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We present a multiloop flow equation for the four-point vertex in the functional renormalization
group (FRG) framework. The multiloop flow consists of successive one-loop calculations and sums up all
parquet diagrams to arbitrary order. This provides substantial improvement of FRG computations for the
four-point vertex and, consequently, the self-energy. Using the x-ray–edge singularity as an example, we
show that solving the multiloop FRG flow is equivalent to solving the (first-order) parquet equations and
illustrate this with numerical results.
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Introduction.—Two-particle correlations play a funda-
mental role in the theory of strongly correlated electron
systems. Most response functions measured in condensed-
matter experiments are two-particle quantities such as
optical or magnetic susceptibilities. The behavior of the
two-particle (or four-point) vertex has even been used to
distinguish “weakly” and “strongly” correlated regions in
the phase diagram of the Hubbard model [1]. Moreover, the
four-point vertex is a crucial ingredient for a large number of
theoretical methods to study strongly correlated electron
systems, such as nonlocal extensions of the dynamical
mean-field theory [2]—particularly, via dual fermions [3],
the 1PI [4], and QUADRILEX [5] approach, or the dynami-
cal vertex approximation [6]—the multiscale approach [7],
the functional renormalization group [8,9], and the parquet
formalism [10,11].
The parquet equations provide an exact set of self-

consistent equations for vertex functions at the two-particle
level and are thus able to treat particle and collective
excitations on equal footing. In the first-order [10] (or so-
called parquet [11]) approximation, they constitute a viable
many-body tool [11–13] and, in logarithmically divergent
perturbation theories, allow for an exact summation of all
leading logarithmic diagrams of the four-point vertex
(parquet diagrams [10]). It is a common belief [14] that
results of the parquet approximation are equivalent to those
of the one-loop renormalization group (RG). However,
there is hardly any evidence of this statement going beyond
the level of (static) flowing coupling constants [15].
Recently, the question was raised [16] whether it is

possible to sum up all parquet diagrams using the functional
renormalization group (FRG), a widely used realization of a
quantum field-theoretical RG framework [8,9]. The parquet
result for the x-ray–edge singularity (XES) [10,17–19] was
indeed obtained [16], but using arguments that work only for
this specific problem and do not apply generally [20]. In fact,

the common truncation of the vertex-expanded FRG flow
completely neglects contributions from the six-point vertex,
which start at third order in the interaction. Schemes have
been proposed for including some contributions from the six-
point vertex [21–23]; however, until now it was not known
how to do this in a way that captures all parquet diagrams.
In thiswork,wepresent amultiloopFRG(MFRG) scheme,

which sums up all parquet diagrams to arbitrary order in the
interaction. We apply it to the XES, a prototypical fermionic
problem with a logarithmically divergent perturbation theory
[24]; in a related publication [25], we develop the MFRG
framework for generalmodels. TheXESallows us to focus on
two-particle quantities, as these are solely responsible for
the leading logarithmic divergence [10,17], and exhibits
greatly simplified diagrammatics. In fact, it contains the
minimal structure required to study the complicated interplay
between different two-particle channels. We demonstrate
how increasing the number of loops in the MFRG improves
the numerical results with respect to the known solution of the
parquet equations [10,17,18]. We establish the equivalence
of the MFRG flow to the parquet approximation by showing
that both schemes generate the same number of diagrams
order for order in the interaction [26].
Model.—The minimal model for the XES is defined by

the Hamiltonian

H¼
X
ϵ

ϵc†ϵcϵþ ϵdd†dþUc†cd†d; U > 0: ð1Þ

Here, d and cϵ, respectively, annihilate an electron from a
localized, deep core level (ϵd<0) or a half-filled conduc-
tion band with constant density of states ρ, half-bandwidth
ξ0, and chemical potential μ ¼ 0, while c ¼ P

ϵcϵ annihi-
lates a band electron at the core-level site. In order to
describe optical properties of the system, one examines the
particle-hole susceptibility iΠðtÞ¼hT d†ðtÞcðtÞc†ð0Þdð0Þi.
It exhibits a power-law divergence for frequencies close

PHYSICAL REVIEW LETTERS 120, 057403 (2018)

0031-9007=18=120(5)=057403(6) 057403-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.057403&domain=pdf&date_stamp=2018-01-31
https://doi.org/10.1103/PhysRevLett.120.057403
https://doi.org/10.1103/PhysRevLett.120.057403
https://doi.org/10.1103/PhysRevLett.120.057403
https://doi.org/10.1103/PhysRevLett.120.057403


to the absorption threshold, as found both by the solution
of parquet equations [10,17] and by an exact one-body
approach [18].
In the Matsubara formalism, the bare level propagator

reads Gd
ω ¼ 1=ðiω − ϵdÞ, and, focusing on infrared proper-

ties, we approximate the local band propagator as
Gc

ω ¼ −iπρsgnðωÞΘðξ0 − jωjÞ. The particle-hole suscep-
tibility takes the form (at a temperature 1=β ≪ jϵdj)

Πω̄ ¼ ρ

αðuÞ
�
1 −

�
iω̄þ ϵd
−ξ0

�
−αðuÞ�

; u ¼ ρU; ð2Þ

where αðuÞ ¼ 2uþOðu2Þ and ϵd is considered as a renor-
malized threshold. The corresponding retarded correlation
function is obtained by analytic continuation iω̄ → wþ i0þ,
in which case the summands leading to the power law are
logarithmically divergent as unlnnþ1ðξ0=jwþ ϵdjÞ. For
imaginary frequencies, however, the perturbative parameter
is finite, with amaximal value of u lnðξ0=jϵdjÞ ≈ 0.9, for our
choice of parameters. Our goal will be to reproduce Eq. (2)
using the FRG.
Parquet formalism.—The particle-hole susceptibility is

fully determined by the one-particle-irreducible (1PI) four-
point vertex via the following relation (using the shorthand
notation Γð4Þ

ω;ν;ω̄ ¼ Γd̄cc̄d
ω;ω̄þω;ω̄þν;ν [20]):

Πω̄¼
1

β

X
ω

Gd
ωGc

ω̄þωþ
1

β2
X
ω;ν

Gd
ωGc

ω̄þωΓ
ð4Þ
ω;ν;ω̄G

d
νGc

ω̄þν: ð3Þ

In principle, Gc and Gd are full propagators. However, for
the XES, electronic self-energies do not contribute to the
leading logarithmic divergence [10,17], and we can restrict
ourselves to bare propagators.
Diagrams for the four-point vertex are exactly classified

by the central parquet equation

Γð4Þ ¼Rþ γaþ γp; Ia ¼Rþ γp; Ip ¼Rþ γa: ð4Þ
The leading divergence of the XES is determined by only
two two-particle channels [10,17]: γa (cf. Fig. 1(a) [29])
and γp contain diagrams reducible by cutting two anti-
parallel or parallel lines, respectively, whereas Ia and Ip
contain diagrams irreducible in the respective channel. The
totally irreducible vertex R [cf. Fig. 1(b)] is the only input
into the parquet equations, as the reducible vertices are
determined self-consistently via Bethe-Salpeter equations

[cf. Fig. 2(a)]. Similarly as for the self-energy, terms of R
beyond the bare interaction only contribute subleadingly to
the XES and can hence be neglected [10,17].
In this (parquet) approximation, Eq. (4) together with the

Bethe-Salpeter equations for reducible vertices [Fig. 2(a)]
form a closed set and can be solved. The analytic solution,
employing logarithmic accuracy, provides the leading term
of the exponent in Eq. (2). Our numerical solution, to which
we compare all following results, is both consistent with the
power-law-like behavior of Eq. (2) for small frequencies
[cf. Fig. 4(c)] and with the corresponding exponent αðuÞ
[cf. Fig. 4(d)].
Multiloop FRG flow.—The functional renormalization

group provides an exact flow equation for the four-point
vertex as a function of a RG scale parameter Λ, serving as
infrared cutoff. Introducing Λ only in the bare d propagator,
the flow encompassing both channels [26] is illustrated in
Fig. 2(b), where the dashed arrow symbolizes the single-
scale propagator SdΛ. Neglecting self-energies, we have
SdΛ ¼ ∂ΛGd

Λ, and ∂ΛΓð4Þ only depends on Γð4Þ and Γð6Þ.
The boundary conditions Gd

Λi
¼ 0 and Gd

Λf
¼ Gd imply

Γð4Þ
Λi

¼ −U and Γð6Þ
Λi

¼ 0.
For almost all purposes, it is unfeasible to treat the six-

point vertex exactly. Approximations of Γð6Þ thus render the
FRG flow approximate. The conventional approximation is
to set Γð6Þ and all higher-point vertices to zero, arguing that
they are at least of third order in the interaction. This affects
the resulting four-point vertex starting at third order and
neglects terms that contribute to parquet diagrams [20].
Since, however, the parquet approximation involves only
four-point vertices, it should be possible to encode the
influence of six- and higher-point vertices during the RG
flow by four-point contributions and, still, fully capture all
parquet graphs.
In the following, we show how this can be accomplished

using the MFRG. The first observation is that all the
diagrammatic content of the truncated FRG (i.e., without
Γð6Þ) is two-particle reducible, due to the bubble structure in
the flow equation [first two summands of Fig. 2(b)], very
similar to the Bethe-Salpeter equations [Fig. 2(a)]. The only
irreducible contribution is the initial condition of the vertex,
Γð4Þ
Λi

¼ −U. Hence, diagrams generated by the flow are
always of the parquet type. It is then natural to express Γð4Þ
as follows, using the channel classification of the parquet
equations:

(a)

(b)

FIG. 1. Low-order diagrams for (a) the vertex reducible in
antiparallel lines, γa, and (b) the totally irreducible vertex R. Solid
(dashed) lines denote Gc (Gd), and a dot the bare vertex −U. The
first-order or so-called parquet approximation only retains the
bare vertex for R.

(a)

(b)

FIG. 2. (a) Bethe-Salpeter equations in the antiparallel (a) and
parallel (p) channels. A full square denotes the full vertex Γð4Þ.
(b) FRG flow equation for both channels relating ∂ΛΓð4Þ to Γð4Þ

and Γð6Þ. The conventional approximation is to set Γð6Þ ¼ 0.
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Γð4Þ ¼ −U þ γa þ γp; ∂Λγr ¼
X
l≥1

_γðlÞr : ð5Þ

Here, r stands for a or p and _γðlÞr for diagrams involving l
loops connecting full vertices. We will show that _γðlÞr can be
constructed iteratively from lower-loop contributions.
The conventional (or one-loop) FRG flow in channel r is

formulated in Fig. 3(a), where full vertices are connected by
an r “single-scale” bubble, i.e., either antiparallel or parallel
Gc-Sd lines. [Detailed diagrams with all arrows and their
mathematical translations are given in Ref. [26], Fig. S2,
Eq. (S2).] If one inserts the bare vertex for Γð4Þ on the rhs of
such a one-loop flow equation [Fig. 3(a)], one fully obtains
the differentiated second-order vertex. However, inserting
first- and second-order vertices on the rhs will miss some
diagrams of the differentiated third-order vertex, because
these invoke an r̄ single-scale bubble that is not generated

by _γð1Þr (an overbar denotes the complementary channel:
ā ¼ p, p̄ ¼ a). An example of such a missing third-order
diagram is that obtained by differentiating the rightmost d
propagator of the third diagram in Fig. 1(a) (cf. Fig. S1 of
Ref. [26]). All such neglected contributions can be added to
the rhs of the flow equation by hand (replacing bare by full
vertices), resulting in the construction in Fig. 3(b). It uses
an r “standard” bubble [(anti)parallel Gc-Gd lines] to
connect the one-loop contribution from the complementary

channel, _γð1Þr̄ , with the full vertex, thus generating two-loop
contributions. These corrections have already been sug-
gested from slightly different approaches [21,23].
The resulting third-order corrected flow will still miss

derivatives of parquet graphs starting at fourth order in the
interaction. These can be included via two further additions
to the flow, which have the same form for all higher loop
orders, _γðlþ2Þ

r with l ≥ 1 [cf. Fig. 3(c)]. First, for the flow

of _γðlþ2Þ
r , an r bubble is used to attach the previously

computed ðlþ 1Þ-loop contribution from the complemen-

tary channel, _γðlþ1Þ
r̄ , to either side of the full vertex, just as

in the two-loop case. Second, by using two r bubbles, we
include the differentiated l-loop vertex from the comple-

mentary channel, _γðlÞr̄ , to the flow of _γðlþ2Þ
r . Double

counting of diagrams in all these contributions does not
occur due to the unique position of the single-scale
propagator [26]. Note that the central term in Fig. 3(c)

can be computed by a one-loop integral, too, using the
previous computations from the same channel, as shown in
Fig. 3(d). Consequently, the numerical effort in the multi-
loop corrections scales linearly in l.
By its diagrammatic construction, organized by the

number of loops connecting full vertices, the MFRG flow
incorporates all differentiated diagrams of a vertex reduc-
ible in channel r, built up from the bare interaction, and
thus captures all parquet graphs of the full four-point
vertex. Indeed, in Ref. [26], we prove algebraically for the
XES that the number of differentiated diagrams in the
MFRG matches precisely the number of differentiated
parquet graphs. An l-loop FRG flow generates all parquet
diagrams up to order n ¼ lþ 1 in the interaction and,
naturally, generates an increasing number of parquet
contributions at arbitrarily large orders in U.
Numerical results.—In Fig. 5, we show numerical results

for the XES particle-hole susceptibility. Using four differ-
ent regulators (see below), we compare the susceptibility
obtained from an l-loop FRG flow to the numerical
solution of the parquet equations. We find that the one-
loop curves differ among each other and deviate strongly
from the parquet result. With increasing loop order l, the
multiloop results from all regulators oscillate around and
approach the parquet result, with very good agreement
already for l ¼ 4. For l ≥ 7, the oscillations in the relative
deviation (at ω̄ ¼ 0) are damped to≲2% (insets, solid line).
A similar behavior is observed for the identity [30] Πω̄ ¼
limjωj;jνj→∞γa;ω;ν;ω̄=U2 (ω̄ is the exchange frequency, and ω,
ν are two fermionic frequencies), which the parquet
solution is guaranteed to fulfill (cf. Ref. [26], Eq. (S4)
and following) (insets, dashed line).
As regulators, we choose the Litim regulator [31], and

propagators of the typeGd
ΛðωÞ ¼ θðω=Λ − 1ÞGdðωÞ, where

θðxÞ is either a sharp, smooth, or oscillating step function
(cf. Figs. 4(a) and 4(b); Eq. (S8) of Ref. [26]). The fact that
different regulators give the same result in theMFRG flow is
a strong indication for an exact resummation of diagrams.
Let us note that the MFRG flow also increases the

stability of the solution towards larger interaction. Whereas,
in the one-loop scheme, the four-point vertex diverges for
u > 0.4, higher-loop schemes converge up to larger values
of u. The reason is that the one-loop scheme contains the
full ladder series of diagrams (in any channel), but only

(a) (b)

(c) (d)

FIG. 3. Multiloop FRG flow equations, ∂Λγr ¼
P

l≥1 _γ
ðlÞ
r , for the four-point vertex reducible in channel r, with r ¼ a or p, and r̄ ¼ p

or a. The subscript r in the diagrams further symbolizes antiparallel or parallel c-d lines, respectively. (a) One-loop, (b) two-loop,

(c) three- and higher-loop flows. (d) One-loop calculation of _γðlþ2Þ
r;C , using the previously computed _γðlþ1Þ

r;R or _γðlþ1Þ
r;L .
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parts of nonladder diagrams. Whereas the (imaginary-
frequency) pure particle-hole ladder already diverges at
u ∼ 0.3, higher-loop extensions approaching the parquet
summation are needed for the full feedback between both
channels to eliminate the divergence.
The equivalence between the MFRG flow and parquet

summation allows us to explain how the quality of FRG
results depends on the choice of regulator. Whereas the
one-loop scheme only involves a single-scale bubble
ΠS

0 ¼
P

GcSd, all extensions invoke successive standard
bubbles ΠG

0 ¼ P
GcGd. By minimizing the weight of ΠG

0

compared to ΠS
0 , one minimizes the effect of the multiloop

corrections and thus the difference between low-levelMFRG
and parquet. Indeed, from Figs. 4(a) and 4(b) we see that a
regulator with small (large) weight in ΠG

0 and large (small)
weight in ΠS

0 , such as the oscillating-step (Litim) regulator,
gives comparatively good (bad) agreement with parquet
for low l. Accordingly, the sharp-step regulator performs
slightly better than its smooth counterpart.
Generalizations.—The MFRG flow can be readily

extended to more general models, where one normally does
not treat two particle species separately, as done here for c
and d electrons. If three two-particle channels (antiparallel,
parallel, and transverse) are involved, the higher-loop flow
must incorporate feedback from both complementary chan-
nels via _γlr̄ ¼ P

r0≠r _γ
l
r0 [25]. The self-energy Σ enters the

Γð4Þ flow via full propagators, and, in the one-loop flow of
the four-point vertex [Fig. 3(a)], one should follow the
usual practice [8,21] of using the derivative of the full
propagator (∂ΛGΛ) instead of the single-scale propagator

(SΛ¼∂ΛGΛjΣ¼const) which excludes any differentiated self-
energy contributions. The reason is that, in the exact FRG
flow equation [Fig. 2(b)], those diagrams of ∂ΛΓð4Þ that
involve ∂ΛΣ are encoded in the six-point vertex.
Evidently, an improved flow for Γð4Þ also improves FRG

calculations of the self-energy. In the parquet formalism,Σ is
constructed from the four-point vertex by an exact, self-
consistent Schwinger-Dyson equation [11]. In order to
obtain the same self-energy diagrams from the (in principle)
exact FRG flow equation for Σ, with only the vertex in the
parquet approximation at one’s disposal, multiloop exten-
sions to the self-energy flow, similar to those introduced
here, can be performed [25]. Given the self-energy, all
arguments about capturing parquet diagrams (which now
consist of dressed lines)with themultiloopFRG flow remain
valid since they only involve generic, model-independent
statements about the structure of two-particle diagrams.
The MFRG flow is applicable for any initial condition

Γð4Þ
Λi
. An example where one would not start from GΛi

¼ 0,
as done here, arises in the context of dynamical mean-field
theory (DMFT) [2]. There, the goal of adding nonlocal

correlations, with the local vertex from DMFT (Γð4Þ
DMFT) as

input, can be pursued using the FRG [32]. Alternatively,
this goal is also being addressed by using the parquet
equations in the dynamical vertex approximation (DΓA)
[6]. However, the latter approach requires the diagram-
matic decomposition of the nonperturbative vertex [33]

Γð4Þ
DMFT ¼ RþP

rγr, which yields diverging results close to
a quantum phase transition [1,35]. In contrast, the MFRG

flow is built from the full vertex Γð4Þ
DMFT and could thus be

used to scan a larger region of the phase diagram.
Conclusion.—Using the x-ray–edge singularity as an

example, we have presented multiloop FRG flow equa-
tions, which sum up all parquet diagrams to arbitrary order,

(a)

(c) (d)

(b)

FIG. 5. (a)–(d) Numerical solutions for the particle-hole sus-
ceptibility Π, obtained from the parquet equations and from
MFRG with different regulators [cf. Figs. 4(a) and 4(b)], using
the parameters of Fig. 4(c). Insets: Relative deviation between
parquet and MFRG results for Π (solid line) and between Π and
limjωj;jνj→∞γa=U2 (dashed line), all evaluated at ω̄ ¼ 0.

(a)

(b)

(c)

(d)

FIG. 4. (a) Noninteracting “standard” particle-hole bubble ΠG
0

and propagator Gd (inset) for different regulators (cf. Eq. (S8) of
Ref. [26]) and Λ=ξ0 ¼ 0.2. (b) Same as (a) for the “single-scale”
bubble ΠS

0 and propagator Sd. (c) Double-logarithmic plot for the
particle-hole susceptibility Π, obtained from solving the parquet
equations. (d) Πω̄¼0ðuÞ computed via the parquet equations [ϵd, β
as in (c)] and according to Eq. (2) with different choices for αðuÞ.
The comparison between these guide-to-the-eye lines and the
numerical solution confirms that αðuÞ ≈ 2u, but also shows that
subleading contributions become sizable for larger u. These are
present since internal numerical calculations go beyond loga-
rithmic accuracy.
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so that solving the MFRG flow is equivalent to solving the
(first-order) parquet equations. Our numerical results dem-
onstrate that solutions of an l-loop flow quickly approach
the parquet result with increasing l. This applies for a
variety of regulators, confirming an exact resummation of
diagrams. The MFRG construction is generic and can be
readily generalized to more complex models.
The MFRG-parquet equivalence established here shows

that one-loop FRG calculations generate only a subset of
(differentiated) parquet diagrams and that a multiloop FRG
flow is needed to reproduce parquet results. From a
practical point of view, the MFRG appears advantageous
over solving the parquet equations since solving a first-
order ordinary differential equation is numerically more
stable than solving a self-consistent equation. Moreover,
one can choose a suitable regulator and flow from any
initial action. Altogether, the MFRG scheme achieves, in
effect, a solution of the (first-order) parquet equations while
retaining all treasured FRG advantages: no need to solve
self-consistent equations, purely one-loop costs, and free-
dom of choice for regulators.
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