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By utilizing tensor-network-based methods, we investigate the zero- and finite-temperature properties of the
spin-1/2 Heisenberg antiferromagnetic (HAF) model on an infinite Husimi lattice that contains 3/2 sites per
triangle. The ground state of this model is found to possess vanishing local magnetization and is featureless; the
spin-spin and dimer-dimer correlation functions are verified to decay exponentially, and its ground-state energy
per site is determined to be e0 = −0.4343(1), which is very close to that [e0 = −0.4386(5)] of the intriguing
kagome HAF model. The magnetization curve shows the absence of a zero-magnetization plateau, implying a
gapless excitation. A 1/3-magnetization plateau with spin-up-up-down state is observed, which is selected and
stabilized by quantum fluctuations. A ground-state phase diagram under magnetic fields is presented. Moreover,
both magnetic susceptibility and the specific heat are studied, whose low-temperature behaviors reinforce the con-
clusion that the HAF model on the infinite Husimi lattice owns a gapless and featureless spin-liquid ground state.
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I. INTRODUCTION

Spin liquids are disordered states in correlated spin systems,
in which strong quantum fluctuations prevent the formation of
conventional spin orders related with spontaneous symmetry
breaking [1,2]. Such spin-liquid states are common in one-
dimensional (1D) systems owing to the low coordinate number
and strong quantum fluctuations. However, for the systems
beyond 1D, the correlated spins favor to freeze into solid at low
temperatures. The two- or three-dimensional correlated spin
systems that remain in spin-liquid states at zero temperature
are usually believed to be exotic quantum states, which are
yet scarce in realistic models, such as Heisenberg models.
The first proposal of a quantum spin liquid (QSL) can
be dated back to Anderson’s resonant valence bond (RVB)
ansatz for a triangular antiferromagnet [3]. The RVB wave
function is a linear superposition of all possible valence-bond
configurations with some specified weights. The short-range
RVB state is usually a nonmagnetic state, while some long-
range RVB states can have Néel long-range order on a bipartite
lattice [4]. Very recently, it was revealed that the short-range
RVB state is a gapped Z2 spin liquid on the kagome lattice [5]
and is a gapless spin liquid on the J1-J2 square lattice [6].

For a long time it has been thought that the spin liquids could
be found in geometrically frustrated magnets [7]. In general,
geometric frustration leads to a huge degeneracy in classical
spin configurations and enhances the fluctuations, thus a QSL
ground state might be favored. However, the ground state of
the spin-1/2 quantum HAF model on the triangular lattice
was revealed to be an antiferromagnet with 120◦ coplanar
Néel order [8,9], not a RVB spin liquid. Another highly
frustrated lattice—the intriguing kagome lattice with a lower
coordinate number than the triangular lattice—has attracted
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much attention, both theoretically and experimentally, in the
past decades [10–22]. The HAF model on the kagome lattice is
currently regarded as a very competitive candidate supporting
the QSL ground state. A recent density matrix renormalization
group (DMRG) simulation shows that the ground state of
the kagome HAF model is a Z2 spin liquid [2,16,17], while
some variational Monte Carlo simulations suggest a gapless
U(1) Dirac spin liquid [13,18]. This issue is still inconclusive.
Theoretical predictions spurred experimentalists to search for
a QSL in, for instance, mineral Herbertsmithite. No signal
of any magnetic order was observed down to 50 mK, which
is much lower than the estimated Curie–Weiss temperature
[19–21]. Fractional excitations have also been detected in
Herbertsmithite single crystal lately [22]. These studies give
possible experimental evidences of a QSL, and some of them
suggest that the low-energy excitations are gapless [22,23].

In this paper, we study a spin-1/2 frustrated HAF model
on the infinite Husimi lattice [Fig. 1(a)], whose ground state
is verified to be a gapless QSL. The infinite Husimi lattice,
free of boundaries, consists of corner-sharing triangles and
has 3/2 sites per triangle (the same local structure as the
kagome lattice). The HAF model on this infinite lattice
is highly frustrated, which is very important for searching
exotic spin-liquid states. It is worthwhile mentioning that the
finite-size Husimi cactus, which has roughly as many sites on
the boundary as in the bulk, can be exactly solved because
the HAF model in this case is frustration free [24], and no
spin-liquid solution on Husimi cactus was found owing to
a heavy-boundary effect [25]. Here we utilize the iterative
approaches, i.e., tensor-network-based numerical simulations,
to study the ground-state and thermodynamic properties of the
HAF model with high accuracy. Our results provide ample and
solid evidence manifesting the existence of a featureless QSL
on the Husimi lattice.

This paper is organized as follows: The model and the
adopted tensor-network approach are introduced in Sec. II. The
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FIG. 1. (Color online) (a) Infinite Husimi lattice and correspond-
ing tensor-network representation. Husimi lattice is composed of
corner-sharing triangles, and the underlying tensor network structure
is on a Bethe lattice. The empty circle represents a rank-3 tensor
T siting in the center of a triangle, and the colorful circles (red,
blue, and yellow for three sublattices α, β, and γ , respectively) are
rank-3 tensors P with physical indices locating at the sharing vertices
of triangles. (b) The underneath ancilla structures of tensors, the T

tensors (T � and T � for up and down triangles, respectively) connect
three ancillae in the same triangle, and the P tensor (dashed oval) on
the vertex projects two ancillae into physical space.

quantum spin-liquid ground state is discussed in Sec. III, and
the magnetization curve and phase diagram are addressed in
Sec. IV. The thermodynamic properties of both susceptibility
and specific heat are presented and discussed in Sec. V. Finally,
Sec. VI is devoted to the discussion and conclusion.

II. MODEL AND METHOD

Let us consider the spin-1/2 XXZ HAF model on the
infinite Husimi lattice, whose Hamiltonian reads

H = J
∑
〈ij〉

[(
Sx

i Sx
j + S

y

i S
y

j

) + δSz
i S

z
j

] − h
∑

i

Sz
i , (1)

where Si is the spin operator on the ith site, J = 1 is the
coupling constant which is set as the energy scale, δ is the
XXZ anisotropy, and h is the magnetic field. We use the tree
tensor networks (TTNs) to simulate both the ground-state and
thermodynamic properties of the present model. The TTN is
composed of simplex tensors T and vertex tensors P (see
Fig. 1); a T tensor sits on each triangle, while a P tensor
with one (for the ground state) or two (for the thermal states)
physical indices is located at the sharing vertex of two triangles.
Note that the short-range RVB state on the kagome lattice is
found to have an exact projected entangled-pair state (PEPS)
representation with similar local tensor structures and the bond
dimension is D = 3 [5]. Next, such a type of tensor structure
was generalized to other states with larger bond dimensions
[26].

In Fig. 1(a), the underneath tensor network forms a Bethe
lattice. Owing to the loop-free structure, this Bethe-lattice
TTN state can be processed easily and accurately by a
simple update scheme during the imaginary-time evolution

[27], which provides optimal truncations [28,29]. The Bethe
(Husimi) lattice, although it seemingly exists only as an
ideal lattice, can actually be used to simulate the inner part
of a large Cayley tree structure which can be synthesized
in the laboratory (like dendrimers) [30]. In the following,
we introduce the ground-state projection algorithm for the
infinite Husimi lattice. The imaginary-time evolution for the
finite-temperature thermal state or, equivalently the linearized
tensor renormalization group (LTRG) process [31,32], can be
implemented similarly.

On the Husimi lattice, there exist two kinds of T tensors
(T � and T �) that correspond to up and down triangles,
respectively. In order to implement the projections, we can
group the three P tensors, as well as the positive semidefinite
diagonal matrices λs living on the virtual bonds linking tensors
T and P , with one up-triangle tensor T � in odd steps (or
down-triangle T � in even steps):

Mm1,m2,m3
x,y,z =

D∑
x ′,y ′,z′=1

(λ1)x(λ2)y(λ3)z(P1)m1
x,x ′ (P2)m2

y,y ′

×(P3)m3
z,z′T

�,�
x ′,y ′,z′ , (2)

where P1(2,3) are three nearest-neighbor (NN) P tensors, m1,
m2, and m3 represent physical indices, and x, y, and z are
geometric indices. Three-site projection operators O�,� =
exp(−τh�,�), for up (down) triangles, are projected on
the M tensor. We take successively such projections first
simultaneously on all up triangles and then on all down ones
until convergence.

In each projection step, after absorbing the operator
O into M and obtaining the evolved tensor M̃m1,m2,m3 =∑

m′
1,m

′
2,m

′
3
O

m1,m2,m3

m′
1,m

′
2,m

′
3
Mm′

1,m
′
2,m

′
3 , we need to decompose M̃ back

into the product of T and P tensors and λ vectors [inverse of
Eq. (2)]. In this process, the bond dimension will increase
and needs to be truncated. In order to achieve an optimal
truncation, the environmental effects should be carefully taken
into account. To be specific, we need to evaluate (exactly
or approximately) the reduced density matrix ρx(y,z) of the
enlarged bond x(y,z), which plays an important role in the
truncation process.

There are basically two ways to evaluate the reduced density
matrix. One way is to take exact contraction, i.e., we contract
the reduced density matrix step by step from infinitely far away
until it converges. Another (equivalent) way is to gauge the
TTN tensors into their canonical form, and then the reduced
density matrices could be obtained locally, which facilitates
the evaluation of local observables. Here we use the second
approach and gradually bring the tensors into the canonical
form (in an iterative way) during the course of imaginary-time
evolution. A canonical TTN satisfies the following conditions
simultaneously:∑

m1,m2,m3

∑
y,z

M̃m1,m2,m3
x,y,z M̃

m1,m2,m3
x ′,y,z = δx,x ′λxλx ′ ,

∑
m1,m2,m3

∑
z,x

M̃m1,m2,m3
x,y,z M̃

m1,m2,m3
x,y ′,z = δy,y ′λyλy ′ , (3)

∑
m1,m2,m3

∑
x,y

M̃m1,m2,m3
x,y,z M̃

m1,m2,m3
x,y,z′ = δz,z′λzλz′ .
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More details about the canonicalization process can be found
in Ref. [32].

Given a canonical TTN, we can locally calculate the
reduced density matrix of each bond and use its eigensystem
to implement truncations. Take x bond as an example:

ρx,m1;x ′,m′
1
= ∑

m2,m3,y,z M̃m1,m2,m3
x,y,z M̃

m′
1,m2,m3

x ′,y,z . Suppose that the
eigenvectors and eigenvalues of three ρs are U1(2,3) and
	1(2,3), we keep the largest Dc eigenvalues and corresponding
eigenvectors. The truncation operations are proceeded (on a
reshaped M̃ matrix) as

T̃x̃,ỹ,z̃ =
∑
x,y,z

∑
m1,m2,m3

M̃m1,m2,m3
x,y,z

(
U1√
	1

)m1

x,x̃

(
U2√
	2

)m2

y,ỹ

×
(

U3√
	3

)m3

z,z̃

, (4)

where x̃ (ỹ, z̃) is the new bond index (truncated according to
eigenvalues in 	), and updated λ̃1(2,3) = √

	1(2,3) and P̃1(2,3) =
U−1

1(2,3). This decimation scheme was introduced in Ref. [32]
and was dubbed as the network Tucker decomposition.

In practical calculations, we set random or some fixed initial
state (say, a dimer state) for the ground-state projections, and
reduce the Trotter slice τ gradually from 10−1 to 10−5 during
the course of projections. For finite-temperature calculations,
the Trotter slice is usually chosen as τ = 0.01, and some extra
loops (about 200) for gauging the TTN into a canonical form
are necessary in every single evolution step.

III. QUANTUM SPIN-LIQUID GROUND STATE

By performing the tensor-network-based calculations, we
studied the ground-state properties of the spin-1/2 XXZ HAF
model on the infinite Husimi lattice and unveiled that it is a
gapless QSL. The unit cell of the Husimi lattice is a triangle
consisting of three S = 1/2 spins, thus its total spin can only
be half odd integer. For anisotropy parameter 0 � δ � 1, the
ground states are discovered to be nonmagnetic, i.e., the local
magnetic moment on any of the three sublattices vanishes. The
spatial correlation functions of any local operators (say, spin
operator Sz

i ) are found to decay exponentially. In particular, the
calculated energy per triangle for up and down triangle, and
the bond energy for three different bonds in each triangle, are
the same within numerical errors. Therefore, we believe that
this exotic ground state, with no spin rotational or lattice
translational symmetry breaking, might be a featureless QSL.

In Fig. 2, we present the results of energy per site e0 and
the correlation length ξ against the bond dimension D for
δ = 1. The extrapolated energy e0 = −0.4344(1) per site is
very close to the best estimation of ground-state energy of
the kagome HAF model, −0.4386(5), obtained by large-scale
DMRG calculations [2,16]. The energy result confirms that it
is this infinite Husimi lattice introduced here, instead of the
finite-size Husimi cactus (with ground-state energy −0.375
per site), that could serve as a Bethe-lattice approximation of
the counterpart model on a kagome lattice.

The correlation length ξ = −1/ ln[r(2)/r(1)], where r(1)
and r(2) are the first- and second-largest eigenvalues of the
transfer operator on the infinite Husimi lattice, is also plotted
in Fig. 2. ξ is measured with the length unit of the underlying
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FIG. 2. (Color online) The calculated energy per site e0 and the
correlation length ξ versus inverse bond dimension 1/D of the
tree tensor network (up to D = 100) for δ = 1. It is shown that
e0 decreases and ξ increases with enhancing D, and e0 converges
faster than ξ . The solid lines are polynomial fittings, where e0 is
extrapolated to be −0.4344(1) in the infinite-D limit.

Bethe lattice [28], which is shown to converge much more
slowly than energy e0 in Fig. 2. Notably, owing to the special
geometry of the Husimi lattice, a finite ξ does not necessarily
mean the existence of an excitation gap.

In Fig. 3, we show the spatial dependence of the spin-spin
correlation function 〈Sz

i S
z
j 〉 along a path consisting of sites on

α and β sublattices [the red line in Fig. 1(a)]. The spin-spin cor-
relation is found to decay exponentially, as shown in Fig. 3(a).
In addition, we also calculated the dimer-dimer correla-
tion function, defined as 〈DiDj 〉 = 〈(Sz

i S
z
i+1)(Sz

jS
z
j+1)〉 −

〈Sz
i S

z
i+1〉〈Sz

jS
z
j+1〉, where the sites i,j belong to the α-β line

in Fig. 1(a). The dimer-dimer correlator and its fit are shown
in Fig. 3(b), revealing that the dimer-dimer correlation also
decays exponentially. Other correlation functions, like the

FIG. 3. (Color online) The spatial dependence of (a) spin-spin
and (b) dimer-dimer correlation functions along the specified line
(α-β line) in Fig. 1(a) on the infinite Husimi lattice, at low temperature
(T/J = 0.01). The fits of the numerical data to an exponential
function are presented for both correlation functions.
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chiral correlation function 〈Cm Cn〉=〈[−→S m1 ·(
−→
S m2 × −→

S m3)]

[
−→
S n1 · (

−→
S n2 × −→

S n3 )]〉, where m1,m2,m3 (n1,n2,n3) denote
the three sites in a triangle m(n), are also calculated (not
shown here). It is found that the chiral correlation is very
weak even for a short distance, and it decays exponentially.
Accordingly, the expectation value of the single-loop operator
〈Cm〉 = 〈−→S m1 · (

−→
S m2 × −→

S m3 )〉 is found to vanish, revealing
the absence of a chiral order.

IV. MAGNETIZATION CURVE AND PHASE DIAGRAM

Next, we utilize jointly the projection approach for the
ground state and the LTRG approach for thermodynamics to
calculate the magnetization curves under uniform magnetic
fields. The ground-state magnetization curves for three typical
cases (δ = 0, 0.5, 1) are plotted in Fig. 4. For δ = 1, the LTRG
results at very low temperature (T/J = 0.01) are presented,
showing a good accordance with the ground-state results. It
is observed that for all these δ, no matter the SU(2) isotropic
Heisenberg model with δ = 1, or the XY model with δ = 0, the
ground states are all nonmagnetic when the magnetic field is
absent, which can be attributed to the frustrations that enhance
the quantum fluctuations and thus melt the spin orderings.
Moreover, the zero-field susceptibilities are nonvanishing,
and the local magnetizations m(h) are linear (i.e., no zero-
magnetization plateau) at small external fields h for various δ.
This observation implies the absence of a spin gap.

Another interesting character in the magnetization curve is
the appearance of a 1/3-magnetization plateau, which has an
intimate relation to the triangular motifs on the lattice. Similar
plateaus have been observed in other materials or lattice
models containing triangle motifs, e.g., triangular [33,34] and
kagome [35–37] lattices. The 1/3-plateau in the former was
explained with “up-up-down” (UUD) spin structure on each
triangle and is therefore dubbed as an UUD phase, which has a
quantum origin [33]. To uncover the nature of this 1/3 plateau
on the Husimi lattice, we compute the local magnetizations on
three sublattices, revealing that it is indeed an UUD plateau on
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FIG. 4. (Color online) The magnetization curves of the XXZ

HAF model (δ = 0, 0.5, 1) on the infinite Husimi lattice in the
ground state. The 1/3-magnetization plateau exists for various δ.
The calculated magnetization curve at low temperature T/J = 0.01
is also presented for comparison.
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FIG. 5. (Color online) The h-δ phase diagram in the ground state
of XXZ HAF model on the infinite Husimi lattice. FM stands for the
field-induced ferromagnetic phase, QSL means quantum spin-liquid
(paramagnetic) phase, and the intermediate region labeled by UUD is
the 1/3-magnetization plateau phase with up-up-down spin structure.

Husimi lattice. Interestingly enough, in Fig. 4, we observe that
this UUD 1/3 plateau is rather robust, which even exists for
δ = 0. This remarkable observation manifests that the quantum
fluctuation [XY term in Eq. (1)] selects and stabilizes this
plateau state under certain fields.

It is an interesting issue to compare the magnetization curve
with that of the kagome Heisenberg model. The unit cell of
the Husimi lattice is a simplex consisting of three sites, hence
it only possesses one 1/3 plateau in the magnetization curve,
while the unit cell of kagome lattice model varies with different
magnetic fields. At zero field, the unit cell of the kagome lattice
is also a simplex, while at 1/3, 5/9, and 7/9 magnetization
plateaus it changes to a hexagram containing nine sites [37,38].

In Fig. 4, we found that, for various δ, there exist two
continuous regions, one between h = 0 and the lower critical
field for the 1/3 plateau, and the other between the upper
critical field and the saturation field. These two regions own
similar properties to a spin-liquid state under zero field, except
for that they have nonzero field-induced magnetizations along
the z direction. The spin-liquid states behave like paramagnets
in these regions. By summarizing the calculated results of
magnetization curves for various δ, we obtain a ground-state
phase diagram in the plane of h-δ for the XXZ HAF model,
as shown in Fig. 5. It is seen that there are phases including the
field-induced ferromagnetic phase, two QSL (paramagnetic)
phases, and a 1/3-magnetization plateau (UUD) phase.

V. THERMODYNAMIC PROPERTIES

Now we turn to explore the thermodynamic properties of the
model by tensor-network algorithms following the same line
developed in LTRG methods [31,32]. The free energy can be
obtained by collecting all the renormalization factors down to
the particular low temperature that we set. The energy as well
as other thermodynamic quantities can be obtained by taking
derivatives of the free energy. Alternatively, we can also eval-
uate them by computing the expectation values of operators,
like the local Hamiltonian, in the TTN thermal states.
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FIG. 6. (Color online) The uniform susceptibility χ = [m(h +
δh) − m(h)]/δh as a function of temperature under various fields
for the HAF model on the infinite Husimi lattice. δh/J = 0.02 is
taken. The inset shows two round peaks of χ at low temperatures
in the spin-liquid region, and the dashed line shows the ground-state
susceptibility result (obtained by imaginary-time projections).

A. Susceptibility

The susceptibility χ as a function of temperature is plotted
under various magnetic fields h, as shown in Fig. 6. χ

converges to different values at zero temperature, depending
on which phase the system belongs to. In the spin-liquid regime
(h/J = 0, 0.4, or 2 in Fig. 6), χ is nonzero at T = 0, revealing
the gapless feature of magnetic excitations; while for the UUD
plateau phase (h/J = 1.2), χ vanishes at zero temperature as
expected, validating the existence of an excitation gap. Another
impressive observation is the appearance of double peaks in
susceptibility at low temperatures, which is scarce and peculiar
for spin systems.

The bimodal structure of the susceptibility χ at low
temperature is quite robust against varying the anisotropy δ.
In Fig. 7, we show the susceptibility versus temperature for

FIG. 7. (Color online) The susceptibility as a function of tem-
perature for the XXZ HAF model on the infinite Husimi lattice
in the absence of a magnetic field, where δ = 1, 2.5, 5, ∞. The
susceptibility of Ising model is divergent in the zero-temperature
limit, while there exist two round peaks when the anisotropic
parameter δ is finite.

FIG. 8. (Color online) Temperature dependence of the specific
heat of HAF model on the infinite Husimi lattice for various δ in
the absence of a magnetic field. Three peaks are observed in each
curve. Note the leftmost low-temperature peak, which is, although
very sharp, a nondiverging round peak, as the magnified plot shows
in the inset.

various δ under zero magnetic field. It is observed that for the
bimodal structure of χ , the left peak is quite sharp and depends
weakly on δ, while the right peak is broad and becomes more
pronounced with increasing δ. For the classical Ising limit
(δ = ∞), the susceptibility diverges at zero temperature. This
low-temperature double-peak structure of susceptibility might
be due to the quantum fluctuations and geometric frustration
effects.

B. Specific heat

The overall landscape of the specific heat C versus T is quite
complicated, as shown in Fig. 8, which exposes at least two
round peaks (for some cases, say, δ = 5, there are even three
peaks), and none of them are found to be divergent, reinforcing

2 3 4 5 6 7 8 9 10
x 10−3

2

4

6

8

10

12

14

x 10−3

T/J

Sp
ec

ifi
c 

he
at

 C

δ=0.0
δ=0.5
δ=1.0

2 2.2 2.4 2.6 2.8 3 3.2
x 10−3

4

6

8

10

12

14
x 10−4

δ=0.0, b=0.0091
δ=0.5, b=0.0056
δ=1.0, b=0.0073

D=20
fitting: C = c/Ta exp(−b/T)

FIG. 9. (Color online) The temperature dependence of the spe-
cific heat of the HAF model on the infinite Husimi lattice at extremely
low temperature for various δ, and in the absence of a magnetic field.
The lowest-temperature segments are amplified in the inset, and the
fits to an exponential decay are also included, which show that the
excitation gap, if any, should be less than 10−2J for all three cases.
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the statement that there is no symmetry breaking in the Husimi
HAF model. Similar to the magnetic susceptibility curve, there
exists a sharp (but not divergent) peak at very low temperature
(the leftmost one in Fig. 8), which is believed to have intimate
relations with quantum fluctuations and geometric frustrations.
In the absence of quantum fluctuations (classical Ising limit) or
frustration effects (for instance, set the coupling on one of the
three edges as ferromagnetic to eliminate the frustration), the
leftmost low-T peak would disappear. Moreover, the position
of this peak is found to be around T/J = 0.005 ∼ 0.01, which
changes slowly with δ, as shown in the inset of Fig. 8.

In Fig. 9, the temperature dependence of the specific heat C
at extremely low temperatures is presented for three cases with
anisotropy δ = 0, 0.5 and 1. In the inset of Fig. 9 we amplify
the very-low-temperature segment, which has almost linear
C-T relations. The fit with an exponential decay of the form
C = c

T a exp(− b
T

) suggests that the gap (if any) is negligibly
small up to the computational errors.

VI. CONCLUSION

In this work, we study both the ground-state and thermody-
namic properties of the spin-1/2 quantum HAF model on the
infinite Husimi lattice. The ground-state is revealed to be a fea-
tureless disordered state without any spontaneous symmetry

breaking, i.e., a quantum spin-liquid state. The absence of the
zero-magnetization plateau in the magnetization curves sug-
gests that the spin excitation is gapless. A 1/3-magnetization
plateau with up-up-down spin configuration is observed in the
magnetization curve, which exists even when the spin-spin
couplings are purely of XY terms. The thermodynamic quan-
tities including the specific heat and susceptibility are studied,
and no signal of phase transition has been detected at any finite
temperature. The algebraic decaying low-temperature specific
heat, as well as the nonvanishing zero-field susceptibility, con-
firms the existence of a gapless and featureless quantum spin
liquid.
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J. Richter, Phys. Rev. B 88, 144416 (2013).

[38] S. Nishimoto, N. Shibata, and C. Hotta, Nat. Commun. 4, 2287
(2013).

054426-7

http://dx.doi.org/10.1038/nchem.1304
http://dx.doi.org/10.1038/nchem.1304
http://dx.doi.org/10.1038/nchem.1304
http://dx.doi.org/10.1038/nchem.1304
http://dx.doi.org/10.1103/PhysRevLett.106.127202
http://dx.doi.org/10.1103/PhysRevLett.106.127202
http://dx.doi.org/10.1103/PhysRevLett.106.127202
http://dx.doi.org/10.1103/PhysRevLett.106.127202
http://dx.doi.org/10.1103/PhysRevB.86.134429
http://dx.doi.org/10.1103/PhysRevB.86.134429
http://dx.doi.org/10.1103/PhysRevB.86.134429
http://dx.doi.org/10.1103/PhysRevB.86.134429
http://dx.doi.org/10.1103/PhysRevB.67.104431
http://dx.doi.org/10.1103/PhysRevB.67.104431
http://dx.doi.org/10.1103/PhysRevB.67.104431
http://dx.doi.org/10.1103/PhysRevB.67.104431
http://dx.doi.org/10.1103/PhysRevLett.102.137201
http://dx.doi.org/10.1103/PhysRevLett.102.137201
http://dx.doi.org/10.1103/PhysRevLett.102.137201
http://dx.doi.org/10.1103/PhysRevLett.102.137201
http://dx.doi.org/10.1209/epl/i2003-10164-5
http://dx.doi.org/10.1209/epl/i2003-10164-5
http://dx.doi.org/10.1209/epl/i2003-10164-5
http://dx.doi.org/10.1209/epl/i2003-10164-5
http://dx.doi.org/10.1103/PhysRevLett.88.167207
http://dx.doi.org/10.1103/PhysRevLett.88.167207
http://dx.doi.org/10.1103/PhysRevLett.88.167207
http://dx.doi.org/10.1103/PhysRevLett.88.167207
http://dx.doi.org/10.1103/PhysRevB.88.144416
http://dx.doi.org/10.1103/PhysRevB.88.144416
http://dx.doi.org/10.1103/PhysRevB.88.144416
http://dx.doi.org/10.1103/PhysRevB.88.144416
http://dx.doi.org/10.1038/ncomms3287
http://dx.doi.org/10.1038/ncomms3287
http://dx.doi.org/10.1038/ncomms3287
http://dx.doi.org/10.1038/ncomms3287



