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We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between
the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density
matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the
NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity
Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law
scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the
Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature
when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the
impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
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I. INTRODUCTION

Entanglement is a truly nonclassical correlation [1–3],
which often appears in many-body systems at macroscopic
scale [4–6]. It can be quantified by various entanglement mea-
sures [1–3], and useful to understand many-body phenomena
such as topological order [7,8] and quantum criticality [9]. The
Kondo effect, a many-body phenomenon in quantum impurity
systems induced by the bath electrons screening the impurity
[10], involves the entanglement between the impurity and the
bath electrons. This impurity-bath entanglement provides a
quantum information perspective on quantum impurity sys-
tems [11–17].

For quantum impurity systems, entanglement at finite tem-
perature can provide new information in comparison with
zero-temperature entanglement of ground states. For example,
the impurity-bath entanglement exhibits power-law scaling
in the Kondo regime, and its power exponent differs between
the Fermi liquid in the single-channel Kondo model and the
non-Fermi liquid in the two-channel Kondo model [14].

Despite the importance, the impurity-bath entanglement has
not been computed exactly at finite temperature [14] due to the
following difficulty. While pure quantum states (e.g., ground
states) contain no classical correlation, mixed states such as
thermal states generally have both quantum entanglement
and classical correlation [1–3]. These two different types of
correlations are not easily distinguishable; the entanglement
quantification for mixed states is NP hard [18,19]. For example,
computation of the entanglement of formation (EoF) [20],
a mixed-state generalization of the entanglement entropy,
generally requires heavy optimization.

Therefore a practical choice of an entanglement measure for
thermal states is the entanglement negativity [21–23], as the
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negativity can be computed exactly (although it cannot detect
the bound entanglement [24]). The negativity N between a
subsystem A and its complementary B is

N (ρ) = Tr |ρTA | − Tr ρ, (1)

where ρ is the density matrix of a target system, ρTA is the
partial transpose of ρ with respect to the subsystem A, Tr |ρTA |
is the sum of the singular values of ρTA , and Tr ρ is the trace
of ρ. To quantify the impurity-bath entanglement, one assigns
A the impurity and B the bath. N (ρ) is computable as long as
Tr |ρTA | is. Due to this computational advantage, the negativity
has been widely used to study entanglement in many-body
systems at finite temperature [25–33].

The numerical computation of the negativity N (ρ), how-
ever, becomes difficult, as the size of ρ becomes larger.
The difficulty appears for quantum impurity systems at finite
temperature because of the following reasons. First, the Kondo
cloud [34,35] is a macroscopic object whose size exponentially
increases with decreasing Kondo coupling strength. Second,
quantum impurity systems are generally gapless, so their
thermal density matrix involves many eigenstates and has high
rank.

In this paper, we develop a numerical renormalization group
(NRG) [36,37] method to compute the entanglement negativity
between the impurity and the bath of quantum impurity models
at finite temperature. We construct the thermal density matrix
in the complete basis set of the energy eigenstates, and then
evaluate the negativity, by applying the NRG approximation,
which has been originally introduced to obtain impurity cor-
relation functions [38–40].

Employing the method, we compute the temperature de-
pendence of the negativity in the single-impurity Kondo model
(SIKM) and the single-impurity Anderson model (SIAM), the
simplest models exhibiting the Kondo effect. In the SIKM,
the negativity exhibits a universal quadratic temperature de-
pendence in the Kondo regime at low temperature, the Kondo
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crossover at intermediate temperature, and a sudden death [41]
at high temperature. In the SIAM, both the spin and charge
degrees of freedom at the impurity affect the negativity. The
impurity spin behaves in the same way as in the SIKM, while
the charge fluctuation remains even at zero temperature as long
as the on-site Coulomb repulsion at the impurity is finite. To
show this, we compute the negativity between the total degrees
of freedom of the impurity and the bath, and the negativity
between the spin degree of freedom of the impurity and the
bath. The former depends on the Coulomb repulsion strength,
and the latter shows the same quadratic scaling as in the SIKM.
Finally, we demonstrate that our method is sufficiently accurate
by computing and analyzing its errors for the example of the
SIKM.

This paper is organized as follows. In Sec. II, we explain
how to construct a thermal density matrix of an impurity
problem by the NRG, and the NRG approximation. We apply
the NRG approximation to the impurity-bath negativity and
propose how to compute the negativity in Sec. III. We compute
the negativity for the SIKM in Sec. IV, and the SIAM in Sec. V.
We estimate and analyze the errors in our method in Sec. VI.
Conclusion is given in Sec. VII.

II. NUMERICAL RENORMALIZATION GROUP

The NRG is a powerful nonperturbative method to solve
quantum impurity systems. It provides an efficient way to
construct a thermal density matrix by using a complete basis
of many-body energy eigenstates [39,42], over a wide range
of temperature, in the thermodynamic limit. In this section, we
provide model Hamiltonians, notations, and brief introduction
to the NRG including the NRG approximation.

A. Model Hamiltonian

In this work, we apply the NRG to two paradigmatic im-
purity models, the SIKM and the SIAM. The SIKM describes
a spin-1/2 impurity interacting with the bath of conduction
electrons,

H SIKM = J �Sd · �s0 +
∑

μ

∫
dε ε c†εμcεμ. (2)

Here J > 0 is the coupling strength, �Sd the impurity spin, cεμ

the operator annihilating a bath electron of spin μ = ↑,↓ and
energy ε, �s0 = ∫

dε
∫

dε′ ∑
μμ′ c†εμ[�σ ]μμ′cε′μ′/2 the spin of

the bath electron at the impurity site, and �σ the vector of the
Pauli matrices. We consider the bath of constant density of
states within [−D,D]. We set the half-bandwidth D ≡ 1 as
the energy unit, and set h̄ = kB = 1 henceforth.

On the other hand, the SIAM contains a fermionic site with
local repulsive Coulomb interaction at the impurity,

H SIAM =
∑

μ

εdndμ + Und↑nd↓ +
∑

μ

∫
dε ε c†εμcεμ

+
∑

μ

∫
dε

√
�(ε)

π
(d†

μcεμ + c†εμdμ). (3)

Here dμ annihilates a spin-μ particle at the impurity, ndμ ≡
d†

μdμ is the number operator, εd the on-site energy at the

impurity, U the Coulomb interaction strength, and �(ε) the
hybridization function. Throughout this work, we consider
εd = −U/2 to make the impurity half-filled 〈ndμ〉 = 1/2,
and the constant hybridization function �(ε) = ��(D − |ε|),
which relates to the constant density of states within [−D,D].

Despite different types of impurities, both the SIKM and the
SIAM can exhibit the Kondo effect. It is natural since the SIKM
can be derived from the SIAM as the low-energy effective
Hamiltonian, via the Schrieffer-Wolff transformation [10].

B. Thermal density matrix

The NRG starts with the logarithmic discretization of the
bath. The bath of energy interval [−1,1] is discretized by
a logarithmic energy grid ±�−k+z for k = 1,2, . . ., where
� > 1 is a discretization parameter and z = 0, 1

nz
, . . . ,1 − 1

nz

is the discretization shift [43,44]. Then the impurity model is
mapped onto the so-called Wilson chain where the bath degrees
of freedom lie along a tight-binding chain and the impurity
couples to one end of the chain. The models in Eqs. (2) and (3)
are mapped onto the chain Hamiltonians,

H SIKM
N = J �Sd · �s0 + H bath

N , (4)

H SIAM
N =

∑
μ

εdndμ + Und↑nd↓ + H bath
N

(5)

+
√

2�

π

∑
μ

(d†
μf0μ + f

†
0μdμ),

where H bath
N = ∑

μ

∑N
n=1 tnf

†
n−1,μfnμ + H.c. is the bath

Hamiltonian of the chain length N + 1, fnμ annihilates a
spin-μ particle at site n ∈ [0,N ], and �s0 is the spin operator at
site 0 next to the impurity. Due to the logarithmic discretization,
the hopping amplitudes decay exponentially as tn ∼ �−n/2. In
practice, we consider the chain of a finite N such that its lowest
energy scale ∼�−N/2 is smaller than any other physical energy
scales such as the system temperature T .

The Fock space of the chain is spanned by the basis {|sd〉 ⊗
|s0〉 ⊗ · · · ⊗ |sN 〉}, where |sd〉 is the impurity state and |sn〉 is
the state of a bath site n. Since the Fock space dimension of the
chain scales as O(dN ) (here d = 4 is the dimension of each
bath site for the single-channel problems considered in this
work), it is hard to exactly diagonalize the chain with large N .

By taking advantage of the exponential decay of the hopping
amplitudes, one can construct the complete basis of the energy
eigenstates by using the iterative diagonalization [38,42]. In
the nth iterative diagonalization step, one obtains a set of
energy eigenstates in an energy window [EK

n1,E
D
nimax

] for a
short chain composed of sites from the impurity to site n,
where EK

n1 and ED
nimax

are the lowest and highest energies of
the set. The energy level spacing between these eigenstates
is of the order of tn ∼ �−n/2. Then, one separates the set into
two subsets, the “discarded” energy eigenstates {|ED

ni〉} and the
“kept” eigenstates {|EK

ni〉}, by energy. Here these eigenstates
are indexed by a common index i such that their corresponding
energy eigenvalues are in increasing order; the kept states are
within energy window [EK

n1,E
K
nNtr

], while the discarded states
are in [ED

n,Ntr+1,E
D
n,imax

], where Ntr is the number of the kept
states and imax is the number of total states at a given iteration n.
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One typically takes Etr ≡ (ED
n,Ntr+1 − EK

n,1)/�−n/2 � 7 [40].
In the (n + 1)th diagonalization step, one constructs the Hilbert
space {|EK

ni〉 ⊗ |sn+1〉} and diagonalizes the Hamiltonian for a
longer chain composed of the short chain and the next site
n + 1. One iterates these processes until one reaches the last
site N . At the last iteration, all the eigenstates are discarded.

The discarded states {|ED
ni〉} decouple from the states of

the sites n′ > n, {|sn+1〉 ⊗ · · · ⊗ |sN 〉}, which we call the
environment states of {|ED

ni〉}. The whole Fock space can be
constructed by the complete basis states of{∣∣ED

ni�s
〉 ≡ ∣∣ED

ni〉 ⊗ |sn+1〉 ⊗ · · · ⊗ |sN 〉|n= n0,n0 + 1, . . . N
}
,

(6)

where n0 is the earliest iteration at which the Hilbert space
truncation happens. These basis states can be used as the
approximate eigenstates of the full Hamiltonian (the whole
Wilson chain), and ED

ni provides an approximate eigenenergy.
Based on energy scale separation, the approximation error
δED

ni for each energy ED
ni , which originates from neglecting its

coupling to the environment states, is estimated by δED
ni/E

D
ni ∼

tn+1/E
D
n,Ntr+1 ∼ 1/Etr

√
� 
 1. Therefore, for large enough �

and Etr , the basis states in Eq. (6) are efficient descriptions of
energy eigenstates, since the total number O(NtrN ) of {|ED

ni〉}
is much smaller than O(dN ).

Using the complete basis states in Eq. (6), one writes the
thermal density matrix ρT at temperature T as

ρT =
N∑

n=n0

∑
i�s

e−ED
ni/T

Z

∣∣ED
ni�s

〉〈
ED

ni�s
∣∣ =

N∑
n=n0

Rn, (7)

Rn ≡ ρD
n ⊗ In+1 ⊗ · · · ⊗ IN , (8)

ρD
n =

∑
i

dN−ne−ED
ni/T

Z

∣∣ED
ni

〉〈
ED

ni

∣∣, (9)

where In = ∑
sn

|sn〉〈sn|/d is the identity with normalization
Tr In = 1, and Z is the partition function.

C. NRG approximation of correlation functions

The complete basis {|ED
ni�s〉} provides the systematic way of

computing various physical properties. One needs to use the
NRG approximation [39,40], to reduce the cost of computing
matrix elements 〈ED

ni�s |O|ED
n′i ′�s ′ 〉 of an operator O. Since we

will apply the NRG approximation to compute negativity in
Sec. III, we here briefly explain the NRG approximation for
computing the impurity correlation function.

By using the complete basis, the impurity correlation
function can be expressed in the Lehmann representation

A(ω) ≡ 1

π
Im

∫ ∞

−∞
dt eiωt i�(t)Tr(ρT [O(t),O†]±)

(10)
=

∑
nn′ii ′�s�s ′

A(ni�s),(n′i ′�s ′) δ(ω − ω(ni),(n′i ′)),

A(ni�s),(n′i ′�s ′) = ∣∣〈ED
ni�s

∣∣O∣∣ED
n′i ′�s ′

〉∣∣2
(ρni�s ± ρn′i ′�s ′ ),

ρni�s = 〈
ED

ni�s
∣∣ρT

∣∣ED
ni�s

〉 = e−ED
ni/T /Z, (11)

ω(ni),(n′i ′) = ED
n′i ′ − ED

ni,

where O is the local operator acting on the impurity and + (−)
in ± is for a fermionic (bosonic) operator O.

Direct calculation of Eq. (10) is impractical, since the
number of matrix elements A(ni�s),(n′i ′�s ′) is O(N2

trd
2N ). To make

the calculation feasible, one applies the NRG approximation,
with which the number is significantly reduced to O(N2

trN ).
The approximation is accurate within the intrinsic error of the
NRG that the inaccuracy of the energies ED

ni�s is estimated as
δED

n ∼ �−(n+1)/2.
We now explain the NRG approximation. In the calculation

of Eq. (10), one applies the identity of
∑

n′>n;i�s |ED
n′i�s〉〈ED

n′i�s | =∑
i ′�s ′ |EK

ni ′�s ′ 〉〈EK
ni ′�s ′ | and approximately treats |EK

ni ′�s ′ 〉 as an
eigenstate of the full Hamiltonian, although |EK

ni ′�s ′ 〉 is an
eigenstate of the NRG chain with incomplete chain length
n + 1. As a result, an energy difference ω(ni),(n′i ′) = ED

n′i ′ − ED
ni

is replaced by EK
ni ′′ − ED

ni if n′ > n or by ED
n′i ′ − EK

n′i ′′ if n′ < n.
The error in ω(ni),(n′i ′), i.e., δω(ni),(n′i ′) ∼ �−(n+1)/2 due to this
replacement, is comparable with the error of the Hilbert space
truncation ∼δED

ni ∼ �−(n+1)/2.
The NRG approximation simplifies the summation in

Eq. (10) without inducing further numerical error: only the
matrix elements 〈EX

ni�s |O|EX′
ni ′�s ′ 〉 diagonal in n remain in the

subsequent steps as 〈EX
ni |O|EX′

ni ′ 〉δ�s�s ′ , which removes the sum
over

∑
�s�s ′ and reduces the computation cost to O(N2

trN )
mentioned above. Then A(ω) becomes

A(ω) ≈
(X,X′)�=(K,K)∑

nXX′ii ′
Ãn,(Xi),(X′i ′) δ(ω − ω̃n,(Xi),(X′i ′)), (12)

Ãn,(Xi),(X′i ′) = ∣∣〈EX
ni

∣∣O∣∣EX′
ni ′

〉∣∣2(
ρX

ni ± ρX′
ni ′

)
,

ρX
ni = 〈

EX
ni

∣∣ρX
n

∣∣EX
ni

〉
, (13)

ω̃n,(Xi),(X′i ′) = EX′
ni ′ − EX

ni,

where (X,X′) = (D,D), (D,K), or (K,D); the case (X,X′) =
(K,K) is excluded to avoid double counting. The density
matrix ρK

n

ρK
n = Trn+1,··· ,N

[ N∑
n′>n

Rn′

]
, (14)

is introduced in the calculation; Rn′ is defined in Eq. (8)
and Trn+1,··· ,N (·) ≡ ∑

sn+1,...,sN
〈sN | ⊗ · · · ⊗ 〈sn+1|(·)|sn+1〉 ⊗

· · · ⊗ |sN 〉.
Summarizing, consider a contribution to the spectral func-

tion, which involves the eigenstates |ED
ni�s〉 and |ED

n′i ′�s ′ 〉 from
different iterations n and n′(> n). The NRG approximation
neglects the detailed information of the later sites n′ > n by
tracing them out. Then the contribution is simplified to the
approximated one involving the discarded and kept states
at the same iteration, say |ED

ni〉 and |EK
ni ′ 〉. As long as the

energy scale separation 1/
√

�Etr 
 1 holds by appropriately
choosing parameters (�, Ntr , and/or Etr), the result obtained
after the NRG approximation is accurate; for example, the
impurity spectral function at ω = 0 and T = 0 satisfies the
Friedel sum rule within sub-1% error [39].
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The NRG approximation is equivalent to the replacements
of Rn by ρD

n and
∑N

n′>n Rn′ by ρK
n in the calculation,

Rn = ρD
n ⊗ In+1 ⊗ · · · ⊗ IN → ρD

n ,
(15)

N∑
n′>n

Rn′ =
N∑

n′>n

ρD
n′ ⊗ In′+1 ⊗ · · · ⊗ IN → ρK

n .

Here, the information of sites n′ > n is traced out. This is in
parallel to that |ED

ni�s〉 and |EK
ni�s〉 are approximately treated

as an eigenstate of the full Hamiltonian. We apply these
replacements for computing N below.

III. NRG METHOD FOR NEGATIVITY

We propose how to compute the negativity N in Eq. (1)
that quantifies the impurity-bath entanglement of the thermal
density matrix ρT in Eq. (7). N (ρT ) is computed in two
steps, taking partial transpose on ρT to get ρ

TA

T and then
diagonalizing ρ

TA

T . However, one cannot compute N directly
applying these two steps, since the environment states In+1 ⊗
· · · ⊗ IN in Eq. (7) make the dimension of ρT exponentially
large ∼O(dN ). We overcome this difficulty by utilizing the
NRG approximation.

A. NRG approximation of negativity

To start with, we decompose the expression of N (ρT ).

N (ρT ) = N
( N∑

n=n0

Rn

)
=

N∑
n=n0

N (Rn) −
N∑

n=n0

δn, (16)

δn ≡ N (Rn) + N
( N∑

n′>n

Rn′

)
− N

(
Rn +

N∑
n′>n

Rn′

)
. (17)

In Eq. (16), N (ρT ) has two parts,
∑

n N (Rn) and
∑

n δn. The
first part

∑
n N (Rn) is the sum of the entanglement in each

density matrix Rn, and the second
∑

n δn counts contribution
from mixtures of different Rn’s. Due to the convexity of the
negativity [22,23], δn � 0 is guaranteed. Equations (16) and
(17) are exact, given construction of density matrix ρT .

One can derive the expression in Eq. (16), applying the
definition of δn in Eq. (17) recursively: (i) Start from the
iteration step n0 at which the first Hilbert space truncation
happens during the iterative diagonalization. Using Eq. (7)
and the definition of δn=n0 , one decomposes the negativity
N (ρT ) as

N (ρT ) = N (Rn0 ) − δn0 + N
(

N∑
n′>n0

Rn′

)
. (18)

(ii) Next, we use an inductive argument. Suppose that one can
decompose the negativity N (ρT ) as

N (ρT ) =
n∑

n′=n0

N (Rn′) −
n∑

n′=n0

δn′ + N
( N∑

n′>n

Rn′

)
. (19)

Then, one decomposes Eq. (19) by rewriting the last term in
its right-hand side using δn+1 [cf. Eq. (17)].

N (ρT ) =
n+1∑

n′=n0

N (Rn′ ) −
n+1∑

n′=n0

δn′ + N
( N∑

n′>n+1

Rn′

)
. (20)

Notice that Eq. (20) remains in the same form as the index n

increases to n + 1. By induction, one obtains Eq. (16).
Now we apply the NRG approximation to compute δn. The

second and third terms on the right-hand side of Eq. (17)
involve the density matrices Rn′ from different iterations
n′(> n). As done in the correlation functions [see Sec. II C or
Eq. (15)], we trace out the later sites n′ > n for the arguments∑N

n′>n Rn′ and Rn + ∑N
n′>n Rn′ . Accordingly we have

N (Rn) → N
(
ρD

n

)
, (21)

δn → N
(
ρD

n

) + N
(
ρK

n

) − N
(
ρD

n + ρK
n

) ≡ δ[0]
n . (22)

The superscript [0] indicates that the NRG approximation is
applied to δn. Then, the negativity N (ρT ) is computed using
N (ρD

n ), N (ρK
n ), and N (ρD

n + ρK
n ).

The dimension of the matrices ρD
n , ρK

n , ρD
n + ρK

n is in-
dependent of N and less than or equal to O(dNtr), which is
exponentially smaller than the dimension ∼O(dN ) of ρT . This
reduction of the matrix size makes computation of N feasible.
As we will discuss in Sec. VI, the error generated by the NRG
approximation in Eq. (22) is smaller than or comparable to the
intrinsic error of the NRG in computing N .

B. Constructing impurity-bath bipartite basis

To compute N (ρD
n ), N (ρK

n ), and N (ρD
n + ρK

n ), one needs
to represent the eigenstates {|EX

ni〉} (X = D,K) in the bipartite
basis of the impurity and the bath as∣∣EX

ni

〉 ≡
∑
j,sd

[
T X

n

]
sd ,j,i

|sd〉 ⊗ |φnj 〉. (23)

Here |sd〉 is the impurity state, |φnj 〉 is the bath state satisfying
|φnj 〉 ∈ span{|s0〉 ⊗ · · · ⊗ |sn〉}, 〈φnj |φnj ′ 〉 = δjj ′ , and T X

n is
the “coefficient” tensor whose element is[

T X
n

]
sd ,j,i

= (〈sd | ⊗ 〈φnj |)
∣∣EX

ni

〉
. (24)

Given coefficient tensor T X
n , we express the states ρX

n in the
basis of {|sd〉 ⊗ |φnj 〉}, to take the partial transpose (ρX

n )TA with
respect to {|sd〉}. Then we evaluate Tr |(ρX

n )TA | by obtaining the
singular value decomposition (or equivalently, eigendecompo-
sition) of (ρX

n )TA . It is the same for the sum ρD
n + ρK

n .
We iteratively construct T X

n from T K
n−1 and UX

n , where UX
n is

a left-unitary matrix, which relates the eigenstates at iterations
n − 1 and n, [

UX
n

]
sn,k,i

≡ (〈sn| ⊗ 〈
EK

n−1,k

∣∣)∣∣EX
ni

〉
,

(25)∑
sn,k

[
UX

n

]∗
sn,k,i

[
UX′

n

]
sn,k,i ′ = δXX′δii ′ ,

where X,X′ = D,K . We construct these matrices T X
n and UX

n

during the standard NRG iterative diagonalization.
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We start the iterative construction from T X
0 with the bath

state |φ0,j=s0〉 ≡ |s0〉,[
T X

0

]
sd ,s0,i

≡ (〈sd | ⊗ 〈s0|)
∣∣EX

0i

〉
. (26)

Then consider an iteration n, and suppose we know T K
n−1 at the

earlier iteration n − 1. We first obtain UX
n , which diagonalizes

the Hamiltonian at the current iteration n. Then we construct
the matrix QX

n in terms of T K
n−1 and UX

n as[
QX

n

]
(j ′,sn),(sd ,i) ≡ (〈sd | ⊗ 〈φn−1,j ′ | ⊗ 〈sn|)

∣∣EX
ni

〉
(27)

=
∑

k

[
T K

n−1

]
sd ,j ′,k

[
UX

n

]
sn,k,i

.

To ensure the orthonormality of {|φnj 〉}, we perform the
singular value decomposition as[

QK
n + QD

n

]
(j ′,sn),(sd ,i) =

∑
j

[VL](j ′,sn),j [�V
†
R]j,(sd ,i), (28)

where VL and VR are unitary matrices, � is the diagonal matrix
of nonzero singular values, and QK

n and QD
n act on disjoint set

of column indices (sd,i). Based on its unitarity, we assign VL as
the matrix that defines the mapping from {|φnj 〉} to {|φn−1,j ′ 〉 ⊗
|sn〉} such that [VL](j ′,sn),j = (〈φn−1,j ′ | ⊗ 〈sn|)|φnj 〉. Hence we
construct the desired tensor T X

n ,[
T X

n

]
sd ,j,i

=
∑
j ′,sn

[VL]∗j,(j ′,sn)

[
QX

n

]
(j ′,sn),(sd ,i). (29)

Note that VL is left-unitary; the multiplication of nonsquare V
†
L

in Eq. (29) indicates the truncation of the bath Hilbert space.
After this iterative construction, the dimension of the bath

space spanned by {|φnj 〉} for a single n scales as O(dimpNtr);
the maximum number of nonzero singular values in the
decomposition of Eq. (28) is O(dimpNtr). Thus the matrix
form of ρD

n + ρK
n in the basis of {|sd〉 ⊗ |φnj 〉} has dimension

O(d2
impNtr). The computational cost of evaluating the singular

value decomposition of (ρD
n + ρK

n )TA , which is the most
computationally demanding part in computing the negativity,
is the cube of the matrix dimension, i.e., O(d6

impN
3
tr).

This estimation indicates that the cost of computing the
negativity for the SIAM (dimp = 4) will be 64 times larger than
that for the SIKM (dimp = 2) if the other numerical parameters
are the same.

C. Symmetry

Quantum impurity systems possess various symmetries
such as U(1) charge symmetry and SU(2) spin symmetry. The
NRG exploits these symmetries to reduce the computational
cost and to increase the numerical accuracy [40,45,46]. For ex-
ample, a thermal density matrixρT possesses the symmetries of
its Hamiltonian, hence, it can be computed and represented effi-
ciently in a block diagonal form whose blocks are labeled by the
eigenvalues of the operators corresponding to the symmetries.

Unfortunately, however, the symmetries cannot be fully
exploited in computing the negativity. Partial transpose can
destroy the block diagonal form of the thermal density matrix
ρT ; that is, a symmetry operator Q satisfying [Q,H ] = 0
commutes with ρT , but not necessarily with ρ

TA

T . For example,
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FIG. 1. (a) Temperature (T ) dependence of the impurity-bath
negativity N in the SIKM for different J ’s. The negativity has the
maximum value 1 at T = 0+, exhibits crossover around T = TK,
and vanishes (sudden death) at T = TSD � TK. (b) The negativity
N (T ) in the Kondo regime T 
 TK. It follows the power law of
1 − N ∼ (T/TK)2 [cf. Eq. (30)]. (c) Sudden death temperature TSD

for different J ’s. TSD increases linearly with increasing J .

the SIKM has U(1) × U(1) symmetry conserving spin-up
charge (the corresponding symmetry operator is the spin-up
particle number operator Q↑) and spin-down charge (Q↓).
Consider a nonzero matrix element ρ(⇑φ),(⇓φ′) of a density
matrix ρ, where |⇑〉 and |⇓〉 are impurity spin states. Both
|⇑〉 ⊗ |φ〉 and |⇓〉 ⊗ |φ′〉 have the same eigenvalues (q↑,q↓) of
(Q↑,Q↓). After partial transpose, the matrix element ρ(⇑φ),(⇓φ′)
is relocated to the position indexed by (⇓ φ),(⇑ φ′), where
|⇓〉 ⊗ |φ〉 has an eigenvalues (q↑ − 1,q↓ + 1) and |⇑〉 ⊗ |φ′〉
has an eigenvalues (q↑ + 1,q↓ − 1). Therefore, to make ρ

TA

T

block diagonal, one should resort to the weaker symmetry,
i.e., the total charge conservation, leading to larger block size.
Even worse, for the SIAM, ρ

TA

T does not respect even the total
charge conservation, since the partial transpose on the impurity
Hilbert space mixes up the blocks with different charges.

Since Hamiltonian symmetries may not be useful for com-
puting ρ

TA

T , we choose small Ntr � 100 to treat the SIKM and
the SIAM within a practical cost. We choose large � = 10 to
ensure energy scale separation with this small Ntr . Such large
� = 10 can yield accurate values of static, i.e., frequency-
independent quantities; for example, impurity contributions,
obtained with � = 10, to magnetic susceptibility or to specific
heat agree with the Bethe ansatz result within a few % [47]. We
will show in Sec. VI that our result of the negativity, obtained
with small Ntr � 100 and large � = 10, is also sufficiently
accurate.

IV. NEGATIVITY IN THE KONDO MODEL

We apply the method developed in the previous section to
the SIKM. In Fig. 1, we compute the temperature dependence
of the negativity N that quantifies the impurity-bath entan-
glement in the SIKM. The negativity N exhibits a universal
Kondo behavior at low temperature T 
 TK, shows a thermal
crossover around T = TK, and vanishes at high temperature
T � TK. Here the Kondo temperature is defined as TK =√

J/2De−2D/J .
We first explain the universal behavior of the negativity N

at low temperature T � TK. The curves N (T/TK) of different
J ’s lie on top of each other. At the strong-coupling fixed point
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of T = 0+, the impurity and the bath are entangled to form
the Kondo spin singlet, as indicated by the maximal negativity
N = 1. At T 
 TK, the negativity N follows the power-law
scaling

N � 1 − aN ,1CK(T/TK)2, (30)

where a coefficient aN ,1CK > 0 is of order O(1), as shown
in Fig. 1(b). This quadratic dependence originates from
the low-energy excitation of the Fermi-liquid quasiparticles
[14], which can be confirmed by using the bosonization (see
Appendix A for the details). The behavior of the negativity N
at T � TK is consistent with that of the EoF [14] quantifying
the impurity-bath entanglement in the SIKM.

Next we explain the behavior of the negativity N at high
temperature T � TK. As T increases from 0+, the negativity
N exhibits the thermal crossover around Kondo temperature
TK. At high temperature T � TK, the impurity and the bath are
weakly correlated, having small negativityN 
 1 at the local-
moment fixed point. The negativity N suffers sudden death
[41] (within numerical noise) at T = TSD ∼ J [see Fig. 1(c)],
that is, N is finite at T < TSD, while it vanishes at T � TSD.

One can understand the linear dependence of TSD vs. J from
a minimal model H SIKM

N=0 [see Eq. (4)]. H SIKM
N=0 is composed of

the impurity and only the nearest bath site, which describes
the T → ∞ limit of the Wilson chain since the effective chain
length scales as ∼ − 2 log� T [39,40]. We analytically show
in Appendix B that the minimal model H SIKM

N=0 exhibits the
entanglement sudden death in terms of both the negativity
and the EoF at T = J/ ln 3. This provides the underlying
mechanism of the linear dependence of TSD vs. J . Note that the
entanglement sudden death also appears in other many-body
systems at finite temperature [31–33].

V. NEGATIVITY IN THE ANDERSON MODEL

We next study the negativity between the impurity and the
bath in the SIAM. As the Anderson impurity has both spin and
charge fluctuations, the negativity can be affected by the both.

In Fig. 2 we show the negativity N between the whole
degrees (spin and charge) of freedom of the impurity and
the bath. The negativity N depends on U , reflecting the
dependence of the SIAM onU . The negativityN has a different
value at zero temperature T = 0+. Moreover, N exhibits a
crossover around T = TSC for any value of U and another
crossover around T = TLM for large U (e.g., U = 20�).

At zero temperature T = 0+, the negativity N in Fig. 2(b)
decreases with increasing U , has a value 1 for U → ∞, and
3 for U = 0. It happens since the charge fluctuation at the
impurity is not completely suppressed (i.e., there is a finite
probability that the impurity is empty or doubly occupied) for
finite U even at T = 0+. One can understand the U dependence
of the negativity N (T = 0+) in the two limits of U → ∞ and
U = 0 as follows. In the limit of U → ∞, the ground state
of the SIAM is the Kondo singlet, since the SIAM reduces to
the SIKM at low temperature [10]. Therefore, for U → ∞,
the SIAM has the same value N (T = 0+) = 1 as the SIKM.
In the limit of U = 0, the SIAM is equivalent to two copies
of the resonant level model of spinless fermions, where each
copy corresponds to the electron system of each spin. Because
of εd = −U/2 = 0, the ground state of each copy is a Bell
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FIG. 2. (a) Temperature (T ) dependence of the negativity N
quantifying the impurity-bath entanglement in the SIAM. The zero-
temperature values N (T = 0+) depend on U . The negativity N
exhibits crossovers between different fixed points as kinks;N shows a
kink around T = TSC for all values of U , and another kink around T =
TLM for large U = 20�. (b) N (T = 0+) decreases with increasing U .
(c) Impurity entropy Simp shows the crossovers corresponding to those
ofN . The temperature scales TSC and TLM are located at the end of the
plateaus in Simp, while the plateaus indicate fixed points. We use the
Kondo temperature TK = (eγ+1/4/π 3/2)

√
U�/2e−πU/8�+π�/2U [10],

where γ � 0.5772 is the Euler-Mascheroni constant.

state, which is an equal-weight superposition of a state with the
empty resonant level and the other state with the filled resonant
level. So the ground state of the SIAM at U = 0 is a tensor
product of two Bell states. The negativity of this tensor product
is 3, which can be understood using the logarithmic negativity.
The logarithmic negativity log2(N + 1) is a monotone function
of the negativity N , and the logarithmic negativity is additive
though not convex [23]. Each Bell state has the logarithmic
negativity log2(N + 1) = log2(1 + 1) = 1. Due to the addi-
tivity, the logarithmic negativity is 2 for the tensor product of
the two Bell states. log2(N + 1) = 2 means that for U = 0,
the SIAM has the negativity N (T = 0+) = 3.

At finite temperature T , the negativity N shows two kinks,
one around T = TSC and another around T = TLM which
indicate crossovers. The crossover around T = TSC occurs
for any value of U , while the crossover around T = TLM

appears only for sufficiently large U (as for U = 20�). In
Fig. 2, we show that the crossovers correspond to those of
the impurity entropy Simp ≡ Stot − Sbath, where Stot (Sbath) is
the entropy of the impurity-bath system (of the bath only)
[37]. The plateaus in Simp imply the fixed points in the SIAM,
and the slanted lines connecting adjacent plateaus represent
crossovers between the fixed points. In the curve for U = 20�

in Fig. 2(c), we observe three plateaus of Simp, which have been
interpreted as different fixed points: The plateau at the highest
T means the free-orbital fixed point, where the charge degree
of freedom of the impurity is not frozen and the spin degree of
freedom of the impurity is weakly correlated to the bath. The
intermediate plateau indicates the local-moment fixed point
where the charge degree of freedom becomes frozen (i.e., only
the singly occupied impurity states involve in the fixed-point
Hamiltonian) for large U and the spin degree of freedom is still
weakly correlated to the bath. Simp does not show clearly the
intermediate plateau if U/� is not sufficiently large (e.g., when
U/� = 10 and 5). The plateau at the lowest T corresponds to
the strong-coupling fixed point in which the spin degrees of
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FIG. 3. (a) Temperature (T ) dependence of the negativity Ns

quantifying the entanglement between the impurity spin and the bath
in the SIAM. Contrary toN in Fig. 2,Ns shows the similar behavior as
the negativity N of the SIKM shown in Fig. 1(a). At zero temperature
T = 0+, Ns is independent of U , and around T = TLM, Ns does not
exhibit any kink. (b) At low temperature T 
 TK, Ns has a quadratic
dependence on T , which is the same as the negativity N of the SIKM
in Fig. 1(b). (c) The probability 〈Pnd=1〉 = Trρs that the impurity is
singly occupied, as a function of U/�. It increases as U increases.
Here the Kondo temperature TK defined in Fig. 2 is used.

freedom of the impurity is strongly entangled with the bath,
similarly to the strong-coupling fixed point in the SIKM. In
Fig. 2(c), T = TSC is located at the end of the plateau for the
strong-coupling fixed point for all values of U , and T = TLM is
located at the end of the intermediate plateau (the local-moment
fixed point) of the Simp only for U = 20�. The comparison
between N and Simp shows that N captures the fixed points
and the crossovers between them.

Note that the dependence of N (T = 0+) vs. U is not
contradictory to the interpretation of the local-moment and
strong-coupling fixed points. The impurity states away from
single occupation are not forbidden in these two fixed points;
they merely do not participate in the effective Hamiltonian
of these fixed points. Thus the NRG result of the ground state,
which includes the empty and doubly occupied impurity states,
is consistent with the interpretation of the fixed points.

Next we focus on the effect of the spin fluctuation on the
entanglement between the impurity and the bath. In Fig. 3 we
compute the negativity Ns between the spin degree of freedom
of the impurity and the bath, after projecting out the doubly
occupied and empty impurity states. The negativity Ns shows
the same behavior as the negativity N in the SIKM. Ns is
defined as

Ns ≡ N (ρs/Trρs), (31)

where ρs ≡ Pnd=1ρT Pnd=1, ρT the thermal density matrix
in Eq. (7), and Pnd=1 the projector onto the subspace in
which the impurity is half filled, i.e., nd = ∑

μ ndμ = 1. The
doubly occupied and empty impurity states are projected out
by applying the projector Pnd=1, so only the spin degree of
freedom of the impurity remains. Therefore, Ns = 1 means
that the impurity spin and the bath are maximally entangled,
as in the SIKM case.

The negativityNs(T = 0+) = 1 is independent of U , which
is due to the Kondo spin singlet formed by the impurity spin
and the bath near the strong coupling fixed point. At low
temperature T 
 TK near the strong-coupling fixed point, the

negativity Ns in Fig. 3(b) shows a universal quadratic scaling
behavior Ns � 1 − aN ,1CK(T/TK)2. This scaling behavior is
the same as that of the impurity-bath negativityN of the SIKM
in Fig. 1(b). Moreover, Ns has no kink around T = TLM, since
the crossover around T = TLM, occurring between the local-
moment fixed point and the free-orbital fixed point, involves
only the change in impurity charge fluctuations.

It is natural that Ns in the SIAM shows the same behavior
as N in the SIKM at low temperature, since the SIKM can
be obtained from the SIAM by restricting the impurity to
be half filled or suppressing charge fluctuations. In contrast,
the impurity-bath negativity N of the SIAM does not show
the low-temperature universal scaling because the charge
fluctuation of the impurity does not participate in the universal
Kondo physics.

In addition, we characterize the degree of the charge fluctu-
ation at the impurity by using the probability 〈Pnd=1〉 = Trρs

of the single occupancy at the impurity, in Fig. 3(c). The single
occupancy probability 〈Pnd=1〉 increases as U increases, since
the charge fluctuation gets suppressed. It is consistent with the
U dependence of the N (T = 0+) of the SIAM in Fig. 2(b).
In the limit U → ∞, the charge fluctuation is completely
suppressed to compel the impurity to be half filled, so N (T =
0+) = 1 and 〈Pnd=1〉 = 1. In the opposite limit U = 0, the
ground state is equivalent to the tensor product of two Bell
states as discussed before. In this case, 〈Pnd=1〉 = 1/2, since
the ground state can be represented as an equal superposition of
the four state vectors whose impurity states are fully occupied,
spin-up, spin-down, and empty, respectively.

VI. ERROR ANALYSIS

We analyze the errors in the negativity calculation subject to
the NRG method. For the SIKM, for example, we investigate
how the computed value of N depends on the NRG approxi-
mation, the truncation in the iterative diagonalization, and the
logarithmic discretization.

We first estimate how the NRG approximation affects the
value of N . Under the NRG approximation in Eq. (22),
we replace Rn and δn by ρD

n and δ[0]
n , respectively, where

the information of the chain site n′ > n is traced out. This
approximation can be improved by replacing Rn and δn by ρD

n

and δ[k]
n , respectively, where the information of the chain site

n′ > n + k is traced out. The expression of δ[k]
n is

δ[k]
n ≡N (Trn+k+1,··· ,N [Rn])

+ N
(

Trn+k+1,··· ,N

[
N∑

n′>n

Rn′

])

− N
(

Trn+k+1,··· ,N

[
Rn +

N∑
n′>n

Rn′

])

(32)
=N

(
ρD

n ⊗ In+1 ⊗ · · · ⊗ In+k

)
+ N

(
n+k∑
n′>n

ρD
n′ ⊗ In′+1 ⊗ · · · ⊗ In+k + ρK

n+k

)

− N
(

n+k∑
n′=n

ρD
n′ ⊗ In′+1 ⊗ · · · ⊗ In+k + ρK

n+k

)
,
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FIG. 4. Estimation of errors in the NRG approximation for the
SIKM. (a) Plot of δ[0]

n with varyingn andT . At eachT , δ[0]
n is the largest

at n � −2 log� T as TrρD
n is the largest thereat. (b), (c) Plot of δ[k]

n −
δ[0]
n with varying n and T for (b) k = 1 and (c) k = 2. Both |δ[1]

n − δ[0]
n |

and |δ[2]
n − δ[0]

n | are much smaller than δ[0]
n by more than two orders of

magnitude. Note that |δ[2]
n − δ[0]

n | is smaller than |δ[1]
n − δ[0]

n |, which is
a manifestation of an even-odd behavior in the renormalization group
flow, i.e., the finite-size energy spectrum. The values at n > 15 are
much smaller than those at n < 15, hence, they are not shown here.

where k = 0,1,2, . . .. For k = 0, Eq. (32) reduces to Eq. (22).
For larger k, less information is traced out so that N can
be computed more precisely, however, the computation cost
rapidly increases; as k → ∞, the calculation becomes exact
within the NRG method. Note that the replacement ofRn byρD

n

is not affected although less information is traced out, because

N (Rn) = N (Trn+k+1,··· ,N [Rn]) = N
(
ρD

n

)
. (33)

In Fig. 4, we show the magnitudes of δ[0]
n and of the deviations

δ[k]
n − δ[0]

n for k = 1,2. In Fig. 5, we display |N (k) − N (k =
0)| for k = 1,2, where N (k) is the computation of N with the
approximation of replacing δn by δ[k]

n . |N (k = 1,2) − N (k =
0)| is at most O(10−3) for T � TK, and scale as ∼10−3 ×
(T/TK)2 for T 
 TK, showing that |N (k = 1,2) − N (k = 0)|
is negligibly small. These verify that the NRG approximation
of δn → δ[0]

n is already good enough.
We next check the change of N with varying an NRG

parameter Ntr, the number of the kept states in each iteration
step. As shown in Fig. 5, the change is negligible, showing that
N is almost independent of Ntr. We notice that the change is
comparable with |N (k = 1,2) − N (k = 0)|. This is natural,
since both of choosing smaller Ntr and smaller k lead to
common errors due to neglecting the information of a later part
of the Wilson chain. This observation suggests that the amount
of errors in computingN due to the NRG approximation can be
estimated by the change N with varying Ntr. This will provide
a practical approach to estimate the errors due to the NRG
approximation in general systems such as the multichannel
Kondo model, where the direct calculations of δ[k]

n (k > 0) are
hardly feasible.

We also check the change of N with varying the NRG
discretization parameter �. The change is also negligible in
comparison with the magnitude of N . Note that the change
of N with � is larger than that with Ntr and k. It is because
different values of � yield different discretized Hamiltonians.

The accuracy of our computation of N can be also tested
at T > TK. In this temperature range, the relevant length
(less than 7) of the Wilson chain is so short that N can be
computed exactly by diagonalizing the whole Wilson chain.
Figure 5(b) shows that our computation of N with the NRG
approximation is almost identical to the values obtained by the
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FIG. 5. Comparison of the computed values of N (T ) from differ-
ent numerical settings. For consistency, we consider the SIKM with
J = 0.3 and nz = 2. (a) The deviations of N (k,Ntr,�) for different
parameters: the degree k of the NRG approximation (δn → δ[k]

n ),
truncation threshold Ntr , or discretization parameter �. The devia-
tion |N (k = 1,2) − N (k = 0)| is comparable or much smaller than
the other deviations indicating NRG intrinsic errors, implying that the
errors generated by the NRG approximation are negligible within the
NRG intrinsic errors. The deviations indicating NRG intrinsic errors
are maximal at T � TK, but they are fairly small in comparison with
N . (b) The negativity N computed via the NRG approximation, with
choosing k = 0, Ntr = 100, and � = 10, is compared with the exactly
computed value Nexact for T > TK. Here Nexact is obtained by exactly
diagonalizing the Wilson chain consisting of the impurity and seven
bath sites. Nexact has only the discretization artifact due to the same
� = 10. Note that the lowest energy scale of this short Wilson chain
�−6/2 = 10−3 is larger than the values of T chosen for computing
Nexact .

exact diagonalization. All the above observations demonstrate
that our computation of N with the NRG approximation is
sufficiently accurate.

VII. CONCLUSION

We develop the NRG method for computing the negativity
N quantifying an impurity-bath entanglement in a quantum
impurity system at finite temperature, and apply it to the
SIKM and the SIAM. For the SIKM, the T dependence of
N shows the universal power-law scaling at low temperature,
and the sudden death at high temperature. For the SIAM, N is
affected by both the spin and charge fluctuations at the impurity.
The spin fluctuation causes N to show a universal power-
law scaling behavior similar to the SIKM. The negativity N
depends on U even at zero temperature, indicating that the
charge fluctuation survives even near the strong-coupling fixed
point for finite U .

Since the error due to the NRG approximation is smaller
than the other artifacts intrinsic to the NRG, our computation
of N is sufficiently accurate. In this sense, the current scheme
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for computing the negativity is advantageous over the earlier
one for the EoF [14]: the latter could only provide the lower
and upper bounds of entanglement, and the interval between
these bounds can exceed the intrinsic errors in the NRG.
We anticipate that our method will be applicable to general
quantum impurity systems in various situations and reveal
entanglement perspective in understanding them.
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APPENDIX A: SCALING BEHAVIOR
AT LOW TEMPERATURE

We derive the scaling behavior of the impurity-bath neg-
ativity in Eq. (30) for the SIKM at low T 
 TK using the
bosonization. This scaling behavior originates from the low-
energy excitations of the Fermi-liquid quasiparticles in the
SIKM.

We set the thermal density matrix ρ = ∑
i wi |Ei〉〈Ei | in

terms of the energy eigenstate |Ei〉 of the SIKM with energy
Ei and the Boltzmann factor wi of |Ei〉 satisfying

∑
i wi = 1.

ρ can be approximated by the eigenstates {|Ei〉} satisfying
Ei ∼ T , because wi decreases exponentially in Ei/T while
state degeneracy increases algebraically in Ei .

To compute N , we represent ρ in a bipartite basis of
{|μ〉 ⊗ |φiη〉}, where {|μ〉} ({|φiη〉}) is the orthonormal impurity
(bath) basis. Using the bosonization [48] and the effective
theory near the strong-coupling fixed point [10], we represent
the eigenstate |Ei〉 as [14]

|Ei〉 = 1√
2

∑
μ=↑,↓

|μ〉 ⊗ (|φiμ〉 + |χiμ〉), (A1)

where 〈Ei |Ei ′ 〉 = δii ′ and 〈φiη|φi ′η′ 〉 = δii ′δηη′ . {|χiη〉} are bath
states of |χiη〉 ∈ span{|φiη〉}, satisfying 〈χiη|φiη〉 = 0, and√〈χiη|χi ′η′ 〉 ∼ 〈χiη|φi ′η′ 〉 ∼ O(T/TK). The latter relation is
due to the Fermi-liquid behavior of the SIKM at low T , and
it determines the scaling exponent of the negativity. Applying
Eq. (A1), we write the density matrix ρ as

ρ =
∑
ii ′

∑
μ,μ′,η,η′=↑,↓

[ρ](μ,i,η),(μ′,i ′,η′)|μ〉〈μ′| ⊗ |φiη〉〈φi ′η′ |,

(A2)

whose element is

[ρ](μ,i,η),(μ′,i ′,η′) =
∑

j

wj

2
[δij δημ + 〈φiη|χjμ〉]

(A3)× [δji ′δμ′η′ + 〈χjμ′ |φi ′η′ 〉].
To obtain the negativity using Eq. (1), we need to compute

Tr|ρTA |, where ρTA is

ρTA =
∑
ii ′

∑
μ,μ′,η,η′=↑,↓

[ρ](μ,i,η),(μ′,i ′,η′)|μ′〉〈μ| ⊗ |φiη〉〈φi ′η′ |.

(A4)

Tr|ρTA |, the sum of the singular values σμiη of ρTA , equals the
sum of the square root of the singular values σ 2

μiη of (ρTA )2.
We compute the singular values of (ρTA )2, since they are easier
to be estimated. Using the facts that (i) the leading order and
the next leading order of the diagonal terms of (ρTA )2 are O(1)
and O(T 2/T 2

K), respectively, (ii) the leading order of the off-
diagonal terms of (ρTA )2 are O(T/TK), and (iii) T/TK 
 1,
we compute the singular values σ 2

μiη of (ρTA )2 and find

σμiη = cμiη + c′
μiη(T/TK)2 + · · · , (A5)

where cμiη and c′
μiη are coefficients of order O(1). Then, the

impurity-bath negativity N (ρ) is obtained as

N (ρ) = Tr|ρTA | − Tr ρ =
∑
μiη

σμiη − 1

(A6)
= c + a′(T/TK)2,

where c and a′ are constants. Using the property of the SIKM
that N = 1 at T = 0 and it cannot increase with increasing T ,
we obtain Eq. (30) at low T 
 TK,

N � 1 − aN ,1CK(T/TK)2, (A7)

where a coefficient aN ,1CK > 0 is O(1).

APPENDIX B: SUDDEN DEATH IN THE
IMPURITY-BATH ENTANGLEMENT

Here we explain the linear dependence of the sudden death
temperature TSD ∼ J in the SIKM result of Fig. 1(c), by
considering the Wilson chain with only one bath site, i.e.,
N = 0, as a minimal model. For this minimal model, both the
negativity and the EoF yields the same sudden death tempera-
ture TSD = J/ ln 3. Note that there is no bound entanglement
at TSD, as the EoF, which can detect any bound entanglement,
vanishes at TSD.

The energy eigenvalues and eigenstates of the Hamiltonian
H SIKM

N=0 are given by:

Eigenvalue Eigenstate
−3J/4 (|⇑〉|↓〉 − |⇓〉|↑〉)/√2

J/4
|⇑〉|↑〉
|⇓〉|↓〉

(|⇑〉|↓〉 + |⇓〉|↑〉)/√2

0

|⇑〉|↑↓〉
|⇑〉|0〉
|⇓〉|↑↓〉
|⇓〉|0〉

(B1)

Here |⇑〉 and |⇓〉 are the impurity spin state, and |0〉,
|↑〉, |↓〉, and |↑↓〉 indicate the empty, spin-up, spin-down,
and doubly occupied states of the electron bath site, re-
spectively. Then we construct the thermal density matrix
ρSIKM

0 = e−H SIKM
N=0 /T /Tr e−H SIKM

N=0 /T based on the eigendecompo-
sition above.
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First, for the negativity, one can directly apply Eq. (1) to the
ρSIKM

0 to obtain

N
(
ρSIKM

0

) = max
( 1 − 3e−J/T

1 + 4e−3J/4T + 3e−J/T
, 0

)
. (B2)

The negativity N (ρSIKM
0 ) suffers sudden death at TSD =

J/ ln 3.
On the other hand, the EoF is defined as an optimization

problem,

EF(ρ) ≡ inf
{pi ,|ψi 〉}

∑
i

pi EE(|ψi〉), (B3)

where EE(|ψi〉) = −TrρiA log2 ρiA is the entanglement en-
tropy of |ψi〉, and ρiA = TrB |ψi〉〈ψi | is the reduced density
matrix in which the bath B is traced out. That is, the EoF
for a mixed state ρ is the infimum of the weighted sum of
the entanglement entropy,

∑
i piEE(|ψi〉), over all possible

pure-state decomposition ρ = ∑
i pi |ψi〉〈ψi |. Here |ψi〉’s are

normalized, i.e., 〈ψi |ψi〉 = 1, but do not need to be orthogonal
to each other. As mentioned in Sec. I, there is no general
solution of Eq. (B3). However, fortunately for ρSIKM

0 , there
exists an analytic solution, which we will derive by the
following steps.

(i) The density matrixρSIKM
0 can be decomposed into a block

diagonal form,

ρSIKM
0 = ρ1 + ρ2, (B4)

where ρ1 ∈ H1 ≡ span{|⇑〉,|⇓〉} ⊗ span{|↑〉,|↓〉} and ρ2 ∈
H2 ≡ span{|⇑〉,|⇓〉} ⊗ span{|0〉,|↑↓〉}. The bath site is half
filled in the subspace H1, while empty or doubly occupied in
H2. In other words, H2 is spanned by the energy eigenstates
with zero eigenvalues, and H1 by the rest.

(ii) Consider a pure state

|ϕ〉 = c1|ϕ1〉 + c2|ϕ2〉 (B5)

for arbitrary normalized states |ϕ1〉 ∈ H1 and |ϕ2〉 ∈ H2, where
c1 and c2 are complex numbers satisfying |c1|2 + |c2|2 = 1.
Since the bath states of |ϕ1〉 and |ϕ2〉 are orthogonal by
construction, we have

TrB |ϕ〉〈ϕ| = |c1|2TrB |ϕ1〉〈ϕ1| + |c2|2TrB |ϕ2〉〈ϕ2|. (B6)

Then the concavity of the von Neumann entropy leads to an
inequality

EE(|ϕ〉) � |c1|2EE(|ϕ1〉) + |c2|2EE(|ϕ2〉). (B7)

Based on the block diagonal form in Eq. (B4) and this
concavity, we find a restriction to the optimal pure-state
decomposition ρSIKM

0 = ∑
i p

op
i |ψop

i 〉〈ψop
i |, which provides

EF(ρSIKM
0 ) = ∑

i p
op
i EE(|ψop

i 〉): Each state |ψop
i 〉 should be in

eitherH1 orH2, not a superposition of a state inH1 and another
in H2. (It can be proven by contradiction.) Therefore, the EoF
reduces to

EF
(
ρSIKM

0

) = EF(ρ1) + EF(ρ2) = EF(ρ1)

= Tr ρ1 · EF(ρ1/Tr ρ1), (B8)

where at the second equality we used EF(ρ2) = 0 since ρ2 is
the mixture of product states [see Eq. (B1)], and at the last
equality we pulled out the normalization factor

Tr ρ1 = e3J/4T + 3eJ/4T

e3J/4T + 3eJ/4T + 4
, (B9)

for convenience below.
(iii) We can regard ρ1 as the state of two qubits; now we can

use the concurrence [49] to derive the EoF of the normalized
state ρ1/Tr ρ1,

EF

(
ρ1

Tr ρ1

)
= h

(
1 + √

1 − C2

2

)
, (B10)

where h(x) = −x log2 x − (1 − x) log2(1 − x) and C is the
concurrence of ρ1/Tr ρ1. Here the right-hand side expression
of Eq. (B10) is a monotonically increasing function of C. The
concurrence is given by

C = max

(
eJ/T − 3

eJ/T + 3
, 0

)
, (B11)

which indicates that EF(ρ1/Tr ρ1), and EF(ρSIKM
0 ) also, suffer

the sudden death at TSD = J/ log 3. Both the negativity and the
EoF yield the same TSD, which means that there is no bound
entanglement. It is natural, since the entanglement of ρSIKM

0 is
contributed only from ρ1 that can be regarded as a two-qubit
state, and there is no bound entanglement for two qubits in
general.
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