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Counting Feynman diagrams via many-body relations
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We present an iterative algorithm to count Feynman diagrams via many-body relations. The algorithm allows us
to count the number of diagrams of the exact solution for the general fermionic many-body problem at each order in
the interaction. Further, we apply it to different parquet-type approximations and consider spin-resolved diagrams
in the Hubbard model. Low-order results and asymptotics are explicitly discussed for various vertex functions
and different two-particle channels. The algorithm can easily be implemented and generalized to many-body
relations of different forms and levels of approximation.
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I. INTRODUCTION

In the study of many-particle systems, Feynman diagrams
are a ubiquitous, powerful tool to perform and organize pertur-
bation series as well as partial resummations thereof. To gain
intuition about the strength of a diagrammatic resummation or
to compare different variants of resummation, it can be useful
to count the number of diagrams involved, ideally for several
kinds of vertex functions. Moreover, the factorial growth in
the number of diagrams with the interaction order is often
linked with the nonconvergent, asymptotic nature of (bare)
perturbation series [1]. The asymptotic number of diagrams
generated by approximate solutions is therefore of particular
interest.

In this paper, we present an algorithm to count the number of
Feynman diagrams inherent in many-body integral equations.
Its iterative structure allows us to numerically access arbitrarily
large interaction orders and to gain analytical insights about
the asymptotic behavior. In Sec. II we recapitulate typical
many-body relations as a basis for the algorithm. The algorithm
is explained in Sec. III, where some general parts of the
discussion follow Ref. [2] quite closely; some of the ideas
have also been formulated by Smith [3]. In Sec. IV we use
the algorithm to count the exact number of bare and skeleton
diagrams of the general many-body problem for various vertex
functions and to discuss their asymptotics. Subsequently, we
consider parquet-type approximations as examples for approx-
imate solutions, and we focus on the Hubbard model to discuss
spin-resolved diagrams. Finally, we present our conclusions in
Sec. V.

II. MANY-BODY RELATIONS

A general theory of interacting fermions is defined by the
action

S = −
∑
x ′,x

c̄x ′
(
G−1

0

)
x ′,xcx − 1

4

∑
x ′,x,y ′,y

�
(4)
0;x ′,y ′;x,y c̄x ′ c̄y ′cycx,

(1)

where G0 is the bare propagator, �(4)
0 the bare four-point vertex,

which is antisymmetric in its first and last two arguments, and
x denotes all quantum numbers of the Grassmann field cx . If
we choose, e.g., Matsubara frequency, momentum, and spin,
with x = (iω, k, σ ) = (k, σ ), and consider a translationally
invariant system with interaction U|k|, the bare quantities read

G0;x ′,x
e.g.= G0;k,σ δk′,k δσ ′,σ , (2a)

−�
(4)
0;x ′

1,x
′
2;x1,x2

e.g.= (
U|k′

1−k1|δσ ′
1,σ1

δσ ′
2,σ2

−U|k′
1−k2|δσ ′

1,σ2
δσ ′

2,σ1

)
δk′

1+k′
2,k1+k2

. (2b)

Interested in one- and two-particle correlations, the many-
body theory is usually focused on the full propagator G with
self-energy � and the full one-particle-irreducible (1PI) four-
point vertex �(4), which can be decomposed into two-particle-
irreducible vertices Ir in different two-particle channels r ∈
{a, p, t} (see below). The quantities G, �, �(4) are related by
the exact and closed set of equations [4–7]

G = G0 + G0 · � · G, (3a)

� = −�
(4)
0 ◦ G − 1

2
�

(4)
0 ◦ G ◦ G ◦ G ◦ �(4), (3b)

�(4) = It − It ◦ G ◦ G ◦ �(4), It = −δ�

δG
, (3c)

where · represents a matrix product and ◦ a suitable contraction
of indices [8]. The first equation is the well-known Dyson
equation, the second one the Schwinger-Dyson equation (SDE,
or equation of motion) for the self-energy, and the last one a
Bethe-Salpeter equation (BSE), where the irreducible vertex
It is obtained by a functional derivative of � w.r.t. G. These
equations together with further equations discussed below are
illustrated in Fig. 1.

The relation between It and � is closely related [7] to an
exact flow equation of the functional renormalization group
(fRG) framework [9,10]. There, the theory evolves under the
RG flow by variation of a scale parameter �, introduced in the
bare propagator. Consequently, all vertex functions develop
a scale dependence (which is suppressed in the notation),
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FIG. 1. Graphical representation of many-body relations, where solid lines represent dressed propagatorsG and dots represent bare four-point
vertices �

(4)
0 . (a) Schwinger-Dyson equation (3b) for the self-energy. (b) To perform the functional derivative δ�/δG in Eq. (3c), one sums

all copies of diagrams where one G line is removed. Conversely, the self-energy differentiated w.r.t. a scalar parameter (see main text), �̇, is
obtained by contracting [cf. Eq. (5a)] the vertex It with Ġ (line with double dash) or [cf. Eq. (5b)] the full vertex �(4) with the singled-scale
propagator S [cf. Eq. (4), line with one dash]. (c) �(4) deduced from the Bethe-Salpeter equation (BSE) in the transverse channel (3c). (d)–(e)
BSEs (7) for the reducible vertices in (d) the antiparallel channel and (e) the parallel channel. (f) Dyson equation (3a) involving the bare
propagator G0 (gray line). Note that the relations (a)–(c) suffice to generate all skeleton diagrams for the self-energy and the vertex (with
all signs and prefactors written explicitly). Relations (c)–(e) together with Eq. (6) enable the parquet decomposition of the four-point vertex.
Finally, the Dyson equation (f) makes the connection between bare and skeleton diagrams.

and an important role is attached to the so-called single-scale
propagator

S = Ġ − G · �̇ · G = (1 + G · �) · Ġ0 · (� · G + 1), (4)

where Ġ = ∂�G, etc. If the variation of G in Eq. (3c) is realized
by varying �, one obtains by inserting Eq. (4)

�̇ = −It ◦ Ġ = −It ◦ (S + G · �̇ · G) (5a)

= −(It − It ◦ G ◦ G ◦ It + · · · )S = −�(4) ◦ S. (5b)

The iterative insertion of �̇ on the r.h.s. yields a ladder
construction in the t channel that produces the full vertex
�(4) from It [cf. Eq. (3c)] and results in the well-known flow
equation of the self-energy [9,10].

Finally, the relation between the full and the two-particle-
irreducible vertices is made precise by the parquet equation
[5,11]

�(4) = R + ∑
r

γr , Ir = R + ∑
r ′ �=r

γr ′ . (6)

Here R is the totally irreducible vertex, whereas the vertices
γr with r ∈ {a, p, t} are reducible by cutting two antiparallel
lines, two parallel lines, or two transverse (antiparallel) lines,
respectively [12]. They are obtained from the irreducible ones
via the BSEs [cf. Eq. (3c) and Figs. 1(c)–1(e)]

γr = σr Ir ◦ G ◦ G ◦ �(4), σa = 1 = −σt , σp = 1
2 . (7)

The relative minus sign in the a and t channel stems from
the fact that γa and γt are related by exchange of fermionic
legs. Following the conventions of Bickers [5], the factor of
1/2 used in the p channel and in Eq. (3b) ensures that, when
summing over all internal indices, one does not overcount the
effect of the two indistinguishable (parallel) lines connected to
the antisymmetric vertices.

III. COUNTING OF DIAGRAMS

A key aspect in the technique of many-body perturbation
theory is that all quantities have (under certain conventions)
a unique representation as a sum of diagrams, which can
be obtained by following the so-called Feynman rules. In
order to count the number of diagrams via many-body integral

equations, we express all quantities as sums of diagrams (i.e.,
we expand in the interaction) and collect all combinations that
lead to the same order in the interaction. These combinations of
different numbers of diagrams yield the number of diagrams
for the resulting object. In fact, the multiplicative structure
in the interaction translates into discrete convolutions of the
individual numbers of diagrams. Since the interaction vertices
start at least at first order in the interaction, the resulting
equations can be solved iteratively.

As a first example, we count the number of diagrams in the
full propagator G at order n in the interaction,NG(n), given the
number of diagrams in the self-energy, N� (n). We know that
the bare propagator has only one contribution, NG0 (n) = δn,0,
and that the self-energy starts at first order, i.e., N� (0) = 0.
From Dyson’s equation (3a), we then see that the number of
diagrams in the full propagator can be generated iteratively via

NG(n) = δn,0 +
n∑

m=1

N� (m)NG(n − m). (8)

As already indicated, it is useful to define a convolution of
sequences according to

N1 = N2 ∗ N3 ⇔ N1(n) =
n∑

m=0

N2(m)N3(n − m) ∀n. (9)

With this, we can write Eq. (8) in direct analogy to the original
equation (3a) as

NG = NG0 + NG0 ∗ N� ∗ NG. (10)

Similarly, we use the SDE (3b) and the number of diagrams in
the bare vertex N�

(4)
0

(n) = δn,1 to get

N� = N�
(4)
0

∗ NG + 1
2 N�

(4)
0

∗ NG ∗ NG ∗ NG ∗ N�(4) . (11)

We can ignore the extra minus signs when collecting topologi-
cally distinct diagrams (for an example of many-body relations
where the relative minus signs do matter, see the Appendix).
However, we have to keep track of prefactors of magnitude not
equal to unity to avoid double counting of diagrams [5]. This is
necessary as we use the antisymmetric bare four-point vertex as
building block for diagrams. If one counts direct and exchange
interactions separately, corresponding to an expansion in terms
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(a)

= − +

(b)

= + − −
(c)

1
2

= −

(d)

− = − − + +

(e)

− = −
(f)

− 1
2

= − +

FIG. 2. Examples and translation from Hugenholtz to Feynman diagrams. (a) Bare (antisymmetric) four-point vertex (dot) as used for
Hugenholtz diagrams expressed by direct and exchange interactions [cf. Eq. (2b), wavy lines] as used for Feynman diagrams. (b)–(d) Diagrams
for the reducible vertices γr in the two-particle channels a, p, t , respectively. Whereas γa and γt have four Feynman diagrams, γp has only two.
In fact, inserting the direct and exchange interactions from (a) into the Hugenholtz diagram containing two equivalent propagators (parallel
lines connected to antisymmetric vertices) yields only two topologically distinct diagrams, properly canceling the factor of 1/2. (e) First- and (f)
second-order diagrams for the self-energy. The prefactor of 1/2 is again canceled upon decomposing �0. Note that, if the electron propagators
(lines) are considered as dressed ones, the above diagrams comprise all skeleton diagrams of the four-point vertex and the self-energy up to
second order.

of the amplitude U instead of the antisymmetric matrix �0

in Eq. (2b), one attributes two diagrams to the bare vertex
[N�

(4)
0

(n) = 2δn,1], and the number of diagrams at each order
is magnified by NX(n) → NX(n)2n. This corresponds to the
translation from Hugenholtz to Feynman diagrams [1] and
cancels the fractional prefactors (cf. Fig. 2).

The further relations for the number of diagrams that follow
from Eq. (3c) close the set of equations and will allow us
to generate the exact numbers of diagrams in all involved
quantities. The crucial point for this to work is that, on the one
hand, asN�

(4)
0

(n) ∝ δn,1, the self-energy at order n is generated

by G (containing �) and �(4) up to order n − 1 via Eq. (3b).
On the other hand, Eq. (5) [deduced from Eq. (3c)] relates �̇ at
order n to � at orders 1, . . . , n − 1 and �(4) at orders 1, . . . , n.
Knowing N� (n) from the SDE, we can thus infer N�(4) (n).
Then the algorithm proceeds iteratively.

To use the differential equations, note that a diagram of the
propagator G at order n contains 2n + 1 lines, and a diagram
of an m-point vertex �(m) (we use � = �(2) as in Ref. [10]) has
(4n − m)/2 lines. According to the product rule, the number
of differentiated diagrams is thus given by

NĠ(n) = NG(n)(2n + 1), (12a)

N�̇(m) (n) = N�(m) (n)

(
2n − m

2

)
. (12b)

Further, Eq. (5) is easily translated into

N�̇ = N�(4) ∗ NS (13a)

= NIt
∗ NĠ (13b)

and can be transformed to give an equation for the number of
diagrams in the vertices �(4) and It . From Eq. (13a), we get

N�(4) (n) =
[
N�̇ (n) −

n−1∑
m=1

N�(4) (m)NS (n − m)

]/
NS (0),

(14)

where the number of diagrams in the single-scale propagator
S can be obtained from the equivalent relations

NS = NĠ − NG ∗ N�̇ ∗ NG (15a)

= (N1 + NG ∗ N� ) ∗ NĠ0
∗ (N1 + N� ∗ NG), (15b)

withNĠ0
(n) = δn,0 = N1(n). If we alternatively use Eq. (13b)

[combined with Eq. (3c)], we have

NIt
(n) =

[
N�̇ (n) −

n−1∑
m=1

NIt
(m)NĠ(n − m)

]/
NĠ(0),

(16a)

N�(4) (n) = NIt
(n) +

n−1∑
m=1

N�(4) (m)
(
NG ∗ NG ∗ NIt

)
(n − m).

(16b)

In an analogous fashion, one can also derive the number of
diagrams in the 1PI six-point vertex �(6) from the exact fRG
flow equation [9,10] of the four-point vertex �(4),

N�̇(4) = 5N�(4) ∗ NG ∗ NS ∗ N�(4) + N�(6) ∗ NS , (17)

together with Eq. (12b). A further relation is given by the SDE
for �(4) [17] (N� = NG ∗ NG)

N�(4) =N�
(4)
0

+ 5
2 N�

(4)
0

∗ N� ∗ N�(4)

+ 4N�
(4)
0

∗ N� ∗ N� ∗ N�(4) ∗ N�(4)

+ 1
2 N�

(4)
0

∗ NG ∗ N� ∗ N�(6) . (18)

Finally, the number of diagrams in the vertex �(4) can
be decomposed into two-particle channels according to the
parquet equations (6), (7). By symmetry, we have Nγa

= Nγt

and obtain

N�(4) = NR + 2Nγa
+ Nγp

, (19a)

Nγr
= |σr |

(
N�(4) − Nγr

) ∗ NG ∗ NG ∗ N�(4) . (19b)

Given N�(4) , one can first deduce Nγr
and then NR . If,

conversely, the number of diagrams in the totally irreducible
vertex R [withNR (0) = 0] is fixed, as is the case in parquet ap-
proximations, one can combine these equations with Eqs. (10)
and (11) to generate all numbers of diagrams without the need
to use the differential equations (13).
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TABLE I. Exact number of Hugenholtz diagrams for various
vertex functions and the propagator up to interaction order 6. The
number of Feynman diagrams is obtained by NX (n) → NX (n)2n,
which cancels all fractional parts (cf. Fig. 2).

n 1 2 3 4 5 6

N�(6) 0 0 21 319 1
2 4180 1

2 53612 1
4

N�(4) 1 2 1
2 15 1

4 112 1
8 935 1

16 8630 5
32

Nγa
0 1 6 42 1

4 332 2854 9
16

Nγp
0 1

2 3 1
4 23 5

8 188 1
16 1622 17

32

NR 1 0 0 4 83 1298 1
2

N� 1 1 1
2 5 1

4 25 7
8 158 1

16 1132 19
32

NG 1 2 1
2 9 1

4 44 1
8 255 1

16 1725 5
32

IV. RESULTS

A. Bare diagrams

With the equations stated above, we can construct the exact
number of diagrams of the general many-body problem for all
involved quantities. Table I shows the number of diagrams in
the different vertices, the self-energy, and the propagator up to
order 6. After translation from the number of Hugenholtz to
Feynman diagrams byNX (n) → NX(n)2n,NG reproduces the
numbers already given in Ref. [18] (their Table I, first column)
and Ref. [19] [their Eq. (9.10)].

B. Skeleton diagrams

For many purposes, it is convenient to work with skele-
ton diagrams, i.e., diagrams in which all electron propaga-
tors are fully dressed ones. Then the bare propagator [with
NG0 (n) = δn,0 = NĠ0

(n)] is replaced as building block for
diagrams by the full propagator, for which we now use
NG(n) = δn,0 = NĠ(n). We can directly apply the previous
methods by using those equations that are phrased with dressed
propagators, such as Eqs. (11), (16), and (19).

Moreover, the numbers of bare and skeleton diagrams are
directly related. According to the number of lines in an nth-
order diagram of an m-point vertex [cf. Eq. (12b)], one has

N�(m) (n) =
n∑

k=1

N sk
�(m) (k)

(
NG ∗ · · · ∗ NG︸ ︷︷ ︸

2k−m/2

)
(n − k) (20)

and can transform the number of skeleton diagrams N sk
�(m) to

bare diagrams N�(m) . For this, the numbers of bare diagrams
in � and G are built up side by side, using Eq. (8). If we
consider, e.g., the simplest approximation of a finite-order
skeleton self-energy, namely, the Hartree-Fock approximation
with N sk

� (n) = δn,1, Eq. (20) can be used to give N� (n) =
0, 1, 2, 5, 14, 42, 132, . . . for the number of bare self-energy
diagrams.

If, conversely, the number of bare diagrams N�(m) is known,
we can easily construct a recursion relation for N sk

�(m) by

TABLE II. Exact number of skeleton Hugenholtz diagrams for
various vertex functions up to interaction order 6. The number of
Feynman diagrams is again obtained by NX (n) → NX (n)2n.

n 1 2 3 4 5 6

N sk
�(6) 0 0 21 256 1

2 2677 1
2 28179 3

4

N sk
�(4) 1 2 1

2 10 1
4 56 1

8 375 9
16 2931 21

32

N sk
γa

0 1 4 20 1
4 123 866 1

16

N sk
γp

0 1
2 2 1

4 11 5
8 70 9

16 493 1
32

N sk
R 1 0 0 4 59 706 1

2

N sk
� 1 1

2 1 1
4 5 1

8 28 1
16 187 25

32

inverting Eq. (20),

N sk
�(m) (n)=

[
N�(m) (n)−

n−1∑
k=1

N sk
�(4) (k)

× (NG ∗ · · · ∗ NG︸ ︷︷ ︸
2k−m/2

)(n−k)

]/
(NG ∗ · · · ∗ NG︸ ︷︷ ︸

2n−m/2

)(0).

(21)

Table II shows the number of skeleton diagrams in the
various quantities. The number of skeleton Feynman diagrams
for the self-energy, N sk

� (n)2n, agrees with the numbers given
in Ref. [20] [coefficients in their Eq. (17) using � = 1] and
Ref. [21] (their Table 4.1, column 2 [22]).

C. Asymptotic behavior

From combinatorial arguments, it is clear that the number of
diagrams exhibits a factorial growth with the interaction order
n. Indeed, Fig. 3 (full lines) shows the number of diagrams in
different vertex functions N�(m) divided by their (numerically
determined) asymptote

N�(m) ∼ n!n(m−1)/22(m−2)/2, n � 1 (22)

as a function of 1/n. The fact that the curves linearly approach
a finite value demonstrates that, indeed, the correct asymptotic
behavior has been identified. We find the same proportionality
factor for all vertex functions.

The m dependence in Eq. (22) can be readily understood
from the universal part of the exact fRG flow equations, �̇(m) =
−�(m+2) ◦ S + . . . [9,10]. Due to the factorial growth, we have
NX(n) � NX(n − 1) for n � 1, and the leading behavior is
determined by [using NS (0) = 1 and Eq. (12b)]

N�(m+2) (n)NS (0) ∼ N�̇(m) (n) ∼ 2nN�(m) (n), n � 1. (23)

The asymptotes of G and � = �(2) agree due to the simple
relation deduced from Eq. (10) for n � 1,

NG(n) ∼ NG0 (0)N� (n)NG(0) ∼ N� (n) ∼ n!n1/2. (24)

The number of diagrams in the reducible vertices γr divided
by the same function as �(4) (dotted lines in Fig. 3) go to zero.
In fact, the correct asymptote of the reducible vertices (as used
for the dashed lines in Fig. 3) is found from the BSEs (19b)

Nγr
(n) ∼ 2|σr |N�(4) (1)NG(0)NG(0)N�(4) (n − 1)

∼ 4|σr |(n − 1)!n3/2 = 4|σr |n!n1/2, n � 1. (25)
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0 0.05 0.151/n
0

0.4

1.2

Ñ X

G

Σ

R
Γ(4)

Γ(6)

γr

γr

(a)

0 0.05 0.151/n
0

0.05

0.15

Ñ
sk X

Σ
R

Γ(4)

Γ(6)

γr

γr

(b)

FIG. 3. Plots for the rescaled number of (a) bare and (b) skeleton
diagrams with n ranging up to 1500. Numbers are rescaled as
Ñ�(m) (n) = N�(m) (n)/(n!n(m−1)/22(m−2)/2) [Eq. (22)]; G is rescaled
in the same way as � = �(2) [Eq. (24)]; R and γr (r = a, p, dotted)
in the same way as �(4). Dashed lines for γr account for the correct
asymptote, showing Nγr

/(4|σr |n!n1/2) [Eq. (25)].

According to Eq. (19a), the number of diagrams in the totally
irreducible vertex R must then grow as fast as N�(4) ,

NR (n) ∼ N�(4) (n) ∼ 2n!n3/2, (26a)

Nγr
(n)

NR (n)
∼ 2|σr |

n
, n � 1. (26b)

From Fig. 3, we indeed see that NR > Nγa
,Nγp

for n > 8.
The proportionality factor of roughly 1.128 in the asymp-

totics of the bare number of diagrams can be derived from
a combinatorial approach to count diagrams in m-point con-
nected Green’s function G(m) (with G = G(2)). If the recursion
relation for G given in Ref. [19] [their Eq. (9.10)] is translated
to Hugenholtz diagrams and generalized to m-point functions,
it reads

NG(m) (n) = (2n + m/2)!

n!4n
−

n∑
k=1

(2k)!

k!4k
NG(m) (n − k), (27)

where the first summand accounts for all topologically distinct
contractions and the second summand removes disconnected
ones. For the asymptotic behavior, it suffices to subtract the
fully disconnected part [the k = n summand dominates since
NX(n) � NX(n − 1)], and we obtain, using NG(m) (0) = O(1)
and Stirling’s formula,

NG(m) (n) ∼ (2n + m/2)!

n!4n
− (2n)!

n!4n
∼ (2n)m/2(2n)!

n!4n

∼ 2√
π

n!n(m−1)/22(m−2)/2, n � 1. (28)

Comparing this to Eq. (22), we indeed find a proportionality
factor of 2/

√
π ≈ 1.128 [23].

D. Asymptotics of parquet approximations

In any type of parquet approximation, one has NR (n) = 0
for n > np (i.e., np denotes the highest-order contribution
retained for R), whereas the reducible vertices and the self-
energy still extend to arbitrarily high orders, as determined
by the self-consistent BSEs (7) and SDE (3b). However,
in this case, a factorial growth in the number of diagrams
[NX(n) � NX(n − 1)] leading to Eq. (26) would contradict
a vertex R of finite order. Hence, the number of diagrams
in any approximation of the parquet type can at most grow

FIG. 4. Ratio of subsequent elements of (a) NX and (b) N sk
X

in the parquet-type approximations with np = 30 and np = 12 (see
main text). We use the same color coding as in Fig. 3; dashed lines
represent γr . The inset shows an analogous plot forNG, obtained from
a finite-order self-energy (ns = 20) [cf. Eq. (29)]. The cusp for �(4),
�, G occurs at 1/np (inset: 1/ns), and for γr at 1/np + 1, due to the
structure of the BSEs [cf. (19b)].

exponentially [NX(n)/NX(n − 1) ∼ O(1)]. Figure 4 shows
how the quotient of two subsequent elements in NX subject
to (two different) parquet-type approximations approaches a
constant; it confirms the exponential growth and reveals that
the exponential rate only depends on np for all vertex functions.
Curiously, one finds dampened oscillations modulating the
growth in the number of diagrams for n > np � 10.

An analogous phenomenon already occurs by using the
Dyson equation with a self-energy of finite order (cf. Fig. 4,
inset). Again, a factorial growth in the number of diagrams
[NX(n) � NX(n − 1)] leading to Eq. (24) would contradict
such an N� , and NG can at most grow exponentially. If
N� (n) = 0 for n > ns , Eq. (8) is simplified to

NG(n) = δn,0 +
min{n,ns }∑

m=1

N� (m)NG(n − m). (29)

For large n, the factor NG(n − m) spans over the orders n −
ns, . . . , n and produces “fading echoes” of the abrupt fall in the
quotient which stems from the first occurrence of N� (n) = 0
at n = ns + 1.

Even if only the skeleton diagrams of, e.g., � or R are
of finite order, the resulting numbers of bare diagrams can
grow at most exponentially. The reasoning is similar: A
factorial growth in the number of diagrams [NX (n) � NX(n −
1)] would imply N�(m) (n) ∼ N sk

�(m) (nmin)NG(n − nmin), using
Eq. (20) and NG(0) = 1. For �, one has nmin = 1, and the
result would directly contradict Eq. (24). For R, one has
nmin = 4 and would find a contradiction using Eqs. (23), (24),
and (26). We conclude that for any of the typical diagrammatic
resummation approaches, one generates numbers of (bare)
diagrams that grow at most exponentially with interaction
order n.

E. Hubbard model

The Hubbard model [24] is of special interest in condensed
matter physics. In terms of diagrams, a simplification arises due
to the SU(2) spin symmetry of the model with the restrictive
bare vertex (σ ∈ {↑,↓})

�
(4)
0;x ′

1,x
′
2;x1,x2

∝ (
δσ ′

1,σ1
δσ ′

2,σ2
− δσ ′

1,σ2
δσ ′

2,σ1

)
δσ1,σ̄2

, (30)
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TABLE III. Exact number of spin-resolved bare diagrams in the
Hubbard model. By symmetry, we have N ↑↑

γa
= N ↑↑

γt
, and one further

finds N ↑↓
γa

= N ↑↓
γp

[cf. Fig. 5 and Eq. (A9)].

n 1 2 3 4 5 6 7

N� 1 2 8 44 296 2312 20 384

N ↑↓
�(4) 1 2 13 104 940 9352 101 080

N ↑↓
γa

0 1 5 36 300 2760 27 544

N ↑↓
γt

0 0 3 30 282 2758 28 526

N ↑↓
R 1 0 0 2 58 1074 17 466

N ↑↑
�(4) 0 2 12 94 848 8468 92 016

N ↑↑
γa

0 1 6 44 366 3354 33 334

N ↑↑
γp

0 0 0 2 28 320 3532

N ↑↑
R 0 0 0 4 88 1440 21 816

N ↑↓↑
�(6) 0 0 8 144 2072 28 744 402 736

N ↑↑↑
�(6) 0 0 12 144 1872 25 176 349 812

where ↑̄ = ↓, ↓̄ = ↑. In this case, one can individually count
diagrams with specific spin configuration. In other words,
one can explicitly perform the spin sums in all diagrams and
actually count only those diagrams that do not vanish under
the spin restriction.

So far, we have considered diagrams that contain summa-
tions over all internal degrees of freedom—including spin.
Generally, our algorithm cannot give the functional depen-
dence of the diagrams and, in particular, does not give the
spin dependence of the diagrams. If one writes the relations
stated above with their explicit spin dependence (as done in
the Appendix), one finds that the SDE relates the self-energy
to the vertex with different spins at the external legs. However,
the differential equations contain a summation over all spin
configurations of the vertex. Thus, Eqs. (14) and (16a) cannot
be used to deduce the number of spin-resolved vertex diagrams.

As already mentioned, for approximate many-body ap-
proaches that do allow for an iterative construction, such as
parquet-type approximations, we need not make use of the
differential equations. We could therefore easily construct the
corresponding numbers of spin-resolved diagrams. However,
here we prefer to give low-order results for the exact numbers
of diagrams for all the different vertex functions by resorting to
known results: We use exact numbers of diagrams for a specific
quantity not considered in this work, which are obtained by
Monte Carlo sampling up to order 7 in Ref. [25] (their Table
I). From this, we can deduce the number of diagrams in the
totally irreducible vertex R and, then, generate the numbers
for all further vertex functions studied here.

Using spin symmetry, only a few spin configurations of
the vertices are actually relevant: One-particle properties must
be independent of spin; for two- and three-particle vertices, it
suffices to consider those with identical spins and those with
two different pairs of spins. In the Appendix we explain the
labeling and give further relations that follow from the SU(2)
spin symmetry and rely on cancelations of diagrams.

Table III gives the exact number of bare diagrams for the
Hubbard model up to order 7; Table IV gives the corresponding

TABLE IV. Exact number of spin-resolved skeleton diagrams
in the Hubbard model, where we again have N sk↑↑

γa
= N sk↑↑

γt
and

N sk↑↓
γa

= N sk↑↓
γp

.

n 1 2 3 4 5 6 7

N sk
� 1 1 2 9 54 390 3268

N sk↑↓
�(4) 1 2 9 54 390 3268 30 905

N sk↑↓
γa

0 1 3 17 112 850 7289

N sk↑↓
γt

0 0 3 18 120 928 8029

N sk↑↓
R 1 0 0 2 46 640 8298

N sk↑↑
�(4) 0 2 8 48 352 2978 28 376

N sk↑↑
γa

0 1 4 21 136 1028 8768

N sk↑↑
γp

0 0 0 2 16 126 1064

N sk↑↑
R 0 0 0 4 64 796 9776

N sk↑↓↑
�(6) 0 0 8 120 1376 15 648 185 296

N sk↑↑↑
�(6) 0 0 12 108 1188 13 464 160 236

numbers of skeleton diagrams. The numbers for N sk
� up to

order 6 agree with those of Ref. [21] (their Table 4.1, column
3). Note that, for spin-resolved diagrams of the Hubbard
model, we can use the internal spin summations to express
all Hugenholtz diagrams in terms of the bare vertex �

↑↓
0 with

fixed spins, containing only one diagram. Hence, the number
of spin-resolved Hugenholtz and Feynman diagrams for this
model are equal (cf. Fig. 5).

It is interesting to compare the number of diagrams in the
four-point vertex with identical and different spins. On top of
the numbers given in Tables III and IV, our algorithm can also
determine the asymptotic behavior of, e.g., the relation between
N ↑↑

�(4) and N ↑↓
�(4) . If we consider skeleton diagrams, the SDE

(A7a) with N sk↑↓
�

(4)
0

(n) = δn,1 yields N sk
� (n + 1) = N sk↑↓

�(4) (n).

Combined with the (super) factorial growth of N sk
� , this gives

nN sk
� (n) � N sk

� (n + 1) = N sk↑↓
�(4) (n), n � 1. (31)

On the other hand, Eq. (12b) and Eq. (A7c) together with the
knowledge thatNR asymptotically dominatesN�(4) can be used

(a)

= −
(b)

=

(c)

1
2

=

(d)

=

(e)

− = −

(f)

− =

(g)

− 1
2

= −

FIG. 5. Spin-resolved diagrams of the Hubbard model in the
Hugenholtz and Feynman representation up to second order. Blue
(dark) lines denote spin-up and red (light) lines spin-down propa-
gators; dashed lines symbolize a sum over spin. Panels (a)–(c) give
diagrams for �

↑↓
0 , γ ↑↓

a , and γ ↑↓
p ; (d)–(e) for γ ↑↑

a and γ
↑↑
t ; and (f)–(g)

for �. Viewed with full propagators, these are all skeleton diagrams
entering �(4) and � up to second order. We explicitly see that the
numbers of Hugenholtz and Feynman diagrams are equal.
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to obtain

2nN sk
� (n) � N sk↑↑

It
(n) + N sk↑↓

It
(n)

� N sk↑↑
�(4) (n) + N sk↑↓

�(4) (n), n � 1. (32)

Dividing both equations, we find that, according to

N ↑↑
�(4) (n)/N ↑↓

�(4) (n) ∼ N sk↑↑
�(4) (n)/N sk↑↓

�(4) (n) � 1, n � 1,

(33)

the number of diagrams for the effective interaction between
same spins asymptotically approaches the one between differ-
ent spins from above for large interaction orders.

V. CONCLUSION

We have presented an iterative algorithm to count the
number of Feynman diagrams inherent in many-body integral
equations. We have used it to count the exact number of bare
and skeleton diagrams in various vertex function and different
two-particle channels. Our algorithm can easily be applied to
many-body relations of different forms and levels of approxi-
mation, such as the parquet formalism [5,11] and its simplified
variant FLEX [5], other approaches based on Hedin’s equations
[4,20] including the famous GW approximation [26,27], �-
derivable results deduced from a specific approximation of the
Luttinger-Ward functional [5,28,29], and truncated flows of
the functional renormalization group [2,9,10,30].

Due to its iterative structure, the algorithm allows us to
numerically access arbitrarily large interaction orders and
gain analytical insight into the asymptotic behavior. First, we
have extracted a leading dependence of n!n(m−1)/22(m−2)/2 in
the number of diagrams of an m-point 1PI vertex. Second,
we have shown that the number of diagrams in the totally
irreducible four-point vertex exceeds those of the reducible
ones for interaction orders n > 8 and asymptotically contains
all diagrams of the four-point vertex [i.e., Nγr

(n)/NR (n) → 0
as n → ∞]. Third, we have argued that any of the typical
diagrammatic resummation procedures, including any type of
parquet approximation, can support an exponential growth
only in the number of diagrams. This is in contrast to the
factorial growth in the exact number of diagrams. It is therefore
likely that the corresponding approximate series expansions do
have a finite radius of convergence.

We believe that the techniques and results presented in
this paper will be useful for various applications of Green’s
functions methods as well as approaches that directly sum
diagrams, such as finite-order approximations or diagrammatic
Monte Carlo [31].
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APPENDIX: RELATIONS FOR THE HUBBARD MODEL

The spin symmetry in the Hubbard model allows us to focus
on a small set of vertex functions when counting diagrams. By
spin conservation, an n-particle vertex depends on only n spins.
Using theZ2 symmetry, it is clear that self-energy diagrams do
not depend on spin, while, for the four-point vertex, it suffices
to consider

N ↑↑
�(4) := N ↑↑;↑↑

�(4) , N ↑↓
�(4) := N ↑↓;↑↓

�(4) . (A1)

Here we write the spin indices of the vertex in the order of
Eq. (1) as superscripts of N . The classification of four-point
diagrams into two-particle channels depends on the labels of
the external legs. By crossing symmetry, we have N ↑↑

γa
= N ↑↑

γt

and find for different spins

N ↑↓
γp

:= N ↑↓;↑↓
γp

= N ↑↓;↓↑
γp

, (A2a)

N ↑↓
γa

:= N ↑↓;↑↓
γa

= N ↑↓;↓↑
γt

, (A2b)

N ↑↓
γt

:= N ↑↓;↑↓
γt

= N ↑↓;↓↑
γa

. (A2c)

For the six-point vertex, we need to consider only (the
semicolon again separates incoming and outgoing lines)

N ↑↑↑
�(6) := N ↑↑↑;↑↑↑

�(6) , N ↑↓↑
�(6) := N ↑↓↑;↑↓↑

�(6) . (A3)

The SU(2) spin symmetry further relates the remaining
components of the four-point vertex by [13]

�
(4)
p′↑,q′↑;p↑,q↑ = �

(4)
p′↑,q′↓;p↓,q↑ − �

(4)
p′↑,q′↓;q↓,p↑, (A4)

where we have decomposed the quantum number x into
p and σ . However, this subtraction involves cancelations
of diagrams as opposed to the summation of topologically
distinct, independent diagrams we have encountered so far.
This can already be seen at first order where N ↑↑

�
(4)
0

= 0. Such

cancelations of diagrams can only change the number of
diagrams by a multiple of 2. Consequently, we infer that

2N ↑↓
�(4) − N ↑↑

�(4) ∈ 2N0. (A5)

If we further invoke the channel decomposition with crossing
symmetries, we find that all of

2N ↑↓
R − N ↑↑

R , 2N ↑↓
γp

− N ↑↑
γp

, N ↑↓
γa

+ N ↑↓
γt

− N ↑↑
γa

(A6)

are nonnegative, even numbers (as can explicitly be checked
in Tables III and IV).

Next, we perform the spin summation in the different many-
body relations stated in Sec. III. Starting with Eqs. (11) and
(13) for the self-energy, we get

N� = N ↑↓
�

(4)
0

∗ NG + N ↑↓
�

(4)
0

∗ N� ∗ NG ∗ N ↑↓
�(4) , (A7a)

N�̇ = (N ↑↓
�(4) + N ↑↑

�(4) ) ∗ NS (A7b)

= (N ↑↓
It

+ N ↑↑
It

) ∗ NĠ. (A7c)
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From Eqs. (17) and (18), we similarly get for the four-point
vertex (N�̇S

= NG ∗ NS)

N ↑↓
�̇(4) = 2N ↑↓

�(4) ∗ N�̇S
∗ N ↑↓

�(4) + 2N ↑↓
�(4) ∗ N�̇S

∗ N ↑↑
�(4)

+2N ↑↓↑
�(6) ∗ NS, (A8a)

N ↑↑
�̇(4) = 5

2 N
↑↑
�(4) ∗ N�̇S

∗ N ↑↑
�(4) + 2N ↑↓

�(4) ∗ N�̇S
∗ N ↑↓

�(4)

+N ↑↓↑
�(6) ∗ NS + N ↑↑↑

�(6) ∗ NS, (A8b)

N ↑↓
�(4) = N ↑↓

�
(4)
0

+ 2N ↑↓
�

(4)
0

∗ N� ∗ N ↑↓
�(4)

+N ↑↓
�

(4)
0

∗ N� ∗ N ↑↑
�(4) + N ↑↓

�
(4)
0

∗ N� ∗ N ↑↓↑
�(6)

+ 3N ↑↓
�

(4)
0

∗ N� ∗ N� ∗ N ↑↓
�(4) ∗ N ↑↓

�(4)

+ 4N ↑↓
�

(4)
0

∗ N� ∗ N� ∗ N ↑↓
�(4) ∗ N ↑↑

�(4) , (A8c)

N ↑↑
�(4) = 2N ↑↓

�
(4)
0

∗ N� ∗ N ↑↓
�(4)

+N ↑↓
�

(4)
0

∗ N� ∗ N ↑↑
�(4) + N ↑↓

�
(4)
0

∗ N� ∗ N ↑↓↑
�(6)

+ 4N ↑↓
�

(4)
0

∗ N� ∗ N� ∗ N ↑↓
�(4) ∗ N ↑↓

�(4)

+ 3N ↑↓
�

(4)
0

∗ N� ∗ N� ∗ N ↑↓
�(4) ∗ N ↑↑

�(4) . (A8d)

Finally, we resolve the parquet equations (19) in their spin
configurations and obtain

N σσ ′
�(4) = N σσ ′

R + ∑
r

N σσ ′
γr

, (A9a)

N σσ ′
Ir

= N σσ ′
�(4) − N σσ ′

γr
, (A9b)

N ↑↓
γa

= N ↑↓
Ia

∗ N� ∗ N ↑↓
�(4) , (A9c)

N ↑↓
γp

= N ↑↓
Ip

∗ N� ∗ N ↑↓
�(4) , (A9d)

N ↑↓
γt

= N ↑↓
It

∗ N� ∗ N ↑↑
�(4) + N ↑↑

It
∗ N� ∗ N ↑↓

�(4) , (A9e)

N ↑↑
γa

= N ↑↑
Ia

∗ N� ∗ N ↑↑
�(4) + N ↑↓

It
∗ N� ∗ N ↑↓

�(4) , (A9f)

N ↑↑
γp

= 1
2N

↑↑
Ip

∗ N� ∗ N ↑↑
�(4) , (A9g)

N ↑↑
γt

= N ↑↑
It

∗ N� ∗ N ↑↑
�(4) + N ↑↓

It
∗ N� ∗ N ↑↓

�(4) . (A9h)

In Sec. III we combined the Schwinger-Dyson with dif-
ferential (or flow) equations to iteratively construct the exact
number of diagrams. Here we see that the Schwinger-Dyson
equations of � [Eq. (A7a)] and �(4) [Eqs. (A8c) and (A8d)]
contain the corresponding higher-point vertex �(4) and �(6),
respectively, only in the configuration with different spins.
However, the differential equations [Eqs. (A7b) and (A7c)
and Eqs. (A8a) and (A8b)] involve the same higher-point
vertex in all of its spin configurations. It is for this reason
that one cannot iteratively construct the exact number of
spin-resolved diagrams. However, the equations can easily be
used to generate the number of diagrams in approximations
that do allow for an iterative construction, such as parquet-type
approximations or approximations that involve a finite number
of known (bare or skeleton) diagrams.
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