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Chiral lattice supersolid on edges of quantum spin Hall samples
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We show that the edges of quantum spin Hall topological insulators represent a natural platform for the
realization of an exotic magnetic phase which has all the properties of a lattice supersolid. On one hand, fermionic
edge modes are helical due to the nontrivial topology of the bulk. On the other hand, a disorder at the edge or
magnetic adatoms may produce a dense array of localized spins interacting with the helical electrons. The spin
subsystem is magnetically frustrated since the indirect exchange favors the formation of helical spin order and
the direct one favors (anti)ferromagnetic ordering of the spins. At a moderately strong direct exchange, the
competition between these spin interactions results in the spontaneous breaking of parity and in the Ising-type
order of the z components at zero temperature. If the total spin is conserved, the spin order does not pin a collective
massless helical mode which supports the ideal transport. In this case, the phase transition converts the helical
spin order to the order of a chiral lattice supersolid. This represents a promising possibility for experimental
studies of the elusive supersolidity.
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Supersolid is an exotic phase where, very counterintuitively,
crystal order and an ideal transport coexist in one and the
same physical system [1]. Dating back to the 1950’s, the first
discussions of supersolidity resulted in arguments against its
existence [2]. It was realized later that the quantum bosonic
statistics could provide the necessary conditions for the for-
mation of supersolids. Starting from the 1960’s, studies were
concentrated on interacting bosons, in particular, on 4He [3–6].
It can crystallize at a high pressure and is expected to combine
broken translational invariance with superfluidity. In spite of
large interest and intense experimental efforts, the supersolid
phase has not been convincingly realized in helium [7–9]. This
failure calls for a search for alternative physical platforms for
supersolidity. Recent experiments aim at realizing a supersolid
in cold atoms [10,11]. Another well-known alternative is
provided by a possibility to have a magnetic supersolid after
mapping the bosonic theory onto a magnetic (or a quantum gas)
lattice model [12,13], where both the spin rotation symmetry
and the lattice symmetry can be broken simultaneously [14–
16]. Longitudinal and transverse components of the anti-
ferromagnetic order of the magnetic lattice model (or the
diagonal and off-diagonal long-range order of the quantum
gas) correspond respectively to the crystalline order and to
superfluidity of the bosons. The transition to the supersolid
phase on the lattice is similar to the Dicke- and the Ising-type
transitions [17,18].

In this Rapid Communication, we suggest a platform for
lattice supersolids. It is provided by the recently discovered
time-reversal invariant topological insulators [19–21] which
have become famous due to their virtually ideal edge transport.
We will concentrate on two-dimensional topological insula-
tors, quantum spin Hall samples (QSHs), where transport is
carried by one-dimensional (1D) helical edge modes. These
modes possess a lock-in relation between electron spin and mo-
mentum so that helical electrons (HEs) propagating in opposite

directions have opposite spins [22–24]. This locking protects
transport against disorder [25–27]: An elastic backscattering
of HEs must be accompanied by spin flip and therefore it can be
provided only by magnetic impurities [28]. However, a single
Kondo impurity is unable to change the ideal dc conductance
[29] if the total spin is conserved. Under some conditions, e.g.,
a random magnetic anisotropy, the ballistic transport of HEs
may be suppressed by coupling to a Kondo array [30–36]. The
latter can be present in realistic samples due to the edge disorder
which localizes a fraction of the bulk electrons close to the edge
[31] such that the localized electrons become spin-1/2 local
moments. Alternatively, the Kondo array can be generated by
magnetic adatoms located close to the edge [37].

While the transport of the 1D HEs coupled to a dense Kondo
array has been intensively studied, the magnetic properties of
these systems have attracted less attention. It is known that
helical spin ordering, similar to that caused by dynamical
instabilities [38], can result from the indirect Ruderman-
Kittel-Kasuya-Yosida (RKKY) spin interaction mediated by
HEs [31,33,39]. However, the direct Heisenberg exchange
interaction between the Kondo impurities has not been taken
into account, though one may expect it to appear at relatively
high spin densities. We will show that, if the Heisenberg
coupling JH is sufficiently strong, the helical magnetic order
on the QSH edge is converted to another exotic magnetic state
which has all the properties of a lattice supersolid (see Fig. 1).
We will call this phase a chiral lattice supersolid.

Our prediction is prompted by the recent theory for Kondo-
Heisenberg models which states that a competition of RKKY
with the Heisenberg exchange may lead to the Ising-type
phase transition [40]. Time-reversal and parity symmetries are
spontaneously broken in the ordered phase and, if the system
is SU(2) symmetric, spins form the isotropic scalar chiral spin
order. It is characterized by an exotic order parameter which
involves three neighboring spins [41,42], see Eq. (13).
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FIG. 1. Illustration of helical (upper panel) and supersolid (lower
panel) spin orders. Red and green arrows show in-plane and z

components of the spins, respectively. The orange arrow exemplifies
the total spin orientation in the supersolid phase. The dotted line stands
for the helix; black circles are the lattice sites. We have assumed that
the isotropy of the xy plane is inherited from the bulk of QSH.

The lattice which we consider is very unusual: SU(2)
symmetry is broken at the QSH edges by helicity of the
electrons. Therefore, the RKKY/Heisenberg competition leads
to the formation of a different exotic state. It combines (i) the
helical in-plane and (anti)ferromagnetic spin orders which are
counterparts of off-diagonal and diagonal supersolid orders,
respectively, and (ii) the helical transport which is supported
by collective modes of HEs coupled to the transverse spin
fluctuations. These modes are slow due to the strong electron-
spin coupling. Even more importantly, they are gapless, i.e.,
transport is ideal, provided the total spin is conserved. Thus,
the electrons play an auxiliary role in the formation of the
spin orders but their helicity is crucially important for ideal
transport. We come across all properties of supersolidity
described above; the name “chiral lattice supersolid” reflects
their unique combination peculiar to the QSH edges. These are
our main results.

Both spin orders appear only at T = 0. At finite tempera-
ture, the corresponding correlation lengths are finite but diverge
at T → 0. Hence there is a region of temperatures T < �

where the correlation lengths are large in comparison with the
scale O(1/�); � is the energy scale below which the coupling
between the electrons and the localized moments becomes
strong [see Eq. (7)]. In this temperature range, the proximity
to the ordered state is strongly felt and the spin order is present
[43].

The model and key steps of our approach [44]. The Hamil-
tonian of HEs coupled to an array of interacting localized spins
is Ĥ = Ĥ0 + Ĥint + ĤH + ĤK , where Ĥ0,int describe the free
fermions and the interaction between them, respectively,

Ĥ0 = −ivF

∫
dx

∑
η=±

η ψ†
η (x)∂xψη(x), (1)

Ĥint = g

2ν

∫
dx(ρ+ + ρ−)2, ρ± ≡ ψ

†
±ψ±. (2)

Here, ψ+ (ψ−) describes spin-up right moving (spin-down
left moving) in the x direction HEs ψR,↑ (ψL,↓); vF is the
Fermi velocity, ν is the density of states of HEs, and g is the
dimensionless interaction strength which governs the Luttinger
parameter K = 1/

√
1 + g [45].

Without loss of generality, we consider the isotropic short-
range antiferromagnetic exchange interaction between neigh-
boring spins described by the Hamiltonian,

ĤH = JH

∑
m

�S(xm+1)�S(xm), xm = ξm, JH > 0; (3)

�S are s-spin operators on the lattice sites xm. The sum runs
over sites of the spin array; for the sake of simplicity, we will
not distinguish the constants of crystalline and spin lattices ξ .

The coupling between the spins and HEs is described by
the backscattering Hamiltonian,

ĤK =
∫

dx ρsJK [S+e2ikF xψ
†
−ψ+ + H.c.], (4)

where kF is the Fermi momentum; JK is the xy-isotropic cou-
pling constant; S± ≡ Sx ± iSy . The dimensionless impurity
density ρs is used to convert the sum over the lattice sites to
the integral. We omit the forward-scattering term ∼JzSz since
a unitary transformation of the Hamiltonian allows one to map
the theory with the parameters {K, Jz 	= 0} to the equivalent
theory with the effective parameters K̃ = K (1 − ξJzν/2K )2

and J̃z = 0 [46,47]. Thus, Hint can take into account both
the direct electron-electron interaction and the interaction
mediated by the z coupling to the Kondo impurities. The
coupling constants are assumed to be small, sJH,K 
 u/ξ,D.
Here, D is the UV energy cutoff which is of the order of the bulk
gap in the QSH sample and u denotes the excitation velocity
renormalized by the electron interaction.

The model, Eqs. (1), (2), and (4) with JH = 0, was studied
in Ref. [33]. Let us briefly recapitulate the key points of that
paper and generalize it for finite JH . Our goal is to derive the
effective low-energy theory. This can be conveniently done
after parametrizing the spins by unit vectors,

S±(xm) = s

√
1 − n2

z (xm) e∓2ikF xm±iα(xm ),

Sz(xm) = (−1)msnz(xm). (5)

Here, we have singled out the slow spin variables α, nz.
Next, we change from the Hamiltonian to the action. The
parametrization Eq. (5) requires the Wess-Zumino term in
the Lagrangian [48], LWZ = −is(ρs/ξ )nz∂τα, where τ is the
imaginary time. Performing the gauge transformation of the
fermionic fields ψηe

−iηα/2 → ψη, we reduce the noninteract-
ing fermionic part of the Hamiltonian, Eqs. (1) and (4), to the
following Lagrangian density,

L0 =
∑
η=±

[
ψ̄η∂ηψη + sρsJK

√
1 − n2

zψ̄−ηψη

]

+ LLL[α, vF ]

4
,

LLL[α, vF ] ≡ [(∂τα)2 + (vF ∂xα)2]/(2πvF ). (6)

∂η ≡ ∂τ − iηvF ∂x denotes the chiral derivative and LLL is the
hydrodynamic Lagrangian of the Luttinger liquid model. LLL
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has been generated by the anomaly of the fermionic gauge
transformation [49].

A mean value M ≡ 〈√1 − n2
z〉 = const yields a constant

gap in the spectrum of the electrons, �0 = �̄0M with �̄0 ≡
sρsJK , which is opened by backscattering [Eq. (4)]. By com-
bining the functional bosonization approach [50] with scaling
arguments, one can show that the main effect of the weak
electron interaction, |δK| 
 1 with δK ≡ 1 − K̃ , is reno-
malization of the Luttinger liquid parameters LLL[α, vF ] →
LLL[α, u]/K̃ and of the gap �0 → � 
 D,

�

D
�

(
�0

D

) 1
2−K̃

� M[1 − δK log(M)]

(
�̄0

D

) 1
2−K̃

. (7)

We will not consider the case M → 0 and therefore the
correction O(δK ) can be neglected in Eq. (7).

It is known that α is gapless at JH = 0 if the total spin
is conserved [31,33]. We will show that this holds true even
at finite JH . Thus, Eq. (6) describes the connection between
gapped and gapless sectors which is mediated by fluctuations
of nz. The energy scale � establishes a crossover from the
weak to strong coupling between HEs and the spins. In the
strong-coupling regime, they form a single Luttinger liquid
where the low-energy charge excitations and the in-plane spin
excitations are described by the same field α.

The transition between the helical phase and the supersolid
can be identified after treatingnz andα as the slow variables and
integrating out the gapped fermions. This yields the density of
the effective potential E (M) per one unit cell. Restoring now
finite JH , we find in the leading order in sJK/D,

E (M) � −(ξ�2/2πu) log(D/�)

+ s2JHM2(1 + cos[2kF ξ ]) + const; (8)

the gradient terms are discussed below. Minima of E (M)
determine the ground-state configuration of the magnetization
field nz.

If JH is smaller than the critical value J ∗
H , the minimum is at

M = Mh = 1 (i.e., 〈nz〉 = 0). The spins are in the xy plane
(the upper panel of Fig. 1). When the Heisenberg exchange
exceeds J ∗

H , a nontrivial minimum appears at M = Ms < 1,

Ms = D

�̄
exp

{
−4πs2 JH u

ξ�̄2
cos2(kF ξ0) − 1

2

}
, (9)

where �̄ = �/M is theM-independent part of �. The critical
value J ∗

H is defined by the equation

Ms (J ∗
H ) = 1 ⇒ J ∗

H � ξ�̄2 log
(
D/�̄

)
4πs2u cos2(kF ξ0)

. (10)

We consider small Heisenberg couplings. Therefore, the
nontrivial minimum can be realized only if sJ ∗

H 
 u/ξ,D.
This implies, in particular, the case cos(kF ξ0) → 0 must be
excluded from the consideration.

The solution Eq. (9) corresponds to the staggered magneti-
zation (the lower panel of Fig. 1). Since E (M) is invariant with
respect to inverting the spin components Sz, Sz(m) → −Sz(m)
for all lattice sites, the ground state is doubly degenerate.
This degeneracy is lifted at T = 0 by a spontaneous breaking
of the corresponding Z2 as in the 1D Ising model. With a
further increase of JH , the system approaches the regime of

the isotropic Heisenberg magnet, which is beyond the scope of
the present Rapid Communication.

Fluctuations of Sz are gapped for all values of JH excluding
its critical value J ∗

H . Therefore, the corresponding correlation
functions are short ranged. The effective action for α, Lα , can
be derived by integrating out massive modes: the fermions and
the nz fluctuations [31,33]. If the total spin is conserved, this
yields for the energies below �, Lα = LLL[α, uα]/4Kα with
uα/Kα � u/K̃ . Parameters of Lα are substantially influenced
by the electron-spin interactions such that Kα 
 K̃ and uα 

u. Lα contains only gradients ∂x,τ α, hence fluctuations of α

are massless. One can say that the massless excitations of our
model are slow spinons dressed by localized electrons. They
govern spin correlations at T 
 �,

〈〈S+(τ, x)S−(0, 0)〉〉
∼ M2e−2ikF x〈ei[α(τ,x)−α(0,0)]〉

= M2e−2ikF x

[
(πT ξ/uα )2

sin2(πT τ ) + sinh2(πT x/uα )

]Kα

. (11)

At T = 0, the correlations in Eq. (11) decay as the power
law which is a signature of a quasi-long-range order of these
components. The correlations are cut by the thermal length
LT = uα/T at T 	= 0.

Helical phase, JH < J ∗
H and M = Mh = 1. The correla-

tion function of S± spin components is given by Eq. (11) with
fluctuations being centered at the wave vector −2kF (not at
+2kF ). This asymmetry is bound to the certain helicity of the
fermions at the edge of QSH [see Eq. (4)]: Fermionic helicity
governs orientation (right or left handed) of the spin helix.
The phase has a nematic (or vector chiral) order parameter
reflecting the helical spin structure,

−→
O h = [�S(x) × �S(x + ξ )], [

−→
O h]z ∼ s2 sin(2kF ξ ). (12)

The helical order is felt at ξ 
 u/� 
 L < LT , where L is
the system size. It becomes suppressed at u/� 
 LT < L and
is completely destroyed by the thermal fluctuation at T ∼ �

(see Fig. 2).

FIG. 2. Phase diagram of the dense Kondo-Heisenberg array
coupled to the interacting HEs at the QSH edge. Green and red lines
show phases with helical and supersolid order at T = 0, respectively.
Light-green and light-red regions mark regimes where these orders are
felt at finite T . The supersolid order disappears at T ∼ EW [Eq. (14)].
The system becomes completely disordered at T ∼ � [Eq. (7)].
Dashed lines exemplify measurement protocols which could reveal
different phases (see Conclusions).
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Helimagnetic lattice phase, JH > J ∗
H and M = Ms < 1.

In addition to the helical order, a new order appears in the
system via the Ising-type transition: 〈Sz〉 becomes staggered
and forms a magnetic lattice. The new phase has some special
features inherited from the helical phase. The excitations are
again centered at −2kF and not 2kF [see Eq. (11)] and therefore
are helical. The origin of this asymmetry is the same: a certain
helicity of the edge fermions caused by nontrivial topology of
the QSH bulk. Moreover, the combination of the helical order
with the staggered magnetization trivially produces a nonzero
scalar chiral order parameter,

Oc = [�S(x − ξ ),
−→
O h]. (13)

The finite temperature suppresses the staggered magnetization
via the formation of domain walls. The energy of the single
wall can be estimated by the height of the potential barrier in
the potential E (M), EW ∼ E (Mh) − E (Mc ). For JH close to
Jc, EW simplifies to

EW ∼ [(JH − Jc )/�̄]2(ξ/u). (14)

The order of the helimagnetic lattice can be felt if T < EW

(see Fig. 2), which ensures the exponentially large correlation
length of the field nz, Lz ∝ exp(EW/T ). The Z2 symmetry is
restored beyond the scale Lz.

Chiral lattice supersolid. Let us show that the helimagnetic
lattice is a peculiar lattice supersolid. The spin correlation
function Eq. (11) is ∝M2 and possesses quasi-long-range
order. Simultaneously, the nonzero value of M provides the
ideal helical transport of electron/spinon complexes [31,33].
This suggest that, in our model, M plays the role of the
superfluid density with off-diagonal order being reflected by
〈〈S+S−〉〉 correlations. The staggered magnetization breaks the
translational symmetry of Sz in the magnetic subsystem and
therefore reflects diagonal order which does not suppress the
ideal transport.

Since diagonal spin order coexists with the off-diagonal one
and with the gapless excitations, the helimagnetic lattice is a
lattice supersolid. This concludes the proof of our main result.
To emphasize the complex nature of the new lattice supersolid,
we refer to it as a chiral lattice supersolid. The QSH samples
are probably a unique platform for the realization of this phase.

To summarize, we have demonstrated that, being coupled to
a dense array of localized quantum spins, helical edge modes
of a quantum spin Hall topological insulator can host an exotic
magnetic order at T = 0. The system possesses a characteristic
energy scale � related to the backscattering of the helical
electrons from the local spins. This energy scale signifies a
crossover from weak to strong coupling. In the strong-coupling
regime the system remains critical, but the spin fluctuations are
absorbed into the electronic ones.

The temperature region T < � can be characterized by
the proximity to the helical spin order existing at T = 0. Its
underlying mechanism is based on the RKKY interaction of the
spins mediated by HEs. A competition of the RKKY indirect

exchange with the direct Heisenberg one may lead at T = 0,
JH > J ∗

H [see Eq. (10)] to the Ising-type phase transition and to
the appearance of the additional order which is the staggered
magnetization. If the total spin is conserved, these two spin
orders coexist with the gapless excitation being able to support
a symmetry-protected (virtually ideal) transport. This is the
principal difference of our results from theories describing
an interaction-induced spontaneous breaking of time-reversal
symmetry which removes the symmetry protection of the ideal
transport [22,23,31,33]. We have shown that there is a one-
to-one correspondence between this phase and the magnetic
lattice supersolidity. Thus, the phase which we have described
is also a kind of lattice supersolid which inherits peculiar
features of the helical magnetic phase. The latter has the
nontrivial vector chiral order parameter [Eq. (12)]. That is why
a supersolid hosted by QSH samples can be called a chiral
lattice supersolid.

A weak disorder in the spin lattice cannot suppress ei-
ther the helical spin order or the protected ideal transport
[31]. Clearly, the staggered magnetization can also appear
in the weakly disordered Kondo-Heisenberg array coupled
to HEs. Thus, such a disorder can lead only to some quan-
titative changes and is unable to destroy the chiral lattice
supersolid.

Our findings suggest that the magnetically doped QSH
edges provide a promising possibility to study elusive super-
solidity. Coupling constants JK,H can be controlled by varying
the proximity of the magnetic adatoms to the helical edge
and their density, respectively. Experimental detection of the
chiral lattice supersolid can be based on spin correlations, i.e.,
spin susceptibilities, which have no pronounced peaks in the
disordered phase. In the proximity to the helical phase (left
dashed line in Fig. 2 at T < �), the correlation functions
of xy-spin components acquire peaks at the wave vector
Qh = ±2kF with the sign being defined by the helicity of
the electrons. The correlation function of z components is
expected to be structureless in the helical phase but must show
new peaks at the Néel vector, Qa = π/ξ , in proximity to the
supersolid phase (right dashed line in Fig. 2 at T < EW ). Thus,
measuring the spin susceptibilities at different temperatures
can fully characterize the system.

We have considered a purely 1D system and therefore
the spin order is only algebraic even in the limit T →
0. One promising generalization could include the study
of the Kondo-Heisenberg array coupled to the 2D edge
of a 3D topological insulator. The influence of fluctua-
tions is weaker in 2D and, if a lattice supersolid can be
realized in this setup, its spin order could become long
ranged.
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