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We present the real-time renormalization group (RTRG) method as a method to describe the stationary
state current through generic multilevel quantum dots in nonequilibrium. The employed approach consists of
a very rudimentary approximation for the renormalization group (RG) equations which neglects all vertex
corrections while it provides a means to compute the effective dot Liouvillian self-consistently. Being based
on a weak-coupling expansion in the tunneling between dot and reservoirs, the RTRG approach turns out to
reliably describe charge fluctuations in and out of equilibrium for arbitrary coupling strength, even at zero
temperature. We confirm this in the linear response regime with a benchmark against highly accurate numerical
renormalization group data in the exemplary case of three-level quantum dots. For small to intermediate
bias voltages and weak Coulomb interactions, we find an excellent agreement between RTRG and functional
renormalization group data, which can be expected to be accurate in this regime. As a consequence, we advertise
the presented RTRG approach as an efficient and versatile tool to describe charge fluctuations in quantum dot
systems.
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I. INTRODUCTION

Describing electron transport through mesoscopic systems
like semiconductor heterostructures [1] or molecules (e.g.,
carbon nanotubes [2]) at low temperatures in nonequilibrium
is a fundamental problem in the field of quantum statistics.
The physics of these systems is highly affected by the repul-
sive Coulomb interaction between the electrons, leading to
interesting correlation phenomena such as the Kondo effect
[3,4]. Further attraction arose from possible applications of
quantum nanostructures in future information technology, in
particular in quantum computers.

Two competing mechanisms drive the physical behavior
of an open quantum dot. First, electrons can tunnel in and
out of the quantum dot via tunnel barriers, separating the dot
from surrounding reservoirs held at different temperatures and
chemical potentials. Second, the occupancy of the dot by the
electrons is highly affected by the Pauli principle in concert
with the repulsive Coulomb interaction between the electrons.
The interplay of these two mechanisms causes correlation
effects resulting in emergent phenomena such as the Kondo
effect at sufficiently low temperatures.

Transport spectroscopy provides a means to analyze the
physical processes in open quantum dots [1,5]. The idea is
to scrutinize the current through the quantum dot as function
of the bias voltage, gate voltage, or external magnetic fields.
For instance, a resonance peak in the linear conductance as
function of the gate voltage signals the change of the average
dot electron number [1,5], while the emergence of a plateau
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is a hallmark of the Kondo effect [6]. In contrast, an increase
in the steplike current away from equilibrium indicates the
opening up of another transport channel, i.e., the possibility of
occupying an excited state of the quantum dot [1,5]. Finding
adequate approaches and methods to theoretically describe
resonances in the current through nanostructures is therefore
of great interest.

In equilibrium, numerically exact methods such as the
numerical renormalization group (NRG) [7,8] or the density
matrix renormalization group (DMRG) [9] are well estab-
lished to describe the current through quantum nanostructures.
Some progress has also been made in order to generalize these
approaches to nonequilibrium, leading to the scattering state
NRG [10], time-dependent NRG (TD-NRG) [11], and the
time-dependent DMRG (TD-DMRG) [12]. Recently, a novel
thermofield approach [13] was developed that combines the
latter two methods to describe impurity models in nonequi-
librium. Although all these approaches are very promising,
reliable numerical data for the current across generic quantum
dots with more than two levels out of equilibrium is missing
in the literature at the moment.

Numerically exact methods are typically computationally
demanding and one therefore often assumes certain symme-
tries for the model to reduce the numerical effort. Essentially
analytic methods such as the real-time RG (RTRG) [14,15],
functional RG (fRG)[16–18], or the flow equation method
[19] are usually less demanding, allowing for a more efficient
study of complex setups. For instance, the computational
effort for determining the self-energy using the fRG method in
lowest-order truncation is comparable to that of a mean-field
calculation.
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The downside of analytic methods is that they are usu-
ally perturbative with the consequence that their range of
applicability is restricted. However, perturbative RG methods
such as the fRG or the RTRG are based on a resummation
of certain classes of diagrams. If these diagrams capture the
essential physical processes, then these methods yield reliable
results even beyond the range of validity of a corresponding
approximation within plain perturbation theory. A notable
example in this regard is the agreement between results for
the Kondo model in nonequilibrium in the strong-coupling
limit obtained from a RTRG approach [20,21], which is per-
turbative in the coupling between dot and reservoirs, and exact
numerical methods [13]. Some results are also in accordance
with experimental data [22].

In this paper, we report a similar observation for the
description of charge fluctuations in generic three-level quan-
tum dots with nondegenerate single-particle energies. Hereby,
the regime of charge fluctuations is defined by the condi-
tion that real processes are possible changing the particle
number on the quantum dot by �N = ±1. In this regime,
Kondo-induced correlations (as discussed in Ref. [28] for
the Coulomb blockade regime) are suppressed and the main
physics consists in resonances for the differential conductance
as function of the gate voltage when one of the renormalized
single-particle excitations of the dot is close to one of the
chemical potentials of the reservoirs. Such resonances occur
also in the sequential tunneling regime of high temperatures
T � �, where � denotes the broadening of the single-particle
excitations induced by the coupling to the leads. In this
regime, the resonance positions correspond to the bare single-
particle excitations of the dot and their line shape is mostly
dominated by thermal smearing. This can be described by
standard kinetic equations in Born-Markov approximation. In
contrast, the aim of this paper is to calculate the position and
line shape of these resonances at zero temperature T = 0 by
including all diagrams of the RTRG describing charge fluc-
tuation processes. In this essentially nonperturbative regime
in � one obtains renormalized resonance positions and the
line shape is dominated by quantum fluctuations leading to
Breit-Wigner–type line shapes with a broadening of the order
of �. Since orbital fluctuations are not taken into account,
the solution is expected to be reliable when the distance
δ of the gate voltage to one of the resonance positions is
of the order of �. Furthermore, since the RTRG is derived
from a diagrammatic expansion in �, at first glance this
method is controlled only for small dot reservoir couplings,
which means that � should be smaller than max{T, δ}. How-
ever, our study reveals that the self-consistent resummation
of all charge fluctuation diagrams via the RTRG approach
yields reliable results close to the resonances for arbitrary
Coulomb interactions and arbitrary coupling to the reservoirs,
respectively, even at zero temperature. Even when all energy
scales become of the same order of magnitude δ,U ∼ �,
where one can no longer distinguish between the regime
of charge fluctuations (close to the resonances) and orbital
fluctuations (between the resonances), the considered RTRG
approximation describes quite well the line shape of the main
resonances but not the conductance between the resonances
(where orbital fluctuations dominate). This means a drastic
extension of the range of validity of this approximation. To

confirm this, highly accurate NRG data for the linear conduc-
tance as function of the gate voltage serve as a benchmark
against the RTRG solution. In nonequilibrium, we find an
excellent agreement between the fRG method, which employs
the Coulomb interaction as the expansion parameter, and the
RTRG for small Coulomb interactions and strong coupling,
respectively. Additionally, one can show that our approximate
RTRG approach becomes exact for large bias voltages (see
Appendix A). As a consequence, we advertise the RTRG
method as an efficient tool to describe charge fluctuations in
multilevel quantum dots in nonequilibrium even at very low
temperatures.

The fRG in static approximation serves in the following
mainly as a benchmark for small Coulomb interactions in
nonequilibrium, where this approach is strictly controlled.
However, previous studies of transport through multilevel
quantum dots with a complex setup [23] revealed that the
fRG is reliable up to intermediate Coulomb interactions in the
linear response regime. In general, fRG in static approxima-
tion is applicable if the physical behavior can be described
by an effective single-particle picture. While this is clearly
not the case for large bias, we compare fRG and RTRG
data for the differential conductance also in this regime in
order to estimate the range of applicability for the effective
single-particle picture.

In this paper, we stick to simple approximation schemes for
the RTRG and the fRG in order to keep the numerical effort
as low as possible. However, both methods are flexible in the
sense that approximations can be systematically extended by
taking higher-order diagrams into account, as it was demon-
strated, e.g., for a theoretical description of two-level quantum
dots by the RTRG [24] and the fRG [18,25].

The outline of this paper is as follows. In Sec. II A, we
introduce the multilevel generalization of the Anderson model
together with a generic model for the tunneling between dot
and reservoirs. The considered methods, RTRG, fRG, and
NRG, are then introduced successively in Secs. II B–II D.
Section III comprises the benchmark of the considered RTRG
and fRG approximations against NRG data for the linear con-
ductance for a model with proportional coupling. Afterward,
we discuss the reliability of the RTRG and fRG approaches
to describe the quantum dot with generic tunneling matrix in
nonequilibrium in Sec. IV. The paper closes with a summary
of the main results. We consider h̄ = kB = e = 1 through-
out this paper.

II. MODEL AND METHODS

In this section, we briefly introduce the considered model
for the quantum dot as well as the methods applied in this
work. To this end, we first discuss the Anderson model for
multilevel quantum dots. Then, we set up the RG equations for
this model using the RTRG method with the reservoir-dot cou-
plings being the expansion parameter. Similarly, we set up RG
equations in the static approximation within the fRG approach
with the Coulomb interaction being the expansion parameter
and comment on the applied NRG method. Results from the
fRG are later on used to test the reliability of the RTRG
solution out of equilibrium in the regime of weak Coulomb
interactions and strong coupling, while the highly accurate
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NRG data provide a benchmark for the linear conductance at
arbitrary Coulomb interactions.

A. Multilevel Anderson model

We consider the multilevel generalization [26] of the
single-impurity Anderson model [27] where the electron spin
index σ is replaced by the flavor index l . This is a quantum
number labeling one of the Z dot levels which is either empty
or is occupied by exactly one electron. In general, l can be
viewed as a multi-index that also includes the spin index σ .
The corresponding Hamiltonian reads as

Hs = H0 + Vee, (1)

H0 =
∑

l

εl c†
l cl , (2)

Vee = U

2

∑
ll ′

c†
l c†

l ′ cl ′ cl . (3)

Here, U quantifies the strength of the Coulomb interaction
between the dot electrons and εl = hl − Vg − (Z − 1)U

2 are
the single-particle dot levels. To avoid a proliferation of
parameters, we assume a flavor-independent Coulomb inter-
action. However, our approaches can also handle more general
two-particle interaction terms by incorporating these terms
into the initial conditions of the RG equations. External fields
(e.g., magnetic fields) are incorporated into the level spacing
hl and Vg is the gate voltage, allowing to uniformly tune the
dot levels. The choice hl = Vg = 0 defines the particle-hole
symmetric model.

The full Hamiltonian of the Z-level Anderson model is
given by

Htot = Hs + Hres + Vc, (4)

with

Hres =
∑
kαl

εkαl a†
kαl akαl , (5)

Vc = 1√
ρ (0)

∑
kαll ′

(
tα
ll ′a

†
kαl cl ′ + (

tα
ll ′

)∗
c†

l ′akαl
)
, (6)

where Hres is the part accounting for the Zres reservoirs and Vc

the coupling between the quantum dot and the reservoirs. Ac-
cordingly, α = 1, . . . Zres is the reservoir index, εkαl the band
dispersion relative to the chemical potential μα for the channel
l with some quantum number k that becomes continuous in
the thermodynamic limit. Furthermore, tα

ll ′ denotes the matrix
elements of the tunneling between the reservoir and the dot.
We assume flat reservoir bands (at least on the low-energy
scale of interest) and take tα

ll ′ as independent of k. Here, ρ (0)

is some average reservoir density of states which we set to
ρ (0) = 1 for convenience, defining the energy units.

The reservoirs contribute to the self-energy and the current
formula only via the hybridization matrix

�α
ll ′ (ω) = 2π

∑
ll l2

(
tα
l1l

)∗
ρα

l1l2 (ω) tα
l2l ′ , (7)

where ρα
l1l2

(ω) = δl1l2

∑
k δ(ω − εkαl1 + μα ) is the constant

density of states in reservoir α. This together with the assump-
tion that the reservoirs are infinitely large means that we can

neglect the frequency dependence of �α
ll ′ (ω). In particular, we

consider the normal lead model with

�α
ll ′ = 2π

∑
ll

(
tα
l1l

)∗
tα
l1l ′ (8)

in the following. We define � = ∑
αll ′ �

α
ll ′ as the characteristic

energy scale for tunneling processes between the dot and the
reservoirs.

Importantly, the dot expectation values and the current
depend on the form of the hybridization matrices and not on
the form of the tunneling matrices. This means that different
models with the same hybridization matrices have the same
properties. Accordingly, all these models can be mapped onto
each other with rotations in the channel indices with an
invariant hybridization matrix [28]. This is the reason why we
can describe the generic case using the normal lead model (8)
where the dot and channel indices coincide.

Finally, the Fermi distribution

fα (ω) = 1

eβαω + 1
(9)

characterizes the thermodynamic state of the reservoir with
the inverse temperature βα = T −1

α . We later consider reservoir
temperatures Tα = 0 implying fα (ω) = �(−ω) for the Fermi
distribution function with �(ω) being the Heaviside distribu-
tion.

B. Real-time RG

The state of the quantum dot can be quantified by the
reduced density matrix

ρs(t ) = Trres ρtot (t ), (10)

where Trres is the trace over the reservoir degrees of freedom
and the total density matrix ρtot (t ) is the solution of the von
Neumann equation i d

dt ρtot (t ) = [ Htot , ρtot (t ) ]. The reduced
density matrix ρs(t ) is in turn the solution of the kinetic
equation

i
d

dt
ρs(t ) =

∫ t

0
dt ′ L(t − t ′)ρs(t

′) (11)

with the effective Liouvillian L(t − t ′) being the response
function due to the coupling to the reservoirs. This equation
can be formally solved in Fourier space, yielding

ρs(E ) = i

E − L(E )
ρs(t = 0) (12)

with ρs(E ) = ∫ ∞
0 dt eiEt ρs(t ) and L(E ) = ∫ ∞

0 dt eiEt L(t ).
Here, we are only interested in the solution in the

stationary limit (t → ∞) which is defined as ρst =
limE→i0+ (−iE )ρs(E ). It can be conveniently obtained from
solving

L(i0+)ρst = 0. (13)

The average electron current leaving reservoir γ is defined
as Iγ (t ) = 〈− d

dt N̂γ 〉, where N̂γ = ∑
kl a†

kγ l akγ l is the particle
number in reservoir γ . The current can conveniently be com-
puted using

Iγ (t ) = −i
∫ t

0
dt ′ Trs �γ (t − t ′)ρs(t

′), (14)
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or in Fourier space

Iγ (E ) = −i Trs �γ (E ) ρs(E ), (15)

where �γ (t − t ′) and �γ (E ) = ∫ ∞
0 dt eiEt�γ (t ), respec-

tively, is the current kernel. The stationary state limit is given
by

Ist
γ = lim

E→i0+
(−iE )Iγ (E )

= −i Trs �γ (i0+) ρst, (16)

which we aim to compute.
The model Hamiltonians (2)–(6) provide two different

starting points for a perturbative expansion. First, for weak
Coulomb interactions (U 
 �), Vee can be viewed as a pertur-
bation and one can expand in the electron-electron interaction.
This is the starting point of the fRG that is discussed in
Sec. II C. Second, for arbitrary U , a weak-coupling expansion
in � is favorable for � 
 max{Tα, δ}. In this case, one can
compute the effective Liouvillian L(E ) and the current kernel
�γ (E ) using the RTRG approach, as we discuss now.

Applying the diagrammatic technique presented in
Refs. [14,15] on Anderson-type models with charge fluctua-
tions yields the RG equation

d

dE
L(E ) = − + O(G4)

= −
∫

dω f ′(ω) G1(E , ω)�(E1 + ω)

× G1(E1 + ω,−ω) + O(G4) (17)

for the effective Liouvillian, which was also already stated
in the Supplemental Material of Ref. [29]. Here, �(E ) =
i[E − L(E )]−1 is the full propagator of the quantum dot
and G1(E , ω) is an effective vertex, accounting for the
dot-reservoir interaction. Furthermore, E1 = E + μ1 is the
Fourier variable plus the chemical potential μ1 = ημα , 1 =
ηαl is a multi-index, and η is a sign index that indicates
whether a dot electron is created or annihilated during the
interaction process. Accordingly, η = + (η = −) corresponds
to the dot annihilation (creation) operator, i.e., c+l = cl

(c−l = c†
l ).

The derivation of the RG equation (17) is not very
difficult and can be sketched as follows (for details, see
Refs. [15,20,29]). First, the perturbative series for L(E ) con-
sists of a series of bare vertices G1 connected by bare prop-
agators �(0)(E + X ) = i[E + X − L0]−1, where L0 = [H0, ·]
is the Liouvillian of the bare dot and X contains a certain
sum of chemical potentials and frequencies of the reservoir
contractions connecting the bare vertices. After resummation
of self-energy insertions, all bare propagators are replaced by
the full effective ones �(E + X ). Differentiating this series
with respect to E means that one of the propagators is replaced
by its derivative d

dE �(E + X ). Resumming vertex corrections
left and right to d

dE �(E + X ) and considering only the charge

fluctuation process yields to lowest order

d

dE
L(E ) =

∫
dω f (ω) G1(E , ω)

× d

dE
�(E1 + ω) G1(E1 + ω,−ω) + O(G4).

(18)

Using d
dE �(E1 + ω) = d

dω
�(E1 + ω) and partial integra-

tion, one can shift the frequency derivative to the Fermi
function and to the effective vertices. Since one can show
that the frequency derivative of the vertices again leads to
higher-order terms, they can be neglected and one obtains the
RG equation (17).

The effective vertex G1(E , ω) can be obtained as the
solution of a similar RG equation. However, as it is explained
in Appendix A, a resummation of logarithmic terms in the
perturbative series expansion is not necessary since the self-
consistently calculated Liouvillian does not suffer from any
logarithmically divergent terms for E = i0+. This has the con-
sequence that vertex corrections can be neglected in leading
order and we can replace the effective vertices G1(E , ω) by
the bare ones, i.e.,

G1 =
∑

p

Gp
1 (19)

with

Gp
1 = Gp

ηαl =
∑

l ′
tηα

ll ′ Cp
ηl ′ , (20)

where tηα

ll ′ = δη+ tα
ll ′ + δη− tα

l ′l = t−ηα

l ′l and

Cp
ηl • = pσ p

{
cηl • if p = +,

• cηl if p = − (21)

are the dot field superoperators fulfilling the anticommutation
relation {Cp

ηl , Cp′
η′l ′ } = pδpp′δη,−η′δll ′ . Here, the sign factor

(s1s2|σ p|s′
1s′

2) = δs1s′
1
δs2s′

2
pNs1 −Ns2 measures the parity of the

states [14,15] |ss′) = |s〉〈s′|, where |ss′) = |s〉〈s′| are the basis
states of the dot Liouville space, (ss′| . . . = 〈s| . . . |s′〉 are the
basis states of the corresponding dual Liouville space, |s〉
are the many-body eigenstates of Hs, and Ns the dot electron
number in state |s〉.

A similar RG equation for the current kernel follows from
(17) by simply replacing the left vertex G1(E , ω) by the
current vertex (Iγ )1(E , ω). This yields

d

dE
�γ (E ) = −

∫
dω f ′(ω) (Iγ )1(E , ω)

× �(E1 + ω) G1(E1 + ω,−ω). (22)

For the same reasons as above, we neglect the vertex correc-
tions to the current kernel which means that we insert [14,15]

(Iγ )1, =
∑
p=±

(Iγ )p
1 = cγ

1 G̃1 (23)

for the current vertex, where cγ

1 = cγ
ηα = − 1

2ηδαγ and G̃1 =∑
p=± pGp

1.
The RG flow starts at E = iD, with D being the bandwidth

of the reservoir density of states (see Appendix A), and stops
at E = i0+, where the effective Liouvillian and the current
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kernel needed to compute the stationary state properties are
defined. Setting up the initial conditions for the RG equations
as explained in Ref. [21], we obtain

L(E )
∣∣
E=iD = L(0) + L(1s), (24)

�γ (E )
∣∣
E=iD = �(1s)

γ (25)

from lowest-order perturbation theory where L(1s) and �(1s)
γ

are given by (A5) and (A7). The natural choice for the path
of the RG flow is E = i� with D � � � 0+ and a real flow
parameter. This is a special choice since, in general, the flow
parameter E within the E -flow scheme [20,21] of the RTRG is
complex with the consequence that two different paths for the
RG flow connecting the same starting and end point yield the
same solution at the end point, as long as they do not enclose
any singularities of L(E ) and �γ (E ), which lie in the lower
half of the complex plane. This is fundamental for computing
the transient dynamics [15,29].

At zero temperature Tα = 0, the derivative of the Fermi
distribution becomes the δ distribution f ′(ω) = −δ(ω), and
the frequency integrals in (17) and (22) become trivial. Thus,
we obtain

d

d�
L̃(�) = i

∑
ηαl

Gηαl
1

i� + μα − L̃(� − i μα )
G−ηαl ,

(26)

d

d�
�̃α (�) = − i

2

∑
lη

η G̃ηαl
1

i� + μα − L̃(� − iμα )
G−ηαl ,

(27)

with L̃(�) = L(i�) and �̃(�) = �(i�).
We note that (26) defines an infinite hierarchy of differ-

ential equations since the Liouvillian evaluated at � − iμα is
fed back and not the one evaluated at �. Thus, one also needs
to solve an RG equation for L̃(� − iμα ). The right-hand side
of this equation in turn depends on L̃(� − iμα − iμα′ ). By
proceeding this way, we arrive at an infinite hierarchy of RG
equations for the effective Liouvillian where each RG equa-
tion is associated with a different shift in the energy argument
of the effective Liouvillian. However, this hierarchy of RG
equations can be straightforwardly truncated, as explained in
Appendix B.

In total, the purpose of the RG treatment is a self-consistent
computation of the effective Liouvillian L̃(�). This is nec-
essary since bare perturbation theory for the Liouvillian and
the current kernel exhibits logarithmic singularities (see the
discussion in Appendix A). These singularities are located at

μα = Es1 − Es2 with Ns1 = Ns2 + 1, (28)

where Es are the eigenvalues of Hs. This equation represents
the well-known condition for resonant tunneling through the
quantum dot (see, e.g., Refs. [1,5] for a review). This means
that the logarithmic singularities result in δ peaks in the
differential conductance, i.e., the derivative of the current
with respect to the reservoir bias voltage. As a consequence
of the RG treatment, the eigenvalues λk (E ) of the effective
Liouvillian, defined by L(E )|xk (E )) = λk (E )|xk (E )), replace

Es1 − Es2 in the argument of the logarithms of L(E ) and
�γ (E ). Importantly, the imaginary part Im λk (i0+) provides
a cutoff in the argument of the logarithm. This regularizes
the logarithmic singularities and causes a finite height of the
conductance peaks together with a finite broadening of width
∼�. In addition, the peak position is renormalized, i.e., the
conductance peaks are now located at

μα − Re λk (μα + i0+) = 0. (29)

This must be contrasted to the case of moderate temper-
atures Tα � �, where, e.g., the width of the conductance
peaks is given by the temperature T = Tα if all reservoir
temperatures are equal. In this case, the sharp edge of the
Fermi distribution, being fundamental for the emergence of
logarithmic singularities at Tα = 0, is broadened by the tem-
perature and no logarithmic singularities occur. In this case,
the full propagator on the right-hand sides of the RG equations
(17) and (22) can be replaced by the bare one �(0)(E ) =
i[E − L(0)]−1, where L(0) is given by (A3). Thus, the RG
equations can be formally solved, yielding the expressions for
the first-order corrections in bare perturbation theory.

C. Functional RG

An alternative approach to compute the current across the
quantum dot is the Keldysh Green’s function formalism [30].
The current can be computed from

Ist
γ = i

4π

∫
dω Tr �γ {[1 − 2 fγ (ω − μγ )]

× [GR(ω) − GA(ω)] − GK(ω)}, (30)

which is straightforwardly obtained from the current formula
stated in Ref. [31] by replacing the lesser component of the
Green’s function by the Keldysh component. Accordingly,
GR,A,K(ω) is the retarded, advanced, and Keldysh component
of the dot Green’s function, respectively,

G(ω) =
(

GR(ω) GK(ω)

0 GA(ω)

)
, (31)

and �γ is the hybridization matrix in matrix notation, i.e.,
(�γ )ll ′ = �

γ

ll ′ . There are in total two independent compo-
nents of the Green’s function, that are

GR(ω) = 1

ω − �R(ω)
= [GA(ω)]†, (32)

GK(ω) = GR(ω)�K(ω)GA(ω), (33)

where

�(ω) =
(

�R(ω) �K(ω)

0 �A(ω)

)
(34)

is the self-energy.
Here, we already consider the so-called reservoir dressed

Green’s function. This is an effective Green’s function in
dot space, hence doubly underlined in the matrix notation,
which can be obtained from the Green’s function of the total
system by projecting out the reservoir degrees of freedom.
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The projection results in an additional addend to the self-
energy in terms of �α . In the noninteracting case, i.e., U = 0,

we obtain �R = ε + �R
res

= (�A)† and �K(ω) = �K
res

(ω)
with (ε)ll ′ = εll ′ and

�R
res

= − i

2
�, (35)

�K
res

(ω) = −i
∑

α

[1 − 2 fα (ω − μα )]�α, (36)

with � = ∑
α �α . Accordingly, the reservoir dressed Green’s

function of the noninteracting system (U = 0) is given by

GR/A
0

(ω) = 1

ω − ε − �R/A
res

, (37)

GK
0

(ω) = GR
0

(ω)�K
res

(ω)GA
0

(ω). (38)

The repulsive Coulomb interaction between the dot elec-
trons leads to a renormalization of the self-energy. Here, we
compute this renormalization using the fRG approach. This
yields an RG equation for the self-energy, which can be
expressed diagrammatically as [16]

Σ = γ2 .
(39)

The diagram on the left-hand side represents the derivative
of the self-energy with respect to the flow parameter �, while
the diagram on the right-hand side is of Hartree-Fock form
in Hugenholtz representation. Here, the single-scale propaga-
tor (crossed line) replaces the free contraction line and the
interaction vertex represents the two-particle vertex function
γ2(�).

In general, the two-particle vertex function γ2(�) can be
obtained from a corresponding RG equation within the fRG
approach. The right-hand side of the RG equations for the
n-particle vertex γn(�) with n � 2 depends on γn+1(�). This
leads to a hierarchy of infinitely many RG equations [16].
Here, we disregard all vertex corrections and insert the bare
vertex

vl1l2,l ′1l ′2 =

⎧⎪⎨
⎪⎩

U if l1 = l ′
1 �= l2 = l ′

2,

−U if l1 = l ′
2 �= l2 = l ′

1,

0 else

(40)

for γ2(�). This means a truncation of the hierarchy of RG
equations in lowest order. It corresponds to an RG-enhanced
perturbation theory to leading order in U . Translating the
diagram in (39) as explained in Ref. [17] yields

d

d�
�R

ll ′ (�) = − i

4π

∑
l1l ′1

vll1,l ′l ′1

∫
dω SK

l ′1l1 (�,ω), (41)

d

d�
�K

ll ′ (�) = − i

4π

∑
l1l ′1

vll1,l ′l ′1

∫
dω

× [SR(�,ω) − SA(�,ω)]l ′1l1 , (42)

where Sx(�,ω) denotes the three components (x = R, A, K)
of the single-scale propagator, which is defined as

S(�,ω) =
(

SR(�,ω) SK(�,ω)

0 SA(�,ω)

)

= −G(�,ω)

{
d

d�
[G

0
(�,ω)]−1

}
G(�,ω). (43)

The � dependence of the Green’s and vertex functions
is established by supplementing an infrared cutoff � to the
Green’s function. It allows to treat the energy scales of
the system successively from high to low energies. Starting
from � = ∞, where the free propagation is completely
suppressed, the fRG describes the scaling of the effective
vertices and the self-energy during the process of successively
turning on the free propagation of the model by reducing
�. This means that the RG equations are solved along the
RG path from � = ∞ to 0, where the original problem
is recovered. Technically, this approach constitutes a means
to resum systematically certain classes of diagrams in the
perturbative series representation of the self-energy.

A crucial step is therefore to introduce an appropriate
cutoff in the Green’s function. The hybridization flow [32]
has proved to be a convenient choice in nonequilibrium since
it preserves fundamental symmetries as the Kubo-Martin-
Schwinger conditions and causality. Physically, the idea is to
couple the quantum dot uniformly to an auxiliary reservoir.
This results in an additional addend to the self-energy of the
form

(
�R/A

aux
(�)

)
ll ′ = ∓iδll ′�, (44)(

�K
aux

(�)
)

ll ′ = −2iδll ′ [1 − 2 faux(ω − μaux)]�, (45)

while the hybridization � serves as the cutoff. We assume
Taux = ∞ which leads to faux(ω − μaux) = 1

2 , i.e., a flat dis-
tribution, with the consequence that the contribution to the
Keldysh component vanishes, �K

aux(�) = 0. This prevents
the auxiliary reservoir from implying an additional structure
like, e.g., Fermi edges, to the theoretical description of the
nonequilibrium stationary state. Furthermore, the single-scale
propagator becomes [18,32]

SR/A(�) = ∓iGR/A(�)GR/A(�), (46)

SK(�) = −iGR(�)GK(�) + iGK(�)GA(�) (47)

with

GR(�,ω) = 1

i� + ω − �R(�,ω)
= [GA(�,ω)]†, (48)

and the Keldysh component follows from the relation (33)
which holds also for the �-dependent Green’s function. Here,
we have separated the auxiliary reservoir contribution (44)
from the self-energy �R(�,ω).
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Solving the RG equations for the self-energy requires their
initial conditions at the starting point � = ∞. Setting them
up as explained in Ref. [18] gives

�R
ll ′ (�,ω)

∣∣∣
�=∞

= εll ′ + 1

2

∑
l1

vll1,l ′l1 − i

2
�ll ′

= (hl − Vg)δll ′ − i

2
�ll ′ , (49)

�K
ll ′ (�,ω)

∣∣∣
�=∞

= −i
∑

α

�α
ll ′ sgn(ω − μα ), (50)

where the second term on the right-hand side of the first
line in (49) is the contribution from the Hartree diagram,
which at � = ∞ is the only nonvanishing correction from
the diagrammatic series representation of the self-energy.

The retarded (advanced) component of the Green’s func-
tion as a function of the frequency ω is analytic in the upper
(lower) half of the complex plane. This together with the
frequency independence of the (bare) vertex has the important
consequence that the integral on the right-hand side of (42)
vanishes. This yields

d

d�
�K(�) = 0, (51)

i.e., the Keldysh component of the self-energy does not renor-
malize.

In contrast, the frequency integral on the right-hand side
of (41) is nonvanishing and can be evaluated analytically
using the spectral representation of the retarded component
of the self-energy. This is possible since the (bare) two-
particle interaction vertex is independent of the frequency. The
resulting expressions can be found in Appendix C. As a result,
the right-hand side of the RG equation (41) is a self-adjoint
matrix since (SK(�,ω))† = − SK(�,ω). Thus, we obtain a
renormalized dot Hamiltonian

H̃0 =
∑

ll ′
ε̃ll ′ c†

l cl ′ , (52)

with ε̃ = �R(� = 0) − �R
res

for � = 0. The reservoir
dressed Green’s function is therefore the one of a noninter-
acting open system with

GR/A(ω) = 1

ω − ε̃ − �R/A
res

, (53)

GK(ω) = GR(ω)�K
res

(ω)GA(ω). (54)

This has the consequence that, as is shown in Ref. [31], the
current formula (30) reduces to the Landauer-Büttiker formula

Ist
γ = 1

2π

∑
α

∫
dω Tγα (ω)[ fγ (ω − μγ ) − fα (ω − μα )],

(55)

where

Tγα (ω) = Tr �γ GR(ω)�αGA(ω) (56)

is the transmission probability.
To summarize, the fRG approach in lowest-order trunca-

tion is a means to compute the static self-energy with the effect
of a renormalization of the single-particle dot Hamiltonian.

D. Numerical RG

We benchmark the solutions obtained from the RTRG
and the fRG approaches, each constituting a perturbative
RG method, against highly accurate NRG data in the linear
response regime. To obtain the most accurate NRG data,
we restrict the model to the case of proportional coupling,
i.e., �α = xα� with

∑
α xα = 1. In this case, as shown

in Ref. [31], one can again use the Landauer-Büttiker–type
formula (55) but with the transmission probability (56) given
by

Tγα (ω) = 2π xγ xα Tr � ρ(ω), (57)

where ρ(ω) = i
2π

(GR − GA)(ω) is the dot spectral function.

This quantity characterizes completely the current across the
dot in linear response. To see this, we first note that fγ (ω −
μγ ) − fα (ω − μα ) ≈ − f ′(ω)(μγ − μα ). As a consequence,
with μα = −eVα , the current is recast as

Iγ =
∑

α

Gγα (Vγ − Vα ), (58)

with the conductance tensor

Gγα = − 1

2π

∫
dω Tγα (ω) f ′(ω) = 1

2π
Tγα (0), (59)

where we used f ′(ω) = − δ(ω) in the last step.
The calculations are performed using the full-density-

matrix NRG [33] and make use of the QSpace tensor library
developed by Weichselbaum [34]. We employ an efficient,
interleaved NRG setup [35] with an overall discretization
parameter of � = 6 (i.e., 3

√
6 between each truncation), and

we keep states up to a rescaled energy of Etrunc = 10 and
maximal number Nkeep = 4000 during the NRG iteration.
Additionally, results are averaged between two realizations
of the discretization (z averaging [8,36]). The wide-band and
zero-temperature limits are practically realized by setting the
half-bandwidth to 104 and temperature to 10−8. We checked
that our results are converged up to the percent level with
respect to all involved numerical parameters. Finally, we
note that one need not broaden the NRG data as the linear
conductance can be inferred from discrete spectral weights.

III. CONDUCTANCE IN THE LINEAR RESPONSE REGIME

In order to demonstrate the strength of the RTRG method in
describing charge fluctuations, we discuss results for a generic
quantum dot with three (Z = 3) nondegenerate levels, i.e.,
|hl − hl ′ | ∼ �, and two reservoirs held at different chemical
potential and zero temperature. The difference between the
chemical potentials of the reservoirs is quantified by the bias
voltage, i.e., μL − μR = V and μL/R = ±V

2 . In particular,
we consider the first derivative of the current Iγ , the differen-
tial conductance

G = GLR = d

dV
IL = − d

dV
IR. (60)

As a first step, we benchmark the RTRG (and the fRG) method
in the chosen approximation against NRG data. We can do this
for an arbitrary model with proportional coupling in the linear
response regime.
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TABLE I. Input parameters for the tunneling matrix t L of the
left reservoir in the case of proportional coupling. These parameters
define the matrix elements t L

ll ′ via (61). The tunneling matrix of the
right reservoir follows from the relation tR = √

κt L .

(�L11, ϕL11) (0.00680672,0.98)
(�L12, ϕL12) (0.0605042,0.96)
(�L13, ϕL13) (0.0332773,0.12)
(�L21, ϕL21) (0.0627731, −0.99)
(�L22, ϕL22) (0.0589916,0.79)
(�L23, ϕL23) (0.024958, −0.16)
(�L31, ϕL31) (0.00983193, −0.8)
(�L32, ϕL32) (0.0468908,0.71)
(�L33, ϕL33) (0.0559664,0.8)
κ 1.77778

We parametrize the tunneling matrix tα
ll ′ of the model as

tα
ll ′ =

√
�αll ′

2π
eiϕαll′π , (61)

leading to

�α
ll ′ =

∑
l1

√
�αl1l�αl1l ′e

−i(ϕαl1 l −ϕαl1 l′ )π (62)

for the hybridization matrix. In the case of proportional cou-
pling, we introduce the ratio κ = �Rll ′/�Lll ′ .

We consider an arbitrary hybridization matrix. To this end,
we present here the results for a model with hybridization
matrix parametrized by random numbers. Table I contains the
corresponding parameters �αll ′ and ϕαll ′ .

We found for arbitrary strengths of the Coulomb inter-
action three peaks for the conductance G as a function of
the gate voltage Vg. Figures 1 and 2 show exemplary results.
This outcome is commonly interpreted using the picture of
the Coulomb blockade (see, e.g., Ref. [1] for a review).
Accordingly, a peak occurs whenever the ground states of the
N and N + 1 particle sectors are degenerate and a resonant
electron transport across the quantum dot is possible. This
is the meaning of the condition (29) for resonant tunneling,
which differs from (28) only due to the renormalization of
the peak positions. In contrast, the conductance is drastically
reduced between the peaks, resulting in so-called Coulomb
blockade valleys. The dot electron number is fixed in this case
and tunneling in and out of the dot involves the occupation
of a dot state with a different particle number. These states
are of higher energy and the occupation of these states be-
comes more and more suppressed for an increasing Coulomb
interaction. Correspondingly, the Coulomb blockade valleys
are more pronounced for increasing U/�.

The Green’s function formalism provides an alternative
interpretation. In this case, we deduce from (57) and (59) that
the peaks in the conductance G are the maxima of the dot
spectral function

ρ(0) = 1

π

∑
k

Im

{
1

h̃k − Vg − i �̃k
2

P̃
k

}
. (63)
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FIG. 1. Linear conductance G as function of the gate voltage for
the model with tα defined by Table I, and level spacings hl/� =
(−0.7, 0.0, 0.5). We set D = 1000.0� for all numerical RTRG cal-
culations in this paper. All three applied methods (NRG, fRG, and
RTRG) are in agreement regarding the position and shape of the
conductance peaks.

Here, we inserted the spectral decomposition of �R(� =
0) = ∑

k λ̃kP̃
k

where λ̃k = h̃k − Vg − i �̃k
2 are the eigenval-

ues and P̃
k

the corresponding projector. h̃k has the meaning
of the position of a renormalized single-particle energy while
�̃k is the corresponding level broadening. Due to (63), a
conductance peak occurs for h̃k = Vg, i.e., resonant tunneling
is obtained when the gate voltage equals a single-particle
energy. Simultaneously, the very same level being unoccupied
for Vg < h̃k becomes populated with one electron at this point.
In conclusion, the fRG solution in lowest-order truncation
scheme complies with an effective single-particle picture for
the three conductance peaks occurring in the linear response
regime.

We find a very good agreement between all three con-
sidered methods in the regime of small interaction strengths
U 
 �. For example, Fig. 1(a) shows the linear conductance
as function of the gate voltage for U = 0.1�. While an agree-
ment between fRG and NRG was expected in this regime,
the RTRG data for the conductance is also reliable, as it was
already noted for single-level [37] and for two-level quantum
dots [24,38,39].
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FIG. 2. Linear conductance G as function of the gate voltage Vg for the model with tα defined by Table I, U = 20.0� and level spacings
hl/� = (−0.7, 0.0, 0.5). The inset shows a closeup of the central peak, clearly revealing the deviations in position and shape of the maximum
within the fRG solution. In contrast, NRG and RTRG data are in good agreement regarding the position and the width of the conductance peak.

Figure 1(b) is exemplary for the solutions from the three
methods in the regime of intermediate interaction strengths
U ∼ �. In this case, we still find a good agreement between
fRG, NRG, and RTRG data regarding the position and width
of the conductance peaks. However, the shape of the RTRG
solution deviates from the NRG solution in the Coulomb
blockade valleys. These deviations are perceptible imprints of
the increasing significance of orbital fluctuations due to cotun-
neling processes in the quantum dot for increasing interaction
strengths. Fourth-order terms in the tunneling are necessary
for a reasonable description of the cotunneling processes.
However, these terms are only taken partially into account
within the considered truncation scheme for the RTRG ap-
proach, as is discussed in Appendix A. Thus, it is no surprise
that the RTRG data are less reliable within the Coulomb
blockade valleys. This means that the employed approxi-
mation for the RTRG equation describes charge fluctuations
reliably, but is insufficient to study cotunneling processes. In
contrast, these processes are fully taken into account by the
fRG approach. The corresponding results thus show a good
agreement with the NRG data also in the Coulomb blockade
valleys.

Lastly, we considered the regime of large interaction
strengths (U � �). Figure 2 shows the conductance as the
function of the gate voltage for U = 20.0�. In this case, we
find again a good accordance between RTRG and NRG data.
In contrast, the fRG solution clearly shows deviations from the
NRG solution for the position and shape of the conductance
peaks. This is most pronounced for the peak arising from the
transition from N = 1 to 2. In this case, the fRG method shifts
the position of the peak further away from the particle-hole
symmetric point than the other two methods (see the inset of
Fig. 2).

The deviations between the fRG solution and the NRG
solutions can be easily understood from the fact that the
truncation of the RG equations from the fRG approach is mo-
tivated by means of an expansion in the Coulomb interaction.
Obviously, this is justified formally only for small interaction
strengths U 
 �. It is therefore no surprise that the fRG is
not reliable for large interaction strengths U � �.

A closer look at Fig. 2 reveals that the RTRG produces
a small peak close to the left conductance peak (referring

to the transition N = 0 → N = 1) and a small shoulder for
the middle conductance peak (referring to the transition N =
1 → N = 2). Again, these anomalies arise from the neglect
of orbital fluctuations from higher-order diagrams, similar to
the occurrence of the anomaly between the resonances for
the case of intermediate Coulomb interaction strength [see
Fig. 1(b)]. These features depend crucially on the choice of the
tunneling matrix elements and the level spacings. However,
they are very weak for strong Coulomb interaction and not
relevant for the position and line shape of the main charge
fluctuation resonances. It has to be studied in the future how
these anomalies can be eliminated by a minimal extension of
the RTRG, similar to the more refined but considerably more
expensive versions of the RTRG used in Refs. [24,38], where
vertex renormalizations were taken into account.

In total, the benchmark against the NRG data for a model
with proportional coupling and nondegenerate dot levels in the
linear response regime shows that the RTRG method yields
reliable results for position and the width of the peaks of the
linear conductance for arbitrary dot-reservoir couplings.

IV. STATIONARY STATE CURRENT IN NONEQUILIBRIUM

We now turn to a generic quantum dot coupled to two
reservoirs with arbitrary values of the bias V . This means

TABLE II. Input parameters for the tunneling matrix tα of the
generic model. These parameters define the matrix elements tα

ll ′
via (61).

α L R

(�α11, ϕα11) (0.0434783, −0.8) (0.101831, −0.88)
(�α12, ϕα12) (0.0640732, −0.19) (0.01373,0.32)
(�α13, ϕα13) (0.0743707,0.71) (0.0789474, −0.64)
(�α21, ϕα21) (0.0446224,0.17) (0.0480549, −0.72)
(�α22, ϕα22) (0.0663616, −0.83) (0.0915332, −0.08)
(�α23, ϕα23) (0.00457666,0.45) (0.0560641,0.41)
(�α31, ϕα31) (0.01373, −0.1) (0.100686, −0.22)
(�α32, ϕα32) (0.0183066, −0.45) (0.076659, −0.6)
(�α33, ϕα33) (0.0469108,0.19) (0.0560641, −0.15)
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FIG. 3. Conductance G as function of the gate voltage Vg for a model with tunneling matrix tα defined in Table II and hl/� =
(−0.8, 0.0, 1.1) for small to intermediate Coulomb interactions, i.e., U = 0.1� (left panel) and U = 1.0� (right panel).

that the restriction of proportional coupling is lifted in the
following. The parameters defining the tunneling matrix and
the hybridization matrix, respectively, can be read off from
Table II.

The fRG approach is controlled in the regime of small
Coulomb interaction U 
 � with the consequence that it can
be used as a benchmark to test the reliability of the RTRG
approximation in this limit. Our numerical study reveals an
almost perfect agreement between RTRG and fRG data for
arbitrary bias voltages in this regime. The left panel of Fig. 3
shows the exemplary conductance G as function of the gate
voltage Vg for U = 0.1� and selected values for V . This

outcome generalizes our findings in the linear response
regime, confirming that the RTRG approach yields accurate
results for weak Coulomb interactions also in the limit of
strong coupling already within the simplest approximation.

For small Coulomb interaction, the effective single-particle
picture is valid. The mere effect of the fRG method in the
lowest-order truncation scheme is a renormalization of the
single-particle dot energy levels h̃k . Resonant electron tran-
sport, causing the conductance peaks, occurs if one of these
levels align with the chemical potential of one of the two
reservoirs. As a consequence, the conductance peaks are
now located at Vg = h̃k ± V

2 . This means that each of the
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three peaks observed in equilibrium split into two peaks for
increasing bias voltage. Eventually, the conductance shows
six peaks constituting two groups of three peaks centered
at Vg = h̃2 ± V

2 for large bias voltages V � �. There is a
crossover between the cases of three and six resonances where
the number of distinguishable peaks can be smaller than six.
This is the case if the distance between two resonance lines is
smaller than the peak widths.

In equilibrium, it is well established that the fRG yields
reliable results from weak to intermediate Coulomb in-
teractions [23]. However, for large bias voltages the ef-
fective single-particle picture is only applicable for small
Coulomb interactions. Thus, we cannot use the static fRG
data as a benchmark against the RTRG data beyond U 
 �.
Nonetheless, we also compared the results for the differen-
tial conductance in order to estimate the parameter range
where the solutions from both approaches are in qualitative
agreement.

We find a more complex behavior for intermediate inter-
action strengths. The right panel of Fig. 3 shows exemplary
the evolution of the differential conductance as function of
the gate voltage with increasing bias for U/� = 1.0. Similar
to Fig. 1(b), Fig. 3(b) reveals a good agreement between fRG
and RTRG data for the position and width of the conductance
peaks in the linear response regime. A qualitative agreement
between results from both approaches is also obtained for
V/� = 0.5 [cf. Fig. 3(d), where both approaches predict the
same position of the six conductance peaks]. This is no longer
the case already for moderate bias V/� = 2.0. Figure 3(f)
shows that in this case the fRG and the RTRG approaches
agree only for the outer conductance peaks, i.e., the leftmost
and the rightmost peaks. In contrast, the RTRG solution shows
an essentially different structure compared to the fRG solution
in the region between these two peaks.

A corresponding picture emerges if we scrutinize the de-
pendence of the differential conductance on the Coulomb
interaction at large bias. Figure 4 shows the differential con-
ductance as function of the gate voltage for V/� = 5.0 and
different values for U . Starting from weak coupling [U/� =
0.1, Fig. 4(a)], where RTRG and fRG results are in very
good agreement, we still find a qualitative agreement for
U/� = 0.5 [see Fig. 4(b)]. In particular, both solutions are in
accordance regarding the number and position of the conduc-
tance peaks but differ in the height of the inner conductance
peaks. These are of reduced height in the RTRG solution for
the differential conductance compared to the fRG data. In
contrast, the solutions for the differential conductance from
both approaches no longer comply in the region between the
outer peaks for larger Coulomb interactions, as it is shown in
Fig. 4(c) for U/� = 2.0.

For intermediate Coulomb interactions and moderate bias,
e.g., Figs. 3(f) and 4(c), the number and positions of the
inner conductance peaks are different for the solution from
both approaches. In particular, the RTRG solution exhibits
more than six local minima which we interpret as additional
resonance lines. Their emergence is more pronounced for
large Coulomb interaction, as can be seen in Fig. 5 for U =
20.0� and V = 5.0�. This behavior of the RTRG solution for
the differential conductance can be readily understood from
the condition (29) for resonant tunneling within this approach
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FIG. 4. Conductance G as function of the gate voltage Vg for
a model with tunneling matrix tα defined in Table II, hl/� =
(−0.8, 0.0, 1.1) and V = 5.0�. While there is a very good agreement
between fRG and RTRG solution for small Coulomb interactions
U = 0.1�, the results from both approaches coincide only for the
outer, i.e., the very left and the very right, peaks for moderate in-
teraction strengths U = 2.0�. In the latter case, the solutions differ
significantly in the region between the outer peaks, as explained in
the main text.

which is fulfilled if the real part of the eigenvalue λk (E ) of
the effective Liouvillian aligns to the chemical potential of
one of the two reservoirs. In order to interpret this condition,
it is more instructive to consider (28), which determines the
resonance lines using perturbation theory. The RG treatment
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FIG. 5. RTRG solution for the conductance G as function of the gate voltage Vg for the model with tα defined by Table II, U = 20.0�,
level spacings hl/� = (−0.8, 0.0, 1.1), and different values for the bias V . Each of the three peaks occurring in the linear response regime
(V = 0) splits into two peaks of reduced height for increasing bias voltage V = �. In contrast, additional resonance lines emerge for large
enough bias (V = 5.0�).

leads to a shift of the resonance lines in the conductance as a
function of the gate voltage.

In the linear response regime, i.e., for V → 0, condition
(28) is only fulfilled if the ground-state energies of the N and
N + 1 electron sectors are degenerate. This means that for
V > 0, one electron can tunnel from the left reservoir onto
the dot, occupying the lowest-energy many-body state of the
N + 1 electron sector. Afterward, this electron can leave the
dot by tunneling into the right reservoir, resulting in a total
tunneling process involving the dot electron numbers N →
N + 1 → N . As a consequence, the three single-particle dot
levels are successively populated with increasing gate voltage
Vg. This complies with the single-particle picture and is also
the reason why the linear conductance as function of the gate
voltage has always three peaks.

If the bias is large enough, (28) can also be fulfilled
for processes involving excited many-body dot states. For
instance, transitions from the ground state of the N particle
sector to an excited state of the N + 1 particle sector can
become possible if this condition is matched. Equivalently,
these tunneling processes s2 → s1 with Ns1 = Ns2 + 1 are
possible if the corresponding energy difference Es1 − Es2 lies
within the transport window [1,5], i.e., μL > Es1 − Es2 > μR,
provided that the initial state s2 is occupied. As a conse-
quence, additional resonance lines show up in the current,
each corresponding to one of these tunneling processes. The
emergence of such additional conductance peaks is clearly
visible for U = 20.0� and V = 5.0� in Fig. 5. We note
that each resonance can be split by the bias voltage in at
most four resonances. For example, for the transition N =
0 → N = 1 (corresponding to the left resonance in Fig. 5),
three resonances occur when one of the three renormalized
levels matches with the upper chemical potential μL = V/2
but only one resonance can appear when the lowest level
matches with the lower chemical potential μR = −V/2. Once
the lowest level is below μR, it is occupied and the resonances
when the two higher levels match with μR are suppressed by
Coulomb blockade. Therefore, for bias voltage significantly
larger than �, four resonances are observed in Fig. 5 for the
left resonance. Similar considerations hold for the middle and
right resonances, but some of the peaks are hardly visible due

to broadening effects. Similar findings were reported for an
RTRG study of the Anderson model in the regime of strong
Coulomb interactions in Ref. [24].

One must also distinguish between the deviations observed
in the Coulomb blockade valleys in the linear response regime
[see Figs. 1(b) and 3 (b)], and the behavior at intermediate
bias V ∼ U ∼ �. While charge fluctuations are suppressed
in the former case, the Coulomb blockade is lifted in the
latter case. This means that charge fluctuations are dominant
again for V > U . These processes are captured by the RTRG
approximation considered in this work. Further evidence that
the RTRG solution is reliable in this regime arises from the
fact that it yields the exact Liouvillian in the limit V → ∞. In
this case, the right-hand side of the RG equation (26) is zero,
which leads to

L(E ) = L(0) + L(1s). (64)

This is an exact result in this limit since all higher-order terms
vanish, as will be explained at the end of Appendix A.

To conclude, we expect a crossover from the effec-
tive single-particle behavior of the quantum dot for small
Coulomb interactions U 
 � to a more complex multiparticle
situation, exhibiting further resonances, for large Coulomb
interactions U � �. Figure 4 shows how this crossover sets in
for intermediate Coulomb interactions U ∼ � and V = 5.0�

in the RTRG solution. In contrast, the effective single-particle
picture applies for intermediate Coulomb interactions if the
bias voltage is smaller than the Coulomb interaction. This is
indicated by a qualitative agreement of the RTRG and fRG
solutions [see Figs. 3(d) and 4(b)].

We refrain here from comparing fRG and RTRG results for
the conductance in the regime of strong Coulomb interactions
U � � since no agreement can be expected, due to the afore-
mentioned reasons. Figure 2 shows also clearly the deviations
from fRG and RTRG data already in linear response in this
regime.

In summary, we conclude that the RTRG method yields
reliable results for the conductance in nonequilibrium at arbi-
trary Coulomb interaction or, equivalently, for arbitrary cou-
pling to the reservoirs. From comparing the RTRG solution
with fRG results, we estimate that the effective single-particle
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picture can be employed in nonequilibrium for bias voltages
that are smaller than the Coulomb interaction.

V. SUMMARY

In this paper, we presented a comparative study of the elec-
tron transport through nondegenerate (|hl − hl ′ | ∼ �) quan-
tum dots coupled to two reservoirs via generic tunneling
matrices in and out of equilibrium. To this end, we applied
very basic approximations of the RTRG and fRG methods,
where the effective Liouvillian and the self-energy were
computed self-consistently while all vertex corrections were
disregarded. Such basic approximations reduce the compu-
tational effort considerably but may also limit the range of
applicability of the employed methods. We therefore analyzed
to what degree such basic approaches take the dominant
physical processes reliably into account.

An important test is the benchmark against numerical exact
data. In equilibrium, we showed that the RTRG approximation
yields reliable results for the position and width of the peaks
of the linear conductance that are in very good agreement
with highly accurate NRG data for arbitrary tunneling rates �,
despite the fact that the RTRG is perturbative in the coupling
between the dot and the reservoirs and is therefore a priori
controlled only for small tunneling coupling � 
 max{T, δ}.
This means that the charge fluctuations are captured largely by
the contribution of the one-loop diagram to the RG equations
whereas vertex renormalization seems to be less important
to describe these processes. In contrast, cotunneling pro-
cesses are only partly taken into account, causing deviations
of the RTRG solution for the linear conductance from the
NRG result in the Coulomb blockade regime, and leading
to small anomalies close to the resonances in the case of
strong Coulomb interactions. We conclude that the reliability
of the RTRG solution depends essentially on the class of
diagrams that are resummed and taken into account within
the chosen approximation scheme. In this sense, the class
of diagrams that is resummed into the renormalized one-
loop diagram describes charge fluctuations, while (at least)
two-loop diagrams and vertex renormalization are required
for a reasonable description of cotunneling processes. The
approximation of the RTRG equations can be systematically
improved by taking such higher-order diagrams into account,
as was already demonstrated in the past for the Kondo model
[20,21] and the single-impurity Anderson model [24,38].

In nonequilibrium, we used reliable data for the con-
ductance from the fRG approach in lowest-order truncation
scheme as a benchmark for the RTRG data for small Coulomb
interactions and strong coupling, respectively. Indeed, we find
a nearly perfect agreement for the solutions from both ap-
proaches in this case, indicating again the drastic extension of
the range of validity of the RTRG approximation to arbitrary
Coulomb interactions in the regime of charge fluctuations.

We furthermore find from comparing RTRG and fRG
solution that the single-particle picture of an effectively non-
interacting open quantum dot with renormalized parameters
is applicable (i) in the regime of small Coulomb interac-
tions U 
 � and arbitrary bias V , and (ii) for intermediate
Coulomb interactions that are larger than the bias voltage.
This means that the complex interplay between the Coulomb

interaction and the tunneling processes away from equilibrium
cannot be described by such an effective picture. In agreement
with previous RTRG studies of the Anderson model [24], we
showed that the RTRG method is capable of describing this
interplay theoretically.

We note that in order to go beyond the effective single-
particle picture with the fRG approach, one needs to extend
the approximation for the RG equations to the next order.
This was demonstrated in the two-level case [18,25], yielding
accurate results also for intermediate Coulomb interactions at
large bias [40].

In summary, we advertise the RTRG method as a ver-
satile and flexible tool to describe transport phenomena in
quantum dots with an arbitrary geometry in nonequilibrium.
In particular, we demonstrated the reliability of this method
in describing charge fluctuations in quantum dot systems
with a very basic approximation that allows for an efficient
numerical computation. We note that the formalism can easily
be generalized to finite temperature by calculating the integral
in Eq. (17) exactly in terms of the Matsubara poles of the
Fermi distribution function. Furthermore, this equation can
also be used to calculate the Liouvillian in the whole complex
plane for arbitrary E such that the time evolution into the
stationary state can be analyzed [15].
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APPENDIX A: PERTURBATION THEORY FOR THE
EFFECTIVE LIOUVILLIAN

In this Appendix, we discuss bare perturbation theory
for the effective Liouvillian and the current kernel of the
multilevel Anderson model. The perturbative series can be
written as

L(E ) = L(0) + L(1)(E ) + L(2)(E ) + · · · , (A1)

�γ (E ) = �(1)
γ (E ) + �(2)

γ (E ) + · · · , (A2)

where L(m)(E ) and �(m)
γ (E ), respectively, comprise all dia-

grams with m = 0, 1, 2, . . . contraction lines. A contraction
represents an excitation in the reservoirs and connects two
vertices within a diagram within the diagrammatic language
introduced in Refs. [14,15]. A diagram with m contraction
lines is sometimes called an m-loop diagram.

The zeroth-order (m = 0) contribution to the effective Li-
ouvillian is the Liouvillian of the isolated quantum dot, i.e.,
L(0)b = [ Hs , b ], where b is an arbitrary operator acting on
states of the dot Hilbert space. Denoting by Es the eigenvalues
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of Hs and by |s〉 the corresponding many-body eigenstates, we
can express the matrix elements of L(0) as

(s1s2|L(0)|s′
1s′

2) = δs1s′
1
δs2s′

2
(Es1 − Es2 ). (A3)

Following Refs. [14,15], we obtain

L(1)(E ) = = L(1s) + L(1a)(E ), (A4)

with

L(1s) =
∫

dω γ s
11′ (ω)G1

1

E + ω + μα − L(0)
G̃1′

= −i
π

2
G1G̃1, (A5)

L(1a)(E ) =
∫

dω γ a
11′ (ω)G1

1

E + ω + μα − L(0)
G1′

= G1 ln
−i(E + μα − L(0) )

D
G1 (A6)

for the first-order correction to the effective Liouvillian. The
leading-order term for the current kernel can be obtained from
these equations by simply replacing the left vertex G1 by the
current vertex (23) in all expressions, yielding

�(1s)
γ = −i

π

2
cγ

1 G̃1G̃1, (A7)

�(1a)
γ (E ) = cγ

1 G̃1 ln
−i(E + μα − L(0) )

D
G1. (A8)

In the first lines of Eqs. (A5) and (A6),

γ s,a
11′ (ω) = δη,−η′δαα′ρc(ω) f s,a

α (ω) (A9)

are the symmetric and antisymmetric parts of the contrac-
tion γ

pp′
11′ (ω) = p′γ s

11′ (ω) + γ a
11′ (ω). Accordingly, f s,a

α (ω) =
1
2 [ f (ω) ± f (−ω)] are the symmetric and antisymmetric parts
of the Fermi distribution. The former always gives f s

α (ω) = 1
2

while the latter f a
α (ω) = − 1

2 sgn(ω) for Tα = 0. Furthermore,
we have incorporated the factor p′ in front of γ s

11′ (ω) into the
second vertex in (A5) and (A7), yielding G̃1 = ∑

p=± pGp
1.

We have introduced the Lorentzian high-frequency cut-off
ρc(ω) = D2/(ω2 + D2) with bandwidth D → ∞ in order to
regularize the frequency integral for high frequencies which
results in the term ∼ ln D in (A6). However, this term drops
out since

G1G1 =
∑
pp′

∑
ηl1l2

tη

αll1
t−η

αll2
Cp

ηl1
Cp′

−ηl2

= 1

2

∑
pp′

∑
ηl1l2

tη

αll1
t−η

αll2

{
Cp

ηl1
, Cp′

−ηl2

}

= 1

2

∑
p

∑
l1

tη

αll1
t−η

αll1
p

= 0, (A10)

where we used the anticommutation relation {Cp
ηl , Cp′

η′l ′ } =
pδpp′δη,−η′δll ′ for the dot field superoperators after the second
line. In order to show that the term ∼ ln D in the last line in
(A8) can be disregarded similarly, we note that we only need
the combination Trs �γ (E ) in order to compute the current Iγ

from (14). From the general property [14,15] Trs Gp
1 = 0 one

can deduce

Trs G̃1 = 2 Trs G+
1 = −2 Trs G−

1 = −2p′ Trs G−p′
1 ,

(A11)

which leads to

Trs cγ

1 G̃1G1 = −2 Trs

∑
p′

∑
ηl1l2

ηp′tη

αll1
t−η

αll2
C−p′

ηl1
Cp′

−ηl2

= − Trs

∑
p′

∑
ηl1l2

ηp′tη

αll1
t−η

αll2

{
C−p′

ηl1
, Cp′

−ηl2

}
= 0. (A12)

Thus, we can equivalently consider

L(1a)(E ) = G1 ln −i(E + μα − L(0) )G1, (A13)

�(1a)
γ (E ) = cγ

1 G̃1 ln −i(E + μα − L(0) )G1, (A14)

instead of (A6) and (A8). Importantly, (A10) and (A12) have
the consequence that perturbation theory yields no logarithmic
divergences in the ultraviolet regime |E | → ∞. A resumma-
tion of logarithmic terms is therefore not necessary in this
case. This explains why we can neglect vertex corrections
in lowest-order truncation for the RG treatment. Thus, we
can simply insert the bare vertices G1 and (Iγ )1 into the RG
equations.

In particular, the only logarithmic singularities of the ef-
fective Liouvillian and the current kernel for E = i0+ are
given by the condition (28). In order to treat these singu-
larities, it is sufficient to calculate the effective Liouvillian
self-consistently, which is achieved by the RTRG approach.
The consequence is that the complex eigenvalues λk (E ) of the
effective Liouvillian and not the real eigenvalues Es1 − Es2 of
the bare Liouvillian L(0) enter the argument of the complex
logarithm in (A13) and (A14). The imaginary part of λk (E )
provides a cutoff that regularizes the logarithms. The sole
exception is the nondegenerate eigenvalue λst = 0 which,
however, never appears in the argument of the logarithm, as
discussed in more detail in Refs. [14,15].

Second-order diagrams (m = 2) are necessary to describe
cotunneling processes. The two contraction lines in these
diagrams account for the two excitations generated in the
reservoir in a flavor fluctuation due to the coupling between
dot and reservoir. One finds that the second-order contribution
is given by the two diagrams

,

.

The upper diagram contains a connected first-order subdia-
gram as insertion on the propagator line. It belongs to the
class of connected subdiagrams with no free contraction lines,
i.e., all contraction lines connect two vertices of this subdi-
agram. These subdiagrams are sometimes called self-energy
insertion, although they have nothing to do with the physical
self-energy of a single-particle Green’s function, apart from
a formal equivalence. Resumming these insertions, one can
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replace all free propagators by full ones which leads to self-
consistent perturbation theory [15]. Since the diagram on the
right-hand side of the RG equation (17) contains only the full
propagator, the upper diagram is also included in the RTRG
approximation discussed in Sec. II B. In contrast, the diagram
with the crossed contraction lines are not included within the
considered truncation scheme. To include also this diagram,
one needs to add the corresponding two-loop diagram on
the right hand side of the RG equation (17) as well as to
include the vertex correction by replacing the bare vertex by
the effective one. The latter can then be obtained as solution
of a corresponding RG equation.

Finally, we note that there are also no logarithmic di-
vergent terms in the ultraviolet limit |E | → ∞ in higher-
order perturbation theory. An mth-order diagram consisting
of m contraction lines and 2m vertices contains 2m − 1 resol-
vents ∼(E1...n + ω1...n − L(0) )−1 with E1...n = E + ∑n

k=1 μk
and ω1...n

∑n
k=1 ωk . Since each contraction gives rise to one

frequency integral, one can estimate that the mth-order dia-
gram with m � 2 falls off ∼E1−m for |E | → ∞.

In the same way, all mth-order diagrams with m � 2 vanish
in the limit |μα| → ∞. In the case m = 1, we find that the part
of the diagram with the antisymmetric part of the contraction
γ a

11′ (ω) vanishes for |μα| → ∞ due to the property (A10). As
a consequence, the effective Liouvillian is given by (64) in
this case.

APPENDIX B: TRUNCATION OF THE RTRG EQUATION

After Eq. (27), we have explained that (26) defines effec-
tively an infinite hierarchy of RG equations. In order to trun-
cate this hierarchy of RG equations, we bring this system in a
more transparent form for the special case of two reservoirs.
Following Ref. [21], we define a chain of discrete points

μk = k

2
V, (B1)

with an integer number k. Obviously, k = 1 and −1 corre-
spond to the chemical potentials of the two reservoirs, i.e.,
μ1 = μL and μ−1 = μR, respectively. With the definition

L̃k (�) = L̃(� − iμk ), (B2)

the aforementioned hierarchy of RG equations is given by

d

d�
L̃k (�) = i

∑
ηαl

Gηαl
1

i� + μk+ναη
− L̃k+ναη

(�)
G−ηαl ,

(B3)

where we have introduced the sign factor

ναη =
{+1 if η = +, α = L or η = −, α = R,

−1 if η = +, α = R or η = −, α = L.

(B4)

Within this notation scheme, the RG equation for the current
kernel (27) recast as

d

d�
�̃α (�) = − i

2

∑
lη

η G̃ηαl
1

i� + μναη
− L̃ναη

(�)
G−ηαl .

(B5)

The initial conditions are

L̃k (�)
∣∣
�=D = L(0) + L(1s) (B6)

since (24) holds for any k.
Truncation of the infinite hierarchy of RG equations is

achieved by setting

L̃±(k0+1)(�) ≈ L̃±k0 (�) (B7)

for some k0. This is justified due to

μk+1 − μk

μk
= 1

k
, (B8)

which means that the relative change in the energy shift μk

in the argument of the Liouvillian L̃(� − iμk ) falls off ∼k−1

for k → ∞. In practice, we have checked convergence of
the solution by comparing the results for different values of
|k0|. We consider a solution as reliable if the result for this
choice does not deviate significantly from the one obtained for
|k̃0| = |k0| + 1. For all numerical calculations, we observed
a convergence already for quite small values of |k0|. In par-
ticular, |k0| = 4 proved to be a reliable choice for all cases
considered in this paper.

APPENDIX C: CLOSED ANALYTIC EXPRESSIONS
OF THE fRG EQUATION FOR THE SELF-ENERGY

AND THE CURRENT

The integral on the right-hand side of (41) can be analyt-
ically evaluated, as we discuss now. Inserting (47) into (41)
gives

d

d�
�R

ll ′ (�) = − 1

4π

∑
l1l ′1

vll1,l ′l ′1

∫
dω [GR(�,ω)GK(�,ω)

− GK(�,ω)GA(�,ω)]l ′1l1 . (C1)

To evaluate the integral, we furthermore make use of the spec-
tral representation of the retarded and advanced, respectively,
components of the self-energy, i.e.,

�R(�) =
∑

k

λ�
k P�

k
, (C2)

�A(�) =
∑

k

(
λ�

k

)∗(
P�

k

)†
. (C3)

Inserting (32), (33), (C2), and (C3) into (C1) and using the
integral

∫
dω sgn(ω)

1

(ω + z1)2

1

ω + z2
= 2

z1 − z2

{
1

z1 − z2
[ln(−iσ1z1) − ln(−iσ2z2)] − 1

z1

}
(C4)
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with σi = sgn(Im zi ) yields

d

d�
�R

ll ′ (�) = i

2π

∑
l1l ′1

vll1,l ′l ′1

∑
αkk′

[
P�

k
�α

(
P�

k′

)†]
l ′1l1

1

λ�
k − (

λ�
k′
)∗ − 2i�

×
{

1

μα − λ�
k + i�

+ 1

μα − (
λ�

k′
)∗ − i�

+ 2

λ�
k − (

λ�
k′
)∗ − 2i�

× [ln −i(μα − λ�
k + i�) − ln i(μα − (

λ�
k′
)∗ − i�)]

}
. (C5)

In the same way, we can evaluate the frequency integral in the current formula (30). Using the results∫
dω sgn(ω)

1

ω + z1

D2

D2 + ω2
= −2

D2

D2 + z2
1

ln
−iσ1z1

D
D→∞−−−→ −2 ln

−iσ1z1

D
, (C6)∫

dω sgn(ω)
1

ω + z1

1

ω + z2
= 2

z1 − z2
[ln(−iσ1z1) − ln(−iσ2z2)], (C7)

we obtain

Ist
α = i

2π

∑
k

Tr{�α[ln −i(μα − λ̃k )P̃
k
− ln i(μα − λ̃∗

k )P̃
†

k
]}

− 1

2π

∑
α′kk′

1

λ̃k − λ̃∗
k′

[ln −i(μα′ − λ̃k ) − ln i(μα′ − λ̃∗
k′ )] Tr(P̃

k
�α′

P̃
†

k′ �
α )

= 1

2π
Re Tr

{
2i

∑
k

ln −i(μα − λ̃k )P̃
k
�α −

∑
α′kk′

P̃
k
�α′

P̃
†

k′ �
α 1

λ̃k − λ̃∗
k′

[ln −i(μα′ − λ̃k ) − ln i(μα′ − λ̃∗
k′ )]

}
, (C8)

with λ̃k = λ�=0
k and P̃

k
= P�=0

k
.
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