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We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU(N )
Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as
its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point
temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that
this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the
local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the
asymmetry in the dynamics of the generalized doublons and holons.
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I. INTRODUCTION

The Mott insulator transition [1], as a ubiquitous phe-
nomenon in strongly correlated systems, appears at the bound-
ary of various phases. One important example is the transition
between metal and paramagnetic insulator in the Fermi-
Hubbard model, where no symmetry (e.g., spin, discrete
translational invariance) is broken across the transition. Indeed,
this paramagnetic Mott transition originates purely from the
competition between Coulomb interaction and kinetic energy
where Mott insulators allow only integer number of particles at
each site, without charge fluctuations, away from completely
empty or full occupation.

Consequently, the paramagnetic Mott transition can be
induced by changing the chemical potential, i.e., the filling
[2–14]. This filling-driven Mott transition has been studied
in realizations of the Hubbard models using ultracold atoms
[15–19], in which a harmonic confinement potential is applied
to the optical lattice to impose a lattice boundary. As the
confinement potential is not uniform, the filling of each site
varies from site to site and so different phases can appear in
different regions within a single trap of atoms.

However, the filling-driven paramagnetic Mott transition
has not been observed yet in ultracold atom experiments,
since this requires sufficiently low temperatures relative to the
Fermi energy. While the paramagnetic Mott insulator has been
observed at temperature of about 20% of the Fermi energy
[15–19], its evolution towards a metal occurs not via a tran-
sition but a crossover at such elevated temperature. An actual
transition occurs only below the critical end point temperature,
which is only a few percent of the Fermi energy [20–22].

Recently, it was demonstrated that the one-band Hubbard
model with flat potential profile can be cooled down to host
the antiferromagnetic phase [23]. Thus one may expect that the
Hubbard model with nonuniform potential also can be brought
below the critical end-point temperature of the paramagnetic
Mott transition. If so, how can one discriminate between
the transition and the crossover by using quantities acces-
sible in experiments where temperature is not even directly
measurable?

In this work, we study compressibility as a function of
particle occupation per site, which has been measured in
ultracold atom experiments [18,19], in the SU(N ) Hubbard
model (2 � N � 5) with strong Coulomb interaction. We
demonstrate that it exhibits distinct behaviors depending on
whether the temperature T is below, above, or near the critical
end-point temperature T ∗. To study the paramagnetic phases
of the multiflavor model for arbitrary interaction strength,
filling, and temperature, we use the dynamical mean-field
theory (DMFT) [24,25] and the numerical renormalization
group (NRG) [26,27] as its impurity solver.

We summarize our two main results. First, the compress-
ibility is clearly enhanced in the metallic phase close to the
insulating phase, i.e., when the occupation number is slightly
away from integer, near T ∗. In Ref. [7], such a compressibility
enhancement (denoted as divergence therein) was first pre-
dicted for the one- and two-band Hubbard models (i.e., N = 2
and N = 4, respectively) near half-filling and explained in
terms of the Landau functional. In Ref. [11], the compress-
ibility enhancement is observed for the N = 3 case. Here we
generalize the scenario and provide a direct connection with
spectral properties: a compressibility enhancement occurs near
any integer occupation (except for completely empty and full
occupation) for flavor-symmetric Hubbard models for general
N . As temperature grows from 0 to T ∗, the compressibility gets
enhanced, while at the same time the quasiparticle peak of the
local spectral function gets suppressed by finite temperature.

Second, the quasiparticle peak in the metallic phase close to
the Mott transition is necessarily always strongly asymmetric:
the peak widths on positive and negative energy sides are
different. This asymmetry arises from the strong imbalance
of generalized doublon and holon occupations in the slightly
doped regime with strong interaction. We substantiate this
argument by studying the generalized doublon and holon
correlation functions as done in our previous studies [28,29] on
the subpeaks at the inner edges of the Hubbard bands [30–37].

The rest of this paper is organized as follows. In Sec. II,
we provide details on the Hamiltonian and the numerical
methods. In Sec. III, we study the compressibility, the lo-
cal spectral function, and the local correlation functions
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of generalized doublons and holons. Sec. IV offers our
conclusion.

II. METHOD

A. SU(N) Hubbard model

The SU(N ) Hubbard model is the Hubbard model with
N flavors of fermions, which are fully symmetric, that is,
Coulomb interaction strength U , hopping amplitude t , and
chemical potential are independent of particle flavor ν. Its
Hamiltonian is given by

H =
∑

i

[
U

2

(
n̂i − N

2

)2

− μn̂i

]
− t

∑
〈i,j〉,ν

(c†iνcjν + H.c.),

(1)

where ciν annihilates a particle with flavor ν = 1, . . . ,N at
lattice site i, n̂i ≡ ∑

ν c
†
iνciν is particle number operator, 〈i,j 〉

means nearest-neighbour sites, and μ is the chemical potential
with offset such that μ = 0 yields particle-hole symmetry. The
Hamiltonian has U(1) charge and SU(N ) flavor symmetry.

The SU(N ) Hubbard models had been originally considered
as effective descriptions of multiband strongly correlated
materials (e.g., high-temperature superconductors [38,39],
fullerenes [40–43]), where the SU(N ) flavor symmetry is
an approximation. Recently, these models were realized in
ultracold atom experiments [17,19], where the SU(N ) flavor
symmetry is exact and N is tunable over the range 2 � N � 6.

We take the chemical potential μ in Eq. (1) to be uniform
throughout the lattice. Results for uniform systems are useful
also for studying inhomogeneous systems within the context
of the local density approximation (LDA). A detailed anal-
ysis [44] shows that the LDA is a good approximation in
studying both the occupation number profile (real-space distri-
bution) and the time-of-flight (momentum-space distribution)
for the Hubbard model in a harmonic trap.

B. DMFT

Dynamical mean-field theory (DMFT) [24,25] has been
successfully used to study the paramagnetic Mott transition,
including the filling-driven transition in the SU(N ) Hubbard
models [2–12]. In the single-site setting of DMFT, the Hubbard
model is mapped onto the single-impurity Anderson model
(SIAM). There the impurity, representing a lattice site with
Coulomb interaction, is coupled to a bath of noninteracting
fermions, and the energy dependence of the impurity-bath
hybridization function encodes correlation effects (e.g., a Mott
gap) within the rest of the lattice. The self-consistent solutions
of the SIAM describe homogeneous phases of the original
lattice model.

The mapping onto the effective impurity model relies on the
approximation that the self-energy is local, i.e., momentum
independent, and charge or magnetic ordering is suppressed
by assuming a fully frustrated lattice. This approximation of
locality becomes exact in the limit of infinite coordination
number of lattice z → ∞ [45]. To have finite bandwidth in
this limit, the hopping amplitude is scaled as t ∝ 1/

√
z. Then

the Green’s function in the lattice is derived from the impurity
self-energy, using the density of states ρ0(ω) of noninteracting
lattice. In this work, we consider the semielliptic choice

ρ0(ω) = 2
πD2

√
D2 − ω2, where D ≡ 2t

√
z := 1 is the half-

bandwidth, which we set as the unit of energy. Note that the
Fermi energy of the noninteracting system (i.e., the energy
difference between the lowest and the highest occupied single-
particle states in the absence of interaction) is D + μ. We also
set h̄ = kB = 1 throughout.

Due to this mapping, the overall feasibility as well as the
accessible parameter range of DMFT depend on which method
is used as impurity solver to solve the effective impurity model.
Here we use the NRG as impurity solver, since it can provide
the correlation functions on the real-frequency axis directly,
thus avoiding the numerically ill-posed problem of having to
analytically continue imaginary-frequency data to the real axis.
Also, NRG is applicable to arbitrary temperature, including
infinitesimally low temperature T = 0+ at comparable com-
putational cost. See Sec. II C for details of the NRG method.

C. NRG

We solve the effective SIAM by using the full-density-
matrix NRG [46,47]. The bath is discretized on a logarithmic
energy grid set by the coarse-graining parameter � = 4. The
resulting discrete impurity model is mapped exactly then onto
a Wilson chain with exponentially decaying hopping. By using
energy scale separation, the iterative diagonalization yields a
complete basis of approximate many-body eigenstates [48,49].
Here we keep up toNkeep = 2500 low-energy multiplets at each
of the early iterations corresponding to large energy scales.
In later iterative diagonalization steps in the strong-coupling
fixed point regime, for computational efficiency, we also apply
a rescaled truncation energy threshold of Etrunc = 9, which is
expected to give converged results with keeping less multiplets
than Nkeep [47]. Using a complete basis of energy eigenstates,
the correlation functions at the impurity are obtained in the
Lehmann representation as a collection of discrete spectral
weights. To recover continuous spectral functions, we broaden
the discrete spectral data with appropriate broadening ker-
nels [46,50].

To simulate the multiflavor SIAM with feasible computa-
tional cost, we exploit the U (1)charge ⊗ SU(N )flavor symmetry
in the system by making use of the QSpace tensor library
for general non-Abelian symmetries [47,51]. This organizes
the Hilbert space in terms of SU(N ) multiplets, and operates
systematically at the level of reduced matrix elements, with
the Clebsch-Gordan coefficients split off and dealt with sep-
arately. This allows us to efficiently perform DMFT+NRG
calculations on multiflavor models with SU(N ) symmetry up
to N = 5, bearing in mind that typical multiplet sizes grow
exponentially in N [51]. Furthermore, we use the adaptive
broadening scheme [50] to improve the spectral resolution of
correlation functions at higher energy. Specifically, we average
the results over two discretization grids (nz = 2), followed
by an adaptive log-Gaussian broadening whose width σ is
controlled by the overall prefactor α = 2 and a lower bound
σ � (ln �)/8. At or below the energy scale of temperature T

a linear broadening is further applied to smooth out artifacts
at |ω| � T . See Ref. [50] and the Supplemental Material of
Ref. [28] for details.

Since the NRG calculation requires less computational cost
for larger �, here we choose a rather large value � = 4 to
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explore O(104) data points of (N,U,T ,μ) efficiently. As a
tradeoff, we have limited spectral resolution at finite energies in
the local correlation functions, which is only partly regained by
using the so-called z-averaging procedure, standard for NRG
applications [27,35], with nz = 2. In particular, with � = 4 the
discretization is too crude, e.g., to resolve the subpeaks that are
known to occur at the inner Hubbard band edges [28,29,31–33].
However, such features are irrelevant to this work: The occu-
pation number1 n = N

∫ ∞
−∞ dω A(ω)/(eω/T + 1) is insensitive

to sharp high-energy features in the local spectral function
A(ω) ≡ Acc† (ω) = − 1

π
Im〈ciν ||c†iν〉ω. And the physical phases

are rather determined by the low-energy part of A(ω), e.g., the
quasiparticle peak or the Mott gap. Moreover, we expect that
the doublon-holon subpeaks [28,29] are fairly suppressed in the
vicinity of the Mott transition because of the strong asymmetry
in the doublon-holon dynamics to be discussed below.

As a decisive check, we also computed the local spectral
functions by choosing (�,Nkeep) = (2,5000) (not shown) and
compared them with the curves from (�,Nkeep) = (4,2500)
with the same system parameters (the T = 0 curves in Fig. 5).
The differences between the curves from � = 2 and � = 4
are minor; the curves from � = 2 slightly better resolve the
spectral features, but there is no qualitative difference including
the existence of the subpeaks. It is because the adaptive broad-
ening scheme improves the spectral resolution better for larger
� [50]. On the other hand, the choice of (�,Nkeep) = (4,2500)
leads to higher truncated energy threshold than (�,Nkeep) =
(2,5000) does; that is, the former gives more numerically stable
result, though the numerical cost of the latter is more than an
order of magnitude higher.

In this work, we study the particle occupation per lattice site
n ≡ 〈n̂i〉, the compressibility κ̃ [cf. Eq. (2) below], and local
correlation functions AXY (ω) ≡ − 1

π
Im〈Xiν ||Yiν〉ω, which are

the imaginary part of retarded time correlators of local oper-
ators X and Y acting on site i, transformed to the frequency
domain. Based on the DMFT mapping onto the SIAM and the
semielliptic density of states ρ0(ω), these local properties at a
lattice site are equivalent to the same properties at the impurity
when the self-consistent solution of the SIAM is achieved.

D. Compressibility

The compressibility is defined as

κ̃ ≡ ∂n

∂μ
≡ n2κ , (2)

where we only use the derivative κ̃ , without rescaling, for the
remainder of the paper [19]. We obtain n for a linear grid of
μ with grid size �μ = 0.05, and compute κ̃ by numerically
differentiating n(μ). Since the latter is sensitive to numerical
noise, even if the curves n(μ) look smooth except at phase
transition points (cf. Fig. 1), we determine the slope of n(μ)

1In the NRG, the convolution relation n = N
∫ ∞

−∞ dω A(ω)/(eω/T +
1) holds when the local spectral function A(ω) is the discrete data in
the Lehmann representation before broadening, not the continuous
curve as in Fig. 5. Since the linear broadening [46,50] smooths out
A(ω) for |ω| � T , using the broadened A(ω) can introduce an artifact
to the convolution relation.

FIG. 1. Particle number per site n ≡ 〈n̂i〉 vs chemical potential
μ along the homogeneous, paramagnetic phases of the SU(N )
Hubbard models [cf. Eq. (1)] at temperature T = 0 (thick lines).
Due to particle-hole symmetry at μ = 0, the curves for μ > 0 can be
deduced by n(μ) = N − n(−μ). (a) For small U , the systems remain
compressible, i.e., metallic. (b) For intermediate U = 3, plateaus start
to develop at integer n. (c) For large U = 7, wide plateaus demonstrate
the incompressibility of the Mott insulating phase. As the flat plateaus
for the insulating phase connect to the slanting lines for the metallic
phase at the Mott transition, weak hysteretic behavior occurs, which
thus indicates coexistence. Insets: Zoom-in to individual hysteresis
loops for N = 4 and 5, as examples for the left and right ends of the
Mott plateaus, respectively. Each thin solid line connects two data
points (crosses) across the Mott transition: For the insulator-to-metal
transition (IMT) at μc1 (dashed vertical lines), it connects the last
data point in a plateau with the subsequent next point in the metallic
phase. Conversely, for the metal-to-insulator transition (MIT) at μc2

(dash-dotted vertical lines) it connects the last point in the metallic
phase (slanted line) with the next data point in the insulating plateau
(here at T = 0, these are very short line segments visible only in the
insets).

at μ = μ′ by fitting at most five consecutive points on the
short interval μ′ − 2�μ � μ � μ′ + 2�μ with a quadratic
polynomial. When U is larger than the critical strength, a Mott
transition occurs, signaled by discontinuities in n(μ) and/or
κ̃(n), as discussed in much detail in the following sections.
Thus, when μ′ is close to the critical value, we exclude the
points n(μ) beyond the critical value to keep the fitting error
minimal.

III. RESULTS

A. Zero temperature

We start with studying the filling-driven Mott transition at
T = 0, which by definition is free from thermal fluctuations.
These results are obtained by directly solving the SIAM at
infinitesimally low temperature T = 0+, i.e., not by extrap-
olating finite-T results [9]. Indeed, this accessibility of low
temperatures is a major strength of using NRG as the DMFT
impurity solver [52].
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FIG. 2. Compressibility κ̃ of Eq. (2), obtained as numerical
derivative from the curves in Fig. 1 at T = 0, as function of filling
fraction n/N (thick solid lines). In (b) and (c), thin lines with arrows
indicate discontinuous jumps between finite κ̃ in the metallic phase
and κ̃ = 0 in the insulating phases. Thus the boundary of each shaded
area represents a hysteresis loop, where the upper solid line part of
the boundary indicates the metallic solution in the coexistence region.
Note that the shading just below n = 1 for (N,U ) = (2,7) is not
visible, since the coexistence region [μc1,μc2] in the curve n(μ) is
narrower than the grid size �μ = 0.05. To indicate the second-order
nature of MIT at T = 0, we have extrapolated the shaded areas to
integer n, while the lines with downward arrows with finite slopes
connect actual data points. The curves for n > N/2 can be deduced
by particle-hole symmetry κ̃(n) = κ̃(N − n).

In Fig. 1 we present our data on the particle number per
site n vs. the full range of chemical potential μ, and in Fig. 2
we depict the corresponding compressibility κ̃ vs. filling n/N .
For weak interaction U = 1, the compressibility κ̃ is almost
independent of n for n/N � 0.1. In contrast, κ̃(n) has local
minima at integer n for larger U � 3. In Fig. 1, lines n(μ)
with finite slope (i.e., κ̃ > 0) correspond to metallic phases.
Conversely, horizontal plateaus represent the incompressible
phase of a Mott insulator. These plateaus appear due to an
interaction-driven Mott transition, i.e., by increasing U beyond
a critical interaction strength Uc(N,[n]) that depends on both
the number of flavors N [53–55] as well as the integer filling
[n] of the Mott plateau [4].

At each end of a plateau in the n(μ) curves (except for n =
0,N ), a Mott transition occurs, accompanied with a hysteresis
loop [7,9], as shown in the insets of Fig. 1(c). For each
hysteresis loop, we can define a pair of critical values μc1 and
μc2 of the chemical potential: μc1 is the value of the chemical
potential at the outer edge of a plateau in n(μ), which thus
describes an insulator-to-metal transition (IMT). Similarly, μc2

is the value where the metallic solution terminates within a
Mott plateau, and thus describes a metal-to-insulator transition
(MIT). Therefore, in between two critical values (μc1 < μ <

μc2 and μc2 < μ < μc1 for the left and right ends of the
Mott plateau, respectively), both insulating and metallic phases
coexist, i.e., n(μ) is double valued.

The compressibility κ̃ vs. n also shows discontinuities
at integer n, associated with the Mott transition, as can be
observed in Figs. 2(b) and 2(c). An IMT, depicted by an upward
arrow, involve not only a jump in κ̃ but also in the occupation
n. Similarly, also across a MIT, depicted by a downward arrow,
a jump in both κ̃ and n could occur. However, at T = 0, the
jump in n should disappear, such that n evolves continuously
across MIT [9]. Thus the downward arrows in Fig. 2 should in
principle be strictly vertical; the reason why they are slanted,
instead, is the nonzero grid size, �μ = 0.05, used for our
calculations.

The continuity of n and the discontinuity of κ̃ across the
metal-to-insulator transition reflect the second-order nature of
the Mott transition at T = 0. Within the coexistence regime,
there exists another critical value of chemical potential μc

at which the metallic and insulating solutions have the same
values of free energy. For finite temperature 0 < T < T ∗, the
transition at μ = μc is first order. In contrast, for T = 0, one
has μc = μc2 �= μc1 and the transition at μ = μc turns into
a second-order transition [7,9], in that n is continuous but
κ̃ is discontinuous (note that n and κ̃ are proportional to,
respectively, the first and second derivatives of the free energy
with respect to chemical potential [9]). Another exceptional
situation for which the transition at μ = μc is not first order
arises at the critical end point T = T ∗, where the coexistence
region shrinks to a point, i.e., μc = μc1 = μc2, and, again, the
transition becomes second order.

For n = 0 and n = N the system is a band insulator, and
thus no longer a Mott insulator. Correspondingly, we also
observe no phase coexistence near the plateaus for n = 0 and
N . Therefore while these trivial phases are still incompressible,
their plateaus are excluded from our discussion of Mott
plateaus. The value for the chemical potential below which
the system at T = 0 becomes empty, is given by μ � μ0 ≡
−(N − 1)U

2 − D, in agreement with the overall trend seen in
Fig. 1. This value can be motivated as follows: By substituting
μ′ = −(N − 1)U

2 to μ, the first term in Eq. (1) favors zero
and one occupation numbers equally. By adding another shift
in the chemical potential, μ′′ = −D, when associated with
the second term in Eq. (1), this empties this noninteracting
kinetic part of the Hamiltonian. Therefore the system becomes
empty (n = 0) for μ � μ0 ≡ μ′ + μ′′, resulting in the above
expression. Similarly, by particle-hole transformation, the
system becomes completely filled (n = N ) for μ � −μ0.

B. Finite T and compressibility enhancement

Next we analyze the effect of finite temperature T on the
compressibility curves κ̃(n), as shown in Fig. 3. We observe
that the jumps in κ̃(n) near integer n survive for temperatures
below a critical value T ∗, and disappear above it. That is, T ∗
is the critical end point temperature of the paramagnetic Mott
transition, and it depends on N , U , and n. The values of T ∗
for different N , n and for fixed U = 7 are shown in Table I.
As a general trend, T ∗ is larger for larger N and for n closer to
half-filling N/2. The N dependence of T ∗ is consistent with
the result of Ref. [22], which implies that it should be easier
for larger N to observe the paramagnetic Mott transition in
ultracold atom systems.
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FIG. 3. Compressibility κ̃ vs filling fraction n/N for fixed U = 7
and varying T . Below the critical end point temperature T ∗(N,U,n),
there are Mott transitions appearing as discontinuous jumps in κ̃ .
Thick horizontal bars above the curves κ̃(n) (solid lines) near integer
n (vertical gray lines) indicate the range of n for the metallic phase
in the coexistence regime, color matched with the curves κ̃ for the
same T . As T increases from 0 to T ∗, the coexistence regions get
narrower in n. For some curves, e.g., for N = 2, the coexistence
region is narrower than the numerical grid size �μ = 0.05. For
T ∼ T ∗, local maxima of κ̃(n) appear near integer n, which we call
compressibility enhancement. At T > T ∗, the discontinuity in the
curves κ̃(n) disappears, which indicates that a crossover (rather than
a phase transition) occurs between metallic and insulating behavior.

Near and across the critical end-point temperature, T ∼ T ∗,
we observe a compressibility enhancement: κ̃(n) exhibits local
maxima for n close, but not equal to, integer values. These local
maxima of κ̃(n) become more pronounced as T gets closer to
T ∗, both from above and below. For example, for the curves
of N = 5 and T ∈ [0.01,0.03], a peak of κ̃(n) associated with
the compressibility enhancement is even the global maximum,
not only a local maximum. In contrast, for T = 0 and T = 0.1,
which are far below and above T ∗, respectively, the curves κ̃(n)
decrease monotonically as n approaches an integer both from
above or below, and reach zero either by a jump for T < T ∗
or continuously for T > T ∗.

The compressibility enhancement directly originates, by
definition, from qualitative changes in the curves n(μ) for
different T . In Fig. 4, we plot n(μ) for the same choice of
parameter sets (N,U,T ) as in Fig. 3, but zooming in towards the
coexistence region of the Mott transitions, choosing n slightly

TABLE I. The critical end-point temperatures T ∗ of the filling-
driven Mott transitions for U = 7. The second column of the oc-
cupation number n = m+(−) indicates the transition between the
insulating phase with integer occupation m and the metallic phase
whose occupation is larger (smaller) than m. Here T ∗ is estimated
as the temperature above which the hysteresis loop disappears. By
symmetry, it holds that T ∗(m±) = T ∗[(N − m)∓]. The uncertainty
of T ∗ originates from finite grid size for choosing (μ,T ) and finite
tolerance for the self-consistency of the DMFT.

N n T ∗(U = 7)

2 1− 0.0008(1)

1− 0.004(1)3 1+ 0.005(1)

1− 0.004(1)
4 1+ 0.010(1)

2− 0.014(1)

1− 0.005(1)
1+ 0.014(1)5 2− 0.021(1)
2+ 0.025(1)

larger than �N/2�, i.e., the down-rounded value of N/2. As
T increases from 0 to T ∗, one edge of the coexistence region,
μc2 for MIT, rapidly shifts towards the other edge, μc1 for
IMT, while μc1 likewise shifts outward, but slower than μc2

FIG. 4. Particle number per site n vs chemical potential μ zoom-
ing into the Mott transitions just aboven = �N/2�, i.e., particle-doped
regime, for U = 7 and 2 � N � 5. Thick solid lines and symbols
represent n(μ). Thin lines connect data points in different phases,
where the arrow specifies the direction of phase transition. For the
values of μ indicated by vertical dotted lines, we show the local
spectral functions in Fig. 5 below. In Fig. 6, we illustrate the local
spectral functions for N = 4, with the μ values marked by vertical
dashed lines in (c).
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does. Hence the width of the coexistence regime, |μc1 − μc2|,
decreases. In a sense, therefore, finite temperature destabilizes
the metallicity, but stabilizes the insulating phase. Interestingly,
this behavior is similar to the T dependence of Uc2 and Uc1 at
half-filling [21,55]. At the same time, the slope of the slanted
part of n(μ) (corresponding to the metallic phase) in the close
vicinity to integer n increases, leading to the compressibility
enhancement in Fig. 3. We also see that contrary to the T = 0
case, not only κ̃ but also n exhibits a jump at μ = μc2 for
0 < T < T ∗.

Finally let us emphasize that while the data in Fig. 4 focuses
on the particle-doped case (with n slightly above �N/2�), the
overall behavior for the hole-doped case (n slightly below
�N/2�) is completely analogous, bearing in mind that, via
particle-hole transformation, one has n(μ) = N − n(−μ).

C. Local spectral functions

The coexistence region analyzed in Fig. 4 is intricately
linked to a competition between the metallicity that permits
noninteger occupation, and the Mottness that constrains n to
be integer. Therefore in order to gain a better understanding,
we now look into the local spectral functions in the metallic
regime, with a focus on the mutual interplay between average
local occupation n and the quasiparticle peak in the spectral
data.

The decrease of the average local occupation n towards the
Mott plateau [n] (the rounded value of n) as T is increased,
as shown in Fig. 4, is necessarily connected to the thermal
suppression of the quasiparticle peak in the local spectral
function A(ω). Since its total weight,

∫ ∞
−∞ dω A(ω) = 1, is

preserved by a sum rule, the ensuing transfer of spectral
weight necessarily also influences the local occupation, n =
N

∫ ∞
−∞ dω A(ω)/(eω/T + 1).

A detailed analysis of the spectral data in the metallic phase
is presented in Fig. 5. There we show in each panel the local
spectral functions for fixed N and μ but for several values of
T . Because of the large U = 7, there are two well-developed
Hubbard bands, centered at ω ∼ D − U and ω ∼ D, respec-
tively. Since μ is chosen as a fixed value slightly larger than the
critical values μc2 for different T , the spectral data is strongly
asymmetric around ω = 0 despite, e.g., n ≈ N/2 for even N .
Specifically, the lower Hubbard band (LHB) is well separated
towards negative frequencies, whereas the lower edge of the
upper Hubbard band (UHB) is close to the Fermi level.

In addition to the Hubbard bands, the spectral functions
in Fig. 5 for T = 0 feature a quasiparticle peak at the Fermi
level ω = 0. As T increases, the quasiparticle peak gets
suppressed and the occupation number n approaches [n] (see
middle insets). The quasiparticle peaks represent Fermi-liquid
quasiparticles which, due to the narrowness of the peak, have
heavy effective mass. This Fermi-liquid state hosts low-energy
charge fluctuations, so noninteger n is generally possible [28].

On the other hand, for T � 0.03 > T ∗, the significant
suppression or the absence of the quasiparticle peak rules out
coherent low-energy quasiparticles. So the state of the system
is well described by the Hubbard bands only. If the LHB below
the Fermi level is fully occupied and the UHB above the Fermi
level is empty, the lattice sites are filled by an integer number
of particles, [n], without charge fluctuations. Accordingly, the

FIG. 5. Local spectral functions A(ω) in the metallic phase with
slight particle doping, for large interaction U = 7, with varying
parameters (N,T ,μ), where μ corresponds to the values marked by the
vertical dotted lines in Fig. 4. Left insets zoom into the low-frequency
regime containing the quasiparticle peak. Middle insets show how
the occupation number n (filled symbols) together with the spectral
weight of the lower Hubbard band, nLHB ≡ N

∫
LHB dω A(ω) (empty

symbols), change with T , where for the large value of U here we
delineate the range of the LHB by ω < −2. For reference, the dark
blue symbols on top of the left axis in the middle insets give n and
nLHB for T = 0, not for T = 10−3.

integrated spectral weights of the individual Hubbard bands
would be also integers, e.g., nLHB ≡ N

∫
LHB dω A(ω) = [n].

In Fig. 5, however where μ has been chosen slightly above μc1,
the lower edge of the upper Hubbard band has dropped slightly
below the Fermi level, thus making a small contribution to the
occupancy. As a consequence, the values n(T = 0.03) are very
close to, but slightly larger than, integers [n]. For even larger
temperature T = 0.1, the thermal window of the Fermi-Dirac
distribution (eω/T + 1)−1 widens, so the occupation n deviates
even more strongly from the integer [n].

The T dependence of n and nLHB, presented in the middle
insets of Fig. 5, show how the quasiparticle weight, i.e., the
spectral weight of the quasiparticle peak, is transferred to
the Hubbard bands as T increases. Since the total spectral
weight is preserved, the difference [n − nLHB]T =0 is equivalent
to the negative-frequency part of the quasiparticle weight,
i.e., integrated up to ω = 0. This weight is fully transferred
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to the Hubbard side bands as T increases. This spectral
weight transfer can be split into two net flows: the weight
[n] − nLHB|T =0 is transferred to the LHB, whereas the rest,
i.e., n|T =0 − [n], together with the quasiparticle weight for
ω > 0, flows into the UHB. Surprisingly, despite the distance
between the LHB and the Fermi level, a significant portion
of the negative-frequency quasiparticle weight flows into the
LHB [e.g., see the change of height in the LHB in Fig. 5(d)].

The thermal suppression of the quasiparticle peak, which
is accompanied by a transfer of spectral weight, thus pushes n

closer towards [n] with increasing T at fixed μ. Correspond-
ingly, μc2(T ) for MIT changes much more sensitively with T

than μc1(T ) for IMT. In the metallic phase near μc2(T ), the
transfer of spectral weight from the quasiparticle peak into
the LHB with increasing T necessarily leads to an increase in
μc2, whereas no such weight transfer occurs near μc1(T ) in
the insulating phase, which lacks a quasiparticle peak. This is
consistent with the fact, discussed in Sec. III B, that increasing
T causes a stronger shift in μc2(T ) than in μc1(T ).

Once the chemical potential is outside the range of the Mott
plateau (including the coexistence region), the system is always
metallic, and the spectral functions evolve smoothly in terms
of a crossover as temperature increases. Therefore, in this case
quasiparticle peaks are present also for temperatures above
T ∗. This is the reason why quasiparticle peaks occur for T =
0.03 > T ∗ in Figs. 5(a)–5(b).

However, for these high-temperature peaks the evolution
with decreasing μ at fixed T is qualitatively different from
those of the low-temperature peaks in the regime T < T ∗
within the metallic phase. This is illustrated in Fig. 6, which
shows how the local spectral function A(ω) evolves when μ is
decreased (top to bottom) towards the MIT atμc2. As the MIT is
approached while lowering μ at a given, fixed temperature, the
quasiparticle peak behaves differently depending on whether
that temperature lies above or below T ∗ = 0.014(1). If the
fixed temperature satisfies T > T ∗, both the height and width
of the quasiparticle peak smoothly decrease with decreasing μ,
which is consistent with the crossover behavior above T ∗. In
contrast if the fixed temperature lies in the range T < T ∗, the
quasiparticle peak becomes narrower as μ decreases towards
μc2, while its height remains almost unchanged. Once μ has
passed below the MIT at μc2, the height A(ω = 0) drops
abruptly, which is consistent with the transition nature below
T ∗. In the limiting case of T = 0, the spectral function A(ω =
0) is pinned to the value 2/π all along the metallic phase,
as dictated by the Luttinger theorem [56]. Our DMFT+NRG
result in Fig. 5 fulfills this relation with accuracy better than
3% due to the intrinsic high accuracy of NRG at low energies,
despite strongly broken particle-hole symmetry. For example,
at T = 0 the curves in Fig. 5 have the zero-frequency values
π
2 A(ω = 0) � 0.9989, 0.9726, 0.9998, 0.9925 for N = 2, 3,
4, 5, respectively.

Again let us emphasize that, while the spectral data in Fig. 5
above is for the particle-doped case, the spectral functions
for slight hole doping can be simply deduced by particle-
hole transformation, which yields the equivalence A(ω)|μ =
A(−ω)|−μ.

We briefly discuss the effect of a nonuniform potential.
In Ref. [44], the paramagnetic Mott transition of the SU(2)
Hubbard model has been studied by using real-space DMFT,

FIG. 6. Evolution of the local spectral functions A(ω) for N = 4,
U = 7, and a set of five fixed temperatures, as μ is decreased (top to
bottom) towards the MIT at μc2. The three μ values shown here all
lie in the vicinity of the value μ = 2.3 of Fig. 5(c). Insets zoom into
low-frequency regime in which the quasiparticle peak or the Mott gap
appears. Note that the curve for T = 0.01 has no quasiparticle peak
in (c), since μ = 2.2 lies below μc2(T = 0.01) = 2.275(25), i.e., μ

has already been lowered past the MIT transition point.

which incorporates the nonuniformity of harmonic confine-
ment potential. There the metallic phase was found to exist in
a wider region than predicted by the LDA (which we imply
in this work; see Sec. II A), since the metallicity can penetrate
into nearby insulating regions via the Kondo effect. On the
other hand, the relation between the deviation of the local
occupation number from integer and the thermal suppression
of the quasiparticle peak was also found there (e.g., see Fig. 5
of Ref. [44]), consistent with our result.

D. Doublon and holon correlators

The overall spectral data at finite doping as in Fig. 5, by
construction, is always strongly particle-hole asymmetric. At
weak doping and large U , the quasiparticle peak is necessarily
close to one Hubbard band but clearly separated from the
other. This asymmetry is also reflected in the shape of the
quasiparticle peak itself.

It is possible to understand the origin of this asymmetry of
the quasiparticle peaks by studying the correlation functions of
generalized doublons and holons [28]. We define a generalized
doublon (holon) as a local excitation that creates (annihilates)
a particle at a lattice site filled by [n] particles. Accordingly
the creation operators for doublons and holons are expressed
as the projected operators (so-called Hubbard operators),

d
†
iν = c

†
iνPi,[n], h

†
iν = ciνPi,[n], (3)
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where Pi,[n] is the projector onto the subspace in which site i

has [n] particles, and [n] is the nearest integer to n. For the
N = 2 case, the fermion operator ciν can be decomposed into
doublon and holon operators, ciν = diν + h

†
iν . Thus the local

spectral function can be decomposed as

A(ω) = Add† (ω) + Ah†d† (ω) + Adh(ω) + Ah†h(ω), (4a)

where the relation Ah†d† (ω) = Adh(ω) holds generally. At the
particle-hole symmetric point μ = 0, we have the further
relations Add† (ω) = Ah†h(−ω) and Adh(ω) = Adh(−ω). As
before, the doublon and holon correlators for slightly hole
doped cases can be deduced from the particle doping result
in Fig. 7 via particle-hole symmetry:

Add† (ω)|μ = Ah†h(−ω)|−μ,

Ah†d† (ω)|μ = Adh(ω)|μ = Ah†d† (−ω)|−μ = Adh(−ω)|−μ.

(4b)

For N > 2, the decomposition of ciν involves other projected
operators, such as ciνPi,[n]−1, in addition to diν and h

†
iν . In this

case, the decomposition of A(ω) in Eq. (4a) is not exact but
approximate, since additional terms arise beyond those shown
in Eq. (4a). However, these additional terms are negligible for
large U . Indeed, the deviation |A(ω) − ∑

X,Y=d,h† AXY † (ω)|
becomes smaller, since the probability that a site contains less
than [n] − 1 or more than [n] + 1 particles is suppressed due
to the large cost in Coulomb energy. Therefore the projected
particle operators, which involve the projectors Pi,m with
m > [n] + 1 or m < [n] − 1 (i.e., other than doublon and
holon operators) have negligible contribution to the correlation
functions.

Before analyzing specific results, let us discuss a few gen-
eral properties of the correlators of generalized doublons and
holons. From Eq. (4a), we have three independent doublon and
holon correlators, Add† (ω), Adh(ω) = Ah†d† (ω), and Ah†h(ω),
as shown in Fig. 7. They reflect the overall structure of the
full spectral function, including the Hubbard bands and the
quasiparticle peak in the metallic phase [28]. The doublon-
doublon correlator Add† and the holon-holon correlator Ah†h

have two major features. Add† (Ah†h) carries most of the UHB
(LHB), as well as the negative (positive) frequency side of the
quasiparticle peak, respectively. The latter are centered around
a small energy scale −ωs (+ωs), where a positive energy scale
ωs corresponds to the width of the quasiparticle peak centered
around ω = 0, which itself can be related to the energy scale
of flavorlike collective modes [28] via the local dynamical
flavor susceptibility. Note that, for N = 2, flavors equivalently
represent spins for one band of electrons.

The features in the doublon-holon correlation functions
necessarily correspond to dynamics at different energy scales
associated with the Hubbard bands and the quasiparticle
peaks, respectively. For simplicity, consider the case N = 2
at integer filling n = 1 (the generalization for different N and
[n] is straightforward). At T = 0, the positive and negative
frequency sides of a correlator AXY directly correspond to the
Fourier transforms of 〈X(t)Y (0)〉 and 〈X†(t)Y †(0)〉∗, respec-
tively. Hence, for example, the contribution to the UHB by Add†

corresponds to the dynamics of a doublon excitation added at
time 0 and then again removed at time t . Conversely, the low-

energy feature centered at ω = −ωs < 0 means that a single
spin remaining after removing a doublon at time 0 undergoes a
time evolution governed by the spinlike collective mode with
energy scale ωs , until a doublon is regenerated on top of the
spin at time t . The features of Ah†h can be explained analo-
gously by swapping the roles of doublon and holon. On the
other hand, the doublon-holon correlators Adh(ω) = Ah†d† (ω)
mainly contribute to the quasiparticle peak, rather than to the
Hubbard bands. It means that the doublon and holon excitations
are combined at low energies to build quasiparticles.

Now we demonstrate that the asymmetry of the quasi-
particle peak in Fig. 5 originates from striking differences
between the generalized doublon and holon spectra, shown
in Figs. 7(a)–7(d). These differences stem from the strong
asymmetry in energy cost for doublon and holon excitations,
due to large U , despite the low level of particle doping
(n − [n])/N < 0.03. In the slightly particle-doped regime, the
UHB (LHB) originating from local doublon (holon) excitation
lies close to (far from) the Fermi level ω = 0. (Note that
the center-to-center distance between the LHB and the UHB
is ∼U .) Due to this strong asymmetry, the metallic ground
state in this particle-doped Mott insulator contains much more
doublons than holons; correspondingly, Add† (ω = 0) is higher
than Ah†h(ω = 0) by more than an order of magnitude. The
differences in spectral strength between Add† and Ah†h in
the quasiparticle peak regime, combined with the fact that
the contributions of Add† (Ah†h) to the quasiparticle peak
are centered at ω = −ωs (+ωs), necessarily result in the
asymmetry of the quasiparticle peak in A(ω) [cf. Eq. (4a)].

The small holon contribution to the quasiparticle peak in
Figs. 7(a)–7(d) is because the LHB is far separated from the
Fermi level (which originates from large U ), not because the
quasiparticle peaks are narrow. We consider two directions
for widening the quasiparticle peaks in Figs. 7(a)–7(d): in
Figs. 7(e)–7(h) we change the chemical potential to increase
particle doping, while in Figs. 7(i)–7(l) we reduce the Coulomb
interaction U . By increasing chemical potential μ in the
first case [Figs. 7(e)–7(h)] while keeping the rest (N,U,T )
the same, the systems are deeper in the metallic phase, and
therefore the quasiparticle peaks become wider. With this the
LHBs are even further separated from the Fermi level by the
increase of μ, such that the holon-holon correlation functions
Ah†h have still negligible spectral weight in the quasiparticle
regime. By decreasing U in the second case [Figs. 7(i)–7(l)],
now the tails of the LHBs extend to the Fermi level. As a
consequence, the quasiparticle peak also acquires a significant
holon-holon contribution Ah†h(ω = 0), albeit still somewhat
smaller as compared to the doublon-doublon contribution
Add† (ω = 0).

Very small holon (doublon) contribution to the low-energy
dynamics in the particle (hole)-doped system at large U is
consistent with the assumption underlying the t-J model
[57–61]; as an effective low-energy model for particle (hole)-
doped Mott insulators, the t-J model neglects empty (doubly
occupied) states of lattice sites.

IV. CONCLUSION

We have investigated the compressibility in the metallic and
paramagnetic insulating phases along the filling-driven Mott
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FIG. 7. The correlation functions of generalized doublons and holons at T = 0. The creation operators for the generalized doublons and
holons, d

†
iν and h

†
iν , are defined in Eq. (3). Here we choose the occupation numbers n to satisfy [n] = �N/2�, where [n] means the nearest

integer to n. The first column of (a)–(d) show the correlation functions for the weakly particle-doped cases shown in Fig. 5. The second column
[(e)–(h)] presents data for increased particle doping, whereas in the last column [(i)–(l)], the interaction strength was significantly reduced down
to U = 3 while keeping the particle doping comparable to (a)–(d). Insets zoom into low-frequency regime containing the quasiparticle peak.

transition of the SU(N ) Hubbard model. The compressibility
κ̃ vs. the occupation number n exhibits distinct behaviors
depending on temperature: (i) Below the critical end-point
temperature T ∗, κ̃(n) discontinuously drops to zero at integer
n, as the manifestation of the Mott transition. (ii) Above T ∗,
the curve κ̃(n) is continuous, since the evolution between the
metallic and insulating phases is now a crossover, not a phase
transition. (iii) Near T ∗, in the metallic phase close to the
Mott insulating phase, κ̃ shows a prominent enhancement,
which directly coincides with the thermal suppression of
the quasiparticle peak. The quasiparticle peak represents the
metallicity, in that it hosts low-energy charge fluctuations
and supports noninteger occupation, while the absence of
the quasiparticle peak leads to the Mottness that allows only
integer occupation.

We have also shown that, in the vicinity of the filling-driven
Mott transition, the asymmetric position of the Hubbard bands
and the asymmetric shape of the quasiparticle peak have
the same origin: different energy cost of doublon and holon
excitations.

While we have focused on the paramagnetic phases in this
work, magnetic ordering such as antiferromagnetism can occur
in experiments, as demonstrated in Ref. [23]. It is expected that
the magnetic ordering arising in the SU(N ) Hubbard models
would differ qualitatively depending on N [62,63]. However,
such effects have not been experimentally observed yet. To
describe magnetic orders, it is necessary to go beyond the
single-site setting of DMFT, which we employ here, by using,

e.g., bipartite lattice setting of DMFT [22,64–66], real-space
DMFT [44], or the cluster extensions of DMFT [67–72].
It would be interesting to study the compressibility in the
presence of magnetic ordering, yet this is beyond the scope
of this work.

For the purpose of this paper, the paramagnetic Mott transi-
tion may be achieved in ultracold atom experiments by tuning
the critical temperature of the magnetic transition significantly
below the paramagnetic transition. The critical temperature of
the magnetic transition can be lowered by having frustration
in the system, such as next-nearest-neighbour hopping or non-
bipartite (e.g., triangular) lattice. Another option is to increase
the number N of flavors, which increases the critical end-
point temperature T ∗ of the paramagnetic transition [22,55]
(see Table I; also see Figs. 1 and 3 in that the coexistence
region gets wider with larger N ), yet decreases the critical
temperature for the magnetic transition (e.g., according to
Ref. [22], the former becomes larger than the latter for N � 6).
This option is appealing in that, for larger N , lower system
temperatures are accessible, since the Pomeranchuk effect,
a mechanism to cool down cold atoms, becomes stronger
[17,19,73].
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