
PHYSICAL REVIEW B 89, 045128 (2014)

Functional renormalization group approach for inhomogeneous interacting Fermi systems

Florian Bauer, Jan Heyder, and Jan von Delft
Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München,

Theresienstrasse 37, D-80333 München, Germany
(Received 15 November 2013; revised manuscript received 17 December 2013; published 21 January 2014)

The functional renormalization group (fRG) approach has the property that, in general, the flow equation for
the two-particle vertex generates O(N4) independent variables, where N is the number of interacting states (e.g.,
sites of a real-space discretization). In order to include the flow equation for the two-particle vertex, one needs
to make further approximations if N becomes too large. We present such an approximation scheme, called the
coupled-ladder approximation, for the special case of an onsite interaction. Like the generic third-order-truncated
fRG, the coupled-ladder approximation is exact to second order and is closely related to a simultaneous treatment
of the random phase approximation in all channels, i.e., summing up parquet-type diagrams. The scheme is
applied to a one-dimensional model describing a quantum point contact.
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I. INTRODUCTION

The calculation of properties of an inhomogeneous inter-
acting quantum system requires adequate care regarding a
proper description of its spatial structure: for a lattice model,
the resolution of a potential landscape, without generating
additional finite-size effects, typically requires an extension of
∼102 sites per spatial dimension. If, in addition, the strength
of interactions can not be regarded as “weak,” a reasonable
approximation scheme must involve detailed information
about higher-order correlations. This usually demands a huge
effort for modern computers, both in memory and speed.
Thus, for a system with nontrivial spatial structure, any
approximation scheme necessarily involves a tradeoff between
computational feasibility and accuracy.

In Ref. [1], we introduced such a scheme, both reasonably
fast and accurate up to intermediate interaction strength,
within the framework of the one-particle-irreducible version
of the functional renormalization group (fRG) [2–10]. The
goal of this paper is to supply a detailed description of this
approximation scheme, called the coupled-ladder approxi-
mation (CLA), which is implemented within the context of
generic, third-order-truncated fRG. In the latter, the flow of
the three-particle vertex is set to zero, while the flow equation
of the two-particle vertex (which we will call “vertex flow”
in the following) is fully incorporated. This vertex flow has
to be incorporated if interactions can not be considered small.
In general, this constitutes a computational challenge since
the vertex generated by this flow involves a large number
O(N4) of independent functions, each depending on three
frequencies, where N is the number of sites of the interacting
region. As a result, the flow equations involve O(N4N3

f )
independent variables, where Nf is the number of discrete
points per frequency used in the numerics. Previous schemes
that included the vertex flow for models with large N made
use of an additional symmetry, e.g., Refs. [5,6] described
systems with a weak spatial inhomogeneity (either changing
adiabatically with position, or confined to a small region),
which could be treated as a perturbation, so that its feedback
to the vertex could be neglected. The resulting equations for
the vertex were solved in the momentum basis, exploiting the
fact that the single-particle eigenstates could approximately

be represented by plane waves. However, this is not possible
for models with strong inhomogeneities. Our CLA scheme
was developed to include the vertex flow for such models. It
extends the idea of Refs. [7,11], where the CLA was introduced
to parametrize the frequency dependence of the vertex for the
single-impurity Anderson model, i.e., N = 1, which reduces
the number of independent variables for that model to O(Nf).
We show that the CLA can be applied to parametrize the
spatial dependence of the vertex for models with a purely
local interaction. The number of independent variables that
represent the spatial dependence of the vertex then reduces
to O(N2), and the total number of independent variables
representing the vertex to O(N2Nf). The CLA scheme is exact
to second order [12,13] and effectively sums up diagrams of
the random phase approximation (RPA) of all three interaction
channels.

To illustrate the capabilities of our CLA scheme, we apply
it, as in Ref. [1], to a one-dimensional chain modeling the
lowest submode of a quantum point contact (QPC), a short
constriction that allows transport only in one dimension. Its
conductance is famously quantized [14–16] in units of GQ =
2e2/h. In addition to this quantization, measured conductance
curves show a shoulder at around 0.7GQ. In this regime, quan-
tities such as electrical and thermal conductance, noise, and
thermopower have anomalous behavior [17–19]. These phe-
nomena are collectively known as the “0.7 anomaly” in QPCs.

In Ref. [1], we showed that the 0.7 anomaly is reproduced by
a one-dimensional model with a parabolic potential barrier and
a short-ranged Coulomb interaction. We presented a detailed
microscopic picture that explained the physical mechanism
which causes the anomalous behavior. Its origin is a smeared
van Hove singularity in the density of states (DOS) just
above the band bottom which enhances effects of interaction
causing an enhanced backscattering. We presented detailed
results for the conductance at zero temperature, obtained
using fRG in the CLA. These numerical data were in good
qualitative agreement with our experimental measurements
and showed that the model reproduces the phenomenology
of the 0.7 anomaly. In this paper, we set forth and examine
the approximation scheme in detail. We present additional
numerical data to verify the reliability of the method for the
case where it is applied to the model of a QPC. For this, we
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present and compare data obtained by different approximation
schemes within the fRG, showing that the phenomenology
is very robust, and can even be obtained by neglecting the
vertex flow. However, including the vertex flow using the CLA
reduces artifacts and gives an insightful view on the spin
susceptibility. For the latter, we finally present a detailed
quantitative error analysis.

II. MICROSCOPIC MODEL

The approximation scheme presented in this paper can be
applied to any model Hamiltonian that can be written in the
following form:

H =
∑
ij,σ

hσ
ij d

†
iσ djσ +

∑
j

Ujnj↑nj↓, (1)

where hσ is a real, symmetric matrix, d
†
jσ (djσ ) creates

(annihilates) an electron at site j with spin σ (= ↑,↓ or +,−,
with σ̄ =−σ ), and njσ = d

†
jσ djσ counts them (in general j

can represent any quantum number, however, for simplicity
we refer to it as a site index throughout the paper). In order
to apply the CLA, the necessary property of this Hamiltonian
is a short-ranged interaction. In principle, the approximation
scheme can be set up for an interaction with finite range
(over several sites), however, since the structure then becomes
very complicated we will only discuss the case of a purely
local, i.e., onsite interaction in this paper as given by Eq. (1).
Whereas the system can extend to infinity, it is crucial that the
number of sites N where Uj is nonzero is finite and not too
large, as discussed in Sec. III H. If the system is extended
to infinity, the effect of the noninteracting region can be
calculated analytically using the projection method (see the
Appendix and Refs. [8,20]). An extension to a Hamiltonian
that is complex Hermitian and nondiagonal in spin space,
needed, e.g., to include spin-orbit effects, is straightforward. In
contrast, applying the scheme to spinless models, for which the
interaction term has to be nonlocal to respect Pauli’s exclusion
principle, is more complicated.

III. fRG FLOW EQUATIONS

In this section, we describe the functional renormalization
group (fRG) approach that we have employed to treat a
translationally nonuniform Fermi system with onsite interac-
tions, such as described by Eq. (1). We use the one-particle-
irreducible (1PI) version of the fRG [2,21]. Its key idea is to
approximately sum up a perturbative expansion, in our case
in the interaction, by setting up and numerically solving a set
of coupled ordinary differential equations (ODEs), the flow
equations, for the system’s 1PI n-particle vertex functions
γn. This is typically done in such a way that the effects of
higher-energy modes, lying above a flowing infrared cutoff
parameter �, are incorporated before those of lower-energy
modes lying below �. This yields a systematic way of
summing up parquet-type diagrams for the two-particle vertex
and for calculating the self-energy. � serves as flow parameter
that controls the RG flow of the �-dependent vertex functions
γ �

n from an initial cutoff �i , at which all vertex functions are
known and simple, to a final cutoff �f , at which the full theory
is recovered.

This idea is implemented by replacing, in the generating
functional for the vertex functions γn, the bare propagator G0

by a modified propagator G�
0 ,

G0 → G�
0 , with G�i

0 = 0, G�f

0 = G0, (2)

constructed such thatG�
0 is strongly suppressed for frequencies

below �. The � dependence of the resulting vertex functions
γ �

n is governed by an infinite hierarchy of coupled ODEs, the
RG flow equations, of the form

d

d�
γ �

n = F
(
�,G�

0 ,γ �
1 , . . . ,γ �

n+1

)
, (3)

where γ1 = −� is the self-energy and γ2 the two-particle
vertex. At the beginning of the RG flow, the vertex functions
are initialized to their bare values

γ
�i

2 = v, γ �i

n = 0 (n �= 2), (4)

while their fully dressed values, corresponding to the full
theory, are recovered upon integrating Eqs. (3) from �i to
�f .

The infinite hierarchy of ODEs (3) is exact, but in most
cases not solvable. In the generic, third-order-truncated fRG,
all n-particle vertex functions with n � 3 are neglected

d

d�
γn = 0 (n � 3), (5)

and the resulting flow equations for γ �
1 and γ �

2 are integrated
numerically. Due to this truncation, fRG is in essence an
“RG-enhanced” perturbation expansion in the interaction,
which will break down if U becomes too large. In fact, the flow
equations can be derived by a purely diagrammatic procedure,
without resorting to a generating functional, as explained
in Ref. [22]. The diagrammatic structure is such that the
flow of the self-energy and three different parquet channels
(i.e., three coupled RPA-like series of diagrams) are treated
simultaneously, feeding into each other during the flow (as
discussed in more detail below). This moderates competing
instabilities in an unbiased way. We also mention that this
approach has been found to be particularly useful to treat
models where infrared divergences play a role [3] (although
the latter do not arise for the present model).

The following statements in this section hold for most,
however, not for every flow parameter. For that reason, we
explicitly define the � dependence at this point. If a different
fRG scheme is used, one should carefully check all relations.
The general idea should be applicable for all fRG schemes.
We use fRG in the Matsubara formalism. In the following
frequencies with subscripts n, n′, n1, etc., are defined to be
purely imaginary:

ωn = iT π (2n + 1). (6)

We introduce � as an infrared cutoff in the bare Matsubara
propagator

G�
0 (ωn) = �T (|ωn| − �)G0(ωn), �i = ∞, �f = 0, (7)

where �T is a step function that is broadened on the scale of
the temperature T .

For a derivation of the fRG flow equations, see, e.g.,
Refs. [3,5]; very detailed discussions are given, e.g., in
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Refs. [8,23], for a diagrammatic derivation see Ref. [22]. The
flow equation for the self-energy reads as

d

d�
γ �

1 (q ′
1,q1) = T

∑
q ′

2,q2

S�
q2,q

′
2
γ �

2 (q ′
2,q

′
1; q2,q1), (8)

where q1, q2, etc., label the quantum number and the fermionic
Matsubara frequency. Here,S� is defined in terms of the scale-
dependent full propagator G�:

S� = G�∂�

[
G�

0

]−1G�, (9a)

G� = [[
G�

0

]−1 − ��
]−1

. (9b)

For later convenience, we divide the two-particle vertex γ2 in
four parts:

γ �
2 = v + γ �

p + γ �
x + γ �

d , (10)

where v is the bare vertex and γ �
p , γ �

x , and γ �
d are called the

particle-particle channel (P ), and the exchange (X) and direct
(D) contributions to the particle-hole channel, respectively.
They are defined via their flow-equations with γ �i

y = 0:

d

d�
γ �

2 = d

d�

(
γ �

p + γ �
x + γ �

d

)
. (11)

Explicitly, these flow equations have the following forms:

d

�
γ �

p (q ′
1,q

′
2; q1,q2) = T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
2; q3,q4)S�

q3,q
′
3
G�

q4,q
′
4
γ �

2 (q ′
3,q

′
4; q1,q2), (12a)

d

d�
γ �

x (q ′
1,q

′
2; q1,q2) = T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
4; q3,q2)

[
S�

q3,q
′
3
G�

q4,q
′
4
+ G�

q3,q
′
3
S�

q4,q
′
4

]
γ �

2 (q ′
3,q

′
2; q1,q4), (12b)

d

d�
γ �

d (q ′
1,q

′
2; q1,q2) = −T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
3; q1,q4)

[
S�

q4,q
′
4
G�

q3,q
′
3
+ G�

q4,q
′
4
S�

q3,q
′
3

]
γ �

2 (q ′
4,q

′
2; q3,q2). (12c)

Here, the higher-order vertices γn�3 have already been set
to zero.

A. Frequency parametrization

Due to energy conservation, the frequencies in Eqs. (8) and
(12) are not independent:

γ1(q ′
1,q1) ∝ δ

(
ωn′

1
− ωn1

)
,

(13)
γ2(q ′

1,q
′
2; q1,q2) ∝ δ

(
ωn′

1
+ ωn′

2
− ωn1

− ωn2

)
.

In the case of the two-particle vertex, this gives a certain
freedom to parametrize its frequency dependence. The natural
choice, as will become apparent later on, is to parametrize it
in terms of three bosonic frequencies:

� = ωn′
1
+ ωn′

2
= ωn1

+ ωn2
, (14a)

X = ωn′
2
− ωn1

= ωn2
− ωn′

1
, (14b)

� = ωn′
1
− ωn1

= ωn2
− ωn′

2
. (14c)

Note that due to their definition in terms of purely imaginary
frequencies, the bosonic frequencies are imaginary too. Con-
versely, the fermionic frequencies can be expressed in terms
of the bosonic ones:

ωn′
1
= 1

2 (� − X + �), ωn′
2
= 1

2 (� + X − �), (15a)

ωn1
= 1

2 (� − X − �), ωn2
= 1

2 (� + X + �). (15b)

B. Neglecting the vertex flow

For the purpose of treating the inhomogeneous model of
Eq. (1), we take the quantum number that labels Green’s
functions and vertices to denote a composite index of site,
spin, and Matsubara frequency q1 = (j1,σ1,ω1), etc. Since

the bare propagators are nondiagonal in the site index, the
number of independent variables γ �

2 (q ′
1,q

′
2; q1,q2) generated

by Eq. (12) is very large O(N4N3
f ), where Nf is the number of

Matsubara frequencies per frequency argument kept track of
in the numerics.

The simplest way to avoid this complication is to neglect
the flow of the two-particle vertex:

d

d�
γ2 = 0. (16)

This scheme, to be called fRG1, yields a frequency-
independent self-energy, which, for the case of local interac-
tion, is site diagonal. It is exact to first order in the interaction.

C. Coupled-ladder approximation

For models where the interaction can not be considered
small, we introduced a novel scheme in Ref. [1], to be called
dynamic fRG in CLA, to incorporate the effects of vertex flow.
In the following, whenever the vertex flow is included, we
treat it using the CLA, thus calling this approximation dfRG2,
to distinguish it from fRG1, and from a static fRG scheme
including the vertex flow sfRG2 to be introduced later. The
dfRG2 scheme exploits the fact that the bare vertex

v(j1σ1,j2σ2; j3σ3,j4σ4)

= Uj1δj1j2δj3j4δj1j4δσ1σ̄2δσ̄3σ4

(
δσ1σ3 − δσ1σ4

)
(17)

is purely site diagonal, and parametrizes the vertex in terms of
O(N2Nf) independent variables.

To this end, we consider a simplified version of the vertex
flow equation (12), where the feedback of the vertex flow
is neglected: on the right-hand side we replace γ �

2 → v.
If the feedback of the self-energy were also neglected, this
would be equivalent to calculating the vertex in second-order
perturbation theory. As a consequence, all generated vertex
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contributions depend on two site indices and a single bosonic
frequency. They have one of the following structures:

Pσσ̄
ji (Π) := γΛ

p (jσΠ−ωn , jσ̄ωn ; iσΠ−ωn, iσ̄ωn)

O(v2)
jσ

jσ̄

iσ

iσ̄

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

,
(18a)

P̄σσ̄
ji (Π) := γΛ

p (jσΠ−ωn , jσ̄ωn ; iσ̄Π−ωn, iσωn)

O(v2)
jσ

jσ̄

iσ

iσ

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

¯

,
(18b)

Xσσ̄
ji (X) := γΛ

x (jσX+ωn , iσ̄ωn; iσX+ωn, jσ̄ωn )

O(v2)
jσ

jσ̄

iσ

iσ̄

σ

σ̄

X+ ωn

ωn

X+ ωn

ωn

X+ ωn

ωn

,
(18c)

Xσσ
ji (X) := γΛ

x (jσX+ωn , iσωn; iσX+ωn, jσωn )

O(v2)

jσ

iσ
σ̄

σ̄

jσ

iσ

X+ ωn

ωn

X+ ωn

ωn

X+ ωn

ωn

,
(18d)

Dσσ
ji (Δ) := γΛ

d (jσΔ+ωn , iσωn; jσωn , iσΔ+ωn)

O(v2)

n

jσ

iσ

σ̄ σ̄

jσ

iσ

Δ+ ωn

ωn

ωn

Δ+ ωn

Δ+ ωωn

(18e)

Dσσ̄
ji (Δ) := γΛ

d (jσ̄Δ+ωn , iσωn; jσωn , iσ̄Δ+ωn)

O(v2)

jσ

iσ̄

jσ̄

iσ

σ̄ σ

Δ+ ωn ωn

Δ+ ωnωn

Δ+ ωnωn .
(18f)

These second-order terms do not depend on the frequencies ωn

and ωn′ . Now note that no additional terms are generated if we
allow for a vertex feedback within the individual channels in
Eqs. (12a), (12b), and (12c), i.e., if we take the flow equation
of γa(A) (a = p,x,d and correspondingly A = �,X,�) and
replace the feedback of the vertex on the right-hand side by

γ2(�,X,�) → v + γa(A). (19)

This scheme is equivalent to solving RPA equations for the
three individual channels P , X, and D (see Sec. III I), with an
additional feedback of the self-energy via Eq. (9).

Note that if i =j in Eq. (18), the terms a and c, b and f

as well as d and e have the same structure w.r.t. their external
site and spin indices. As a result, it is possible to account for

an interchannel feedback in the vertex flow without generating
additional terms if the feedback is restricted to purely site
diagonal terms. As in Ref. [11], we avoid frequency mixing
by limiting the interchannel feedback to the static part of
the vertex, i.e., the vertex contributions are evaluated at zero
frequency when fed into other channels. Putting everything
together, the approximation scheme is defined by replacing
the vertex on the right-hand side of the flow equation γ̇ �

a by
(12):

γ2 → v + γa(A) + [γb(0) + γc(0)]δj1j2δj ′
1j

′
2
δj1j

′
1
, (20)

where a,b,c are cyclic permutations of p,x,d, and A,B,C

are the corresponding cyclic permutations of the frequencies
�,X,�. Since this equation is the central definition of this
paper, we explicitly write it for each of the three channels:

γ̇p(�) : γ2(j ′
1,j

′
2; j1,j2; �,X,�)

→ v + γp(�) + [γx(0) + γd (0)]δj1j2δj ′
1j

′
2
δj1j

′
1
, (21a)

γ̇x(X) : γ2(j ′
1,j

′
2; j1,j2; �,X,�)

→ v + γx(X) + [γp(0) + γd (0)]δj1j2δj ′
1j

′
2
δj1j

′
1
, (21b)

γ̇d (�) : γ2(j ′
1,j

′
2; j1,j2; �,X,�)

→ v + γd (�) + [γp(0) + γx(0)]δj1j2δj ′
1j

′
2
δj1j

′
1
. (21c)

This scheme generates a self-energy and a vertex which are
both exact to second order in the interaction. To see this we
note that first, the fRG flow equations without any truncation
are exact, and second, in the fRG truncation (5) and in the
CLA (20) the neglected terms are all of third or higher order
in the interaction.

D. Symmetries

As can readily be checked, these flow equations respect the
following symmetry relations:

Gσ�
ij (ωn) = Gσ�

ji (ωn) = [
Gσ�

ij (−ωn)
]∗

, (22a)

�σ�
ij (ωn) = �σ�

ji (ωn) = [
�σ�

ij (−ωn)
]∗

, (22b)

P σσ̄
ji = P σ̄σ

ji = P σσ̄
ij , P̄ σ σ̄

j i = P̄ σ̄σ
ji = P̄ σ σ̄

ij ,

P σ σ̄
ji = −P̄ σ σ̄

j i , (23a)

Xσσ ′
ji = Xσσ ′

ij = [
Xσ ′σ

ji

]∗
, Dσσ ′

ji = Dσσ ′
ij = [

Dσ ′σ
ji

]∗
,

X = −D, (23b)

P σσ̄
ji (�) = [

P σσ̄
ji (−�)

]∗
, Xσσ ′

ji (X) = [
Xσσ ′

ji (−X)
]∗

,

Dσσ ′
ji (�) = [

Dσσ ′
ji (−�)

]∗
, (23c)

Xσσ ,Dσσ ∈ R. (23d)

As a result, only four independent symmetric frequency-
dependent matrices are left, which we define as follows:

P �
ji (�) = P σσ̄

ji (�), X�
ji(X) = Xσσ̄

ji (X),

Dσ�
ji (�) = Dσσ

ji (�), (24)
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where the superscript � signifies a dependence on the flow parameter. At zero magnetic field, the number of independent matrices
reduces to three since in this case D↑ = D↓.

The flow equations for these matrices can be derived starting from Eqs. (12). The replacement (20) restricts the internal
quantum numbers on the right-hand side of the flow equation q3, q4, q ′

3, and q ′
4 according to the definitions (18):

ẊΛ
ji(X) =γ̇Λ

x (jσX+ωn , iσ̄ωn; iσX+ωn, jσ̄ωn )

(25b)

=T
kl,n

γΛ
2 (jσX+ωn , kσ̄ωn ; kσX+ωn , jσ̄ωn )S σ̄Λ

kl (ωn )GσΛ

σΛ

lk (X+ωn )γΛ
2 (lσX+ωn , iσ̄ωn; iσX+ωn, lσ̄ωn )

+ γΛ
2 (jσX+ωn , kσ̄ωn ; kσX+ωn , jσ̄ωn )Gσ̄Λ

kl (ωn )SσΛ
lk (X+ωn )γΛ

2 (lσX+ωn , iσ̄ωn; iσX+ωn, lσ̄ωn ) ,

Ḋji(Δ) =γ̇Λ
d (jσΔ+ωn , iσωn; jσωn , iσΔ+ωn)

(25c)

= − T
kl,n

γΛ
2 (jσΔ+ωn , kσωn ; jσωn , kσΔ+ωn)SσΛ

kl (ωn )GσΛ
kl (Δ+ωn )γΛ

2 (lσΔ+ωn , iσωn; lσωn , iσΔ+ωn)

+ γΛ
2 (jσΔ+ωn , kσωn ; jσωn , kσΔ+ωn)GσΛ

kl (ωn )SσΛ
kl (Δ+ωn )γΛ

2 (lσΔ+ωn , iσωn; lσωn , iσΔ+ωn)

+ γΛ
2 (jσΔ+ωn , jσ̄ωn ; jσωn , jσ̄Δ+ωn)S σ̄Λ

ji (ωn )Gσ̄Λ
ij (Δ+ωn )γΛ

2 (iσ̄Δ+ωn , iσωn; iσ̄ωn , iσΔ+ωn)

+ γΛ
2 (jσΔ+ωn , jσ̄ωn ; jσωn , jσ̄Δ+ωn)Gσ̄Λ

ji (ωn )S σ̄Λ
ij (Δ+ωn )γΛ

2 (iσ̄Δ+ωn , iσωn; iσ̄ωn , iσΔ+ωn) .

ṖΛ
ji(Π) =γ̇Λ

p (jσΠ−ωn , jσ̄ωn ; iσΠ−ωn, iσ̄ωn)

(25a)

=T
kl,n

γΛ
2 (jσΠ−ωn , jσ̄ωn ; kσωn , kσ̄Π−ωn )SσΛ

kl (ωn )Gσ̄Λ
kl (Π−ωn )γΛ

2 (lσωn , lσ̄Π−ωn ; iσΠ−ωn, iσ̄ωn)

+γΛ
2 (jσΠ−ωn , jσ̄ωn ; kσ̄ωn , kσΠ−ωn )S σ̄Λ

kl (ωn )GσΛ
kl (Π−ωn )γΛ

2 (lσ̄ωn , lσΠ−ωn ; iσΠ−ωn, iσ̄ωn) ,

As is the case for the diagrams (18), these equations do not
depend on ωn and ωn′ , if the same holds for γ2 on the right-
hand side. The latter is of course not the case without the
replacement (20). The initial conditions are

P �i = X�i = Dσ�i = 0. (26)

Performing the replacement (20), these equations can be
compactly written in matrix form

d

d�
P �(�) = P̃ �(�)Wp�(�)P̃ �(�), (27a)

d

d�
X�(X) = X̃�(X)Wx�(X)X̃�(X), (27b)

d

d�
Dσ�(�) = −D̃σ�(�)Wσd�(�)D̃σ�(�)

− I�Wσ̄d�(�)I�, (27c)

where we have introduced the definitions

P̃ �
ji (�) = P �

ji (�) + δji

(
X�

jj (0) + Uj

)
, (28a)

X̃�
ji(X) = X�

ji(X) + δji

(
P �

jj (0) + Uj

)
, (28b)

D̃σ�
ji (�) = Dσ�

ji (�) + δjiX
σ�
jj (0)

= Dσ�
ji (�) − δjiD

σ�
jj (0), (28c)

I�
ji = δji

[
P �

jj (0) + X�
jj (0) + Uj

]
, (28d)

which account for the interchannel feedback contained in
Eq. (20). Wp, Wx , and Wσd each represent a specific bubble,
i.e., a product of two propagators summed over an internal
frequency:

W
p�

ji (�) = T
∑
σn

Sσ�
ji (ωn)G σ̄�

ji (� − ωn), (29a)

Wx�
ji (X) = T

∑
n

[
S↑�

ji (ωn)G↓�

ij (X + ωn)

+S↓�

ij (ωn)G↑�

ji (ωn − X)
]
, (29b)

Wσd�
ji (�) = T

∑
n

[
Sσ�

ji (ωn)Gσ�
ij (� + ωn)

+Sσ�
ij (ωn)Gσ�

ji (ωn − �)
]
. (29c)

Using the above definitions, the flow equation of the self-
energy (8) can be written explicitly as

d

d�
�σ�

ji (ωn) = −T
∑
n′

[
(δjiUj + Pji(ωn + ωn′)

+Xji(σ (ωn − ωn′)))S σ̄
j i(ωn′)

−Dσ
ji(ωn − ωn′ )Sσ

ji(ωn′)

+ δji

∑
k

Dσ
jk(0)Sσ

kk(ωn′)

]
. (30)
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To summarize, dfRG2 is defined by the flow equations (27)
and (30), together with the definitions (9), (18), (24), (28), and
(29).

E. Magnetic susceptibility

In this section, we demonstrate how the fRG approach can
be used to derive expressions for linear response theory. We
start by defining the magnetic susceptibility χi at a given site
i as the linear response of the local magnetization mi to a
magnetic field B:

χi = ∂Bmi |B=0 = 1
2∂B(n↑

i − n
↓
i )|B=0, (31)

where nσ
i is the local occupation of site i with spin σ . Using

the Matsubara sum representation of the local density nσ
i =

T
∑

n Gσ
ii (ωn), we explicitly calculate the derivative w.r.t. the

magnetic field:

χi = T

2

∑
nσ

σ∂BGσ
ii (ωn)|B=0

= T

2

∑
nσ

−σGσ (ωn)∂B[σB/2 − �σ (ωn)]Gσ (ωn)|B=0

= −T

2

∑
nj

Gij (ωn)Gji(ωn)

+T

2

∑
nklσ

σGik(ωn)∂B�σ
kl(ωn)|B=0Gli(ωn). (32)

Note that the derivative of the self-energy w.r.t. the magnetic
field B has the structure of the fRG flow equation of the self-
energy (8). So, we perform the derivative by setting � = B

instead of the � dependence defined in Eq. (7). The single-
scale propagator (9) with � = B set to zero then is

Sσ,B=0 = G∂B

[
Gσ

0

]−1
B=0G = σ

2
G2. (33)

Using this in combination with the flow equation of the
self-energy (8),

∂B�σ
kl(ωn) = T

2

∑
n′j1j2j3σ ′

σ ′Gσ ′
j1j2

(ωn′)Gσ ′
j2j3

(ωn′)

× γ2(j3σ
′ωn′ ,kσωn; j1σ

′ωn′ ,lσωn), (34)

one directly arrives at the well-known Kubo formula for
the magnetic susceptibility, which is exact if the self-energy
and the vertex are known exactly. For the coupled-ladder
approximation, we directly use the explicit flow equation for
the self-energy (30), which yields

χi = − T

2

∑
n,j

Gij (ωn)Gji(ωn)

+ T 2

4

∑
nn′klj

(Gik(ωn)Gli(ωn)Glj (ωn′)Gjk(ωn′)

× [Pkl(ωn + ωn′) + Xkl(ωn − ωn′) + Dkl(ωn − ωn′ )]

− Gik(ωn)Gki(ωn)Dkl(0)Glj (ωn)Gj l(ωn)). (35)

F. Zero-temperature limit

For the numerical data presented in Sec. IV, we focused
exclusively on the case of zero temperature. For the fRG
scheme defined by Eq. (7), the limit T → 0 has to be per-
formed carefully [7]: ωn → iω (ω ∈ R) becomes a continuous
variable and �T a sharp step function, with �(0) = 1

2 and
∂ω�(ω) = δ(ω). For this combination of δ and � functions,
Morris’ lemma [21] can be applied, which yields

S�(iω)
T =0= δ(|ω| − �)G̃�(iω), (36a)

G̃�(iω) = [[G0(iω)]−1 − ��(iω)]−1, (36b)

S�
i,j (iω1)G�

k,l(iω2)
T =0= δ(|ω1| − �)�(|ω2| − �)

× G̃�
i,j (iω1)G̃�

k,l(iω2). (36c)

G. Static fRG

A further possible approximation is to completely neglect
the frequency dependence of the vertex. This is done by setting
all three bosonic frequencies �, X, and � to zero throughout.
As a result, the self-energy is frequency independent, too.
This approach, called static fRG2 (sfRG2), loses the property
of being exact to second order. It leads to reliable results only
for the zero-frequency Green’s function at zero temperature.
If knowing the latter suffices (such as when studying the
magnetic field dependence at T = 0), sfRG2 is a very flexible
and efficient tool, computationally cheaper than our full
coupled-ladder scheme.

H. Numerical implementation

Due to the slow decay of S� for � → ∞, integrating the
flow equation (8) of the one-particle vertex γ1 from � = ∞
to a large but finite value � = �0 yields a finite contribution.
For numerical implementations, the initial condition thus has
to be changed to [5]

γ
�0
1 (q ′

1,q1) = −1

2

∑
q

v(q,q ′
1; q,q1). (37)

All numerically costly steps can be expressed as matrix
operations, for which the optimized toolboxes BLAS and
LAPACK can be used. The calculation time scales asO(N3), due
to the occurrence of matrix inversions (9) and matrix products
(27). In the case of sfRG2 there are six matrix functions,
each depending only on �. As a result, the integration
is straightforward, and can be done, e.g., by a standard
fourth-order Runge-Kutta with adaptive step-size control. We
used the more efficient Dormand-Prince method [24], and
mapped the infinite domain of � ∈ [0,∞) onto a finite domain
using the substitution � = x

1−x
with x ∈ [0,1). The upper

bound for N , the maximal number of sites where Uj �= 0,
is mainly set by accessible memory. In the case of several
gigabytes, N should not exceed 104 to 105. {We note in passing
that for the one-dimensional Hubbard model [which is a special
case of the model studied below, see Eq. (40)], N values of
that magnitude would not yet be large enough to reach the
Luttiger-liquid regime for the case of small interactions U . The
reason is that for the Hubbard model the spectral weight and
the conductance have a nonmonotonic dependence on energy:
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as the energy is decreased, there is an intermediate regime
in which they first increase, before the power-law decrease
characteristic of Luttinger-liquid behavior finally sets in at
very low energy scales, i.e. very large system sizes [6,25]. For
small interactions U � 0.5τ , the latter crossover only becomes
accessible for system sizes well beyond 105 sites (see, e.g.,
Fig. 6 in Ref. [6]). To be able to see the low-energy decrease
of spectral weight for system sizes of order 105, interactions
would have to be chosen to be as large as U � 4τ , for which,
however, the CLA can no longer be trusted.}

For dfRG2, all matrices depend additionally on the Mat-
subara frequency, which is, in the case of zero temperature,
a continuous variable. This variable has to be discretized in
the numerical implementation. A good and safe choice is a
logarithmic discretization since analytic functions have most
structure close to their branch cuts, i.e., small Matsubara
frequencies. Another possible choice, used in Ref. [7], is a
geometric mesh. Since an appropriate discretization consists
of at least 100 frequencies, the upper bound for N is reduced
to 103, for which the run time already becomes quite large.

For frequency values in-between the discrete frequencies on
the mesh, the functions have to be interpolated. Intuitively, one
might expect that a nonlinear interpolation, e.g., a cubic spline,
would lead to better results. However, in our implementations
this led to a self-enhanced oscillatory behavior of the self-
energy as a function of frequency, even for a very dense
discretization mesh. To avoid such numerical artifacts, the
safest choice is a linear interpolation, where the density of the
discretization is increased until the desired accuracy is reached.

I. Relation between fRG2 and RPA

In this section, we show that in the ladder approximation
proposed here, fRG retains the quality of being closely related
to parquet-type equations. This can be seen by considering
a simplified version thereof, in which the coupling between
the three channels is neglected, i.e., using replacement (19)
instead of (20), and so is the feedback of the self-energy by
replacing G̃� by G0 in Eq. (29). In this case, each of the three
differential equations (27) reduces to the generic form

d

d�
��(ν) = ��(ν)W�(ν)��(ν), (38)

with initial condition ��i = U = δijUj (with Uj � 0, for
present purposes). If Eq. (38) converges, its solution is given
by

�(ν) = U [I + W (ν)U]−1 , (39a)

with

W (ν) =
∫ ∞

0
d�W�(ν). (39b)

Now note that Eq. (39) is also obtained if each channel is
separately treated in the random phase approximation (RPA).
Consequently, the full fRG2 scheme (either dynamic or static),
described by Eqs. (27), amounts to a simultaneous treatment
of all RPA channels with interchannel coupling via (28), and
a feedback of Hartree-type diagrams via (9).

IV. fRG RESULTS

In this section, we will discuss some properties of the results
obtained with the fRG equations stated in Sec. III, for the case
of a QPC geometry. We will compare the results for the linear
response conductance for the three approximation schemes
and discuss the spin susceptibility within dfRG2.

A. Model for a QPC

We note that Eq. (1) applies to systems of arbitrary spatial
dimensions. However, in this work we only present and
discuss results for QPCs, thus restricting the model to one
dimension. The lowest one-dimensional subband of the QPC
is modeled by an inhomogeneous tight-binding chain, with
onsite interactions:

H =
∑
jσ

[
Eσ

j njσ − τ (d†
jσ dj+1σ + H.c.)

] +
∑

j

Ujnj↑nj↓,

(40)

with Eσ
j = Vj + 2τ − σB

2 where B is a Zeeman field. For
low kinetic energies, this tight-binding model is a good
approximation for a continuum model with mass m

�2 = 1
2τa2

(where � is Plank’s constant) and potential Vj = V (x =
ja) [26], provided that the lattice spacing a is much smaller
than the length scales on which the potential changes. In order
to keep computational time small, the model should always be
chosen in such a way that the number of sites N where Vj or
Uj are nonzero is as small as possible. In other words: The
inhomogeneity should be incorporated within as few sites as
possible, without loss of adiabaticity.

We model the QPC as a smooth one-dimensional potential
barrier which is purely parabolic around its maximum at x = 0:

V (x) = Vg + μ − m

2�2
�2

xx
2, (41)

or in discrete version

Vj = Vg + μ − �2
x

4τ
j 2 (|j | < jc). (42)

Here, jc defines the range of pure parabolicity, μ is the
chemical potential, and �x is the relevant energy scale for
the QPC [16], which we define such that it has the dimension
of an energy (not frequency). The condition that a has to be
much smaller then the length scales on which the potential
changes implies the condition �x 
τ . Vg is the gate voltage,
which controls the height of the potential. For |j | > jc, the
potential is smoothly connected to homogenous semi-infinite
noninteracting leads. The potential can be considered as purely
parabolic regarding its low-energy transport properties if jc �√

τ/�x . In the following, we use μ = 0.5τ , �x = 0.04τ ,
jc = √

2τμ/�x , and N = 81. These values optimize the
conditions on �x , jc, and the smoothness of the potential
on the one hand and the smallness of the number of sites
N on the other hand. Typical experimental values for GaAs
QPCs are �x = 1 meV and m = 0.067me, where me is the
electron mass. The latter fixes the hopping to τ = 25 meV
and thus the length unit to a =

√
�2/2τm � 5 nm. These

values should give a rough estimate for comparison with
experiment, however, in the following we will use the system
of measurement defined by τ and a, without referring to SI
units.
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FIG. 1. (Color online) (a) Local density of states Aj (ω) (color
scale) for the noninteracting Uj = 0, Hamiltonian Eq. (40) with
potential (42) at Vg = 0 (thick black line). (b) Local density of states
Aj (ω) as a function of (ω − Vj )/�x for a homogeneous tight-binding
chain (Vj = 0, gray line) and for the potential (42) at fixed site j = 0
(blue), j = 10 (green), and j = 20 (red), indicated in (a) by vertical
lines with corresponding colors.

B. Model properties

Having defined the model we first discuss its noninteracting
(U =0) properties. Figure 1 shows the local density of states
(LDOS)

Aj (ω) = − 1

aπ
ImGjj (ω + i0+) (43)

both in a grayscale plot as a function of site index and frequency
[Fig. 1(a)] and at several fixed sites as a function of frequency
[Fig. 1(b)]. Note that just above the potential [black line
in Fig. 1(a)] the LDOS is enhanced [dark region in Fig. 1(a)].
This property originates from the fact that the density of states
(DOS) of a one-dimensional system shows a divergence at
zero velocity: indeed the DOS for the homogenous version
[Vj = 0, i.e., Vg = μ = �x = 0 in Eq. (42)] of our model
[black dashed line in Fig. 1(b)] reads as

A(ω) = 1

πa
√

ω(4τ − ω)

ω
τ≈ 1

2πa
√

τω
∝ 1

vclas
, (44)

where vclas is the classical velocity of the electron. Quantum
mechanically, this divergence is smeared out by the inhomo-
geneity (Vj �= 0) of a potential. Following Ref. [1], we call
this smeared van Hove singularity in the LDOS that follows
the potential a “van Hove ridge.” In the case of a parabolic
barrier with curvature given by �x [Eq. (42)], the maximum
of the LDOS is at an energy of O(�x) bigger than Vj and has a
height of O(

√
τ�x) [see dashed-dotted line in Fig. 1(b)]. For

energies below the potential maximum, electrons get reflected.

This leads to standing waves, altering the LDOS by oscillations
around its bulk value [white striped area in Fig. 1(a) and
oscillations in dark red line Fig. 1(b)].

C. Conductance of a QPC

Having discussed the properties of the noninteracting
model, we continue with the fRG results at finite interaction.
For this we first define the spatial dependence of the interaction
Uj , which, for the one-dimensional model is an effective
one-dimensional interaction resulting from integrating out
two space dimensions. Its strength depends on the geometry,
and is larger if the spatial confinement perpendicular to
the one-dimensional system is smaller. We assume that this
confinement is independent of the position in the transport
direction in the center of the QPC, with Uj=0 = U . This is
a fair assumption for a saddle-point approximation of the
two-dimensional QPC potential. For |j | → N ′ = N−1

2 , Uj

drops smoothly to zero, describing the adiabatic coupling
to the two-dimensional electron system, represented by the
semi-infinite tight-binding chain.

In Ref. [1], we showed that the 0.7 anomaly is caused by
the van Hove ridge in the LDOS discussed above. Its apex
crosses the chemical potential when the QPC is tuned into
the subopen regime, i.e., the regime where the conductance
takes values 0.5GQ < G < 0.9GQ. This high LDOS at the
chemical potential enhances effect of interactions by two
main mechanisms: first, the effective Hartree barrier depends
nonlinearly on gate voltage and magnetic field, causing an
enhanced elastic backscattering; and second, due to the high
LDOS inelastic backscattering is enhanced once a phase space
is opened up by a finite temperature or source-drain voltage.
Both effects reduce the conductance in the subopen regime,
causing the 0.7 anomaly. Since interactions are enhanced by
the LDOS, the relevant dimensionless interaction strength is
UjAj (μ)a, which scales like U/

√
�xτ in the subopen regime.

In this paper, we will concentrate on examining how
the reliability of the method depends on the interaction,
without explaining the physical mechanism underlying the
0.7 anomaly in detail (for the latter, we refer to Ref. [1]).
For the model (40), no reliable results are available from
other methods to which we could have compared our own.
Instead, we here compare the results of the different fRG
schemes fRG1, sfRG2, and dfRG2. These schemes differ in the
prefactor of the perturbative expansion of terms in order U 2 and
higher. If these terms are important, the three approximation
schemes will deviate from each other. Hence, the qualitative
and quantitative reliability can be deduced from the qualitative
and quantitative deviations between these schemes.

The first observable we discuss is the linear response
conductance at zero teperature [27]:

G = e2

h

∑
σ

∣∣2πρσ (i0+)Gσ
−N ′N ′ (i0+)

∣∣2
, (45)

where ρ(ω) is the density of states at the boundary of a semi-
infinite tight-binding chain, representing the two-dimensional
leads (for a derivation of the boundary Green’s function, see
the Appendix).

Particularly interesting in studying the 0.7 anomaly in
QPCs is the shape of the conductance trace as a function
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FIG. 2. (Color online) (a)–(c) Conductance G, as a function of gate voltage Vg , at zero magnetic field B = 0 for different values of
interaction U . (d)–(f) Conductance G at fixed interaction strength U = 3.5

√
�x , for six equidistant magnetic fields B, between 0 and 0.5�x .

Conductance is calculated using fRG1 [(a), (d)], dfRG2 [(b), (c)], or sfRG2 [black lines in (c) and (f)]. Red lines in (c) and (f) show dfRG2 data
repeated from (b) and (e) with a U -dependent shift �Vg in Vg direction (�Vg = 0, 0.001, 0.02 and 0.15�x for U = 0, 0.5, 1, 5, and 3.5

√
�xτ ,

respectively).

of applied gate voltage in the region where its value (in
units of GQ) changes from zero to one, and how this shape
changes with external parameters, such as applied magnetic
field. First of all, we emphasize the good qualitative agreement
of all three approximation schemes with each other as well as
with experimental results [compare Figs. 2(d), 2(e), and 2(f)
with Refs. [17,19] (a direct comparison of dfRG2 with
experiment is given in Ref. [1])]. This confirms that the method
qualitatively captures the physical mechanism with respect to
the conductance at zero temperature very well.

For a more quantitative analysis, we first consider the posi-
tion of the conductance step, say Vpo; even though the actual
position of the step is of minor interest experimentally, it gives
information about how accurate Hartree-type correlations are
treated. Figures 2(a), 2(b), and 2(c) show the conductance at
B = 0 for increasing values of interaction U for fRG1, dfRG2,
and sfRG2, respectively. While for dfRG2 and for sfRG2, Vpo

decreases with interaction, its behavior for fRG1 is nonmono-
tonic: Vpo decreases slightly at small values of interaction, and
increases strongly at larger values of interaction. Hence, the
conductance at large interaction is higher than the bare U = 0
value. This behavior is unphysical: whenever the density is
nonzero, an increase in U should cause an increase in the
effective barrier height due to Coulomb repulsion, and hence
a decrease in the conductance. This artifact is significantly
reduced by the vertex flow of both dfRG2 and sfRG2. For
the latter, interactions suppress the conductance more strongly
than for the former. Due to these deviations between the three
schemes, we can not make a quantitative statement about the
exact position of the conductance step Vpo.

The deviations just discussed make quantitative compar-
isons between these methods (or with others, such as RPA)
difficult if interactions are large. The reason for the difficulty is
that the Vg position of the conductance step depends sensitively
on the precise way in which Hartree-type correlations are
treated and hence differ for each of the above schemes. Hence,
it would not be meaningful to compare their predictions for

physical quantities calculated at a given value of Vg; instead,
it is only meaningful to compare the shape of their evolution
with Vg . Actually, the same is true for physical quantities that
are dominated by Fock-type correlations since internal prop-
agators have to be dressed by Hartree diagrams. Doing this is
crucial for inhomogeneous systems such as ours since an inho-
mogeneous density causes these Hartree contributions to have
a significant dependence on position and gate voltage. In the
fRG approach, the feedback of the self-energy (9) always guar-
antees that internal lines are dressed in a self-consistent way.

Let us now compare the shapes of the Vg-dependent
conductance curves for dfRG2 and sfRG2. To this end, we
replotted the dfRG2 data from Fig. 2(b) in Fig. 2(c) with a
U -dependent shift �Vg in the Vg direction (red lines). It can
be seen from comparison with sfRG2 data that the shapes of
the conductance curves are almost identical.

Next, we analyze the shape of the conductance step at
finite interaction, and how it develops with magnetic field. The
effect of an increasing magnetic field is qualitatively similar
for the three approximation schemes [see Figs. 2(d), 2(e),
and 2(f)]: the conductance step develops into a spin-resolved
double step, in an asymmetric way: while the curves hardly
change for Vg values where G < 0.5GQ, they are strongly
suppressed in the subopen regime, where the LDOS is large.
For fRG1, the Vg range, where the lowest magnetic field
B = 0.1�x significantly reduces the conductance w.r.t. the
conductance at B = 0, is larger than for dfRG2 and sfRG2.
This is related to the fact that the magnetoconductance, the
change of conductance with magnetic field, within fRG1 is
negative even for Vg values where conductance is close to zero
[this effect is too small to be visible in Fig. 2(d)]. Since this is
not the case for dfRG2 and sfRG2 it is not possible to make a
reliable statement about the sign of the magnetoconductance in
the tunnel regime. Again, we reproduced the dfRG2 data from
Fig. 2(e) in Fig. 2(f) with a shift �Vg in Vg (red line) in order to
compare their shape with the sfRG2 data (black dashed line).
The effect of the magnetic field on the conductance within
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sfRG is slightly larger for small fields and slightly smaller for
large fields than for the dfRG2 results. Based on the facts that,
first, the deviations between dfRG2 and sfRG2 are small and,
second, sfRG2 is computationally much cheaper than dfRG2,
we conclude that for preliminary studies, or when scanning a
large parameter space, one should favor sfRG2 whenever it is
sufficient to know the static part of vertex functions.

D. Susceptiblity

As explained in Ref. [1], the 0.7 anomaly is related to
an enhanced spin susceptibility in the subopen regime of the
QPC. For this quantity, an estimate of the error is available
within the dfRG2 approximation scheme. We note that the
spin susceptibility defined in Eq. (31) can be calculated in
two ways: by numerical differentiation of the magnetization
for a small magnetic field χnum, or via Eq. (35), χKubo. Like
the conductance, the value of χ is not known exactly. Thus,
we argue here as in the previous section. χnum and χKubo are
both exact to second order in the interaction, as can easily
be checked, but they differ in terms that are of order U 3 and
higher. If the difference of χnum and χKubo is significant, the
higher-order terms are non-negligible, and the results can not
be trusted.

In Ref. [1] we showed that χnum
j is enhanced due to the

inhomogeneity of the QPC potential and in addition amplified
by interactions. It has a strong Vg dependence, and is maximal
when the QPC is tuned into the subopen regime. In this regime,
at Vg = −�x/4, we compare χnum (Fig. 3 black lines) with
χKubo (Fig. 3 red lines) for different values of interaction. For
intermediate values of interaction U = 1.5

√
�xτ , both results

are essentially identical, while for a larger value of interaction
U = 3.5

√
�xτ deviations are clearly visible, however still

not too large. The qualitative features that the susceptibility
strongly increases with interaction, and that it is enhanced in
the center of the QPC, emphasized in Ref. [1], are confirmed
by both results. Furthermore, they coincide in their spatial
structure, i.e., two maxima in the center and a decaying
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FIG. 3. (Color online) Local spin susceptibility χj [Eq. (31)] as
a function of site index, for the QPC potential [Eq. (42)] at Vg =
−�x/4, calculated using dfRG2 via the the numerical derivative of
the local magnetization χ num (black lines), as well as via the Kubo
formula (35), χ kubo (red lines), for three different values of interaction.
Inset: relative error RE [Eq. (46)] (dots), as a function of interaction
U , on a log-log scale. The error scales as U 3 (compare dashed line)
since dfRG2 is exact to second order in the interaction U .

oscillating behavior. This spatial structure is mainly given
by the LDOS at the chemical potential (see Sec. IV B) and
enhanced by interactions.

For a better quantification, we define the relative error

RE = 2

∑
j

∣∣χKubo
j − χnum

j

∣∣∑
j

∣∣χKubo
j + χnum

j

∣∣ . (46)

This error is shown on a log-log scale in the inset of Fig. 3
(dots). The relative error scales like U 3 since dfRG2, and thus
χnum and χKubo, are exact to second order in U . For the larger
value of interaction U = 3.5

√
τ�x , the relative error of about

18% is quite significant and thus the value of χ is quantitatively
not reliable. The reason for this is that the dimensionless
interaction strength UjAj (μ)a ≈ 3.5 × 0.3 ≈ 1 is already
close to one. Nevertheless, the error is still dominated by the
third-order term, implying that it is controlled.

Finally, we note that the spin susceptibility in the RPA
approximation

χRPA
i =

∑
j

[Wd (0)[1 + UWd (0)]−1]ij (47)

diverges at an interaction strength for which fRG is still well
behaved. For example, if bare internal propagators are used to
calculate Wd , χRPA

i (Vg) turns out to diverge at U � 3.3
√

�xτ .
Moreover, the value of χRPA and thus also the U value
for which it diverges depends on how one chooses to treat
interactions for internal propagators of Wd . However, RPA
itself gives no recipe how to do this. In contrast, the fRG
approach gives a systematic framework for computing the
two-particle vertex, the self-energy, and their feedback into
each other, in a way that moderates competing instabilities in
an unbiased way (as mentioned in Sec. III).

V. CONCLUSION AND OUTLOOK

We have derived a fRG based approximation scheme,
called the coupled-ladder approximation (CLA), for spinful
fermionic tight-binding models with a local interaction and an
arbitrary potential. The main applications are systems with a
significant spatial dependence, in particular, models where the
electron density significantly changes with the position in real
space.

The CLA is formulated within the context of third-order-
truncated fRG schemes, in which the three-particle vertex is
set to zero, while the flow of the two-particle vertex is fully
incorporated. The CLA retains two of the main properties of
third-order-truncated fRG: it is exact to second order, and sums
up diagrams of the RPA in all channels. Since the CLA is based
on a perturbative argument, it is reliable only if interactions
are not too large.

We analyzed in detail the reliability of this approach
for a one-dimensional tight-binding model with a parabolic
potential barrier representing a QPC. For this, we com-
pared results for the conductance and the spin susceptibility
calculated using different approaches within the fRG for
different interactions up to U = 3.5

√
�xτ . We identified

the magnetic field dependence of the conductance and the
enhanced susceptibility related to the 0.7 anomaly [1], as
robust properties of the model.
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Finally, let us comment briefly on the prospects of using
the CLA approach presented here to obtain finite-temperature
results. While the formulas for the local density n and the local
susceptibility χ [Eq. (35)] are valid for arbitrary temperature
T , the conductance formula (45) holds only for the case of
zero temperature. The generalization of this formula to finite
temperature[28] involves an analytic continuation to the real
axis for both self-energy and vertex w.r.t. their frequency
arguments. However, performing such an analytic continuation
for numerical data is a mathematically ill-defined problem and
turns out to be especially difficult for matrix-valued functions.

One possibility to avoid this complication is to formulate
our CLA scheme on the Keldysh contour, in which case
there are several different possibilities for introducing the fRG
flow parameter [29]. (For a fRG treatment of the single-
impurity Anderson model, see Ref. [11].) When using
Keldysh fRG to treat equilibrium properties, the number of
independent correlators can be reduced by exploiting the
Kubo-Martin-Schwinger conditions [30]. Moreover, Keldysh
fRG in principle also allows nonequilibrium properties to be
calculated. The actual implementation of Keldysh fRG for our
model will be nontrivial, though, in particular since numerical
integrations along the real axis, where Green’s functions can
have poles, can be challenging. Another problem at finite
temperature is the violation of particle conservation due to the
fRG truncation (5) [31]. The extent of this violation might be
reduced by implementing the modified vertex flow suggested
by Katanin [32]. We believe that it would be worth pursuing
work in these directions.
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APPENDIX: PROJECTION METHOD

The propagator in the fRG flow [Eqs. (8) and (12)], in
general, lives on an infinite-dimensional chain. However,
since the interacting region has finite extent, we only need
to evaluate it on an N -dimensional subspace. Furthermore,
for the evaluation of Eq. (35) we need to calculate the sum
over all site indices j , including the infinite number of sites
in the leads. To this end, we perform a standard projection
procedure [8,20]. With this method, the influence of the
leads on the propagator and their contribution to the sum
can be calculated analytically if the diagonalization of the
leads is known analytically. Therefore, we define projection
operators C and L, with C2 = C, L2 = L, and L + C = 1
which divide the Hilbert space into the part that describes
the leads L and the finite-dimensional part that describes the
central region where interaction is nonzero C. Furthermore, we
define for a given quadratic Hamiltonian H (for an interacting
system H is replaced by H0 + �), Hc = CHC, Hc = CHC,
Hcl = CHL, Hlc = LHC, ωl = ωL, and ωc = ωC and write
the Hamiltonian in the basis defined by the projections

H =
(

Hc Hcl

Hlc Hl

)
. (A1)

Consequently, the Green’s function in the same basis reads as

G =
(

ωc − Hc −Hcl

−Hlc ωl − Hl

)−1

=
(
Gc Gcl

Glc Gl

)
. (A2)

with

Gc = 1

ωc − Hc − HclglHlc

, gl = 1

ωl − Hl

, (A3a)

Gl = 1

ωl − Hl − HlcgcHcl

, gc = 1

ωc − Hc

, (A3b)

Gcl = GcHclgl = gcHclGl , (A3c)

Glc = glHlcGc = GlHlcgc. (A3d)

In the following, we will only use Gl and gc as well as Gcl

and Glc expressed in terms Gl and gc, so we use the shorthand
notations G = Gl and g = gl (whether G lives on the infinite-
dimensional Hilbert space, or on the subspace of the central
contact, will be clear from its site indices).

For the case of the infinite tight-binding chain defined by
Eq. (40), the central region extends from site −N ′ to site N ′,
with N ′ = N−1

2 , and the coupling to the leads can be expressed
as

Hcl = −τ (d†
−N ′d−N ′−1 + d

†
N ′dN ′+1), (A4a)

Hlc = H
†
cl . (A4b)

Consequently,

HclgHlc = τ 2(d†
−N ′d−N ′−1 + d

†
N ′dN ′+1)

×g(d†
−N ′−1d−N ′ + d

†
N ′+1dN ′ )

= τ 2b(n−N ′ + nN ′ ), (A5)

where b = gN ′+1,N ′+1 is the boundary Green’s function
of a half-infinite tight-binding chain. Transforming into k

space and using the boundary condition 〈d†
N ′dk〉 = 0 we

get 〈d†
N ′+1dk〉 ∝ sin2(k). Together with the dispersion εk =

−μ − 2τ cos(k) and the proper normalization, this yields for
Im(ωn) > 0

b(ωn) = 1

π

∫ π

−π

dk
sin2(k)

ωn + μ + 2τ cos(k)

= 1

2τ 2
[ωn + μ − i

√
4τ 2 − (ωn + μ)2]. (A6)

The square root is defined to have a positive real part, and
b(−ωn) = b∗(ωn). (For the spin-dependent boundary Green’s
function at finite magnetic field, μ has to be replaced by
μ + σB/2.)

Next, we calculate the infinite sum in Eq. (35). We split the
sum into three parts and take k and l to be site indices in the
central region

∞∑
j=−∞

GkjGj l =
(−N ′−1∑

j=−∞
+

N ′∑
j=−N ′

+
∞∑

j=N ′+1

)
GjkGj l

=
N ′∑

j=−N ′
GjkGj l + τ 2Gk,−N ′hLG−N ′,l

+ τ 2Gk,N ′hRGN ′,l , (A7)
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with

hL =
−N ′−1∑
j=−∞

g−N ′−1,j gj,−N ′−1, (A8a)

hR =
∞∑

j=N ′+1

gN ′+1,j gj,N ′+1, (A8b)

where we made use of Eqs. (A3c), (A3d), and (A4).

Finally, we note that the last two terms are identical and
given by

h(ωn) = hL(ωn) = hR(ωn) = [g2(iωn)]N ′+1,N ′+1

= 1

π

∫ π

−π

dk
sin(k)2

[ωn + μ + 2τ cos(k)]2

= 1

2τ 2

(
ωn + μ

ωn + μ − 2τ

√
ωn + μ − 2τ

ωn + μ + 2τ
− 1

)
. (A9)
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