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We calculate dynamical spin structure factors for gapped chiral spin liquid states in the spin-1/2 Heisenberg
antiferromagnet on the kagome lattice using Schwinger-boson mean-field theory. In contrast to static (equal-time)
structure factors, the dynamical structure factor shows clear signatures of time-reversal symmetry breaking for
chiral spin liquid states. In particular, momentum inversion k → −k symmetry as well as the sixfold rotation
symmetry around the � point are lost. We highlight other interesting features, such as a relatively flat onset of the
two-spinon continuum for the cuboc1 state. Our work is based on the projective symmetry group classification
of time-reversal symmetry breaking Schwinger-boson mean-field states by Messio, Lhuillier, and Misguich.
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I. INTRODUCTION

The potential to realize interesting quantum spin liquid
states with fractionalized excitations and topological order
has driven research on frustrated magnets in the last decades
[1–4]. One of the most promising candidate models is the
spin-1/2 Heisenberg antiferromagnet on the two-dimensional
kagome lattice. Many theoretical attempts have been made to
unravel its ground-state properties, which are still not fully
understood. While early approaches supported a symmetry
broken valence bond solid state [5,6], various different ground
states have been proposed since. Recent numerical works
based on the density matrix renormailzation group (DMRG)
method provide strong evidence for a gapped Z2 spin liquid
state [7–10], whereas projected wave-function studies favor a
gapless U(1)-Dirac spin liquid ground state [11–13], but this
issue is not settled yet [14]. Both of these states do not break
lattice symmetries and lack conventional long-range magnetic
order due to strong quantum fluctuations associated with the
frustrated spin-exchange interactions.

The interest in chiral spin liquids, which break time-
reversal and parity symmetries, was triggered by Kalmeyer and
Laughlin, who proposed that bosonic analogues of fractional
quantum Hall states could be realized in frustrated magnets
[15]. Within a slave-fermion approach these chiral states
are stable phases of matter, because gauge fluctuations are
gapped by a Chern-Simons term [16]. More recently, various
theoretical works showed that such chiral spin liquids can be
stabilized on the kagome lattice either by including further-
neighbor interactions or additional terms that explicitly break
time-reversal symmetry [17–26].

As far as experiments are concerned, the mineral Herbert-
smithite as well as organic charge transfer salts are the most
promising candidate materials to host a spin liquid ground state
[27–30]. While measurements on the triangular lattice organic
salts are consistent with a gapless spin liquid, the kagome
lattice compound Herbertsmithite likely has a gapped spin
liquid ground state. Inelastic neutron scattering experiments
are compatible with a continuum of fractionalized spinon
excitations [31], and recent NMR measurements indicate that
the ground state is gapped [32]. The fact that no sharp onset of
the two-spinon continuum was observed in neutron scattering
has been attributed to the presence of a flat band of topological

vison excitations in gapped Z2 spin liquids [33], as well as to
the contribution from impurities at low energies [34].

Various different spin liquid states have been proposed
as potential ground states of kagome Heisenberg antiferro-
magnets. In order to relate theoretical results to inelastic
neutron scattering experiments, a better characterization of
dynamical structure factors in kagome systems is clearly
beneficial. In this work we take a step in this direction by
computing dynamical spin structure factors of simple chiral
spin liquids using Schwinger-boson mean-field theory [35,36].
Our approach is based on an earlier projective symmetry group
classification of time-reversal symmetry breaking mean-field
Ansätze by Messio, Lhuillier, and Misguich [37]. We show
that the dynamical spin structure factor S(k,ω) shows clear
signatures of time-reversal symmetry breaking, in contrast to
static (equal-time) structure factors. In particular, momentum
inversion symmetry k → −k is lost and consequently the
sixfold rotation symmetry of S(k,ω) around the � point is
reduced to threefold rotations. Moreover, we show that the
onset of the two-spinon continuum is rather flat for the cuboc1
state, which has been argued to minimize the ground-state
energy of the kagome Heisenberg antiferromagnet within the
Schwinger-boson approach [38]. This particular chiral spin
liquid state is a quantum disordered version of the magnetically
ordered cuboc1 state, which is a possible noncoplanar state of
the classical AFKM model [39,40].

It is important to note that this Schwinger-boson construc-
tion does not lead to chiral spin liquids of the Kalmeyer-
Laughlin type. This is due to the fact that the condensation
of boson bilinears reduces the gauge symmetry from U(1) to
Z2. Consequently, the effective low-energy theory is a Chern-
Simons-Higgs theory with a condensed charge-2 Higgs field,
the topological properties of which are typically equivalent to
Z2 gauge theory [41,42].

The remainder of our paper is structured as follows. In
Sec. II, we review the Schwinger-boson mean-field theory
(SBMFT) for time-reversal symmetry breaking Ansätze and
calculate the spinon dispersions. In Sec. III, we determine
the mean-field parameters self-consistently for all SBMFT
Ansätze considered in this work. In Sec. IV, the spin structure
factor for a general chiral SBMFT Ansatz is derived. Lastly,
in Sec. V, we present and discuss the numerically computed
structure factors. We conclude with Sec. VI.
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II. MODEL AND METHODS

The Hamiltonian of the antiferromagnetic Heisenberg
model is given by

Ĥ = J
∑
〈lj〉

Ŝl · Ŝj , (1)

where J > 0, Ŝl is the spin operator on lattice site l and the
sum runs over nearest-neighbor sites. In the following, we use
the Schwinger-boson representation of spin operators

Ŝl = 1
2 b̂

†
lασ̂ αβ b̂lβ , (2)

where here, and throughout this paper, we employ a summation
convention over repeated Greek indices, and b̂lα , b̂

†
lα are

bosonic annihilation and creation operators, respectively, of
spin α on site l. Consequently, the Hamiltonian can be written
as

Ĥ = J

4

∑
〈lj〉

(2δαμδβγ −δαβδγμ)b̂†lαb̂lβ b̂
†
jγ b̂jμ+λ

∑
j

(n̂j − 2S),

(3)

where the Langrange multiplier λ constrains the number of
bosons per site to 2S, with S the length of the spin. Note that
this length constraint is only imposed on average here and
in the following mean-field approximation. It can be enforced
exactly by allowing for a space- and imaginary time dependent
Lagrange multiplier, which leads to a theory of bosonic spinons
coupled to an emergent U(1) gauge field [35]. However, for
the spin liquid states considered in this work, the condensation
of bosonic bilinears gaps out gauge fluctuations and the mean-
field approximation is justified.

A. Schwinger-boson mean-field theory

We now introduce the SU(2)-invariant bond operators

Âlj = 1
2εαβ b̂lαb̂jβ, (4)

B̂lj = 1
2 b̂

†
lαb̂jα, (5)

where εαβ is the fully antisymmetric tensor of SU(2). One
can show that Ŝl · Ŝj = (B̂†

lj B̂lj − Â†
lj Âlj ) for l �= j and the

Hamiltonian can be rewritten as

Ĥ = J
∑
〈lj〉

(B̂†
lj B̂lj − Â†

lj Âlj ) + λ
∑

j

(n̂j − 2S). (6)

Next, we apply a mean-field decoupling of the bond operators
resulting in the mean-field Hamiltonian

ĤMF = J
∑
〈lj〉

(〈B̂lj 〉B̂†
lj − 〈Âlj 〉Â†

lj + H.c.)

+ J
∑
〈lj〉

(〈Â†
lj 〉〈Âlj 〉 − 〈B̂†

lj 〉〈B̂lj 〉) + λ
∑

j

(n̂j − 2S).

(7)

〈Alj 〉 and 〈Blj 〉 are free complex mean-field parameters that
will be computed self-consistently by extremizing the free
energy. Even though most SBMFT studies use one or the other,
including both 〈Alj 〉 and 〈Blj 〉 has been proven to lead to a
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FIG. 1. The six-site unit cell of the general chiral SBMFT Ansatz
as discussed in Refs. [38,37]. The bond operators 〈Âlj 〉 = |Âlj |eiθA

and 〈B̂lj 〉 = |B̂lj |eiθB between two neighboring sites l and j are such
that at every bond one has |Âlj | = A and |B̂lj | = B. On purple (dark)
bonds θA = 0 and θB = φB, while on orange (bright) bonds the phases
are θA = φA′ + ϕ and θB = φB′ + ϕ with ϕ = 0 on undashed bonds
and ϕ = p1π on dashed bonds, where p1 ∈ {0,1} depending on the
Ansatz. Finally, the red arrows indicate the real-space vectors e1 =
a(1/2,

√
3/2), e2 = a(1/2,−√

3/2), and e3 = a(−1,0), with a the
spacing between two neighboring sites, and kj = k · ej .

better description of the spectrum of excitations in frustrated
magnets [43,44], where 〈Alj 〉 describes singlet amplitudes and
〈Blj 〉 describes boson hopping amplitudes. A set {〈Alj 〉,〈Blj 〉}
specifies a mean-field Ansatz. For the symmetric, time-reversal
breaking spin-liquids considered in Refs. [38], [37] the mean-
field parameters take the form

〈Âlj 〉 = 〈Â†
lj 〉∗ = |Âlj |eiθA , (8)

〈B̂lj 〉 = 〈B̂†
lj 〉∗ = |B̂lj |eiθB , (9)

where the moduli |Âlj | = A and |B̂lj | = B are the same on
each bond, but the phases θB and θA are bond-dependent. The
detailed form of these Ansätze is shown in Fig. 1. Taking the
Fourier transform of the Schwinger-boson operator as

b̂s
lα = 1√

Nq

∑
q

b̂s
qαeiq·r l , (10)

where s is a band index, r l is the position of site l, and Nq is
the number of q points summed over in the Fourier transform,
and adopting a general chiral Ansatz following the notation of
Ref. [37], the Hamiltonian in reciprocal space reads

ĤMF =
∑

k

�̂
†
kDk�̂k + 2JNs(|A|2 − |B|2)

− λNs(1 + 2S), (11)
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where we have introduced the spinor

�̂k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̂u
k↑
...

b̂z
k↑

b̂
u†
−k↓
...

b̂
z†
−k↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

with the superscript letters denoting one of the six bands {u,v,w,x,y,z} of the six-site unit cell shown in Fig. 1, and Dk is the
Hermitian block matrix

Dk = λ112 + Ck, (13)

with 1d the d × d identity matrix, and

Ck = J

2

⎛
⎜⎜⎝

Rk(φB′) Tk Pk(φA′) Qk

T
†
k Rk(φB′ + p1π ) Qk Pk(φA′ + p1π )

P
†
k (φA′) Q

†
k R∗

−k(φB′) T ∗
−k

Q
†
k P

†
k (φA′ + p1π ) T

ᵀ
−k R∗

−k(φB′ + p1π )

⎞
⎟⎟⎠, (14)

Rk(ν) = B

⎛
⎝ 0 e−i(ν−k1) ei(φB′−k2)

ei(ν−k1) 0 e−i(ν−k3) + e−i(φB+k3)

e−i(φB′−k2) ei(ν−k3) + ei(φB+k3) 0

⎞
⎠, (15)

Tk = B

⎛
⎝ 0 e−i(φB+k1) ei(φB+k2)

ei(φB+k1) 0 0
e−i(φB+k2) 0 0

⎞
⎠, (16)

Pk(ν) = A

⎛
⎝ 0 −ei(ν+k1) ei(φA′−k2)

ei(ν−k1) 0 −ei(ν+k3) − e−ik3

−ei(φA′ +k2) ei(ν−k3) + eik3 0

⎞
⎠, (17)

Qk = A

⎛
⎝ 0 −e−ik1 eik2

eik1 0 0
−e−ik2 0 0

⎞
⎠. (18)

Here we denote the real-space vectors e1 = a(1/2,
√

3/2),
e2 = a(1/2, − √

3/2), and e3 = a(−1,0), and kj = k · ej , as
shown in Fig. 1, with j ∈ {1,2,3} and a the intersite spacing,
which we set to unity.

B. Bogoliubov transformation

Finally, we perform a Bogoliubov transformation by defin-
ing the bosonic operators

�̂k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ̂ u
k↑
...

γ̂ z
k↑

γ̂
u†
−k↓
...

γ̂
z†
−k↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

which are related to the Schwinger-boson ladder operators by
the linear transformation

�̂k = Mk�̂k, (20)

whereby �̂ will satisfy the canonical commutation relations
and diagonallze ĤMF if

M
†
kτ

6Mk = τ 6, (21)

M
†
kDkMk = ε̃k, (22)

where the Bogoliubov rotation matrix takes the block form

Mk =
(

Uk Xk

Vk Yk

)
. (23)

Furthermore,

τ 6 =
(
16 0
0 −16

)
(24)

and

ε̃k =
(
Ek↑ 0
0 E−k↓

)
(25)

is a 12 × 12 diagonal matrix representing the bosonic eigenen-
ergies for up-spins at momentum k and down spins at
momentum −k, where the 6 × 6 diagonal matrix E pα carries
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TABLE I. Self-consistent mean-field parameters and correspond-
ing free energy per site fMF = FMF/Ns for the cuboc1, cuboc2,
octahedral, q = 0, and

√
3 × √

3 SBMFT Ansätze on the AFKM. The
asterisk denotes a free mean-field parameter of the Ansatz, which is
self-consistently determined in the gapped spin liquid phase for spin
S = 0.2.

cuboc1 cuboc2 octahedral q = 0
√

3 × √
3

p1 1 1 1 0 0
A 0.2616* 0.2624* 0.2617* 0.2626* 0.2637*
φA′ 1.0143* 0 π 0 π

B 0.0540* 0.0535* 0.0536* 0.0577* 0.0574*
φB π 3.1417* 3.1416* π π

φB′ π −φB φB π π

λ 0.4086* 0.4137* 0.4096* 0.4125* 0.4182*
fMF −0.13127 −0.13200 −0.13134 −0.13148 −0.13266

the bosonic eigenenergies εs
pα along its diagonal with s the

band index whose values range in {u,v,w,x,y,z}, the six bands
comprising our unit cell as illustrated in Fig. 1, while p and α

are the momentum and spin polarization, respectively, and 0
is the 6 × 6 zero matrix. It is to be noted here that ε̃k has this
form due to SU(2) symmetry. Note, however, that for chiral
Ansätze one has εs

k↑ �= εs
−k↓, because the k → −k symmetry

is broken. Nevertheless, we still have εs
k↑ = εs

k↓ due to SU(2)
symmetry.

III. SELF-CONSISTENT MEAN-FIELD PARAMETERS

Before proceeding with the numerical computation of the
spin structure factors we first determine the self-consistent
mean-field parameters for each Ansatz that we consider by
extremizing the free energy

∂FMF

∂Oj

= 0, (26)

∂FMF

∂λ
= 0, (27)

where Oj are the free mean-field parameters (denoted by an
asterisk in Table I) of the given Ansatz, and FMF is the mean-
field free energy derived from Eq. (11) to be

FMF =
B.z.∑

k

∑
s

εs
k↑ + 2JNs(|A|2 − |B|2)

− λNs(1 + 2S), (28)

where B.z. stands for the first Brillouin zone. In this work
we consider two nonchiral Ansätze (q = 0 and

√
3 × √

3) as
well as three further Ansätze (cuboc1, cuboc2, and octahedral)
that can break time reversal [37,38]. In the following, we
set J = 1 and S = 0.2. With this artificially small value of
the spin we ensure that all Ansätze describe a state deep in
the spin-liquid phase, which is what we’re interested in. We
find the stationary point of FMF by an adaptive-grid method
that seeks to minimize

∑
j (∂FMF/∂Oj )2, stopping only when

this sum is of the order of 10−8 or better. The results of this
extremization procedure for all Ansätze that we consider are
shown in Table I. The self-consistent mean-field parameters for
the different Ansätze turn out to be quite close to one another.
In particular, all five Ansätze exhibit very similar values for A,
B, and λ, the only parameters that are free in all Ansätze. The
main difference is in the phases, some of which are fixed by
the specific form of an Ansatz, while others are free.

It is important to note that the phase φB for the cuboc2
as well as the octahedral Ansatz turns out to be equal to π

within numerical accuracy. Consequently, the saddle points
of these two Ansätze describe nonchiral spin-liquid phases,
where time-reversal and parity symmetries are restored. In our
computation only the cuboc1 Ansatz turns out to be chiral.
Note, however, that interactions beyond nearest neighbors can
stabilize chiral saddle points of the cuboc2 form, where the
phase φB takes a nontrivial value [38].

IV. SPIN STRUCTURE FACTORS

The dynamic spin structure factor is defined as

S(k,ω) = 1

Ns

∑
l,j

eik·(r l−rj )
∫ ∞

−∞
dte−iωt 〈Ŝl(t) · Ŝj 〉, (29)

FIG. 2. The normalized dynamic structure factor along the �-M-K-� high-symmetry lines for the nonchiral SBMFT Ansätze q = 0 (left)
and

√
3 × √

3 (right) in the gapped spin liquid phase at S = 0.2.
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FIG. 3. The normalized dynamic structure factor for the chiral cuboc1 Ansatz along the �-M-K-� high-symmetry lines (left) and in the k
plane at ω = 0.45J (right) in the gapped spin liquid phase at S = 0.2. The white hexagon in the right panel marks the extended Brillouin zone.
Note that the dynamic structure factor at fixed frequency (right) is not symmetric under inversion and only has a threefold rotation symmetry
due to time-reversal symmetry breaking (see main text).

which, using the Bogoliubov operators, can be expressed at T = 0 and in the absence of a spinon condensate as

S(k,ω) =3

2

∑
s,r,m,n

1

Nq

B.z.∑
q

{
X∗

sn(−q)Usm(k − q)[U ∗
rm(k − q)Xrn(−q) − Yrn(−q)V ∗

rm(k − q)]δ
(
ω − εn

q↓ − εm
k−q↑

)

+ 2X∗
sn(−q)Y ∗

sm(−k + q)[Yrm(−k + q)Xrn(−q)+Yrn(−q)Xrm(−k+q)]δ
(
ω − εn

q↓ − εm
k−q↓

)
+ 2Vsn(q)Usm(k − q)[U ∗

rm(k − q)V ∗
rn(q) + U ∗

rn(q)V ∗
rm(k − q)]δ

(
ω − εn

q↑ − εm
k−q↑

) + Vsn(q)Y ∗
sm(−k + q)

× [Yrm(−k + q)V ∗
rn(q) − U ∗

rn(q)Xrm(−k + q)]δ
(
ω − εn

q↑ − εm
k−q↓

)}
, (30)

where s, r , m, and n are band indices taking values in
{u,v,w,x,y,z}. The static (equal-time) structure factor is
obtained by integrating over frequencies S(k) = ∫

dωS(k,ω).

V. RESULTS AND DISCUSSION

We use the VEGAS [45] Monte Carlo integration routine
to numerically evaluate the dynamic structure factors of the
Ansätze shown in Table I, while approximating the Dirac δ

functions in Eq. (30) as Lorentzian functions with a width
10−3 for numerical reasons. The nonchiral Ansätze q = 0 and√

3 × √
3 were first discussed in Ref. [35], and their dynamic

structure factors were calculated in Ref. [33], although using
an Ansatz with 〈Bij 〉 = 0. Similar dynamical structure factors
for fermionic mean-field spin liquids have been computed in
Ref. [46]. In Fig. 2, we show their dynamic structure factors
along the �-M-K-� high-symmetry lines in the gapped spin
liquid phase with S = 0.2, using the self-consistent mean-
field parameters shown in Table I. Note that we’ve adopted a
normalization where the maximum of the structure factors is
set to unity for convenience. Our results are qualitatively very
similar to those in Ref. [33]. The small differences come from
the fact that the spinon dispersions are slightly altered when
taking nonzero 〈Bij 〉’s into account.

Figures 3–5 show the dynamic structure factors in the k
plane for fixed frequencies ω, as well as along the �-M-K-�
high-symmetry lines for the cuboc1, cuboc2, and octahedral
Ansätze, respectively, in the gapped spin liquid phase with
spin S = 0.2. The dynamic structure factor at ω = 0.45J for
cuboc1 in Fig. 3 shows that inversion symmetry is lost with
respect to the � point due to time-reversal symmetry breaking.

Consequently, the usual sixfold rotational symmetry is reduced
to a threefold one. One would expect to see the same for the
cuboc2 (at ω = 0.45J ) and octahedral (at ω = 0.48J ) Ansätze
in Figs. 4 and 5, respectively, as they allow for nontrivial
Aharonov-Bohm phases when a spinon is taken around a
plaquette. However, as shown in Table I, the saddle point value
of φB at S = 0.2 is equal to π within numerical accuracy,
which, along with the fixed phase φA′ = 0 (cuboc2) or π

(octahedral), leads to a time-reversal invariant Ansatz. The
k → −k symmetry as well as the sixfold rotational symmetry
is thus retained in the dynamical structure factor. On the other
hand, for the cuboc1 Ansatz, the free phase φA′ takes on a
value other than nπ (n ∈ Z), leading to a chiral spin liquid
with broken time-reversal and parity symmetry. An interesting
feature in the cuboc1 dynamical structure factor along the
�-M-K-� high-symmetry lines in Fig. 3 is the relatively flat
onset of the two-spinon continuum compared to the q = 0 and√

3 × √
3 case.

The static structure factors for the cuboc1, cuboc2, and
octahedral Ansätze, shown in Fig. 6, are qualitatively very
similar. Note that the static structure factor for the chiral
cuboc1 state doesn’t show signs of time-reversal or parity
symmetry breaking. This can be understood by recognizing
from Eq. (29) that one can write

S(−k,ω) = 1

Ns

∑
l,j

eik·(r l−rj )
∫ ∞

−∞
dte−iωt 〈Ŝl · Ŝj (t)〉

= 1

Ns

∑
l,j

eik·(r l−rj )
∫ ∞

−∞
dte−iωt 〈Ŝl(−t) · Ŝj 〉 (31)
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FIG. 4. The normalized dynamic structure factor for the cuboc2 ansatz along the �-M-K-� high-symmetry lines (left) and in the k-plane
at ω = 0.45J (right) in the gapped spin liquid phase at S = 0.2. Note that the saddle point values of the mean-field parameters for the cuboc2
ansatz preserve time-reversal symmetry at S = 0.2, consequently this state is not chiral.

FIG. 5. The normalized dynamic structure factor for the octahedral ansatz along the �-M-K-� high-symmetry lines (left) and in the k-plane
at ω = 0.48J (right) in the gapped spin liquid phase at S = 0.2. Note that the saddle point is non-chiral, as in the case of the cuboc2 ansatz.

FIG. 6. Normalized static spin structure factors for the cuboc1, cuboc2, and octahedral Ansätze in the gapped spin liquid phase with spin
S = 0.2. Note that the static structure factor of the chiral cuboc1 state does not show signs of time-reversal symmetry breaking (see main text).
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by a simple relabeling of the site indices. It is clear from
Eqs. (31) and (29) that S(−k,ω) = S(k,ω) only if 〈Ŝl(−t) ·
Ŝj 〉 = 〈Ŝl(t) · Ŝj 〉 is time-reversal invariant. On the other hand,
the static (equal-time) structure factor is always invariant under
k → −k.

Lastly, the variational ground-state energies of the five
different Ansätze considered here are listed in the last line
of Table I. We find that the nonchiral

√
3 × √

3 Ansatz has
the lowest energy at S = 0.2. Note that this is in contrast
to Ref. [38], who find that the cuboc1 state has the lowest
energy. It is worth mentioning here that the SBMFT approach
is not quantitatively reliable to find the true ground state
of the kagome Heisenberg antiferromagnet, nor does it give
variational upper bounds to the ground-state energy. This is
due to the fact that the spin-length constraint is only imposed
on average, and thus unphysical states are only approximately
projected out. Consequently, the main purpose of our work is
not to determine the true ground state of the kagome Heisen-
berg antiferromagnet, but to highlight features in dynamical
correlation functions of different chiral spin liquid states.

VI. CONCLUSION

We computed static and dynamic spin structure factors
of several chiral and nonchiral SBMFT Ansätze deep in
the gapped spin liquid phase at spin S = 0.2. Even though
the cuboc1, cuboc2, and octahedral Ansätze allow for time-
reversal symmetry breaking, only the saddle-point of the
cuboc1 Ansatz is chiral, which can be seen directly in the
dynamic structure factor at fixed frequency, as seen in Fig. 3.
Time-reversal symmetry breaking manifests itself by breaking
the inversion symmetry with respect to the � point, as well
as reducing the usual sixfold rotational symmetry present for
nonchiral Ansätze to a threefold rotational symmetry.
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