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Identifying symmetry-protected topological order by entanglement entropy
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According to the classification using projective representations of the SO(3) group, there exist two topologically
distinct gapped phases in spin-1 chains. The symmetry-protected topological (SPT) phase possesses half-integer
projective representations of the SO(3) group, while the trivial phase possesses integer linear representations. In
the present work, we implement non-Abelian symmetries in the density matrix renormalization group (DMRG)
method, allowing us to keep track of (and also control) the virtual bond representations and to readily distinguish
the SPT phase from the trivial one by evaluating the multiplet entanglement spectrum. In particular, using the
entropies SI (SH ) of integer (half-integer) representations, we can define an entanglement gap G = SI − SH ,
which equals 1 in the SPT phase, and −1 in the trivial phase. As an application of our proposal, we study the
spin-1 models on various one-dimensional (1D) and quasi-1D lattices, including the bilinear-biquadratic model
on a single chain, and the Heisenberg model on a two-leg ladder and a three-leg tube. Among others, we confirm
the existence of a SPT phase in the spin-1 tube model and reveal that the phase transition between the SPT and
the trivial phase is a continuous one. The transition point is found to be critical, with conformal central charge
c = 3 determined by fits to the block entanglement entropy.
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I. INTRODUCTION

Symmetry-protected topological (SPT) phases have at-
tracted enormous research interest recently.1–12 Among the
interesting models exhibiting SPT order, a remarkable example
is the spin-1 chain. The generic spin-1 bilinear-biquadratic
(BLBQ) model can be written as

Hblbq = J
∑
〈i,j〉

[cos(θ )SiSj + sin(θ )(SiSj )2], (1)

where the coupling J = 1 sets the energy scale, and θ is a
tunable parameter. The phase diagram of the spin-1 BLBQ
model with respect to various θs is well known (except for
a subtlety in the thin region near θ = −5/4π ).13,14 When
−π/4 < θ < π/4, the system is in the Haldane phase.15

Although this phase has been intensively studied, it has
been realized to be a SPT phase only very recently.1,7,8 At
θ = arctan(1/3), an exactly solvable point within the Haldane
phase, the ground state is termed the AKLT state,16 which can
be exactly expressed as a matrix product state (MPS) with bond
dimension D = 2. The Haldane phase has a nonzero spin gap,
called the Haldane gap, which can be interpreted in terms of
spinon confinement.17 No local order parameter can be found
to distinguish the Haldane phase from a trivial gapped phase;
nevertheless, there exists a nonlocal string order parameter
(SOP)18

Oα = − lim
j−i→∞

⎡
⎣Sα

i exp

⎛
⎝iπ

∑
i<l<j

Sα
l

⎞
⎠ Sα

j

⎤
⎦ , (2)

where α = x,z. This string order parameter characterizes the
topological order in the Haldane phase. Further studies show
that the string order parameter Ox,z can be transformed to two
ordinary ferromagnetic order parameters through a nonlocal
unitary transformation UKT = ∏

k<l exp(iπSz
kS

x
l ). Therefore,

a nonzero string order parameter actually reveals a hidden
Z2 × Z2 symmetry breaking.19,20

The Haldane phase is protected by several global sym-
metries. According to the valence bond solid (VBS) picture,
the gapped Haldane phase only possesses short-range en-
tanglement, hence it is not an intrinsic topological phase.2

Its nontrivial topological properties are protected by parity
symmetry, time reversal symmetry, and Z2 × Z2 rotational
symmetry around the x and z axes.1,8 The Haldane phase
cannot be adiabatically connected to a trivial phase as long
as one of the above symmetries is preserved along the path;
instead, a quantum phase transition (QPT) must occur along
the way. As is well known, the Landau paradigm classifies
the various symmetry-breaking phases according to symmetry
groups.21,22 Nevertheless, the existence of a QPT between
SPT phases and trivial ones shows that gapped phases without
symmetry breaking in one dimension (and also in higher
dimensions) can still be distinct and classified by the group
cohomology of related symmetry groups.2,3,7

To be specific, we consider the gapped phases in spin-1
SO(3) Heisenberg chains, which can be generally classi-
fied by different projective representations of the rotational
SO(3) group, i.e., the corresponding group cohomology
H 2(SO(3),U(1)) = Z2. Integer-spin (even) representations of
SU(2) are linear representations of SO(3); half-integer (odd)
representations, which involve an additional minus sign after
2π rotations [owing to the SU(2) double covering, SO(3) =
SU(2)/Z2], are projective representations of SO(3). Based on
this observation, the classification theory states that there are
two distinct gapped phases in spin-1 chains corresponding
to two different kinds of representations of SO(3): linear
and projective. They correspond to the trivial phase and the
Haldane phase, respectively.2,7

It has recently been discovered that these two phases also
differ strikingly in the structure of their entanglement spectra.
The entanglement spectrum consists of the eigenvalues of the
entanglement Hamiltonian HE = − log10(ρ), where ρ is the
reduced density matrix of a subsystem.23 The entanglement
spectrum of the bulk has an intimate relationship with the real
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excitation spectrum on the boundary.24 Closely related with
the group cohomology classification, an interesting feature has
been found: For the spin-1 chain, the entanglement spectrum
is found to show at least twofold degeneracy for the Haldane
phase, while it is generally nondegenerate for the trivial phase.8

The occurrence of the twofold degeneracy can be used to
numerically identify the Haldane phase.

Actually, this degeneracy in the entanglement spectrum is
a signature of the appearance of half-integer-spin multiplets
in the MPS geometric bond, which support projective repre-
sentations of the SO(3) group. Take the AKLT point as an
intuitive example: according to the construction of the AKLT
state, each local spin 1 is decomposed into two spin-1/2
ancillae. The AKLT state can be exactly expressed as MPS
with bond dimension 2, hence only one |S = 1/2〉 doublet
appears on each of its geometric bonds, and the entanglement
spectrum is twofold degenerate. For other generic states in
the Haldane phase, the multiplets on the geometric bonds are
generally S = half-integer, which leads to at least twofold
degeneracy and supports projective representations. This key
feature can be used to differentiate the SPT phase from the
trivial phase; the latter instead has integer bond multiplets that
support linear representations. Therefore, if we could directly
identify the virtual spins on the geometric bonds of the MPS,
it would be straightforward to see whether the representation
is projective or linear and thus to identify the SPT or trivial
phase.

One powerful numerical method for solving one-
dimensional (1D) quantum spin models is the density ma-
trix renormalization group (DMRG).25,26 In order to fur-
ther improve its efficiency and stability, Abelian and non-
Abelian symmetries have been implemented in the DMRG
algorithm.27,28 In particular, the state-of-the-art SU(2) DMRG
technique enables us to identify the spin of the multiplets
on the virtual bonds. Note, though, that if open boundary
conditions are adopted for SU(2) DMRG, because only
integer-spin sectors are allowed by adding spin 1s together,
the renormalized bases on the virtual bonds are automatically
integer multiplets, i.e., linear representations of SO(3). This
would imply the absence of twofold degeneracy within
each multiplet (every multiplet contains an odd number of
individual states) even in the Haldane phase, which seems
paradoxical.

To solve this problem, we propose a protocol algorithm in
this paper which automatically determines the proper bond
representations. In addition, by defining and calculating the
integer and half-integer entanglement entropies, we elucidate
why this protocol algorithm works and obtain a simple
criterion for identifying the SPT phase. We test these ideas
in three spin-1 lattice models and show that they succeed in
telling the SPT phase from the trivial one.

The paper is organized as follows: In Sec. II, the SU(2)-
invariant MPS and related DMRG algorithms are briefly
introduced. In Secs. III–V, we show that the entanglement
entropies can be used to identify the SPT phase by studying
three examples including the single spin-1 chain, 2-leg ladder,
and 3-leg tube models. In particular, in the spin-1 tube
model, the transition between the SPT and trivial phases
is verified to be a continuous QPT. Section VI offers a
summary.

II. SU(2)-INVARIANT MATRIX PRODUCT STATES
AND MULTIPLET ENTANGLEMENT SPECTRUM

The variational MPS ground state of 1D Heisenberg
systems with Hamiltonians like Eq. (1) can be written in
an SU(2)-invariant form. Corresponding bond spaces are
factorized into two parts,29

|Q̃ñ; Q̃z〉
=

∑
Qn,Qz

∑
ql,qz

(
A

q

Q,Q̃

)l

n,ñ

(
C

q

Q,Q̃

)qz

Qz,Q̃z
|Qn; Qz〉|ql; qz〉, (3)

where Qn (and Q̃ñ, ql) are composite multiplet indices.
Q specifies the symmetry sector, n distinguishes different
multiplets with the same Q, and Qz (Q̃z, qz) labels the
individual states within a given multiplet in symmetry sector
Q (Q̃, q).

The A tensors can be regarded as physical tensors which
combine the input multiplets (Qn) with the local space (ql)
and transform (and possibly truncate) them into the output
multiplets (Q̃ñ); the C tensors are the Clebsch-Gordan coeffi-
cients (CGCs), which take care of the underlying mathematical
symmetry structure. The tensor product of physical tensor A

(reduced multiplet space) and its related mathematical tensor C

(CGC space) has been called the QSpace,29 which is a generic
representation used in practice to describe all symmetry-
related tensors.29 The QSpace is a very useful concept not
only for MPS wave functions, but also for calculating the
matrix elements of irreducible tensor operators, which can be
treated in the same framework according to the Wigner–Eckart
theorem.

By implementing the QSpace in our DMRG code, we need
to determine only the physical A tensors variationally as in
plain DMRG, while the underlying CGC space (C tensors)
are fully determined by symmetry. The A tensors manipulate
multiplets (Qn) only on the reduced multiplet level, which
leads to a large gain in numerical efficiency. In this work,
by adopting the SU(2)-invariant MPS, we are able to keep
track of the quantum numbers S of the bond multiplets, and
hence to distinguish the SPT phase and the trivial phase
straightforwardly.

Given an SU(2)-invariant MPS, it is natural to consider its
multiplet entanglement spectrum, defined of multiplets, rather
than individual states. To be explicit, we note that any SU(2)-
invariant MPS can be written in the following form:

|ψ〉 =
∑
{qz

i }
Tr

[(
A

q1
Q1,Q2

)l1

n1,n2
(�Q2 )n2 · · · (�QL−1 )nL−1

× (
A

qL

QL−1,QL

)lL

nL−1,nL

(
C

q1
Q1,Q2

)qz
1

Qz
1,Q

z
2
(λQ2 )Qz

2
· · ·

× (λQL−1 )Qz
L−1

(
C

qL

QL−1,QL

)qz
L

Qz
L−1,Q

z
L

]∣∣qz
1 ...q

z
L

〉
. (4)

The trace includes all the quantum labels (Qini,Q
z
i ), while

qi,li all equal 1 in the present spin-1 case. Equation (4) is an
SU(2)-invariant version of Eq. (4) in Ref. 8. The difference
is that the conventional MPS matrix A is represented in the
factorized form of a direct product, i.e., A

qi

Qi−1,Qi
⊗ C

qi

Qi−1,Qi
.

In Eq. (4) above, we have assumed the canonical MPS forms
in both the reduced multiplet space and the CGC space. Notice
that since the C matrices store CGCs, they automatically
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FIG. 1. (Color online) (a) Spin chain with coupling constant J .
(b) Two-leg spin ladder model with JL and JR for couplings along
chain and rung directions, respectively. (c) Three-leg spin tube model;
JL is the coupling along the leg. Each isosceles triangle contains two
kinds of couplings, JR for the two equal sides and αJR for the third.
(d) SU(2)-invariant matrix product state describing ground state of
(a) spin-1 chain, (b) ladder, or (c) tube. |S = n〉 represents a multiplet
with quantum number S = n. For the spin-1 model, each local space
is a |S = 1〉 triplet. The input bond multiplets on both open ends can
be controlled, and three common choices are shown in panel (d). Panel
(e) shows the phase diagram of the spin-1 BLBQ chain,13,14 H, C,
FM, and D stand for Haldane, critical, ferromagnetic, and dimerized
phases, respectively. There is a narrow region near θ ≈ −3/4π with
possible spin nematic order, whose existence still remains debatable.

fulfill the left- and right-canonical conditions. Therefore,
the diagonal λ matrices are identity matrices, and nontrivial
diagonal matrices � exist only on the multiplet level. Their
eigenvalues �i determine the multiplet entanglement spectrum
defined as

Ei = − log10(ρi) = −2 log10(�i), (5)

where ρi = �2
i is the reduced-density-matrix eigenvalue cor-

responding to each multiplet.
In order to illustrate the above concepts, let us now consider

the spin-1 BLBQ model on a single chain [see Fig. 1(a) for
the lattice geometry and Fig. 1(d) for corresponding MPS]. We
use generalized boundary conditions on both ends of the MPS,
in that the left (right) input bases of A1 (AL) can be specified
as desired. The most natural choice in DMRG is to take the
input basis to be a singlet |S = 0〉, as usually done for open
boundary conditions. In that case, however, the spin quantum
number S of the virtual bond multiplets would automatically
be integer, as only integer S results when adding two integer
spins together. For this reason, SU(2) DMRG calculations
with conventional open boundary conditions will never yield
the half-integer bond (projective) representation of the SO(3)
symmetry, but always a “trivial” state without the expected (at
least) twofold degeneracy in each bond multiplet expected for
the Haldane phase.

On the other hand, the boundary can also be set up by
taking both end bonds to be |S = 1/2〉 doublets, instead of
singlets |S = 0〉.30 Since then only half-integer multiplets
appear in the virtual bonds, this always yields a “SPT”

state possessing a doubly degenerate entanglement spectrum.
In particular, for the spin-1 chain of Hamiltonian (1), this
choice of boundary condition produces a SPT state for any
θ ∈ [−π/2,π/4]. However, this seemingly contradicts the
well-established fact that Haldane phase is confined to θ ∈
(−π/4,π/4). In order to resolve this apparent paradox, we
also study here a more general situation where we input the
direct sum |S = 0〉 ⊕ |S = 1/2〉 on the two boundary bonds.
This gives rise to the possibility of both integer and half-integer
multiplets on the bonds and allows us to actually do parallel
DMRG calculations in two independent symmetry sections,
i.e., integer and half-integer bond spaces.

We thus adopt the following protocol algorithm for de-
termining the bond representations: we input both integer
and half-integer multiplets on the boundary virtual bonds and
perform several DMRG sweeps back and forth. In the presence
of state-space truncation along the bonds, depending on the
Hamiltonian parameters, the system will eventually converge
to the half-integer projective representation or the integer linear
representation of SO(3), thus telling the SPT phase from a
trivial one.

Two typical “multiplet entanglement spectra” selected
through DMRG sweeps and calculated using |S = 0〉 ⊕ |S =
1/2〉 boundary states are shown in Fig. 2(a). Here each
data point represents a multiplet, in contrast with the tradi-
tional state entanglement spectrum, where each data point
corresponds to an individual state. θ = 0 corresponds to the
conventional Heisenberg model, whose ground state belongs to
the Haldane phase. The converged multiplet spectrum obtained
is shown using asterisks: all points in the spectrum correspond
to half-integer quantum numbers S, and each asterisk with
quantum number S represents 2S + 1 (an even number)
degenerate U(1) states, as expected for a SPT phase. On the
other hand, the system with θ = −π/2 is in the dimerized
phase, a trivial gapped phase. Its SU(2) multiplet spectrum is
plotted using open circles in Fig. 2(a). In contrast to the θ = 0
case, the circles are all located at integer S, as expected for a
trivial (non-SPT) phase.

In the protocol algorithm, where |S = 0〉 ⊕ |S = 1/2〉 is
used as auxiliary boundary state, DMRG allows the “correct”
bond representation to be found, as long as the system is not
very close to the phase transition point. In the following, in
order to compare the multiplet spectra between the integer
and half-integer representations, we now change strategy
and enforce the representation by specifying one of the two
boundary-state types on both ends of the chain, i.e., |S = 0〉
(|S = 1/2〉) for integer (half-integer) representation.

In Fig. 2(b), we choose θ = 0 (corresponding to the Haldane
phase) and compare the multiplet entanglement spectra EI

i

(circles) and EH
i + log10(2) (asterisks), which are obtained

by enforcing either integer or half-integer representations,
respectively. The integer-spin multiplet spectrum evidently
displays a twofold degeneracy, whereas the half-integer-spin
multiplet spectrum does not. Instead, we observe a one-to-one
correspondence between each multiplet in EH

i + log10 (2) and
a pair of degenerate multiplets in EI

i . The shift value log10(2) is
chosen because the two representations have different numbers
of states with nonzero weights in their reduced density matri-
ces. The nonzero individual states in the integer representation
are twice as many as those in the half-integer one.
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FIG. 2. (Color online) (a) The multiplet entanglement spectrum
of a spin-1 BLBQ chain, calculated using the protocol algorithm.
Multiplets |S = 0〉 ⊕ |S = 1/2〉 are put on the end bonds, and
the converged spectra are obtained after several DMRG sweeps.
θ = 0 (asterisks) is in the Haldane phase, with half-integer-spin
bond multiplets; θ = −π/2 (circles) is in the trivial phase, with
integer-spin bond multiplets. Every datum represents a multiplet (not
as usual a single state within a multiplet). Therefore, a multiplet
with symmetry label S corresponds to 2S + 1 degenerate states. (b)
Multiplet spectrum of integer and half-integer representations for the
Haldane phase calculated for θ = 0 and using |S = 1/2〉 (asterisks)
or |S = 0〉 (circles), respectively, on the end bonds. The half-integer
spectrum has been shifted by log10(2), in order to reveal the one-to-one
correspondence between each multiplet in the half-integer spectrum
and a pair of degenerate multiplets in the integer spectrum.

This different behavior of the degeneracies in the integer
and half-integer multiplet entanglement spectra can be un-
derstood as follows: in the presence of space-inversion sym-
metry, time-reversal symmetry, or some Z2 × Z2 rotational
symmetry, etc., which protects the Haldane phase, it has been
proven that �Qi

⊗ λQi
has an even degeneracy of at least 2.8

Therefore, in the Haldane phase, either �Qi
or λQi

should have
even degeneracy. For the half-integer bond representation, the
Qis are half-integer and therefore the λQi

s are identity matrices
with an even number of diagonal elements, implying that an
even degeneracy appears in the CGC space; thus the �Qi

in the
reduced multiplet space is not necessarily twofold degenerate,
which explains the absence of degeneracies in the multiplet
spectrum EH

i (asterisks). On the other hand, for integer bond
representations, the λQi

s are identity matrices of odd-number
rank, therefore an even degeneracy must instead appear on
the multiplet level, which explains the twofold degeneracy
obtained in EI

i (circles). This difference between integer and
half-integer representations has an important consequence in
the entanglement entropy, which will be discussed in the next
section.

To summarize, the lesson learned from Fig. 2 is as follows:
In Fig. 2(a) we showed that, if the mixed boundary |S = 0〉 ⊕
|S = 1/2〉 is adopted, the DMRG sweep can select the half-
integer-spin representation in the Haldane phase and integer-
spin representation in the trivial phase. Figure 2(b) illustrates
that if one studies the Haldane phase using auxiliary spin
|S = 0〉 or |S = 1/2〉 on the external bond, respectively, then
the general requirement of having an entanglement spectrum of
even degeneracy is satisfied by having the multiplet spectrum
being degenerate or nondegenerate for the case of integer-spin
or half-integer-spin representation, respectively.

III. ENTANGLEMENT GAP AND
SYMMETRY-PROTECTED TOPOLOGICAL PHASE

During the DMRG sweeps in the protocol using |S = 0〉 ⊕
|S = 1/2〉 as a boundary, as long as the doublet |S = 1/2〉
is not physically coupled to the bulk (the coupling strength
between the auxiliary boundary spin-1/2 and the spin-1 chain
can be set to be very weak or even turned off), the integer and
half-integer symmetry sectors have exactly the same ground-
state energy. Therefore, the energy is irrelevant in selecting
the symmetry sector in the protocol algorithm. Instead, since
the two-site update scheme of DMRG is adopted during the
sweeps, the truncation and hence the entanglement entropy is
important in selecting the symmetry sector.

In order to uncover this mechanism underlying the protocol
algorithm, we now study the bipartite entanglement entropies
in the integer and half-integer symmetry sectors, respectively,
by enforcing different boundary states. The entanglement
entropies are defined as

SX = −
∑
Q

TrQ
[(

ρX
Q ⊗ DX

Q

)
log2

(
ρX

Q ⊗ DX
Q

)]
, (6)

where X = H or I for half-integer or integer representa-
tions, and the difference G = SI − SH will be called the
“entanglement gap.” In Eq. (6), ρX is the reduced density
matrix on the multiplet level. It is block diagonal, with
blocks ρX

Q labeled by Q and matrix elements (ρX
Q)n,n′ . DX is

an identity matrix, with matrix elements (DX
Q)Qz,Q′

z
= δQz,Q′

z

whose trace thus equals the inner dimension of each multiplet.
Consequently, TrQ[·] refers to the trace over both the multiplet
index n as well as as the internal multiplet space Qz of a
given symmetry sector Q. Note that the logarithm to base
2 (log2) is adopted in evaluating the entanglement entropy.
ρX and DX are readily obtained from DMRG simulations.
We note the SU(2) multiplet language used to formulate
Eq. (6) for the von Neumann entropy can easily be applied
to also calculate the Renyi entropy. Very recently, the latter
has been employed to study the local differential convertibility
and thereby probe the SPT phase.32 Although we focus here
only on the von Neumann entropy, our analysis can be be
generalized straightforwardly to the Renyi entropy.

In Fig. 3, SI and SH of the spin-1 BLBQ chain [Eq. (1)] are
plotted in Fig. 3(a), and the entanglement gap G is shown in
Fig. 3(b). For the Haldane phase (−π/4 < θ < π/4 in Fig. 3)
we find SI > SH , thus the half-integer bond representation
has lower entanglement than the integer one, although the
ground-state energies in both representations are the same. On
the other hand, for the dimerized phase (−0.6π < θ < −π/4
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FIG. 3. (Color online) Integer and half-integer entanglement en-
tropies, SI and SH , of the spin-1 BLBQ model, for L = 200
(dash-dotted lines) and L = 500 (solid lines). Results for different
system sizes coincide for θ values far from the critical point at
θc = −π/4 (vertical dash-dotted line) but differ in the intermediate
region between the two vertical dashed lines. SI and SH cross at a
“pseudotransition” point θL

c , which moves towards the critical point
as the system size is increased [shown in panel (d), the extrapolated
point is very close to the true critical one]. In the above calculations,
400 multiplets (about 1600 individual states) have been retained, the
truncation errors are of the order 10−10 around critical point, and are
negligible (10−14 or less) for the rest parameters. The entanglement
entropies are evaluated at the center of the chain. Panel (a) also
shows the entanglement entropy obtained by the iTEBD algorithm31

(asterisks), which favors the minimally entangled states, and always
follows the lower entanglement entropies. (b) The entanglement gap
G = SI − SH , which equals ±1 in the SPT phase and the trivial phase
respectively. The dashed vertical lines mark the intermediate region,
where G is not a constant owing to finite size effects. Panel (c) shows
the string order parameter (SOP Oz) of Eq. (2), obtained by iTEBD
calculations, which retain up to 200 states.

in Fig. 3) we find SI < SH . This observation explains why the
protocol using |S = 0〉 ⊕ |S = 1/2〉 on end bonds employed
for Fig. 2(a) succeeded in selecting the “correct” bond
representations: DMRG always favors lower entanglement,
and the representation (integer or half-integer) with higher
entanglement would be discarded by truncations during the
sweeps.

Another interesting observation is that the entanglement
gap G = SI − SH is found to be a constant +1 (−1) in the
SPT (trivial) phase. It is rather robust and almost independent
of different Hamiltonian parameters and system sizes, except
for the intermediate region near the critical point, where the
finite-size effects become significant. This region is marked
by vertical dashed lines in Fig. 3. The entanglement curves
cross within this region, and the crossing point moves to the
true critical point θc = −π/4, the exactly soluble Takhtajan–
Bubujian point,33 with increasing system sizes.

The value G = ±1 actually originates from the different
topology of the SU(2) and SO(3) groups and hence can be
regarded as a topological invariant in each phase. In order
to understand this, let us again consider the exactly solvable
AKLT model with θ = arctan(1/3). The reduced tensor at the
multiplet level is AS=1

S=1/2,S=1/2 = 1, a simple tensor with bond
dimension 1, i.e., a scalar number. The corresponding CGC
tensor is C(S = 1/2,S = 1|S = 1/2), which combines a spin
doublet with a triplet into an output spin doublet.

The corresponding reduced density matrix of half-infinite
AKLT chain is a 2 × 2 diagonal matrix(

1/2 0
0 1/2

)
,

fully encoded in the CGC space only and resulting in an en-
tanglement entropy SH = 2[−1/2 log2(1/2)] = 1. However,
for the integer bond representation, we instead have a 2 × 2
diagonal matrix

(
AS=1

S=0,S=0 = 1/4 0
0 AS=1

S=1,S=1 = 1/4

)
(7)

in the reduced multiplet space. The two degenerate multiplets
contain four degenerate states in total, and the full reduced
density matrix is a 4 × 4 diagonal matrix with all elements
1/4. The entanglement entropy is SI = 4[−1/4 log2(1/4)] =
2, which is larger than the corresponding SH , and the gap
G = SI − SH = 1.

Next, we consider a generic state in the SPT phase away
from the special AKLT point. As shown in Fig. 2, there exists
a one-to-one correspondence between one S = (2n + 1)/2
multiplet in the half-integer sector and one pair of degenerate
multiplets with S = n and n + 1 in the integer sector (n =
0,1,2, . . . ). For the latter, the degeneracy on the multiplet
level cannot be trivially lifted owing to the protection of the
symmetry. Consequently, this multiplet degeneracy enhances
the entanglement entropies and opens an entanglement gap of
G = SI − SH = 1, as shown in Fig. 3. On the other hand,
adopting integer virtual bonds would preferably lower the
entropy by 1 for the trivial dimer phase. As shown in Fig. 3,
in this case the entanglement gap is G = −1.

Figure 3(c) presents the nonlocal string order parameter
obtained by infinite time-evolving block decimation (iTEBD)
calculations; it is nonzero in the Haldane phase and vanishes in
the trivial phase. The comparison of our entanglement entropy
results with the SOP data validates that G can be used to
distinguish SPT phase from the trivial one.

Lastly, we remark that the results in Fig. 3 were obtained
by evaluating finite-size systems. When the system is close
to the critical point, the entanglement entropies SI and SH
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are shown to cross each other. In Fig. 3(a), the lower values
of these two entropy curves can be regarded as giving the
“true” entanglement entropies. The combined curve shows a
sharp peak, which is missed when considering either SI or
SH alone. In Fig. 3(a), the results obtained by iTEBD are also
shown, which always favor the low-entanglement curves. The
iTEBD data coincide with the SU(2) DMRG results (except
for the region near the critical point), which validates our
arguments above. The crossing point of the SI and SH curves
(as the peak of the low-entanglement curve) can be viewed
as a pseudotransition point. As the system size increases, the
pseudotransition point approaches the true critical point θc =
−π/4 [see Fig. 3(d)]. In the thermodynamic limit, the gap
G is supposed to show a jump between 1 and −1 just at the
critical point, and the peaks of the entanglement entropies are
expected to diverge.

IV. SPIN-1 HEISENBERG TUBE MODEL

In this section, we study the SPT phase in a spin-1 tube
model. This model has been studied by Charrier et al. in
Ref. 34. Following their conventions, schematically depicted
in Fig. 1(c), the Hamiltonian is given by

Htube = HL + HR,

HL = JL

∑
i,a={1,2,3}

Si,aSi+1,a, (8)

HR = JR

∑
i

(Si,1Si,2 + Si,2Si,3 + αSi,1Si,3).

HL and HR are the intra- and interchain coupling terms,
respectively. In Ref. 34, the authors found a Haldane phase
existing for 0 < α < 0.57, with JL = 0.1 and JR = 1, where
each triangle contains an effective spin 1. For 0.57 < α < 1.5,
they found a trivial disordered phase, with each isosceles
triangle carrying an effective spin 0, leading to a spin-0 chain
(note that the combined product space 1 ⊗ 1 ⊗ 1 allows for
exactly one spin-0 singlet). At the critical point αc, the system
undergoes a quantum phase transition between the Haldane
and the trivial phase. For 0 < JL/JR < 0.65, there are still
phase transitions separating two phases, but at different αc; if
JL/JR > 0.65, no phase transition occurs because the trivial
phase no longer exists.34

Next, we revisit this model using SU(2) DMRG calculations
and study it by evaluating the entanglement entropies SI and
SH . In Fig. 4, the entropies SI and SH intersect at αc ≈
0.571 (1). For α < αc, G = SI − SH = 1, the half-integer
representation has lower entanglement. The dominating bond
multiplets are doublets (S = 1/2), and the system is in a SPT
(Haldane) phase. In contrast, for α > αc, G = SI − SH = −1,
the ground state favors integer bond representations. The
energy results show that the energy per triangle is uniform
along the leg direction, without any translational symmetry
breaking. The leading bond multiplet in the entanglement
spectrum is found to be a singlet (S = 0), and the system is in a
trivial disordered phase. In addition, we remark that the proper
definition of a SOP in this spin-1 tube has been discussed by the
authors in Ref. 34. The SPT phase that we have here identified
by entanglement entropy indeed also possesses a nonzero SOP.
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FIG. 4. (Color online) (a) Integer and half-integer entanglement
entropies SI and SH for the spin-1 tube model. The critical point esti-
mated from their crossing point is αc = 0.571 (1). (b) Entanglement
gap G = SI − SH . G = 1 when α < αc, identifying the existence of
a SPT phase, and G = −1 when α < αc, corresponding to a trivial
phase. The system size is 3 × 100, 400 multiplets are reserved, which
lead to maximum truncation error about 10−8 (at the critical point).

Compared with the spin-1 BLBQ model, finite-size effects
are much less significant in the spin tube model. For a system
size of 100 × 3, the values at which the peaks of integer
and half-integer entropies occur lay quite close together. By
combining SI of α > αc and SH of α < αc, we can see a
very sharp peak in the joint low-entanglement curve, which
suggests a second-order quantum phase transition.

Next, we address the order of the phase transition in more
detail by checking the criticality at αc. The block entanglement
entropy of size x can be fit with the following form:

S(x) = c

6
log2

[
N

π
sin

(
π

x

N

)]
+ const., (9)

where N is the total number of sites. N = 3L for the tube of
length L. This is the Cardy–Calabrese formula35–37 with open
boundary conditions, showing that the block entanglement
entropy has a logarithmic correction to the entanglement area
law at the critical point.38 c is the conformal central charge,
which characterizes the criticality. The fitting results are shown
in Fig. 5, which strongly suggests that the transition point is
critical or very close to some gapless point (quasicritical). The
central charge obtained from the fits is c � 3.

By the DMRG ordering of sites into one linear sequence, the
three-leg tube has three different sublattices (and hence three
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FIG. 5. (Color online) Analysis of the block entanglement en-
tropy S(x) of the ground state of the spin-1 three-leg tube Heisenberg
model in the vicinity of αc. Panels (a) and (b) show the entanglement
entropy between boundary block of length x and the rest of the system,
for several different system sizes and α values, on (a) a linear scale
and (b) a log(sin) scale on the horizontal axis. Curves are vertically
offset by 1 unit for clarity. Here we show the data on one of the three
sublattices in the tube model, which contains entanglement entropies
cut at the ith bond [mod(i,3) = 1]; the other two curves give the same
fitting results and are not present here. The conformal central charge
is determined as c � 3, panel (c) shows how the fitted c’s vary with α

for three fixed system sizes. Panels (d) and (e) show, respectively, the
maximal c values and corresponding α values obtained for 5 different
N values. The system size ranges from N = 50 × 3 to 100 × 3
(N is the total site number), and up to 450 bond multiplets are reserved
in the calculations. A half-integer bond representation was adopted in
the calculations; the fittings of integer-representation entanglement
entropies lead to the same conclusion.

kinds of bonds), two of which are equivalent. Therefore, when
cutting the systems in different ways, we can get three block
entanglement entropy curves, one of which is shown in Fig. 5.
The fittings of the other two curves lead to the same results.

Figures 5(a) and 5(b) show fits for five different system sizes
and α values. Fig. 5(c) shows that the c values obtained from
each fit exhibit, for given tube with total site number N , a clear
maximum as function of α. This maximal value (located at αN

c )
can be regarded as the best estimate of c. Note that the system
is most close to critical at αN

c and away from critical when
α < αN

c and α > αN
c ; the Cardy–Calabrese formula [Eq. (9)]

gradually loses its legitimacy in the latter case, and the fitted
value of c is reduced away from αN

c . Collecting these maximal
points, in Figs. 5(d) and 5(e) we plot, respectively, how the
fitted cs and estimated transition points αN

c s vary with different
system sizes (from 50 × 3 to 100 × 3). The fitted cs (estimated
transition points from entanglement) tend towards 3 (critical
point estimated from energy derivatives) when N is increased.
Moreover, in the fits, we follow the same strategy as in
Refs. 39,40 and fit the central charge in the central region of
the chain. Typically we omit 10 to 20 sites (depending on the
total system sizes) from both ends and take c to be the limiting
value obtained when increasing the omitted site number.

The ground-state energy curves and their derivatives with
respect to α are presented in Fig. 6. The energy per site is
defined as eo = Etot/N , where Etot is the total energy and N

is the number of sites. The first-order derivatives of energies
do not show any discontinuities at the transition point, but
the second-order derivatives have very sharp peaks at αc. In
the inset of Fig. 6(b), we also plot d2e0/dα2 on a log-log
scale. The observed power-law behavior implies algebraic
divergence of d2e0/dα2 approaching αc = 0.5715 (5), i.e.,
d2e0/dα2 ∝ (α − αc)−ν . The exponent ν has two different
values, depending from which side αc is approached. Both,
though, are less than 1, which implies that de0/dα maintains a
smooth behavior at αc. Therefore, the results of entanglement
entropies, block entropy fittings, along with the energy
derivatives, all support the conclusion that there is a continuous
phase transition at αc. This contradicts the conclusion in
Ref. 34, where the transition is argued to be weakly first order.

In order to thoroughly clarify the transition order, more
detailed studies of the correlation functions and excitation gaps
are needed, which we leave as future studies. The parameters
could also be tuned (say, take JR/JL different from 0.1 studied
above) and investigate the nature of the phase transition; or
introduce some other parameters in the Hamiltonian (say
bilinear-biquadratic parameter θ ) and inspect the transition
along some other paths in the parameter space. We have done
some preliminary calculations along these lines (not shown in
this paper), which reinforce the conclusion of a second-order
phase transition.

V. ABSENCE OF SYMMETRY-PROTECTED
TOPOLOGICAL PHASE IN SPIN-1 HEISENBERG LADDER

Lastly, let us consider the spin-1 two-leg ladder model,

H = JL

∑
i,a={1,2}

Si,aSi+1,a + JR

∑
i

Si,1Si,2. (10)

There are two kinds of couplings in this model [see Fig. 1(b)]:
JL along the chain direction and JR on the rungs. In Fig. 7,
the entropies SI and SH are plotted. Two versions of SI

are shown, SI (0) and SI (1), both obtained with integer bond
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FIG. 6. (Color online) (a) The ground-state energy per site, e0, of
a spin-1 tube versus the coupling ratio α. The system size varies from
60 × 3 to 120 × 3. For the largest size 120 × 3, 500 SU(2) multiplets
[≈2000 equivalent U(1) states] are retained in the calculations,
truncation errors are less than 10−9. The inset shows the first-order
derivatives of energies deo/dα, which are substantially converged
with different system sizes and are shown clearly to be continuous
through the critical point. (b) The second-order derivative d2e0/dα2,
which shows a diverging peak at αc = 0.5715 (5). The inset in panel
(b) shows d2e0/dα2 in the vicinity of critical point on a log-log scale.
The data points fall into two linear lines (except for the points very
close to the critical point αc, owing to the finite-size effects near
the critical point), which implies algebraic divergence. The dashed
lines in the inset are fits to the form d2e0/dα2 ∝ (α − αc)−ν , with
ν � 0.87 and 0.6, approaching critical point from the left and right
sides, respectively.

representations, but with different leading (lowest) multiplets
in the entanglement spectrum: |S = 0〉 for SI (0) and |S = 1〉
for SI (1). The latter can be obtained by attaching auxiliary
spin 1s on both ends in our SU(2) DMRG.

For JR > 0, G = SI (0) − SH > 0 in Fig. 7, thus the ground
state favors integer-spin representation, verifying the triviality
of the ground state. Indeed, for the limiting case JR/JL → ∞,
the ground state is a simple direct product of rung singlets.
On the other side, for JR < 0 the system is in the same phase
as the spin-two antiferromagnetic Heisenberg chain (reached
in the limiting case JR/JL → −∞). Figure 7 shows that the
ground states in this region also favor integer representations.
However, the lowest multiplet in the entanglement spectrum
is the spin triplet |S = 1〉, rather than the singlet |S = 0〉,
consistent with the results of Ref. 9. The two low-entanglement
curves from the S = 0 and S = 1 symmetry sectors together
form a smooth line in Fig. 7(a) (indicated by a dashed line),
which represents the true entanglement entropy of the system.
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FIG. 7. (Color online) The entanglement entropies of spin-1 two-
leg ladder system with system size 80 × 2. Two hundred multiplets
are retained in the calculations, and the maximum truncation
errors ≈10−8. (a) SI and SH represent integer and half-integer
entropies, respectively. SI (0) or SI (1) means that a |S = 0〉 or |S = 1〉
is the lowest multiplet in the multiplet spectrum, respectively. The
dashed line is a guide for the eye.

No sign of criticality can be seen from the entanglement
entropies, and it is hence believed that only one disordered
phase exists in the spin-1 Heisenberg ladder model. Our
observation is in agreement with the conclusion in Ref. 41 that
the model does not undergo any phase transition from JR < 0
to JR > 0. The fact that there does not exist a SPT phase
in the spin-1 Heisenberg ladder model studied above can be
ascribed to the triviality of the standard S = 2 AKLT states,
which can be adiabatically connected to the topologically
trivial state without any phase transition.9,20,42 The triviality
of the standard S = 2 AKLT state can be also be intuitively
understood as follows: it has two valence bonds (corresponding
to two virtual spin 1/2) living on each geometric bond,
since these two virtual spin 1/2 couple to either spin 0
or 1, the total spin forms integer-spin representations of
SO(3) on the geometric bond, leading to a conclusion of
a topologically trivial phase. This argument also applies to
the spin-1 Heisenberg ladder studied above (especially when
JR < 0). The bond states are more complicated for the general
two-leg Heisenberg ladder model; nevertheless, they form
integer representations of SO(3) and the corresponding ground
state belongs to a trivial phase.

VI. CONCLUSION

We have proposed a way to identify SPT phases in one
dimension by evaluating entanglement entropies. With the
SU(2) DMRG method, we can keep track of the bond multi-
plets and readily tell half-integer-spin projective representation
from integer-spin ones by checking the multiplet entanglement
spectrum introduced in this paper. In addition, we have
shown that auxiliary boundary spins attached on both ends
of the chain can be used to control the bond representa-
tions; this significantly changes the entanglement entropies
in the bulk, depending on the topological properties of the
phase.
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In the SPT phase, we showed that a twofold degeneracy
for the overall entanglement spectrum appears either in the
reduced multiplet space or in the CGC space, depending
on whether the integer or half-integer bond representations
are adopted, respectively. In the latter case, the twofold
degeneracy occurs in CGC space, which reduces the entan-
glement entropy SH relative to SI (entanglement gap G = 1),
providing a practical criterion for identifying SPT phases. The
existence of an entanglement entropy gap also allows us to
automatically select the “correct” representation (integer or
half-integer) through DMRG sweeps, which always favor low-
entanglement representation. The entanglement gap closes at
the critical point, which can be used to detect the quantum
phase transitions.

Several 1D and quasi-1D systems have been studied
in this work; the SPT phase in the spin-1 chain and the

spin-1 tube model are successfully identified by evaluating
the entanglement entropies. For the spin-1 tube model, the
numerical results indicate that the phase transition between
the SPT phase and the trivial phase is a continuous one. The
fact that the two-leg spin-1 Heisenberg ladder has no SPT
phase for any JR is also validated by our entropy results.
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