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Abstract

This thesis addresses physics of helical electrons, which can be realized in 2D time-reversal
(TR)-invariant topological insulators or interacting 1D wires. The helical electrons are pro-
tected against effects of local disorder due to the lock in relation between their momentum
and spin, as long as the TR-symmetry is not violated. I examine tunneling between 1D
helical and normal wires coupled via a quantum dot for different setups. Possible setups
are two normal wires, a normal and a helical wire and two helical wires connected via the
quantum dot. I derive rate equations for probabilities of electrons with an explicit spin
state to be in the quantum dot ground state. These systems of equations are solved in the
case of equilibrium and for the case where one wire is biased. Zero magnetization is found
for the setups in the case of equilibrium. In the systems with biased helical wires, a finite
magnetization appears. Detecting such a magnetization can be used in real experiments to
identify the helical wires.



1 Introduction

Edges of Quantum Spin Hall samples support the so-called helical electrons, which have a
lock-in relation between their momentum and spin. As one example, these edges arise
in two-dimensional (2D) topological insulators (TI), which are insulating in the bulk
but support a current at their edges. These states exist in the case of 2D TI due to the
combination of spin-orbit coupling and time-reversal symmetry (T) [1]. Helical states
(HS) are of very high interest in theoretical and experimental studies because they are
protected against effects of local disorder as long as the TR-symmetry is not violated. One
direction is to investigate on the helical wires (HW) connected to other quantum-devices,
for example a quantum dot (QD) [2].
I investigate the tunneling of electrons between normal and helical 1D wires coupled via a
QD. The thesis is structured into three parts. In the first part, I review different systems in
which the HS emerge and experimental results for them. In the main part I introduce three
setups of normal and helical wires connected via the QD and derive rate equations, which
describe tunneling of electrons between the wires and the QD. I calculate the probabilities
for electrons with an explicit spin in the QD through the sets of rate equations in the case of
equilibrium and for biased wires. The conclusion, presented in the last part, summarizes
the obtained results and shows further investigation possibilities regarding these systems
of coupled wires.
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1 Introduction

1.1 The Quantum Spin Hall Effect or Two-Dimensional

TR-invariant Topological Insulator and Helical Edge

States

The Quantum Spin Hall insulator or 2D TR-invariant TI is a non-trivial topological phase of
matter which posesses time-reversal symmetry T and protected edge states at the boundary.
The 2D TI was first suggested by C.L.Kane and E.J.Mele in 2005 [3].
The key to the describtion of the 2D TI is the time-reversal symmetry which can be
represented as an antiunitary operator Θ̂ = eiπŜy/h̄K̂, with i is the imaginary unit, Ŝy = h̄

2 σ̂y

is the spin operator, (σ̂y is the second Pauli-matrix) and K̂ is the complex conjugation. For
spin-1

2 fermions Θ̂2 = −1, which leads to Kramer‘s degeneracy theorem stating that all
eigenstates of a time-reversal invariant Hamiltonian are at least twofold degenerate. A
time-reversal invariant Hamiltonian satisfy‘s Θ̂Ĥ(k)Θ̂−1 = Ĥ(−k) which holds for the
special points at k = 0, π

a ,−π
a , called Kramer‘s points.

Figure 1.1: Panels (a) and (b) show the band structure with edge states of a 2-D TI in
half of the brillouin zone (the other half is just a mirror image of this side due to the
time reversal symmetry). The red line is the Fermi energy, EF. The number of edge
states at EF can be even [panel (a)] or odd [panel (b)], see also Fig. 1.6 in Ref. [4].

Spin orbit interactions (SOI) split the spin degenerate bands of the Hamiltonian. Only
the Kramer‘s points stay degenerate due to the mentioned theorem. If the number of
edge states intersecting EF is even, Fig.1.1 (a), one can push all edge states out of the
energy gap through smoothly tuning the Hamiltonian. This system is then a conventional
insulator. But if the number of edge states intersecting EF is odd, Fig.1.1 (b), it is not
possible to push all edge states out of the gap. This difference can be seen by looking at
the topological class of the bulk structure. TR-symmetry ensures that every electron with
momentum k has a partner at −k. This relates the number of Kramer‘s pairs modulo 2
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1 Introduction

with a topological number, the Z2 invariant. Thus, the 2D TI has topological protected
edge states.

It has been predicted that the Quantum Spin Hall insulator can exist in HgTe/CdTe
quantum wells, where a thin layer of HgTe is sandwiched by CdTe crystals. The system
would be a trivial insulator for the thickness of the quantum well dQW < dc and a Quantum
Spin Hall insulator, with helical edge states, for dQW > dc. Thus, the system undergoes
a quantum phase transition from the trivial to the topological insulator at d → dc, with
dc being a critical thickness. A robust conductance with nearly the value 2e2/h has been
measured which has not increased with the sample width, indicating it is caused by
edge states. This conductance was suppressed by a small external field which violates
TR-symmetry [5]. First measurements in the HgTe/CdTe structures were done by König et
al., who detected the helical edge states (HES) of the 2D topological insulator at dQW =

6.3nm.

1.2 Helical States in interacting Wires

Helical states (HS) can emerge not only as edge states of topological insulators but also in
interacting 1d systems
For example, HS arise through a spontaneous breaking of the helical symmetry in a Kondo
chain [6], [7], a one dimensional electron gas interacting with a lattice of dynamic spin
impurities (Kondo) [8]. It has been predicted that two different phases can emerge in
a regime of a sufficiently high density of spins, a band of electrons being far from half
filling, and coupling constants Jx = Jy ≡ J⊥ isotropic in the XY plane. One phase with the
anisotropy Jz > J⊥, called easy axis (EA); and another phase with the anisotropy Jz < J⊥,
called easy plane (EP). All quasiparticle excitations are gapped in the case of the EA
phase. Transport in this case is supported by charge density waves, a ground-state of one-
dimensional electron gases transporting charges, [9]. These waves are not protected against
local disorder: coupling with local impurities pins the charge transport. The transition of
one phase to the other is a quantum phase transition at the SU(2) symmetric point Jz = J⊥.
The EP phase shows completely different transport properties as the minimum of the
ground-state‘s energy corresponds to a helical spin-configuration, Fig.1.2 (c), opening a
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1 Introduction

gap in the spectrum of the fermions of a particular helicity while the electrons with the
opposite helicity remain gapless, Fig.1.2 (a), (b).

Figure 1.2: The partial gap opening is shown in panel (a) and (b). In (a) the gap opens
for the spin-↑ helical branch and in (b) for the spin-↓ helical branch. Panel (c) shows
the resulting dispersion relation.

This is the spontaneous breaking of the Z2 helical symmetry, since every electron at
momentum k should have a partner at momentum −k with the opposite spin. Transport
is protected against local disorder either by spin-conservation (for electrons with the
same helicity) or by the gap of one of the helical sectors (for electrons with a different
helical symmetry). This protection of one-dimensional states due to the interactions is
similar to the protection against local disorder at the edges of two-dimensional topological
insulators [7].

A different and already experimentally investigated method for obtaining one-dimensional
wires with the helical states is modulating the band-structure of a quantum wire so that
a spin-orbit gap, a gap in the band-structure opened through SOI, Fig.1.3 (c), emerges.
It can be measured in the linear conductance of the wire, such a gap can be obtained in
the following way: We start with a spin-degenerate 1D sub-band, Fig.1.3 (a), and add
the spin-orbit interaction (SOI) HSO = βσ · (k×∇V), β is a material-dependent constant,
σ is the particle‘s spin, k is the particle‘s momentum and V is the electrostatic potential.
The SOI term splits the degenerate band into two spinful sub-bands, Fig.1.3 (b). This
shift in the band-structure can not be measured through the conductance of the system
and the value G0 = 2e2/h (e is the elementary charge and h is the Planck constant) of
the original band remains. If a magnetic field is applied perpendicular to the one which
lifted the spin-degeneracy, it can remove the degeneracy at the crossing point, Fig.1.3 (c).
As this anti-crossing point is obtained, electrons with a spin-↓ propagate with a positive
momentum and electrons with a spin-↑ propagate with a negative momentum for the
lower band. This leads to the protection against local disorder: backscattering between the
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1 Introduction

two bands must be accompanied by a spin-flip. If the Fermi energy lies inside the gap the
conductance is reduced to G0/2 [10]. C. H. L. Quay et al. explored the spin-orbit gap in
GaAs/AlGaAs quantum wires [10].

Figure 1.3: Panel (a) shows a spin-degenerate sub-band of a one-dimensional quan-
tum wire. Panel (b)shows the sub-band shifted through the SOI to two spinful
sub-bands. BSO ↑ stands for the applied magnetic field perpendicular to the wire.
Panel (c) shows the so called spin-orbit gap achieved through a magnetic field B→
applied perpendicular to BSO ↑, cf. Fig.1 in [10].

Possible evidence for the helical edge states was although given by C. P. Scheller et al. in
Ref. [11] who measured the conductance of GaAs quantum wires in different temperature
regimes. At temperatures T & 10K the conductance of the wire reached 2e2/h as expected.
Lowering the temperature leads to a reduction of the conductance to 1e2/h which becomes
T independent at T . 0.1K. This was seen for many wires. A moderate magnetic field
could not alter the conductance. A possible explanation was suggested in Ref. [12], where
the formation of the helical phase due to the hyperfine interaction was considered. The
theory says that the conductance of GaAs-based quantum wires is reduced with exactly
the factor 2 as the nuclear spins form a helical order through their interactions with the
electron system if the temperature is dropped below a crossover temperature. The helical
spin order creates a field acting back on the electron‘s spin and leads to a partial gap
opening following the helical order of the nuclei and dropping the conductance to a half.
The authours of [11] stated that the theory of [12] is the only one which is able to explain
their results. On the other hand, the direct proof of the helical transport was not been
presented and is still absent.
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1 Introduction

1.3 The Quantum Dot

In this section I review basic knowledge about the quantum dot (QD), which will be used
as a connection element in the setups of helical and normal wires.
Semiconductor heterostructures made of GaAs and AlxGa1−x As are used to create a two-
dimensional electron gas, [13]. This electron gas exists due to the bigger band-gap of
AlxGa1−x As between the insulating and the conducting band. The electrostatic potential
in this heterostructure is lower near the surface as elsewhere close to it in the structure
and so the electrons gather there forming a 2D electron gas. This gas is moving freely
in the plane of the surface and is confined in the transverse direction cf.Ref. [14], pages
14-17. Through tailoring the sample of heterostructures with electrostatic confinement,
induced with the help of metal gates, one can form a finite-size sample with controllable
parameters like size and shape, [15]. A QD appears when one considers only zero mode
(a kind of homogenous dynamics) inside these confined samples. The spatial scale of the
QD is so small that electrons have discrete energy levels. They are like the energy levels of
electrons in a box with a ground-state at the bottom and excited states at higher energies.
Due to the Pauli exclusion principle, two or more identical fermions can not occupy the
same quantum mechanical state. Thus, two electrons can occupy the same energy state of
the QD if they have different spins.
In general, a QD can contain more than one degenerate energy level depending on the size
of it and, therefore, it is necessary to think about electron-electron interactions. During the
current project, we will make a simplification and consider a QD which can contain only
one electron at a time. So electron-electron interactions will not be considered. Another
simplification is that the gap between the first and the second energy level is very large
and, terefore, the second level is assumed to be empty. Tunneling events, which take place
between the QD and the different wires, have no restrictions.
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2 Statement of the Problem

HS are a very hot modern topic in physics because of their protected ideal transport, which
makes them very interesting for spintronics [10] and electronic semiconductor devices and
quantum computing [1], [16]. A smoking gun evidence of their existence in 1D wires was
not confirmed yet and so experimental ways and devices for their identification are still
needed.
In the following I focus on the connection of helical wires with normal or helical wires via
a QD.
The goal of the thesis is to investigate, whether setups of helical and normal wires mag-
netize the quantum dot if the systems are in the equilibrium and out of equilibrium. I
although investigate, if a magnetization is obtained or changed if the tunneling rates are
set to different limits.

If the QD magnetization depends on helicity of one (or both) connected wires, it can be
used in real experiments to detect the HS.
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3 Main Part

In this section, I derive and explain rate equations, cf. Ref. [17], for different setups
of normal and helical wires connected via a QD. In the main part, I first derive the
rate equations for a generic system of two wires connected via a QD. Then I calculate
the magnetization in the case of equilibrium and out of equilibrium for the different
setups.

3.1 Rate Equations

The main idea of the rate equations is to describe the occupation of the QD with electrons
in a given spin-state. Tunneling of electrons between the wires and the QD is changing
this occupation. Through the rate equations we are able to calculate the magnetization of
the QD.
A model for a generic system, Fig.3.1, illustrates the different rates, which are derived in
the following.

Figure 3.1: A scheme of two wires connected via the quantum dot. The blue arrows
represent the tunneling electrons from a wire in the quantum dot or out of the
quantum dot to a wire.
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3 Main Part

To accomplish the calculation of the magnetization, we need probabilities Pσ, ( σ ∈ [↑↓]):
P↑ is the probability for an electron in the QD with spin-↑ and P↓ is the probability for an
electron in the QD with spin-↓. The parameter P0 is the probability to have an unoccupied
QD. The simple relation

P0 = 1− (P↑ + P↓), (3.1)

holds true. Tunneling events of electrons into the QD from a wire (in) and from the QD to
a wire (out) are described by the rates γin,out

wirej
, with j ∈ [1, 2] the two different wires. An

electron in the QD can spontaneously flip its spin, interacting with the QD nuclei. The
rate γS is used for both a spin up-flip (↓ to ↑) and a spin down-flip (↑ to ↓), as there is no
preference for one of these events in our setups.
The magnetization of the QD through electrons is a dynamical processes- It will be found by
using the rate equations for the time derivatives of P↑, P↓ and P0.

∂tP↑ = (γin
wire1

+ γin
wire2

)P0 − (γout
wire1

+ γout
wire2

)P↑ + γS(P↓ − P↑) (3.2)

∂tP↓ = (γin
wire1

+ γin
wire2

)P0 − (γout
wire1

+ γout
wire2

)P↓ + γS(P↑ − P↓) (3.3)

∂tP0 = (γout
wire1

+ γout
wire2

)P↑ + (γout
wire1

+ γout
wire2

)P↓
−(γin

wire1
+ γin

wire2
+ γin

wire1
+ γin

wire2
)P0

(3.4)

The probability Pσ increases by tunneling of electrons with a given spin-σ into the QD from
the two wires and decreased by electrons with this spin tunneling out of the QD to the two
wires. This is reflected by positive and negative contribution of the rates to Eq.(3.2) and
Eq.(3.3. The probability P0 increases by tunneling into the QD and decreases by tunneling
out of the QD regarding to no given spin state of the electrons. This is reflected by positive
and negative contribution of all in and out tunneling rates to Eq.(3.4). The in-tunneling
rates are always added with P0 as the electrons can only tunnel in the QD with it is not
already occupied. The out-tunneling rates are added with Pσ regarding to the spin of the
tunneling electrons as only electrons can tunnel out if the QD is occupied. The term γSP↑
is subtracted as the probability for spin-↑ electrons decreases if the spin-flips down, while
the exact opposite holds for the γSP↑ term. Spin flipping processes do not change the
occupation of the quantum dot and do not contribute to P0. But they change Pσ, a up-flip
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3 Main Part

increases P↑ and decreases P↓. A down-flip increases P↓ and decreases P↑. The rates are
added to the equations as explained.
Note that

∂tP0 = −(∂tP↑ + ∂tP↓). (3.5)

, due to Eq.(3.1). Plugging in Eq.(3.2) and Eq.(3.3) yields exactly Eq.(3.4).

3.2 Solution of rate equations for different setups in

equilibrium

Normal wire-normal wire setup (NW-NW)

In the first step, I investigate two normal wires coupled via the quantum dot. In the
equilibrium all chemical potentials at the end of the wires are the same and no electric
current is driven through the wires. The rates γin,out

wirej
of the generic system are substituted

with the ratesγin,out
NWj,

for the normal wires.
In the case of stationary regime it holds that ∂tP↑ = ∂tP↓ = ∂tP0 = 0. This leads to the
system of linear equations:

0 = (γin
NW1

+ γin
NW2

)P0 − (γout
NW1

+ γout
NW2

)P↑ + γS(P↓ − P↑) (3.6)

0 = (γin
NW1

+ γin
NW2

)P0 − (γout
NW1

+ γout
NW2

)P↓ + γS(P↑ − P↓) (3.7)

0 = (γout
NW1

+ γout
NW2

)P↑ + (γout
NW1

+ γout
NW2

)P↓ − (γin
NW1

+ γin
NW2

+ γin
NW1

+ γin
NW2

)P0 (3.8)

To find the magnetization of the quantum dot, we have to solve eq.(3.6), eq.(3.7) and
eq.(3.8) and expressPσ and P0 in terms of the rates. The solutions can be calculated through
standard approach of linear algebra, which yields:

P↑ = P↓ =
γin

NW1 + γin
NW2

2(γin
NW1 + γin

NW2) + γout
NW1 + γout

NW2
(3.9)

P0 =
γout

NW1 + γout
NW2

2(γin
NW1 + γin

NW2) + γout
NW1 + γout

NW2
(3.10)
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3 Main Part

See details in Appendix. The probability for electrons to be in the quantum dot with spin-↑
is the same as the probability for electrons with spin-↓. In this case, the spin-flipping rate
is completely canceled out of the solutions.
For a system with equal tunneling rates γin,out

NW , it follows that P↑ = P↓ = P0 → 1
3 . For a

different system in the limit of high in-tunneling and low out-tunneling rates P↑ = P↓ → 1
2

and P0 → 0. In the limit of high out-tunneling and low in-tunneling rates, P↑ = P↓ → 0
and P0 → 1, Fig.3.2.

Figure 3.2: Probability P↑ depending on the in- and out-tunneling rates either of the
normal wire 1 or 2.

Helical wire-normal wire setup (HW-NW)

In this section, I will consider a helical wire connected to a normal wire via a QD, see
Fig.3.3.

The rates γin,out
NW for the normal wire are substituted for the rates γin,out

wire1
of the generic

system. Rates for the helical wire γin,out
HW are introduced and substituted for the rates γin,out

wire2

of the generic system. As the helical wire consists of one channel transporting the spin-↑
and one channel transporting the spin-↓ electrons, a factor 1

2 needs to be added to every
rate of the helical wire in comparison to a normal wire. These substitutions of rates with
the generic system yield the following equations:
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3 Main Part

Figure 3.3: A scheme of a helical wire (HW) connected to a normal wire (NW) via a
QD. The red and green big arrows show the direction in which the electrons can move
in the helical wire. The small arrows show the direction of the spin of the electrons
in this channel. The long arrows connecting the wires and the QD symbolize the
possible tunneling possibilities.

∂tP↑ = (γin
NW +

1
2

γin
HW)P0 − (γout

NW +
1
2

γout
HW)P↑ + γS(P↓ − P↑) (3.11)

∂tP↓ = (γin
NW +

1
2

γin
HW)P0 − (γout

NW +
1
2

γout
HW)P↓ + γS(P↑ − P↓) (3.12)

∂tP0 = (γout
NW +

1
2

γout
HW)P↑ + (γout

NW +
1
2

γout
HW)P↓

−(γin
NW +

1
2

γin
HW + γin

NW +
1
2

γin
HW)P0

(3.13)

To calculate P↑, P↓ and P0 in the stationary regime of the system ∂tP↑, ∂tP↓ and ∂tP0 are set
to 0. Thus, the following linear system of equations is solved to obtain P↑, P↓ and P0 as
functions of the rates:

0 = (γin
NW +

1
2

γin
HW)P0 − (γout

NW +
1
2

γout
HW)P↑ + γS(P↓ − P↑) (3.14)

0 = (γin
NW +

1
2

γin
HW)P0 − (γout

NW +
1
2

γout
HW)P↓ + γS(P↑ − P↓) (3.15)

0 = (γout
NW +

1
2

γout
HW)P↑ + (γout

NW +
1
2

γout
HW)P↓ − (γin

NW +
1
2

γin
HW + γin

NW +
1
2

γin
HW)P0 (3.16)

The solutions obtained through linear algebra are:
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3 Main Part

P↑ = P↓ =
γin

NW + 1
2 γin

HW

2(γin
NW + 1

2 γin
HW) + γout

NW + 1
2 γout

HW
(3.17)

P0 =
γout

NW + 1
2 γout

HW

2(γin
NW + 1

2 γin
HW) + γout

NW + 1
2 γout

HW
(3.18)

If all rates of the normal and helical wire have the same value, P↑ = P↓ = P0 → 1
3 . In the

limit of high in- and low out-tunneling rates, P↑ = P↓ → 1
2 and P0 → 0. In the limit of high

out- and low in-tunneling rates it follows that P↑ = P↓ → 0 and P0 → 1. Hence, there is no
difference from previous results.

Helical wire- helical wire setup (HW-HW)

A model of the last setup is shown in Fig.3.4: two HW are connected via a QD.

Figure 3.4: A scheme of two HW connected via a QD. The red and green big arrows
indicate the direction in which the electrons can move in the wires, while the small
arrows crossing the wires show the direction of the spin of the electrons in each
wire. The long red and green arrows coming and going from each wire to the QD
symbolize the possible tunneling processes which can take place.

The rates for the helical wire in the last helical-normal setup are used here for the two
wires. As in the first setup, they are labeled to indicate from which wire they are. Substi-
tuting them into the rate equations of the generic setup leads to the following equations:
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3 Main Part

∂tP↑ =
1
2
(γin

HW2 + γin
HW1)P0 −

1
2
(γout

HW2 + γout
HW1)P↑ + γS(P↓ − P↑) (3.19)

∂tP↓ =
1
2
(γin

HW1 + γin
HW2)P0 −

1
2
(γout

HW1 + γout
HW2)P↓ + γS(P↑ − P↓) (3.20)

∂tP0 =
1
2
(γout

HW2 + γout
HW1)P↑ +

1
2
(γout

HW1 + γout
HW2)P↓

−1
2
(γin

HW2 + γin
HW1 + γin

HW1 + γin
HW2)P0

(3.21)

Note that the structure of the equations is nearly the same as in the NW-NW setup, the
factor 1

2 is the only difference. The linear system is in the stationary regime, ∂tP↑ = ∂tP↓ =
∂tP0 = 0, Eq.(3.19), Eq.(3.20) and Eq.(3.21) result in:

0 =
1
2
(γin

HW2 + γin
HW1)P0 −

1
2
(γout

HW2 + γout
HW1)P↑ + γS(P↓ − P↑) (3.22)

0 =
1
2
(γin

HW1 + γin
HW2)P0 −

1
2
(γout

HW1 + γout
HW2)P↓ + γS(P↑ − P↓) (3.23)

0 =
1
2
(γout

HW2 + γout
HW1)P↑ +

1
2
(γout

HW1 + γout
HW2)P↓ (3.24)

− 1
2
(γin

HW2 + γin
HW1 + γin

HW1 + γin
HW2)P0 (3.25)

Solving this system with linear algebra leads to the solutions:

P↑ = P↓ =
γin

HW1 + γin
HW2

2(γin
HW1 + γin

HW2) + γout
HW1 + γout

HW2
(3.26)

P0 =
γout

HW1 + γout
HW2

2(γin
HW1 + γin

HW2) + γout
HW1 + γout

HW2
(3.27)

These formulas look exactly as in the case of the two normal wires coupled via a QD.
As in the NW-NW setup, for equal values of the tunneling rates the probabilities for
electrons in the quantum dot are P↑ = P↓ = P0 = 1

3 . In the different limits of in- and
out- tunneling rates, the same results are obtained as in the case of the NW-NW setup.
Thus, we see no difference between helical- and normal-helical configurations in equilib-
rium.

Calculating the probabilities for electrons with a different spin to be in the QD shows no
magnetization in equilibrium regardless of the wire helicity.
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3 Main Part

3.3 Solution of rate equations for different setups out of

equilibrium

Biasing the normal wires

Biasing the normal wires through different chemical potentials at the their end would intro-
duce an electric current flowing through the wire. This modification changes the different
rates for electrons tunneling from the wires to the QD or from the QD to the wires as less
channels contribute to the system, Fig.3.5. Thus, the rates become smaller. But this does not
change the equivalence P↑ = P↓ as seen in the previous part.

Figure 3.5: The varied chemical potentials introduce an electric current, which ef-
fectively disables the left-moving channel. Thus, the biased NW has less channels
contributing to the system compared with an unbiased NW.

Biasing the helical wires

Different chemical potentials µ at the ends of the helical wires lead although to a electric
current flowing through the wire. This current drives through one of the two channels
either the right moving or the left moving, depending on the applied chemical potentials.
The other channel is effectively disabled. Due to the helicity of the wire, the motion direc-
tion of the electrons is coupled to their spin and if one channel is disabled no electrons with
the spin of this channel are involved in the tunneling, Fig.3.6.

Thus, there is not only a charge but also a spin current. The rate equations for a setup with
this kind of biased helical wire miss both, the in- and the out-tunneling rates, as they drop
out of the equations due to the disabled channel.
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3 Main Part

Figure 3.6: The chemical potential at the end of the helical wire is varied to µ− eV/2
at the left and µ + eV/2 at the right, introducing an electric current through the right
moving channel. The left moving channel is effectively disabled due to this.

Biased HW-NW setup

The chemical potential disables the left moving channel with the spin-↓ electrons in
the HW-NW setup. The rate equations, Eqs.(3.11), (3.12) and (3.13), differ from the
unbiased setup, as the rates 1

2 γin,out
HEW are zero for spin-↓ channel. Substituting 0 for them

and calculating the linear system of equations for ∂tP↑ = ∂tP↓ = ∂tP0 = 0 leads to the
solutions:

P↑ =
γin

NW + 1
2 γin

HW

2(γin
NW + 1

4 γin
HW) + γout

NW + 1
4 γout

HW
(3.28)

P↓ =
γin

NW

2(γin
NW + 1

4 γin
HW) + γout

NW + 1
4 γout

HW
(3.29)

P0 =
γout

NW + 1
4 γout

HW

2(γin
NW + 1

4 γin
HW) + γout

NW + 1
4 γout

HW
(3.30)

Setting all rates to an equal value results in P↑ → 3
5 , P↓ → 4

15 and P0 → 1
3 , clearly identifying

an accumulation of spins with a spin-↑ in the quantum dot, Fig.3.7. Thus, we have shown
that the QD obtains a finite magnetization in the case of a biased HW connected to a NW
via a QD, which is the manifestation of the helicity.
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3 Main Part

Figure 3.7: Probabilities Pσ depending on the in-tunneling rates of the NW and the
biased HW.

The analysis and results are the same when the right moving channel with the spin-↑
electrons is disabled. The probability P↓ increases as the rates for spin-↑ electrons, 1

2 γin,out
HW ,

drop out of the equations.

Biased HW-HW setup

Similar to the previous section different chemical potentials are used to induce an elec-
tric current through a helical wire by effectively disabling one channel. In the first
case, the right moving channel of the HW1, Fig.3.4, is disabled and the rates 1

2 γin,out
HW1

for spin-↑ electrons are zero. Calculating P↑, P↓ and P0 for ∂tP↑ = ∂tP↓ = ∂tP0 = 0, leads
to:

P↑ =
γin

HW2

2(1
2 γin

HW1 + γin
HW2) +

1
2 γout

HW1 + γout
HW2

(3.31)

P↓ =
γin

HW1 + γin
HW2

2(1
2 γin

HW1 + γin
HW2) +

1
2 γout

HW1 + γout
HW2

(3.32)
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P0 =
1
2 γout

HW1 + γout
HW2

2(1
2 γin

HW1 + γin
HW2) +

1
2 γout

HW1 + γout
HW2

(3.33)

If all rates are set ot an equal value, P0 → 1
3 and P↑ → 2

9 as P↓ → 4
9 . Clearly identifying a

magnetization in the quantum dot, Fig.3.8.
The same results are obtained due to the symmetry of the system, when the ↑-channel
of the second helical wire is disabled and the ↑-channel for the first wire is unbiased.
Disabling one ↓-channel in either the upper or the lower wire leads to the same results,
Fig.3.8.

Figure 3.8: Probabilities Pσ depending on the in-tunneling rates of the HW and the
biased HW.
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4 Conclusion

In this thesis, I examined the tunneling of electrons between normal- and helical-wires
connected via a quantum dot. Rate equations were derived to describe the probabilities of
electrons with a given spin to be in the QD. The goal was to investigate the magnetization
of the QD. Rate equations were constructed in the setups of two normal wires, a helical and
a normal wire and two helical wires connected via a QD. I have considered equilibrium
and non-equilibrium cases. In the latter regime, the helical wire is biased which effectively
disables one of their channels. This produces to a chiral wire, where conduction electrons
have only one given spin state.

For all three setups no magnetization was found in the case of equilibrium, respectless of
particular values of rates.

Out of equilibrium, an electric current is driven through the biased helical wire. The
current is provided by the electrons with a given helicity; the second helical channel is
suppressed if the bias is strong enough. A finite magnetization of the QD was found in the
cases of biased helical wires connected with a normal wire or another helical wire via a
QD.

This magnetization is a direct manifestation of the helicity of the biased wire and can be
used in real experiments to detect the helical wires. The calculation of the magnetization is
a first step and further investigation should be done calculating the current, induced in
the unbiased wire via tunneling.
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5 Appendix: Calculation of P↑,P↓andP0

In this section I show how the probabilities P↑,P↓andP0 are calculated for the different
setups. Of course more than one way leads to the solutions.
I start with the NW-NW setup and its system of linear equations:

0 = (γin
NW1

+ γin
NW2

)P0 − (γout
NW1

+ γout
NW2

)P↑ + γS(P↓ − P↑) (5.1)

0 = (γin
NW1

+ γin
NW2

)P0 − (γout
NW1

+ γout
NW2

)P↓ + γS(P↑ − P↓) (5.2)

0 = (γout
NW1

+ γout
NW2

)P↑ + (γout
NW1

+ γout
NW2

)P↓ − (γin
NW1

+ γin
NW2

+ γin
NW1

+ γin
NW2

)P0 (5.3)

I take Eq.(5.1) and subtract Eq.(5.2), leading to

0 = (γout
NW1

+ γout
NW2

)P↓ − (γout
NW1

+ γout
NW2

)P↑ + 2γS(P↓ − P↑). (5.4)

After repositioning after P↑
P↓

and cancelling the equal terms it states:

P↑
P↓

= 1 (5.5)

Now Eq.(5.3) is repositioned after P0 and the result P↑ = P↓ ≡ P↑,↓ is plugged into the
second equivalence sign, leading to:

P0 =
γout

NW1
+ γout

NW2
9

2(γin
NW1

+ γin
NW2

)
(P↑ + P↓) =

γout
NW1

+ γout
NW2

γin
NW1

+ γin
NW2

P↑,↓ (5.6)

With the result of Eq.(5.5) plugged into Eq.(3.1) it follows that
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5 Appendix: Calculation of P↑,P↓andP0

P0 = 1− (P↑ + P↓) = 1− 2P↑,↓ (5.7)

Now Eq.(5.6) and Eq.(5.7) are equivalent leading to

1− 2P↑,↓ =
γout

NW1
+ γout

NW2

γin
NW1

+ γin
NW2

P↑,↓ (5.8)

Repositioning after P↑,↓ leads to the result Eq.(3.9) and to Eq.(3.10) if plugged into Eq.(5.6).
This is one way how the NW-NW solutions are obtained.
The results for the other setups HW-NW and HW-HW in the equilibrium can be calculated
the same way just with different rates in the equations. Or through renaiming the rates in
the solutions in the NW-NW case.
The solutions for the biased systems can be obtained through calculating the linear systems
of equations in which the rates for the disabled channels are set to 0 or by setting the same
rates in the equations for the solutions in the equilibrium to 0.
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