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We give a self-contained derivation of the low-energy effective interactions of the SU(N ) Hubbard model, a
multiflavor generalization of the one-band Hubbard model, by using a generalized Schrieffer-Wolff transformation
(SWT). The effective interaction of doublons and holons, which has been largely ignored in previous SWT studies
(e.g., the t-J model), leads to distinct peaks in the local density of states. As shown by Lee et al. [Phys. Rev. Lett.
119, 236402 (2017)], this underlying effective doublon-holon interaction explains the numerical observation of
the subpeaks at the inner edges of the Hubbard bands in the metallic phase close to the Mott transition.
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I. INTRODUCTION

The Schrieffer-Wolff transformation (SWT) [1] was in-
troduced in the 1960s to derive the Kondo model as an
effective low-energy Hamiltonian for the single-impurity
Anderson model. Since then, variations and generalizations
of its basic idea have been used in numerous contexts
in condensed matter physics, to map many-body Hamil-
tonians onto simpler effective Hamiltonians describing the
effective degrees of freedom accessible at low excitation
energies.

One paradigmatic application concerns the one-band Hub-
bard model [2]. From the nearest-neighbor particle hopping
and the on-site Coulomb interaction in the Hubbard model,
the SWT yields, up to leading order, several different types
of effective interactions: an exchange interaction between
nearest-neighbor spins, an interaction between doublon and
holon on nearest neighbors, and three-site terms involving
next-nearest neighbors. Here we define doublon (holon) as
the local excitation having one more (less) particle than the
average occupation number, which naturally generalizes to
the multiflavor case discussed below.

When the t-J model [2], an effective description of
doped Mott insulators, is derived from the Hubbard model,
the effective interactions are projected onto charge sectors
which select a specific integer filling, and one allows charge
fluctuations into either the doublon or the holon sector, but
not both. This inequivalent treatment for doublon and holon
is appropriate for the description of doped Mott insulators in
which doublon and holon hardly coexist, since the excitation
energy of doublon (holon) is much higher than that of holon
(doublon) in the hole-doped (particle-doped) case [3]. Thus
the doublon-holon interaction drops out, and three-site terms
are neglected as an additional approximation. As a result, only
the exchange interaction, among all the effective interactions
mentioned above, survives, yielding the t-J model.

Unlike the exchange interaction, which is at the heart of
quantum magnetism, the role of the doublon-holon interaction
has not received much attention so far. However, the doublon-
holon and exchange interactions have strengths comparable
in magnitude. Therefore one may suspect that the doublon-
holon interaction can lead to measurable phenomena of its
own, especially when the coexistence of doublon and holon is
substantial.

In a related paper [4], we have identified a situation
where this is indeed the case: The doublon-holon interaction
is responsible for previously unexplained subpeaks at the
inner edges of the Hubbard bands of the local spectral
function, i.e., the local density of states. Many dynamical
mean-field theory (DMFT) studies [5–11] have observed
that such subpeaks emerge in the metallic phase close to
the Mott transition. Though the other spectral features in
the spectral function, i.e., the quasiparticle peak and the
Hubbard bands, are well understood, the physical origin
of the subpeaks had remained unknown. In Ref. [4] we
have proposed an explanation for their origin: They arise
from doublon-holon correlations. To demonstrate this, we
numerically computed the correlation functions of doublons
and holons, finding peak structures that indeed correlate with
those of the subpeaks in the local density of states. Moreover,
we also argued that the generic features of these subpeaks can
be understood by using an effective low-energy model derived
by a generalized SWT, and treated by a mean-field decoupling
scheme.

In this work, we provide a concise self-contained derivation
of the generalized SWT employed in Ref. [4]. First, we
derive the low-energy effective Hamiltonian of the SU(N )
Hubbard models by employing a generalized Schrieffer-Wolff
transformation (SWT) [12,13] inspired by a high-frequency
expansion [14] in the Floquet theory. Then we study the
correlation functions of doublons and holons, focusing on the
intermediate energy scale which lies between the larger energy
scale associated with the Hubbard bands and the smaller
scale with the quasiparticle peak. By adopting a mean-field
decoupling scheme, we briefly analyze the peak structure
in the local spectral functions related to the doublon-holon
dynamics. Finally, we argue that the peak structure becomes
more pronounced with increasing number N of particle
flavors, since the doublon-holon interaction acts on larger
Hilbert space. This is consistent with DMFT results from
Ref. [4].

II. LOW-ENERGY HAMILTONIAN

A. Generalized SWT

We consider the SU(N ) Hubbard model, which is the
simplest multiflavor generalization of the one-band Hubbard
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model for N = 2 spinful flavors. The Hamiltonian for the
SU(N ) Hubbard model,

H = U

2

∑
i

(n̂i − n̄)2

︸ ︷︷ ︸
≡HU

−μ
∑

i

n̂i︸ ︷︷ ︸
≡Hμ

+
∑
i,j ;ν

vij c
†
iνcjν

︸ ︷︷ ︸
≡Hv

, (1)

describes N symmetric flavors of fermions on a lattice, with
Coulomb interaction strength U , chemical potential μ, and
hopping amplitude v. Consequently, the Hamiltonian has
SU(N ) flavor symmetry. In this paper, we focus on the cases in
which the average occupation is integer, i.e., 〈n̂i〉 = n̄ ∈ N0.
In Eq. (1), ciν annihilates a particle of flavor ν = 1, . . . ,N

at site i. The Coulomb interaction HU yields finite energy
when the particle number n̂i ≡ ∑

ν c
†
iνciν at each site i deviates

from n̄. By preferring finite occupation n̄, this term contains
a significant portion of the chemical potential. With U

2 (n̂i −
n̄)2 = U

2 n̂i(n̂i − 1) + U ( 1
2 − n̄)n̂i + const., the first term on

the right-hand side is the “bare” Coulomb interaction, whereas
the second term represents an offset U (n̄ − 1

2 ) to the chemical
potential.

The term Hμ describes an additional fine tuning of the
chemical potential to ensure 〈n̂i〉 = n̄. For example, particle-
hole symmetry is given by n̄ = N/2 and μ = 0, resulting
in half filling 〈n̂i〉 = N/2. Otherwise for 〈n̂i〉 = n̄ �= N/2,
one typically has μ �= 0. Since, by construction, the term HU

contains the largest contribution to the total chemical potential,
we typically have |μ| � U .

Finally, the kinetic term Hv represents a hopping between
nearest neighbours with real hopping amplitude v, by defining
vij = vji = v when sites i and j are nearest neighbors and
vij = 0, otherwise.

1. Projected operators

The first step of the generalized SWT is to identify the
dominant high-energy term to be integrated out. In Eq. (1),
this is the Coulomb interaction term HU at energy scale U .
Given that the Coulomb interaction is solely sensitive to the
local occupation number of a specific site, it will be important
to meticulously keep track of the local site occupation when
considering individual hopping events as part of the kinetic
energy term in the Hamiltonian.

This requires one to introduce the projectors Pi,n onto the
subspace where a site i has n particles, with the completeness
relation,

N∑
n=0

Pi,n = 1. (2)

Then we can decompose a particle operator c
†
iν ,

c
†
iν =

N∑
n=1

Pi,nc
†
iν︸ ︷︷ ︸

≡c̃
†
iν;n

≡
∑

n

c̃
†
iν;n. (3)

Here, by definition, c̃
†
iν;n creates a particle at site i leading to

a final occupation of n particles. Conversely, c̃iν;n destroys a
particle starting from an initial site occupation of n particles.
Note that c̃iν;n = ciνPi,n = Pi,n−1ciν are projected operators

(also called Hubbard operators), and hence no longer satisfy
canonical fermionic anticommutation relations. We will use
the tilde as a reminder of this fact throughout. As already
indicated on the right-hand side of Eq. (3), the range of n is
[1,N ] unless specified otherwise.

For sufficiently large U , large charge fluctuations |ni −
n̄| > 1 will be suppressed in low-energy subspace due to large
Coulomb energy cost. (Here ni stands for the eigenvalue of an
operator n̂i .) So we distinguish doublon and holon operators,

d
†
iν ≡ c̃

†
iν;n̄+1, h

†
iν ≡ c̃iν;n̄, (4)

from the other projected operators c̃iν;n. They describe the
more relevant excitations in low-energy subspace. In the
following derivation, however, we will consider all possible
contributions to the effective Hamiltonian in an unbiased
way. Whether each contribution is relevant or not will be
determined by the nature of the phase we study, after all
possible contributions are collected first; see Sec. II C for more
details.

2. Rotating frame

In a second step, the generalized SWT considers a rotating
frame whose time evolution is generated by the term HU with
the largest energy scale U . A state |ψ(t)〉 in the laboratory
frame is transformed to |ψrot(t)〉 = eiHU t |ψ(t)〉 in the rotating
frame. This state evolves in time via the Schrödinger equation
i d

dt
|ψrot〉 = Hrot(t)|ψrot〉 in which the rotating frame Hamilto-

nian Hrot is related to the laboratory frame as

Hrot ≡ −HU + eiHU tHe−iHU t . (5)

In evaluating the term eiHU tHe−iHU t , the structure of the Baker-
Campbell-Hausdorff formula, eXYe−X = Y + [X,Y ] +
1
2! [X,[X,Y ]] + 1

3! [X,[X,[X,Y ]]] + · · · , suggests that it is
convenient to decompose the hopping term as

Hv =
∑
i,j ;ν

vij c
†
iνcjν

(3)=
∑
n,n′

∑
i,j ;ν

vij c̃
†
iν;nc̃jν;n′

︸ ︷︷ ︸
≡Hv;nn′

, (6)

where the constrained hopping terms Hv;nn′ only include
hopping between sites with fixed initial occupations. Then
the corresponding energy cost for this hopping process is
described by the special structure of the commutator,

[HU,Hv;nn′ ] = (n − n′)U · Hv;nn′ , (7)

where, importantly, Hv;nn′ again occurs intact on the right-hand
side. The prefactor (n − n′)U on the right-hand side is the cost
of Coulomb energy to arrive at the final charge configuration
after acting with Hv;nn′ on the initial charge configuration.
Consider then, e.g., the hopping process c̃

†
iν;nc̃jν;n′ in Hv;nn′

from site j to site i. If n = n′, there is no cost of Coulomb
interaction to be paid since initial and final charge configura-
tions are the same yet swapped, i.e., the charge configuration
changes from (ni,nj ) = (n − 1,n) to (n,n − 1). Conversely,
for n > n′, the charge imbalance ni − nj > 0 between sites i

and j further increases by acting with Hv;nn′ . Therefore the
Coulomb energy to be paid, (n − n′) · U > 0, is positive.

Due to the specific structure of the Coulomb interaction
in the Hubbard model, the prefactor on the right-hand side
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of Eq. (7) only depends on the difference n − n′. Hence we
can further group the terms Hv;nn′ with the same m ≡ n − n′,
resulting in

Hv =
N−1∑

m=−(N−1)

∑
n

Hv;n,n−m︸ ︷︷ ︸
≡Hv;m

, (8a)

where

[HU,Hv;m] = mU · Hv;m, (8b)

H †
v;m = Hv;−m. (8c)

The index range −N < m < N will be implied unless speci-
fied otherwise.

Now substituting Eq. (8b) into Eq. (5), we obtain the
rotating frame Hamiltonian,

Hrot = Hμ +
∑
m

Hv;meimUt . (9)

This is periodic in time with the driving frequencies given by
harmonics of the Coulomb interaction U .

3. Effective Hamiltonian

The last step of the generalized SWT is to average out fast
dynamics at frequency scale �U within the rotating frame
Hamiltonian Hrot. Thus one obtains an effective Hamiltonian
Heff that describes slow, i.e., nonstroboscopic dynamics. This
Heff is derived by applying the high-frequency expansion
to Hrot [12,13]. (In contrast, an effective Hamiltonian given
by the Magnus expansion generates the dynamics at exactly
stroboscopic times, e.g., multiples of 2π/U [13].) Then we
expand the Hamiltonian as a power series in the inverse
frequency 1/U , with the result,

Heff = Hμ + Hv;0 + Hv2/U + O(v3/U 2),
(10)

Hv2/U ≡
∑
m�=0

Hv;mHv;−m

mU
=

∑
m>0

[Hv;m,Hv;−m]

mU
.

Essentially, the newly generated term Hv2/U resembles second-
order perturbation theory in v/U , yet with subtle twists (see
discussion in Sec. II C). Via the commutator structure in
Eq. (10), only those terms in Hv2/U survive the lattice sums
in Hv;m and Hv;−m, for which the pair-wise nearest-neighbor
hoppings overlap with respect to the sites they act upon.
Hereafter we will neglect the term of order O(v3/U 2).

The nonstroboscopic time evolution of operators c̃iν;n in the
original laboratory frame is equivalent to the time evolution,
generated by Heff , of the dressed operators c̃iν;n which are
obtained by averaging out the fast motion of c̃iν;n [12,13]. We
find that c̃iν;n = c̃iν;n + O(v2/U 2), i.e., the correction to c̃iν;n

has the same order as the term in Heff/v to be neglected. Hence
we can consistently neglect both high-order terms, i.e., Heff ≈
Hμ + Hv;0 + Hv2/U and c̃iν;n ≈ c̃iν;n, to describe the original
nonstroboscopic dynamics of c̃iν;n up to order O(v/U ).

4. Pair hopping and symmetry

The effective low-energy Hamiltonian Heff cannot break the
symmetries present in the original Hamiltonian H . Here for

the SU(N ) Hubbard model, these are U (1)charge symmetry and
SU(N )flavor symmetry for general N . All parts that constitute
Heff , therefore, also must respect these symmetries.

The elementary building block in Hv in Eq. (6), is the
dimensionless operator,

�nm
ij ≡ vij

v

∑
ν

c̃
†
iν;nc̃jν;n−m, (11)

which encodes the phase of the hopping amplitude vij (with v

taken real and positive), as well as the nearest-neighbor lattice
structure of the Hamiltonian. Due to

Hv;m = v
∑
ij ;n

�nm
ij , (12)

the operator �nm
ij constitutes the kinetic energy Hv in Eq. (8a),

and thus subsequently also the effective interaction Hv2/U in
Eq. (10). �nm

ij preserves the U(1)charge ⊗ SU(N )flavor symme-
try, and therefore represents a scalar operator with respect to
these symmetries. Nevertheless, it is a non-Hermitian operator
in that it describes the directed and projected hopping process
from site j to site i.

For the projected hopping �nm
ij in Eq. (12), the case m = 1 is

special in that the state on which �
n,m=1
ij acts must have a com-

ponent with equal occupation n − 1 on both sites, i and j . This
operator can be symmetrized with respect to the lattice sites,

�
n,1
ij ;S ≡ 1

2

(
�

n,1
ij + �

n,1
ji

)
(13a)

= 1

2

∑
ν

(c†iνcjν + c
†
jνciν) · Pi,n−1Pj,n−1,

�
n̄+1,1
ij ;S

(4)= 1

2

∑
ν

(d†
iνh

†
jν + d

†
jνh

†
iν), (13b)

where in the last line n̄ = n − 1 represents the average integer
filling. Now when acting on an initial state |ψ〉, the operator
�

n̄+1,1
ij ;S first projects into the charge sector of n̄ particles on

both sites i and j , i.e., |ψ ′〉 ≡ Pi,n̄Pj,n̄|ψ〉 and then generates a
nearest-neighbor particle-hole excitation, i.e., a doublon-holon
pair, by transferring one particle from site j to site i or vice
versa. Note that �

n,1
ij ;S is still non-Hermitian.

For the case N = 2 with particle-hole symmetry, the
symmetrized operator �

2,1
ij ;S [i.e., having n̄ = 1 in Eq. (13b)]

generates a singlet in the particle-hole sector, and thus respects
larger symmetry: the SU(2)charge symmetry. For a single site,
half-filled states are singlets with respect to the SU(2)charge

symmetry, i.e., have charge quantum number C = 0, whereas
doublon and holon states represent a doublet with C = 1/2
[15]. Taking the half-filled case for two sites then, using
standard spin notation, i.e., ν ∈ {↑,↓}, we may start with the
spin singlet,

|Sij 〉 ≡ 1√
2

(c†i↑c
†
j↓ − c

†
i↓c

†
j↑)|0〉, (14a)

with |0〉 the vacuum state with no particles. From the above,
|Sij 〉 is also a charge singlet. Then the creation of a particle-hole
pair, i.e.,

|Cij 〉 ≡ �
n,1
ij ;S |Sij 〉 = 1√

2
(c†i↑c

†
i↓ − c

†
j↓c

†
j↑)|0〉, (14b)
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still yields a singlet, both in the SU(2)charge as well as
SU(2)spin symmetry [note that the raising operator C+

i ≡
sic

†
i↑c

†
i↓ within SU(2)charge comes with alternating sign factors

si on a bipartite lattice, such that nearest neighbors have the op-
posite sign [15]; then with C+

tot ≡ C+
i + C+

j and the lowering
operators C−

i ≡ (C+
i )†, given |Cij 〉 ∝ (C+

i − C+
j )|0〉, it holds

C±
tot|Cij 〉 = 0].

From this we conclude that for the specific case m = 1,
in contrast to �

n,1
ij , it is the symmetrized operator �

n,1
ij ;S

in Eq. (13) that has scalar symmetry character in the spin
sector and for N = 2 also in the charge sector, and thus
respects larger symmetry. It is in this sense that we consider
the symmetrized operator �

n,1
ij ;S in Eq. (13) more suitable to

define a simple scalar order parameter also for general N

(see Sec. III below).

B. Effective interactions

The term Hv2/U in Eq. (10) includes four types of second-
order processes: two two-site and two three-site processes.
The two-site processes are (i) hopping back and forth without
actual particle transfer which leads to an �S · �S (ss) type
flavor-flavor interaction, and (ii) hopping of a pair of particles
between nearest-neighbor sites which relates to doublon-holon
(dh) dynamics. The three-site processes appear on three
neighboring sites in that two of them (say j �= k) are nearest
neighbors of site i. Then the three-site processes consist of (iii)
hopping j → i and hopping i → k, resulting in a correlated
hopping (coh) of a particle from site j to k that depends
on the state of site i, and (iv) creation (annihilation) of a
pair of particles at site i originating from (splitting towards)
sites j and k, respectively. The latter represents two processes
which are Hermitian conjugates of each other, i.e., doublon-
holon creation and annihilation (dhx). Therefore, overall,
we have

Hv2/U = Hss + Hdh + Hcoh + Hdhx︸ ︷︷ ︸
≡H3-site

. (15a)

By now, for simplicity, we also can role back the commutator
in Eq. (10) to a plain product by reintroducing m < 0 in the
sum, which leads to

Hss =
∑
i,j ; n

m �= 0,1

v2

mU
· �nm

ij

(
�nm

ij

)†

≡
∑
i,j ; n

m �= 0,1

v2

mU

(
−2 �Si · �Sj + n̂i(N − n̂j )

N

)
Pi,nPj,n−m−1,

(15b)

Hdh = v2

2U

∑
i,j ;n

(
�

n,1
ij + �

n,1
ji

) · (
�

n,1
ij + �

n,1
ji

)†
(13)≡ 2v2

U

∑
i,j ;n

�
n,1
ij ;S

(
�

n,1
ij ;S

)†
, (15c)

Hcoh ≡
∑
ijk; n
m �= 0

v2

mU
�nm

ij

(
�nm

ik + �nm
kj

)†
, (15d)

Hdhx ≡
∑
ijk; n
m �= 0

v2

mU
�nm

ij

(
�

n+m−1,m
ki + �

n−m+1,m
jk

)†
. (15e)

Each term above will be derived and discussed next.
The effective spin-spin interaction Hss originates from

Hss ≡
∑
ij

νν ′

∑
nn′

m �= 0,1

|vij |2
mU

· c̃
†
iν;n c̃jν;n−m · c̃

†
jν ′;n′−m︸ ︷︷ ︸

∝δnn′

c̃iν ′;n′ ,

which together with Eq. (11) yields Eq. (15b). Here the
m = 1 term has been deliberately excluded, which may appear
artificial, at first glance. After all, it represents a second-order
hopping process that leaves the charge configuration intact
and hence one may assign to Hss . Nevertheless, for symmetry
reasons, it will rather be associated with Hdh, as explained
below. The flavor-flavor interaction in the first line of Eq. (15b)
can be written in terms of SU(N ) spin operators, since

�nm
ij (�nm

ij )† =
∑
νν ′

c
†
iνcjνc

†
jν ′ciν ′︸ ︷︷ ︸

=c
†
iν ciν′ (δνν′ −c

†
jν′ cjν )

·Pi,nPj,n−m−1

=
(

−2 �Si · �Sj + n̂i − 1

N
n̂in̂j

)
· Pi,nPj,n−m−1,

(16)

where �Si ≡ 1
2

∑
νν ′ c

†
iν[ �G]νν ′ciν ′ is the SU(N ) generalization

of the spin operator, and �G = (G1, . . . ,GN2−1) is the set of
SU(N ) symmetry generators in the defining representation
with the conventional normalization Tr(GaGb) = 2δab. Here
we have used the identity,∑

νν ′
c
†
iνciν ′ · c

†
jν ′cjν = 2 �Si · �Sj + 1

N
n̂in̂j ,

having N symmetric flavors. This leads to the second line in
Eq. (15b).

The effective doublon-holon term Hdh in Eq. (15c) origi-
nates from the pair hopping,

H̃dh ≡
∑
ij

νν ′

∑
nn′

m �= 0

v2
ij

mU
· c̃

†
iν;nc̃jν;n−m · c̃

†
iν ′;n′−mc̃jν ′;n′︸ ︷︷ ︸

∝ δnn′ δm,1

(11)= v2

U

∑
i,j ;n

�
n,1
ij

(
�

n,1
ji

)†
, (17)

where the tilde on H̃dh indicates the initially strict constraint
to the transfer of a pair of particles. In order for the Coulomb
interaction energy before and after the second-order process
of a pair hopping to be the same, the charge configurations
must be the same, yet reversed. This is the underlying natural
reason for obtaining the constraint m = 1.

Now as discussed with Eqs. (13) and (14) above, for
this specific case of m = 1, the individual terms in Eq. (17)
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do not respect the SU(2)charge symmetry if present. In the
same manner, as a �Ci · �Cj interaction, with �C the pseudospin
operator in the particle-hole channel for N = 2, includes a
Cz

i C
z
j term that leaves the local charge configuration intact, it

is desirable to symmetrize Eq. (17). Therefore based on the
earlier discussion with Eqs. (13) and (14), above, we define

Hdh ≡ H̃dh + v2

U

∑
i,j ;n

�
n,1
ij

(
�

n,1
ij

)† = 2v2

U

∑
i,j ;n

�
n,1
ij ;S

(
�

n,1
ij ;S

)†
.

Here the term added to H̃dh exactly recovers the m = 1 term
that has been already intentionally excluded from Eq. (15b)
above exactly for this reason.

For the case N = 2 with particle-hole symmetry then, Hss

and Hdh reduce to [4]

Hss = v2

U

∑
〈i,j〉

4�Si · �Sj − Pi1Pj1,

Hdh = 2v2

U

∑
〈i,j〉

(c†j1c
†
j2ci2ci1 + Pi2Pj0) + (i ↔ j )

= v2

U

∑
〈i,j〉,ν,ν ′

(h†
iνd

†
jν + h

†
jνd

†
iν)(diν ′hjν ′ + djν ′hiν ′),

where the flavor operator �Si reduces to the standard SU(2) spin
operator �Si , and 〈i,j 〉 indicates nearest neighbor pairs of sites.
In this case, the only remaining terms are n = 1 and m = −1
for Eq. (15b), and n = n̄ + 1 = 2 for Eq. (15c). Here Hss and
Hdh can also be written as the projectors,

Hss = −4v2

U

∑
〈i,j〉

|Sij 〉〈Sij |, (18a)

Hdh = 4v2

U

∑
〈i,j〉

|Cij 〉〈Cij |, (18b)

with |Sij 〉 and |Cij 〉 as defined in Eq. (14).
The three-site effective interactions in Eq. (15d) and

Eq. (15e), finally, are derived in complete analogy to the above
without any further ado.

C. Interpretation in terms of second-order perturbation theory

Though the effective Hamiltonian in Eq. (10) is derived
by employing the high-frequency expansion from Floquet
theory, it can be understood in an easier way. Indeed, the
term Hv;mHv;−m/mU simply describes a second-order virtual
process in which an intermediate state differs in energy from
the initial and the final states by −mU due to the Coulomb
interaction HU . The way in which such second-order terms are
included into the effective Hamiltonian is similar to what is
done in the perturbation theory approach to the SWT [16,17].

However, there is a subtle difference. In the perturbation
theory approach, the intermediate state has clearly higher
energy than those of the initial and the final states. Here,
in contrast, the terms Hv;mHv;−m/mU with m > 0 are also
incorporated in Eq. (10), that is, the intermediate state can
have “lower” interaction energy by −mU < 0. At first glance,
it seems to be contradictory to the spirit of the SWT that the

virtual process, starting from and ending at a low-energy sub-
space, should involve an intermediate state of higher energy.

To resolve this, we remark that the denominator mU is
the energy difference measured by only the local Coulomb
interaction HU , not by the full Hamiltonian that also includes
kinetic energy. The Fermi-liquid ground state in the metallic
phase involves local charge fluctuations, which give rise to
its metallicity. Acting with Hv;−m (m > 0) onto this ground
state will decrease the Coulomb energy 〈HU 〉 by mU , but
increase the total energy 〈H 〉, since it is not the ground state
anymore. Thus the intermediate state implied by the terms
Hv;mHv;−m/mU of m > 0 (e.g., Hdh originating from m = 1)
has higher energy. On the other hand, in the insulating phase,
the ground state is mainly spanned by the basis in which the
lattice sites are filled with the average integer occupation n̄. The
contribution of doublons and holons to the ground state is finite
but small, as shown in Ref. [18]. Thus, contrary to the metallic
case, the terms Hv;mHv;−m/mU of m > 0 become much less
relevant to the low-energy subspace in the insulating phase.

Therefore the summation over all possible values of m,
positive as well as negative, is not contradictory at all. It
is rather an unbiased way of including all second-order
processes, without pre-defining any low-energy subspace. In
other words, the construction of the effective Hamiltonian
in Eq. (10) represents all possible “slow” processes, i.e.,
dynamics within an energy window of narrow width ∼v2/U .
In contrast, the t-J model does not contain the doublon-holon
term Hdh, since the terms of m > 0 in Eq. (10) are neglected
by the assumption that the half-filled subspace is low-energy
subspace. In this sense, the t-J model provides an incomplete
description for the metallic phase.

III. MEAN-FIELD DECOUPLING SCHEME FOR
DOUBLON AND HOLON CORRELATORS

We utilize the equations of motion approach to compute
the correlators of the projected particle operators c̃iν;n whose
time evolutions are generated by the effective Hamiltonian of
the SU(N ) Hubbard model. The effective Hamiltonian is given
by Heff in Eqs. (10) and (15) while neglecting terms of order
O(v3/U 2). The equation of motion for the correlator in the
frequency domain is given by

ω+〈c̃iν;n‖c̃†i ′ν;n′ 〉ω = 〈{c̃iν;n,c̃
†
i ′ν;n′ }〉 − 〈[Heff,c̃iν;n]‖c̃†i ′ν;n′ 〉ω,

(19)

where 〈A‖B〉ω ≡ ∫
dt eiω+t 〈A‖B〉t with ω+ ≡ ω + i0+

and 〈A‖B〉t = GAB(t) ≡ −iϑ(t)〈{A(t),B(0)}〉T , assuming
fermionic operators A and B, i.e., containing an odd number of
(projected) fermionic creation and annihilation operators. For
bosonic operators A and B, such as for the charge susceptibil-
ity χc(ω) ≡ 〈δn̂i‖δn̂i〉ω (δn̂i ≡ n̂i − 〈n̂i〉) the anticommutator
would be replaced by the commutator [A(t),B]. In Eq. (19) we
consider general locations i and i ′ in the correlator which will
be required for the Fourier transform to momentum space later.
Since Heff is not quadratic, the equations of motion generated
by Eq. (19) do not close.

The mean-field and the decoupling approximations to close
the equations of motion are as follows. First, we regard the
paramagnetic metallic ground state as the condensate of the
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pair of doublon- and holon-like excitations, e.g., created by the
action of �n1

ij ;S [cf. Eq. (13)] which represents a projected part
of the hopping Hamiltonian Hv [cf Eqs. (8a) and (12)]. Follow-
ing the discussion in Secs. II A 4 and II B, the condensate also
respects charge and spin symmetries, i.e., does not break them
in the metallic phase. (In the insulating phase, on the other
hand, the doublon-holon pair does not condense, since charge
fluctuations are largely suppressed; see Sec. II C above.)

Accordingly we define the mean-field variables,


n ≡ −v
〈(
�n1

ij ;S

)†〉 = −v

2

〈(
�n1

ij + �n1
ji

)†〉
, (20)

which is positive when the expectation value is taken with the
Fermi-liquid ground state of the metallic phase. For U = 0,
it is clear that the expectation value of the hopping term
is negative, 〈Hv〉 = ∑

ij vij 〈c†i cj 〉 < 0, by filling states with
negative one-particle energies. The operator v(�n1

ij ;S)†, which
annihilates a doublon-holon pair, is nothing but a summand
of a projected hopping Hv;−1 [cf. Eqs. (11) and (12)], thus
the expectation value v〈(�n1

ij ;S)†〉 is also negative. The overall
sign is not changed even in the competition between the
kinetic energy 〈Hv〉 and the Coulomb energy 〈HU 〉. Using
the mean-field variable 
n, we rewrite Eq. (15c),

Hdh ≈ −v

U

∑
〈ij〉;n


n

(
�n1

ij + �n1
ji

) + H.c. (21)

For the SU(2) case, there is only one type of pair excitations,
namely for n = 2 (due to the range of n), i.e., 
dh = 
n=2.

Second, we decouple the flavor and charge operators from
the correlators of interest, since we focus on the subpeaks
on the intermediate energy scale away from those of the
quasiparticle peak and the Hubbard bands. Charge fluctuations
explore high energy scales on the order of U , i.e., the region of
the Hubbard bands, which are integrated out by the generalized
SWT. Flavor fluctuations [equivalent to spin in the case
of N = 2 flavors], on the other hand, typically remain in
the low-energy sector. Consistently, in the local density of
states (spectral function) the spin fluctuations predominantly
contribute to the quasiparticle peak around ω = 0, whereas the
Hubbard side bands are largely integrated out except for their
inner subpeak structure. This separation of the energy scales

for charge and spin fluctuations appears as the separation of the
peak positions of charge and spin susceptibilities; see Fig. 1
of Ref. [4].

Now the commutator [Heff,c̃iν;n] in Eq. (19) results in a
sum of two- and three-site terms, say OiOj or OiOjOk ,
which group all local operators acting on sites i, j , and
k, respectively. Moreover, these local operators, say Oi

on site i, comprise one, two, or three projected particle
operators c̃iν;n. The local operators made of two projected
operators can be classified into three types: pair creation
and annihilation (c̃iν;nc̃iν ′;n+1)(†), spin flip c̃

†
iν;nc̃iν ′;n (ν �= ν ′),

and charge measurement c̃
†
iν;nc̃iν;n ∝ Pi,n. We decouple such

local operators made of two projected operators, say O ′
i , from

the correlators, e.g., 〈O ′
iOj‖Ok〉ω ≈ 〈O ′

i〉〈Oj‖Oi〉ω. Since the
metallic ground state conserves the total number of particles of
each flavor

∑
i niν and is not flavor polarized, only the charge

measurement type of local operator has finite expectation
value. Hence we need to expand the � terms in Heff in favor
of the new shortcuts,

An
iν ≡ c̃

†
iν;nc̃iν;n → 〈

An
iν

〉 = n

N
〈Pin〉, (22a)

Bn
iν ≡ c̃iν;nc̃

†
iν;n → 〈

Bn
iν

〉 = N − n + 1

N
〈Pi,n−1〉, (22b)

c̃
†
iν;nc̃iν ′;n′ → 〈

c̃
†
iν;nc̃iν ′;n′

〉 = 0 if ν �= ν ′, (22c)

c̃iν;n−1c̃iν;n → 〈
c̃iν;n−1c̃iν;n

〉 = 0. (22d)

Furthermore, we neglect the three-site terms OiOjOk in the
commutator [Heff,c̃iν;n] where all Oi , Oj , and Ok are made of
an odd number of projected particle operators. We presume that
these approximations can be compensated by renormalizing
the system parameters.

With this, the first term on the right-hand side of Eq. (19)
becomes

〈{c̃iν;n,c̃
†
i ′ν;n′ }〉 = δii ′δnn′

〈
An

iν + Bn
iν

〉
.

Note that the c̃ operators do not obey fermionic commutator
relations, hence the result here is not just given by canonical
fermionic commutator relations.

Now we expand the commutator [Heff,c̃iν;n] in Eq. (19)
term by term. From Eq. (10), we have

[Hμ,c̃iν;n] = −μ
∑
in′

[n′Pin′ ,c̃iν;n] = μc̃iν;n, (23)

[Hv,0,c̃iν;n] =
∑

i ′j ′ν ′;n′
vi ′j ′

[
�

n′,0
i ′j ′ ,c̃iν;n

]
︸ ︷︷ ︸

∝δi′ i δν′ν+···

≈ −〈
An

iν + Bn
iν

〉 ∑
j

vij c̃jν;n, (24)

where . . . means the terms to be neglected via the decoupling approximation in Eq. (22). The sum 〈An
iν + Bn

iν〉 in Eq. (24) is the
remnant of the commutator. Similarly for the doublon-holon term,

[Hdh,c̃iν;n] ≈ −v

U

∑
jn′

[

n′�n′1

ij + 
∗
n′
(
�n′1

ji

)† + · · · ,c̃iν;n
] ≈ 〈

An
iν + Bn

iν

〉∑
j

vij

(

n

U
c̃jν;n−1 + 
∗

n+1

U
c̃jν;n+1

)
, (25)

and for the flavor-flavor interactions,

[Hss,c̃iν;n] =
∑
jn′

∑
m�=0,1

v2

mU

[
�n′m

ij

(
�n′m

ij

)† + �n′m
ji

(
�n′m

ji

)†
,c̃iν;n

]
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=
∑
jν ′

∑
m�=0,1

|vij |2
mU

((
An−1

iν ′ Bn−m−1
jν ′ + Bn

iν ′A
n+m
jν ′

)
c̃iν;n − c̃iν;n

(
An

iν ′B
n−m
jν ′ + Bn+1

iν ′ An+m+1
jν ′

)) + · · ·

(22)≈
∑

j

∑
m�=0,1

|vij |2
mU

(
(n − 1)

〈
Bn−m−1

jν(′)
〉 + (N − n + 1)

〈
An+m

jν(′)
〉 − n

〈
Bn−m

jν(′)
〉 − (N − n)

〈
An+m+1

jν(′)
〉)
c̃iν;n, (26)

where the sum over ν ′ survives the commutator in the first line, since the �’s include projectors. The mean-field averaging in
the third line is performed on the quadratic operators A and B at site j only. Consequently, with 〈Bn′

jν(′)〉 assumed independent
of ν ′ (hence the brackets around the prime), the sum over ν ′ can be performed for the three operators acting on site i: e.g.,∑

ν ′ A
n−1
iν ′ c̃iν;n = ∑

ν ′ c
†
iν ′ciν ′ · Pi,n−1ciν = (n − 1)c̃iν;n.

Finally for the three-site term, with Eq. (15a), we have

[H3-site,c̃iν;n] = [Hcoh + · · · ,c̃iν;n]
(15d)=

∑
k,j �=i;n′

∑
m�=0

v2

mU

[
�n′m

kj

(
�n′m

ki

)† + �n′m
ik

(
�n′m

jk

)† + · · · ,c̃iν;n

]

=
∑
k,j �=i

∑
m�=0

vikvkj

mU

(
c̃jν;nA

n+m
kν

(
An

iν + Bn
iν

) − c̃jν;nB
n−m
kν

(
An

iν + Bn
iν

)) + · · ·

≈
∑
k,j �=i

∑
m�=0

vikvkj

mU
c̃jν;n

〈
An+m

kν + Bn+m
kν

〉〈
An

iν + Bn
iν

〉
, (27)

where for the last line we relabeled m → −m on the second part of the second line. With the approximations above, the system
of equations of motion is in closed form now.

A. The case of N = 2

In this subsection, we consider the example of the SU(2) Hubbard model at half filling. It holds by symmetry then that μ = 0,
and 〈Pi0〉 = 〈Pi2〉 = (1 − 〈Pi1〉)/2. Therefore 〈An

iν + Bn
iν〉 = 1

2 for n = 1,2. The projected particle operators are doublon and

holon operators, diν = c̃iν;n=2, h
†
iν = c̃iν;n=1, and there is only one mean-field variable 
n=2 = 
dh. From the above derivation

for general N , we obtain

−[Heff,diν] ≈
∑

j

vij

2

[
djν − 
dh

U
h
†
jν + 2vji

U
〈Pi1〉diν

]
+

∑
k,j �=i

vikvkj

4U
djν, (28a)

−[Heff,h
†
iν] ≈

∑
j

vij

2

[
h
†
jν − 
∗

dh

U
djν − 2vji

U
〈Pi1〉h†

iν

]
−

∑
k,j �=i

vikvkj

4U
h
†
jν . (28b)

In this system of equations, only the doublon and holon
operators of the same flavor index ν are related; hereafter,
we drop the index ν for simplicity.

For the DMFT calculations in Ref. [4], we considered
a lattice which has semielliptic density of states, ρ0(ω) =

2
πD2

√
D2 − ω2. The Bethe lattice has such a density of states,

but solving the system of equations in Eq. (28) on the Bethe
lattice is not simple; the Fourier transform is not applicable
to the Bethe lattice since it is not translationally invariant in
Euclidean space. Instead, we consider the hypercubic lattice in
infinite dimensions (where one can use the Fourier transform)
which approximates the semielliptic density of states for small
energies. The density of states for such hypercubic lattice is
Gaussian [19],

ρhc(ω) = 1

v
√

2πz
e−(ω/v

√
2z)2

, (29)

where v scales as 1/
√

z depending on coordination number
z → ∞. Here we set D ≡ v

√
z [contrary to D = 2v

√
z for

the semielliptic ρ0(ω)] so that two density of states ρ0(ω) and

ρhc(ω) are the same for small energies |ω| � D up to the
overall factor,

ρ0(ω) = 2

πD

(
1 − ω2

2D2

)
+ O(ω4/D4),

ρhc(ω) = 1√
2πD

(
1 − ω2

2D2

)
+ O(ω4/D4). (30)

We introduce the doublon and holon operators in momen-
tum space,

dpα ≡
√

2

Ns

∑
i∈α

e−ip·ri di , hpα ≡
√

2

Ns

∑
i∈α

e−ip·ri hi,

where we have dropped the flavor index ν as noted after
Eq. (28). Here p is the linear momentum (using units of h̄ = 1),
Ns the total number of lattice sites, and ri the location of
site i. Given the nearest-neighbor hopping on a hypercubic
lattice, the hopping connects two bipartite sublattices, labeled
α = A,B.
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We now rephrase Eq. (28) in matrix form. With

�Op ≡ (dpA,h
†
−pA,dpB,h

†
−pB), (31a)

[Gp(ω)]mn ≡ 〈Opm‖O†
pn〉ω, (31b)

and using the relations for a periodic inversion symmetric
lattice,

εp ≡
∑

j

vij e
ip·(rj −ri ) = ε−p, (32a)

ε2
p − D2 =

∑
j,k �=i

vij vjke
ip·(rk−ri ), (32b)

we obtain (where scalar numbers are implicitly multiplied by
the four-dimensional identity matrix I4×4),

[ ω+ − Hp ] Gp(ω) = 1
2 , (33a)

where

Hp ≡εp

2

⎛
⎜⎝

1
1

1
1

⎞
⎟⎠ − εp

2U

⎛
⎜⎝


∗
dh


dh


∗
dh


dh

⎞
⎟⎠

+ D2(4〈Pi1〉 − 1) + ε2
p

4U

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠, (33b)

with zero-matrix elements not shown, for readability. From this
matrix equation, we compute the local correlators as follows.
For an arbitrary but fixed value of noninteracting kinetic
energy εp, we diagonalize Hp to obtain energy eigenvalues
λk and corresponding eigenvectors �uk (k = 1, . . . ,4). Figure 1
shows for how λk depends on U and εp. Then, for each
k, the (m,n) element of the 4 × 4 matrix �uk �uT

k /2 gives the
contribution to the imaginary part of the correlators, i.e.,
[Ap]mn ≡ −1

π
Im[Gp]mn, at energy ω = λk as follows:

[Ap(ω)]mn =
4∑

k=1

[ �uk(εp)�uT
k (εp)

2

]
mn

δ(ω − λk(εp)),

where the factor 1/2 to the matrix �uk �uT
k originates from the

right-hand side of Eq. (33a), and the indices m and n are
defined by Eq. (31). With this, we obtain the local correlator
in real space, say at site i,

[Ai(ω)]mn ≡ −1

π
Im〈Oim‖O†

in〉ω =
∫ ∞

−∞
dp [Ap(ω)]mn

=
∫ ∞

−∞
dεp ρhc(εp) [Ap(ω)]mn

=
∫ ∞

−∞
dεp

4∑
k=1

[ �uk(εp)�uT
k (εp)

2

]
mn

× ρhc(εp) δ(ω − λk(εp)), (34)

where �Oi is the same as in Eq. (31), except the replacement
±p → i. In practice, we solve the analytical expressions in
Eq. (34) numerically. For this, (i) we take a grid for εp, and
replace the integral with a numerical summation. (ii) We

FIG. 1. Mean-field analysis of the SU(N = 2) Hubbard model.
(a), (b) The correlation functions of doublons and holons, Add† (ω)
and Adh(ω), have peaks at ω = ±ωdh. Gray shading at higher
(lower) energy windows indicate that large (small) energy scales
have been neglected by the specific type of mean-field and decoupling
approximations employed on top of the generalized SWT. (c), (d) The
eigenvalues λk of Hp in Eq. (33b). Dashed vertical lines indicate the
locations of λk = ±ωdh. Each row of panels are for the same value
of U . Here we used a fixed value of 
dh = 2.91D, which is equal to
the critical interaction strength Uc2, and the U -dependent values of
〈Pi1〉 taken from the DMFT calculations in Ref. [4].

diagonalize the matrix Hp for each value of εp. Then the
contribution to [Ap(ω)]mn will be given as the collection of
δ functions at λk(εp). Finally, (iii) we replace the δ functions
in frequency space with the Gaussians of a finite but narrow
width that just interpolates the discrete intervals.

The components [Ap(ω)]mn with (m,n) = (1,1) and (2,1)
[or equivalently (m,n) = (3,3) and (4,3)] are equivalent
to the spectral functions Add† (ω) ≡ − 1

π
Im〈diν‖d†

iν〉ω and

Ah†d† (ω) ≡ − 1
π

Im〈h†
iν‖d†

iν〉ω, respectively, as shown in Fig. 1.
They exhibit peaks at ω = ±ωdh. Due to the operator identity
ciν = diν + h

†
iν for the case N = 2, the sum of the correlation

functions of doublons and holons is equivalent to the Green’s
function of the particle, that is,

A(ω) = Add† (ω) + Ah†d† (ω) + Adh(ω) + Ah†h(ω), (35)

where A(ω) is the local spectral function. In the given SU(2)
case, the particle-hole symmetry results in the symmetry of the
correlation functions, Add† (ω) = Ah†h(−ω) and Ah†d† (ω) =
Ah†d† (−ω) = Adh(ω) = Adh(−ω). Thus the peaks of corre-
lation function Add† (ω) and Ah†d† (ω) directly correspond to
the peak features in A(ω).

The mean-field decoupling scheme underlying Eq. (33)
above deserves a few comments. First, by the specific approx-
imations taken, we cut out both the low-energy spin dynamics
and high-energy charge dynamics. Therefore, in contrast to
the numerical results presented in Ref. [4], the analytically
obtained curves in Fig. 1 capture neither the low-energy peak
at the Fermi energy near ω = 0 related to spin dynamics, nor
the Hubbard bands, as indicated by the gray shaded areas in
Fig. 1.

Second, the mean-field decoupling scheme as introduced
above is at the level of equations of motion for correlation
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functions that take two parameters, namely 〈Pi1〉 and 
dh, as
input. Solving these mean-field equations for the correlation
functions does not offer a simple way to recompute 〈Pi1〉
and 
dh, e.g., to determine these parameters self-consistently,
contrary to other mean-field approaches such as the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity. Instead,
the values of 〈Pi1〉 and 
dh do depend on the dynamics at
the decoupled energy scales. For example, our first parameter
〈Pi1〉 is directly related to the charge susceptibility χc(ω) at all
frequencies since, e.g., at half filling and T = 0 [20],∫ ∞

0
dω χc(ω) = 〈(δn̂i)

2〉 = 〈Pi0〉 + 〈Pi2〉 = 1 − 〈Pi1〉.
(36)

Indeed, χc(ω) has a peak largely overlapping with the upper
Hubbard band (e.g., see Fig. 1 in Ref. [4]). As a sensible choice
for this mean-field parameter, in practice, we simply take the
(exact) numerical data for 〈Pi1〉 from our DMFT calculations
(see Fig. S2 in Ref. [4]).

Similarly, the second parameter in our mean-field de-
coupling scheme, 
dh = v

2

∑
ν〈diνhjν + djνhiν〉, is a static

expectation value with respect to the ground state of the
low-energy effective Hamiltonian. Thus the value of 
dh can
be interpreted as a property of Fermi-liquid quasiparticles. Fur-
thermore, given the general property Add† (ω = 0) = Adh(ω =
0) = 1/2π which is constant within the metallic phase for
arbitrary U < Uc2 at T = 0, as also supported by our DMFT
results in Ref. [4], we take this as an indication that the mobility
of the quasiparticles is rather independent of U [similarly, the
transmission probability in impurity models at T = 0 is related
to the value of the spectral function A(ω) at ω = 0 [21], and
not the width of the quasiparticle peak around ω = 0.] Accord-
ingly we choose a constant 
dh = v

2

∑
ν〈diνhjν + djνhiν〉 for

U < Uc2. We tested different values of 
dh as a free parameter,
and found that with 
dh = Uc2 we can reproduce the DMFT
results in Ref. [4] of the subpeak position ωp over a range of U

up to a constant prefactor; ωp � 4.703 × ωdh. Here Uc2 is the
critical interaction strength for the metal-to-insulator transition
at zero temperature which our DMFT calculation [4] identifies
as Uc2 = 2.91(1)D for the semicircular density of states of the
lattice.

With the choice of 
dh and 〈Pi1〉 as discussed above, we
demonstrated in Ref. [4] that the peak position ωdh of the
analytically calculated correlation functions decreases linearly
with increasing U , with overall qualitative agreement with the
DMFT data [see Fig. 3(b) of [4] for details].

IV. DOUBLON-HOLON INTERACTION
WITH MORE FLAVORS

In Ref. [4] we have also presented DMFT results for
N > 2 flavors. The analysis in Sec. III cannot predict how
the spectral weight of the subpeaks changes by considering
N > 2 flavors, since the analysis above does not consider the
quasiparticle peak and the Hubbard bands at all; therefore the
relative transfer of spectral weight among different spectral
features is beyond the scope of that analysis. Nevertheless, the
low-energy effective interaction Hdh in Eq. (15c) does exhibit
an enlarged degeneracy of the doublon-holon pair excitations

TABLE I. The Young tableaux describing the SU(N )flavor sym-
metry sectors and their degeneracies for the projectors and the
two-site interactions. Here we use the degeneracy, i.e., dimension,
of a multiplet as an additional label to the Young tabelau, where q̄

refers to the dual representation of q. Given a single local flavor index
ν = 1, . . . ,N of fermionic character, the local multiplet for a single
lattice site necessarily needs to be antisymmetric, i.e., a single column
in a Young tableau. The third column for Pin̄Pjn̄ then combines two
such Young tableaux at the specific integer filling n̄ ≡ 〈n̂i〉 = �N/2�
chosen here as well as in the DMFT calculations in Ref. [4]. On
the left-hand side of the equations in the fourth column, one particle
(box) has been transferred across the two sites, as compared with the
left-hand side tableaus in the third column. The last column shows
the intersection of the resulting symmetry sectors of the previous two
columns, which thus represents the relevant block-diagonal symmetry
sectors of Hss and Hdh. This is identical with the result of the fourth
column for Pi,n̄±1Pj,n̄∓1. A singlet is given by (·), i.e., no box in the
tableau, or, equivalently, by a full column of N boxes.

N n̄ Pin̄Pjn̄ Pi,n̄±1Pj,n̄∓1 Hss, Hdh

2 1
⊗ = ⊕ (·) ⊗ (·) = (·) (·)
2 ⊗ 2 = 3 ⊕ 1 1 ⊗ 1 = 1 1

3 1
⊗ = ⊕ ⊗ (·) =

3 ⊗ 3 = 6 ⊕ 3 3 ⊗ 1 = 3 3

4 2
⊗ = ⊕ ⊕ (·) ⊗ = ⊕ (·) ⊕ (·)

6 ⊗ 6 = 20 ⊕ 15 ⊕ 1 4 ⊗ 4 = 15 ⊕ 1 15 ⊕ 1

with increasing N , which originates from the larger SU(N )
flavor symmetry. As shown in Fig. 4 in Ref. [4], this eventually
results in a wider peak at ω = 0 due to the spin dynamics via
Hss , as well as more pronounced subpeaks on the inner edge
of the Hubbard side bands due to doublon-holon dynamics via
Hdh.

For a more detailed analysis of relative degeneracies,
we study the SU(N ) flavor symmetry properties of the
two-site interaction terms Hss and Hdh in Eqs. (15b) and
(15c), respectively, by using Young tableaux. The building
blocks of Hss and Hdh are the projected hoppings �nm

ij =
(PinPj,n−m−1)(

∑
ν c

†
iνcjν)(Pi,n−1Pj,n−m) [cf. Eq. (11)]. In the

joint Hilbert space of sites i and j , �nm
ij is block diagonal in the

symmetry sectors of the U(1)charge ⊗ SU(N )flavor symmetry,
since each of the terms above respects this symmetry.

When U is large, charge configurations far away from
the average occupation n̄ are suppressed albeit still present
even if the system is in the metallic phase. Then the relevant
charge sectors are restricted to (ni,nj ) = (n̄,n̄) for Hss and
(ni,nj ) = (n̄ + 1,n̄ − 1),(n̄ − 1,n̄ + 1) for Hdh. These charge
configurations are connected by the elementary building block
of Hss and Hdh, namely �nm

ij and (�nm
ij )†. Thus we will

compute the symmetry sectors of the projectors Pin̄Pjn̄ and
Pi,n̄±1Pj,n̄∓1 which act on the left or right of �nm

ij , depending
on the value of m. In this section, we focus on the filling
n̄ = 〈n̂i〉 = �N/2� as considered in Ref. [4]. A generalization
to arbitrary integer filling n̄ is straightforward.

Table I shows the SU(N )flavor symmetry labels and the
corresponding degeneracies of the projectors and the two-site
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interactions. Note that the U(1)charge symmetry labels are
trivially the sum ni + nj . We observe that the SU(N )flavor

symmetry sectors for Pin̄Pjn̄ and Pi,n̄±1Pj,n̄∓1 are different,
by comparing the third and the fourth columns in Table I.
Therefore the symmetry sectors that are relevant for Hss and
Hdh, are given by the common sectors, i.e., the intersection
between the sectors for Pin̄Pjn̄ and Pi,n̄±1Pj,n̄∓1; see the last
column in Table I.

For N = 2, we notice that the pair states onto which Hss

and Hdh project [cf. Eq. (18)] are in the singlet sector of
the SU(2)flavor symmetry, that is, the spin-spin interaction
prefers the spin singlet (with binding energy −4v2/U ) and
the doublon-holon pair (once it exists, with excitation energy
4v2/U ) is nondegenerate. On the other hand, the low-energy
sectors for SU(N > 2) have larger degeneracy, i.e., lie in
symmetry sectors with larger multiplet dimensions. For N =
3, the doublon-holon pair excitation with energy 4v2/U and
the flavor-flavor bound state with energy −4v2/U are in the
threefold degenerate sector , as seen from the last column
in Table I. For N = 4, the pair excitations have two different
energies, 4v2/U and 12v2/U , in the 15-fold degenerate sector

and the nondegenerate singlet sector (·), respectively (see
the last column in Table I). The flavor-flavor bound states are
also in these two sectors with the respective binding energies
−4v2/U and −12v2/U .

This symmetry argument explains the strong enhancement
of the subpeaks observed [4] in the local spectral functions
A(ω) for larger N (cf. Fig. 4 in Ref. [4]), compared with
N = 2 case (cf. Fig. 1 in Ref. [4]). The subpeaks gain more
spectral weight for larger N and even become higher than
the rest of the Hubbard bands for N = 4, consistent with the
increasing degeneracy of doublon-holon pairs: 1 for N = 2,
3 for N = 3, and 15 ⊕ 1 for N = 4. On the other hand, the
quasiparticle peak around ω = 0 is also enhanced for larger N ;
the quasiparticle peak persists even at elevated U , supported
by the degeneracy in the flavor-flavor terms that grows in
the same way as the degeneracy of the doublon-holon terms.
Overall then, by the sum rule conservation of local correlations
functions, accordingly, the Hubbard bands have lower relative
weight and height.

V. CONCLUSION

We have used a generalized SWT to obtain an effective low-
energy Hamiltonian for multiflavor Hubbard models which
contains all the effective interactions up to order O(1/U ). Our
straightforward approach avoids the need of determining the
appropriate canonical transformation as required in previous
SWT schemes [2], e.g., used for the derivation of the t-J
model.

Having derived the effective Hamiltonian, we interpreted
the Fermi-liquid ground state of the paramagnetic metallic

phase as the condensate of the doublon-holon pairs, and intro-
duced a mean-field variable based on the expectation value of
the doublon-holon pair annihilation operator. This mean-field
approximation is analogous to the Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity in which the expectation
value of the Cooper pair annihilation operator is chosen as
the superconducting order parameter. Thus the role of the
doublon-holon interaction term is crucial here, reminiscent
of the Cooper pair terms in the BCS Hamiltonian.

Then we computed the correlation functions of doublons
and holons, focusing on the well-separated intermediate
energy scale in between the low- and high-energy scales
associated with the features in the local spectral function,
namely the smaller scale for the quasiparticle peak and the
larger scale for the Hubbard bands. Since these features are
associated with the spin and charge degrees of freedom,
respectively, we effectively used a mean-field decoupling of
the spin and charge degrees of freedom from doublons and
holons.

We observed subpeaks at finite frequency that are clearly
associated with the doublon-holon dynamics. The numerical
results shown in Ref. [4] and the symmetry argument in Sec. IV
demonstrate that the subpeaks become more pronounced for
larger number N of particle flavors, since the doublon-holon
excitation on a pair of nearest-neighbor sites gains access to a
larger degenerate state space.

We expect that the subpeaks would be observable in photoe-
mission spectroscopy experiments of correlated materials. The
subpeaks in the local spectral function correspond to dispersive
features in the momentum-resolved spectral function which are
distinguishable from those for the quasiparticle peak and the
Hubbard bands; see Ref. [4] for details. The enhancement of
the subpeaks for larger N is relevant to multiband materials.
However, for materials in which the Hund’s coupling [22,23]
is important, further analysis (beyond the scope of this work)
would be needed to investigate how it affects the doublon-
holon dynamics discussed here. Another promising class of
systems for probing the effects of doublon-holon dynamics
would be the cold atom systems studied in Refs. [24,25], where
the SU(N ) Hubbard model has been realized with exact SU(N )
symmetry and tunable values of N .
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