second, and third summand in Fig. 5(c), respectively] of an
£-loop contribution always differ. This is because the vertex
ya(l) is irreducible in a lines. The left part is then reducible in a
lines only after the differentiated line appeared, the right part
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FIG. 8. Special diagrams contributing to ;. In the last two diagrams, we consider a scenario where the differentiated line is contained in

one of the dashed contributions.

only before, and the center part is reducible in this channel
before and after 0, G.

Third, the same parts (say, the left parts) of different-order
loop contributions (€ # £') are always different. Assume they
agreed: As the a bubble induces the first reducibility in this
channel, already yzfa and y,-fl,) would have to agree. For
these, only the same parts can agree, as mentioned before.
The argument then proceeds iteratively until one compares
the one-loop part to a higher-loop (|¢ — £'| + 1) one. These
are, however, distinct according to the first point.

Concerning the self-energy, all diagrams of the flow be-
long to the parquet type, since they are constructed from
(differentiated) parquet vertices by closing loops of external
legs in an iterative one-loop procedure. By cutting one G° or
the 3, G° line in such a self-energy diagram, one can always
obtain a (differentiated) parquet vertex with possibly dressed
amputated legs. ) )

First, there is no overcounting between X and X7 because
cutting the differentiated line in Xyy generates a parquet
vertex (with possibly dressed amputated legs coming from
the single-scale propagator; cf. Fig. 7), whereas this is not the
case for E,—. To illustrate this statement, we consider in Fig. 8
a typical case of a ; correction, where we take the a part
of yrc [cf. Eq. (19)] with d5y; in the center. We can insert
the BSE y, = B,({,,I') (Fig. 4) and consider simultaneously
all scenarios where the differentiated line, originating from
0AY:, 18 contained in any of the dashed parts. To be even
more specific, we take a specific part of I; = R+ v, + vp,
namely y, = B,(1,,I") (Fig. 4), and consider the cases where
the differentiated line, if contained in I;, is contained in the
corresponding bubble. If one now cuts any of the dashed lines,
as candidates for the differentiated line, one finds that the
remaining vertex is not of the parquet type, as it is not reducible
in any of the two-particle channels. The same irreducibility in
three lines, when starting to cut the differentiated line in y; c,
occurs in all diagrammatic realizations of 7.

Since the standard flow Yy with the full instead of the
parquet vertex is exact, it follows that the X7 part can be written
similarly as ¥4, but using a nonparquet (np) vertex [Fig. 9(a)].
As a consequence, X, obtained by connecting ¥; and I" by a
¢ bubble, can similarly be written with a nonparquet vertex
[Fig. 9(b)]. Thus, there cannot be any overcounting between
Yqa and Xy, either. Finally, there is likewise no overcounting
between X7 and %,: After removing the differentiated line
in X7, the remaining nonparquet vertex I'y, is in particular
irreducible in the 7 channel (as was discussed above). However,
removing the differentiated line in ¥, after expressing 3 via
Iyp [cf. Fig. 9(b)], the remaining vertex Fl’lp is by construction
reducible in ¢ lines (although not a parquet vertex).

In summary, all diagrams of the four-point vertex and
self-energy generated by the mfRG flow belong to the parquet
class and are included at most once. To show that the mfRG
flow generates all differentiated parquet diagrams, we will
demonstrate next that, at any given order in the interaction,
their number is equal to the number of diagrams generated by
the mfRG flow.

D. Counting of diagrams

In order to count the number of diagrams in all involved
functions, we make use of either exact, self-consistent equa-
tions or the mfRG flow equations. As a first example, we count
the number of diagrams in the full propagator G at order n
in the interaction, Ng(n), given the number of diagrams in
the self-energy, Nx(n). Concerning the bare propagator and
self-energy, we know Ngo(n) = 8,9 and Nx(0) = 0. From
Dyson’s equation (4), we then get

Ne) = 8,0+ Y Ns(mNo(n—m).  (21)

m=1

Defining a convolution of sequences, according to

Ni=Nyx N3 & Nim)=Y_ Nom)Ns(n—m) Vn, (22)

m=0

we can write Eq. (21) in direct analogy to the original equation
(4) as

NG = Ngo + Ngo « Nx * Ng. (23)

Similar relations for the self-energy and vertex can be
obtained from the SDE (16), the parquet equation (14), and
the BSEs (15). The number of diagrams in the bare vertex is
Nro = 8,1 (one can also take any Mo o §,.1). From the SDE

“CG)e=- [ rw
-« e

FIG. 9. Rewriting of the corrections to the self-energy flow:
(a) 7 can be expressed by a nonparquet vertex I"yp contracted with the
single-scale propagator S. (b) 3,, obtained by connecting ¥; and I" by
at bubble, then involves a bubble connecting a nonparquet and parquet
vertex, which yields another nonparquet vertex I‘,’,p, contracted with
S.

/
) = Fup
-« 8

035162-6



MULTILOOP FUNCTIONAL RENORMALIZATION GROUP ...

PHYSICAL REVIEW B 97, 035162 (2018)

TABLE 1. Number of (bare) parquet diagrams, differentiated
parquet diagrams, and diagrams generated by mfRG up to interaction
order 6 and loop order 5. Fractional parts originate from multiple
factors of 1/2, used to avoid double counting of the antisymmetric
vertex [1]. As we use Npo = 6,1, we count Hugenholtz diagrams
[15] [where, e.g., N5(1) = 1, cf. Fig. 1]. The choice Nyo = 26, [cf.
Eq. (2b)] would give an extra factor 2" for all numbers of diagrams
at order n, resulting in the (integer) numbers of Feynman diagrams
[where, e.g., Nx(1) = 2].

n 1 2 3 4 5 6
Nr 2 153 1083 8324 67533
N 13 54 257 156 10733
Nr 0 5 61 6483 66561 67536
Nyao 0 5 45 3732 31174 26519+
Nien 0 0 16 216 2264 21972
Nieo 0 0 0 59 1062 134811
Nrao 0 0 0 0 213 47924
Niso 0 0 0 0 0 7711
Ny L 45 263 1813 1404 2 118044
Nig 1 47 264 1774 13112 10348 %
Ns, 0 0 0 4 89 1349
Ns, 0 0 0 0 4 107

(16), we get for the self-energy
NE =NF0*NG+%NF0*NG *NG *NG *Nr‘. (24)

Note that, when counting diagrams, we can ignore the extra
minus signs but must keep track of prefactors of magnitude
not equal to unity. These prefactors avoid double counting of
the antisymmetric vertex [1] and originate from the way the
diagrams are constructed [14].

Concerning the full vertex, we can use that the symmetry
relation between the a and 7 bubble given in Eq. (10) holds for
the full reducible vertices y, and y, [1], such that N}, = N,,.In
the parquet approximation R = I'°, and the parquet equation
(14) and the BSEs (15) yield

Nr = Ng 42N, + N, (25a)
Ny, = Wr = N,,) « Ng « NG * Np, (25b)
N, = SN = N,,) NG * N * Ny, (25¢)

Since Nro(0) = 0, these equations, just like the original
equations, can be solved iteratively. Knowing the number of
diagrams in all quantities up to order n — 1 allows one to
calculate them at order n. This can also be done numerically.
Table I (first two lines) shows the number of parquet diagrams
up to order 6. For large interaction order n, we find that the
number of diagrams in the parquet vertex and self-energy
grows exponentially in n [cf. Fig. 10(a)].

To prove our claim that the mfRG flow generates all parquet
diagrams, we must count the number of diagrams, Ny (n) and
N, (n), obtained by differentiating the set of all corresponding
parquet graphs. Then, we check that these numbers are exactly
reproduced by the number of diagrams contained on the right-
hand side of the mfRG flow equations. A diagram of the full
propagator at order n has 2n + 1 internal lines, a self-energy

1020 511053 z8 1
zl10.47 e Fe
g 1300 900 /// (a) ék [
[ / I
77 —X=T =
1007 Ikl B :28

FIG. 10. Logarithmic plots for the number of diagrams at inter-
action order n for both vertex and self-energy. (a) Ny, Ny grow
exponentially for large n (inset: the ratio of subsequent elements
approaches a constant). (b) The cumulative low-loop vertex flows (1¢
up to 5¢) and the self-energy flows S (labeled std) and S+ 2f
(labeled 7) miss differentiated parquet diagrams. However, the full
multiloop flow for vertex and self-energy generates all differentiated
parquet diagrams to arbitrary order in the interaction.

diagram 2n — 1, and vertex diagram 2n — 2. According to the
product rule, the number of differentiated diagrams is thus

Ng(n) = Ng(n)(2n + 1), (262)
Ni(n) = Ns(n)2n — 1), (26b)
Ny, () = N, (m)(2n —2). (26¢)

From the mfRG flow of the vertex [Eq. (18)], we deduce

N‘}-/{gl) :2./\/'1" *NG *NG *N]", (27a)
./\/}//l)l) = Nr * Ng * Ng * Np, (27b)
Nyf’ =2 (/\/’yum +N)}l(jl)) * N * N, (27¢)
Ny](}) = 2./\/;)“(1) *Nn *Nr, (27(.‘1)

where Nj = Ng * Ng denotes the number of diagrams in a
bubble. For £ + 2 > 3, we have

N}-/"Prz) =2 (./\/}/atul) +N71(JHU) * N« N
+NI‘ *Nl'l * (N}7(§Z> +NJ?,(JZ') *Nn */\/Fs (283)
Nyn =2 Nyeon % N+ Nr

+ 5 Nr s N s Ny # N+ N (28b)

Summing all loop contributions yields

NG = o Nygos NG = s Ny 29)

Ya

For the flow of the self-energy (20), we need the center part
of the vertex flow in the a and p channel, for which the number
of diagrams sums up to

Nire = Ne s N s (3 NERC + NIRO) s N s Np. (30)

The number of diagrams in the single-scale propagator S (13)
can be obtained from two equivalent relations

NS=NG_NG*NZ*NG (313)
= (N7 + Ng * Nx) * Ngo * (N7 + Ny x Ng), (31b)
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with Ngo(n) = 8,0 = N1(n). From Eq. (20), we then get
N)[:“fRG =Ng,, +Ns, + Ny, Ng,, =Ny =N,

NZ/':NYI.C*NGv NE,:NF*NI‘I*NE,—-
(32)

Numerically, one can check order for order in the interaction
[cf. Table I and Fig. 10(b)] that, indeed, the mfRG flow
generates exactly the same number of diagrams as obtained
by differentiating all parquet diagrams, i.e.,

N, () = NPG(n), Ni(n) = NERS(n) va.  (33)

This demonstrates the equivalence between solving the multi-
loop fRG flow and solving the (first-order) parquet equations
for a general model.

E. Computational aspects

All contributions to the mfRG flow—for the vertex as well
as for the self-energy—are of an iterative one-loop structure
and hence well suited for numerical algorithms. In fact, by
keeping track of the left (L) and right (R) summands in the
higher-loop vertex flow (18c)

)-/(Hz) =B, (yf(Hl),F),

L y£€{+2> — Br(F,J/,:(Hl))’ (34)

the center part (18d) can be efficiently computed as
Vr(,(c”) — Br(F,V£[L+1)) _ B(J/,.(fl),r‘)- (35)

Consequently, the numerical effort in the multiloop corrections
of the vertex flow scales linearly in £. The self-energy flow (20)
is already stated with one integration only.

The (standard) fRG hierarchy of flow equations constitutes
a (first-order) ordinary differential equation. Neglecting the
six-point vertex, it can be written as

INE = fI4A,Z.T), 05T = 1A, 2.T), (36)

where, here and henceforth, f denotes the part of the right-hand
side of the flow equation corresponding to its indices. Improv-
ing this approximation by adding differentiated self-energy
contributions in the vertex flow (as is also done in mfRG),
f4 is replaced by another function fﬁ‘d(A, ¥,I,0, %), which
further depends on the A derivative of the self-energy. Such
a differential equation is still feasible for many algorithms as
one can simply compute d, ¥ first and use it in the calculation
of d,I". However, the full mfRG flow for the vertex and
self-energy has the form

aAE:fZ(szaF’aAF)a aAFZfF(A,E,F,aAE),

37

in which derivatives occur on all parts of the right-hand side,
yielding an algebraic (as opposed to ordinary) differential
equation.

Techniques to solve algebraic differential equations exist,
but a discussion of them exceeds the scope of this paper.
Let us merely suggest an approximate solution strategy that
reduces the mfRG flow to an ordinary differential equation,
has no computational overhead, and deviates from the exact

flow starting at sixth order in the interaction, summarized as
follows:

Sad = fr, (MDD, (38a)
AL A Dypprox = fr(A, 1,0, = Xgq),  (38b)
INE ~ Zga + f5, (A Z.0T = Tapprox)

+ f5,(A,Z,05T = Cappro)- (38¢)

According to this scheme, one computes first the stan-
dard flow of the self-energy, which deviates from the full
¥ flow at interaction order U*. Inserting this into the vertex
flow yields an approximate vertex derivative, I'ypprox, Where
deviations from the full flow, induced by the approximate
form of 3, %, start at order U°®. The center part of the vertex
flow involves at least four vertices, such that deviations,
induced by the self-energy, start at order U3. The resulting,
approximate ;¢ can then be used to complete d, ¥, adding
the terms 37 and 3, such that the self-energy flow is correctly
computed up to errors of order U®. Evidently, this scheme can
also be iterated [using Egs. (38b) and (38c)], increasing the
accuracy by four orders with each step. We have attached a
pseudocode for such a solution strategy of the mfRG flow in
Appendix A.

F. General aspects

Since the standard fRG flow for the self-energy and four-
point vertex—including the six-point vertex—is exact, all
mfRG corrections can be understood as fully simulating the
effect of the six-point vertex on parquet diagrams of ¥ and
I". For instance, the two-loop corrections to the vertex flow
and the Katanin substitution in the improved one-loop flow
equation contain all third-order contributions of the six-point
vertex [6,12,16]. Nevertheless, in the standard fRG hierarchy of
flow equations, the parquet graphs comprise n-point vertices of
arbitrary order (n) [6], such that a non-diagrammatic derivation
of mfRG based on this hierarchy appears rather difficult.
Conversely, the derivation of the mfRG flow does not rely
on the fRG hierarchy or properties of the (quantum) effective
action; it can thus be understood independently and without
prior knowledge of fRG.

The mfRG flow at the two- or higher-loop level is exact
up to third order in the interaction and therefore naturally
fulfills Ward identities with accuracy O(I'*), compared to
O(I'?) in the case of one-loop fRG [12]. Yet, since the parquet
self-energy is exact up to fourth order but the parquet vertex
only up to third order, such identities are typically violated
starting at fourth order. One can think of schemes to extend
mfRG beyond the parquet approximation. However, we find
those rather impracticable and only briefly mention them in
Appendix B.

Furthermore, the mfRG flow is applicable for any initial
condition of the vertex functions. Whereas the choice G5, = 0
used here leads to a summation of all parquet diagrams,
starting the mfRG flow from the local quantities of dynamical
mean-field theory (DMFT) [17,18] allows one to add nonlocal
correlations, similarly to solving the parquet equations in the
dynamical vertex approximation (DI'A) [19-21]. However,
contrary to DI'A, the mfRG flow is built on the full vertex
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Fg?,lm and does not require the diagrammatic decomposition
of the nonperturbative vertex [22] FgK,IFT =R+, y that
leads to diverging results close to a quantum phase transition
[29-31].

Inspecting the one-loop flow equations of the vertex once
more, we observe that diagrams on the right-hand side contain
the differentiated propagator only in the two-particle lines
that induce the reducibility. Propagators which appear in
two-particle lines which do not induce the reducibility are
not differentiated. Therefore, only those diagrams that are
reducible in all positions of two-particle lines—the so-called
ladder diagrams—are fully included. It follows that the stan-
dard truncated, one-loop fRG flow is biased towards ladder
constructions of the four-point vertex.

For a constant interaction U and a transfer energy-
momentum 2, ladder diagrams of a certain channel can easily
be summed to ngd” = U(l — Ullgy)~!, where Ig is the cor-
responding bubble. Ladder diagrams are therefore particularly
prone to divergences with increasing U or increasing values
of Ilg (as can occur upon lowering the cutoff scale A) and
can thus be responsible for premature vertex divergences in
fRG. Indeed, so far, fRG computations have often suffered
from such vertex divergences, and the flow had be stopped
at finite RG scale A. [3,32]. In this context, the two-loop
corrections have already been found to significantly reduce the
critical scale of vertex divergences A. [16,33]. This suggests
that it would be worthwhile to study the effect of higher-
loop mfRG corrections—we expect that they reduce A, even
further.

Throughout this paper, we have taken a perspective that
views fRG as a tool to resum diagrams (say, physical diagrams)
by integrating a collection of differentiated (and thus A-
dependent) diagrams. In this regard, the mfRG corrections
do not add new physical diagrams to the flow, they only
add differentiated diagrams to complete those derivatives of
physical diagrams that are only partially contained by one-loop
fRG. In other words, for any physical diagram to which a
differentiated diagram of mfRG contributes, there also exists
a differentiated diagram in one-loop fRG. The differentiated
diagrams of the higher-loop corrections and the one-loop flow
all contribute the same set of physical diagrams—the parquet
diagrams.

Whereas the one-loop flow of the vertex contains differ-
entiated propagators at the two-particle-reducible positions,
the multiloop flow iteratively adds those parts for which the
differentiated line is increasingly nested. Such nonladder con-
tributions are crucial to suppress vertex divergences originating
from the summation of ladder diagrams [5]. Similarly, the
standard self-energy flow does not form a total derivative any
more if one has only the parquet vertex at one’s disposal.
All diagrams of the standard flow are of the parquet type,
but differentiated lines in heavily nested positions are omitted
(cf. Fig. 6). The mfRG corrections incorporate all remaining
contributions by two additions that build up on the multiloop
vertex flow. Altogether, the mfRG flow achieves a full sum-
mation of all parquet diagrams of the vertex and self-energy.
Consequently, mfRG solutions are no longer dependent on the
specific way the A dependence (regulator) was introduced
[5] and thus fully implement the meaning of the original
fRG idea.

V. CONCLUSION

We have presented multiloop fRG flow equations for the
four-point vertex and self-energy, formulated for the general
fermionic many-body problem. The mfRG corrections fully
simulate the effect of the six-point vertex on parquet diagrams,
completing the derivatives of diagrams that are only partially
contained in the standard truncated fRG flow. Whereas one-
loop fRG contains differentiated propagators only at the two-
particle-reducible positions and the standard self-energy flow
does not suffice to form a total derivative when having only the
parquet vertex at one’s disposal, the multiloop iteration adds
all remaining parts, where the differentiated line appears at
increasingly nested positions. We have motivated the multiloop
corrections at low orders and ruled out any overcounting of
diagrams. Moreover, we have put forward a simple recipe to
count diagrams and numerically check that the mfRG flow
generates all differentiated parquet diagrams for the vertex and
self-energy, order for order in the interaction.

Due toits iterative one-loop structure, the mfRG flow is well
suited for efficient numerical computations. We have given a
simple approximation, which renders the algebraic differential
equation accessible to standard solvers for ordinary differential
equations and exhibits only minor deviations from the full
mfRG flow. Given the general formulation, the benefits of
mfRG on physical problems can be exploited in a large number
of fRG applications. The full resummation of parquet diagrams
via mfRG eliminates the bias of fRG computations towards
divergent ladder constructions of the vertex and restores the
independence on the choice of regulator. We expect that
this will generically enhance the usefulness of the truncated
fRG framework and increase the robustness of the physical
conclusions drawn from fRG results.
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APPENDIX A: PSEUDOCODE IMPLEMENTATION

In this section, we present a pseudocode for the approximate
solution strategy of the mfRG flow explained in Sec. IV E. Gen-
erally, an ordinary differential equation (ODE) is of the form
AV (A) = f(A,¥), and numerous numerical ODE solvers
are available. The only input required for such an ODE solver,
apart from stating the initial condition W(A;) = W¥; and the
extremal points A;, A 7, is an implementation of the function
FALW).

In the case of mfRG, W—describing the state of the physical
system at a specified value of the flow parameter A—is a
vector that contains the self-energy (say, W.X) and the vertex
(say, W.I') for all configurations of quantum numbers (e.g.,
Matsubara frequency, momenta, and spin). In order to use an
ODE solver to compute the mfRG flow, we only need to specify
a way to compute f(A,W¥). This is provided by Algorithm 1,
written in pseudocode.
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ALGORITHM 1. Pseudocode for computing the right-hand side
of the mfRG flow for a given state of the system W (containing V.2
and W.I") and a scale parameter A.

Function f(A,W¥):

S =S(AV.Y)

G =G(AV.Y)

d¥gq = L(V.T,S)

dU.X =dXyy

forit =1...it;do
dG=S+G-dv.X -G
forr =a,p,t do

dy, = B(W.T',W.I",G,dG)

end for

/* jump to line 41 for one-loop fRG */

10: forr =a,p,t do

R A A o i

11: dy} = B.(X,, dy,W.I,G)
12: dy} = B,(W.T, Y., dyv,G)
13: end for
14: forr =a,p,t do
150 dyl =dyf+dyf
16: dy, < dy, +dyT
17: end for
/* jump to line 41 for two-loop fRG */
18: dyl—c =0

19: fort{=3...4;do
20: forr =a,p,t do

21: dy€ = B,(W.I,dy*,G)

22 dy} =B, (X, 4y, W.I,G)
23: dyf = B.(W.I, Y, dy}.G)
24 end for

25: forr =a,p,t do

26: dy," = dy- +dyS +dy?

27: dy, < dy, +dyT

28: end for

29: dyf < dyf +dys +dyy

30: if max, {||dyT||/l|dy, ||} < € then
31: break

32: end if

33: end for

/% jump to line 41 for £ s-loop fRG without corrections to
the self-energy flow */

34:  dZ; = LdyS,G)

35:  d¥, = L(WV.I'G -d%; - G)

36:  dU.X =dXEy +d¥; +dE,

37 if||S+ G -dV.X - G —dG||/||dG]| < € then

38: break

39:  endif

40: end for

41: du.r=> dy

42: return d¥

Algorithm 1 makes use of functions outlined in the main
text, for which we also include dependencies that have been
suppressed earlier. This applies to the single-scale propagator
S [Eq. (13)] in line 1, the Dyson equation for G [Eq. (4)]
in line 2, the differentiated bubble B [Eq. (12)] in line 8,
and the bubble B [Eq. (8)], which is used several times. For
a good numerical performance, an efficient implementation

of the bubble functions appearing in Algorithm 1 using
vertex symmetries and high-frequency asymptotics is crucial
[9,34].

The algorithm has a few external parameters: £;
(line 19) denotes the maximal loop order, and iz; (line 5)
the number of iterations that improve the accuracy of the
flow by four orders of the interaction with each step (cf.
Sec. IVE). These parameters can also be used dynamically via
the break conditions of the loops depending on the tolerance €
(lines 30, 37). Note that typically, one also specifies a tolerance
for the numerical ODE solver, say eopg. If € is chosen in
accordance with egpg and the number of loops (£ ¢) oriterations
(ity) is not fixed a priori, this algorithm yields a solution of
the full mfRG flow and thus a full summation of all parquet
diagrams—to the specified numerical accuracy.

The straightforward implementation as given by the pseu-
docode in Algorithm 1 demonstrates the feasibility of the
mfRG flow for almost any fRG application.

APPENDIX B: MULTILOOP FLOW BEYOND
THE PARQUET APPROXIMATION

The mfRG flow as described so far achieves a full sum-
mation of all parquet diagrams of the vertex and self-energy.
The first deviations from the exact quantities, i.e., the first
nonparquet diagrams, occur at fourth order for the vertex—
these are the envelope vertices, such as the one shown in
Fig. 3(a)—and, as follows by use of the SDE (16), at fifth
order for the self-energy.

One can in principle add terms to the mfRG flow equations
that go beyond the parquet approximation. The flow equation
of T" then also needs to generate differentiated diagrams of
envelope vertices. This is achieved by adding the differentiated
envelope vertices, i.e., all envelope diagrams of I with one
G line replaced by 0,G at all possible positions, to the
flow equation. Subsequently, one performs the replacement
' — I' to generate contributions at all interaction orders.
(Note that the mfRG corrections of the self-energy flow have
to be changed accordingly.) However, such contributions to the
vertex flow are—by the very fact that they are of nonparquet
type—not of an iterative one-loop structure anymore [i.e., their
evaluation requires the computation of two or more (nested)
integrals] and are thus computationally unfavorable.

Another possibility to obtain nonparquet diagrams from
mfRG is to keep the flow equations unchanged and modify the
initial condition. One can then add scale-independent envelope
vertices, i.e., envelope vertices computed in the final theory (at
A ¢) with some approximation of the self-energy, to the initial

condition of the vertex: 'y = o+ Fj\n;'ek’pe. (Hence, ['emvelope
must be computed only once.) This yields contributions to
the flow that are not actually differentiated diagrams at a
given scale A. Nevertheless, the initial vertex I's, constitutes
a new totally irreducible building block in the mfRG flow.
After completion of the flow, one obtains a summation of all
“parquet” diagrams with the totally irreducible vertex R = I'y,
instead of R = I'°; i.e., one obtains vertex and self-energy
at one level beyond the parquet approximation [cf. Eq. (14)].
Such results deviate from the exact quantities starting at fifth
and sixth order for I' and X, respectively. This scheme of
adding nonparquet contributions can also be iterated and used
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with expressions for R = I', of even higher order. However,
it appears rather tedious and is more in the spirit of an

iterative solution of the parquet equations than of an actual fRG
flow.
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Abstract

We present a functional renormalization group (fRG) study of the two dimensional Hub-
bard model, performed with an algorithmic implementation which lifts some of the com-
mon approximations made in fRG calculations. In particular, in our fRG flow; (i) we
take explicitly into account the momentum and the frequency dependence of the vertex
functions; (ii) we include the feedback effect of the self-energy; (iii) we implement the
recently introduced multiloop extension which allows us to sum up all the diagrams of
the parquet approximation with their exact weight. Due to its iterative structure based
on successive one-loop computations, the loop convergence of the fRG results can be
obtained with an affordable numerical effort. In particular, focusing on the analysis of
the physical response functions, we show that the results become independent from the
chosen cutoff scheme and from the way the fRG susceptibilities are computed, i.e., either
through flowing couplings to external fields, or through a “post-processing” contraction
of the interaction vertex at the end of the flow. The presented substantial refinement
of fRG-based computation schemes paves a promising route towards future quantitative
fRG analyses of more challenging systems and/or parameter regimes.
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1 Introduction

Over the last two decades, functional renormalization group (fRG) methods have been broadly
used for analyzing two-dimensional (2D) lattice electron systems (for reviews, see Refs. [1,2]).
The main advantage of the fRG lies in the exploration of the leading low-energy correlations
and instabilities towards long-range ordered states, similar to what has been investigated ear-
lier for one-dimensional systems [3-5]. However, in one dimension, other methods like Bethe-
Ansatz, bosonization [6,7] and DMRG [8] exist, which are for certain aspects more controlled.
Hence, assessing the precision of RG methods in one-dimensional systems was not really in the
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foreground. The situation evidently changes for two- and three-dimensional systems, where
the specific simplifications associated to the peculiar one-dimensional geometry are not ap-
plicable. At the same time, spatial correlations in 2D are strong enough to induce qualitative
corrections [9,10] with respect to another class of rigorous many-body approaches, such as the
Dynamical Mean-Field Theory (DMFT) [11-13] which allows one to include all purely local
dynamical correlations.

In fact, due to the intrinsic complexity of the many-electron problem in 2D, the devel-
opment of unbiased quantitative methods applicable to a wide energy range from electronic
structures on the scale of a few €V down to, e.g., ground state ordering in the (sub-)meV
region is still on the wishlist. This goal has motivated, in the last decade, the development
of several algorithmic schemes for treating electronic correlations in 2D from different per-
spectives [1,14,15]. In this context, the fRG has already unveiled quite promising features:
The fRG has the potential of resolving band structures and Fermi surface details and to treat
competing orders on low energy scales in a rather unbiased way, since it does not require pre-
liminary assumptions about dominating scattering channels. Recent applications range from
studies of cuprate high-T, superconductors [ 16-19] over iron superconductors [2,20] to few-
layer graphene systems [21,22], to cite a few.

We also note that, while the current applicability of the fRG is generally restricted to the
weak to intermediate coupling regimes, its combination [23, 24] with the DMFT might allow
one, in the future, to access much more strongly correlated parameter regions, including the
ones in proximity of the Mott-Hubbard metal-insulator transition. This is achieved by con-
structing a fRG flow starting from the DMFT solution of the considered lattice problem to the
exact solution, i.e., in practice, using the DMFT to determine the initial conditions for the fRG
flow [23]. Similarly to other diagrammatic extensions [15] of DMFT, such as the Dynamical
Vertex Approximation (DI'A) [25] or the Dual Fermion [26] approach, one might work either
with the physical degrees of freedom (as in the so-called DMF?RG [23]) or in the space of aux-
iliary (dual) fermions [27], introduced by means of a suitable [15,26] Hubbard-Stratonovich
transformation.

Yet, what is hitherto missing is a thorough analysis of the quantitative reliability of the
fRG for a well-defined test case. More precisely this would require to clarify how much the
fRG results, going beyond the correct estimation of general physical trends, depend on the
approximations inherent in the used fRG scheme. This study within the fRG would then also
provide a solid basis for future comparisons with other numerical techniques.

The mentioned approximations can be grouped in three categories:

(i) Momentum/frequency discretization: As the fRG algorithm typically exploits the flow of
vertex functions that depend continuously on multiple momenta and frequencies, various ap-
proximations are performed to mitigate numerical and memory costs. Early on, N-patch dis-
cretizations of the momentum dependencies through the Brillouin zone were used. Later, it
was noticed that channel-decompositions in conjunction with form factor expansions [28-30]
lead to physically appealing approximations featuring advantageous momentum resolution
and numerical performance [31]. Clever prescriptions for the treatment of the high-frequency
tails of the vertex function have been devised [32-34] which are also used in this work.

(ii) Self-energy feedback: In many applications of the fRG the self-energy and its feedback
on the flow of the n-particle (n > 1) vertex functions has not been accounted for. While there
are arguments that the self-energy may be important mainly when the interactions are close
to a flow to strong coupling (see Appendix in Ref. [35]), more quantitative results should over-
come this deficit. In fact, neglecting the self-energy feedback was mainly motivated by the
disregarded frequency dependence of the interactions in earlier fRG studies: Within a static
treatment the self-energy lacks the effects of quasiparticle degradation, so that its inclusion be-
came less important. Within the current frequency-dependent fRG treatments, the self-energy
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feedback can be included in a meaningful way. A number of works have already investigated
the self-energy effects in the flows to strong coupling in Hubbard-type models [29, 36-44],
mainly exploring the quantitative effects, besides signatures of pseudogap openings [39,40]
and non-Fermi liquid behavior [29] in particular cases.

(iii) Truncation of the flow equation hierarchy: Finally, one should also consider the trunca-
tion of the hierarchy of flow equations for the n-point one-particle irreducible (1PI) vertex
functions. This is usually done at “level-1I” as defined in Ref. [1], also referred to as one-loop
(1¢) approximation, i.e., the 1PI six-point vertex is set to zero. Due to this truncation, the final
result of an fRG flow might depend - to a certain degree — on the cutoff scheme adopted for
the calculation.

In this perspective, it was noticed by Katanin [45] that replacing the so-called single-scale
propagator in the loops on the r.h.s. of the flow equation for the four-point vertex by a scale-
derivative of the full Green’s function allows this scheme to become equivalent to one-particle
self-consistent (a.k.a. mean-field) theories in reduced models, and then to go beyond such
self-consistent approximations in more general models. Another significant comparison can
be made with the parquet-based approaches [46,47], such as the parquet approximation (PA)
[33, 34,48-50]. The latter represents the “lowest order” solution of the parquet equations,
where the two-particle irreducible vertex is approximated by the bare interaction. In fact,
although the diagrams summed in the 1¢ truncation of the fRG are topologically the same as
in the PA, the way the single contributions are generated during the flow leads in general to
differences with respect to the PA [34,51]. This is due to some internal-line combinations, e.g.,
in particle-hole corrections to the particle-particle channel, which are suppressed by the cutoff
functions attached to the propagators and not fully reconstructed during the flow because of
the truncation. A quantitative analysis of this effect has been performed for the single impurity
Anderson model in Ref. [34]. These differences are absent for single-channel summations (e.g.
RPA), but could lead to more pronounced quantitative errors in presence of channel coupling,
e.g., in the generation of superconducting pairing through spin fluctuations. Furthermore,
while the Mermin-Wagner theorem is fulfilled within the PA [52], it is typically violated by 14
fRG calculations. First steps to remedy this shortcoming were undertaken in various works [43,
53,54], but only recently a comprehensive path of how the PA contributions can be recovered
in full extent was presented within the multiloop extension of the fRG (mfRG) [55-57]. The
mfRG flow equations incorporate all contributions of the six-point vertex that complement the
derivative of diagrams already part of the 1¢ flow, as organized by their loop structure. A key
insight in this approach is that the higher-loop contributions can be generated by computing
1¢ flows for scale-differentiated vertices, with an effort growing only linearly with the loop
order that is fully kept. The multiloop corrections stabilize the flow by enabling full screening
of competing two-particle channels, ultimately recovering the self-consistent structure of the
PA. As the PA corresponds to a well-defined subset of diagrams, a converged mfRG flow able
to reproduce the PA is by construction independent of the adopted cutoff.

In this paper, we present a fRG study of the 2D Hubbard model performed with an al-
gorithm combining the most recent progress on all three approximation levels. We use (i)
the so-called “truncated unity” fRG [31] (TUfRG) formalism to describe the momentum de-
pendence of the vertex and, in addition, keep the full frequency dependence as a function of
three independent frequencies. Differently from the approach adopted in Ref. [44], we em-
ploy a refined scheme to treat the high-frequency asymptotics [34] that allows us to reduce
the numerical effort considerably. Within this scheme, we can consistently include (ii) the
(frequency-dependent) self-energy feedback in our fRG flow equations. Finally, we present
(iii) first data for the 2D Hubbard model computed with the multiloop extension proposed by
Kugler and von Delft [55]. In this context, we have also generalized the multiloop formalism
to compute the flow of the response functions, and illustrated the loop convergence of the fRG
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results for the 2D Hubbard model. In particular, we show that including up to 8 loops in the
fRG flow yields a clear convergence of the data with the loop order and the final results are
independent of the cutoff. This represents an important check and illustrates that fRG flows
can be brought in quantitative control for 2D problems. Finally, our multiloop analysis of the
response functions demonstrates that the two different ways to compute susceptibilities in the
fRG, either by tracking the renormalization group flow of the couplings to external fields [1]
or by contracting the final interaction vertex (see, e.g., Ref. 23), converge to the same value
with increasing loop order. This confirms that the output of this improved fRG scheme can
indeed be trusted on a quantitative level.

The paper is organized as follows: The formalism and theory of the linear response func-
tions and their computation by mfRG flow equations are introduced in Section 2. In Sec-
tion 3 we present the actual implementation scheme for the full momentum- and frequency-
dependent fRG. In Section 4 we show the results for the 2D Hubbard model, with a detailed
analysis of the effects of the different approximation levels and in particular of the convergence
with the loop order. A conclusion and outlook is provided in Section 5.

2 Theory and formalism

2.1 Definitions and formalism

In this section we provide the definitions of the linear response functions to an external field,
before describing their computation with the fRG. We focus on correlation functions of fermionic
bilinears. In particular, in a time-space translational-invariant system, we consider the charge
(density) and spin (magnetic) bilinears, both charge invariant,

PS(Q)ZZ:Jdpi[)o(p)fn(p,q)%(p+q), (1a)
Pm(@) = ;(—1)" J dp Yo (P)fa(p, Do(p +q) (1b)
and the non-charge invariant pairing (superconducting) bilinears
Pe(q) = f dpy (g —p)f, (P, )Y1(p), (2a)
pii(q) = f dpP1(p)fulp, ¥y (a—p) (2b)

where 1) and 1) represent the Grassman variables and p (q) a fermionic (bosonic) quadri-
momentum p = {iv,,p} (q = {iw;,q}). The integral includes a summation over the Matsubara
frequencies (iv,), normalized by the inverse temperature 3, and an integral over the first Bril-
louine Zone normalized by its volume V3. The function f,(p,q) determines the momentum
and frequency structure of the bilinears in the different physical channels. In the present case
we restrict ourselves to a static external source field, such that the function f,(p,q) = f,(p)
acquires only a momentum dependence, whose structure is specified by the subscript n and
explicitly shown in Table 1 (in the present work we will mostly focus on the s- as well as d-wave
momentum structure). Note that, when using a different frequency-momentum notation, cen-
tered in the center of mass of the scattering process (see “symmetrized” notation in Appendix
A), one should account for an additional shift of the momentum dependence p by means of
the momentum transfer q.
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After a reshift of the operators in Eq. (1) with respect to their average value
Py m Py T (0} /m), we can now define the correlation functions of these bilinears in the
three channels

/ 1 /
Xd/m(@ = §(p3/m(q)p3,fn(q)) (3a)
2 (@) = (p" (P *(q)) - (3b)

In linear response theory, these correlation functions correspond to the physical susceptibilities
in the corresponding channels. Divergences in x;"”/(q), with n = {d, m, sc}, indicate sponta-
neous ordering tendencies or instabilities of the system. The above definition encodes not
only the real-space pattern or wavevector for which the system starts ordering, but also the
symmetry of the order parameter associated to the instability. In the 2D Hubbard model study
presented here (see Section 4) we detect various response functions growing considerably to-
wards low T, such as the spin-density wave (SDW) response, characterized by the isotropic
s-wave magnetic susceptibility at q = (7, 1), as well as s- and d-wave pairing response func-
tions at q = (0, 0) and Pomeranchuk instabilities [58]. Inserting Eq. (1) or Eq. (2) into Eq. (3),
the susceptibilities appear as two-particle Green’s functions. In particular, they can be deter-
mined from the two-particle vertex y, by

nn’ 1 % 0
Xd/m(Q) ZE ZJ‘ dpdp/fn(p)fn/(p/)o'g-/gBo'U//i/[Hd/m;a,a/(q; p, P/) +
oo’
Na/moo (@ PP 40000/ (PP + 4, 0" + 0 P Ma/mioror (@, 0’07 ] (4a)
20 (q) =f dpdp’ f,(p)f (P Meer (g, P, P7) +

et (0, P, P)Y a1 (P P54 — P, q — Pty (0,07, 1) ], (4b)

where ¢%/3 represent the Pauli matrices (0° = 1) and we made use of the spin conservation.
Egs. (4) can be considerably simplified by making use of the SU(2) symmetry. The “bare
bubbles” I1, appearing in (4) read

Hd/m;oo/(q: p; P/) = _ﬂVBZ5o,U’6p,p’GU(p)GU(p + ‘Z) B (5a)
nsc;Tl(qa p; P/) = ﬁVBZ(Sp,p’GT(p)Gl(q —P) . (Sb)

By exploiting the SU(2) symmetry,
Go(p) = G5(p) =G(p), (6)

we can drop the spin dependencies for the bare bubbles. In presence of the above symmetries,
we can introduce the following definitions for (spin-independent) channels of the two-particle
vertex

1
74,4(¢,p,P") :QZ Yawooro'(PsP+a,p'+¢,p) (7a)
o,0’
1
Y4m(a,p,D") =§Z(—1)6“’ Ta0oo'o’(P,P+q,p'+4,p") (7b)
o,0’
Ya5e(@p,0) =va1 (00" a—p,q—p"), (7¢)

with e the Levi-Civita symbol. The resulting spin-independent expression of the physical sus-
ceptibilities reads

() = J dpdp’f,(P)f;;(®)[11,(q, P, p") +11,(q,P,P)Y4,(a,p, P ), (q,p",p)].  (8)

6
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We conclude this section by recalling the definition of the so-called fermion-boson vertex
[59], which, for the considered symmetries, reads

Vs a/mioo(@P) =g (@0, PO (o (p)o (P + )] () (9a)
Y se1(@P) =T (g, , D)W (D)1 (g — P)p (@) - (9b)

Similarly to the susceptibility, one can rewrite Egs. (9a) and (9b) in a form where the two-
particle vertex v, ,, appears explicitly

15,(@P) = fa(P)+ f dp’ fu(0")Y4.4(q, p, P, (q, 0", P, (10

where, because of the SU(2) symmetry, we dropped the spin dependence of the fermion-boson
vertices

Yg,d/m;(ro‘ = Yg,d/m;c}(; = Yg,d/m (11a)
Yg,SC;lT = Yg,sc;Tl = Yg,sc : (11b)

2.2 Flow equations for the response functions

In this section we derive the mfRG [55] flow equations of the response functions and discuss
the improvement with respect to the 1£ version [1]. Note that one can also provide a formal
analytical derivation of these flow equations [57]. In the following we provide the main steps
of the derivation in the 1PI formulation [1,60] (see also Ref. [58] for the Wick-ordered for-
mulation), for the details we refer to Appendix B. Following the review of Metzner et al. [1],
we introduce the coupling of the density operators in Egs. (1) and (2), shifted with respect to
their average values, i.e. pg — p;; — (p;‘]), to the external field J, by defining the following
scalar product

U djm> Plym) = quJE/m(q)pg/m(q), (12a)

L, pl)+ (L%, pt) = qu[Js’é(q)pQC*(q) +J2 (P ()] .- (12b)

We note that, although J T’; appears as a functional dependence in our derivation, it is not an
integration variable since our system is fully fermionic (for an fRG formulation of coupled
fermion-boson systems, see Refs. [1,61-63]).

By expanding the scale-dependent effective action I'* in powers of the fermionic fields, as
well as of the external bosonic source field, we obtain

O[T, v, 1]

A T _ AT, - - -
P ] = T+ D) ) 37, ()37:(2)

n Yi.Ya

D3 O[T, 1]

iy 8T, ()P (x N (x)
OOTA[J,, 1]

¥,x,x’ aJsc(}’)aTP(X’)alj)(x) T’l])z('l)’l—/‘:

J J* —
=0 n(}’l) n()’z)
J=0

IO~

Y=y
J=0

OJsc(y)'QE(x/)TL(X)"‘--- (13)

Note that the index x = {o,k} combines the spin index o and the fermionic quadrivec-
tor k = (iv;,k) (here we disregard additional quantum dependencies, e.g., orbital), while

7
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y = {n,q} refers to the momentum structure of the coupling to the bilinears, n, and to the
bosonic quadrivector ¢ = {iw;, q}. In Eq. (13) the first term on the r.h.s. represents the expan-
sion of the effective action in absence of external field (see Section 3), while the functional
derivatives in the following terms represent the A-dependent susceptibility and the fermion-
boson vertex in the different channels. Taking the derivative with respect to the scale pa-
rameter A (see Appendix B) yields the following flow equations for the susceptibility and
fermion-boson vertex (assuming SU(2) symmetry and momentum-frequency as well as spin
conservation)

anrsNg) = f k [— SMOF (g, k)—

1 (@ RIGMK)ISMg + k) +(S o Oraayt (k)] (14a)
apxMg) = f dk [— SA(k)?Z’LCA(q, k)+
(@ IGAK)SM g — k) + (S — Oy (g, k)], (14b)

and respectively

O g k) = fdk’ [=s ey (@K k)

Y;lﬁ/m(q, KGMNK)SMg +K) +(S = Oy g m(@: K5 K)] (15a)
vyl k)= Jdk’[ —SM(k)y el (g, k. K+
Y@ KIGNKNSMg—K) +(S = &)y}, (0. K, K], (15b)
where
sh= aAGA|2=const (16)

represents the single-scale propagator. The function ¥4, differently from the (fermionic) two-
particle vertex y,, represents a mixed bosonic-fermionic vertex, i.e., with two bosonic and two
fermionic legs where we summed over its spin dependences

74 Mg, k) =Z?Z"n ho(@.k), a7

while the spin-independent form for y5 used in Egs. (15) reads
rod (@ k) = Z R (N N (18a)

n,A /
ren(g.k, k)= Tsseoooro (@ kKD . (18b)

o’

The conventional approximations [1, 58, 60] disregard the first terms on the r.h.s. of Egs.
(14) and (15). This 1¢ approximation is consistent with the corresponding approximation
of yﬁt\ (see Appendix C) and justified in the weak-coupling regime. Using the notation of
Refs. [45,55], one can rewrite the 1{ approximation of Eqs. (14) and (15) in a more concise
tensor-form

1) _
Zn() 73n°H Sm 737) (192)
Tg(nl) = 7'3’7] o Hs,n 074)71 . (19b)
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where

ﬂg,d/m(ph)(q’ k) =—G kS (g +k)+ (S — G) (20a)
1 4e(pp) (@ K) = G (ISMNg—K) + (S = G) . (20b)

We here introduced also the subscript ph and pp indicating the diagrammatic channels that
will be referred to in Sec. 3.

So far we pinpointed two possible ways to compute the susceptibility and fermion-boson
vertex from an fRG calculation: (i) Solving Eqgs. (14) and (15) alongside the ones for & and y4
(at the same level of approximation), and (ii) by means of Egs. (8) and (10) at the end of the
fRG flow, using >/l and yﬁﬁ“‘ﬂ, later referred to as “post-processing”. These two procedures
are non-equivalent in the presence of approximations, e.g., if one restricts oneself to the 1£
level. This leads to an ambiguity in practical implementations of the fRG. In fact, as shown in
Appendix D, the two results deviate at (’)((}fﬁ 2) for the 1¢ case (for a larger number of loops
the deviations occur at higher orders in the effective interaction yﬁ). In order to solve this
ambiguity we note that the exact relations (8) and (10) are fulfilled in the PA. At the same
time, the recently introduced multiloop extension allows one to sum up all parquet diagrams.
Hence, generalizing the multiloop flow to the computation of the response functions recovers
the equivalence of the two procedures.

In order to derive the mfRG equations for the response functions, we first recall the channel-
decomposition of the two-particle vertex as known from the parquet formalism. The latter di-
vides v, in the two-particle reducible vertex ¢ (all diagrams that can be divided into two sep-
arate ones by removing two internal fermionic propagators) and the two-particle irreducible
vertex I (which can be not be divided). Depending on the direction of the propagation lines
the diagrams are reducible in either parallel, longitudinal antiparallel or transverse antipar-
allel, corresponding to the particle-particle, particle-hole, and particle-hole crossed channel,
respectively. Besides this diagrammatic channel decomposition, there is also a distinct physical
channel decomposition that identifies the components nn = {d, m, sc} and which we will use in
the following. Inserting this decomposition into the flow equation for the two-particle vertex,
we obtain

aAan = aAIQ + aA¢TA) ) (21)

While the usual diagrammatic channel decomposition [64] leads to simple expressions for the
two-particle irreducible vertex I 7/7\, the latter assumes a more complicated form in the physical
channels

Mg,k k)= —U— %d)é‘(k’ —k, k,k+q)— §¢§1(k’ —k,k, k+q)+

+20Mg +k+ Kk, k) — pA(g+k+K,k,q+k) (22a)
Mg,k K)= U- %cpé‘(k’ —k,k,k+q)+ %¢§1(k’ —k,k,k+q)—

+PMg+k+K Kk k+q) (22b)
Mg,k K)= —U— ¢ MK —k, k,q—K) + %(ﬁé\(q —k—K, k,k)—

- %¢g(q—k—k’, k, k'), (22¢)

where we approximated the fully two-particle irreducible vertex by its first-order contribution
in the interaction ~ U, which is known as PA.

We now derive the mfRG flow equations for the response functions, which mimic the effect
of the mixed fermion-boson vertices }72 and yg‘ in the exact flow Egs. (14) and (15). First, one

performs the so-called Katanin substitution [45] S* — 8,G*, which implies l;[;\n - 1;[;\ in

9
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/
/
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=i _ ]+ i

Figure 1: Multiloop flow equations for the susceptibility (left column) and the
fermion-boson vertex (right column) for all physical channels n = {sc,m,d}.
Whereas the filled boxes and triangles represent the vertex }/2\, 0 and Yg\, w respectively,
the empty ones contain the scale-parameter derivative of the two-particle irreducible
vertex ig in the respective channel (see Eq. (22)). (a) Standard one-loop truncated
flow equations as in Eq. (19). (b) Two loop corrections for the fermion-boson vertex
as in Eq. (24). As argued in the text, because of the fermionic leg contractions, no
two-loop correction terms appear in the susceptibility flow equation. (c) Higher loop
corrections starting from the third loop order for both susceptibility and fermion-
boson vertex as reported in Egs. (26) and (25), respectively.

the 14 flow equations (19). One observes that all differentiated lines in these flow equations

- A . . . . .
come from Hn‘ Secondly, differentiated lines from the other channels are contained in the
higher-loop terms of the expansion

gt =720 (23a)
=1
SA(L
a,\ygm = ng(n) . (23b)
>1

Using the channel decomposition (21), we can directly write down the 2¢ correction to the flow
of the fermion-boson vertex, which accounts for the leading-order diagrams of the effective
interaction and stem from yg‘ in Eq. (15) (see Appendix E)

PO 2 g omh oA, 24)

On the three- and higher-loop level, we can now use igm in an analogous way. In addition,

10
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Figure 2: Multiloop corrections (beyond 1£) for yg‘ d/m (top) and xé‘/m (bottom) at

the leading order in the bare interaction (filled black dot). The empty dot represents
the bare fermion-boson vertex yg’n’o(q, k) = f(k).

we have to consider the vertex corrections to the right of the differentiated lines, yielding

JAL+2) A

A iA(E+1) | LA A A0 A A LA
Yam = T3p° Hn ° In + T3n© Hn ° In © Hn V4 (25)

Considering the 1¢ flow equation of the susceptibility (19a), we see that the fermion-boson
vertices provide vertex corrections on both sides of the differentiated lines in II, . Hence, for

all higher-loop corrections we can simply connect ig(“ to both fermion-boson vertices, thereby

raising the loop order by two. We obtain Zg(z) = 0, as well as
SA(E+2) — A A o A o TrA o 40T
in = 13,0 o[ oIl oyy . (26)

For a schematic representation of the multiloop flow equations for y, and ys, see Fig. 1,
while an example of the multiloop corrections at the leading order in the bare interaction is
illustrated in Fig. 2. The above equations, together with the multiloop flow of the fermionic
two-particle vertex (see Section 3.2) allow us to sum up all differentiated parquet diagrams
of Té\ and y*. As a consequence, the aforementioned two ways of computing the response
functions within the fRG become equivalent. We finally note that for a consistent fRG scheme,
it is important to adopt the same level of approximation (truncating the sums in Eq. (23a) to
a certain finite £-loop level) for all flowing quantities.

3 Numerical implementation

3.1 Full frequency and momentum parametrization

In order to illustrate the fRG algorithm adopted in the present work, let us start from the flow
equations for the 1PI fermionic vertex in the 1¢ fRG approximation. In the following, the SU(2)
spin conserving symmetry will be always assumed. Exploiting this symmetry, the self-energy
and two-particle fermionic vertices can be written as

Yoo (k) = 50’,0”20(10 = 50,0’2(]() 27)
74,01020304(k1: ko, ks) = [_601,04602,03 Yalk, kgs k3) + 501,02603,04740(17 ko k3)],  (28)

where the fourth argument of v, is determined by k4 = k; +k3—k, in a momentum and energy
conserving system. The spin-independent flow equation for the self-energy reads

s k) = —f dps™(p) [2 vhk,k, p) =3 (p,k, k)], (29)

where S*(p) represents the single-scale propagator specified in Eq. (16). We formulate the
flow equation for y, in the channel decomposed form suggested by Husemann and Salmhofer

11
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[28]

Yﬁ].\(kl) k2> k3) = 7;/;(]{1 + k3: k]: k4) + 7;/}\l(k2 - kl) kl: k4) + 7;%(k3 - k2: kl: kZ) ) (30)

where the diagrammatic channel index r = {pp, ph, p_h} distinguishes between particle-particle,
particle-hole and particle-hole exchange diagrams, and the first dependence of the functions
TrA refers to the bosonic four-momentum transfer in the internal loop of their corresponding
equations

7;[}\,(’(1 + ks, ky,k4) =J dp Yﬁ(kl; ki + ks _P,ks)Yﬁ(P, ko, ki +ks—p)x
[SM ()G (ky + ks —p)+(8 = @), (31a)

7;/}\1(k2 - kl; kl> k4) = _f dp |:2Yf|.\(kl> kZ: kZ - kl +p) Yﬁ(p; kZ - kl +p’ k3)_

v4(k1, D, ks — ki +p) v3(p, ko —kq +p, kg)—
Yﬁr\(kl, ko, ko —ky +p) YQ(P, ko, ks)] X
[SMP)G M ky—ky +p)+ (5 = G)], (31b)

E%(kS - k2) kl: kZ) :J dp Yﬁ(kl)p: k3 - k2 +P)Y2(P, k2) kB)X
[s"(0)G (ks — ks +p) + (5 — G)]. 310)

Note that the assignment of the various terms on the right hand side of the flow equation to
the three channels is not unique. The version we use here corresponds to the choice by Wang
et al. in their singular-mode fRG [31,65]. Each of the above equations depends, besides the
aforementioned bosonic transfer dependence (k; + k3, ko —k; and k3 —k,), on two fermionic
dependencies. Such mixed ‘bosonic-fermonic’ notation, referred to as ‘non-symmetrized’ no-
tation, has been substituted in some work (e.g., in Ref. [31]) by a different notation where the
dependencies of the four fermionic propagators involved in the scattering process have been
chosen symmetrically with respect to the bosonic four-momentum transfer. This symmetrized
notation simplifies the implementation of the symmetries exploited in the fRG code (see Ap-
pendix F and Ref. [31]) but leads to less compact flow equations. The equation (31) generates
the two-particle reducible vertices 7, = ¢, of the diagrammatic parquet decomposition

Yalky, ko k3) 2 U+ ¢pp(ky + ks, ki, k4) + @pplka —ky, ko, ka) + ¢;Th(k3 —ka,ki,ko) . (32)

The two-particle fermionic vertex can be reconstructed by using Eq. (32). The use of a mixed
‘bosonic-fermonic’ notation allows us to identify the bosonic transfer four-momentum as the
strongest dependence, while the two fermionic dependencies can be treated with controllable
approximations. In the following we illustrated two efficient ways to simplify the treatment
of both momentum and frequency dependencies.

3.1.1 Truncated Unity fRG

The approximation for the fermionic momentum dependencies in TUfRG [31] is done by the
expansion of the fermionic momentum dependencies in form factors, illustrated here for the
pp channel

Ppp(@kK) =D f(0f5(K)P, v (Q), (33)

n,n’
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while the expansion of the ¢,, and qbﬁ analogously defines D, ,,(q) and C, ,(q). Following
the conventions introduced in previous works [28, 29, 31, 41, 66, 67], we choose the form
factors such that they correspond to a specific shell of neighbors in the real space lattice. The
unity inserted in the flow equations contains a complete basis set of form factors

1= f dp’ > £ fulp). (34)

Converged results can be obtained already with a small set of form factors [31], i.e. the unity
(34) can be approximated by a truncated unity, giving rise to the name “truncated-unity fRG”.
For a fast convergence it is convenient to include one shell after another, starting from the
constant local form factor and increasing the distance of neighbors taken into account. The
form factors used in this paper are listed in Table 1.

A major difficulty in this approach is the feedback of the different channels into each other.
In addition to the dressing of the objects by the form factors, the translation of the notation in
momentum and frequency from one to another channel has to be considered. Computationally
time consuming integrations in momentum space can be avoided by Fourier transformation
and evaluation in real space [31,65]. Furthermore the expression of the projection in terms
of a matrix multiplication allows for the precalculation of the projection matrices which can
be found in the Appendix F.

3.1.2 Dynamical fRG

In frequency space, we adopt the simplifications proposed in Refs. [33,34]. For all systems with
an instantaneous microscopic interaction one can use diagrammatic arguments to prove that,
in the high-frequency regime, the fermionic two-particle vertex exhibits a simplified asymp-
totic structure. In this region one can reduce the three-dimensional frequency dependence of
4 using functions with a simplified parametric dependence. It is straightforward to see that,
sending all three frequencies to infinity, y, reduces to the instantaneous microscopic interac-
tion, which in the present case is represented by the Hubbard on-site U. The contribution
of the reducible vertices ¢, to y4 becomes non-negligible if the bosonic frequency transfer
is kept finite, while sending the two secondary fermionic frequencies to infinity. This contri-
bution, depending on a single bosonic frequency transfer in a given channel r, is denoted by
K4,-(iw;, q). For models with an instantaneous and local microscopic interaction, one observes
that the momentum dependencies disappear alongside the frequency dependencies when per-
forming such limits. In the limit where just one fermionic frequency is sent to infinity, the
vertex ¢, can be parametrized by the function Ky . (iw;,v,,q, k) + K1 (i, q). By subtract-
ing the asymptotic functions from the full object ¢, we obtain the so-called [ 34]“rest-function”
R(iw,iv,,1vy,q, k, k") which decays to zero within a small frequency box. The parametriza-
tion in terms of K;/, allows us to reduce the numerical cost of computing and storing the
fermionic two-particle vertices. In fact, for any of the three channels, we calculate the fRG
flow of the three-frequency dependent function R on a small low-frequency region and add
the information on the high frequencies by computing the flow of the functions K; and K,
which are numerically less demanding. The full two-particle reducible vertex ¢, is then re-
covered by

¢r(iwl: iVO, iVO/, CL k: k/) = Rr(iwl: ivo’ iVO/, q: k’ k/)+
Ky (iw;,iv,,q,K) + ICz,r(ia), ivy,q,kK)+ Ky (iw;,q), (35)

where ICz,r can be obtained from K, . by exploiting the time reversal symmetry (see Appendix
A.3).
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3.1.3 Flow equations for the TU-dynamical fRG

Finally, applying the aforementioned projection on the form-factor basis we can write matrix-
like 1¢ fRG flow equations for the self-energy, the two-particle vertex, the fermion-boson vertex
and the susceptibility:

(k) = —f dpS™p)[ 2 7}k, k,p) = v3(p,k, k) (362)
. L 1 L A . . .
PMq,17,,1v,) = B Z rftp(q, v, L)l (g, zvnz/)yj}’P(q, 1V, 1V,0) (36b)
v
. . . 1 . A . .. . .
DMq,iv,,iv,) = E Z Hs)ph(q, i vn//)[ZTQ)D(q, iv,, wn//)yg\)D(q, LV, 1V )—
v
- Tﬁ}\’c(q’ ivo: ivn”)’rﬁ}\’D((L ivn”; ivo’)_
_Tﬁ}\’D(q:ivo:ivn”)’r;\,c(q7ivn”:ivo’)] (36(:)
. L. 1 . - A : . .
CMq,iv,,ivy) = _E Z Tﬁ;\,c(q’ v, Lyl (g, l'Vn//)T‘/‘\,C(q, 1V, 1Y) (36d)
ivn//
. . 1 . A . L
Té\,n((b lvo) = E Z Té\’n((b lvn’)HS’n(q: Wn/)Tﬁ;\,n(q, LV, ”)o) (36e)
iV,
. 1 LA . .
Ay — A A
h@=73 D@ VIS (@, 178, (@, 7). (36f)
1,

where the multiplication of bold symbols has here to be understood as matrix multiplications
with respect to the form factors. For a schematic visualization of the practical implementation
of these equations, see Fig. 3. We note that, in order to derive Egs. (36), we inserted the
unity (34), truncated to a finite number of form factors, in Eqs. (19) as well as in (31). The
full vertex v, ,, with r = {P, D, C} represents the fermionic two-particle vertex in the channel-
specific mixed ‘bosonic-fermionic’ notations, while v, , with n = {sc,d, m} is given by

Y44 =2Yap—7Tac (37a)
Yam = "TYap (37b)
Tasc=Tap - (370)

Note that the TUfRG equations for the channel couplings P*(q,iv,,iv,/), D*(q,iv,,iv,/), and
Cc’(q,iv,,iv,/) are equivalent to the singular-mode fRG equations derived earlier in a different
way by Wang et al. [65], as also discussed in [31]. The new point here is the dynamical
implementation also taking into account the frequency dependence.

The 1¢-fRG flow consists in integrating the coupled differential equations in (36) with the
following initial conditions:

shinit = (38a)
Ainit Ainit Ainit

Tap =7Tap =Tsc = U5n,05n/,0 (38b)

2y =0 (380)

T3 =G (38d)

Finally, Hs,n relative to the particle-hole n = {d/m(ph)} and to the particle-particle channels
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Technical parameters FRG-flow Rp Kaop Kip 73,sc 7§,sc Xsc effort:
define sizg of objectsr2 step Rp ’C2,D ’CI,D Y3,d '7:341 Xd 2 Zlf
Ir= 2N,( X Ng X Npp Re ’C2C IClC’ m Y3m Xm 7
I, = 6N2 x Ny x Npp 2 2 A
| I =32N. x N
N I, = 682 x Ny x N2
vy = 00V a FF
Lz = 4N, x Ng x Npp Rp Kop Kip Vs V35 Xse
I, = 32N, x Nq x N2 Projection On| Rp Kop Ki,p 3.4 Y34 Xd
I, = 4N, x Ny Re Koo Kic 1Bm V3m Xm
o2 Vertices
Precalculations > o effort per object:
Projection (N % N2 ) < 7
Symmetries [; = I}? + I; | V int FF f A-
Projection matrices ra—
e Ip = N2 x N& size:
e 2T ] Ny x 64N? x N2
effort 5 Self-energy Bubble
per element: Vr X VR, effort:
effort: - create array of G(k) and S(k) —NReprt NRppr
Weight (Ng % Nyoot) -FFTG(R) and S(R) — FFTW-Routine
size: Iy = Nr, x N2 n - create array of
effort per : - x Iz - SRGR+R)+5 &0 = NRppr
element: Nr - inverse FFT —FFTW-Routine
1 ﬁ -sum e RUV(R)F(R,q)  —Nr,

Figure 3: Schematic code structure specifying the array sizes and the numerical ef-
fort of the single steps. I; denotes the number of elements of the object f. N, is
the number of fermionic frequencies of the rest function, Ny the number of bosonic
momentum patches, Npp the number of form factors, Ng, and N, the number of
frequencies over which the internal fermionic bubble is integrated. The symmetries
reduce the total number of elements I; to I]’} independent elements which have to
be calculated and to I$ which can be obtained by using symmetry relations. The ar-
rows indicate the feedback of the different parts, namely the two-particle fermionic
vertices (red), fermion-boson vertex (yellow), and the self-energy (green). In the
multiloop-extended version of the fRG program, the numerical effort scales linearly
in the number of loops ¢ accounted. Here, Yg,n is the asymptotic function of v,
obtained by sending the fermionic frequency to infinity.

n = {sc(pp)}, are defined as
Hg\’d/m(ph)(iwl: ivo: q)n,n’ = _J dpf:(P)fn’(P) Hls\,d/m(ph)(iwl; i V0,9, P) > (39a)

ﬁg\,sc(pp)(iwl’ ivo; q)n,n’ = f de:(P)fn/(P) ﬁg\’sc(pp)(iwl: ivo’ q, p) > (39Db)

where f[fs\m(q, k) is defined in Eq. (20). In order to perform the momentum integration in
Egs. (39) we adopt a strategy which, exploiting the convolution theorem, represents a nu-
merically convenient alternative to the use of adaptive integration algorithms. The latter is
described in the following section.

3.1.4 Calculation of the fermionic particle-hole and particle-particle excitation

We here present a numerically convenient way of calculating the fermionic particle-hole and
particle-particle bubbles in the flow equations of the vertex (36), defined in Egs. (39). Since
the integral over momenta is very sensitive on the momentum mesh resolution near the Fermi
surface and a refined adaptive integration is computationally time consuming, we rewrote
the integrals in such a way to use the convolution theorem. The Green’s function can then
be transformed via the Fast-Fourier-Transform (FFT) to real space, where the real-space ex-
pression of the form factors is provided in Table 1. After some algebraic steps, we find an
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expression without momentum integration

HS,ph(ia)l,ivo; q)]n,n’ = _ZequWn,n’(R) X

R
F[[5(i%,,~RIG(iw; + i, R—R) + (S > G) (@), (402)
1;[S,pp(ic‘)l: 1V, @QInw = Z e_quWn,n,(R) x
R
FI 87, )G (i — ivp, RAR) + (S = 6 |(@), 40b)

where F [ f (R)](k) is the Fourier transform which can be determined by using FFT-methods
and the weight W, ,(R) is defined as

W (R) =D £ (R)fy(R+R). 41)
R/

The infinite sum of the lattice points in Egs. (40b), (40a), and (41) is restricted by the finite
range of the form factors for a specific truncation. For instance the sum in Eq. (41) is limited
to the maximal shell taken into account by the form factors. Hence, the weight has a nonzero
contribution only inside a shell twice as large the maximal shell of the form factors and there-
fore the sum in Eq. (40a) can be constrained to twice the distance of the maximal form factor
shell.

The momentum and real space grid for the Fourier transformations needed in the bub-
bles has to be chosen fine enough, especially at low temperatures. The convergence in terms
of FFT-grid points Ng_ has to be checked separately from the bosonic momentum grid of
the vertex. Recent works using the TUfRG [31, 67] have demonstrated that, if needed, both
low temperatures and high wavevector resolutions can be achieved by means of an adaptive
integration scheme.

3.1.5 Diagrammatic and lattice related symmetries

Further numerical simplifications come from the extensive use of symmetries related to dia-
grammatic arguments and lattice-specific properties, which can be found in Appendix A.

3.2 The mfRG implementation

The mfRG flow introduced in Ref. [55] ameliorates the approximation induced by the trun-
cation of the fRG hierarchy of flow equations as it incorporates all contributions from the
six-point vertex y¢ that can be computed at the same cost as the 1/ flow considered so far.
In fact, it includes all contributions coming from 7y¢ that can be computed in an iterative 1¢
construction of four-point objects; hence, the numerical effort grows only linearly in the num-
ber of loops retained. It has been shown [55] that the multiloop prescription fully sums up
all parquet diagrams. This gives rise to a number of advantageous properties, the most im-
portant of which are (i) that the multiloop corrections restore the independence on the choice
of regulator, and (ii) that the multiloop flow fully accounts for the interplay between differ-
ent two-particle channels and thus hampers spurious vertex divergences coming from ladder
diagrams in the individual channels.

Let us briefly recall the multiloop vertex flow employing the same line of arguments as used
for the flow of the response functions in Section 2.2. We consider the reducible vertices in the
physical channels @, 4 m}- At first, one performs the Katanin substitution [45] sh - 39,GM
(Ils ,, — I1,,) in the 1£ flow equation

:A(D)

- A
¢, = Tfl\,n off, o Tfl\,n ’ (42)
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and finds that, for every channel ¢;;, all differentiated lines come from IL[;\. Differentiated
lines from the other channels are contained in higher-order terms of the loop expansion

et =>1¢0". (43)

21

Using the channel decomposition (21), one has the two-loop correction

: A(2)

_ A A AL 4 A 1A o A
Py =Tapoly ol + L el ory,, (44)
. . . s AL
where, according to Eq. (22), If]’“) can be determined from the ¢2/( ) of the complementary
channels 1’ # 7. All higher-loop terms are obtained in a similar fashion where one additionally
accounts for vertex corrections to both sides of ig’(l )

(AUH2) A A FAEHD) L AL+ A L LA A A A A L A
¢n _7’4,7101-[710177 +I oll °Y4n+7'4,nonnoln 01'[7]07'4,“
- A(0+2) A (e+2) A (e+2)
=(¢," at(d, T+, e 45)

where in the last line the subscripts {R, L, C} refer to the diagrammatic position of I, i.e., right,
left and central, respectively. Using Eq. (21) one can easily deduce the multiloop flow of the

vertices 14,
AL (A0 s
anrh, = > 70 =>"(¢" +100). (46)
£>1 £>1

In Ref. [55], it has further been pointed out that corrections to the self-energy flow (29)
are necessary in order to generate all differentiated diagrams of the parquet self-energy. These
corrections are included in the central part of the vertex flow 7, , oII, o in oll, oy, , and read

ozt =3+ 630 + 637, 47)

with ¥ given by Eq. (36a) and
(k) = —f dp GM(P)[ 2(68) (k.. k) — ($2) (P, K, K) | (482)
635 (k) = —J dp 55™(p)[ 27} (k, p, k)~ 1}(p, K, )], (48b)

where the central part (see Eq. (45)) for the differentiated reducible vertices ¢ r={PC,D} = {P,D,C}
is defined by
A (D)

(62) (ki ko, ks) = > > [ Fulki ) (kg) (6

{>1 n,n’
Falky)f (ks —ky +Kp) (G

and 5 (p) = G ()52 (p)GA(p).

)nn (v1+v3, 71, 74,k +kg) +

,(0)\n,n’
)Zn V3 — Va, V1>V3_V2+V1,k3_k2):|, (49)

4 Numerical results
In this section we show fRG numerical results obtained with the formalism and code described

in the previous sections. After introducing our test system, namely the 2D Hubbard model at
half filling, we will test our full momentum-frequency resolved fRG implementation, together
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Table 1: Local and first nearest-neighbor form factors both in momentum and real
space presentation. For each calculation we specify which form factors are used.
A pure s-wave calculation restricts to the first line corresponding to the local form
factor, the d-wave accounts for the first two nearest neighbors form factors, and
a calculation with all nearest neighbors form factors includes all five form factors

shown here.
n | fa(K) fulrisT))
loc 0 ﬁ 5
1

INN 1 @ cos(k,) ?i(5j,i+x +0j,i—x)
2 @ cos(k,) 75(5j,i+y +6ji-y)
3 @ sin(k,.) ﬁ(éj,ﬁx - 5j,i—x)
4 Wers sm(ky) ﬁ(5j,i+y - 51,1'—}')

with the inclusion of the self-energy feedback, and study the effect of including multiloop
corrections to the 1¢ approximated flow equations. If not specified differently, we will make
use of a “smooth” frequency-dependent regulator throughout this work:

2

GM(k) = ﬁGo(k), (50)

where G, specifies the non-interacting Green’s function of the 2D Hubbard model. The fRG
scheme associated to such a regulator is referred to as Q-flow [29]. For details on the numerical
effort, we refer to the Appendix G.

4.1 2D Hubbard model at half filling as test system

As test model we consider the single-band two-dimensional (2D) Hubbard model on the square
lattice. Its Hamiltonian reads

=t D & o +UD fghy—p D i, (51)
(ij),0 i i,o
where éi(? annihilates (creates) an electron with spin o at the lattice site R; (;, = é:a Cio), tis

the hopping amplitude for electrons between neighboring sites, u the chemical potential and
U > 0 the repulsive on-site Coulomb interaction. In the present study, we consider U = 2t,
u = U/2, and different temperature regimes. Since the present model has been extensively
studied in the theoretical literature (see, e.g., Refs. [11,14,15,46,68-71]) as well as in fRG
(for a review, see Ref. [1]), it constitutes a reference system to test our novel fRG implemen-
tation. Furthermore, the 2D Hubbard model constitutes a delicate case in the context of the
Mermin-Wagner theorem [72], which prevents the onset of the antiferromagnetic ordering at
finite temperature. Whereas the 1¢ fRG results exhibit a pseudocritical Néel temperature Tj,,
the inclusion of the multiloop corrections to the standard fRG flow should, from a theoretical
perspective, recover the parquet solution, which is known to fulfill the Mermin-Wagner theo-
rem [73]. Therefore, we expect T, to be suppressed down to 0 in the (converged) multiloop
fRG scheme. Despite the rich phase diagram of the 2D Hubbard model out of particle-hole
symmetry, we restrict this study to the half-filled particle-hole symmetric case, in order to
reduce the numerical efforts.

Let us stress that the bosonic momentum discretization of the first Brillouin zone (BZ)
has been chosen such that one obtains a uniform grid along the x- and y- directions. This
represents, though, not the unique choice of resolving the reciprocal space and one could adopt
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Figure 4: Relative error egglnv =—(x—Xconv)/ Xconv Of the (1£) AF susceptibilities as a

function of the number of fermionic frequencies N,, (left) and the number of bosonic
momentum patching points Ng (right), for U = 2t and different values of T. All
calculations are performed with only local (s-wave) form factors. In the left panel,
Ng=144 and Ny = 24 x 24 = 576 momentum patching points for the fast Fourier
transform. In the right panel, N = max(576,4 x Ng) and N,, = 4 for T = 0.25
and N,, = 8 for T = 0.125 respectively. The dashed line corresponds to our tolerance
limit of 1%.

some sophisticated “patching” schemes [44], which should be accounted in future optimization
of our code.

4.2 Convergence and stability study on the TUfRG-implementation

In the previous section 3.1, we presented an efficient parameterization of the vertex which
combines the TUfRG scheme [31] for treating momenta with the dynamical fRG implemen-
tation proposed in Ref. [34]. In order to illustrate its efficiency of such merge, we have per-
formed a convergence study of the (dominant) antiferromagnetic (AF) susceptibility y,p =
xﬁo(iwl = 0,q = (m, ™)) by means of Eq. (36f), as a function of the number of Matsubara
frequencies, momenta and form factors, used in our algorithm. The convergence tests have
been performed at temperatures T = 0.25t > T, and T = 0.125t ~ T,.

Let us first consider the convergence in the number of fermionic frequencies N, at which
the low-frequency structure of the rest-function R is captured. For T = 0.25¢t in Fig. 4 (left
panel) one observes that the susceptibility does not exhibit significant changes as a function
of N,. In fact, it is known that, in weakly correlated electron systems, the frequency depen-
dence of the vertex is less important because of power counting arguments [58, 74] and as
shown by numerics for small numbers of fermionic Matsubara frequencies, e.g., in Ref. [42].
At T = 0.125t the convergence with respect to N, is slower. According to our tolerance of 1%
we obtain convergence at N, = 8. In the right panel, we analyze the dependence of the AF
susceptibility on the number of bosonic patching points, Ny, as shown in Fig. 4. The data for
T = 0.25¢ are already converged at Ny = 64, while for T = 0.125t we need Ng = 256. In
the latter case, one sees that the convergence is more sensitive to Ny than to N,,. This can be
ascribed to the presence of a finite pseudocritical temperature since for T — Tj,. the AF fluc-
tuations become long-ranged, requiring an increasingly finer momentum resolution. At the
same time, the size of the objects to handle grows only linearly with Ny while it is expected

19



Scil SciPost Phys. 6, 009 (2019)

0.7 : : T T T

06 L (i) full fRG |
—— (i) no X

05T —a— (iii) no w dep 1
TL; 0.4 | (iv) no w dep, no 2 -
= 03} ]
0.2 F |
0.1 F ]

00 1 1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25

T=p3"1

Figure 5: Inverse (1£) AF susceptibility at q = (7, 7r) as a function of temperature,
for U = 2t. Only local (s-wave) form factors are used, but including the nearest-
neighbor form factors does not change the results within the accuracy. Besides the
curve obtained using the full TU dynamical fRG scheme (i) (blue dots, “full fRG”),
different approximations are shown: approximation (ii) (green diamonds, “no "),
(iii) (red squares, “no w dep”) and (iv) (yellow triangles, “no w dep, no 7).

to scale with the third power in N,,, depending on the quantity considered (see Fig. 3). More-
over, the number of independent momentum patching points can be substantially reduced by
exploiting point-group symmetries of the lattice.

Last but not least, we have also verified that, for all values of T considered, the AF response
function is fully converged with respect to the number of form factors (not shown).

4.3 Effects of different approximations

In our fRG scheme, we can choose different approximation levels regarding the treatment of
the frequency dependence of the interactions and the self-energy. This allows us to gain a
better understanding of the interplay of the different interaction channels and the role of the
self-energy.

Here we define four approximation levels (i) to (iv) with decreasing rigor. Approximation
(i) represents the fRG treatment described in Sec. (3) which merges the TUfRG scheme with
an efficient inclusion of the vertex dynamics; (ii) denotes the flow with a frequency-dependent
effective interaction but without the flow and feedback of the self-energy; (iii) is the frequency-
independent (static) approximation for the effective interaction and the self-energy, in which
the fermion-fermion, fermion-boson and boson-boson vertices are approximated by their value
at zero frequency; and (iv) combines the neglect of the self-energy feedback with a static
approximation for the vertices.

Approximation (iv) has been the standard one adopted in many previous works, as those
reviewed in Ref. [1]. Various other fRG works have already explored the changes occurring by
using better approximations like (i) to (iii) introduced above. Earlier studies of the self-energy
without explicit frequency dependence of the effective interaction pointed to the possibility
of non-Fermi liquid behavior [39, 75]. Later, channel-decomposed fRG [29,41] and N-patch
fRG [42] were used to explore the effects of a frequency-dependent effective interaction and
of the self-energy feedback. In the following, we rediscover some of their findings, with a
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more refined momentum- and frequency-dependent self-energy. Eberlein [43] used a channel-
decomposed description of the interaction where each exchange propagator was allowed to
depend on one bosonic frequency. He found that in the presence of antiferromagnetic hot
spots on the Fermi surface, antiferromagnetic fluctuations lead to a flattening of the Fermi
surface and increase the critical scales. Most recently, Vilardi et al. [44] presented a refined
1¢ study of the role of the various frequency structures in the interaction, parametrized by
three frequencies, albeit with a reduced set of form factors. They argued that a one-frequency
parametrization can in some cases lead to spurious instabilities. Our study differs from this
work by the ability of taking into account more form factors, using a more economic description
of the higher frequencies, and by implementing the multiloop corrections.

In Fig. 5 we show how differently the approximations affect the results for the AF suscep-
tibility. More precisely, we plot the inverse AF susceptibility which decreases quite linearly,
i.e., Curie-Weiss-like, upon lowering T. The intersection of the curve with the abscissa marks
the pseudocritical temperature which, violating the Mermin-Wagner theorem, assumes a fi-
nite value in the 1£ fRG scheme. One can observe that the full TU-dynamic fRG approach (i)
leads to larger inverse AF susceptibilities, or smaller y,r, than the other three approximations,
shifting Tj, to a smaller value.

Let us first compare the full calculation (i) with the calculation without self-energy but
frequency-dependent interactions (ii). It is to be expected that the self-energy renormalizes
the leading vertices and therefore also susceptibilities, as has also been observed in fRG studies
[29,44]. This explains why the calculations without self-energy flow diverge at higher T}, with
respect to scheme (i).

The flow variants with static interactions (iii) and (iv) differ only slightly. Compared to
the fRG flow using scheme (ii), the AF tendencies in these static flows are somewhat weaker
as their suppression by particle-particle processes increases when the pairing channel is ap-
proximated by its static part, for which it assumes the maximum value. The downward-shift
in the inverse AF susceptibility from (iii) and (iv) to (ii) with the inclusion of the frequency
dependence of the couplings is however overcompensated by the inclusion of the dynamical
self-energy in (i).

Finally, we consider the pseudocritical temperature and the AF susceptibility for the com-
bined approximation of no self-energy and no frequency dependence (iv). Without the screen-
ing effect of the self-energy, the pseudocritical temperature increases a little bit more with re-
spect to the static approximation (iii). This has been already observed in Ref. [42]. The small
difference may come from the real part of the self-energy that can be understood as upward-
renormalization of the hopping parameter, or equivalently a downward-renormalization of the
density of states. This is consistent with the self-energy shown below in Fig. 7. For a detailed
discussion on the pseudocritical temperatures on a wider range of parameters, we refer the
reader to Ref. [41].

4.4 Computation of the self-energy

As already implied above, the implementation presented in Sec. 3.1 allows one to compute a
frequency and momentum dependence of self-energy during the flow according to Eq. (36a).
In Figs. 6 and 7, we present the results for the frequency- and momentum-dependence of the
self-energy for different temperatures and momentum points. For the fermionic momentum
patching we use the same momentum grid as for the bosonic transfer momentum of the vertex.
In the results shown in Fig. 7 (left panel), we subtracted the Hartree contribution, which
represents a rigid U/2 energy shift at half filling. By looking at Fig. 6, we notice that the
frequency dependence of the imaginary part of the self-energy is consistent with a Fermi-liquid,
yet without any remarkable difference at different temperatures. As the slope of these curves
determines the quasiparticle weight Z, we arrive at the conclusion that Z does not decrease
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Figure 6: Imaginary part of the self-energy as a function of the Matsubara frequency,
at X=(0, ) and M/2=(m/2,/2), for U = 2t and different temperatures T = 0.2t
(blue dots), T = 0.167t (green squares) and T = 0.125¢ (red diamonds).
0.04 0.080
0.03 F AL AN | 0.075 | %o o (=11
0.02 F .. * g 0.070 } el ° (=8 1
= 001} ¢ { = o065 M M
21 0.0 - hd o L 0.060 | M
001 . = 0.055 | b4 b4 . ®
—0.02 } o* ¢ (=1 * 0.050 | 4 ? s o
—0.03 F.e® ° (=38 L 0.045 | ¢ ¢ : 4 : 4
. . L 4 s
o0 L ] 0.040 £ L 3 L4
r X M r r X M r
k k

Figure 7: Real (right) and imaginary (left) part of the self-energy %(—inT) as a
function of the bosonic transfer momentum in the 1/ and 8¢ truncation of the flow
equations, for U = 2t and T = 0.125¢t.

steeply when we lower T towards the AF pseudocritical temperature, as already observed in
Refs. [42,43]. Figure 7 shows the momentum dependence of the real and imaginary part of
the self-energy along a path in the first BZ defined by I' = (0,0), X = (0, ) and M = (7, 7).
The fermionic frequency is set to the first fermionic Matsubara frequency. The real part is
positive at M and negative at ', while at X and Y it is zero. At lowest order, this momentum
structure can be approximated by a positive nearest-neighbor hopping renormalization, which
increases the bandwidth. The vanishing of the Fermi surface shift is caused by the particle-
hole symmetry of the model at half filling. As for the 2D Hubbard model at half filling, the
particle-hole symmetry manifests itself through

2(iv, k)" =—2(iv,(n, ) —k), (52)

the real part of the self-energy vanishes always at the Fermi surface and the perfect nesting
remains intact. This symmetry is not violated by any of the perturbative corrections and also
not by the numerical implementation (e.g. the choice of k-points in the BZ). Besides this, there
is a substantial bandwidth renormalization that however also reflects the symmetries of the
system, i.e. it has opposite sign at I' and at M. The 8¢ results in Fig. 7 will be discussd in
Sec. 4.5.

The imaginary part of the self-energy shows two peaks around X and M/2= (1/2, t/2).
This corresponds to a maximal scattering on the nested Fermi surface and minimal on the
points I and M, which are at maximal distance from the Fermi surface. Note that this refers
to the self-energy at small fixed imaginary frequency and not at real frequency equal to the
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Figure 8: AF susceptibility (upper panels) and fermion-boson vertex (lower panel) at
q = (7, ) as a function of the number of loops, for U = 2t and T = 0.5¢,0.2t,0.125¢
(from left to right). The susceptibility is evaluated at «w = 0 and the fermion-boson
vertex at w = 0 and v = 7t/f. The blue line shows the behavior of the integrated
Eg. (23a) up to £ = 8, while the green line the one obtained from the post-processed
calculation by means of Eq. (8) for y and of (10) for y5. The insets show the relative
difference between the blue and the green lines, defined for the susceptibility as

— e _ 0L (=8
€rel = (X flow X post—proc)/ X post-proc*

excitation energy, i.e., this behavior does not contradict the typical behavior that the scattering
rates for quasiparticles rise with distance from the Fermi surface.

4.5 Effect of the multiloop implementation

Let us now investigate the effect of including multiloop corrections to the flow equations of
the susceptibility and the fermion-boson vertex as in Eq. (23a). As previously discussed, the
inclusion of the multiloop corrections should allow us to recover the full derivative of Eq.
(8) and (10) with respect to the scale parameter A. This means that the integration of the
multiloop fRG flow equations should converge, by increasing the number of loops, to Eq. (8)
and (10), as well as to the parquet equations for v, and X as discussed in Ref. [55].

Although, in the half-filled case, the numerical effort is already reduced compared to the
non-particle-hole symmetric situation, calculations for T < 0.5t are already quite demanding
if a multiloop cycle is included. Therefore, the only calculations involving more than one form
factor (i.e., s-wave) that will be presented here were performed at a rather high temperature
of T = 0.5t. Despite this restriction, since the physics of the single band Hubbard model at
half filling is dominated by the AF fluctuations, the fRG results are already converged in the
number of form factors. Nevertheless, a meaningful part of the d-wave susceptibilities is still
accessible, as it will be shown in the following, via the s-wave two-particle vertex.

In Fig. 8 we show the s-wave susceptibility y (fermion-boson vertex y3) in the upper
(lower) panels in the magnetic channel for icw; = 0 (iw; = 0 and iv, = n/f for y3) and
q = (7, ) as a function of the number of loops considered in the mfRG calculation, for three
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Figure 9: S-wave density susceptibility evaluated at q = (0, 0) as a function of bosonic
Matsubara frequencies, for U = 2t and T = 0.2t. The blue and green lines represent
the flow and post-processed values for 1¢, while the red dashed line corresponds to
the post-processed mfRG result for 8¢. The zoom in the inset shows that the post-
processed 1¢ data assume unphysical negative values at finite frequencies.

selected temperatures T = {0.5¢,0.2t,0.125t} (left to right). The blue lines show the value of
x and y5 calculated by the integration of Eq. (23a). On the other hand, the green lines show
x (y3) acquired at the end of the £-loop fRG flow (A = Ag,) by means of Eq. (8) ((10)), where
we inserted on the r.h.s yﬁﬁ“ and G| referred to in Section 2.2 as “post-processed” method.
In the present case, one sees how the convergence of the two lines is achieved after 8¢ for all
temperatures presented. Thus, we have a dual convergence: as a function of the loop number
and between two ways of computing the same quantity. Clearly, by decreasing the temperature
and approaching the 1¢ fRG pseudocritical temperature (see Fig. 11), the antiferromagnetic
(AF) susceptibility and yg?m(a) =0,v=mn/B,q=(m, 1)) = y3r increase and the green and
blue lines for the two ways to compute the susceptibility exhibit the largest relative difference
at £ =1 of ~ 25%. This difference decreases by increasing the loop number down to less then
1% for £ = 8.

It is interesting to see the main effect of the multiloop corrections occurs already at the 2£
level, where the 1/ results experience the strongest screening effect. Furthermore, as explic-
itly argued in Ref. [34] the inclusion of the two-loop corrections to the flow of the interaction
allows to substantially enrich the virtual excitation content of the fRG equations. By looking
at Fig. 8 one could deduce that, performing a post-processed evaluation of the susceptibility,
as well as of the fermion-boson vertex, brings them closer to the converged values than the
corresponding results coming from the fRG flow (blue curves). However, it has to be stressed
that the convergence trend observed in the magnetic channel for the post-processed y and
y3 does not apply in general. Counterexamples can be observed, for instance, in the s-wave
secondary channels (i.e., charge and superconducting), where the post-processed evaluation
of the 1¢ susceptibility not only leads to an overscreening (i.e., an underestimation with re-
spect to the converged result), but, e.g., in the charge channel, to even unphysical results, as
can be observed in Fig. 9. Here, the s-wave susceptibility in the density channel is plotted
at g = (0,0) as a function of the bosonic Matsubara frequencies. One observes negative val-
ues of the post-processed susceptibility (green line) at finite bosonic frequencies, which are
restored to positive values by the multiloop corrections (red line). An attempt to explain this
different trend between the dominant (magnetic) and the secondary channels (density and
superconducting) is extensively discussed in Appendix D and summarized in the following
observations.
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Figure 10: Comparison of two cutoff schemes, the U-flow and the Q-flow, for the AF
susceptibility as a function of the number of loops, for U = 2t and T = 0.2t. Inset:

Relative difference with respect to the converged value ( xﬁF — xE;St'proc’z) / xiﬁ.

As explicitly derived in Appendix D, the A-derivative of the formal definition for the sus-
ceptibility reported in Eq. (8) (as well as Eq. (10) for y3), after substituting the derivative of
y4 and X by their 1¢ fRG flow equations, leads to additional terms with respect to the standard
1¢ flow equations for y in Eq. (19a) (for y3 in Eq. (19b)). These terms, besides self-energy
derivative corrections (which are generally introduced starting from the second loop-order un-
der the name of Katanin corrections [53]), have a 3{-like topological diagrammatic form (see
Eq. (26)). The internal loops of ig’(l) (marked in red in Fig. 16) contained in such terms act as a
screening effect provided by the complementary channels (n’) to the one considered (n # 1').
Because of the imbalance between the 1{ approximation for the two-particle vertex v, and %,
and the 3¢ diagrams included in the modified “post-processed flow equation” for the suscep-
tibility (see Appendix D), this screening effect ends up being overestimated. Nonetheless, it
represents a minor effect on the dominant (magnetic) channel, where the imbalance effect is
still governed by the large 1¢ antiferromagnetic contribution. It could however lead to major
changes in the secondary channels, which are affected by the strong screening effect of the
magnetic channel appearing on the 3{-like terms. The overscreening affects all frequencies,
because of the internally summed diagrams. Therefore, it is particularly severe at nonzero fre-
quencies where the susceptibility assumes small values. This explains the unphysical negative
values of the density susceptibility in Fig. 9.

By applying different fRG cutoff schemes, we obtain further tests of the reconstruction
of the full derivative of Eq. (8) provided by the multiloop approach. In Fig. 10 we compare
the results shown already in Fig. 8 (central upper panel) for T = 0.2t using a frequency-
dependent regulator (Q2-flow) with the results for y at the same temperature obtained by a
trivial or flat regulator, also known as interaction or U-cutoff [ 76]. Differently from the Q-flow,
the U-flow just multiplies the bare propagator with a scale factor that is increased from O to 1.
Hence, it does not provide any cutoff in energy during the fRG flow so that all energy scales
are treated on an equal footing. The insertion of the multiloop corrections into the fRG flow
equations, as already observed in a different system in Ref. [ 56], makes the mfRG calculation
almost independent, at high enough loop-order, from the specific regulator considered. A more
detailed analysis of our results revealed a persisting small discrepancy even for higher loops.
Since it vanishes in absence of self-energy corrections, we attribute it to the truncation of the
form factor basis in the vertex flow which prevents the reconstruction of the full derivative of
the self-energy.
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The substantial reduction of the pseudocritical temperature (T},.) provided by the multi-
loop corrections can be easily inferred from the data in Fig. 11. Here, the inverse 1 fRG anti-
ferromagnetic susceptibility (blue line) is plotted as a function of temperature and compared
to the one computed with 8¢ mfRG calculation (green line): at any temperature considered the
higher-loop corrections systematically suppress the value of the susceptibility, thus lowering
the pseudocritical scale.

We note that the formal equivalence between the mfRG and the parquet approximation
should guarantee the fulfillment of the Mermin-Wagner theorem [72] as this is fulfilled by the
parquet approximation [64]. Hence, a frequency-momentum and loop converged mfRG calcu-
lation should yield a complete suppression of the pseudocritical temperature down to zero. It
is, however, very hard to prove this result by means of direct calculations in the low-T regime,
due to the quasi-long-range nature of the spatial fluctuations, responsible for the Mermin-
Wagner theorem. In fact, the “avoided” onset of a true long-range antiferromagnetism at
finite temperature T is associated with the appearance of antiferromagnetic fluctuations with
an exponential growing correlation length (see, e.g, discussion in Ref. [ 73]). Their occur-
rence has been indeed explicitly verified in several many-body calculations [9, 10,73, 77-80]
compatible with the Mermin-Wagner theorem. While these low-temperature exponentially ex-
tended correlations make the overall physics of our system very similar to that of a true AF
ordered phase [81], being associated with a rapid crossover towards a low-temperature insu-
lating behavior, they also make it numerically impossible to access the T — 0 limit, because of
the finiteness of any momentum grid discretization. In fact, in the temperature range where
we could achieve a satisfactory momentum-convergence of our 8¢ results the antiferromag-
netic susceptibility does not show yet any evidence of the exponential behavior expected in
the low-temperature regime. On the contrary for almost all the data, one still observes a linear
mean-field like behavior for the inverse susceptibility (though significantly renormalized w.r.t.
the 1¢ results). As a consequence, a reliable low-T extrapolation for estimating T, from our
converged 8¢ results is not possible: If trying to extrapolate the data of Fig. 11, one would
rather obtain an estimation for the instability scale of an effectively renormalized mean-field
description, valid in the high-T regime.

Our findings and considerations are consistent with the most recent estimates of the tem-
perature range, below which the exponential behavior of y,r should become visible: Accord-
ing to the most recent DI'A and Dual Fermion studies [9, 10, 15, 80, 82] such a “crossover”
temperature would be lower than the ordering temperature of DMFT. The latter, for U = 2 is
TPMFT ~ 0.05 ( = 20), i.e., already twice smaller than the lowest temperature considered in
the present work. We also observe that this DMFT critical scale would be roughly in agreement
with the linear extrapolation of our 8¢ data for the inverse susceptibility discussed above.

Next, we analyze the effect of the fRG multiloop corrections on some d-wave physical sus-
ceptibilities which, although suppressed in the particle-hole symmetric case, play an important
role in describing the phase diagram of the 2D Hubbard model, most notably away from half
filling [28,36,58,83,84]. In particular we analyze the static («w = 0) d-wave susceptibility in
the superconducting channel for q = (0,0) (dSC), as well as the static d-wave susceptibility in
the charge channel for a bosonic momentum transfer q = (0,0) (dPom), which would become
dominant in the case of the so-called “Pomeranchuk” instability. The staggered d-wave charge
density wave (dCDW) susceptibility for q = (7, ) has not been shown because of its degen-
eracy with the correspondent d-wave superconducting one. In fact, one can formally demon-
strate that in a SU(2) and particle-hole symmetric case, where the system becomes invariant
under pseudospin rotation, the pairing susceptibility at q = (0, 0) associated to a specific sym-
metry of the order parameter is degenerate with the staggered (q = (7, 7)) CDW associated to
that specific symmetry. In Fig. 12 we display the result of a fRG calculation where, in addition
to the s-wave form factor, the form factors indicated as 1 and 2 in Table 1 have been used. As
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Figure 11: Inverse AF susceptibility as a function of temperature, for U = 2t.

in Fig. 8, the blue line indicates the fRG result obtained by the integration of Eq. (23a) up to a
specific £-loop order, alongside the corresponding (£-loop) mfRG equations for ¥ and y,4. The
green line represents the post-processed result for the d-wave susceptibilities calculated from
a s+d-wave {-loop order mfRG results for the self-energy () and the two-particle vertex (y,4).
The red line has been obtained, similarly to the green one, from s-wave {-order mfRG results
for ¥ and y,4. One notices that, differently to the antiferromagnetic case, the relative difference
between blue and green lines with respect to the convergence value is, at the 1¢-level, of the
order of few percents and lowers even down to less then 19, at 8¢. Interestingly, the post-
processed susceptibilities obtained from the s-wave fRG results (red curve) are almost on top
of the correspondent ones where both s- and d-wave form factors have been considered during
the fRG flow. This shows clearly that, as already known from previous studies on the single-
band 2D Hubbard model, the d-wave tendencies in pairing and charge channels are triggered
by the antiferromagnetic fluctuations of onsite (s-wave) spin bilinears. However, according to
our data for the Fermi surface and the temperature considered, the flow of d-wave pairing and
charge channels, which are not captured if only s-wave interactions flow, does not seem to be
particularly relevant. This means that in the full system where all channels (s-wave, d-wave,
etc.) are allowed to flow, the d-wave attractions triggered by the s-wave AF fluctuations would
not fall on a too fertile ground at T = 0.5t¢, i.e., they would not flow strongly in their ‘native’
d-wave channels. Going to lower T and in particular out of half filling, this will likely change,
as the particle-particle diagrams will enhance any attractive pairing component. Therefore, it
is a priori not clear if the d-wave susceptibilities computed at lower T by projecting the vertex
made up from s-wave bilinears could provide satisfactory physical results. Nevertheless, we
argue that they serve as useful theoretical test objects for the convergence in the order of the
multiloop corrections. This is because the effective d-wave interactions captured this way can
be understood as two-particle irreducible (2PI) interactions in the d-wave pairing or charge
channels, generated purely by s-wave one-loop processes. These 2PI d-wave quantities are
non-singular but zero at lowest order in U in typical cases. Hence they can be expected to
be dominated by diagrams of finite order in U that should exhibit stronger multiloop effects.
In contrast with these terms, the missing boosts in the respective native channels, e.g., in the
pairing channel, would just be a higher-order ladder summation of, for T — 0, increasingly
singular one-loop diagrams. Hence, if multiloop convergence is reached in the two-particle
irreducible interactions, it is likely that the same degree of convergence would be found in the
true susceptibilities. This idea leads us to consider the data shown in Fig. 13.

As already visible for T = 0.5t in Fig. 12, the post-processing calculations exhibit a weak
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Figure 12: d-wave susceptibililties dSC, dPomeranchuk (q = (0,0)) at iw,, = 0 as
a function of the number of loops, for U = 2t and T = 0.5t. The red line has been
evaluated by means of Eq. (8), by inserting the two-particle vertex computed from a
single (s-wave) form factor.
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Figure 13: Inverse d-wave susceptibilities, computed by post-processing, as a func-
tion of temperature, for U = 2t (fRG flow with only s-wave bilinear interactions).

dependence on the loop number (with a relative fluctuation less than 1%,,). This is confirmed
in Fig. 13 where the post-processed inverse d-wave susceptibilities in the aforementioned chan-
nels are calculated out of an s-wave 1£ (blue and green lines) and 8¢ (red and yellow dashed
lines) fRG flow. As it is apparent in the figure, the effects of the multiloop corrections are
insignificant compared to the variation of the inverse susceptibilities in temperature.

To conclude this section, we comment on the multiloop effects on the self-energy shown
in Fig. 7. The bandwidth renormalization is changed insignificantly and the scattering on
the Fermi surface is reduced only slightly. Also the Fermi-surface shift remains zero in mfRG
because the particle-hole symmetry is preserved in fRG, in PA and in the full solution and
therefore also the multiloop corrections do not violate the particle-hole symmetry.

5 Conclusions

We have presented a comprehensive study of forefront algorithmic implementations of the
fRG for interacting fermions on 2D lattices. While we focused on the 2D Hubbard model, the
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methodological improvements discussed here can provide a useful guidance for the general-
ization to other systems.

Our main goal is to illustrate the progress achieved when going beyond the approxima-
tions routinely made in most previous fRG computations. In particular, we have worked on
the following aspects: (i) an accurate and converged treatment of both the momentum and
frequency dependence of the vertex function together with its asymptotic structures; (ii) the
inclusion of the self-energy and its feedback in the fRG flow; (iii) the implementation of the
multiloop corrections beyond the standard 1¢.

Regarding the first aspect (i), we have kept the more general dependence of the two-
particle vertex on all three Matsubara frequencies. We extend previous works [41, 44, 84-87]
by exploiting an “economic” description [34] provided by an efficient parametrization of the
high frequency asymptotics [32]. We could show that this parametrization can be brought to
convergence in the number of frequencies employed, i.e., the results do not change if more
frequencies are used. We combined this treatment of the frequency dependence with the
truncated-unity technique for the momentum dependence, whose form-factor expansion was
also shown to converge quickly for our test case [31].

With a frequency-dependent flowing interaction, we could also compute a momentum-
and frequency-dependent self-energy, which has been fed back into the flow of the two-particle
vertex. Through a systematic analysis of specific observables — in particular of the response
functions — we could assess the effects of the improved algorithmic implementation with re-
spect to previous results and demonstrate how, for the parameters studied, the fRG results can
be converged in the number of considered frequencies. An analogous convergence could be
also established for the 2D momentum dependence.

The major advancement achieved in this work is, however, the implementation of the mul-
tiloop corrections both for the flow of the two-particle vertex as well as for the flow of the
coupling to external fields and the corresponding susceptibilities. The multiloop extension,
so far only tested for a (prototypical) toy model [56], adds more virtual excitations to the
flow of the two-particle vertex compared to the previously used 1{ truncation. As it was dia-
grammatically shown [55,56], if truncated fRG results are converged with respect to the loop
order, they exactly reproduce the parquet approximation (PA), not only concerning the topol-
ogy of the summed diagrams, but also — quantitatively — their precise weight. This has been
also recently confirmed by a formal analytical derivation of the multiloop fRG equations [57].
From this property, it follows that the results of a loop-converged fRG algorithm become com-
pletely independent from the employed cutoff scheme, at least if all modes are integrated out
at sufficiently high temperature.

Previously, it was not clear how the contributions missing in the 1¢ truncation would influ-
ence the results quantitatively. On the numerical level, the effort for including the multiloop
corrections to order ¢ only rises linearly in £, i.e. the situation is far better than if one really
had to compute all higher-loop diagrams. Our studies show that the multiloop corrections can
be included also in 2D up to rather high orders of { = 8. We find that the observables converge
quite nicely when the multiloop order is increased. While it is not obvious that this quick con-
vergence will hold for all model parameters and for all models of interest, our study shows
that these checks can be performed with feasible numerical efforts. This adds a new important
degree of quantitative control to the fRG, at least in the weak to intermediate coupling regime
where the PA can be considered accurate. At stronger coupling, where low-frequency vertex
corrections beyond the PA might appear [32,50,88-90], the mfRG could provide a much bet-
ter [15] setup for the proposed combination with the DMFT [23,27,91]. The loop convergence
of our fRG results is also reflected in the progressive reduction of the dependence of our fRG
results on the chosen cutoff scheme, which appears completely suppressed at the 8¢ level.

The incorporation of the multiloop contributions has also another rather appealing and
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quantitatively important aspect, giving rise to an additional very useful type of convergence.
It has been known that response functions can be computed in two different ways in RG ap-
proaches and that the results differ due to the involved approximations. One way is to consider
the flow of couplings of ‘composite operator’ bilinears in the primary degrees of freedom to
external fields of appropriate type. Then the response function is obtained as renormalization
of the propagator of the external field.

The other way, referred to as post-processing, is to compute the response functions by
means of their diagrammatic expression, evaluated from the dressed bare fermion bubbles
and the two-particle vertex at the end of the flow. In fact, in some cases arguments were made
(see, e.g., Ref. [92] and references therein) that the external field methods should give more
controlled results, i.e., that composite operators should be renormalized separately, because,
at the level of the approximations made, the post-processed quantities, which involve the in-
tegration over all energies and momenta, are more affected by approximation errors. In our
study, the multiloop extension of the response function flow allows us to show that also the
flow of the response functions becomes an exact scale derivative of the post-processed response
function. This establishes the formal equivalence of the two ways to compute response func-
tions on the multiloop level. This formal equivalence is remarkably reflected by our numerical
results, which exhibit a clear convergence of the two approaches: If the multiloop convergence
is achieved, and frequency and momentum dependencies as well as the self-energy feedback
are included appropriately, the fRG results for the response functions are unambiguous. The
corresponding data can be used for quantitative studies and directly compared with other nu-
merical techniques or with experiments, if the effective modelling of the problem is sufficiently
realistic.

In summary, our study shows how the fRG algorithms for two-dimensional fermionic lattice
models can be brought to a quantitatively reliable level at weak to moderate couplings, as
long as the parquet approximation is appropriate. This goal has been reached by means of an
economic, but accurate, treatment of the momentum and frequency dependencies which takes
into account the asymptotic structure of the two-particle vertex and the self-energy during
the fRG flow. This fRG framework has been supplemented with the implementation of the
multiloop corrections to the 1¢ truncation scheme.

The current work concentrates on testing the improved fRG method in a situation that is
reasonably well understood. The fRG method itself is however not limited to this situation and
can be applied to situation where the landscape of instabilities and emergent energy scales is
less explored. For instance, within the framework of the 2D Hubbard model, we could apply
our algorithmic implementation to broader parameter regimes in future works. If the Fermi
surface displays a given curvature, due to the inclusion of, e.g., more hopping terms or changes
of the band filling, the dominance of the AF channel will be weakened and the pseudo-critical
scales will become smaller. For such cases the convergences of the different approximation
might possibly vary. In particular, since the generation of d-wave pairing tendencies in third
order of the bare coupling involves 2¢ diagrams that are only partially captured in the 1¢ trun-
cation, we would expect the impact of the multiloop corrections to become more noticeable.
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A Symmetries and symmetrized notation
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Figure 14: (a) Non-symmetrized and (b) symmetrized notation for the vertices, re-
ducible vertices and irreducible vertices in the diagrammatic channel notation. The
non-symmetrized notation is used primarly here, while the symmetrized notation is
used only in App. A.

Here we illustrate how diagrammatic and lattice related symmetries can be expressed in
an easy way and how they are implemented in our code. Directly related to the symmetries
is the question if one uses the symmetrized or the non-symmetrized notation illustrated in
Fig. 14 for the momentum and frequency dependence of the channels. In Section 3.1 we ar-
gued that the non-symmetrized notation leads to more readable flow equations, bubbles and
projection matrices. Therefore we adopted primarily this notation. The symmetries, however,
are much easier to express in the symmetrized notation. While in the non-symmetrized no-
tation, simple relations like the crossing relation involve multiple form factor combinations,
in the symmetrized notation we find a one-to-one correspondence. Therefore we here use for
both momentum and frequency the symmetrized notation (s), which is related to the non-
symmetrized (ns) by

1N — gns 9., 4
bon(a: k. k) = ph(q,k 5k 2) (53a)
s 1 — ans _4q.,_4
9@k k)= ¢ (g k-2, K -1) (53b)
b3p(a k) =955 (ak+ Lk +2). (530)

A.1 Lattice related symmetries

First we specify how lattice related symmetries are reflected in the form factor expansion of the
channels in the symmetrized notation. The lattice symmetries always depend on the system
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and we here focus on the 2D Hubbard model on a square lattice, where we have for example
the rotation of 71/2 around the z-axis and the mirroring at the y-axis as independent symmetry
operations. Under any of these operations, or combinations of them, applied simultaneously
to all momentum dependencies, the expressions of the channels are invariant. This can be
translated into the form factor expansion by

PIFlyw(@) = f dkdK'f (K)f(k)F(q,k, k')
= J dkdK £ (k) f,y (K)F (R(@), R(K), R(K))

= f dkdK f (R (1)) f (R (K DF(R(@), kK, (59

where F is any of the channels D, C or P. The frequency dependence is not affected and
is therefore omitted. We here exploited the symmetry under consideration and introduced
a variable change. If the form factors are chosen in such a way that under this symmetry
operation any form factor is related to a linear combination of others, described by the matrix
M, (k), it holds in addition

ﬁ[F]n,n/(q)=f dkdK > Q)M () > My () fre KIFR(Q, LK) . (55)

If moreover, the symmetry operation on every form factor yields a single other form factor
expressed by the vector V;_;, the above relation simplifies to

PIF 1w (@Q=PIF 1y, (Vs (1) (DSvi() vty - (56)

where the only difference is a possible sign change taken into account by Sy, (,). These as-
sumptions hold for the form factors used in the present implementation (see Table 1), but are
not necessarily valid for an arbitrary choice of form factors.

A.2 Diagrammatic symmetries

In addition to the lattice related symmetries, there are diagrammatic symmetries which are
independent of the geometry of the system. Considering a two-particle fermionic vertex, we
can apply the crossing symmetry simultaneously to the annihilation and the creation operators,
recovering the following relations:

FO'1,O'2,O'3(i Vol, iVOZ, iv03’ kl, kz, k3) = F03’0-4’0-1(i'1}03, i'Vo4, i'VOl, k3, k4, kl) 5 (57)

time reversal

FUl:UZ:UB(i 'Vol, l vOZ’ l 1/03, kl, kz, k3) = F02,01,04(i VOZ’ l 'Vol, l vo4, kz, kl’ k4) N (58)
and complex conjugation

*

01,02,03(1 Vos 1Yoy 1Yoy, K15 ko, k3) = Fo) o) 0, (=10, =1V, =17, ko, k1, k4), 59

for which we refer to Ref. [93]. In the SU(2) symmetric case, by projecting the vertex ¢ to the
form factor basis and adopting the symmetrized notation, one has that Eq. (57) gives

Py (i, 1v,,1vy,q) = LI Py (i, —1v,, —1vy,q) (60a)
Dn,n’(iwm: ivo; ivo’: q) = Dn,n/(_iwma ivo/: ivo: _CI) (6Ob)
Con({wm, 195,14,Q) = Cpp (1, 14,174, —q), (60c)
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where I1,, is the parity associated to the momentum inversion of the form factor m defined as

fn(_k) = ann(k) . (61)

The time reversal symmetry reads
Py (i, 174,194,Q) = Py (i, 17y/,17,,q) (62a)
Dy (i, 194,174/, Q) = Dy (=101, 174,171, —q) (62b)
Cn,n’(iwm: ivo: ivo’; Q) = Cn/,n(iwm; ivo’: ivo’ CI) s (62C)

and the complex conjugation

P (@, 17,,1V,Q) = Py (=i, —1vy,—17,,q) (63a)
DY (1w, 17,1V, Q) = Dy (i, —iv,,—1vy,—q) (63b)
Cr (1w, 1v5,15,Q) = Cpy y(—lwp, =1V, —17,,q) . (63¢)

A.3 Connection between /C, and K,

In Section 3.1.2 we argued that K, can be obtained from K, by symmetry. For the pp and ﬁ
channel the time reversal symmetry exchanges the two fermionic dependencies while keeping
the transfer frequency and momentum fixed. The same holds for the ph-channel by using
the combination of the crossing and the time reversal symmetry. Taking the limit of large
frequencies for the first and second fermionic frequency respectively, we obtain trivially

KZ,P,n(iwm: 17, Q= ICZ,P,n(iwn’ iV, qQ (64a)
KZ,D,n(iwm: ivo: q) = ICZ,D,n(iwm ivo: Cl) (64b)
K2,C,n(iwm:ivoa Cl) = ICZ,C,n(iwmivo: Cl) . (64C)

B Formal derivation of the fRG flow equations for y and y,

In this section we provide an explicit derivation of the flow equations for the response func-
tions. As anticipated in Sec. 2.2, we start by coupling the fermionic bilinears to an external
source field J, by adding the following scalar product

Unpn = f Ak (PR, (65)

where n indicates the momentum structure of the fermionic bilinears coupled to the field J".
Since the density is in general not charge conserving, it is convenient to use the Nambu for-
malism that allows for a more concise derivation of the flow equations of the physical response
functions. We rewrite Egs. (1) and (2) in the Nambu basis [94,95]

pi@)= Y, o, f dpos(p — D fa(P)ps(p), (66)
where s = + represents the Nambu index and
¢ (k)= wT(k) ¢;+(k) :Q,[’T(k)
¢_(k) = (—k) ¢_(k) =1 (k).
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The matrices @” (with n = {d, m, sc}), which define the Nambu index structure in the different
physical channels, are given by

a (1 0 m (10 « [0 1
“_(0—1) a_(o 1) “_(—1 o)' 67

In order to derive the flow equations for the fermion-boson vertex of Eq. (15) and the suscep-
tibility of Eq. (14) we start from the so-called Wetterich equation [96]

oIy 81 = (6,05 8)— (N, 17}, 68)

where T'* represents the scale-dependent effective action, which is a function of the func-
tional variable J,, and the Nambu field ¢, Qg is the inverse non-interacting Green’s function
and the dot denotes the derivative with respect to the flow parameter A. Further, the matrix
Q) = diag(Q},—Q)"") and

_ (08T J,,¢]1 30T J,, ]
F(Z)A[Jn’d)]_(aaFA[JZ,d)] aéFA[JZ’(p]) (69)

were we used, where 8 and J applied to the effective action I'* are a shorthand notation for
the functional derivative with respect to ¢ and ¢, respectively. Following the derivation of
Ref. [ 2], we introduce the matrix

UMJ,, 1= (G =Ty, ] (70)

Thus, we can recast (T'*PA[J,, ¢])™! = (1 —G*U")"! G" and expand the inverse matrix in a
geometric series

oo
(NI, ¢ = D (GMUM" 6 71
n=0
We can now insert Eq. (71) in Eq. (68). Expanding up to second order yields

NN, 1 =—(9,Q0 ) — %tr{QQGA} — %tr{SAUA} - %tr{SAUAGAUA} +o,  (72)

where $* = G*Q} G" = diag(S", —S™") represents the matrix diagonal form of the single scale
propagator, and we exploited the cyclic property of the trace. After applying the trace to the
matrices in the curly brackets, we can expand the effective action in powers of the fermionic
Nambu fields and the external bosonic source field

oo

A _ (=)™
r [Jn,dJZI—ml%::O T EITie
Z 3(2m1+n1)FA[Jn, 4)] |
= = X
x5 090(11):0:0 (¥, )8 B (x])-+.8 B (xf, 1O b (X, ). p (36) =70
N
Tn (1) (Y ) (7). (o, ) (i, )-rep (1) (73a)
S G Vi
m;:() n1! (m1!)2 xl; Y§m1+n1,y1..ynl,xi.,x,’nl,xl..xml x
i
Ty (Y ) (1)@ (7 I (o )b (1) - (73b)
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L]
i +
L
- =N+
Figure 15: Simplified diagrammatic representation of the flow equations for the sus-
ceptibily (first line) and the fermion-boson vertex (second line) illustrating the topo-
logical structure of the diagrams. The circle, triangle and the square represent the

susceptibility y, the fermion-boson vertex v, and the two-particle vertex y,, respec-
tively.

Note that the index x = {s,k} combines the Nambu index s and the fermionic quadrivector
k = (v,k) (here we disregard additional quantum numbers, as e.g., orbital), while y = {n, q}
combines the momentum structure of the coupling to the bilinears, n, with the bosonic quadrivec-
tor ¢ = (w,q). Inserting this expansion in Eq. (72), we compare the expansion coefficient
related to the same order on the fields on both sides of the equation.

For n; = 0 we recover the standard fermionic hierarchy of flow equations [1,2]. For n; >0
we can derive the flow equations for the fermion-boson vertex (n; = 1, m; = 1) as well as
for the boson-boson vertices or susceptibilities (n; = 2, m; = 0). In Nambu notation, the flow
equation for the susceptibility reads

ANy = D rh( X x)[GM (e, x5)SM (g, X)) + (S = OV raT (v, xa x5)+

7/
X1,%]
7/
X2,

Z SA(xl’xi)?ﬁ].\(y:y/:xi)xl)J (74)
x1,X]
and the one for the fermion-boson vertex is

a/\Y:/;\(.yx xl’x) = Z SA(xlrx:/[)}/?(y7x/: x:/l,X‘l,X)"'

/
X1,X]

Z Yg\(y)xi:xl)[GA(xlaxé)SA(Xé: x:/[) + (S — G)]YQ(X/; X2, X;, x) . (75)

/
X1,X]
/
X2,X)

In the second term on the r.h.s. of Eq. (74), Y/Z\ml = )79 o Tepresents the functional derivative
of the effective action with respect to two bosonic and two fermionic Nambu fields. The two
Egs. (74) and (75) are schematically shown in Fig. 15. If one neglects the second term in both
r.h.s., they correspond to the 1¢ fRG equations for the response functions. Both y5; and y do
not feed back into the flow equations for y, and .

C Connection between the vertex asymptotics and the response
functions

In this appendix we demonstrate that the integration of the fRG flow equations for the so-called
kernel functions K; and K, mentioned in Section 3, coincide with the s-wave susceptibility
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and fermion-boson vertex resulting from the flow.

A
2,
obtained from Eq. (43) in the limit of infinite fermionic Matsubara frequencies v and '

Let us write explicitly the flow equation for the asymptotics IC?’ 0 and K, _, with = {sc,d,m},

: A A 0 A oA <A 0 A A
vll;go ¢n - ]Clm - (7'4,71 +K1,n +’C2,n)onn ° (7'4,77 +’Cl,n +]C2m)+
v —>00
_A .
(Y?t,n+lcjl\,n+IC2,n)° HQOIQOHQO(ygmﬂ—Kf,n—i—Ké‘m) (76)
and
. 'A_ <A = A _ 0 A = A <A A
Vlfgo ¢n - ,Cl,n T ICZ,n - (74,17 t Kl,n t ’C2,n) ° Hn74,n+

0 A oA A FA
(74,1) + ICM7 + Kz’n) oIl oI, +

0 A A A o FA o TIA o WA
(14, + K1, +Ky, ol ol oIl oy, (77)
where qS;; is given by
éo =p" (78a)
$s = 20" - ¢ (78b)
¢ =—c", (78¢)

the bare vertex 72 n = FU corresponds to the Hubbard interaction (with the minus sign for

1 = sc, d and the plus sign for n = m), and the asymptotic vertex function ICQ " is related to
IC’Z\, " by symmetry (see Appendix A). For local bare interactions, the only non-zero elements

. - A .
of the matrices ]Clm and 7’2,“ correspond to both form factors being equal to zero, and of IC/Z\’ n

(1512\ n) to a vanishing second (first) form factor.

The connection between the vertex asymptotics and the response function is shown by

induction using the assumption

75, KL, + Ky, =arh (0, 7.q). 79)
For the initial condition, it holds 72}1‘;‘ = Tg,n = 1. Since le‘““ and IC;\‘“it both vanish, one
has a = 1§, = FUS, 06,y 0. Considering (r3, + Ky a7t IC;\W) for an arbitrary value of A, we
can identify the flow equation of the asymptotics with the one of y3, see Eq. (23a). Therefore
Eq. (79) applies also for the following A step. As a consequence we can extract the fermion-
boson vertex from the vertex asymptotics. Finally, inserting Eq. (79) into (76), we obtain the
flow equation for the susceptibility (23a).

The s-wave fRG results for the susceptibility and the fermion-boson vertex can be extracted
from the asymptotic vertex functions IC?’ " and ICQTI by dividing the s-wave form factor com-
ponent by the bare interaction FU. Since yg’ . vanishes for all other form factor combinations,
other than s-wave response functions cannot be recovered by the asymptotics. This observa-

tion simplifies the fRG implementation, where the flow equations for y and y; can be omitted
if only their s-wave components are needed.

D “Post-processed” flow equations for y5; and y

In this section we explicitly provide the scale derivative of Egs. (8) and (10) for the case in
which the ¥ and v, entering the r.h.s. are obtained from the integration of the corresponding
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E Sy~ g WG ™ Sy =1
S (s ere v )

Figure 16: Diagrammatic representation of Eqgs. (81) (first line) and (83) (second
line), where the boxes indicate the conventional 1¢ approximation. The internal
loops in red provide the particle-hole and particle-particle contributions respectively.
The empty dot represents the bare AF fermion-boson vertex (Yg,m)n,m =06, m-

1¢ flow equations. We first consider Eq. (10) and, after introducing a A-dependence of the
Green’s functions and of y4 on the rh.s., perform the full derivative with respect to A. For
simplicity we here consider the magnetic vertex as example, which is directly related to the
particle-hole crossed vertex by

Tam(@ K K) =74 pn11(@ K k)= V4 pn 1 (@ K K) = 14 o 1y (K=K, ko k+9) = =7, 754, (@, K, k)

(80)
where we used the SU(2) and crossing symmetries [32]. The derivative of the fermion-boson
vertex with respect to A, as obtained from Eq. (10), reads

(P

— 0 0 A A
post-proc _aA(T&m TT3m® I, o T4’m)

0 SA(1) &MY 0 A A
_TB,m ° (Hs,m + 1-[m ) ° T4,m + T3,m ° 1-[m ° T4,m

—0 “AQ) | EFMDY
_7'3,m ° (Hs,m + l-[m ) ° 4m

A A AQ Ar L
19moTh o (¢ —C101-C1é20T)
oA A A o _FMD A 0 A AT LA
_7’3,m ° 1-[S,m ° 7’4,m + 73,m ° 1-[m ° 74,m - TS,m ° 1-[m ° C[¢ph ]_
T3m© Ty 0 CLH T, (81)

where for sake of conciseness we used a tensor-product form. In contrary to the defini-
tion in Sec. 3.2, the bubble Hg‘m does not have the Katanin substitution [45] and we de-

fine I, = ns-«;ip,m in order to take care of the scale derivative in the self-energy. Further
'rgm =1, and C[¢,,] stands for

ClpnInnw = f dkdK'f¥(K) fro (K (K ke, e,k +q) (82a)
Clo) Tnw = J dkd'f;7(K) fru (K2 (g +k+ Kk, k+q) . (82b)

The superscript (1) indicates that flowing objects (X and the ¢’s) are computed within 1£ from
their corresponding differential equations. From the second to the third line of Eq. (81) we
used Eq. (80) and the parquet decomposition in Eq. (32). The diagrammatic representation
of the last line of Eq. (81) is shown in the first line of Fig. 16.

Let us now turn to Eq. (8) for the susceptibility, where we again restrict ourselves to the
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magnetic channel. Following the derivation of Eq. (81) one obtains

(€)) p
A _ 0 A 7,0 0 A A A 7,0
aA(Xm)post—proc - a/\(‘)’B,m ° 1-[m ° 73,m + 7’S,m ° I-[m ° T4,m ° 1—Im ° 7’3,m)
_ A A1) A
- TB,m ° HS,m ° TB,m+

2 A,(l) AT & /\’(1) 7,0
Yg,m ° 1-[m ° 7’3,}111 + Tg,m ° HQ] ° Tﬁ}\,m ° 1-[m ° TB’,m_
Ar (AL i,0
73m Ty 0 CLp VT T o] —
. .0
Tg,m ol} o C[¢z/v\é(1)] oll} o T3m > (83)

with the diagrammatic representation is provided in Fig. 16 (second line). One observes the
appearance of additional terms on the r.h.s. of the post-processing flow equations for y5 and
x with respect to their standard 1¢ equations, indicated by the boxes in Fig. 16. Besides
the terms containing the A derivative of the self-energy (which are included in the Katanin
corrections [45]), let us draw the attention to the last two diagrams appearing on the r.h.s.
for both aA(yg)post_pmc and 3, ( )(A)post_proc. The diagrammatic structure in terms of loops is of
second order for y5 and of third for y. The integration of these post-processed flow equations,
along with the 1¢ flow equations for X and y,, would generate the last two diagrams already
at the first integration step A;,;; + dA (with dA < 0 in the Q-flow), providing the following
contribution to igi"it

. Ar 1 Ainit - L AT LA - ,0
_Yg’m o (Hglmt o C[¢ph ] o HI/:;mt + Hgmlt o C[¢£})mt] o Hglmt) o T;,m . (84)

The first term vanishes due to the Pauli principle (45;\;1““ = 0, see Ref. [34]), and the last one
provides a negative contribution which reduces the 1¢ term. In fact, the unscreened particle-
particle bubble entering € [(ﬁll,\lg““]n’m has the same sign of the unscreened (magnetic) S —G
bubble. This overall suppression by the additional 3{-like terms is a general feature of the
post-processed fRG scheme. The unbalance between the 1¢ y, flow, which topologically cuts
part of the parquet diagrams, and the additional 3¢-like diagrams of the susceptibility flow,
leads to an artificial overscreening of the conventional 14 calculation. Analogous conclusions
can be drawn for the density and superconducting channels. Thus one expects a pronounced
effect in the secondary channels because the dominant channel enters the internal loop of one
of the two 3/{-like additional diagrams, resulting in a reduction with respect to the converged
data. In contrast, the dominant channel will not be affected that strongly, presenting only a
slight overestimation of the post-processed susceptibility at the 1¢ level (see Fig. 8). More-
over, since this overscreening affects all frequencies, it may be responsible for the unphysical
negative value of the density susceptibility observed at finite frequencies in Fig. 9. In partic-
ular, since the parquet diagrams disregarded in the 1¢ approximation depend on the cutoff,
the detected unphysical results in the secondary channels were observed to be more severe for
the interaction flow. We finally note that this opposite effect of the density and the supercon-
ducting channels with respect to the dominant magnetic channel has been observed also in
Ref. [97] by analyzing the effect of the parquet decomposition of the vertex on the self-energy.

E Two-loop approximation for y;’s flow equation
We here provide the derivation of the 2{ corrections to the conventional 1¢ truncated flow
equations. The derivation follows the scheme adopted for the flow equation of the two-particle

vertex as reported in Ref. [17]. Our goal is to include the feedback of yé\ onto the flow equation
for yg‘, see Eq. (75), at the second order in the effective interaction. From the derivation
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R R

Figure 17: Simplified diagrammatic representation of the flow equation for yg‘ illus-
trating the topological structure of the diagrams.

provided in Appendix B, one sees that the differential equation for yé\ is given by the sum
of all diagrams which have the topological structure depicted in Fig. 17. The first and the
second diagrams on the rh.s. are at least of third order in the effective interaction since y/7\
(depicted by a heptagon) and y5 (depicted by a pentagon) are at least O((yﬁ‘\ 3) and O((yj} 2),
respectively. Therefore, we can restrict ourselves to diagrams with a topological structure of
the third one. Its contribution can be obtained by taking the following functional derivative
evaluated at zero fields

35
= = X
3J ()0 (x1)0(x35)0 $(x2)0 P (x1)
[%8A’Str(GA38FAGA98FAGAé8FA) —0,str(GY3aTAGMFT M 99T || —gm0
(85)

A / —
aA'}/5 (J’: xp X2,X1, x2) -

where x = {s,k}, y = {n,q} and J, 5 acts only on G” and returns the single-scale propagator
SA. At this point we integrate the r.h.s. which is an easy operation once we take into account
that i) one can replace S" = 9, ¢G* by the full derivative 8, G" since their difference due the
derivative of the self-energy is of higher order in the effective interaction yg‘, and ii) one can let
the scale derivative act also on yﬁ: since its derivative is at least of order O((}/Q‘)Z). According
to these arguments, the r.h.s. of Eq. (85) can be approximated by the total derivative with
respect to the A and integrated to

35
0Jy ()9 P(x1)9 b (x5)9 b (x2)9 ¢ (1)
[%tr(GAéaFAGAéaFAGAéaFA) —tr(GA3ar 61 a3T M aaT) || ;0. (86)

Yjs\(}’, xi: X2,X1, x2) =

The only terms surviving the functional derivative are all connected diagrams composed by two
two-particle vertices yﬁ and one fermion-boson vertex yg‘. What distinguishes the first and the
second contributions of Eq. (86) is the position of Yls\ which can be inserted at all 82 in the first
line, while is restricted to a single J @ in the second one because of the conservation of Nambu
particles. Moreover, the first term accounts for two-particle vertices whose external lines are
always a particle and a hole, whereas in the second term they are attached to two particles
23T and two holes 93, respectively. The topological structure of these two contributions is
schematically shown in Fig. 18.

The last step consists in closing these diagrams in all possible ways by means of the single-
scale propagator and adding them to the flow equation of }/3‘. Hence, one obtains 2¢ ap-
proximated flow equations for }/’3‘ which contain terms of the order O((yﬁ 2) in the effective
interaction. We can classify [17,40] the 2¢ corrections according to their topological structure,
with overlapping loops (Fig. 19 (b)) and non-overlapping loops (Fig. 19 (a)). We observe that
the latter can be included in the 1£ equations by using the Katanin correction [45] where
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Figure 18: Diagrammatic contributions for }/’5\ up to the second oder in the effective
interaction }fﬁ:.

SN — sh 4+ GAEAGA. The remaining 2/ corrections have as building block the 1¢ diagrams
of the flow equation of }/2. Translating our Nambu formalism to the physical fields, those
corrections yield Eq. (24).

F Implementation details

Here we provide the explicit form of 14 (pp ¢} appearing on the rh.s. of Eq. (36). By using
the parquet decomposition in the diagrammatic channels (see Eq. (32)), the first contribution
of the projections of the four-point vertex onto the different channels is the projection of the
fully two-particle irreducible vertex, approximated by its first order in the on-site Hubbard
interaction U, onto the form-factor basis. The projected bare interaction is

[ﬁ)[U](la)l, ivo, ivo/, q)]n,n/ = [ﬁ[U](lCl)l, ivo, iVO/, q)]n’n/
=[ClUN(iw}, 10,1V, Dl =—US 080 - (87)

Secondly, every channel, written in its natural bosonic-fermionic notation on the Lh.s. of
Eq. (36), needs to be projected onto the complementary channels. The projection of one
channel ¢, to another leads to a linear combination of its frequency arguments (see Eq. (22)
for the physical channels and Eq. (91a) to Eq. (91f) for the diagrammatic channels). In mo-
mentum space, the projection is more involved due to the form factor dependence. Following
the procedure of Ref. [31], we identify the projection matrices which describe the momentum
translation from one channel to another using a matrix multiplication

[Blp (i1, 1%, 1%, Qlaw = 2, A, (LQ)B} (... 1), (88)

m,m’,1

(< d : Q =od

Figure 19: Simplified diagrammatic representation of the 2¢ correcting diagrams for
the flow equation of Yé\ illustrating the topological structure of the diagrams. Dia-
gram (a) can be reabsorbed in the single-scale propagator according to the “Katanin
correction”, while the second and the third contributions (b) represent the so-called
“overlapping-diagrams”.
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where ... stands for the channel specific translation of the frequency dependencies.
We exemplify the projection for the channel D to P. In momentum space, it reads

[PLppn )i 01,170, Vo0, Dl = f dkdK £/ (K) £ (K)x
Son(i01 = 190,170,175, —K —k kK
=2, J dkdK £ (K) foo(K) frn(K) f (k)

Dm’m/(iwl—ivO/,ivo,ivo/,q—k’—k). (89)

We now transform the form factors to real space and shift the momentum dependence in order
to get the matrix form of (88)

[Pl pn1(ico1, 1V, 1701, @l = Zf dK > eRTIRER, —R)f (R, +R)X

RR;R;
Frn RS RD (i1 — 195 — 19, 17,,1,,1) . (90)

The same procedure for every channel projection leads to the matrix equations

[13[¢>ph](iwl,ivo,ivox,q)]n’n/ = Z An o mm,(l q)Dm’m/(iwl — vy —ivo,ivo,ivo/,l) (91a)

m,m’,1
[ﬁ[¢ﬁ](iwl, 1,1V, Qlnw = Z Aifl - (1, q)Cm,m/(—ivo +ivy,iv,,iw; —ivol,l)
m,m’,1
(91b)
[DLpp )01, 170,190, Dl = D AL (L @Pyy (i 17, + 1701, 17,,17,,1) (910)
m,m’,1
(D051 01,170, V0, @y = Z A L@ (170 = 19,17, 17, +ip, 1) (91d)
[CLpp 1, iV, i Dl = Z A Py (T + 17, + 19,17, 0y + 17, 1)
m,m’,1
(91e)
[CLpn] (i iV, iV, Dl = > ASD (1, @)Dy (195 — 19,16, 1% + i, 1), (91D
m,m’,1
with the following projection matrices for the non-symmetrized notation
AP @)= D eMTREAR) —R)f (R, + R)f (RS (Ro) (92a)
RR;R;
A )= D MR LR —R)f, (—Ry — R)f(Ry)f o (Ry) (92b)
RR;R,
A @)= D eMTREAR £ R (R —R)f (RS (R2) (920)
RR;R,
AC @)= > MR LR, — Ry —R)f (—R)fn (RS (Ro) (92d)
RR;R,
At @)= Y MR RIR AR, _R)f (R—Ry)f(R)f(Ry)  (92€)
RR;R;
ACD L) = D MR £ 1Ry — Ry —R)f (—R)f(R1)f, (R2) (920)
RR;R,
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G Performance of the code

The results shown in this paper were obtained with an OpenMP parallelized code on a single
node. In Fig. 3, the scaling in memory and calculation effort is illustrated. The use of symme-
tries can decrease the calculation effort considerably. The maximum computing time using 40
threads was obtained for the following set of parameters (see caption of Fig. 3)

N,=8 Ng=256 Npp=1 T=0.125 (=S8,

giving T . = total CPU time/(40CPUs)~ 10 days. The memory usage of a process for this set
of parameters is approximately 15 GiB.
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Due to an error in the production processes, numerous indices in the following equations and symbols
mistakenly appeared with a prime. The equations should read:
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! !
Gy (1)
Dt = Dlxhrnn = Dalxlinn (A3)

(€ = [ 4 ! ’ = YW
Fu;z,xz’,xl o Z fz,xl’vxzr"l’yz;yvxl = (Fﬂ ollgol’ )Z”%Xl - Z fz,x{,xz (F ollgol )prz;Xth (A4)

!
X1>X2 X1,X2

=L, G)yx = Z Fx’,y’;x,yGy,y’ = Z f‘t;(x’ﬂ),(y’,y)é(y’,y) =T Gy (A5)
vy (7

The caption of figure Al should include the sentence: The positions of the external (amputated) legs refer to
thearguments of I'y/ 1.y .

The sentence before equation (A2) should read: For this, we will use auxiliary objects that depend on
channel-dependent tuples of quantum numbers (e.g. L'y’ /x5, = fa;(x{,xz),(xz’, ) and define a contraction o that
always comes together with a two-particle propagator I, of a certain channel (consisting of two one-particle

propagators G).
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Abstract

We exploit the parquet formalism to derive exact flow equations for the two-particle-reducible four-point
vertices, the self-energy, and typical response functions, circumventing the reliance on higher-point
vertices. This includes a concise, algebraic derivation of the multiloop flow equations, which have
previously been obtained by diagrammatic considerations. Integrating the multiloop flow for a given input
of the totally irreducible vertex is equivalent to solving the parquet equations with that input. Hence, one
can tune systems from solvable limits to complicated situations by variation of one-particle parameters,
staying at the fully self-consistent solution of the parquet equations throughout the flow. Furthermore, we
use the resulting differential form of the Schwinger—Dyson equation for the self-energy to demonstrate
one-particle conservation of the parquet approximation and to construct a conserving two-particle vertex
via functional differentiation of the parquet self-energy. Our analysis gives a unified picture of the various
many-body relations and exact renormalization group equations.

1. Introduction

The many-body problem of nonrelativistic quantum-field theory is equipped with a well-known set of exact
equations for its correlation functions [1, 2]. If these self-consistent many-body relations are expressed in their
energy-momentum representation, they interrelate the different correlation functions between all energy scales,
often involving integrations over all energy-momenta. However, a typical feature of interacting quantum many-
body systems is that their relevant energy scales span several orders of magnitude. Conventional perturbative
approaches or approaches that directly work with the self-consistent many-body relations treat all energy scales
at once—they are therefore prone to inaccuracies and often plagued by infrared divergences. A very successful
approach to such systems is instead given by the renormalization group (RG) technique which treats energy
scales successively, starting from high ones and progressing towards lower ones [3].

The simplest realization of such a RG scheme considers the renormalization of effective couplings in analogy to
Anderson’s poor man’s scaling [4]. There, the successive treatment of high-energy degrees of freedom is encoded in
the evolution of running coupling constants. Since then, quantum-field-theoretical RG techniques have seen great
development. A widely used, modern formulation is given by the functional RG (fRG), which allows one to study
the flow of all coupling ‘constants’ in their full functional dependence [5, 6]. The respective couplings are nothing
but the (field-theoretical) vertex functions; hence, the fRG can be directly applied to microscopic models.

The fRG flow is based on an exact functional flow equation for the generating functional of the (one-particle-
irreducible) vertex functions [7]. If this flow equation is expanded in terms of the vertices, one obtains an infinite
hierarchy of flow equations, where, in order to compute the flow of an n-point vertex, knowledge about the
other vertices up to the n + 2-point vertex is required. The obvious way of truncating the hierarchy by
disregarding higher-point vertices has led to a variety of successful applications of the fRG. However, one often
wants to extend the usage of fRG beyond the validity of this approximation, and, in cutting-edge algorithmic
development, this form of truncation may indeed be an exceedingly severe approximation.

© 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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In fact, considering a system of, say, interacting electrons, possibly subject to external fields, one may ask why
itis necessary to include six- and higher-point vertices, i.e. effective interactions between three and more
particles, if one is ultimately interested in one- and two-particle properties of the system. Although the fRG
hierarchy of flow equations and also the hierarchy of Schwinger—Dyson equations (SDEs, or equations of
motion) [8] interrelate all #n-point vertices, the fundamental interaction is only of the (one- and) two-particle
type; thus, it should suffice to work on the one- and two-particle level. Fortunately, a many-body framework that
provides a complete description on the one- and two-particle level is available; it is the parquet formalism [2, 9].

The main idea of the approach presented in this paper is to apply the RG point of view neither to the
generating functional of vertices [7] nor to the hierarchy of SDEs [8] but to the self-consistent many-body
relations of the parquet formalism. Exploiting the organizational structure of the parquet formalism allows us to
circumvent the inclusion of higher-point vertices and to freely navigate between different two-particle channels.
Inspired by the fRG framework, we induce an internal scale dependence by using a scale-dependent propagator
G" that suppresses low-energy degrees of freedom and recovers the original theory at a final value Az Ttshould be
noted that this differs in technical aspects from more traditional RG schemes [3, 10], which, instead of solely
using a scale-dependent propagator, restrict all involved energy-momenta to decreasing energy-momentum
shells (often referred to as ‘mode elimination’). Here, we simply substitute G — G" in the well known many-
body relations and study the behavior of the solution to these equations upon varying A.

As aresult, we derive exact flow equations for the two-particle-reducible four-point vertices, the self-energy,
and response functions. This provides a concise, algebraic derivation of the multiloop fRG (mfRG) flow
equations, which have previously been obtained using diagrammatic arguments [11-13]. Our analysis also
reveals how one can perform such multiloop flows beyond the parquet approximation (PA), thus including
higher-order expressions for the totally irreducible vertex. Moreover, we establish an intimate connection
between the functional derivative of the self-energy and the fRG flow equation for the self-energy: the latter
constitutes an integration of the former along a specific path in the space of theories.

On aslightly different note, we use our approach to address fundamental questions of (traditional) parquet
theory (i.e. without an explicit RG treatment): on the one hand, we demonstrate that the parquet self-energy can
be obtained from the SDE using either of two possible orderings of the bare and full vertex. According to Baym
and Kadanoft[14], it then follows that the PA fulfills one-particle conservation laws. On the other hand, we give
an explicit construction to obtain a new, conserving vertex from the parquet self-energy, equivalent to taking the
functional derivative. This construction not only allows one to quantify the degree to which the PA violates two-
particle conservation laws. It can also be used to modify the PA, which fulfills the SDE but violates two-particle
conservation, to obtain a fully conserving solution, albeit violating the SDE. As we show in the appendix, a
fulfillment of both the SDE and the functional-derivative relation necessarily amounts to the exact solution of
the many-body problem, in agreement with a result by Smith [15].

The paper is structured as follows. In section 2, we first focus (as is typical for RG approaches) on the effective
interactions: we derive flow equations for the two-particle-reducible four-point vertices based on the parquet
formalism, assuming the one-particle propagator to be given. Then, in section 3, we complement the flow of the
four-point vertex by the flow of the self-energy, considering the various relations at hand. In section 4, we use
our approach to discuss conservation properties of the PA. Finally, in section 5, we derive (dependent) flow
equations for response functions, i.e. three-point vertices and suceptibilities, used to study collective excitations.
In section 6, we summarize our results.

2. Derivation of the vertex flow

2.1.Preliminaries
We consider a general theory of interacting fermions, defined by the action

S= =Yt l(Go) Txetx — iZro:x’»y/;x,yfx'fy’cycx’ M

! ! !
x',x X5L%,Y5)

with a bare propagator G, and a bare four-point vertex Iy, which is antisymmetric in its first and last two
arguments. The index x denotes all quantum numbers of the Grassmann field c,.. Correlation functions of fields,
corresponding to time-ordered expectation values of operators, are given by the functional integral

~ 1 - R
<CX1 CX/1> = E fD[C]D[C] Cx **° Cx,€ S’ (2)
where Z ensures normalization, such that (1) = 1. Two-point correlation functions are represented by the full

propagator G, = — (c,€y'); four-point correlation functions can be expressed via the full (one-particle-
irreducible) four-point vertex I':
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Figure 1. The Bethe—Salpeter equations for the channels r = a, p, tare solved in an RG approach by introducing a scale (A)
dependence to the propagators connecting the vertices. Consequently, ,, I', and I, inherit a scale dependence while the totally
irreducible vertex, R, remains as given input. (See appendix A for details on the diagrammatic notation.) As prime example for the
scale dependence, one can multiply the frequency-dependent propagator by a step function, G*(w) = ©(|w| — A)G(w), such that
the many-body relations are trivially solved at A; = oo and reproduce the desired solutionat Ay = 0

(x/€iCxiCx)) = Gixint Gaix = GuxixGugr! + Gl Gty Uiyt Gyt Gyt G

X1 " x %y

The notation given so far is identical to the one in [12]; all formulae further needed in this paper are defined
in appendix A. In the following derivation of flow equations, we use a compact notation of contractions and
need not write quantum numbers (such as x, x, etc) explicitly.

2.2.Parquet equations for the four-point vertex

The fRG flow equation for the four-point vertex, I = T, contains the six-point vertex, I'®, which poses great
difficulty for a numerical treatment. Similarly, the SDE (equation of motion) for I contains I'® and therefore is
likewise impractical. To circumvent the calculation of I'®), we revert to the parquet formalism [2, 9], which
provides self-consistent equations for the two-particle-reducible contributions to the four-point vertex I but
assumes as input a given, totally irreducible four-point vertex R. In a diagrammatic expansion, R is given by the
bare vertex, Iy, with corrections starting at fourth order. The famous parquet approximation [16—18] (see

section 4) consists of using R = I'y and allows one to sum up all leading logarithmic contributions in
logarithmically divergent perturbation theories [9, 19]. Importantly, however, the parquet equations can be used
more generally as an exact classification of all diagrams of the four-point vertex.

In the parquet formalism, one decomposes the full four-point vertex, I, into the totally irreducible vertex, R,
and the three two-particle-reducible vertices y,, € {a, p, t}* . Diagrams belonging to 7, are reducible in channel
r,1.e. they can be separated into two parts by cutting two antiparallel, parallel, or fransverse antiparallel lines,
respectively. Diagrams that cannot be separated in this way belong to R. (For exemplary diagrams, see figure A1
in appendix A.) While the -, are subject to further equations, this set of coupled equations closes only for a fixed
choice of R.

Let us assume a given expression for the totally irreducible vertex, R. Furthermore, we will for now assume
the one-particle propagator, G, to be given; computation of G via the self-energy will be discussed later. The
parquet equations, involving the two-particle-reducible vertices, 7y,, and two-particle-irreducible vertices, I,, read

F:R+Z'Yr) Ir:F_’Yr:R'i"Yf) (4a)

v, =1 0oll, oT. (4b)

For given R, these equations must be solved self-consistently to obtain the appropriate reducible vertices, 7,, that
complement the full vertex, I'. In equation (4a), we use the notation 7 for the complementary channel of a given
channel r, such that v, = 3~/ _ .. The Bethe—Salpeter equation (BSE) (4b) describes two vertices, I and I, connected
byabubble, IT,, of two dressed propagators in channel r (see also figure 1). This bubble of vertices can be expressed as
amatrix multiplication (given a suitable parametrization depending on the channel r, see appendix A), as indicated by
the symbol o attached to II,. Note that I, and II, implicitly contain a factor of 1/2 and (—1), respectively.

In the following, we list relations that can be easily deduced from the parquet equations (4) and will be used
repeatedly in the derivations of flow equations. The combination of equations (4a) and (4b) directly yields
I' = I, + I, oIl, o I (for all channels ). Exploiting the multiplicative structure, we can isolate I on the lhs to
obtain the inverted BSE,

T=L+Loll,ol < T=(-1ILoll)!ol. (5)

A further straightforward manipulation yields an extended BSE,

* Our nomendlature follows the seminal application of the parquet equations to the x-ray-edge singularity by Roulet et al [9]. While we use T',
R, 7,, and I, for the full, totally irreducible, two-particle-reducible, and -irreducible vertices, respectively, another common choice [20-22] is
givenby F, A, ®,, T, respectively. Similarly, a common notation [20-22] for the channels a, p, tis ph, pp, ﬁ, referring to the (longitudinal)
particle-hole, the particle-particle, and the transverse (or vertical) particle-hole channel, respectively. One also finds the labels x, p, d in the
literature [23], referring to the so-called exchange, pairing, and direct channel, respectively.
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Figure 2. (a) Exact mfRG flow equation for the reducible vertex 7, involving the differentiated propagator, G, (line with two vertical
dashes) and the differentiated irreducible vertex given by I, = 3" o = - (as R = 01in our construction). (b) Exact fRG flow
equation for 7, involving the single-scale propagator, S = O\Gjs,_ - (line with one vertical dash) and the six-point vertex, whose
contribution is (for conceptual purposes) reduced to the part reducible in the a channel via the projector 7,.

m

1+TDoll, =14+ 0 —Loll,) o, oll, -1+ 1)=(1—1Ioll,) L (6)

Using the inverted BSE (5), one directly sees (by isolating ,) that the order of the vertices in the BSE (40) is
irrelevant:

Vr:IrOHrOF:IrOHrO(Ir"_’Yr) = ’Yr:(l_IrOHr)_loerHrOIr:FOHrOIr' (7)

2.3.Flow of the four-point vertex

The central aspect of our RG treatment is incorporated by attaching a scale (A) dependence to the propagator,

G — G*, appearing in the self-consistent many-body relations. The physical picture is that A separates high-
and low-energy degrees of freedom, and by using G* we allow for successive renormalization of the low-energy
(<A) theory by high-energy (>A) degrees of freedom as A is decreased. However, one can also simply consider
A as some additional dependence in the propagators connecting the vertices in the BSEs: G — GA, I, — II*
(cffigure 1). Hence, the reducible vertices 'yf—and consequently ' and I*— will inherit a scale (A) dependence,
obtained from the requirement that the parquet relations be fulfilled for each value of A, while R remains as given
input.

The scale dependence is auxiliary in the sense that we are ultimately interested in the fully renormalized
theory: we are interested in 'yAf = ~, where (at the final scale) G = G. Suppose we know the vertices at the
initial scale, i.e. we can solve the BSEs using G*i. Then, we can obtain fyAf by solving a differential equation
specified by the initial condition together with the flow 8A7 7 which is induced by the scale dependence of
G" in the BSEs. We remark that it is natural to exclude the totally irreducible vertex R from the renormalization
flow, as it constitutes precisely the part of the vertex that cannot be constructed iteratively and therefore does not
have a flow equation that allows for an efficient (i.e. iterative one-loop) calculation.

2.3.1. Flow equation

To find the scale dependence of the two-particle-reducible vertices, ., we start by differentiating the BSEs wrt A
(suppressing the A dependence to lighten the notation) according to the product rule and decomposing the full
vertex via the parquet equation (4a):

fp=Loll,ol'+ ,oll,ol + LolIl,ol
=Loll,ol' +I,oIl,oT 4+ L oI, o (I, + #). ®)

Similar to the manipulations in equation (7), we bring %, to the lhs and subsequently multiply by (1 — I, o II,)™!
from the left. According to the inverted BSE (5), we get

Ap=Toll,ol' + (1 —Lolly'ol,oll,oT + T oIl oI, 9)
and, resolving the remaining inverse by the extended BSE (6), we find
Ap=Toll,ol + [oIl,ol' + Toll,ol,oll,o' + T'oIl, o1,. (10)
(M (o) L ©) LR
g 5 5 5

r r T r

The algebraic derivation of this exact flow equation, as the differential form of the BSE (40), is our first main
result. It is depicted diagrammatically in figure 2(a) (exemplified by the a channel) and contrasted with the
corresponding standard fRG flow equation (figure 2(b)). It describes the flow of the reducible vertices, 7,; the
tptally irreducible vertex, R, does not have an efficient flow equation and remains as input. Since R = 0, we have
I, =Y. = 7> and equation (10) constitutes a closed, coupled set of differential equations for all reducible
vertices 7,. The natural way to solve these equations is to start by computing the independent, one-loop part, fy(l)
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for each channel, and then iteratively insert the results into the left, right, and center parts (ﬁr(L), W,(R)» "yr(c),
respectively) of the various channels. If this is organized by the number of loops (connecting full vertices), we
precisely recover the mfRG vertex flow which has been derived diagrammaticallyin [11, 12] (see figure 5 of [ 12]).
It is worth mentioning that the numerical effort of this iterative mfRG flow grows only linearly with the

number of loops that are kept (on average) as compared to the standard (truncated) fRG flow [11-13]. First
implementations [11, 13] of this iterative scheme for moderate interaction strengths have found convergence for
anumber ofloops <8. In general, we expect that with increasing interacting strength the convergence with loop
order will become slower—and possibly not occur at all for sufficiently strong interactions—in a way that will
depend on the model at hand.

From the above derivation, it is clear that, if the scale dependence of G is chosen such that we are initially able
to solve the BSEs (using G*) and finally revert to the original theory (G = G), then solving the mfRG vertex
flow (10) is equivalent to solving the BSEs (4b). An initial solution is always available by using G = 0, but can
also be chosen differently, if desired (see below). In the same way that any solution of the BSEs depends on a
certain choice of R, so do results of mfRG. However, the multiloop flow equation requires only the initial
condition of the full vertex 't = R + 37, 'yfl and not of the individual two-particle-reducible or -irreducible
vertices; the decomposition into 4, is only performed on the differential level. Nevertheless, the degree of
approximation in our approach is encoded in the underlying expression for R, which can range from the
simplest approximation, R = I'y, to the exact object, R**.

2.3.2. Examples

Let us give some examples for possible flows which are specified by the input R and the choice of G* initializing
the progression towards G = G. Recall that, in this section, we focus on the two-particle level, i.e. we study the
influence of varying the full propagator, G*, on the vertex, I'*. In practice, the variation of G* will be realized by
tuning the bare propagator, G¢*, and complementing the vertex flow with a self-energy flow to compute G* (see
section 3).

(i) The BSEs at the initial scale are trivially solved if G = 0: Due to II* = 0, the corresponding initial
condition for the reducible vertices is 7?" = 0. As we introduce the scale dependence only for the
propagators connecting the vertices in the BSEs but leave the totally irreducible vertex R—the input to the
parquet equations—unchanged, the initial condition for the full vertex is given by I'Ai = R °. Hence, the
mfRG flow generates all two-particle-reducible diagrams given the irreducible building block R; the special
case of R = I} yields all diagrams of the PA[11, 12].

(i) The mfRG flow (10) is an exact flow equation for the two-particle-reducible vertices and thus gives us full
control over the vertices corresponding to given propagators G". Immediate consequences are that (a) for
given boundary conditions G%, G, we are completely free to choose any specific A dependence in G*—the
results of the flow do not depend on this choice; and (b) that we can perform loops in theory space, going
from G to G = G without any loss of information. Conceptually, this underlines the power of the
mfRG flow; practically, it can also be used as a consistency check for a numerical implementation (which
might employ approximate parametrizations of the vertex functions, etc). We emphasize that, while both
properties directly follow from the given derivation based on the BSEs, they are violated in the widely used
one-loop form (¥, ~ "yr(l)) of the truncated fRG flow.

Aloop in theory space could for instance be realized via G* = f (A) G with f(A) = f(Ay) = L.Ifwe
already have the result of the PA (R = I'y) in the form of G% = GPA and I'i = TP, the vertex flow
naturally gives the corresponding parquet vertex for all values of A (as R = Iy throughout) and finally
returns to the original result. If we assume (from a conceptual point of view) we had the exact solution of the
many-body problem in the form of GA = G, I'Yi = I'**, then such a vertex flow would return to the
exact result, too. However, as the totally irreducible vertex remains fixed, the results at intermediate A do
not correspond to the exact solution for that G*. Instead, at each value of A, the reducible vertices W? solve

the BSEs with propagators G"and R** = RA, At Ap the BSEs with G = G®™ and R* reproduce ;" and
thus I'** = R™ + 37 ™.

(iii) As a highly correlated and, yet, numerically tractable initial condition [24], one can choose the solution of
dynamical mean-field theory (DMFT) [25] and use the mfRG flow to generate nonlocal correlations
[20, 26], thus extending the DMF?RGidea[26] to multiloop DMF?RG [11, 12] (or DIMF)*RG [27]). A
related approach that gives diagrammatic, nonlocal corrections to DMFT is given by the dynamical vertex

> Whereas the initial condition T% = R at G% is natural in the parquet approximation R = I, it might seem counter-intuitive for other
cases, when thinking of the totally irreducible vertex, R, being itself composed of diagrams containing propagators. In this way of thinking,
we have to treat propagators in R differently from those propagators that connect the building block R in the two-particle-reducible diagrams
of the ,. This special treatment is necessary as R does not have an efficient flow equation.
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approximation (DI'A) [28-30]. This approach directly employs the parquet equations, using as input
RPMET the totally irreducible vertex from the local DMFT solution [21]. If we used the same initial
propagator G% = 0 as in example (i) above, we would start the vertex flow from I'Ai = RPMFT in perfect
analogy to the DI'A algorithm. However, at this point we can leverage the flexibility of the RG framework
and perform a continuous deformation starting directly from the full DMFT vertex: indeed, if we use

GN = GPMFT (35 opposed to G = 0), the vertex flow is not initiated by RPMFT, but from the actual, full
vertex [PMFT [26], (Recall that the decomposition into two-particle channels in equation (10) occurs only
for differentiated vertices 4, which are ultimately combined to give I' = 3", 4.) Although the results are
(in principle) independent of the specific A dependence, the choice G* = GPMFT with T'Ai = I'PMFT hag
the decisive numerical advantage that it avoids any explicit appearance of R°MFT, The corresponding
multiloop flow is hence not affected by the (likely) unphysical divergences of the totally irreducible vertex,
which have been observed in strongly correlated systems [31-35], and can thus be used to analyze such
systems in wider regimes of the phase diagram. The combination of vertex and self-energy flow in multiloop
DMF’RG, as used in practice, is further discussed in section 3.1.2 (iv).

So far, we have assumed the dressed propagator, G, to be known. However, as this is in general not the case,
we now combine equation (10) with a self-energy flow, 4 to generate G" during the flow. Via the Dyson
equation, we then have (G*)! = (G)"! — % ina flow controlled by the scale-dependent bare
propagator, Gé\.

3. Derivation of the self-energy flow

First, let us mention that the straightforward derivation of the vertex flow was based on the parquet equations
(for given input R). These merely represent a classification of diagrams, reducing the need for an explicit input
expression to the most fundamental building block. We did not use equations which provide a construction of
the four-point vertex from higher-point vertices, such as the SDE involving I'®, or a functional derivative
connecting four- and six-point vertices.

By contrast, we next want to construct the self-energy, 3, from the four-point vertex, I'. For this purpose,
three equations are available: (i) the SDE relating 3 to I', typically used in the parquet formalism [2], (ii) a
functional derivative between self-energy and two-particle-irreducible vertex, known from Hedin’s equations
[1]and ®-derivable approaches [36, 37], and (iii) the fRG flow equation for 3 [5]. While all these equations are
exact, their outcomes might differ when inserting an approximate vertex. In section 3.2, we show that the fRG
flow for ¥ can be easily derived from the functional derivative (as a necessary condition). However, as we show in
appendix B, the SDE and the functional derivative are complementary in the sense that any solution that fulfills
both equations must be the exact solution. It is therefore not surprising that it is complicated to relate a self-
energy flow to the SDE for . Nevertheless, we will use the SDE to derive a self-energy flow (different from the
standard fRG flow), which is well-suited for the PA and allows us to gain insight into its conservation properties
(see section 4). While this multiloop flow deduced from the SDE indeed proves beneficial in the PA [12], the
general advantages and disadvantages of the different starting points (i) and (ii) are not entirely clear (see also
section 3.1.2).

3.1. Self-energy flow from the SDE

Deriving a flow equation from the SDE of the self-energy is a difficult task since (as already mentioned) SDEs and
differential equations are of fundamentally different nature—for instance, SDEs always contain the bare
interaction whereas differential equations are typically phrased with renormalized objects only. In [8], the SDE
was used to derive the fRG self-energy flow up to terms O [(T")’]; here, we demonstrate agreement up to O [(T')4].
In fact, we derive the mfRG self-energy flow from [12], which includes important terms that would be neglected
if one simply inserts the approximate parquet vertex into the standard fRG self-energy flow equation [12]. The
calculation with the main results given in equations (26) and (30) (see also figure 3) is presented in detail in the
following section 3.1.1 and interpreted in section 3.1.2.

3.1.1. Flow equation
The starting point of our calculation is the Schwinger—Dyson equation for the self-energy (see figure 3(a)):

S =S [, 6) =~ +holl,ol) - G= I+ fhell,ol) - G. (1n

Here, we have used bubbles in either the a or the p channel, as well as the contraction of two vertex legs with a
propagator (denoted by I' - G, see appendix A, equation (A5)). As we can freely choose the specific propagator

6
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(a) (b)
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Figure 3. (a) Schwinger—Dyson equation (SDE) for the self-energy, where the second term contains two equivalent lines connected to
antisymmetric vertices and hence requires a factor of 1/2. One notes that the three propagators in the second summand can be both
viewed as contracting a parallel and antiparallel bubble of the vertices Iy and I'. (b) Multiloop fRG self-energy flow [12], derived from

the SDE in the parquet approximation. The first term, 44, constitutes the standard fRG self-energy flow.

for the final contraction, we can write the SDE with a bubble in either the p or the a channel—the factor of 1/2 is
implicitly contained in I1, and must be explicitly written when using I1.

The presence of two equivalent lines (i.e. parallel lines connected to (anti)symmetric vertices) in the second
summand of the SDE opens the possibility for further manipulations. For this, let us explicitly denote the
propagators contained in a bubble by I1,.;, ¢,; the standard bubble is then simply given by I1, = II,,; . In the
SDE, we cannot only freely choose the propagator used in the final contraction (equation (12a)), we can also
switch the equivalent lines by crossing two external legs of both vertices, I} — L,oh—D (see equation (A3)).
The relations deduced from this contracted crossing operation (see figure 4(a)) are

(3T e Mag,6, 0 ) - Gs = (0 Tyg,6,0 1) - Go (12a)
= (36 0 Mgy, 0 13) - Gi = ([0 Ty, 0 1) - Go. (12b)

We will use the contracted crossing relations extensively on the relevant vertices, which obey the crossing
symmetries

f = _P, FO = _PO, R\ = —R, ﬁ/p =~ ’% =~ /}\/t = Y- (13)

Note that the vertices in the particle-hole channels g, t are mapped onto each other upon crossing two external
legs. For this reason, we will often combine contributions from the a and t channel in the following calculations.

The SDE yields a scale-dependent self-energy if we attach a A dependence to every propagator connecting
the vertices in equation (11) and account for the A dependence of the four-point vertex, I', as discussed in
section 2. Inlight of the functional derivative 63 /6G = —1I, (see section 3.2 below), we aim at generating the
irreducible vertex I,, for which we need the totally irreducible vertex, R, instead of the bare vertex, I'y. Hence, we
define R’ = R — I, and, since equation (11) is linear in ', we obtain

Y =%k, T, G — Lp®, T, G). (14)
We now consider the flow of ¥sp (R, I', G) and organize our computation according to (see figures 4(b) and (c))
3= Isp(R, T, G) = [-(RoT,01) - G] + [-(RoTl,0l) - G] — HhZsp(R, T, G). (15)

5 5, b8

Here, we have subtracted and added a term such that the first bracket, 3;, contains only those terms of the
differentiated SDE in which the derivative is explicitly applied to propagators. The second part, 3, accounts for
the differentiated vertex for which we will insert the vertex flow (10). Finally, 35 contains all remaining
contributions proportional to R’. In the PA, onehas R = T}y <> R’ = 0; thus, 35 will only be relevant in
calculations that go beyond the PA. In fact, from equation (14), we see that the role of ¥; is to cancel the extra
terms that have been added to 3, + 2, by using Xsp(R, I', G)instead of Xsp(Ip, I', G). We begin our
calculations with 3.

Generate I, - G— As already mentioned, we want to single out the two-particle-irreducible vertex I, (since it
constitutes the functional derivative of the self-energy). The first summand in equation (11) (using R instead of
Ty with R = 0)is easily differentiated as —R - G. In the remaining part of 3;, we have three propagators to
differentiate. Two of the resulting terms can be combined to factor out G if we use the contracted crossing
symmetry (12)on Rand I':

—21—R~G:(RO(HP;G',G—FHP;G)G')OF)-G+(R0HP;G,GOF)vG:(RoHaoF)~G+(R0HFOF)~G.
(16)
Next, we collect the termsfor I, = R + v; = R 4 I, o I, o I' + I, o II,, o I" (see equation (4)) and find
Y =R+ Rol,ol) 4+ Roll,oD]-G=L-G—[(p+ ) o,ol + (a+ ) oll,oD)]-G.
(17)
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Figure 4. [llustrations for the derivation of the self-energy flow. (a) As stated in equation (12), a bubble of vertices closed with an
additional loop can be viewed as a contracted a or p bubble and can be rewritten by exchanging two of the external legs (' — T') of
the vertices (contracted crossing symmetry). Note that equation (124) is fully encoded in the diagram on the Ihs and equation (12b)
in the one on the rhs. Thus, the individual equations (12a) and (120) merely represent a redundancy in the algebraic description.

(b) Rewritmg of Yy, the part of ) Xsp where the derivative is applied to the propagators appearing explicitly in the SDE. The double
dash crossing multiple lines denotes the derivative of the product of propagators, i.e. a sum of terms where each line is differentiated
once. (c) Rewriting of 3, the part of OyXsp containing I

} !}
L

ﬁ

Use differentiated bubbles— The extra terms accompanying I, - G in equation (17) will later be combined
with contributions from 3,. Since X2, contains the differentiated vertex, which itself is built from differentiated
bubbles I1,, we rewrite these contributions in terms of I1,. Using the contracted crossing symmetry (12), we find

(pollgyggol) - G= (pollpgeol) -G+ (pollygeol) - G=(y0 HP ol) -G, (18a)
(yoTlggool) - G=(pollyseol) -G, (18b)
[(a+ ) ollpgeoll-G=Quollggol) - G=(aollyggol) - G (18¢)

This leads to the final expression for ¥, (illustrated in figure 4(b)):
==L -G+ (poll,ol +7,0l,0I)-G. (19)

Organize vertex derivative— The second contribution to equation (15), 3%,, contains the differentiated
vertex. Inserting the decomposition I' = 3. 5, we can combine the contributions from both particle-hole
channels, a and ¢, by applying the contracted crossing symmetry (12) on Rand 5;:

-, =Roll,ol)-G=(Roll,07) -G+ (Roll,0,) - G. (20)

Once we insert the flow equation (10) for 4, and 4, in equation (20), R will be connected to further bubbles of
vertices. These connections can be simplified if we have I, instead of R. Hence, we rewrite equation (20), using
I, =R + v;as

*Zzz(luoﬂao%)'cf[('Yp+%)°Hu°"Yu]'G+(Ip°Hp°’7p)'G*[(’YaJF'Yt)OHpO’Vp]'G-

21
The next step consists of repeated use of the contracted crossing symmetry (12):
(pollgodn) - G=(poll,04) -G+ (ypoll,o) -G, (22a)
(rollaoda) - G=(uollsoy) -G, (22b)
[(a+v)olloq] - G=(puollso) -G (220)
After using I, = +,, we then obtain
—> oo —vyoll,ol) - G. (23)

r=a,p

Insert vertex flow— Whereas the previous manipulations were possible due to the contracted crossing
symmetry, the following insertion of the vertex flow for 4, given by equation (10), can be simplified already on
the vertex level. In fact, using the parquet equations (4) with . = I, o Il, o 'and I" = I, + ,, we get

Loll,od=ILoll,ololl,ol' +,oll,ol' + Toll,0ol,oll,o' + Toll,01)
=v0ll,oT' +Toll,ol,oll,oT 4 5, 01l, 0 I, (24)

The first term also occurs (with opposite sign) in equation (19), the second term reproduces Wr(c), and the third
term gets canceled in equation (23). Hence, 33, can be simplified (as summarized in figure 4(c)) to

8
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Zz:—Z(’V}C)—‘rWroHrOF)'G. (25)

r=a,p
With the definition "yt_(c) = "yu(c) + "ygc), the full derivative of the self-energy is given by

This result for > = 9y Xgp in skeleton form (i.e. phrased with dressed propagators G, G only) will be considered
more closely in section 4. Here, we move on by noting that equation (26) still contains ¥ on both thelhs and the
rhs (via G).

Isolate ¥— At this point in our derivation, we specify how the A dependence is supposed to enter G: it shall
be incorporated in the bare propagator G, such that the Dyson equation, G = Gy + Gy - ¥ - G, entails
G=S+ G- Y- Gwiththe single-scale propagator S = O\Gj,_.... = —G - (O\Gy 1) . G.Once we insert this
expression for G into equation (26), we will face the contraction of a vertex with a compositeline G - 3 - G.In
such a case, one can equivalently attribute the two propagators to either the self-energy or the vertex, such that
we have the following equality for a composite contraction (recall the minus sign in I1; see equation (A6) for
details):

L-(G-%-G)=—Loll-%. (27)
Weinsert equation (27) into equation (26) to isolate 3
Y=-L-$+G - Y-G) %9 G-Y3=-L-S+Loll,o¥X —#%%9. G- 3%
& YN=—0-Loll) oL -S—(1—LoIl) "' (5 G+ ). (28)

Next, we use the inverted BSE (5) as well as the extended BSE (6) to express this through'and 1 + I' o II,,
respectively:

Y=-T-S—A+Toll) 5 G+ ). (29)

For convenience, we finally write the contraction of (I" o II,) with both summands as composite contractions
(using equation (27) for a general vertex and self-energy) and obtain

B=D ST+ [5Gl + [T (G5 -G = %~ [-T- (G- 55 G). (30)

Zsld Zf Zt

This is our final result for the mfRG self-energy flow deduced from the SDE. It constitutes the bare
(‘nonskeleton’) form of equation (26) as it involves G and S instead of G and G. The first term in equation (30),
Y- is the standard fRG self-energy flow. The next two terms, 3y and ¥;, constitute the multiloop corrections to
the self-energy flow (see figure 3(b)), which have been derived diagrammatically in [12]. These contributions are
needed to ensure that the self-energy flow generates all contributions to the self-energy arising within the PA.
Finally, the two terms involving 3.3 remain in our final result and—in calculations beyond the PA—are required
to cancel doubly counted terms coming from the replacement Xsp (I, I', G) — Xsp(R, I', G) inequation (14).
We remark that 333 constitutes precisely the part that cannot be simplified further with our parquet tools, as it
originates from the appearance of a bare instead of renormalized vertex in the SDE.

3.1.2. Interpretation
Let us interpret the flow equation (30) step by step:

(1) Since *’yt.(c) and R’ [and hence 3 = Oy sp(R/, T', G)]are of order O [(I")*], we have explicitly shown how to
derive the standard fRG self-energy flow, ¥4, from the SDE up to and including terms of fourth order in
the (effective) interaction. If we were in the standard fRG setting where every line is A-dependent, further
terms coming from R = 0 would arise in our derivation. However, as these terms are similarly of order
O[(I)*], the result O Xsp = Ygq + O[(I")*]would remain unchanged.

(ii) In the PA, the totally irreducible vertex is reduced to its simplest approximation, such that
R =Ty & R’ = 0andthus Y5 = 0. In this case, equation (30) reproduces the mfRG self-energy flow from
[12] including the corrections Y7 and ¥, (see figure 3(b)), necessary to provide a total derivative of the SDE
using the approximate parquet vertex.

(iii) Let us come back to the idea of a loop in theory space, which—including the self-energy flow—
is now driven by the bare propagator G;*. A possible realization is given by G* = f (A) G, with
f(A) = f(Ap) = 1.If westart the flow from the solution in the PA (R = I}) with X4 = $P* and
' = TP, the combination of the mfRG vertex flow (10) and self-energy flow (30) (using 33 = 0) gives
the corresponding result in the PA for all A (as R = I' throughout) and returns to the original solution
at A;. However, starting the flow from a solution with R’ = 0, we would have to include 3 in the
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self-energy flow (30) in order to precisely return to the original self-energy, 3, and vertex, I' (dressed

by ¥),at Ag with R’ = 0, setting ¥3 = 0 introduces an approximation in the full derivative of the SDE.
Conversely, one can compare results of the flow at A;and Asto (numerically) gauge the importance of
the individual terms in equation (30).

To better understand the effect of 333, we recall that Y3; and ¥, were originally derived diagrammatically
to compensate for missing diagrams of »" when using the parquet vertex in Y4 [12]. With this
perspective on ¥; + Y, in mind, it is intuitively clear that higher-order contributions to R (i.e. R’ = 0)
generate doubly counted terms between Yyqand ¥ + 3;. Yet, as equation (30) is exact, these
overcounted terms are precisely canceled by the parts involving ;.

For illustration, consider the (parquet) self-energy at fourth order in the interaction, which contains no
approximation and whose flow is fully described by ¥4q + X + X, using vertices in the PA. Now,
fourth-order diagrams of R’ = 0 generate fourth-order terms in Yy but not in 37 and 3, (due to their
structure involving further vertices that raise the interaction order). The additional fourth-order
contributions of Y4 are precisely canceled by R’ - G (containing only one A-dependent line) as part of
3. Generally, we believe that, for situations where R’ = 0, the overcounting of differentiated diagrams
in ¥4q + X7 + 3 hasrather small weight and that, even if using 5 ~ 0, the multiloop additions

¥; 4+ 3, provide an improvement of the standard self-energy flow, 4.

(iv) An interesting application with R’ = 0 is the previously mentioned multiloop DMF?RG approach. In its
full form, combining the flow equations of the vertex (10) and self-energy (30), the mfRG flow is controlled
by the bare propagator G¢*, which interpolates between the local theory of DMFT and the actual lattice
problem. The simplest realization [26] of a flow from A; = 1to Ay = 0, formulated in terms of Matsubara
frequencies iw and momentum k;, is given by (Géx)*1 =iw+ p — AA(w) — (1 — A) . Here, A(iw) is
the self-consistently determined hybridization function of the auxiliary Anderson impurity model [25] and
¢ thelattice dispersion. With G0 G, DMFT _ / [iw + @ — A(iw)], the flow is conveniently started from
$A = YPMFT gnd A = PMET While the vertex flow (10) exactly solves the BSEs (for given G), the
differential form of the SDE contains 3J; and therefore prevents complete equivalence to the DI'A approach.
In this regard, it remains to be seen whether the standard fRG self-energy flow, Y4, with or without the
multiloop corrections 3; + 3, or other realizations, incorporating parts of 33 in equation (30), lead to
optimal results.

3.2. Self-energy flow from the functional derivative

We now show how the standard fRG self-energy flow, 34, can be directly derived from the equality between the
functional derivative of the self-energy and the (particle-hole) two-particle-irreducible vertex. To be in perfect
accordance with the standard fRG setup, we have to require that every G line be A-dependent—even those in the
totally irreducible vertex, R = R™.Incorporating the A dependence in the bare propagator Go, we again relate
the differentiated propagator, G, to the single-scale propagator, S,viaG = S + G - ¥ - G.

The functional derivative between self-energy and vertex, §%./6G = —I, (see equation (A8)), holds for any
variation of G. If this variation is realized by having a scale-dependent propagator G* and varying the scale
parameter A, this equation implies > = —1I, - G. Starting from this, we can perform the same steps as above: to
obtain the standard fRG flow equation for the self-energy, it remainstoinsert G = S + G - X - G, express the
composite contraction I, - (G - X - G)as —1I; o II, - 3 (see equation (27)), and use the inverted BSE (5):

S=-1-G=-L - S+G-%-G) =-L-S+Loll,-%
& 2:—(1—5011)101,-5:4-5. (31)

Solving for ¥ in a specific fRG flow via equation (31) amounts to integrating ¥ = —I, - G alonga specific path
in the space of theories defined by the bare propagator Gy = G(f\ (and the bare interaction Iy, see equation (1)).
Only if this integration is independent of the path, i.e. if 3 contains a total derivative of diagrams, the standard
self-energy flow (31) yields results consistent with the functional derivative. In the scenarios considered so far,
this is not the case: the truncated fRG flow (without I'® and more than one channel) employs equation (31) but
does not generate a total derivative of diagrams [11, 12]; the mfRG flow of figure 3 with R = [} does provide a
total derivative of diagrams but deviates from equation (31) by the additions Y7 and ¥,. (In fact, the latter
reproduces precisely the self-energy diagrams generated by the SDE using the vertex in the PA. However, as
shown in appendix B, the requirement of fulfilling both the functional derivative and the SDE necessitates the
exact solution.)

Asadirect application of the above calculations, we can derive a fRG flow which is equivalent to self-
consistent Hartree—Fock (HF), in agreement with a result by Katanin [38]. This conserving fRG flow provides a
simple example for which the integration of X = —1I, - §G is indeed independent of the path. In HF theory, the
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R R

Figure 5. Illustrations for 5°). (a) The six-point vertex 4 is obtained from 4“ by removing ts differentiated line; hence, 5 is
recovered by contracting 5 with G. (b) A contraction of 5 denotedas 5 - G, such that 4 - G is reproduced by

(ﬁr(c) - G) - G.(c) Asan example for the construction of "?Y(C), we consider the six-point vertex '3/;” obtained by removing the
differentiated line in the one-loop part of the vertex flow in p channel, leaving two further amputated legs (marked in light red).

(d) Inserting the vertex from (c) into the center part of the flow in the a channel, we generate a contribution to the six-point vertex %(c
(being part of ﬁi(c)). (e) By contracting two upper legs of the vertex from (d) according to '“yf(Q - G, we geta contribution to the new,
two-particle-irreducible vertex I,. The lowest-order realization of this, obtained by inserting a bare vertex for I', constitutes an
envelope diagram, which is not contained in the initial I, in the PA.

)

functional derivative of the self-energy is given by the bare vertex, §>1F /6G = —TI}. By replacing I, — Ty in
equation (31), we immediately find

ST = - G=-(1-Toll)loly-§=-Tk.g (32a)
MM =T+ Tyoll,oI'™ « TR — (1 - T,oIl) ol (32b)
t — L0 0 t t t 0 t 0>
I =TyolLoT™ 4 Roll, o IV & I =1 — oIy loTy oIl o TP = TR o IT, o TR, (32¢)

Equation (32¢) describes the vertex flow in the truncated Katanin form®, restricted to the t channel. If the same

vertex is used for the standard self-energy flow (equation (32a)), the fRG flow yields the HF self-energy together
. . A lad . . . .

with a particle-hole ladder vertex (note ;" = —T'*). As this vertex consists of ladder diagrams in only one

channel, it clearly violates crossing symmetry.

4. Conservation laws in the PA

In this section, we take a slightly different perspective and are not concerned with RG flows. Instead, we use our
insight into the structure of the many-body relations gained from the above derivations to address conceptual
questions of many-body (parquet) theory. First, we derive two technical results: (i) we show how one can
construct a two-particle-irreducible vertex which equals the functional derivative of the parquet self-energy.
Evidently, the operation § £/6 G can be performed in an analytical study of Feynman diagrams [39]. However, in
anumerical treatment, one never has access to the self-energy as a functional of the full propagator. Instead, one
only has its value for the specific, given propagator, and the general construction for such a vertex remains
unknown [15]. Here, we provide its construction for the case of the parquet self-energy. (ii) We demonstrate that
the parquet self-energy can be obtained from the SDE using either of two possible orderings of the bare and full
vertex. While it is believed that most approximations for ¥ obtained from the SDE obey this property [14], it has
(to our knowledge) not been shown for the PA. These results can then be interpreted in the context of
conservation laws in the PA using arguments from Baym and Kadanoff[14].

4.1. Functional derivative of the parquet self-energy
We start from the flow equation for the self-energy in skeleton form: in the PA, we have R = I'p, and thus
R’ = 0and X3 = 0, such that equation (26) reads

s = L. 6-49.G. (33)

As Ris here given by the bare vertex, our construction of a scale-dependent I (section 2) and X (section 3)
actually makes every propagator scale-dependent. Furthermore, this scale dependence is completely arbitrary,
and we can view the scale derivative of the self-energy as coming from the chain rule, ¥ = (62/6G) - G.
Regarding equation (33), we want to similarly factorize G from the term ,%(C) - G. For this, let %f(c) be the six-
point vertex obtained from "yf(c) be removing the differentiated line, such that "yf(c) is recovered by a contraction

with G, and ,-yt_(C) - G=0BO.G) - G(see figures 5 (a) and (b)). It then follows from equation (33) that

T

6 The substitution S — G in the truncated fRG vertex flow is often called Katanin substitution [38].
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6EPA )
e -L-%9.G=-1. (34)

Here, YA is the self-energy obtained from the SDE in the PA (using the vertexI' = I, + I, o II, o T'),and I/ is
the (new) two-particle-irreducible vertex that results from a functional derivative of the parquet self-energy.
(The corresponding full vertex I can be obtained by solving IV = I/ + I, o I, o I'.) The crucial point is that
—instead of taking the functional derivative—we can construct this vertex I, by taking the (initial) vertex I,in the
PA and adding the term ’°yt_(c) - G; the six-point vertex *"yf(c) needed for this can be constructed iteratively.

To elaborate this point, recall that the four-point vertex "yt_(c)

constitutes a certain part of the vertex flow (10),

2 (C)

which can be computed in a iterative one-loop fashion. To generate the six-point vertex ;’, one simply has to

remove the differentiated line, G, in this construction: one starts from a six-point vertex obtained by removing

the differentiated line in the one-loop part of equation (10). Let us call the resulting object from the p channel "’y‘f}l).

Then, *"yl(,l) can be inserted into the center part of equation (10) to generate a first contribution for "’ya(c). These

steps are illustrated in figures 5(c)—(e). Further contributions of "’yr(c) (for a certain channel r) are obtained as, e.g.

o

’Y,(l) is inserted into the left, right, or center parts (see equation (10)) of channels 7’ = r before inserting the
resulting objects into *"yr(c). We remark that this scheme is directly accessible numerically by computing one-loop
integral equations with six-point vertices. Though this will be computationally costly, it is conceptually not more
complicated than computing the four-point mfRG flow. In fact, it is not surprising that one has to deal with six-
point objects to go beyond the initial parquet vertex, since the PA exhausts (by construction) all diagrams that
can be obtained in an iterative one-loop computation involving only four-point objects.

4.2. SDE with reversed order
Next, we show that the self-energy in the PA can equivalently be obtained from the SDE with either ordering of
the involved vertices, i.e.

EPA = ESD(FO> F) G) = ESD(F> FO) G) (35)

In section 3.1, we have used the expression Xsp(In, I', G) to derive the self-energy flow (26), which finally
yielded equation (34) for the functional derivative in the PA. If we use the SDE in the ‘reversed’ order, we can
actually follow these steps in close analogy to find the same relation for the functional derivative. First, starting
from ¥ = Xsp (T, T, G), we find areplication of equation (19) with reversed order:

$i= LG+ @olloy+Toll,om)-G. (36)
Concerning the simplifications of 33, we start from (I o II, o R) - G to get (instead of equation (23))
Z.:2:72(’.)/r‘:’I_Irolr7I.r"~’1_1r°'}/r)'G- (37)
r=a,p

Then, we use the BSE with ‘reversed’ order, 7, = I o II, o I, (see equation (7)), to find the appropriate version
of equation (25)

Si==Y 39+ Telloy) -G (38)

r=a,p
The final manipulations can be made in complete analogy to obtain

SPA S 4 S = LG 0.6 = 6?GPA — L -59.G, (39)
i.e. the identical differential equation (34). Since, for the specific propagator G = 0, one has

3sp(Lp, I', 0) = 0 = Zgp(I, o, 0), it follows that the self-energy in the PA can indeed be obtained from any of
the two versions of the SDE.

The strategy of generating, first, a self-energy via the SDE and, then, obtaining a vertex by functional
differentiation has been famously put forward by Baym and Kadanoff [ 14]. They showed that, if the self-energy
can equivalently be constructed via the SDE with either order of the vertices, then, the one-particle propagator is
conserving. Thus, using this argument together with equation (35), one finds that the PA fulfills one-particle
conservation laws. Baym and Kadanoff further showed that, if the vertices are subsequently constructed from
Il = —6%/6Gand T = I/ + I/ o TI, o T, two-particle conservation laws are fulfilled as well. As is well
known, the PA does not fulfill two-particle conservation laws. In fact, equation (34) shows how the parquet
vertex I, needs to be modified to be conserving; in other words, the correction term "’yt.(c) - G allows one to
quantify to what degree the vertex I, in the PA violates conservation laws.

Furthermore, equation (34) provides a construction how to generate a fully conserving solution originating
from the parquet self-energy. After both the vertex I, and the self-energy >** in the PA have been obtained, one

o

computes 'yE(C) - G and adds this to I, to get a conserving vertex I,. Note that the original parquet self-energy

need not be modified. Similarly as one computes IV = I/ + I/ o II; o I with the original IT, (containing >*4),
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Figure 6. Illustration for the relation between (skeleton) diagrams of the vertex and the self-energy at fourth order in the interaction:
inserting the first (parquet) vertex diagram into the SDE, we generate the second diagram as part of $A. Upon taking the functional
derivative wrt to the full propagator, this self-energy diagram relates to multiple diagrams of the two-particle-irreducible vertex I,.
Among those, the third diagram, obtained by cutting the (light) red line, is an envelope diagram and not part of I, in the PA. However,
the fourth diagram, obtained by cutting the blue line, belongs to it. Note that we ignore signs and prefactors in these diagrams.

physical quantities (such as susceptibilities, conductivities, etc) are computed using I, (or ') together with XA,
The resulting solution fulfills one- and two-particle conservation laws, but, clearly, it does not fulfill the SDE
anymore. This is not surprising since, as shown in appendix B, a solution that fulfills both the SDE and the
functional derivative must be the exact solution. The preferential choice between I"and IV will surely depend on
the physical application.

We remark that there have also been suggestions of how to keep the vertex I, in the PA but modify the self-
energy, Y.'4, to obtain a thermodynamically consistent description [40]. While these ideas might be useful in
practical situations, it is, however, not possible to construct a combination of the skeleton two-particle-
irreducible vertex I,[G] in the PA together with any skeleton self-energy 3[G], such that the functional derivative
I, = —6%/6G is fulfilled. The reason is that the functional derivative generates from any diagram of ¥ a
multitude of diagrams for I[,—the same self-energy diagram related to missing diagrams of I, in the PA also
relates to diagrams that are contained in I; (see figure 6). Therefore, the functional derivative cannot be fulfilled
by starting from the PA and simply removing diagrams from the self-energy.

5. Response functions

Finally, we use our results from section 2 to derive dependent, mfRG flow equations for response functions. In
fact, the (fermionic) four-point vertex, I', and the self-energy, 3, give us full control over correlation functions
up to the four-point level, and thus they suffice to compute response functions such as three-point vertices, I'®,
and susceptibilities, x. IfI"and ¥ are obtained by an RG flow, the response functions can be deduced from the
scale-dependent "', SSA at any stage during the flow. Alternatively, the response functions '®»A and ™ are
often deduced from their own RG flows [5]. In this case, the flow equations provided by the standard fRG
hierarchy again require knowledge about unknown, higher-point vertices (namely a five-point vertex for the
flow of I'® and a boson-fermion four-point vertex for ) [6]. In particular, the inevitable truncation in the fRG
hierarchyleads to ambiguities in the computation of the response function [13, 41]. These ambiguities have been
recently resolved by a diagrammatic derivation of the mfRG flow equations for the response functions [13].
Here, we provide algebraic derivations of these flow equations. We find that one can circumvent the influence of
unknown, higher-point vertices by using exact flow equations for the response functions, which follow from the
standard relations between the response functions and the (known) fermionic four-point vertex and self-energy.

5.1. Three-point vertex
The SDE relating the (full) three-point vertex to the bare three-point vertex (often taken to be unity) and the
four-point vertex [6] is given by (see figure 7)

I =T + T8 oIl o, (40)
Employing the scale dependence described in the previous sections, we can differentiate equation (40) to get
I =TS ol ol + TS oI, o =T& ol 0T + I'%oTl, o (i, + 4). (41)
We insert the mfRG vertex flow (10), combine several terms according to equation (40), and obtain

IL‘?):F(rS’())oHroFJrFS)oH,oI}+FS60H,o(FoH,oF+FoH,of,+f,oH,oF+FoH,of,oH,oF)

=T®ol, ol + T® oM, o0, + I, 0, 0T).
(42)

The first term occurs similarly in the fRG flow equation (with the typical replacement G « S). However, the
remaining part of our flow equation successfully replaces the contributions from the unknown five-point vertex
in the fRG flow.
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Figure 7. Illustration of three exact equations for the three-point vertex in the a channel: (a) Schwinger—Dyson equation between

three- and four-point vertex; the white dot denotes the bare three-point vertex; (b) mfRG flow equation containing differentiated
vertices from the complementary channel, I, = +; and (c) standard fRG flow equation containing an unknown five-point vertex.
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Figure 8. [llustration of three exact equations for the susceptibility in the a channel: (a) Schwinger—Dyson equation relating the
susceptibility to the full and bare three-point vertex; (b) mfRG flow equation containing differentiated vertices from the ~
complementary channel, I, = 4,; and (c) standard fRG flow equation containing an unknown fermion-boson four-point vertex I'.

*

5.2. Susceptibility
The susceptibility is fully determined by the three-point vertex or (via equation (40)) the four-point vertex [6],
according to (see figure 8)

X, =TP oIl o TG =T oL, o TG + TG 0 1T, 0 T 0 I1, 0 ') (43)

We can differentiate either relation; choosing the first one, we insert the mfRG flow (42) of I'®to find the mfRG
flow of the susceptibility:

X, = F?) o Hr o Ff&+ + f‘?) oll, o Ff&+
= F?) oll, o F%T + (F?) oll,oTl'o + FQ oll,ol, + ng) oIl, o, oI, o I")oll, o F%T
=T oIl o TP + T® 6T, 01, oI, o T®T, (44)

Again, the first term occurs similarly in the fRG flow equation (with G « S), and the remaining terms in our
flow equation replace the contributions from the unknown boson-fermion four-point vertex in the fRG flow.

Let us briefly summarize: the response functions ', x can be deduced from the four-point vertex, I', and
the self-energy, 3, at any point of the RG fow. As I" and ¥ evolve with A, so do ' and X- With the above
derivation, we have cast this evolution into exact, mfRG flow equations for the response function, each
containing the vertex flow from the complementary channel (I, = 4;). The two-particle-reducible vertices still
obey the mfRG flow (10); approximations come from the chosen expression for the totally irreducible vertex, R,
which affects the initial conditions but is itself not part of the flow.

6. Conclusion

We have used the well-known self-consistent relations of the parquet formalism to derive exact flow equations
for various vertex and correlation functions. Compared to the standard fRG framework, these mfRG flow
equations can be advantageous as they circumvent the reliance on higher-point vertices. In fact, our calculations
include concise, algebraic derivations of the mfRG flow equations that have previously been derived
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diagrammatically [11-13] and have already been used [11, 13] to improve the approximations of the truncated
{RG flow (for results of two-loop fRG, see [22, 42, 43]).

The analysis presented in this paper puts the mfRG approach on a general basis. The algebraic derivations
open the route to RG flows beyond the diagrams of the PA. Since the totally irreducible vertex, R, is precisely the
part of the vertex that cannot be efficiently included in the flow, the focus can now shift to systematic ways of
computing R. If one chooses a scale dependence in the propagators that starts from G2 = 0, all reducible
contributions built on R will be fully included by the mfRG flow. Other starting points for the flow are a possible
as well. In particular, if one uses as initial, bare propagator the (self-consistently determined) one from DMFT,
G = GPMFT the nonlocal correlations not contained in DMFT will be added by a flow that starts from the self-
energy YPMIT and the full vertex TPMFT [26], thus circumventing potential divergences of RPMFT, Similarly, if
the system in question is related to another, solvable reference system [22] by variation of one-particle
parameters, mfRG can be used to tune between these systems via G*, with the guarantee that the self-consistent
parquet equations are fulfilled throughout the flow. As examples, let us mention Fermi polarons [44, 45], where
one can tune the chemical potential of the majority species, and nonequilibrium transport (see below), where
one can gradually increase the bias voltage. Our computations also provide a basis for setting up mfRG flows for
more complicated theories, including, for instance, further bosonic degrees of freedom. Generally, we believe
that the insights presented in this paper will be useful for further development of quantum-field-theoretical RG
techniques.

Additionally, we have demonstrated an intimate relation between the functional derivative of the self-energy
(inducing a conserving solution) and the (standard) fRG self-energy flow: the flow equation directly follows
from the functional derivative for the case that the propagator is varied through a scale parameter. However, a
solution of the fRG flow is consistent with the functional derivative only if the flow is independent of the specific
scale dependence, i.e. onlyif I' - S constitutes a total derivative of diagrams. A simple example for which this is
indeed the case is given by a truncated fRG flow with a (particle-hole) ladder vertex that reproduces self-
consistent HF. Building on this, it would be worthwhile to devise other approximate flows that comply with the
functional derivative but go beyond HF, thereby including an interplay between different two-particle channels.

Lastly, we have used our approach to address important general questions of (traditional) parquet theory.
Using an argument of Baym and Kadanoff[14], we have demonstrated that the PA fulfills one-particle
conservation laws. Furthermore, we have shown how to construct a two-particle-irreducible vertex equivalent to
taking the functional derivative of the parquet self-energy. With this, one can quantify to what extent the PA
violates two-particle conservation laws, and one can modify the PA to obtain a fully conserving approximation.
It would be interesting to apply this modified parquet approach in situations where conservation properties are
crucial, such as studies of transport phenomena.

The generality of our formalism opens up a vast field of applications. mfRG flows have already yielded
impressive results for the prototypical 2D Hubbard model [13] (see [42] for results using two-loop fRG) and
promise a better understanding of strongly correlated electron systems [5, 12, 20]. In the study of quantum
magnetism, the pseudo-fermion fRG approach [46] has become a competing method, and first calculations with
two-loop corrections [43] suggest that a full multiloop treatment would yield further improvements. Moreover,
mfRG can be directly applied to a variety of interesting physical problems where the most relevant properties are
expected to emerge within the PA, such as various forms of mobile impurity problems [45, 47] or one-
dimensional fermion systems [48] beyond the Luttinger liquid paradigm [49]. In the field of transport
phenomena in disordered systems, our mfRG approach could provide unprecedented insight into many-body
localization in large systems [50, 51] or interaction effects on the Anderson localization transition [52]. Finally,
we remark that mfRG flows can also be naturally set up within the Keldysh formalism [23, 53] to provide real-
frequency information, both in and out of equilibrium.
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Appendix A. Matrix notation of bubbles and loops

In this section, we define our notation for the contraction of various vertex functions. It is common to view the
contraction of one-particle quantities as matrix multiplications, such that e.g. the Dyson equation between
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Figure Al. (a) Dyson’s equation relating the full propagator G,, s (black, thick line) to the bare propagator G, (gray, thin line) and

the self-energy 3 (circle). (b) First-order diagram for the self-energy using the (antisymmetrized) bare vertex I'y (solid dot).

(c) Diagrammatic expansion of the four-point vertex I (square) up to second order in the interaction. The positions of the external
(amputated) legs refer to the arguments of '/ ./ x5. Diagrams from left to right belong to R, 7,4, 7,, and v, respectively; diagrams for
I, follow from the relation I, = T — ~,.

propagator, G v = —(c,Cy'), and the self-energy, ¥, ,, (see figures A1(a) and (b)) reads

G=Gy+Gy-%-G, (A-Bw=> AB, .. (A1)
y

For the contraction of two four-point vertices, we have three inequivalent possibilities corresponding to
the three two-particle channels r = a, p, t (standing for antiparallel, parallel, transverse, respectively; see also
figure A1(c)). In[12], the different combinations have been labeled as ‘bubble functions’ B,(I", ). Here, we
repeat the corresponding equations and show that they can be conveniently written as matrix multiplications.
For this, we will use auxiliary objects that depend on channel-dependent tuples of quantum numbers (e.g.

L stinn] = ~a;(x1', < (x))) and define a contraction o that always comes together with a two-particle
propagator IT, of a certain channel (consisting of two one-particle propagators G):

! _ !
Ba(Ds Mxfugixtit = D Dttt Gyt Gyl T ettt
VA AN A
DD
~ ~ ~7
— — /
= Z 1—‘a;(xl',xZ’),(yz’,yl’)Hu;(yz’,yl’),(yl’,yz’)Fa;(yl’,yz’),(x;,x{) = (L o Iy o Dafuginfnds (A24a)
VA AN A
MURADLDE

’ _ 1 i
By(I's T ixfixlxf = 5 / /Z/ / Dty Gyt Gyt Uy it s
W,
~ ~ ~/
— — !
= Z /FP;(X{,xz’),(yf>y2’)Hp;(}’l/,)’z/),()/{,)/z/)Fp;(yl’,yz’),(xl’,xz’) = ([ oIy o I)y ahitixls (A2b)
W,

/ _ ’
B (T, Tl oot = — / Z:/ / F)’l/”‘Z,;J'II'xZ/GJ’z,’)’IIGJ'II’)’Z/FX{,}’Z/;X{,)’Z/
VD DL
o ~ =/
_ — '
- /Z/ / D§(le,xz/),(}'lly)/]/)Hf;()’{»}’l,),()/z/»}’zl)Ft;(yz/,yz'),(xll,xl’) = (I o 1L o Iy xhalnle (A20)
Doy (rpsy)

Note that a factor of 1/2 has been absorbed into I, and a minus sign into I1,. From equations (1) and (3), it is
clear that I'g and I' are antisymmetric in their indices. Using the bubble functions (A2) together with the parquet
equations (4), one finds the further crossing symmetries stated in equation (13), which use the symbol

~
Fxl’,xz/;xl',xz/ = Fxl’,xz/;xz’,x{ = sz’,x{;xll,xz/- (A3)

If we combine two fermionic indices into one bosonic index, the above equations directly translate to three-
point vertices. For instance, one could combine the two external legs of the first vertex in the a bubble according
to some function fand interpret

®

/ !
a52,X2, X}

3
= Z/ fz,x{,xz’FXf)yz';yl',xé = (Fg) ol 0T), 1 = Z/fz,xl’,h' (T o I1s 0 I) i/ wlixt ) (A4)

!
X1>X2 X1,X2

Furthermore, one can contract a four-point vertex with a one-particle propagator to obtain another one-
particle object. We define the symbol - between vertex and propagator to be such a contraction applied to the
‘upper’ external legs of the vertex (i.e. legs 2 and 2’ in figure A1(c)). In [12], this has been dubbed a ‘self-energy
loop’, L, defined as

7L(F) G)x’,x’ = Z Fx’,y’;x,yGy,y’ = Z 1zwt;(x’,x),(y’,y)G(y’,y) = (F . G)x',x'- (AS)
vy o)

Ifthe contracting line is a composite object of the type G - ¥ - G, we can view the Glines as a t bubble attached to
the vertex, according to
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(P . (G I G))x’,x - Z Px’,y’;x,yGy,z’Zz’,sz,y’
vz

== Z i, sz Bty = —(L o I - By (A6)
'y)(2'2)

The SDE for the self-energy contains a contraction of three propagators. Using the bubble functions defined
above, this can equivalently be written with II, and IT,;:

1 0
—Zre =D ToswryinyGyy + 2 > TaywGry Gez G Ty isez

vy yhyzhzw'w
=(@+NLoel,on G) =(T+ihol,oD:G) . (A7)
x'\x 2 x'\x
The functional derivative between self-energy and two-particle-irreducible vertex (in the t or a channel) is given by
8% x
= = e yiny = Lapxyliyee (A8)
5G,.yr t5xy'5%,y ¥y

Note that in order to obtain the two-particle-irreducible vertex in the p channel from functional
differentiation, Iy ,,x, = 62y, /G,y one has to allow for variations around the physical solution which
break charge conservation.

Appendix B. SDE and functional derivative

We consider the SDE for the self-energy as well as the functional derivative between self-energy and vertex (see
equation (A8)),

S=-Ty G- (oll,oT) - G, (Bla)
6%

L=——, T'=L+Loll,ol, B1b

t 5C ¢+ 1t t (B1b)

and show that a solution for ¥ and I" that fulfills both equations (B1a) and (B1b) must necessarily be the exact
solution. In essence, this proof has already been given by Smith [15]. However, we find it useful to present it here
in our notation, which exclusively consists of properly symmetrized objects. In fact, this proof puts on solid
ground what has long been known to the community [2]: in any approximate solution to the many-body
problem, one has to decide whether to comply with either conservation laws or crossing symmetry; achieving
both amounts to finding the exact solution.

To be able to apply the functional derivative, we consider the self-energy as a functional of the full
propagator, X[G]. This is perfectly compatible with the SDE (B1a), which is formulated using full propagators
only. Furthermore, all vertex functions depend on the given theory’s bare vertex I'y (which we herelabel I'y = U
for ease of notation); in particular, this holds for X[G, U] and I'[G, U]. Since U is the bare vertex, we have
I'[G, U] = U + O(G?, U?); by use of either the SDE (B1a) or the functional derivative (B1b), it is clear
that 2[G, U] = U - G + O(G?, U?).

Assume that we know the exact vertex up to terms of order n > 2 inboth Gand U, ie., I' = I'** + O(G", U").If
we apply the SDE (B14a), we obtain (inserting into the second term) & = X + O(G" "3, U"*+!). Now, we apply the
functional derivative (Blb)and get I, = I* + O(G""2, U"'!). Finally, using the BSE (B10) yields ' = I"** +
O(G"+2, U+, je. the exact vertex one order higher in G* and U than we started with. Since we do know the exact
vertex up to terms of second order, I'[G, U] = U + O(G?, U?),itfollows by induction that a solution which fulfills
both equation (B1a) and (B1b) consists of the exact functionals X**[G, U], I'**[G, U].

We remark that this proof applies equivalently to finite-order approximations of ¥ and I" as well as to
approximations of infinite order in U. As soon as an expression for I contains the bare vertex U[15], the combination
of equation (B1a) and (B1b) requires all expansion coefficients of > and I" to be the ones of the exact solution.
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4 Counting of Feynman diagrams

4.1 Overview

Feynman diagrams, graphical representations for the myriad of mathematical expressions in quantum
field theory, “have revolutionized nearly every aspect of theoretical physics” [Kai05]. They are an
indispensable tool of many-body theory and have already appeared in various forms within this
thesis: They allow one to (i) perform and organize the many-body perturbation theory (Sec. 2.1); (ii)
construct resummations of the perturbation series as well as renormalization group flows (Sec. 2.3
and Chapter 3); and (iii) characterize fully nonperturbative approaches such as DMFT (Sec. 2.4.1)
and especially diagrammatic extensions thereof (Sec. 2.5). In order to estimate the power of a given
diagrammatic resummation or to compare different approximate approaches, it is often useful to
count the number of Feynman diagrams involved. Furthermore, the asymptotic number of Feynman
diagrams with the interaction order is of particular interest as it can be linked to convergence
properties of the corresponding perturbation series [NO9S].

The following article [P6] presents an algorithm to count the number of Feynman diagrams of
various quantities from the set of many-body relations that generates their solution. The algorithm,
inspired by the comparison of diagrams in the PA and truncated fRG flows in [P2, P3], can be
applied to diverse approximations and even the exact solution. Its iterative form ensures numerical
access to arbitrarily large interaction orders, and its general structure enables analytic statements
about the asymptotic number of Feynman diagrams.

P6 Counting Feynman diagrams via many-body relations
F. B. Kugler
Phys. Rev. E 98, 023303 (2018)
DOI: 10.1103/PhysRevE.98.023303
© 2018 American Physical Society
reprinted on pages 141-149.


https://doi.org/10.1103/PhysRevE.98.023303

PHYSICAL REVIEW E 98, 023303 (2018)

Counting Feynman diagrams via many-body relations

Fabian B. Kugler
Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience,
Ludwig-Maximilians-Universitdit Miinchen, Theresienstr. 37, 80333 Munich, Germany

® (Received 13 May 2018; published 7 August 2018)

We present an iterative algorithm to count Feynman diagrams via many-body relations. The algorithm allows us
to count the number of diagrams of the exact solution for the general fermionic many-body problem at each order in
the interaction. Further, we apply it to different parquet-type approximations and consider spin-resolved diagrams
in the Hubbard model. Low-order results and asymptotics are explicitly discussed for various vertex functions
and different two-particle channels. The algorithm can easily be implemented and generalized to many-body
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I. INTRODUCTION

In the study of many-particle systems, Feynman diagrams
are a ubiquitous, powerful tool to perform and organize pertur-
bation series as well as partial resummations thereof. To gain
intuition about the strength of a diagrammatic resummation or
to compare different variants of resummation, it can be useful
to count the number of diagrams involved, ideally for several
kinds of vertex functions. Moreover, the factorial growth in
the number of diagrams with the interaction order is often
linked with the nonconvergent, asymptotic nature of (bare)
perturbation series [1]. The asymptotic number of diagrams
generated by approximate solutions is therefore of particular
interest.

In this paper, we present an algorithm to count the number of
Feynman diagrams inherent in many-body integral equations.
Its iterative structure allows us to numerically access arbitrarily
large interaction orders and to gain analytical insights about
the asymptotic behavior. In Sec. II we recapitulate typical
many-body relations as a basis for the algorithm. The algorithm
is explained in Sec. III, where some general parts of the
discussion follow Ref. [2] quite closely; some of the ideas
have also been formulated by Smith [3]. In Sec. IV we use
the algorithm to count the exact number of bare and skeleton
diagrams of the general many-body problem for various vertex
functions and to discuss their asymptotics. Subsequently, we
consider parquet-type approximations as examples for approx-
imate solutions, and we focus on the Hubbard model to discuss
spin-resolved diagrams. Finally, we present our conclusions in
Sec. V.

II. MANY-BODY RELATIONS

A general theory of interacting fermions is defined by the
action

1
S =— ZE"' (Gal)xgxcx ~ 1 Z F((f;,’y,;x_yc"xrc"yrcycx,

x/,x x'x, 'y

ey

2470-0045/2018/98(2)/023303(9)

023303-1

where G is the bare propagator, F(()4) the bare four-point vertex,
which is antisymmetric in its first and last two arguments, and
x denotes all quantum numbers of the Grassmann field c,. If
we choose, e.g., Matsubara frequency, momentum, and spin,
with x = (iw, k, 0) = (k, o), and consider a translationally
invariant system with interaction Ujx, the bare quantities read

GO;X',X e'=g' GO;k,csk’,k 6(7’,(7 ) (23-)

) e.g.
-r = (U|k’1 _kl\a”{-al 8(,2/,02

03X} ,x55x, X,y
— U —k,185.0,801.0,) ki 416k, +h, - (2D)

Interested in one- and two-particle correlations, the many-
body theory is usually focused on the full propagator G with
self-energy ¥ and the full one-particle-irreducible (1PI) four-
point vertex I'®, which can be decomposed into two-particle-
irreducible vertices I, in different two-particle channels r €
{a, p, t} (see below). The quantities G, X, I'® are related by
the exact and closed set of equations [4-7]

G=Go+Go %G, (3a)

1
Y=-TY0G-=T?0GoGoGoT®, (3b)
0 2 0

M =1 -LoGoGol™, 1,=—§, (3c)
3G

where - represents a matrix product and o a suitable contraction
of indices [8]. The first equation is the well-known Dyson
equation, the second one the Schwinger-Dyson equation (SDE,
or equation of motion) for the self-energy, and the last one a
Bethe-Salpeter equation (BSE), where the irreducible vertex
I, is obtained by a functional derivative of ¥ w.r.t. G. These
equations together with further equations discussed below are
illustrated in Fig. 1.

The relation between I, and X is closely related [7] to an
exact flow equation of the functional renormalization group
(fRG) framework [9,10]. There, the theory evolves under the
RG flow by variation of a scale parameter A, introduced in the
bare propagator. Consequently, all vertex functions develop
a scale dependence (which is suppressed in the notation),

©2018 American Physical Society
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FIG. 1. Graphical representation of many-body relations, where solid lines represent dressed propagators G and dots represent bare four-point

vertices l"((f)

- (a) Schwinger-Dyson equation (3b) for the self-energy. (b) To perform the functional derivative §£/8G in Eq. (3¢), one sums

all copies of diagrams where one G line is removed. Conversely, the self-energy differentiated w.r.t. a scalar parameter (see main text), X, is
obtained by contracting [cf. Eq. (5a)] the vertex I, with G (line with double dash) or [cf. Eq. (5b)] the full vertex I'® with the singled-scale
propagator S [cf. Eq. (4), line with one dash]. (c) I'® deduced from the Bethe-Salpeter equation (BSE) in the transverse channel (3¢c). (d)-(e)
BSEs (7) for the reducible vertices in (d) the antiparallel channel and (e) the parallel channel. (f) Dyson equation (3a) involving the bare
propagator G (gray line). Note that the relations (a)—(c) suffice to generate all skeleton diagrams for the self-energy and the vertex (with
all signs and prefactors written explicitly). Relations (c)—(e) together with Eq. (6) enable the parquet decomposition of the four-point vertex.
Finally, the Dyson equation (f) makes the connection between bare and skeleton diagrams.

and an important role is attached to the so-called single-scale
propagator

S=G-G-2-G=01A+G-%)-Go-(T-G+1), 4
where G = dp G, etc. If the variation of G in Eq. (3¢) is realized
by varying A, one obtains by inserting Eq. (4)

Y=-LoG=-Lo(S+G-3-G)
=—U,—LoGoGol,+---)S=

(5a)
(5b)

The iterative insertion of ¥ on the rh.s. yields a ladder
construction in the ¢ channel that produces the full vertex
'™ from I, [cf. Eq. (3¢)] and results in the well-known flow
equation of the self-energy [9,10].

Finally, the relation between the full and the two-particle-
irreducible vertices is made precise by the parquet equation
[5,11]

—T®ogs.

Ir=R+Zyr’- (6)
r'#r

Here R is the totally irreducible vertex, whereas the vertices

y» with r € {a, p, t} are reducible by cutting two antiparallel

lines, two parallel lines, or two transverse (antiparallel) lines,

respectively [12]. They are obtained from the irreducible ones

via the BSEs [cf. Eq. (3c) and Figs. 1(c)-1(e)]

o =R+Yy,

y,:cr,l,oGoGoF(4), o, =1=—o0y, cr‘,,=%. @)

The relative minus sign in the @ and ¢ channel stems from
the fact that y, and y, are related by exchange of fermionic
legs. Following the conventions of Bickers [5], the factor of
1/2 used in the p channel and in Eq. (3b) ensures that, when
summing over all internal indices, one does not overcount the
effect of the two indistinguishable (parallel) lines connected to
the antisymmetric vertices.

III. COUNTING OF DIAGRAMS

A key aspect in the technique of many-body perturbation
theory is that all quantities have (under certain conventions)
a unique representation as a sum of diagrams, which can
be obtained by following the so-called Feynman rules. In
order to count the number of diagrams via many-body integral

equations, we express all quantities as sums of diagrams (i.e.,
we expand in the interaction) and collect all combinations that
lead to the same order in the interaction. These combinations of
different numbers of diagrams yield the number of diagrams
for the resulting object. In fact, the multiplicative structure
in the interaction translates into discrete convolutions of the
individual numbers of diagrams. Since the interaction vertices
start at least at first order in the interaction, the resulting
equations can be solved iteratively.

As a first example, we count the number of diagrams in the
full propagator G at order n in the interaction, N (n), given the
number of diagrams in the self-energy, N (n). We know that
the bare propagator has only one contribution, Ng,(n) = §,.0,
and that the self-energy starts at first order, i.e., N5 (0) = 0.
From Dyson’s equation (3a), we then see that the number of
diagrams in the full propagator can be generated iteratively via

Ne() = 8,0+ Y Ne(m)Ng(n —m). ®)
m=1
As already indicated, it is useful to define a convolution of
sequences according to

Ni=No# N5 & Ni(n) = ) Na(m)N3(n —m) Y. (9)

m=0

With this, we can write Eq. (8) in direct analogy to the original
equation (3a) as

NG ZNGQ+NGO*NX *NG. (10)

Similarly, we use the SDE (3b) and the number of diagrams in
the bare vertex Nr}ﬁ’ (n) = 8.1 to get

Nsx =./\/}[g4» * Ng + %NF[‘{” * Ng * Ng * Ng * Nrw. (11)

We can ignore the extra minus signs when collecting topologi-
cally distinct diagrams (for an example of many-body relations
where the relative minus signs do matter, see the Appendix).
However, we have to keep track of prefactors of magnitude not
equal to unity to avoid double counting of diagrams [5]. This is
necessary as we use the antisymmetric bare four-point vertex as
building block for diagrams. If one counts direct and exchange
interactions separately, corresponding to an expansion in terms
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FIG. 2. Examples and translation from Hugenholtz to Feynman diagrams. (a) Bare (antisymmetric) four-point vertex (dot) as used for
Hugenholtz diagrams expressed by direct and exchange interactions [cf. Eq. (2b), wavy lines] as used for Feynman diagrams. (b)—(d) Diagrams
for the reducible vertices y, in the two-particle channels a, p, 1, respectively. Whereas y, and y, have four Feynman diagrams, y,, has only two.
In fact, inserting the direct and exchange interactions from (a) into the Hugenholtz diagram containing two equivalent propagators (parallel
lines connected to antisymmetric vertices) yields only two topologically distinct diagrams, properly canceling the factor of 1/2. (e) First- and (f)
second-order diagrams for the self-energy. The prefactor of 1/2 is again canceled upon decomposing I'y. Note that, if the electron propagators
(lines) are considered as dressed ones, the above diagrams comprise all skeleton diagrams of the four-point vertex and the self-energy up to

second order.

of the amplitude U instead of the antisymmetric matrix [y
in Eq. (2b), one attributes two diagrams to the bare vertex
WV, r (n) = 26,.1], and the number of diagrams at each order
is magnified by Nx(n) — Nx(n)2". This corresponds to the
translation from Hugenholtz to Feynman diagrams [1] and
cancels the fractional prefactors (cf. Fig. 2).

The further relations for the number of diagrams that follow
from Eq. (3c) close the set of equations and will allow us
to generate the exact numbers of diagrams in all involved
quantities. The crucial point for this to work is that, on the one
hand, as T (n) o 8,1, the self-energy at order n is generated
by G (containing £) and I'® up to order n — 1 via Eq. (3b).
On the other hand, Eq. (5) [deduced from Eq. (3c)] relates X at
ordernto T atorders 1,...,n — land '™ atorders 1, .. ., n.
Knowing Ns(n) from the SDE, we can thus infer Nrw(n).
Then the algorithm proceeds iteratively.

To use the differential equations, note that a diagram of the
propagator G at order n contains 2n + 1 lines, and a diagram
of an m-point vertex '™ (weuse ¥ = I'® as in Ref. [10]) has
(4n — m)/2 lines. According to the product rule, the number
of differentiated diagrams is thus given by

Ngn) = Ng(m)@2n + 1), (12)
N (n) = Nr<m,(n)<2n - %) (12b)
Further, Eq. (5) is easily translated into
Ni = Nyo x Ns (13a)
= N, * N (13b)

and can be transformed to give an equation for the number of
diagrams in the vertices ' and I,. From Eq. (13a), we get

n—1
Nra(n) = [N:(n) — 3" N (m)Ns(n m)} /Ns(),
m=1

(14)

where the number of diagrams in the single-scale propagator
S can be obtained from the equivalent relations

NSZNG_NG*NE*NG (15a)

with Vg, (n) = 8,0 = N1(n). If we alternatively use Eq. (13b)
[combined with Eq. (3¢c)], we have

n—1
N (n) = [N;(n) = D N mNg(n — m)} [N,
m=1
(16a)
n—1
Nro(n) = Ny (m)+ Y Nrw(m)(Ng % Ng *Np,) (n — m).
m=1

(16b)

In an analogous fashion, one can also derive the number of
diagrams in the 1PI six-point vertex I'® from the exact fRG
flow equation [9,10] of the four-point vertex I'®),

Nf(A) = SNF<4) *NG *NS *Npu) +NF(6) *NS, (17

together with Eq. (12b). A further relation is given by the SDE
for '™ [17] (N = Ng * Ng)

Nra Z./\/Fw + %/\/}(4) * N % Npre
0 0
+4Nl“((,4) *NH *Nl'l *NI‘(‘” *NI‘H)
+ %NF((;U * Ng * N1 * Nreo. (18)

Finally, the number of diagrams in the vertex I'® can
be decomposed into two-particle channels according to the
parquet equations (6), (7). By symmetry, we have NV,, = N,
and obtain

Nre =NR+2Nyﬂ +Nyp, (19a)
Ny,_ = |Ur|(NF(4) —Ny,) *NG *NG *Nr(4). (19b)

Given Nrw, one can first deduce N,, and then N. If,
conversely, the number of diagrams in the totally irreducible
vertex R [with Nz (0) = 0] is fixed, as is the case in parquet ap-
proximations, one can combine these equations with Egs. (10)
and (11) to generate all numbers of diagrams without the need
to use the differential equations (13).
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TABLE 1. Exact number of Hugenholtz diagrams for various
vertex functions and the propagator up to interaction order 6. The
number of Feynman diagrams is obtained by Ny(n) — Ny (n)2",
which cancels all fractional parts (cf. Fig. 2).

n 1 2 3 4 5 6
Nro 0 0 21 3193 41801 536123
N 1 24 151 1124 9354 86303
M, 0 1 6 424 332 28545
Ny, 0 i 31 233 188 16224
Nk 1 0 0 4 83 12984
N 1 11 51 257 158 1328

5
Ne 1 23 9% 444 255 17253

IV. RESULTS

A. Bare diagrams

With the equations stated above, we can construct the exact
number of diagrams of the general many-body problem for all
involved quantities. Table I shows the number of diagrams in
the different vertices, the self-energy, and the propagator up to
order 6. After translation from the number of Hugenholtz to
Feynman diagrams by N (n) — Ny (n)2", Ng reproduces the
numbers already given in Ref. [18] (their Table I, first column)
and Ref. [19] [their Eq. (9.10)].

B. Skeleton diagrams

For many purposes, it is convenient to work with skele-
ton diagrams, i.e., diagrams in which all electron propaga-
tors are fully dressed ones. Then the bare propagator [with
NG, (n) = 8,0 = NGO(n)] is replaced as building block for
diagrams by the full propagator, for which we now use
Ng(n) = 8,0 = Ng(n). We can directly apply the previous
methods by using those equations that are phrased with dressed
propagators, such as Egs. (11), (16), and (19).

Moreover, the numbers of bare and skeleton diagrams are
directly related. According to the number of lines in an nth-
order diagram of an m-point vertex [cf. Eq. (12b)], one has

n

Nran(n) =Y N, ()(Ng # -+ x Ng )n—k)  (20)

k=1 2k—m/2

and can transform the number of skeleton diagrams ./\/lil(‘m, to
bare diagrams N . For this, the numbers of bare diagrams
in ¥ and G are built up side by side, using Eq. (8). If we
consider, e.g., the simplest approximation of a finite-order
skeleton self-energy, namely, the Hartree-Fock approximation
with N3K(n) = 8,1, BEq. (20) can be used to give Nx(n) =
0,1,2,5,14,42,132, ... for the number of bare self-energy
diagrams.

If, conversely, the number of bare diagrams Nt is known,
we can easily construct a recursion relation for /\/’13'(‘) by

TABLE II. Exact number of skeleton Hugenholtz diagrams for
various vertex functions up to interaction order 6. The number of
Feynman diagrams is again obtained by Ny (n) — Nx(n)2".

n 1 2 3 4 5 6
N 0 0 21 2561 26773 281793
NES1 20 10h sel 315 29313
;“k 0 1 4 201 123 866
by 0 : 21 113 705 493
N 1o 0 4 59 7061
Ny L3 1 5t 28 1872

inverting Eq. (20),
n—1

Nk, ()= [N o (1) =) N ()

k=1

x (N # - *M;)(n—k)}/(/\fc 5 Ng)(0).
— —— — ———

2k—m/2 2n—m/2

2y

Table II shows the number of skeleton diagrams in the
various quantities. The number of skeleton Feynman diagrams
for the self-energy, N3X(1)2", agrees with the numbers given
in Ref. [20] [coefficients in their Eq. (17) using £ = 1] and
Ref. [21] (their Table 4.1, column 2 [22]).

C. Asymptotic behavior

From combinatorial arguments, it is clear that the number of
diagrams exhibits a factorial growth with the interaction order
n. Indeed, Fig. 3 (full lines) shows the number of diagrams in
different vertex functions Nrw divided by their (numerically
determined) asymptote

(m=1)/25(m=2)/2

Nrow ~nln n>1 (22)

as a function of 1/n. The fact that the curves linearly approach
a finite value demonstrates that, indeed, the correct asymptotic
behavior has been identified. We find the same proportionality
factor for all vertex functions.

The m dependence in Eq. (22) can be readily understood
from the universal part of the exact fRG flow equations, '™ =
—I'™+2 5 § 4+ ... [9,10]. Due to the factorial growth, we have
Nx(@m) > Nx(n — 1) for n > 1, and the leading behavior is
determined by [using N5(0) = 1 and Eq. (12b)]

Nrw+ (m)Ns(0) ~ Nion(n) ~ 20 Nron (n), n > 1. (23)

The asymptotes of G and ¥ = I'® agree due to the simple
relation deduced from Eq. (10) forn > 1,
N (n) ~ Ng,(0ONz(mNG(0) ~ Nx(n) ~nin'/?. (24)
The number of diagrams in the reducible vertices y;, divided
by the same function as I'® (dotted lines in Fig. 3) go to zero.

In fact, the correct asymptote of the reducible vertices (as used
for the dashed lines in Fig. 3) is found from the BSEs (19b)

N, (n) ~ 2|0y [INra (DNG(0)NG (0)Nrw (n — 1)
~ 4o, |(n — D% = 4lo,nn'?, n>1. (25)
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FIG. 3. Plots for the rescaled number of (a) bare and (b) skeleton
diagrams with n ranging up to 1500. Numbers are rescaled as
Ny (1) = Nran (n)/(nln®=D7220m=2/2) [Eq. (22)]; G is rescaled
in the same way as ¥ = I'® [Eq. (24)]; R and y, (r = a, p, dotted)
in the same way as I'®. Dashed lines for y, account for the correct
asymptote, showing N, / (4|0, |n!n'/?) [Eq. 25)].

According to Eq. (19a), the number of diagrams in the totally
irreducible vertex R must then grow as fast as Nrw),

Nr(n) ~ Nrw(n) ~ 2nln’?,
N, (n) 2oyl
Nr(n) n

From Fig. 3, we indeed see that N > N, N, forn > 8.

The proportionality factor of roughly 1.128 in the asymp-
totics of the bare number of diagrams can be derived from
a combinatorial approach to count diagrams in m-point con-
nected Green’s function G (with G = G®). If the recursion
relation for G given in Ref. [19] [their Eq. (9.10)] is translated
to Hugenholtz diagrams and generalized to m-point functions,
it reads

(26a)

, o n> 1. (26b)

n

2n+m/2)! (2k)!
nan 2 k14

Ngm(n) = Ngm(n — k), (27)

k=1

where the first summand accounts for all topologically distinct
contractions and the second summand removes disconnected
ones. For the asymptotic behavior, it suffices to subtract the
fully disconnected part [the k = n summand dominates since
Nx(n) > Nx(n — 1)], and we obtain, using Ngm (0) = O(1)
and Stirling’s formula,

2n+m/2)! B 2n)! N 2n)"?(2n)!

Nom(m) ~ — nl4n 14

2
~ plpn=D2pm=2/2 (28)
VT '

Comparing this to Eq. (22), we indeed find a proportionality
factor of 2//7 ~ 1.128 [23].

D. Asymptotics of parquet approximations

In any type of parquet approximation, one has Nz(n) =0
for n > n, (i.e., n, denotes the highest-order contribution
retained for R), whereas the reducible vertices and the self-
energy still extend to arbitrarily high orders, as determined
by the self-consistent BSEs (7) and SDE (3b). However,
in this case, a factorial growth in the number of diagrams
[Nx(n) > Nx(n — 1)] leading to Eq. (26) would contradict
a vertex R of finite order. Hence, the number of diagrams
in any approximation of the parquet type can at most grow

ratio
T

n, =30 N
10, =12 ﬁ N np=12
\
0 1 - 1 - 1 1 - 1 1
1073 102 1/ 1077107 1072 1), 1071

FIG. 4. Ratio of subsequent elements of (a) Ny and (b) N3
in the parquet-type approximations with n, = 30 and n, = 12 (see
main text). We use the same color coding as in Fig. 3; dashed lines
represent ;. The inset shows an analogous plot for A/, obtained from
a finite-order self-energy (n, = 20) [cf. Eq. (29)]. The cusp for I'®,
%, G occurs at 1/n,, (inset: 1/n;), and for y, at 1/n,, + 1, due to the
structure of the BSEs [cf. (19b)].

exponentially [Nx(n)/Nx(n — 1) ~ O(1)]. Figure 4 shows
how the quotient of two subsequent elements in ANy subject
to (two different) parquet-type approximations approaches a
constant; it confirms the exponential growth and reveals that
the exponential rate only depends on n, for all vertex functions.
Curiously, one finds dampened oscillations modulating the
growth in the number of diagrams for n > n, 2 10.

An analogous phenomenon already occurs by using the
Dyson equation with a self-energy of finite order (cf. Fig. 4,
inset). Again, a factorial growth in the number of diagrams
[Nx(n) > Nx(n — 1)] leading to Eq. (24) would contradict
such an Ny, and Ng can at most grow exponentially. If
Nx(n) = 0 for n > ny, Eq. (8) is simplified to

min{n,n,}
Ne(m)=8,0+ Y NsmNo(n—m). (29)

m=1

For large n, the factor Ng(n — m) spans over the orders n —
ng, ..., nand produces “fading echoes” of the abrupt fall in the
quotient which stems from the first occurrence of Nx(n) = 0
atn =ny + 1.

Even if only the skeleton diagrams of, e.g., ¥ or R are
of finite order, the resulting numbers of bare diagrams can
grow at most exponentially. The reasoning is similar: A
factorial growth in the number of diagrams [N (n) > Ny (n —
D] would imply Npen (n) ~ N, (nmin)NG (n — nmin), using
Eq. (20) and Ng(0) = 1. For ¥, one has ny, = 1, and the
result would directly contradict Eq. (24). For R, one has
Nmin = 4 and would find a contradiction using Egs. (23), (24),
and (26). We conclude that for any of the typical diagrammatic
resummation approaches, one generates numbers of (bare)
diagrams that grow at most exponentially with interaction
order n.

E. Hubbard model

The Hubbard model [24] is of special interest in condensed
matter physics. In terms of diagrams, a simplification arises due
to the SU(2) spin symmetry of the model with the restrictive
bare vertex (o € {1, |})

“)

0:x{,x5:x1,X2 3 (8‘71’,”1 6"2,’02 - 8"1,"728"2/"71) 5‘71"?2’ (30)
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TABLE III. Exact number of spin-resolved bare diagrams in the
Hubbard model. By symmetry, we have AT = A!", and one further
finds NV = J\/'ytf [cf. Fig. 5 and Eq. (A9)].

TABLE IV. Exact number of spin-resolved skeleton diagrams
in the Hubbard model, where we again have NV¥1 = ASKT and

NKM = skt

Ya Yp
n 12 3 4 5 6 7 n 12 3 4 5 6 7
Ne 1 2 8 44 296 2312 20384 N 112 9 54 390 3268
NI 20 13 104 940 9352 101080 AYNY 1 2 9 54 390 3268 30905
NIF0 36 300 2760 27544 NG00 317112 850 7289
N0 0 3 30 28 2758 2856  AGTY 0 00 3 18 120 928 8029
N1 0 2 58 1074 17466 N1 0 0 2 46 640 8298
N0 2 12 94 a8 saes o016 Njo 02 8 48 352 2078 28376
sk 14 2 1 102 7
NIT0 1 s 3e6 354 3334 2 0 36 028 8768
N Nt 0 0 0 2 16 126 1064
NIT0 0 2 28 320 3532 e
VT"T Ny 0 0 0 4 64 796 9776
Ne' 000 4 88 1440 2IBI6 skt g g 8 120 1376 15648 185296
Nigh 00 8 144 2072 28744 402736 AT 00 00 120 108 1188 13464 160236
N0 00 120 144 1872 25176 349812

where 1 = |, | = 1. In this case, one can individually count
diagrams with specific spin configuration. In other words,
one can explicitly perform the spin sums in all diagrams and
actually count only those diagrams that do not vanish under
the spin restriction.

So far, we have considered diagrams that contain summa-
tions over all internal degrees of freedom—including spin.
Generally, our algorithm cannot give the functional depen-
dence of the diagrams and, in particular, does not give the
spin dependence of the diagrams. If one writes the relations
stated above with their explicit spin dependence (as done in
the Appendix), one finds that the SDE relates the self-energy
to the vertex with different spins at the external legs. However,
the differential equations contain a summation over all spin
configurations of the vertex. Thus, Egs. (14) and (16a) cannot
be used to deduce the number of spin-resolved vertex diagrams.

As already mentioned, for approximate many-body ap-
proaches that do allow for an iterative construction, such as
parquet-type approximations, we need not make use of the
differential equations. We could therefore easily construct the
corresponding numbers of spin-resolved diagrams. However,
here we prefer to give low-order results for the exact numbers
of diagrams for all the different vertex functions by resorting to
known results: We use exact numbers of diagrams for a specific
quantity not considered in this work, which are obtained by
Monte Carlo sampling up to order 7 in Ref. [25] (their Table
I). From this, we can deduce the number of diagrams in the
totally irreducible vertex R and, then, generate the numbers
for all further vertex functions studied here.

Using spin symmetry, only a few spin configurations of
the vertices are actually relevant: One-particle properties must
be independent of spin; for two- and three-particle vertices, it
suffices to consider those with identical spins and those with
two different pairs of spins. In the Appendix we explain the
labeling and give further relations that follow from the SU(2)
spin symmetry and rely on cancelations of diagrams.

Table III gives the exact number of bare diagrams for the
Hubbard model up to order 7; Table IV gives the corresponding

numbers of skeleton diagrams. The numbers for N;k up to
order 6 agree with those of Ref. [21] (their Table 4.1, column
3). Note that, for spin-resolved diagrams of the Hubbard
model, we can use the internal spin summations to express
all Hugenholtz diagrams in terms of the bare vertex I‘g v with
fixed spins, containing only one diagram. Hence, the number
of spin-resolved Hugenholtz and Feynman diagrams for this
model are equal (cf. Fig. 5).

It is interesting to compare the number of diagrams in the
four-point vertex with identical and different spins. On top of
the numbers given in Tables III and IV, our algorithm can also
determine the asymptotic behavior of, e.g., the relation between
/\/FT(I, and le(f). If we consider skeleton diagrams, the SDE
(A7a) with NG (n) = 8,1 yields N3E(n + 1) = N2 ().

0

Combined with the (super) factorial growth of gk, this gives

AN ) Z N+ D) = N, > 1 G

On the other hand, Eq. (12b) and Eq. (A7c) together with the
knowledge that 'z asymptotically dominates -« can be used

FIG. 5. Spin-resolved diagrams of the Hubbard model in the
Hugenholtz and Feynman representation up to second order. Blue
(dark) lines denote spin-up and red (light) lines spin-down propa-
gators; dashed lines symbolize a sum over spin. Panels (a)—(c) give
diagrams for [}¥, ¥, and y)¥5 (d)—(e) for y,!" and v and (H—(g)
for X. Viewed with full propagators, these are all skeleton diagrams
entering I'® and ¥ up to second order. We explicitly see that the
numbers of Hugenholtz and Feynman diagrams are equal.
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to obtain

20N () S N ) + N ()

SN+ N ), > (3

Dividing both equations, we find that, according to

k sk
1o ~ N ) /N () 2 1,

rm(”)/ n>1,

(33)

the number of diagrams for the effective interaction between
same spins asymptotically approaches the one between differ-
ent spins from above for large interaction orders.

V. CONCLUSION

We have presented an iterative algorithm to count the
number of Feynman diagrams inherent in many-body integral
equations. We have used it to count the exact number of bare
and skeleton diagrams in various vertex function and different
two-particle channels. Our algorithm can easily be applied to
many-body relations of different forms and levels of approxi-
mation, such as the parquet formalism [5,11] and its simplified
variant FLEX [5], other approaches based on Hedin’s equations
[4,20] including the famous GW approximation [26,27], ®-
derivable results deduced from a specific approximation of the
Luttinger-Ward functional [5,28,29], and truncated flows of
the functional renormalization group [2,9,10,30].

Due to its iterative structure, the algorithm allows us to
numerically access arbitrarily large interaction orders and
gain analytical insight into the asymptotic behavior. First, we
have extracted a leading dependence of n!n®"~1/220m=2)/2 jn
the number of diagrams of an m-point 1PI vertex. Second,
we have shown that the number of diagrams in the totally
irreducible four-point vertex exceeds those of the reducible
ones for interaction orders n > 8 and asymptotically contains
all diagrams of the four-point vertex [i.e., NV}, (n)/Ng(n) — 0
as n — oo]. Third, we have argued that any of the typical
diagrammatic resummation procedures, including any type of
parquet approximation, can support an exponential growth
only in the number of diagrams. This is in contrast to the
factorial growth in the exact number of diagrams. It is therefore
likely that the corresponding approximate series expansions do
have a finite radius of convergence.

We believe that the techniques and results presented in
this paper will be useful for various applications of Green’s
functions methods as well as approaches that directly sum
diagrams, such as finite-order approximations or diagrammatic
Monte Carlo [31].
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APPENDIX: RELATIONS FOR THE HUBBARD MODEL

The spin symmetry in the Hubbard model allows us to focus
on a small set of vertex functions when counting diagrams. By
spin conservation, an n-particle vertex depends on only # spins.
Using the Z, symmetry, it is clear that self-energy diagrams do
not depend on spin, while, for the four-point vertex, it suffices
to consider

NI = NI AT = NI (A1)
Here we write the spin indices of the vertex in the order of
Eq. (1) as superscripts of . The classification of four-point
diagrams into two-particle channels depends on the labels of
the external legs. By crossing symmetry, we have N/t = A1
and find for different spins

NI 1= NJEI = N6, (A2a)
NIV = NIEN = AT (A2b)
'/\/’J/T’l = NyTi;N ZNJ/T{‘i;lT_ (A2¢)

For the six-point vertex, we need to consider only (the
semicolon again separates incoming and outgoing lines)
NFT(I)T = NFT(I,T;MT, NNT NNT T (A3)
The SU(2) spin symmetry further relates the remaining
components of the four-point vertex by [13]

1—~(4)

_ 1@ “)
ptartiptigt T r ; -r

ptardipl.gt prardiql.pt? (Ad)

where we have decomposed the quantum number x into
p and o. However, this subtraction involves cancelations
of diagrams as opposed to the summation of topologically
distinct, independent diagrams we have encountered so far.
This can already be seen at first order where A TH) = 0. Such

cancelations of diagrams can only change the number of
diagrams by a multiple of 2. Consequently, we infer that
N T4 Nru) € 2NO~ (AS)
If we further invoke the channel decomposition with crossing
symmetries, we find that all of
N " 1 ! 4
INJE =N AN S NI N A - AT (a6)
are nonnegative, even numbers (as can explicitly be checked
in Tables III and 1V).
Next, we perform the spin summation in the different many-
body relations stated in Sec. III. Starting with Egs. (11) and

(13) for the self-energy, we get

Ny = N% * Ng +./\/IT§) * N« NG « N o, (ATa)

Ny = (Nr(4) +N|~T<4T)) * N
= (/\/’,Tl +N1TT)*NG'.

(A7b)
(A7c)
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From Egs. (17) and (18), we similarly get for the four-point

vertex (N, = Ng * Ny)
/\/’F% =2\ o * N * N e + Nrw s Ny, r<4)
N(ﬁ) * Ny, (A8a)
NF(A, = NFM) s« N % r<4> NFTH) 5 Ni, * r<4>
+ NI 5 N+ ML 5 N, (A8b)
NI = Nr“" +2N 1 int * N+ N
+NFE{” * N+ N1 et + NN e * N */\/}16,
+3NFT§) * N N *NFW x N1Y b
+4NFT3,*NH * N« N1« ML (AS8c)

Nrm =2N1 it * N *Nr%
+Nr(‘)4> * N« N1 o
—1—4/\/}% * N+ N+ N1 b9 * N ih
+3NM 1 it * N * N *Nrm s« N1 -

NFW * NI'I * NFT(ﬁ)T

(A8d)

Finally, we resolve the parquet equations (19) in their spin
configurations and obtain

r(A) = Noa + ZNGJ (A9a)

NI = NZ§ - N3, (A9)
NIV = N s N N (A9¢)
N =NY s N« N (A9d)
N)/T,¢=/\/’1T¢*Nn *N(4)+N,TT*/\/'H *Nm, (A9e)
N = J\/’,M * N+ N1+ ./\/,Tl * Nnx N1, (A9
NI = %fo * N+ M1, (A9g)
N)/TIT:NITT*NH*N<4)+N1Tl*Nn*N(4, (A%h)

In Sec. III we combined the Schwinger-Dyson with dif-
ferential (or flow) equations to iteratively construct the exact
number of diagrams. Here we see that the Schwinger-Dyson
equations of ¥ [Eq. (A7a)] and I'® [Egs. (A8c) and (A8d)]
contain the corresponding higher-point vertex I'® and I'©®),
respectively, only in the configuration with different spins.
However, the differential equations [Egs. (A7b) and (A7c)
and Eqgs. (A8a) and (A8b)] involve the same higher-point
vertex in all of its spin configurations. It is for this reason
that one cannot iteratively construct the exact number of
spin-resolved diagrams. However, the equations can easily be
used to generate the number of diagrams in approximations
that do allow for an iterative construction, such as parquet-type
approximations or approximations that involve a finite number
of known (bare or skeleton) diagrams.
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5 Transport through multilevel quantum
dots

5.1 Overview

Quantum dots constitute fascinating and, at the same time, minimalist quantum systems, which
play a central role in nanotechnology. Considering, e.g., their potential as single-electron transistors,
transport through quantum dots is of particular interest. In the simplest version, a quantum dot
can be occupied by at most two charge carriers, corresponding to electrons with two different spin
states—a setup well studied in the literature [HKP07]. The following articles' focus on transport
through generic quantum dots, where a dot of N levels is enclosed between a right (R) and left (L)
lead of Nr and Np, levels, respectively. The latter two can be chosen equal to N without loss of
generality [P7], and the case N = 3 is given special attention.

The first article [P7] focuses on the Coulomb-blockade regime with a singly occupied dot at
large Coulomb repulsion. It employs poor man’s RG as well as NRG to show that the equilibrium
three-level quantum dot hosts an SU(3)-symmetric fixed point. It further reveals that the situation
is much richer in nonequilibrium, where, in particular, the finite bias voltage drives the system
towards a fixed point of different symmetry compared to the equilibrium case. The second article
[P8] considers the regime of strong charge fluctuations. By comparing results of NRG, fRG, and
the real-time renormalization group (RTRG), it advertises RTRG as a versatile tool to describe
charge fluctuations in general quantum dots both in and out of equilibrium.

P7 Flavor fluctuations in three-level quantum dots: Generic SU(3) Kondo fized point in equilibrium
and non-Kondo fized points in nonequilibrium
C. J. Lindner, F. B. Kugler, H. Schoeller, J. von Delft
Phys. Rev. B 97, 235450 (2018)
DoI: 10.1103/PhysRevB.97.235450
© 2018 American Physical Society
reprinted on pages 151-171.

P8 Renormalization group transport theory for open quantum systems: Charge fluctuations in
multilevel quantum dots in and out of equilibrium
C. J. Lindner, F. B. Kugler, V. Meden, H. Schoeller
Phys. Rev. B 99, 205142 (2019)
DOI: 10.1103/PhysRevB.99.205142
© 2019 American Physical Society
reprinted on pages 172-188.

1 The author of this thesis implemented the NRG code, produced the NRG results for both publications, and
contributed to writing the manuscripts, especially section III of [P7].
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We study a three-level quantum dot in the singly occupied cotunneling regime coupled via a generic tunneling
matrix to several multichannel leads in equilibrium or nonequilibrium. Denoting the three possible states of the
quantum dot by the quark flavors up (1), down (d), and strange (s), we derive an effective model where also each
reservoir has three flavors labeled by u, d, and s with an effective density of states polarized with respect to an
eight-dimensional F spin corresponding to the eight generators of SU(3). In equilibrium we perform a standard
poor man’s scaling analysis and show that tunneling via virtual intermediate states induces flavor fluctuations on
the dot which become SU(3) symmetric at a characteristic and exponentially small low-energy scale Tk . Close
to Tk the system is described by a single isotropic Kondo coupling J > 0 diverging at Tk . Using the numerical
renormalization group, we study in detail the linear conductance and confirm the SU(3)-symmetric Kondo fixed
point with universal conductance G = 3 sin*(rr/ 3)% = 2.25% for various tunneling setups by tuning the level
spacings on the dot. We also identify regions of the level positions where the SU(2) Kondo fixed point is obtained
and find a rather complex dependence of the various Kondo temperatures as function of the gate voltage and the
tunneling couplings. In contrast to the equilibrium case, we find in nonequilibrium that the fixed-point model is not
SU(3) symmetric but characterized by rotated F' spins for each reservoir with total vanishing sum. At large voltage
we analyze the F-spin magnetization and the current in Fermi’s golden rule as function of a longitudinal (/) and
perpendicular (4, ) magnetic field for the isospin and the level spacing A to the strange quark. As a smoking gun
to detect the nonequilibrium fixed point we find that the curve of zero F-spin magnetization in (k,,h,A) space
is a circle when projected onto the (h,,h ) plane. We propose that our findings can be generalized to the case of

quantum dots with an arbitrary number N of levels.

DOI: 10.1103/PhysRevB.97.235450

I. INTRODUCTION

Over the last three decades, transport properties of cor-
related quantum dots have gained an enormous interest in
many experimental and theoretical research activities in con-
densed matter physics. As artificial atoms they allow for a
controlled study of interesting phenomena playing a central
role in many different fields of applied and fundamental
research in nanoelectronics, spintronics, quantum information
processing, dissipative quantum mechanics, and many-body
physics and nonequilibrium phenomena in correlated systems
(see, e.g., Refs. [1,2] for reviews). Of particular interest is the
cotunneling or Coulomb blockade regime of quantum dots
with strong charging energy, where the charge is fixed and
only the spin and orbital degrees of freedom can fluctuate
by second-order tunneling processes via virtual intermediate
states. In this regime, effective models can be derived which
are equivalent to Kondo models well known from solid-state
physics [3] (see, e.g., Ref. [4] for a review of the Kondo
effect in quantum dots). The standard model is the SU(2)
Kondo model, where a local spin-% is coupled via an isotropic

“schoeller @physik.rwth-aachen.de
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exchange coupling to the spins of two large reservoirs. Below a
characteristic low-energy scale, called the Kondo temperature
Tk, the local spin is completely screened and the remaining
potential scattering leads to resonant transport through the
system with universal conductance 2% This Kondo effect
has been theoretically predicted for quantum dots [5] and has
been experimentally observed [6]. After this discovery, the
research for Kondo physics in quantum dots has gained an
enormous interest and further realizations have been proposed
and observed, such as, e.g., the realization of higher spin values
[71, singlet-triplet fluctuations [8], non-Fermi-liquid behavior
in two-channel realizations [9], and the SU(4) Kondo effect
[10]. Recently, also the realization of SU(N) Kondo physics
for arbitrary N has been proposed in coupled quantum dots
[11-13].

The enormous variety of possible realizations of Kondo
physics raises the question as to what happens in the generic
case when a quantum dot in the regime of fixed charge with
Nyot = 1 electrons and N > 2 levels is coupled via a generic
tunneling matrix to several multichannel reservoirs. Even for
the simplest case Ngor = 1 and N = 2, this issue is nontrivial
since the quantum number / = 1,2 labeling the two dot levels
is in general a nonconserved quantity in tunneling, such as,
e.g., for ferromagnetic leads [14], orbital degrees of freedom

©2018 American Physical Society
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[15], Aharonov-Bohm geometries [16], and spin-orbit or
Dzyaloshinski-Moriya interactions [17,18]. In Ref. [16] it
was shown via a singular value decomposition of the total
tunneling matrix (i.e., containing all reservoirs) that all these
different cases can be mapped onto an effective model which is
equivalent to the anisotropic spin—% Kondo model which flows
into the isotropic SU(2)-symmetric fixed point at low energies
below the Kondo temperature. This explains why in all
linear response transport calculations of quantum dot models
with Ngot = 1 and N = 2, the Kondo effect with universal
conductance is observed provided that local effective magnetic
fields are explicitly canceled by external ones [19]. However,
this result is only valid in the linear response regime and for
proportional couplings to all the reservoirs where the linear
conductance can be related to the equilibrium spectral density
of the dot [20]. To calculate the latter, all reservoirs can be taken
together to a single one and only the total tunneling matrix
matters. However, when all reservoirs are coupled in a generic
way to the dot or when they are characterized by different
temperatures or chemical potentials, the analysis of Ref. [16] is
no longer valid. This fact was emphasized in Ref. [21], where
it was shown that in a generic nonequilibrium situation, the
proper effective model for Ngor = 1 and N = 2 is a spin-valve
model, where the spin polarizations of all reservoirs point in
different directions, such that at the low-energy fixed point
their sum is equal to zero. This has the consequence that the
fixed-point model in nonequilibrium is essentially not SU(2)
symmetric and new interesting nonequilibrium fixed-point
models emerge with different non-Kondo-type properties in
the weak- as well as in the strong-coupling regime. Only in
the equilibrium situation when all reservoirs are characterized
by the same temperature and chemical potential, all reservoirs
can be taken together, resulting in an unpolarized reservoir
with SU(2) symmetry at the fixed point. The nonequilibrium
properties at and away from the fixed-point model have been
studied for large voltages above the Kondo temperature [21],
and a smoking gun was identified in the nontrivial magnetic
field dependence of the magnetization and the transport
current characterizing the fixed-point model.

The proposals of new nonequilibrium fixed-point models
are of particular interest for the constant effort to generalize
well-established analytical and numerical methods for the
study of equilibrium properties of quantum impurity models
[3,22] to the nonequilibrium case. Recent developments of
perturbative renormalization group methods [23-26] have
shown how the voltage dependence and the physics of cutoff
scales by decay rates can be implemented [27] and how the
time evolution into the stationary state can be calculated
[28]. Even in the strong-coupling regime [29,30] results in
agreement with experiments [31] were obtained, although the
used methods are essentially perturbative and not capable of
describing the strong-coupling regime in general. Therefore,
numerically exact methods are required for the description
of quantum dot systems in nonequilibrium, such as, e.g., the
time-dependent numerical renormalization group (TD-NRG)
[32], time-dependent density matrix renormalization group
(TD-DMRG) [33], iterative stochastic path integrals [34], and
quantum Monte Carlo methods [35]. Recently, a promising
thermofield approach has been suggested by a combination
of TD-NRG and TD-DMRG [36] showing a good agreement

with the strong-coupling results for the nonequilibrium Kondo
model of Refs. [29-31].

The aim of this paper is to analyze the generic case Ngor = 1
and arbitrary N to see how the results of Ref. [21] can be
generalized to the case N > 2. In particular, we will study the
case N = 3 and, starting from a generic tunneling matrix, will
show that an effective tunneling model can be derived where
also the reservoirs are characterized by three flavors which we
will conveniently label by the up («), down (d), and strange
(s) quark flavors. The effective model in the cotunneling
regime of a singly occupied quantum dot can be described by
flavor fluctuations, and we will show by a poor man’s scaling
analysis that the low-energy fixed-point model is indeed the
SU(3)-symmetric Kondo model. This result is shown to hold
also for arbitrary N within the poor man’s scaling analysis
and will be explicitly confirmed for N = 3 by a numerically
exact NRG analysis for the linear response conductance,
similiar to Refs. [12,13]. In addition to these references, we
will study the dependence of the SU(3) Kondo temperature
on the tunneling matrix elements and will show how the
SU(3)-symmetric point is obtained by a proper adjustment of
the level spacings of the dot. Subsequently, we will analyze
the nonequilibrium situation and generalize the spin-valve
model of Ref. [21] for N =2 to the case of three levels
N = 3. In this case, a fixed-point model arises where the
reservoirs are characterized by eight-dimensional F spins
corresponding to the eight generators of the SU(3) group which
cancel when all reservoirs are taken together. For large voltages
and two reservoirs we find that the nonequilibrium fixed-point
model has a characteristic dependence on the dot parameters
for zero F-spin magnetization on the dot providing a smoking
gun for the detection of the fixed point. Thus, we conclude
that the results of Ref. [21] can indeed be generalized to the
case of N > 2 levels with a great potential for a variety of new
interesting nonequilibrium fixed-point models where the low-
energy behavior in the strong-coupling regime is still unknown.

The paper is organized as follows. In Sec. Il we will derive
various effective models. We will set up effective tunneling
models in Sec. II A and the effective model in the cotunneling
regime in Sec. II B. The fixed-point model is obtained via a poor
man’s scaling analysis in Sec. IIC for arbitrary N. In Sec. IID
we consider the particular case N = 3 and will set up the rela-
tion to the representation of the SU(3) group and the physical
picture in terms of F-spin interactions. In Sec. III we will use
the NRG method to confirm the SU(3)-symmetric fixed-point
model in the linear response regime. Finally, in Sec. IV we
analyze the nonequilibrium properties of the fixed-point model
in the perturbative regime of large voltage via a Fermi’s golden
rule approach. The general formulas are derived in Sec. IVA
and the magnetization and the current are calculated as function
of characteristic dot parameters for the case of two reservoirs
in Sec. IVB where the smoking gun for the detection of the
fixed-point model is derived. We close with a summary of our
results in Sec. V. We use units e = /i = 1 throughout this paper.

II. DERIVATION OF EFFECTIVE MODELS

In this section we start from a quantum dot with N levels
coupled via a generic tunneling matrix to N multichannel
noninteracting reservoirs in grand-canonical equilibrium. We
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show in Sec. IT A that this model is equivalent to an effective
one where the number of channels in each reservoir is the same
as the number N of the quantum dot levels. For the special
case of N = 3 this sets the basis to use a notation in terms of
three flavor states for the three channels and to characterize
the reservoirs by rotated F' spins with a certain isospin and
hypercharge polarization. In addition, we will set up various
effective tunneling models and characterize the properties of
the central fixed-point model derived in Secs. II B-IID for the
cotunneling regime, where the number N4y of particles on
the dot is fixed to Ngoc = 1, such that only flavor fluctuations
via virtual intermediate states can occur. In this regime, we
will derive an effective model describing flavor fluctuations
and propose the fixed-point model from a poor man’s scaling
analysis.

A. Effective tunneling models

The starting point is a quantum dot consisting of N lev-
els characterized by some quantum number / = 1,2,...,N,
together with a Coulomb energy Ey,, depending only on the

total particle number operator Ngot = Y , c;rcl of the dot

Hyo = thz/clfcl' + ENgy» ey
I

Eng, = Ec(Ngot — 1), 2)

where c;r/ ¢; are the creation/annihilation operators of the
single-particle states of the dot. The charging energy E. is
assumed to be the largest energy scale in the problem such that,
for small &y, the parameter n, determines the occupation of
the dot. If n, = n is integer, the ground state will be dominated
by Ngot = n, whereas for half-integer n, = n + %, states with
Ngot = n,n + 1 are degenerate with respect to the Coulomb
interaction. For convenience, we define the gate voltage by

Ve = E.(2n, — N), (3)

such that V, =0 (or n, = N/2) defines the particle-hole-
symmetric point for & = 0. With this definition we can also
write the dot Hamiltonian in second quantized form as

- U .
Hyo = Z hn'ClTCl' + > Z C,TC;CCI/CZ, (€]
w I

with U = 2E, and by = hyy — [V + (U/2)(N — D]y
The quantum dot is coupled via a generic tunneling matrix
to several infinitely large reservoirs o = 1,2, ..., Ny kept at
grand-canonical equilibrium with temperature 7 and chemical
potential 4, such that the total Hamiltonian reads as

Hiot = Hyot + Hies + Hr, (5)
with the reservoir Hamiltonian
Hyes = Z €qvyk aludkaavukv (6)
avgk

and the tunneling Hamiltonian

1 B
T = \/[W Z {tlila;zvakc/ + (t;fa,)*c;awuk}. N

avelk

Here, v, = 1,2, ...,N, is the channel index for reservoir o
(with N, channels in total), €, is the band dispersion of
reservoir « for channel v, relative to the chemical potential
e and labeled by k (which becomes continuous in the
thermodynamic limit), and 7}, is the tunneling matrix between
the dot and reservoir a. p© is some average density of
states (DOS) in the reservoirs, which is set to p(® = 1 in the
following defining the energy units. In vector-matrix notation,
the tunneling Hamiltonian can be written in a more compact
form as

— 1 i
Hr =) falyt c+c'dl ay), ®)
ak
where ¢f = (c]L, - ,c,T\,), glk = (alw - ,alNak), and 7 is a

Ny x N matrix with matrix elements # ;. For convenience,
we have taken here a tunneling matrix independent of k which
is usually a very good approximation for rather flat reservoir
bands on the scale of the low-energy scales of interest.

Using Keldysh formalism. it is straightforward [20,37] to
relate the stationary current /,,,, inreservoir o and channel v, to
the stationary nonequilibrium greater/lesser Green’s functions

Glzl, (w) of the dot via
e e
I, = ZfdwTrgm{[l = fo@)]iG™(w)

+ fa(@)iG™ ()}, C))

where Tr denotes the trace over the single-particle states of
the dot, f,(w) = (e#® ) 4+ 1)~! is the Fermi function of
reservoir o, and the (N x N)-hybridization matrix ;l is

defined by "
(T, )i = 27pa, (t5) 151 (10)

Here, pgy, = Y 4 8(@ — €qy k) denotes the DOS in reservoir
« for channel v,, which is assumed to be rather flat so that
the energy dependence can be neglected. The influence of
the reservoirs and the tunneling on the Green’s functions is
determined by the reservoir part of the lesser/greater self-
energy given by

T @=i) fu@l,, an
Z(@=—i) (- ful@)L,, (12)

where
L,=).L,=2pl, (13)

Vo

is the hybridization matrix for reservoir « including all chan-
nels and (o )y, = v, Pav, 1S the diagonal matrix for the

DOS of resévoir o. As a consequence, we see that the Green’s
functions depend on the reservoirs and the tunneling matrix
only via the hybridization matrices ;1 of all the reservoirs.
Thus, two models with the same hybridization matrices give
exactly the same Green’s functions. Once the Green’s functions
are known, the channel-resolved currents I,,, can be calculated
from (9), where the channel-resolved hybridization matrix

I’  of the concrete model under consideration has to be
=y
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inserted. The stationary expectation values of single-particle
operators of the dot can be directly calculated from the lesser
Green’s functions via (c}/c[ f dw GJj,(w) and thus are
exactly the same for two models Wlth the same hybridization
matrices ;x

We note that for the equilibrium case, where all Fermi
functions of the reservoirs are the same, the reservoir self-
energies involve only the total hybridization matrix

r-yr, a4

with the result that the equilibrium Green’s functions are the
same for two models with the same I". However, the current in
linear response can not be related to the single-particle Green’s
functions in equilibrium via (9) since also the Green’s functions
have to be expanded in the voltages. A special case is the one
of proportional couplings where it is assumed that ;{ = x,
with )", xo = 1. Using current conservation ), I, = 0, with
1, = Zua Iy, denoting the total current in reservoir o, we get
in this case from (9) the Landauer-Biittiker—type formula [20]

Z / do Top(@)(fo — [p)@), (15)

b
with the transmission probability

Tup(w) =2m anﬁTI'£ B(a)), (16)
where p(w) = (GR — GA)(a)) is the spectral density on the

dot. From this formula one can see that in linear response,

where (fo — fp)(w) & — f'(w)(e — 1p), One needs only the
spectral density in equilibrium and, with u, = —eV,, the
current can be written as
Iy =Y Gap(Vs — Vo), (17)
B
with the conductance tensor
e? ,
Gw:—;/ﬁwnmwf@y (18)

With the knowledge that the hybridization matrices ;x
are the only input we need to characterize the reservoirs and
the tunneling matrix, we can now proceed to define effective
models with the same hybridization matrices. Since ;1 is a
positive-definite Hermitian matrix, we can diagonalize it with
a unitary matrix % s

L =U I'u’, (19)
= —u —o —«
where (;‘i)ur =0,y is a diagonal matrix with positive

eigenvalues I'y; = 2nt§, > 0. We exclude here the exotic case
that one of the eigenvalues I'y; is zero since this would
mean that one of the reservoir channels effectively decouples
from the system. Following Ref. [21], we can write the
hybridization matrix in two equivalent forms by shifting the
whole information either to an effective tunneling matrix or
to an effective DOS of the reservoirs. In the first case, we
introduce an effective tunneling matrix gff by

(éiff) w

=ty (%1 i (20)

and get
E =2 ( eff)Tzeff. (21)
=

Since gjxff is an N x N matrix, this effective model consists of
reservoirs which have exactly the same number N of channels
as we have levels on the dot, i.e., the quantum number on the
dot is also the quantum number labeling the channels in the
effective reservoirs but this quantum number is in general not
conserved by tunneling. Comparing (21) to (13), we see that
the effective DOS in the reservoirs is unity, i.e., we consider
unpolarized reservoirs.

In the second case, we define an effective DOS ,o‘3ff

reservoir o by
:N%(gj/ra)gl, (22)

with Ty =), Ty Deﬁning an average tunneling matrix
element 7, >0 by 13 = + L3, 1%, we can then write the
hybridization matrix as
_ 2 eff
;1 =2mt, ga . (23)
In this case, the effective tunneling matrix is proportional
to unity, the tunneling conserves the flavor and is flavor
independent. In contrast, the effective DOS contains the
whole nontrivial information of the hybridization matrix and
describes a unitary transformation of the diagonal matrix
N ;‘1 / 'y. The latter matrix can be decomposed in a basis
of all diagonal matrices and the coefficients can be interpreted
as physical parameters characterizing the effective reservoirs.
Using Trg =T, wegetfor N =2

d —
20/ Ty =1, + pag., (24)

where o, is the Pauli matrix in the z direction and p, describes
the spin polarization in reservoir «. Since the matrix has only
positive diagonal elements we get the condition —1 < p, < 1.
If one orders the eigenvalues according to I'y; > Ty, one gets

0<py <1.
For N = 3 we obtain
d — e
3;1/Fa = lg + pa)» + \/_)»8 (25)
where
1 0
AS =10 0 (26)
o 0 0
1 1 0 O
L =—10 1 0 27)

:8\/3()()_

are the two diagonal generators of the SU(3) group, de-
scribing the isospin in z direction of the up/down quark and
the hypercharge operator ¥ = TA respectively. Therefore,
we interpret p, as the isospin polarization and g, as the
hypercharge polarization characterizing the reservoirs in the
three-channel case. The fact that all matrix elements of (25)
are positive leads to the two conditions

9o

» 1+—, O0<
|pal < +3

qu

1+ ? (28)

N\w
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FL:ILF rR:l‘Rr

FIG. 1. Sketch of the effective model of two F-spin polarized
leads @ = L,R coupled to a three-level quantum dot via flavor-
conserving tunneling rates I';, g = x;, gI". g = *eV /2 denote the
chemical potentials of the leads with eight-dimensional F spins f
characterized by an isospin polarization p;, r and hypercharge polar-
ization g, g. 7= (hL,h ) with hi = (hy,h,) denotes the magnetic
field acting on the two isospin dot levels (up and down quarks), and
A is the level spacing between the strange quark and the average of
the two isospin levels.

If one orders the eigenvalues according to 'y = Tgo = [ya,
one gets 0 < py < go < 3.

The unitary transformation U describes a rotation of the
—u

direction of the spin-l in the N = 2 case, and a rotation of
the eight-dimensional F spin with F = IA for N = 3 (see
Fig. 1 for an illustration). Thus, the form (23) allows for a
nice physical interpretation in terms of physical parameters
characterizing the reservoirs. For N = 3, we can label the three
flavors of the reservoirs and the dot by [ = u,d,s for the up,
down, and strange quark and describe with the form (23) a
system where the flavor is conserved in tunneling with equal
tunneling amplitudes for all flavors. However, the polarization
Do of the isospin described by the up and down quarks and the
hypercharge polarization g, can be different for each reservoir,
and the F spins in the reservoirs can all be rotated relative to
the F' spin of the dot. This naturally generalizes the effective
spin-valve model set up in Ref. [21] for N =2 tothe N =3
case, which is the main subject of this paper.

The form (21) in terms of an effective tunneling matrix
allows for another representation of the hybridization matrix
which will turn out to be crucial to interpret the fixed-point
model derived in Sec. II C for the cotunneling regime. Taking
all effective tunneling matrices together in a N - Nieg X N
matrix

teff
=1

=1 (29)
teff
=Nres
we can write this matrix via a singular value decomposition as
v
=y (E)M’ (30)

where V is a unitary N - Ny X N - Nes matrix, y is an

N x N diagonal matrix containing the positive singular values

yiZ2ve=---2ynv>0,and W is a unitary N x N matrix.
We assume here that N singular values exist, excluding
exotic cases where some channels decouple effectively from
the system. As a consequence, we can express all effective
tunneling matrices in terms of the singular value matrix y as

follows:

=V y Wi, @31

=

=

where V are the N x N matrices occurring in the first N

—"
columns of V, which are in general not unitary. However, since
V is unitary, we note the important property

Y viv =1L 32)

The unitary matrix W can be eliminated by transforming the
basis of the single-particle states of the dot using new field
operators ¢’ = ETQ, such that the dot Hamiltonian (1) and the
tunneling Hamiltonian (8) obtain the form

Haot = ()H'¢' + En,,, 33)
Hr =Y fal () ¢+ @' (")) aw}. G4
ak
with b’ = E bW and
(ész)/ — LZ (35)

For simplicity, we will drop the prime in the following and
replace h' — h and (teff) — teft keeping in mind that these
matrices result from the matrices of the original model by
transforming the dot channels with the unitary matrix W.
In terms of the effective tunneling matrices (35), the hy-
bridization matrices (21) obtain the form
;{:27122%)/. (36)

This form is of particular interest since it separates the
hybridization matrix in a part y which is independent of the

reservoirs and a reservoir-dependent part 2{ L Comparing
(36) with (13), we can interpret y as an effective tunneling
matrix which conserves the flavor index and is the same
for all reservoirs. This effective tunneling matrix contains
the information of the eigenvalues I'; = 27y of the total
hybridization matrix since we get from (32)

g:Zg:zn v (37)

The reservoir-dependent part Lz LX can be interpreted as an
effective DOS of the reservoirs. Taking N = 3 and decompos-
ing this Hermitian matrix in the basis of the F-spin generators
F. =31 of SUG3) we get

8
Xo (]1 +Y d F) (38)
i=1

Ty =
—a

—u
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with real coefficients x, and d(i which, due to (32), fulfill the

property
Zxa =1,

This means that the sum of the F' spins of all reservoirs is zero.
A similiar property holds for arbitrary N. In equilibrium, where
all chemical potentials p, = p are the same and all reservoirs
can be taken together to one big reservoir, this means that an
unpolarized reservoir with SU(3) symmetry couples to the dot.
However, since the effective tunneling matrix elements y; still
depend on the flavor index, SU(3) symmetry does not hold for
the total system even in equilibrium.

Most importantly, we will see in Sec. IIC by a poor man’s
scaling analysis in the cotunneling regime of a singly occupied
dot N4t = 1 that a generic fixed-point model with an isotropic
matrix y = y1 emerges, such that the effective tunneling

> xedl, =0. (39)

matrix (35) reads as

éjff =yY,. (40)
y > 0 can be related to an isotropic Kondo coupling J via
2oty Lo L] 41
ST T 2\E T R)

where Ey, is given by (2) and J fulfils the poor man’s scaling
equation
d_ NI
dN — 2 A

with A denoting the effective bandwidth. In addition, a special
potential scattering term emerges in the original tunneling
model at the fixed point which is given by

Ve=vey D taly V. Viag:, @3)

kk' oo’

42)

where

2
y2(N =2 Eo— E,
= +8), 5=—2""2 44
e D( N ) E; + Eo @9

with Ey and E, from (2), and : - - - : denotes normal ordering.
This potential scattering term vanishes for N =2 and § =0
(i.e., n, = 1 where Ey = E») and is such that it cancels the
potential scattering term emerging in an effective model for
the cotunneling regime (see Sec. II B). Due to Vi, the reservoir
part of the self-energy of the dot is more complicated than (11)
and (12) and does not only depend on the hybridization matrix.
However, as is shown in Appendix A, the effect of Vi is just
that y is changed to an effective y given by

g ¥

N2
such that the self-energies (11) and (12) from the reservoirs can
be written at the fixed point with effective hybridization ma-

trices which can be either expressed via an effective tunneling
matrix analog to (21):

(45)

_ f\T eff
;x 2n(e)t,

o o

=7V, (46)

such that the DOS of the reservoirs is unity, or via an effective
DOS analog to (23),

_ ~2 _eff eff __ y/7
L =2ny lan %_LL’ 47)
with a trivial tunneling matrix given by 71 which is the same
for all reservoirs and proportional to unity with respect to the
flavor indices. The particular property of the effective DOS at
the fixed point is the condition

=1 (48)
o

following from (32). This means that in contrast to the general
case depicted in Fig. 1 for N = 3, the particular property of the
fixed-point model is that the sum over all reservoir F spins is
equal to zero and the tunneling matrix y = y 1 is isotropic. As

a consequence, we get overall SU(3) symmetry in equilibrium,
whereas in nonequilibrium the fixed-point model is essentially
not SU(3) symmetric since the F spins of the reservoirs are
nonzero. A similar statement holds for any number N of dot
levels, generalizing the picture found in Ref. [21] for N =2
to a generic multilevel quantum dot.

We note that for the particular case of two reservoirs Nyes =
2withe = L,R, we getfrom 32)that VI V. =1-VI V

=R =R’
such that we can find a common umtary rnatrlx U which

diagonalizes both VT V fora« = L,R

vT v =U AUt (49)
=V =a =V’

where éi are diagonal matrices with the property
> A=t )
a=L,R

For N = 3, the matrix ég can be decomposed analog to (25)
as

d _ Yo
Al =x, (;3 + Pad, + \/%8), (51)

where, due to the property (50), we get

1= Xp + Xxg, (52)
0 =x.pL + xXrPr, (53)
0 = xrq1 + Xrqr, (54)

together with 0 < x, < 1 and (28). Thus, the hybridization
matrices at the fixed point obtain the following form for two
IEeServoirs:

— 52 d gyt
;(_271)/ gvéagv' (55)

Omitting the unitary matrix U v by choosing a different single-
particle basis for the dot states and redefining the parameters
hyp [analog to the transformation by the unitary matrix W, see
(33) and (34)], we get finally the diagonal form o

L, =277" A, (56)
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which, for N = 3, by inserting the decomposition (51), can be
written as

-

I
= L+ pak e, 57
3 ( b +J§ ) o7

with I'y, = 27 72x,. This form for the hybridization matrices
constitutes the central generic fixed-point model for N =3
and two reservoirs in the cotunneling regime of a singly
occupied dot. This will be confirmed in Sec. III by NRG in
equilibrium and analyzed in Sec. IV by a golden rule approach
in nonequilibrium. It generalizes the spin-valve model for
a two-level quantum dot with opposite spin polarizations in
the two reservoirs analyzed in Ref. [21] to the case of a
three-level quantum dot, where the isospin and hypercharge
polarizations have to be opposite in the two reservoirs. An
analog fixed-point model arises for an arbitrary number of dot
levels, in this case one obtains in the two reservoirs opposite
parameters corresponding to the N — 1 diagonal generators
of SU(N). Whereas in equilibrium the fixed-point model is
SU(N) symmetric (at least if the dot parmeters &, are adjusted
properly, see Sec. III) and leads generically to the SU(N)
Kondo effect, the nonequilibrium fixed-point model is not
SU(N) symmetric and generically non-Kondo physics has to be
expected. This will be analyzed in Sec. IV in the perturbative
golden rule regime of large voltage, where we will see that
zero F-spin magnetization on the dot occurs only for particular
values of the dot parameters h;; providing a smoking gun for
the detection of the fixed-point model.

B. Effective model in the cotunneling regime

The effective model in the cotunneling regime where the
particle number on the dot is fixed to Ngo; = 1 can easily be
obtained by projecting the Hamiltonian matrix on this subspace
analog to Brillouin-Wigner perturbation theory. Taking only
one virtual process into the particle number sectors Ngoy = 0,2
into account we get

HE' = Hies + PyHaot Py — : P Hr Q14

P,
(58)

where P; projects onto the one-particle subspace of the dot and
Q) =1 — P;. We have introduced the normal-ordering : - - - :
with respect to the reservoir field operators since we are not
interested in terms renormalizing the dot Hamiltonian leading
to effective parameters &,y . For H..s and Hy, we take a model
with the effective tunneling matrix (35) and the unity matrix
for the effective DOS in the reservoirs, as has been discussed
in Sec. II. Inserting Hyoy and Hy from (1) and (8) and using

E\,, from (2) we get with Pic/cy Py = [I){I']:

HE' = Hees + Y b [D(I' + E,

1w

ZZ P i ec (M) ay P (59)

aa’ kK
1 , ,
— 220 Piet () g g 1Pyt (60)
0
aa’  kk'

Using
Pi(cchyw Py = —|U) (1| + 8u Py,

D@y a k)ll - al[kaa’l’k’ 5, (61)

we get after inserting (35) for the tunneling matrix and leaving
out the unimportant constant E
HE' = Hees + Y hip || + Ve (62)
w

with the effective interaction

Var=y Y ial, vV IVia,: (63)
aa’  kk'
and
Jir = m(iu’w — iawﬂ), (64)
D E,

with2/D = 1/Ey + 1/E; [see (41)]. We note that the hat on
Jy indicates that this object is a dot operator in the one-particle
subspace for each fixed value of [ and 7', i.e., 1 represents a
N x N matrix with dot operators in each matrix element. By
using i= >, 1)1, a straightforward calculation leads to the
decomposition

Jw =&V UIA = &)

+Zmz.< ]1—|ll><11|>6”f+v16”fﬂ, (65)

£l
with
2 2,
& = DY =gyl (66)
1 N -2
v = _Byl <T + 8) 67)

and 26 = D/E, — D/Ey [see (44)]. We note that the bare
parameters 7, are independent of I’ but obtain a strong depen-
dence on !’ under the renormalization group flow described be-
low. The decomposition (65) exhibits the nondiagonal matrix
[I/¥(1] for I # I, all traceless diagonal matrices %]Al — )|
for /| # 1, and the unity matrix 1 describing the effective
potential scattering.

We note that the effective interaction (63) can also be written
in terms of reservoir field operators for a single reservoir only:

Ver =Y :ajJa,:, (68)
Kk’
where
4 = Z g%k (69)

fulfill commutation relations of field operators for a single
effective reservoir with N flavors due to the property (32).
However, this is only possible if all the reservoirs can be
taken together, i.e., they must have the same temperature and
chemical potential. In nonequilibrium this is not possible.
Nevertheless, for the poor man’s scaling analysis described in
the next section, this form of the Hamiltonian can be applied
since the poor man’s scaling analysis integrates out only energy

235450-7



LINDNER, KUGLER, SCHOELLER, AND VON DELFT

PHYSICAL REVIEW B 97, 235450 (2018)

scales above the temperatures and chemical potentials of the
IeServoirs.

C. Poor man’s scaling and fixed-point model for N levels

Taking the effective Hamiltonian in the cotunneling regime
in the form (62) and (68), we now proceed to find an effective
low-energy theory by integrating out all energy scales from
the high-energy cutoff A = D down to some low-energy scale
A, defined by the largest physical low-energy scale in the
system set by the parameters /4; of the dot Hamiltonian, the
temperature 7 of the reservoirs, and the chemical potentials
I of the reservoirs

Ao =max{{|hy b, T {1a}a}- (70)

This can be achieved by a standard poor man’s scaling analysis
leading to the RG equations

dJi IR
d: =_;[-]Hp-]111’]7 (71)

where [-,-] denotes the commutator and s = In % is the flow

parameter. This RG equation has obviously the two invariants
TrJyy and ), Jy;. Defining

M=y m, n=y m, v=y v, (72)
I

VAl i

we obtain from the decomposition (65)

Trdy = Nudi, (73)
N 1
0y Jwlly=—n — , 74
H,Z ity =5 = m+v (74)

and get the invariants

d
0= —uv, 75
U (75)
d 1
0=— — —n). 76
ds ('71 Nn) (76)

The first equation means that there is no renormalization for
the potential scattering. The second equation holds for all [ =
1,...,N and gives N — 1 independent invariants.

Inserting the decomposition (65) in (71) we find after some
straightforward algebra the RG equations for the parameters
& and n;p characterizing the effective operator-valued matrix
i at scale A in terms of (65) (I # !’ in all following equations):

dé&y _
s = i + > &k, a7
§ Ll
dmr
s = Xkt > ek, (78)
$ Ll
where we defined the symmetric matrix
i = 5O+ 1) (79)
which fulfills the RG equation
diw 1
= 262 + 5 > (&n + &) (80)
LAY

since & stays symmetric during the whole RG flow
& = &1 (81)

These differential equations have to be solved starting from the
initial conditions at s = O given by (66).
The RG equation for 1, can be solved by the ansatz

N = N +r—rr, (82)
where the r; are determined from the RG equations
drl 1 2
L= ., 83
i =36 ®

with initial condition r; = y,z /D. Using the form (82) we can
express the N — 1 independent invariants (76) as
d

0= E(r Y VA %n) (84)

where we have defined in analogy to (72)

M=y A, A=n=y W, r=y rn. (85
Il 1 1
With these invariants all N — 1 differences r; — r;; can be
expressed via the symmetric matrix #j;; and it is only necessary
to consider the RG equations (77) and (80) for the symmetric
matrices &y and 7. As we will see in Sec. 11D, these
coupling constants can be interpreted as the transverse and
longitudinal Kondo couplings J; and J, corresponding to the
SU(2) subgroup formed by the level pair (1,").

As one can see from (78), the parameters 7, obtain a
significant dependence on /” not present in the initial condition.
Furthermore, all parameters &; and n; stay positive and
increase monotonously under the RG flow until they diverge at
a certain low-energy scale Tk . The fixed point is the one where
all parameters are the same and proportional to an isotropic
Kondo-type coupling J:

Er = =3, (86)
where J fulfills the RG equation (42):
d] N , 2
— =—=J° = Tx = Ae ™ =const. (87)
ds 2

Tk is the energy scale where all coupling constants diverge and
is called the Kondo temperature in the following. This scale is
exponentially sensitive to the choice of the initial conditions.
Therefore, one defines a typical initial coupling Jy via

4)/12 _

—_ Jo, =1, 88
D b X]:yl (88)

such that y; ~ O(1) are fixed parameters, and defines formally
the scaling limit by
Jo — 0, D — oo, Tx = const. (89)

Close to the fixed point we can neglect the small potential
scattering term and get from (65) the form

N 1 1 1.
J = JINA = 8p) + =J —1 — |l )éw,
=S IUIC =8) + 3 é(N 1) (1) 8
1

(90)
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which can also be written in the more compact form
N 1 1 .
Jp = IV — =—=J18;. 91
w =S JIO = o 1o oD

Using this form in the effective interaction (68) we get at the
fixed point in the one-particle subspace of the dot

1
ot
Veft—_ﬁj ngkr
kk'
1
1 D L
+ 21%:;“, Lay ap (92)

At the fixed point the effective interaction is obviously SU(N)
invariant under a common unitary transformation of the N
flavors of the reservoir and dot field operators. We note that
this holds only in the case of the single reservoir described
by the field operators & but not for the original model in
nonequilibrium where the reservoirs have different chemical
potentials i, . In this case one has to insert (69) in (92) and finds
that the effective interaction is not invariant under a common
unitary transformation of all dot field operators ¢; and reservoir
field operators a,;; due to the presence of the matrices la

We finally show that the fixed-point Hamiltonian corre-
sponds to a projection of the effective tunneling model (40)
together with the potential scattering term (43) on the N = 1
subspace of the dot. Comparing (86) with (66), we find that
we get indeed a unity matrix for y = y1 with y given by (41).
Furthermore, the potential scattering is absent in the fixed-point
model (90) and, therefore, we have to introduce the potential
scattering term (43) in the effective tunneling model with a
coupling constant v, given by (44) of opposite sign compared
to (67) (where y; is replaced by y) such that (43) cancels
the potential scattering generated by projecting the effective
tunneling model on the N = 1 subspace.

D. Poor man’s scaling in SU(3) representation

For the three-level case N = 3, which is the main subject of
this paper, it is quite instructive to write the Hamiltonian and
the poor man’s scaling equations also in the representation of
the generators of the SU(3) group. This provides a nice physical
picture as to how the reservoir and dot F spins are coupled and
how the interaction can be interpreted in terms of the dot and
reservoir quark flavors.

Since each matrix element Jy; is an operator in the three-
dimensional dot space we can decompose it in the F-spin
components 13, = %5\,- of the dot as

8
Ji = Z Ty Er + v d, (93)
i=1
where the last term contains the potential scattering. Further-
more, each 3 x 3 matrix J' can again be decomposed in the
generators A inreservoir space [note that we still consider here
only one effective reservoir due to the form (68) of the effective
interaction in the poor man’s scaling regime]. Comparing (93)
with (65) we find after some straightforward algebra

Ji = A fori=124567, %94)

2
L= Jh Ikt S el (95)
2
8 _
J —18§8+Js3§3+3\/§csl, (96)

where the various coupling constants are defined by

Ji=JD =&, K =iy, (Ch)
Jy=Js =§13, K4y=1j3, (98)
Jo = J7 =&x3, K¢ =13, 99
1
J3=Ky, Jy= 3 (2K4 +2K¢ — Ky), (100)
1
Jig = Jg3 = Wi (K4 — Kp), (101)
together with the two invariants
2.2 2 2 _ 9,2
A P e s M N 17
D D
c3 and cg must be invariants since
8
D du=) (T Fi 40l (103)
I

i=1

is an invariant such that all coefficients TrJ' must be invariants
fori =1,...8. Using (94)—(96), we see that the trace for i =
1,2,4,5,6,7 is trivially zero but for i = 3,8 we get that Tri3 =

2¢3 and TrJ® = (2/+/3)cs must be invariants.

We note that only the six coupling constants (Ji,Jy,Js) =
(612,613.623) and (K1, K4, K¢) = (112,713, 7723) are independent.
This is consistent with our general analysis in Sec. IIC where
we showed that only the parameters &;; and #;; are needed.

Since all coupling constants grow under the RG flow and
diverge at Tk, the small invariants c3, cg, and v; can be omitted
from the effective interaction Vg defined in (68). Inserting
j ~ Z?Z A F; from (93) and the decompositions (94)—(96)
we can write Ve in the compact form

8

Var =2 J; fi i+ 20 (fsFs + fiFy),  (104)
i=1
where we defined the reservoir f-spin operator as
.1 L
fi=5 doaph dy. (105)

The form (104) exhibits very clearly how the reservoir f spin
couples to the dot F’ spin. There are three possible isospin pairs
formed by the up/down quark (i = 1,2), the up/strange quark
(i = 4,5), or the down/strange quark (i = 6,7), corresponding
to the flavor pairs / = 1,2, = 1,3, and | = 2,3, respectively.
For each isospin pair we can define a transverse and longi-
tudinal coupling, denoted by (J1,K), (J4,K4), and (Jg, K¢),
respectively, analog to the transverse and longitudinal Kondo
couplings (Jy,J;) for a single spin % The three transverse
couplings belong to the six independent generators A; for
i =1,2,4,5,6,7. Therefore, the effective interaction does not
contain any transverse couplings between different isospins
of the reservoir and the dot but only the product f, E; for
i =1,2,4,5,6,7. In contrast, the three longitudinal parts of
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the isospins are not independent. By convention, one chooses
the longitudinal part of the up/down isospin (represented by
A3) and the sum over the longitudinal parts of the up/strange
and down/strange isospins (represented by the hypercharge
generator +/31g) as basis for the two independent traceless
matrices. Therefore, there is not only a longitudinal isospin
coupling J3 and a hypercharge coupling Jg but also a mixed
coupling Jzg describing an interaction of the longitudinal
reservoir isospin with the hypercharge polarization of the dot
and vice versa. This picture naturally generalizes to arbitrary
N providing a physical interpretation of the coupling constants
&;; and 7);; in terms of the transverse and longitudinal couplings
for the isospin formed by the two flavors [ =i, j.

Using (77) and (80) for N = 3, we obtain the RG equations

dJ,

— =251 K\ + J4 Js, (106)
ds
dJy
— =20 Ky + J Js, (107)
ds
dJ
== —2JsKe+ Ji Ja, (108)
ds
dK, 1
= 2J% + 5(142 +J3), (109)
dKy 1
— = 207 + E(le +J3), (110)
dKg 1
W:2162+5(J12+J42), (111)
with the initial conditions at s = 0 given by (66):
2ny2 2113
Ji(0) = . Ja(0) = , 112
1(0) D 4(0) D (112)
223 vitvs
Jo(0) = , Ki(0)= ——=, 113
6(0) D 1(0) D (113)
2 2 2 2
vi+v3 Vs + 3
K4(0) = ——=, K40) = ——. 114
4(0) D 6(0) D (114)

A numerical study of these RG equations shows that inde-
pendent of the initial conditions, all couplings become equal
during the RG flow and diverge at some low-energy scale Tk,
in agreement with (86). Using (97)—(101), this means that all
Ji = J/2 become the same for i = 1,...,8 and the mixed
coupling Jg scales to zero. Thus, at the fixed point the effective
interaction can be written in the isotropic and SU(3)-invariant
form

8
Ver=J Y fi i, (115)
i=1

which is identical with (92). Applying the analog scheme to an
arbitrary number N of dot levels we obtain at the fixed point
the same result, one just has to sum in (115) over all generators
of SU(N). Figure 2 shows an example for the RG flow where
the longitudinal and transverse couplings K; ~ J; are initially
nearly the same but different for each i = 1,4,6.

To obtain a feeling for the nature of the strong-coupling
ground state, we assume a two-site model with Hamiltonian
(115). In particular, we consider a tight-binding model for the
reservoir and the two sites are the dot and the first site of the
reservoir (i.e., the one that couples to the dot), respectively,

10% T T T T ]
| Ki/d| T
- | = Ji/db|]
Ka/Jdo
L. i
10" || = dafdo
s r *\ Ks/Jo| ]
sk AN = /b
100 L h N -
i S ]
101 1 | | | ~|= .
10° 102 10* 10° 108
A
Tk
FIG. 2. Flow of the poor man’s scaling RG for

the couplings with similar initial values (J;,Js,J6)(0) =
(0.018235,0.015321,0.013784)Jy,  (K;,K4,Ke)(0) = (0.018337,
0.015924,0.013994)Jy, Jo =0.096510, and D = 1000.0. The
couplings become degenerate at the Kondo scale Tk and diverge.

while the other reservoir sites are not taken into account.
The crucial point about determining the ground state lies in
choosing the appropriate representation for the eigenstates of
the SU(3)-symmetric interaction in (115). The SU(3) group has
two fundamental representations [38], which we denote by the
multiplet notation [3] and [3]. We represent the eigenstates of
the dot in the representation [3] where the F-spin components
are F; = %i,-. Denoting the states by the quark flavors [ =
1,2,3 = u,d,s, we have

) = |3.5), (116)
) = |-3.3): (117)
ls) = [0.—3). (118)

where the states on the right-hand side are the eigenstates of
F3 and Fy and the first (second) quantum ngmber in the label
is the corresponding eigenvalue of F3 (%Fg). Therefore, we

refer to these eigenvalues as isospin (hypercharge) quantum
numbers. Choosing the same representation for the first site
in the reservoir is not useful since the states of the composite
system are part of either the sextet [6] or the triplet [3] due to
[3]1 ® [3] = [6] @ [3] [38]. Such arepresentation is not suitable
since the system has a distinct nondegenerate ground state.
Instead, we represent the first site of the reservoir with [3]
and obtain [3] ® [3] = [8] @ [1] where all but one state of
the two-site system form an octet together with the remaining
state being a unique singlet state. [3] is the complex-conjugate
representation of [3] and has therefore the generators f, =
—%)A»l’f. Consequently, we label the states of the second site

with the antiquark flavor I = 1,2,3 = u,d,5 and get

@) = |—3.—3) (119)
|d) =13.—3). (120)
5) =10,2). (121)
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FIG. 3. Flow of the poor man’s scaling RG for the
couplings  for  J1(0) > J4(0),J6(0)  with  (J;,Js,J6)(0) =
(0.0239873,0.0022176,0.0020878) Jy, (K1, K4, Ke)(0)=(0.0240310,
0.0128358,0.0113882)Jy, Jo = 0.0965099, D = 1000.0. Each of
the coupling pairs (J;,K), (Js4,Js), and (K4, K) are quasidegenerate
for the main part of the RG flow before all couplings obtain the same
value at Tk.

In this basis, the operators i;" have the same matrix represen-
tation as the Gell-Mann matrices ;.
Indeed, we will show in Appendix B that the singlet state

1 _
lgs) = —=(uu) + |dd) + |s5)) (122)
N
is the ground state with energy E,s = —%J while the octet

states are degenerate with energy Eg = éJ .Since I} = |I) ®
|1, itis straightforward to define the reduced dot density matrix

_ - 1.
p= {Z1Clgs)(gshll) = g]l, (123)

I=u,d,5

which yields n; = 3

analysis in Sec. II1.

Together with the SU(3)-symmetric interaction term, the
outcome (122) motivates the term “quantum fluctuations” for
the significant physical processes in the fixed-point model.
The ground state is a symmetric linear combination of bound
states with quark-antiquark flavor. This is in accordance with
the observation that no free quarks exist, i.e., they always
gather to form a particle with integer electric charge. The
interaction term (115) preserves this since the fluctuation
terms (i = 1,2,4,5,6,7) always annihilate a quark-antiquark
pair while creating a different quark-antiquark bound state
simultaneously. Furthermore, we will discuss in Appendix B
that the eigenstates of (115) are identical to those of the quark
model for light pseudoscalar mesons [39].

In this context, choosing J; ~ K| > Jy & Js and K4 ~
K¢ for the initial values reveals a nice physical picture in
terms of the isospin of the up and down quarks. Figure 3
shows that in the whole regime from weak to intermediate
coupling the couplings stay approximately degenerate with
Ji =~ Ky, J4 = Jg, and K4 =~ K. Here, the model exhibits an
approximated SU(2) symmetry for the isospin with an isotropic
isospin coupling J; = %(J] + K1) > |Ji — K;|.Furthermore,
the interaction of isospin and hypercharge degrees of free-
dom disentangle in leading order since Jig < J3,Js. In the

in perfect agreement with the NRG

same way, Js & Jg characterizes transitions between states
differing in the hypercharge quantum number [compare with
(116)—(118)]. In total, we find an isotropic isospin model
where the presence of the third level (strange quark) mainly
results in a potential scattering (J3 ~ J) for the isospin with
suppressed transitions to states with different hypercharge
(J1,J6 < Jr). However, finally the RG flow approaches the
generic SU(3)-symmetric fixed point on the Kondo scale Tk
also in this case.

III. NRG ANALYSIS IN EQUILIBRIUM

In Sec. IID we have shown for a three-level quantum dot in
the cotunneling regime that the generic fixed point model is an
SU(3)-invariant isotropic effective interaction (115) between
the F spins of the reservoir and the dot. This holds for the
equilibrium case where all reservoirs can be taken together
to a single reservoir and it requires also SU(3) symmetry
of the dot. This means that the dot parameters /; have to
be adjusted appropriately (including renormalizations arising

from the coupling to the reservoir) such that the populations

of all dot states are the same n; = (c}c;) = % The aim of this

section is to confirm that in equilibrium the SU(3)-symmetric
fixed point can be established independent of the tunneling
matrix by an adjustment of the dot parameters. To this end, we
use the numerically exact NRG method [40] and analyze the
linear conductance G for N = 3 and two reservoirs (@ = L,R)
for the case of proportional couplings ;}( = x,I" where G can
be calculated from (18) and (16): a

¢=6/Go=-73 [doTirpw f@. 24
with the dimensionless conductance g in units of Gy =
(€?/h)/(4xrxR). As explained in Sec. ITA the equilibrium
spectral density p(w) depends only on the total hybridization

matrix I, i.e., we can use a unitary transformation of the
dot states such that this matrix is diagonal [see (37)] and the
spectral density in this basis depends only on the eigenvalues
I =2n ylz. In this case, the linear conductance (124) can be
written as

g= —% / do ; Ty pu() f'(©). (125)

In the new dot basis we assume for simplicity that the dot
Hamiltonian contains only diagonal elements

H = Z h[CITC[.
l

Other cases with nondiagonal elements /;; can also be studied
but are of no interest because they just destroy SU(3) symmetry
of the dot and drive the system away from the fixed-point
model. Here, we are interested in a systematic study how,
for arbitrary tunneling parameters I';, SU(3) symmetry can
be restored by tuning the level positions /; appropriately. In
addition, we will also study the dependence of the SU(3)
Kondo temperature TI((S) as function of I'; and compare it to the
corresponding SU(2) Kondo temperature TP, where only two
levels contribute to transport. This analysis goes beyond the one
of Ref. [13] which has concentrated on the linear conductance

(126)
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FIG. 4. Gate voltage dependence of the conductance at various temperatures for (a) N = 3 and (b) N = 2 at the SU(N)-symmetric point
where all I'; are the same and all #; = 0. By p-h symmetry the curves can be mirrored along V, = 0. Also shown is the occupation n, at the

lowest temperature where the Friedel sum rule (127) is fulfilled.

for the SU(3)-symmetric case (i.e., all I'; are the same and
h; = 0) and the destruction of SU(3) symmetry by different I';
or finite values for 4. As a signature of SU(3) symmetry we
take the Friedel sum rule (used also in Refs. [12,13])

g= Z sinz(nnl), (127)
I

which holds exactly at zero temperature and gives the value g =
2.25 for equal populations n; = % corresponding to the SU(3)-
symmetric fixed point. The occupations n; can be calculated
from the spectral density via n; = f dw p;(w) f(w). For the
parameters in all figures we use

;ZZ:F, =1, U=10, W=10% (128)
where 2W denotes the width of a flat DOS of the reservoirs
[i.e., |w| < W for the integral in (125)].

The calculations are performed using the full-density-
matrix NRG [41], where we exploit either the individual charge
conservation or the full SU(N) symmetry by means of the
QSpace tensor library developed by Weichselbaum [42]. For
the final results we employ a discretization parameter of A = 3,
and we keep states up to a rescaled energy of Eyy =9
and maximal number Ny, during the NRG iteration. In the
calculations without SU(N) symmetry we set Nieep = 8000.
In the SU(N)-symmetric cases we can further increase the
precision to very high level and explicitly confirm that results
for g are converged up to 1% and results for n; are converged up
to 10~° with respect to the numerical parameters. Note that in
many calculations we optimize the level positions to achieve
equal occupation of certain levels. Since the values of such
optimized level positions /; depend on the discretization of
the bath, we refrain from using z averaging [40]. Finally, we
need not broaden the NRG data as the computation of both g
and n; requires only discrete spectral weights.

To set the scene, we show in Fig. 4 known curves for the
conductance depending on gate voltage and temperature in
the SU(N)-symmetric cases for N = 2,3, where all I'; are the

same and all #; = 0. We find converged, plateaulike features
when decreasing 7' below the Kondo temperature Tk in the
cotunneling regime of a singly occupied dot. Note that n; shows
a very weak dependence on temperature in this regime and, at
T < Tk, the Friedel sum rule (127) is fulfilled. Furthermore,
we find that the Kondo temperatures T,((N) are similar for N = 2
and 3 (recall that ), T; is fixed). In contrast, the p-h symmetric
point V, = 0 corresponds to very different physics for the two
cases since for N = 3 there are strong charge fluctuations due
to E; = E,, whereas for N = 2 spin fluctuations dominate.
Therefore, at V, =0, the relevant low-energy scale is the
hybridization I'; for N = 3 [13] and the Kondo temperature
for N = 2.

Next, we study the case I'y =T, #1'3 and h} = h, =
0. In this case, the different tunneling couplings lead to a
different renormalization of h3 of O(I')['3/U) relative to
h1/2. Therefore, hy = hy = h3 = 01is not the SU(3)-symmetric
point and the level position /3 has to be adjusted appropriately
to recover equal populations of the states and conductance
g = 2.25 at zero temperature. Calling this optimized value /3
we show in Fig. 5 the conductance as function of |3 — h3]|. For
temperatures T < T ,((3) we see that the conductance reaches
the SU(3)-symmetric value g =2.25 for |h3 — R3] ~ T,(f)
as expected. The Kondo temperature T,((3) does not depend
strongly on the value of I'; and is nearly the same forI's; < Iy,
[Fig. 5(2)] and T's > 'y, [Fig. 5(b)]. For |h3 — h%| > T
and h3 > h3 (solid lines in Fig. 5), we see that the SU(2)
Kondo effect with ¢ = 2 appears at low enough temperatures
T < T,(f) . Whereas T1(<2) A T1(<3) for relatively small I'3 < I'y 2,
we find that T,((z) < TI((S) for I'3 > I'1». The latter can be
explained by the fact that the two levels [ = 1,2 form the SU(2)
Kondo effect and therefore T, ,((2) decreases if the coupling to
these two levels I'y,I"; is lowered. In contrast, when all three
levels contribute to the SU(3) Kondo effect, we have a total
coupling of ), I';/2 = 1 and find that the relative distribution
of the I'; influences T,((S) only weakly. Furthermore, in the
regime where the SU(2) Kondo effect occurs, we see a strong
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FIG. 5. Conductance at fixed V, = —U/2 and h; = h, =0 for
(@' =T, >Tsand (b) ' =T, < I'; as function of |3 — A} for
various temperatures. We distinguish the case /3 > hj (solid lines)
from the case i3 < hj (dashed lines), where /3 is the optimized value
at which SU(3) symmetry is restored.

difference when moving over from i3 > h}to h3 < h3 (dashed
lines in Fig. 5) since then level 3 forms the ground state and
thus the Kondo effect is much weaker compared to the case
when the two levels / = 1,2 are lower in energy. In the regime
of the SU(3) Kondo effect, it is hardly relevant whether level
3 approaches the other two levels from above or below.

In Fig. 6 we show the conductance as function of the gate
voltage againforh; = hy, = OandthetwocasesI'; =T', 2 I';
as in Fig. 5, but at each value of the gate voltage we choose
the optimized value h3 = h3(V,) for which the populations
of the three states are the same at zero temperature. As in
Fig. 5 we confirm that T,?) depends only weakly on I'; but

the overall tendency is that Tk(3> decreases when increasing
IT'12 — I'3|. At the p-h symmetric point V, = 0, the situation
is completely different since charge fluctuations dominate for

(a) . U/2=(3/7,3/7,1/7), hy = 0, hy = 0, hy = h}(V,)
T - an(Tmin)
——1le—08 max(h;,0)
25 1 le—07| | % max(—h3,0) 4
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le — 05 -
20| 1e—o04
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=15 " 1. _n p
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7
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xxxxxxxxxxx,fox L eessetrettteie.,
-8 -6 -4 -2 0
Vg
(b) s /2= (1/6,1/6,4/6), hy = 0, hy = 0, hy = h}(V,)
T - = an(T;nin)
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FIG. 6. Conductance for iy = h, =0and(a) 'y =I'; > I'; and
(b)T} = I', < I'; asfunction of gate voltage for various temperatures.
For each value of the gate voltage /3 = h}(V,) is optimized such that
the populations of the three states are the same at zero temperature.

N = 3. Therefore, the conductance around V, = 0 depends
strongly on the relative distribution of the I';. In fact, comparing
various cases we find that the conductance at V, = 0 (where
also hj = 0) decreases monotonously when increasing the
variance of the couplings I';. At large variance as in Fig. 6(b),
g around V, =0 is strongly suppressed. In contrast, in the
cotunneling regime V, ~ —U/2 the conductance is rather
insensitive to the distribution of the I';. The combination of
these phenomena leads to a surprising shape of the curve g(V,)
which exhibits a local minimum at the p-h symmetric point for
intermediate temperatures.

Finally, we consider in Fig. 7 three different hybridizations
I't < I’ < I'zandtune hp and hs atfixedh; =0,V, = —U/2,
and T = 1072, From the plots of the occupations n; we
can easily distinguish three regions where only one level is
involved. At the intersections of two such regions we observe
a two-level Kondo effect with conductance g = 2. The widths
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FIG. 7. Conductance and level occupations as functions of /, and
h3 for l"l < rz < F3, h] = 0, Vg = —U/Z, and T = 10710.

of these intersections in the /,-h3 plane define three different
Kondo temperatures T,((Z) which are ordered according to
the size of the corresponding hybridizations I'y + ', < T’y +
I's < I'; + I'3. In the center, where all “one-level sections”
intersect, we observe a wide region of a three-level Kondo
effect with conductance g = 2.25. The corresponding Kondo
temperature T,((S) is of the same order as the maximum of the
three two-level Kondo temperatures.

In summary, we find that for any kind of (diagonal) hy-
bridization, whether with no, two, or three identical elements,
we can find carefully optimized level positions (and low
enough temperatures) to observe the behavior known from the
SU(3)-symmetric quantum dot. For other hybridizations with
two identical hybridization elements or, again, optimized level
positions we can also reproduce the behavior of a two-level
Kondo effect such that one level is (effectively) excluded. For
arbitrary I'; and A, (corresponding to most parts of a version of
Fig. 7 zoomed out), the typical behavior is that of the single,
(effectively) lowest-lying level.

IV. NONEQUILIBRIUM FIXED-POINT MODEL

The aim of this section is to analyze the nonequilibrium
properties of the system for N = 3 in the perturbative regime
where the cutoff scale A, defined by (70) is much larger
than the Kondo temperature A, > Tx. Most importantly, as
already emphasized several times in the previous sections,
even if the fixed-point model (115) is reached at scale A,
[which will be the case if we take the formal scaling limit
defined by (89)], it is essentially not SU(3) invariant if the
chemical potentials of all reservoirs are different. This leads
to new interesting nonequilibrium fixed-point models similar
to the ones discussed in Ref. [21] for the N = 2 case which
shows a completely different behavior of physical observables
like the magnetization or the current compared to the SU(N)-
symmetric Kondo model. Moreover, in practical situations the
initial cutoff D ~ E, is fixed leading to deviations from the

fixed-point model. Therefore, the aim of this section is to
analyze the perturbative effects of the full effective interaction
on physical observables and to identify a smoking gun for the
fixed-point model together with a parameter measuring the
distance from this fixed point.

A. Golden rule approach

We start from the effective interaction in the form (63) in
terms of the original reservoir field operators ag. Inserting
(93)—(96) and leaving out all small terms ~v;,c3,cs, we obtain

Vet = Z Z aly lef,wkr, (129)
aa’  kk'
with
S~ I E, (130)
JU =ik + Tk + i ). (131)

The total Hamiltonian is given by Hiot = Hres + Hyot +
Vegr, with a unity DOS in the reservoirs and the dot Hamiltonian
Haoe = Yy hur|l){U'| in the one-particle subspace. To apply
the golden rule, we first diagonalize the dot Hamiltonian by a
unitary transformation U such that

Ay = UTHouU =) _ el
!

(132)

The golden rule rate for a transition from /" — [ in the
diagonalized basis is then given by

Comg =2 Y [{r 0 Ve O )P | presl)
rr’

x8(e+ E —e€r — Ep), (133)

where |r) denote the many-particle states of the reservoirs
with energy E, and pres = [ ], 0% is the product of the grand-

canonical distributions of the reservoirs. Inserting the effective
interaction (129) we find

Ty =21y / de f do'[1 = fu(@)] fur (@)

x 8 —€r +w+ g — & — o)

x Y IUIY, LV 0P (134)
L
At zero temperature we get
Ly =21 ) wler — € + fta — fa)
7%
x Yy oY, LV O, (33

L

with w(x) = |x|6(x). Here, |, — €/ + py — o] 1S just the
available energy phase space in the reservoirs for the energy
gain €y — € + Uy — e > 0. Inserting (130) we can write the
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golden rate in the compact form

Ly =2m Z w(e — €y + fo — o)

o’

< Y (WOTEOIY (\OTE; O w8, (136)
ij
where
' =Tviv Jviy i (137)
—a —o = —o/ =o' =

As expected, only the combination VIV enters into this
expression which is consistent with our discussion in Sec. ITA
where it was shown that the hybridization matrices ;1 depend
only on this combination [see (36)].

The stationary probability distribution p; in the diagonal-
ized basis follows from

Zpl' Iy =0, ZPZ = 1.
I3 1

In an analog way one can calculate the stationary current Ig

flowing in reservoir B from the current rates W/?, in golden
rule:

(138)

_ B
Is=Y prTi
i

(139)

with
YT =21 Bap — Sarp)wles — €1 + o — o)
1 7%

X Y (WUOTEOW) ('\OTE; O x5, (140)

Once the input of the matrices V , the coupling constants
£ _

(J1,J4,J6) and (K|,K4,Ke) (determining the matrices J' for
i =1,...,8), the unitary transformation U, and the eigenval-
ues ¢; of the dot Hamiltonian are known, the stationary prob-
abilities and the current can be calculated in a straightforward
way from the above golden rule expressions. Thereby, we have
neglected small renormalizations of the dot parameters induced

by the coupling to the reservoirs which are assumed to be much
smaller than the level spacings in the dot.

B. F-spin magnetization for two reservoirs

We now calculate the F-spin magnetization of the dot

(141)

for the special case of two reservoirs. We will show that the
condition of zero F-spin magnetization requires special dot
parameters characterizing the deviation from the fixed-point
model. In the basis of the diagonalized dot Hamiltonian,
the density matrix of the dot is diagonal in the golden rule
approximation so that only the two diagonal generators F3 and

Fg contribute to mg:

mp = (F3)? + (F3))?

= 1= pP+ Ko+ pa—2ps2. (142)
Zero F-spin magnetization is then equivalent to an equal
population of the three states

mp=0 <& p=pr=ps. (143)

As explained in Sec. IT A via (49), the case of two reservoirs
has the advantage that both matrices g{ Vv =U v éi U ]‘L/ can

be diagonalized by a common unitary matrix g;and the diag-

onal matrices éj, are parametrized via (51) by the parameters
Xg» Pa» and g, which fulfill the conditions (52)—(54) and (28).
Furthermore, it was shown that the special property of the
fixed-point model is that the unitary transformation U , can
be shifted to the dot such that in the new basis an effective
diagonal tunneling model (56) emerges. Thus, the particular
property of the fixed-point model is that the expectation value
of the F-spin magnetization and the current /, are independent
of the unitary matrix U - In contrast, for the model away from
the fixed point this is no longer the case.

The unitary matrix U v provides a mean to parametrize the
dot Hamiltonian by convenient parameters. After transforming
the dot Hamiltonian with Uy = Z”,(QV V|1 {I'|, we take the
form

A A o A A 2 A

Ul HoUy = ho By + hy By + h B3 + EAFg,
such that / can be interpreted as an effective magnetic field
acting on the isospin of the up/down quark, and A is the
level distance between the strange quark and the average level
position of the up and down quarks:

(144)

A=l +e) —ea (145)

(see also Fig. 1 for an illustration). The eigenvalues €; of Hyoy
and the unitary operator U can then be expressed by the dot
parameters i and A by

1

1 2
61/2=ﬂ:§h+§A, E3=—§A, (146)
U=0v0p U, = (50£ (1)) (147)
where h = m, hi = h)z( + hf,, and
1 +(hy — ihv)>
172 ./72h(h:th)< hFh, (148)

Inserting U= l7v Uh and 2 Lx = gv éj gt/ in the golden
rate (136) we get

Ty =271 ) w(er — € + fla — Ha)
oo
x Y (OTOLE Oy Oyl
i

x ('OF 0% F;0v Oy 2

(149)
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with
(150)

=y -

For the special case of the ﬁxed-point model where J' = =3 Ly Lo
we can see that the unitary matrix Q indeed drops out as
expected due to the invariant

(151)

An analog property holds for the current rate (139).

In the following, we consider the strong nonequilibrium
regime where the bias voltage V = pu; — ug > 0 is assumed
to be larger than all level spacings, i.e.,

V > |h],|A £h)2). (152)

From (142) we see directly that the condition mp =0 is
equivalent to (ﬁ}) = (Fg) = 0. Consequently, these are two
conditions revealing thatmp = mp(h,,h,A) = 0 generically
defines a closed curve in (h,,h; ,A) space. Insertmg (51) for
Ad (131) for J?, (146) for ¢, and (147) for Uh, we evaluate the
golden rule rates (149) and (139) in Appendix C for the special
case U v, = = 1 from which we can determine the shape of this
curve. This g gives a generic result for the fixed-point model
(where the matrix U v drops out), whereas for the model away
from the fixed point we consider only the special case of a
diagonal tunneling model.

From the condition mg(h,,h; ,A)=0o0r py = p) = p3 =
1/3 we obtain in Appendix C the two equations

A= V+J2 J2< 1% 1h> (153)
=X ——|x - = ,
LqL J4 J6 LPL P
0331 pLV? = 07h] + 03 (h: —xLpLV), (154)
where
0F =L+ U3+ I + 5 (JE+ 7). (155)
0y =247 + 372 - 172 (156)

This means that the projection of the curve mp(h;,h; ,A) =0
on the (h;,h ) plane is an ellipse with the ratio

s1=01/6, (157)

of the two shape parameters. 6, is the major axis (minor axis)
if s; > 1 (51 < 1). We point out that this is different to the
SU(2) model (i.e., J3g = Jy = Jg = 0) where 0, is always the
major axis. Furthermore, the derivative of A with respect to /,
is given by

dn — 1Jp—J¢
dh, 277+ JF
The two parameters sy > provide smoking guns for the detection

of the fixed-point model since for J; = J/2 and J3g = 0 we
obtain

8§y = (158)

(159)

i.e., a circle in the (h;,h ) plane as shown in Fig. 8 and no
dependence of A = g, V on h; at the fixed point. In this sense

S1=1, S2=0,

FIG. 8. The F-spin magnetization my in the strong nonequi-
librium regime projected onto the (h,,h;) plane at the fixed
point withx;, = xzg =0.5, pp = —pr=0.6,9, = —qr =10, J =
0.0965103, V = 103 Tk, and A =0.5V. The white line h* (k)
indicates where m  is zero.

1 — 51 and s, can both be viewed as parameters measuring
the distance from the fixed-point model. Furthermore, we see
that the parameters x; p;, = —xgprandx.q;, = —xrqg of the
fixed-point model can be determined from the two equations
A=x.qV, hl+(h,—x p VY =x.p; V2. (160)
To fix the remaining parameter x;xz and the coupling J
from a physical quantity we have also evaluated the current
in Appendix C and obtained at the fixed point and for mp = 0

I, =—1Iy
qL — 4R PL — PR
:nxLxRJ2{— 6 A — 4 hz
1
+ 7<4_ qL4r prR)V
3 9 3

1 1
= ﬂ]z{ng‘IRA + ZxRpha

1 1 1
3<4xLxR+ 9quR+ 3xRpL>V} (161)
where we used xpxr(qr —qr) = —xrqr and xpxr(pp —
Pr) = —Xxgpg inthelastequation. J 2is justthe overall scale of
the current and the parameter x;, x g appears explicitly. Together
with x; + xg = 1, the two parameters x;,r can thus be fixed.

In summary, we have shown in the strong nonequilibrium
regime that the condition of vanishing F-spin magnetization
mp = 0 defines a closed curve in (h,,h,,A) space that is
an ellipse in the special case of a diagonal tunneling model.
A golden rule calculation has revealed that the geometric
properties of this ellipse are a measure for the distance to
the fixed-point model where the ellipse turns into a circle
being embedded in a plane defined by a constant value for A.
At the fixed point, the parameters of the effective model can
experimentally be obtained from identifying the position of this
circle together with measuring the current at the corresponding
dot parameters 7 and A.
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V. SUMMARY

The results obtained in this paper show that the area
of nonequilibrium low-temperature transport through generic
quantum dot models contains a huge variety of interesting
fixed-point models not accessible in the equilibrium case.
Previous studies have analyzed many generic Kondo scenarios
for equilibrium systems and used the finite voltage V just as a
probe for the equilibrium dot spectral density for quantum dots
coupled very asymmetrically to two reservoirs [4]. In addition,
the finite voltage together with corresponding decay rates was
just expected to act as a cutoff scale for RG flows in the
weak-coupling regime [23,24,27] analog to the temperature,
leading to quantitatively but not qualitatively different physical
properties. In contrast, the analysis performed in this paper
shows that, for generic tunneling matrices, the cutoff set by
the voltage is essentially different from the temperature since
it drives the system towards a fixed point characterized by a
different symmetry compared to the equilibrium case. Our main
result is that if an electron on a singly occupied dot in the
cotunneling regime can occupy N levels, flavor fluctuations
lead to a model in the nonequilibrium situation which is
essentially not SU(N) invariant. In the scaling limit for fixed
values of V and Tk, a fixed-point model appears at scale V
where each reservoir is characterized by N effective flavors
with (N2 — 1)-dimensional polarizations [corresponding to the
N? — 1 generators of the SU(N) group] pointing in different
directions such that the total sum is equal to zero. This
leads to a SU(N)-symmetric equilibrium fixed point where all
reservoirs can be taken together, but to a SU(N )-nonsymmetric
nonequilibrium fixed point with gualitatively different physical
properties. We have demonstrated this for the special case N =
3 and two reservoirs in the weak-coupling regime V > Tk
and have seen that the condition of equal population of all dot
states is realized for special dot parameters providing a smoking
gun to identify the special symmetry of the nonequilibrium
fixed-point model.

Strictly speaking, the numerical solution of the RG flow
shows that even for rather large ratios D/ Tk, the coupling
constants become all equal only very close to Tk, where the
poor man’s scaling approach is no longer valid. This means
that the fixed-point model can not be reached for voltages
V > Tx, except for cases where the initial parameters have
already been set close to the fixed point. It is therefore of high
interest for the future to develop numerically exact approaches
to describe the strong-coupling regime in nonequilibrium. In
particular, for voltages V ~ Tk we expect that the fixed-point
model has been reached and the scaling of the conductance
and the F'-spin magnetization as function of the dot parameters
will be essentially different from the SU(N)-symmetric case.
In agreement with Refs. [12,13] we have demonstrated in
this paper that in equilibrium the fixed-point model is indeed
reached for temperatures below the Kondo temperature Tk,
providing evidence that a similar result will also hold in the
nonequilibrium case when the voltage reaches Tk . It will be
interesting for the future to test this conjecture and to provide
signatures of the nonequilibrium fixed-point model in the
strong-coupling regime.

Finally, it will also be very interesting for the future to study
the nonequilibrium fixed points in regimes where the particle

number of the dot is larger than one Ny > 1. Already in the
equilibrium case it has been demonstrated that not only the
Coulomb interaction, but also other kinds of interactions (e.g.,
spin-dependent terms) are very important to find the correct
ground state (see, e.g., Ref. [4] for areview). Based on this and
our results for Ngor = 1 we expect that even a richer variety of
new nonequilibrium fixed-point models has to be expected for
Ndot > 1.
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APPENDIX A: RESERVOIR SELF-ENERGY

In this Appendlx we calculate the greater/lesser self-
energies X r< (w) of the dot arising from the tunneling Hamil-
tonian (7) with an effective tunneling matrix given by (40)
together with the potential scattering term V. [see (43)]. The
effective DOS of the reservoirs is given by unity since the
whole nontrivial information of the reservoirs is included in the
effective tunneling matrix. Using standard Keldysh formalism
we get

— 4,2 T G2
E@=r Y VG @Y, @D

aa’  kk'

where gi (@) are the greater/lesser reservoir Green’s
functions arising from the reservoir part of the Hamiltonian in-
cluding the potential scattering term. These Green’s functions
can be calculated from the Dyson equation with V. defining
the self—energy
>
Lok 'k (Cl)) g< (w)aaa’akk’
40‘ =ak
2 t GgA
t ) g @V VG (@)
Cl]k]

+ue) gt @Y VI G2 (),
)

—u

(A2)

aik

where GA

which follows from the Dyson equation

(a)) (w)aaoz’akk’

+U§czg

ark

(a)) denotes the advanced Green’s function

401]( o'k’

(w)L vl g4 ().

—a; =k, a’k’

(A3)

g* (with x = R,A, 2) denote the free Green’s functions of
=ak
reservoir « without V. given by

1
R/A _
éak (@) = w—eakgiin’ (A4)
g (@)= —fa(@)(g" — ")), (A5)
g(w—u—ﬁwmg—ym» (A6)

=ak
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Since the DOS of the reservoirs is unity we get

Z&Rk/ M) = Finl, (A7)
0 -
ng(a)) =2wifo(w)], (A8)
Zﬁa = —27i(1 = fu(@)L. (A9)
k

Using these properties together with >, and

defining

[[=

v'v
—o —a

Gw=) Y VG (@Y.

oo’ kk'

(A10)

with x = R, A, =, we obtain from the Dyson equations (A2)
and (A3) after a straightforward calculation

A

G' =inl+imv.G", (AL1)
G (@) =—inve G~ (@)
+2mi Y ful@ VIV L4+ 0eGY, (A1)
G (@) =—imvg é> (@)
— 21 Yy [ = fu@] V! V. @+ G,
¢ (A13)

. . . . == . .
Solving this set of matrix equations for G<(w) and inserting
the solution in B

22 ) =y G (o), (Al4)

we finally get the result (11) and (12) for the self-energies with
an effective hybridization matrix given by (47).

APPENDIX B: EQUILIBRIUM GROUND STATE
OF THE FIXED-POINT MODEL

In Sec. IID, we have argued why the dot representation has
the [3] fundamental representation while the first state of the
reservoir the complex conjugate of this fundamental represen-
tation [3]. Representing both sites by [3] (or, equivalently, by
the complex conjugate of this representation [3]) leads to a
decomposition of the Hilbert space of the composite system
into a sextet and a triplet. Accordingly, a SU(3)-symmetric
Hamiltonian in this representation has an either threefold- or
sixfold-degenerate ground state which is in contrast to the
outcome of our analysis. Choosing the complex-conjugate
representation [3] for the reservoir site instead leads to a
Hilbert space that decomposes into an octet and a singlet.
A SU(3)-symmetric Hamiltonian in this representation yields
two different eigenenergies of which one is nondegenerate and
the other eightfold degenerate.

‘We want to emphasize that this is fundamentally different to
the situation in the corresponding SU(2) model. Generally, the
fundamental representation of the spin % [2] is equivalent to its
complex conjugate, i.e., [2] = [2]. This is consistent with the
observation that no antispin % exists. However, this a special
property of the SU(2) group that holds no longer for SU(N)

with N > 2 and we anticipate for an analog SU(N) model a
ground state inspired by flavor-antiflavor pairs.

We consider the following set of basis states for the
composite system:

lus) = |u) ®Is), (BI)
lds) = |d) ® 5), (B2)
du) = |d) ® [u), (B3)
|ud) = |u) ® |d), (B4)
lsu) = |s) @ |u), (B3)
|sd) = Is) ® [d), (B6)
lutt) = |u) ® |u), (B7)
|dd) = |d) ® |d), (B8)
lss) = Is) ®[5). (B9)

In a quark picture, these states are meaningful since they are
all eigenstates of the total charge operator

G =0 +7, (B10)
where Q s+ ng and § = f3 ffg are defined as
usual in the quark model [38], with an integer eigenvalue. This
is analog to the observation that no elementary particle with
noninteger electrical charge exists in nature.

Let the effective Hamiltonian Vg [Eq. (115)] act on the
states (B1)-(B6), we find that |u5), |d5), |du), |ud), |su),
and |sd) are eigenstates with eigenvalue Eg = é] . Instead,
the remaining states (B7)—(B9) are not eigenstates since

J J -
Vealut) = = luti) = Z(1dd) + 155)). (B11)
— J - J
Venr|dd) = = 1dd) = Z(um) + |55)). (B12)
J J —
Verlss) = =3 155) — Z(luir) + |da)). (B13)

Finding the remaining eigenstates is a trivial diagonalization
problem in the 3 x 3 subspace of |uu), |dd), and |ss). The first
two linear combinations

1) = 750 — ), (B14)
2) = Jlud) + |dd) ~20s5)) @19

with eigenvalue Eg complement the octet. Being orthogonal to
[1) and |2), the singlet eigenstate is the ground state (122) with
eigenvalue Eg = J We note that this set of eigenstates
is the same as for pseudoscalar mesons in the light quark
model [39].
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APPENDIX C: EVALUATION OF GOLDEN RULE RATE

In this Appendix we evaluate the golden rule rates (149) and
(139) for the special case U v = 1. We denote the three states
by the quark flavors, i.e.,/ = 1,2,3 = u,d,s. First, we evaluate
the matrix elements ri‘j"" from (150) by employing the algebra
of the Gell-Mann matrices. Writing

T = XaX THY (C1)

we obtain for the nonvanishing matrix elements

o =T = 20IM . (C2)
fftzal == 721 = 2iJiM 200 (©3)
fﬁa/ = fgsa =J; M;;ra" (€4
T = - = 1M, (©5)
T =Ty = M S (Co)
fg7a, = f7a6a/ = ”6 M; o0s (€7

f,(;a/li,je(3,8) =205 J3i Mo + 2Ji8J s My e
+ %(-’3[ Jig + JiSJSj)Mzaa/v (C8)

where J33 = J3, Jgg = Jg, and

MY oy = Qoo + OPaPars (€9)
M3 o = Paqo + 0y Pars (C10)
Mgga’ =Gy +0Pe)io + 0'Gu( @y + TPa), (C11)
My =1 4 PP ‘3|‘Qaqa’ o _'3_610/’ €12
with g, = 1 4+ % and g, = 1 — ==. Introducing the notation
Xy = ’;(m + o), (€13)
16 =iny . A = Xada, (C14)
Xura = 27 %0 [JE(@y £ Pats) + J2(Pa £Go0)],  (C15)

with J? = L(J? £ J2) and ¢, = %, we obtain by inserting
(147) and (C1) in (149) after a straightforward calculation

Comuy = Zw(ﬂa - Ko — h)

aa’

< [xF = x5 b + x5 62).

l—‘uad = Z w(ﬂa — Ho T h)[X

’

(C16)

w8, + x5 ¢,

[e70%

(C17)

h ,
Ty = Zw(ua — fho — A — 5))(5‘)(3 . (18

aa’

h ,
Ly = Zw(lfva _Ma"’_A"_E)X;anv (C19)

oo’

h ,
[y = Z w(/"«a - Mo — A+ E)X[?Xg P (CZO)

aa’

h ,
Tgos = Zw(ua — fhor + A — 5))(3)(5-

aa’

(21

In the following, we consider the case of two reservoirs in
the strong nonequilibrium regime as defined in (152). From

the properties (52)—(54) and the results (C1)—(C8) for t/* L we
obtain
Pamuw =[xt = x5 % + x3%92](V = )
+ w(—h) Z “+ x39¢2], (C22)
FCysa=Tasu+ 2X2 oV + h(Xl + X3¢Z)7 (C23)

h h o a
Tomu = x5 X! (V A—2>+w<—A—2);xuxS,

(C24)
h
Fu~>s = Fsau + (XSLXMR - XMLX,YR)V + (A + E)XMXS’
(C25)
L_R h h oo
Fova =xix (V= A+ ) +w( -+ Xa:XdXS’
(C26)
. h
Tams =Tsma+ (X Xg — xd x5V + (A - 3 Jxaxs:
(C27)
where we have defined
xip =Y xifs =w[Jf £ I3 £ 5], (C28)
ao’
Xud = D Xehg =2(J} £ J242), (C29)
Xe=y xi=1, (C30)
and note that
xR = 2nJixopr, (C31)
XSL Xf/d - XuL/dXsR
= —2mlxpqL(J] £ J2¢.) + xpL(J2 £ J7)]. (C32)

The stationary probability distribution p; follows from in-
serting (C22)—(C27) in (138). Finally, we can compute
mp from (142).

We note that mp =0 is equivalent to (F5) = (F) =
0. Therefore, we consider (F3) = z(p,, pa) and (Fy) =
§(pl, + pa — 2py) in the following and analyze under which
conditions both expectation values become zero in the strong
nonequilibrium regime. A cumbersome but straightforward
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analysis yields

. 1
(F?) = ﬁ[Fl(rs%u + rs%d) + ]:2(1—‘5%14 - Fsad)]a
(C33)
2 (F) =~ (FiR T2 — 220 pr V)
ﬁ8_3Nln+ XL PLP:
+ 47TJE(A —XLqgL V)¢z + Fs%u - Fs%d]

+ -F2[2~7:2 + Z(Fdﬁu + Fuﬁd) + Fs%u'}_FSHd]}-
(C34)

Here, the factor N follows from the normalization condition
(138). Furthermore, we have defined the following functions
in (h;,hy,A) space:

Fi=—=2x7%¢.V —h(x1 + x3¢2) — w[Ji(h — 2x.pro.V)
+2J2(A = x1qL V)91, (C35)

Fr =m[202(A — x0qL V) + J2(h, —2pi V)] (C36)

Fi = F, =0 fulfills the condition (F3) = (Fg) = 0. More-
over, it defines a curve in (h;,h ,A) space that provides us
with a tool to measure the distance to the fixed-point model.

IF = %xLxR{[ZflLlR + 25 2T+ ) SV 2 (B ) A v + T - 25 n. ),

F» = Odirectly yields (153) and defines the plane in (h,,h ,A)
space where the curve lies in. The shape of the curve follows
from F; = 0. To that end, we insert (153) into (C35) and obtain
(154). That is, we project the curve onto the (/,,h ] ) plane.
Finally, we prove (161). To this end, we decompose (139)

as
(Ig) =Y T/ ,pr
i
By 1B b 2 5
=1 + 1R + 1 (P, (€37)
with
1
il = 3 Y oI (C38)
178
Isﬁ = Z (F5—>l - Ff—ﬂ)’ (C39)
1
1
1f = 5 Z ( AR VAVES 2Ff—>1)- (C40)
1

Evaluating (140) for two reservoirs in the strong nonequilib-
rium regime (152), we can express (C38)—(C40) in terms of

—ad .
T

2
Ir :nxLxR{[ZifleR +—=uf T TR - féf)]cpzv + [T — T i (3R - tE)]e.A

ﬁfss

1
+ [fﬁR + 258+ (TR - w552 + E(fff +

™ LR - _ _ (LR, -
1F = ExLxR{[ZfILIR + 750 — (T TR+ TS +3i (B + )V + BEEE + ) — i3+ 750 ]A

. 3, _ i, _ _
+ [erleR + E(T“L“R — 55 - E(QLSR — T6L7R)]hz}.

(C41)
Te') + %(f‘ff + féf)}h}, (C42)
(C43)

If we consider mr = 0, the current I? is completely equal to I(f‘ . Therefore, we can evaluate (C42) using (C2)—(C8) at the fixed

point and obtain (161).
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We present the real-time renormalization group (RTRG) method as a method to describe the stationary
state current through generic multilevel quantum dots in nonequilibrium. The employed approach consists of
a very rudimentary approximation for the renormalization group (RG) equations which neglects all vertex
corrections while it provides a means to compute the effective dot Liouvillian self-consistently. Being based
on a weak-coupling expansion in the tunneling between dot and reservoirs, the RTRG approach turns out to
reliably describe charge fluctuations in and out of equilibrium for arbitrary coupling strength, even at zero
temperature. We confirm this in the linear response regime with a benchmark against highly accurate numerical
renormalization group data in the exemplary case of three-level quantum dots. For small to intermediate
bias voltages and weak Coulomb interactions, we find an excellent agreement between RTRG and functional
renormalization group data, which can be expected to be accurate in this regime. As a consequence, we advertise
the presented RTRG approach as an efficient and versatile tool to describe charge fluctuations in quantum dot

systems.

DOI: 10.1103/PhysRevB.99.205142

I. INTRODUCTION

Describing electron transport through mesoscopic systems
like semiconductor heterostructures [1] or molecules (e.g.,
carbon nanotubes [2]) at low temperatures in nonequilibrium
is a fundamental problem in the field of quantum statistics.
The physics of these systems is highly affected by the repul-
sive Coulomb interaction between the electrons, leading to
interesting correlation phenomena such as the Kondo effect
[3,4]. Further attraction arose from possible applications of
quantum nanostructures in future information technology, in
particular in quantum computers.

Two competing mechanisms drive the physical behavior
of an open quantum dot. First, electrons can tunnel in and
out of the quantum dot via tunnel barriers, separating the dot
from surrounding reservoirs held at different temperatures and
chemical potentials. Second, the occupancy of the dot by the
electrons is highly affected by the Pauli principle in concert
with the repulsive Coulomb interaction between the electrons.
The interplay of these two mechanisms causes correlation
effects resulting in emergent phenomena such as the Kondo
effect at sufficiently low temperatures.

Transport spectroscopy provides a means to analyze the
physical processes in open quantum dots [1,5]. The idea is
to scrutinize the current through the quantum dot as function
of the bias voltage, gate voltage, or external magnetic fields.
For instance, a resonance peak in the linear conductance as
function of the gate voltage signals the change of the average
dot electron number [1,5], while the emergence of a plateau
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is a hallmark of the Kondo effect [6]. In contrast, an increase
in the steplike current away from equilibrium indicates the
opening up of another transport channel, i.e., the possibility of
occupying an excited state of the quantum dot [1,5]. Finding
adequate approaches and methods to theoretically describe
resonances in the current through nanostructures is therefore
of great interest.

In equilibrium, numerically exact methods such as the
numerical renormalization group (NRG) [7,8] or the density
matrix renormalization group (DMRG) [9] are well estab-
lished to describe the current through quantum nanostructures.
Some progress has also been made in order to generalize these
approaches to nonequilibrium, leading to the scattering state
NRG [10], time-dependent NRG (TD-NRG) [11], and the
