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Abstract

This Bachelor thesis looks at cold gases in optical lattices and the transport behavior of particles in
the adiabatic limit of an applied driving force.

The aim of this Bachelor thesis is to find out whether particles for a system of an optical lattice
move rather diffuse or ballistic and to test numerically how the system behaves in the adiabatic limit.
It is expected and later confirmed that in the adiabatic limit the diffusive properties decrease slightly
while ballistic motion increases.
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Chapter 1

Introduction

1.1 Cold gases as a perfect laboratory to study fundamental
properties of solid-state systems

The study of fundamental phenomena of crystalline solids is quite hard. This is caused by lattice
defects, thermal vibrations and inter-particle-interactions which induce scattering of electrons. Lattice
defects interrupt the perfect structure of a solid because samples are rarely pure. So the properties
of the solid are also impurified. They can be one-dimensional like missing or additional atom or
two-dimensional like interrupted atom rows. Also the surfaces have different properties since the
surface atoms are not totally surround by other atoms. Interactions between the particles produce its
properties like mechanical (hardness, elasticity), electrical (resistivity), thermal properties and so on.
All these phenomena make the system of a solid very complicated and since one cannot control nearly
all of them, the fundamental properties of (crystalline) solids are hard to study. [1, 2]

This problem of low controlability in solids is the foundation of the interest on cold gases. When
cooling down gases to ultra cold temperatures and applying an optical standing wave one can create
a system similar to the one of a crystalline solid by having one particle in each well. This recreates a
crystalline solid with one particle per lattice point. Systems of cold gases in optical lattices have the
advantage of high controlability (examples later) and purity. [3, 4]
In the following section 1.2 the tools to realize such a lattice from a cold gas are described.

1.2 Tools for realization of a cold gases lattice

1.2.1 Cooling

At first the gas needs to be cooled down. The most popular way to do so is to use lasers: There are
many ways of using lasers to cool gases down. The most common version of laser cooling is Doppler
cooling. In Doppler cooling, a gas of particles is exposed to laser beams from all (six (three degrees of
freedom times two sides)) sites. These laser-beams all have the same frequency. When a particle in the
gas has a non-zero velocity it sees different frequencies in the lasers caused by the Doppler effect. The
photons coming from the direction the particle is heading to, have a higher frequency in the particle’s
system compared to the photons following the particle. The photons with the higher frequency give a
stronger impulse to the particle (∆p = ~k). This raises the particle into an higher state and acts in
the opposing direction of the motion of the particle. The particle eventually falls down to its original
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1.2. TOOLS FOR REALIZATION OF A COLD GASES LATTICE 5

state and gets an impulse due to the emitted photon. This is at first (in average) no problem since
the direction of the emitted photon is evenly distributed and so averaged over many particles it goes
to zero. But this emitted impulse limits the cooling to

kbTmin =
~Γ

2
(1.1)

where Γ is the line width. This limits Doppler cooling for the example of Sodium (Na) to Tmin = 240µk.
[5]

Figure 1.1: Sisyphus 1:
a) particle in the ground state is exited according to

the absorbed photon
b) potential energy according to groundstate [23]

Figure 1.2: Evaporative cooling [24]

For even lower temperatures there was a new
method developed which was called Sisyphus
cooling. In Sisyphus cooling there are two opti-
cal potentials. The one consists of a σ− polarized
laser on the one side and a σ+ polarized laser
couterpropagating on the other side. In between
the lasers the potential is alternating (σ+, linear
polarized (0◦), σ−, linear polarized (90◦),...) over
the axis of the lasers. Depending on the position
of the particle, a photon (σ+, σ− or linear) can
act on the particle. If that happens it jumps into
the exited state (Jg = 1

2 → Je = 3
2 for the exam-

ple in fig. 1.1 a) and its angular momentum MJ

changes according to the polarization of the pho-
ton (∆MJ,σ+ = +1; ∆MJ,lin = 0; ∆MJ,σ− =
−1). The other optical potential consists of two
counter-propagating, linear polarized, orthogonal
lasers. This creates a cosine-like potential for
the particles. Depending on the ground-state the
particle is in (MJ = + 1

2 or MJ = − 1
2 ) it sees op-

posing potentials (See fig. 1.1 b). This is where
the cooling happens. The particles are exited into
the higher state when they are at the top of one
potential and then they drop down to the other
potential (−MJ initial) which is in a minimum
at that point. Hence the name from the Greek
mythology Sisyphus who has to push a rock up a
mountain which then just rolls down again. This
method has a limit of

kBT ∝ ER =
(~k)2

2m
(1.2)

which is for Sodium (Na) Tmin ≈ 400nk which is about 600 times smaller than the Doppler-cooling
limit. [6]
In Evaporative cooling the most energetic molecules are taken away and so the average energy
decreases. This has basically no limit in temperature. The only limiting part is the number of
molecules, as it decreases. When repeatedly the hottest molecules are taken away in a too short time
there are only a little number of molecules left.
By such low temperatures quantum phenomena get important and phenomena like Bose-Einstein-
Condensation (BEC) which also entail phenomena like superconductors, superfluids, or fractional
quantum Hall liquids appear.
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1.2.2 Controlling interactions

A further way to control an attribute of the system is the Feshbach resonance. The Feshbach resonance
allows one to change the scattering length over the average interparticle spacing in ultra-cold, dilute
gases. By that the strong-interacting regime is reached. In a two-particle collision, for example,
Feshbach resonance occurs when one particle is in a bound state in a closed channel and it is resonantly
coupled with the scattering continuum of an open channel particle. These particles are described by
an effective pseudo-potential. After the collision the particles are temporarily held in a quasi-bound
state. The scattering length is easily tunable by the magnetic field as shown in the following equation:

a(B) = abg

(
1− ∆B

B −B0

)
(1.3)

where a(B) is the scattering length according to the magnetic field B, abg is the (off-resonant) back-
ground scattering length, ∆B is the width of the resonance and B0 is the position of the resonance.
With the Feshbach resonance the interaction between particles is well controllable. [4]

1.2.3 Examples of quantum phenomena

As the gas is cooled down to very cold temperature quantum-phenomena are important. BCS-BEC
Crossover: In the BCS (Bardeen, Cooper, Schrieffer) theory two electrons (or other fermions) are
weakly attracted and form so called Cooper-pairs. These Cooper-pairs then gain some bosonic proper-
ties and can make a superconductor. These fermions in the BCS-theory pair in the momentum-space
while the particles in the BEC pair tightly in (real) position space. This interaction distance can
also be varied by Feshbach resonance. However, BCS-superfluidity is not BEC of Cooper-pairs as the
pairs do not obey Bose-Einstein-statistics. Even so in the high density limit the BCS-state becomes a
condensate of pairs which may be even smaller than the lattice-distance and should be described by
BE-statistics. The BCS-formalism and its ansatz are, besides the condensate of Cooper-pairs, useful
for a BE-condensate of dilute gases of tightly bound pairs. [4, 7]
Superconductivity: The resistivity of normal metals decreases with decreasing temperature and
saturates at a value ρ > 0 for T → 0 as the electrons still scatter. Superconductors abruptly fall to the
state with ρ = 0 below a critical temperature Tc > 0. [8] The critical temperature Tc of elementary
metals and their compounds is normally not bigger than a few kelvin. This transformation is a phase
transition. In superconductors there is a current which can flow without dissipation. But they also
expulse a (constant) magnetic field which is negative proportional to the rotation of the current density

(j). ~∇× ~s ∝ − ~B. This is called the Meissner effect.
Something similar is seen with superfluidity. Instead of a vanishing resistivity their viscosity vanishes
at very low temperatures if the velocity is smaller than a critical value. The most astonishing thing
about superfluids might be that they can overcome potential barriers to end up in a lower potential
height. The best known example of this is the cup with a superfluid where the superfluid runs up the
walls to exit the cup.

1.2.4 Optical lattices

When the gas is cooled down it can be formed by an optical lattice. This gives the gas a crystal-like
form. The optical lattice creates a dipole force which acts on the (lattice) particles in the following
manner:

~F =
1

2
α(ωL)~∇[| ~E(~r)|2] (1.4)
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where α is the polarizability and since the motion of the atom is slower then the light-frequency ωL,
~E is averaged and squared so that only the intensity I ∝ | ~E(~r)|2 has an impact. In general the optical
lattice is formed by a standing wave. This atom lattice is very controllable as you can change the
intermolecular distance by varying the lights wavelength and if you are close to the atoms resonance
you can control whether the atoms are attracted to the nodes or antinodes. For more information
about this see [4].

1.2.5 Electron motion in a lattice

In this artificial lattice electrons (or other particles) can move around. This motion of electrons is
described by the Bloch-wave and other theories.

Figure 1.3: Bloch wave [25]

Bloch waves When solving the single-electron Hamilto-

nian (H = −~2∇2

2m + U(~r)) one finds the wave-function for
the Bloch wave:

Ψn~k(~r) = ei
~k·~r · un~k(~r) (1.5)

This consists of a plane wave function (ei
~k·~r) with the wave-

vector ~k and a function (un~k(~r)) with the same periodicity

of the Bravais lattice (~R). In a Bloch-wave there are no col-
lisions and thus no scattering when the lattice is perfectly
periodic (U(~r + ~R) = U(~r)).
While the Bloch wave is a quantum-mechanical theory one
can use the simpler and more transparent semiclassical ap-
proach instead. The semiclassical model also looks only at
the movement of electrons in a general periodic potential
between collisions. The Bloch theory the semiclassical theory has no interband transitions and the
evolution of the position and wave vector in a band are determined by specific equations of motion
(see [2]).

1.3 stochastical transport

Classical transport When one goes from the single-particle perspective to the more general stochas-
tic perspective, different variables are needed to describe the system. For the case of gases the stochastic
motion is described by the Fokker-Planck-Kolmogorov equations (FPK). This can later be generalized
for a periodic potential.
The Fokker-Planck-Kolmogorov equations (FPK) uses two terms: 〈∆x〉 and 〈(∆x)2〉. With the
Kolmogorov conditions it can be said that 〈(∆x)m〉 = 0 for m > 2. Where 〈...〉 means averaging over
the initial conditions. In a gas 〈∆x〉 can be interpreted as the movement of the center of mass. While
〈(∆x)2〉 is a measure for the width of the Gaussian distribution of the gas. In normal diffusion one
can find

〈(∆x)2〉 = D · tµ (1.6)

with µ = 1 and D = const. while it can also happen that µ 6= 1 but 0 < µ < 2. µ < 1 is then called
sup-diffusion and µ > 1 is called super-diffusion or anomalous transport. For derivation of this see
[9, 10].
For the system in this thesis the standard deviation 〈(∆x)2〉 will be fitted in the manner of f(t) =
D · t + v2 · t2. This polynom is an overlap of D · t which can be interpreted as normal diffusion and
v2 · t2 which can be interpreted as ballistic motion.
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Symmetrical potentials/ Example for FPK in electron dynamics The FPK theory can be
nicely applied to the systems of Renzoni et al. [11, 12, 13, 14]. In [11] periodic (U(x) = U(x + λ))
symmetric (U(−x) = U(x)) potential with a symmetric (F (t+ T

2 = −F (t)) periodic (F (t) = F (t+T ))
driving forces are introduced. If the potential and the driving force have the mentioned properties there
is no directed diffusion (DD) (¬DD → 〈∆x〉 = 0). According to [11] for DD to happen a symmetry
has to be broken.[9, 10, 15]
In experiments this can be achieved by applying two non-monochromatic light beams on a gas of
atoms. In [11], for example, two orthogonal, counter-propagating lasers with the frequencies ω and 2ω
are applied on a gas of atoms. This breaks the symmetry of the driving force. By then varying the
phase difference φ Renzoni et al. get DD for φ 6= n · π; n ∈ N . The interesting fact in this system is
that even so the forces are zero-mean ac forces the system has DD caused by the broken symmetry.
In [12] a similar system is used to realize a kind of Brownian motor. The time-symmetry is broken as
well. It is shown that noise affects the DD in a resonance like fashion.
In both examples FPK can be applied to describe the dynamics of the system.

1.4 Outline of the thesis and statement of the problem

In this thesis stochastic transport of electrons in a lattice of a cold gas is discussed. This is simulated
by a (mathematical) model of a driven mathematical pendulum. The specific question is, how does the
nature of the stochastic transport change in the adiabatic limit of the frequency of the driving force
ωf → 0. Similar systems are already discussed in [15, 16, 17] and it has been suggested in [16] that as
ωf → 0 the diffusion const D decreases as ballistic motion (v2) increases. To prove this numerically is
the main objective of this thesis.
The rest of the thesis is organized as follows: a theoretical chapter describes dynamical chaos. It will
give a short summary of the origin of chaos and its most important properties. This is important to
understand the behavior of a single particle in the system. The chapter about chaos also shows the
effect of the unlimited growth of the upper energy of the chaotic layer as the frequency of the driving
force ωf → 0. This is unique for the physical significant systems. The transport coefficients are shifted
towards ballistic motion as an AC driving force is present. Especially for low frequencies ωf .
The higher energy boarder of the chaotic layer can be used to increase the rate of threshold devices. A
threshold device resets to an initial state when it overcomes a specific threshold. If there is a driving
force it is easier for the electron to overcome the threshold.
After the part about chaos and the behavior of a single particle in the system follows the presentation
of the results and the conclusion.



Chapter 2

Theoretical background

2.1 Chaos

Figure 2.1: Separatrix of harmonic
oscillator [26]

In a chaotic system the trajectories mix in the phase space.
That means their trajectories are not laminar as in an or-
dered system. Chaotic systems are also sensitive to small
changes in initial conditions. This means that the difference
between two trajectories grows exponentially over time.
In general exists chaos only in a subspace of the phase space.
Regions of chaos and order are separated. These are then
called stochastic sea and non-chaotic islands (more in sec.
2.1.1).
Chaos generally develops around separatices. The separa-
trix is the border between the two regions in a phase space
map (of a differential equation) in which the particle has
different behaviors of motion (example fig 2.1). As for ex-
ample oscillating and ballistic motion in a cosine-potential.
This chaotic layer first grows until its at its borders and then fill the space between the borders up.
For chaos to appear there has to be a non-linearity and more than one degree of freedom. Non-linearity
is needed as 1st order ordinary differential equation have a unique solution and thus no chaos. More
degrees of freedom are needed so there are too many variables of motion for the integrals of motion to
get a unique solution (more in section 2.2).
The Hamiltonian H(I, θ, t) of a system can be splitted into a linear part H0(I, θ) and a non-linear
part H1(I, θ, t). There are some standard models for chaotic dynamics. Two examples will be quickly
introduced now. The so called Web-map or kicked Oscillator is a discrete model. Its Hamiltonian

H =
1

2
(p2 + ω2

0x
2)︸ ︷︷ ︸

H0(p,x)

− ω0k

T
cos(x) ·

∞∑
n=−∞

δ

(
t

T
− n

)
︸ ︷︷ ︸

H1(p,x,t)

shows 11/2 degrees of freedom as a dependency on

time can be counted as an additional half degree of freedom. The model also shows non-linearity as
cos(x) is in the same term as the time. So the requirements for chaos are given. The δ-function gives
regular kicks to the system. So the variable p jumps every ∆t = T .
The other model comes quite close to the system used later in this thesis. It is the pertubed Pendulum.

Its Hamiltonian H =
1

2
(p2 − ω2

0cos(x))︸ ︷︷ ︸
H0(p,x)

− εω2
0cos(kx− νt)︸ ︷︷ ︸
H1(p,x,t)

also shows 11/2 degrees of freedom as it is

9
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time dependent and the non-linearity is in the last term where x and t are used with a cos-function.
This time the model is continues. In this model the stochastic motion develops in the chaotic layer
around the separatrix of H0 for E = 1

2ω
2
0 .

There are lots of different methods trying to describe chaos as for example the Poincaré map which
shows stochastic seas and non-chaotic islands (for more see next subsection 2.1.1). Even so there are
lots of different analytic and graphic methods they are only good for two or less degrees of freedom.
[10, 18]

2.1.1 Poincaré map: stochastic seas and non chaotic islands

Figure 2.2: Poincaré map - Hénon and
Heiles Problem

A non-chaotic island; B statistical sea [27]

A Poincaré section is a phase space diagram where points
(q(tn), p(tn)) are set at specific times tn. In these maps one
can spot regions of chaos called statistical seas and regions
of non-chaotic islands where non chaotic trajectories lie.
On a closer look one can also see lakes of chaos inside the
islands. All these regions are separated and don’t mix. In
fig. 2.2 one can very well see the islands in the chaotic sea
and their separation. [10, 19]
The equations of motion of a chaotic system are also derived
from a Hamiltonian. The following section will show why
more than one degree of freedom is needed for chaos.

2.2 Hamiltonian systems with 11/2
degrees of freedom

As it is well known, Hamiltonian systems (here only one
degree of freedom) can be described like this:

H(q, p, t) = T (p)− U(q, t) (2.1)

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
, (2.2)

In this case there is only one degree of freedom which means that there is a unique solution since there
are enough integrals of motion, as the Energy E = H(q, p) or conservation of angular momentum etc.,
since (example: energy):

dH = −ṗdq + q̇dp+

(
∂H

∂t
dt

)
︸ ︷︷ ︸

=0 if no explicit
timedependence

⇒ dH

dt
= 0⇒ H(q, p) = E = const. (2.3)

So for the easy example of a one dimensional system without time-dependence, there is only energy
as integral of motion. So one can express the momentum in terms of the energy (constant) and the
position:

H(q, p) = E = const. → p = p(E, q) (2.4)

With given initial values this gives an unique trajectory.
But when you have explicit time-dependence (or another degree of freedom and non-linearity) in your
Hamiltonian H(q,p,t), the energy is not conserved anymore so you loose it as an integral of motion



2.3. SPECIFIC SYSTEM 11

and you gain the time t as another variable:

dH

dt
=
∂H

∂q︸︷︷︸
−ṗ

∂q

∂t
+
∂H

∂p︸︷︷︸
q̇

∂p

∂t
+
∂H

∂t
=
∂H

∂t
→ H 6= const.→ E is no integral of motion (2.5)

Then there is a trick to extract an integral of motion: let the time and the original hamiltonian be a
new (1/2) degree of freedom and create a new Hamiltonian H̃, like:

q̃ := t; p̃ := −H; H̃ := H(q, p, q̃) + p̃ (2.6)

with

ṫ = ˙̃q =
∂H̃

∂p̃
= 0 +

dt

dt
= 1 X and ˙̃p = −∂H̃

∂q̃
=
∂H

∂t
X (2.7)

with this we get the new Energy Ẽ as an integral of motion:

dH̃

dt
=
∂H̃

∂q

∂q

∂t
+
∂H̃

∂p

∂p

∂t︸ ︷︷ ︸
0

+
∂H̃

∂q̃

∂q̃

∂t
+
∂H̃

∂p̃

∂p̃

∂t︸ ︷︷ ︸
0

+
∂H̃

∂t︸︷︷︸
0

= 0→ H̃(t) = const. over time (2.8)

So for one and a half degrees of freedom and three variables (q,p,t) there is only one integral of motion.
This gives the problem that there is no unique solution for the equations of motion. This is the origin
of the chaos in such systems. [10, 19, 21]

2.3 Specific system

The systems Hamiltonian used in this bachelor thesis looks as follows:

H(q, p, t) =
p2

2m
− ω2

0 · cos(q) + qhω2
f · sin(ωf t) (2.9)

Where H is the hamiltonian, q the position, p the momentum, t the time, m the mass, ω0 the period
of the potential, h a parameter and ωf is the frequency of the light or driving force. For simplicity it
has only one degree of freedom and the mass m = 1 which later implies that the linear momentum is
equal to the velocity p = q̇(= v)

Elements of hamiltonian This hamiltonian has three terms. The kinetic energy (T = p2

2m ), the
oscillator potential energy (U0 = ω2

0 · cos(q0)) and the timedependent potential energy (Uf = qhω2
0 ·

sin(ωf t)). The kinetic energy T is quite standard linear type. The oscillator potential energy U0 is
also quite trivial. This gives a local periodic potential U0(q) = U0(q+λ) of a mathematical pendulum
and is symmetric. Last but not least there is the timedependent potential energy Uf . This part gives
the additional half degree of freedom and the non-linearity to originate chaos.

Both the static potential and the timedependent driving force are symmetric and periodic. So
according to [11] there should be no directed diffusion (DD) (see 1.3 for summary).

By using the equations for the hamilton you get the following equations of motion:

q̇ =
∂H

∂p
=

p

m

m=1−−→ q̇ = p (2.10)

ṗ = −∂H
∂q

= −ω2
0 · sin(q)− hω2

0 · sin(ωf t) (2.11)
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Putting these two equations together you get to

q̈ = −ω2
0 · sin(q)− hω2

0 · sin(ωf t) (2.12)

This equation is solved numerically (with symplectic integrator) and the results are presented later on.

Discussion of single trajectory

short range Generally the particles move close to the separatrix (→ q(t0) ≈ π, p(t0) = 0). The
parameter h is set h� 1 so the timedependent potential is weak compared to the oscillator. In general
the timedependent potential Uf is slower than a particle oscillating in a well of the static potential U0.
So the potential can be seen as a wave potential with a slight overall slope of hω2

0 · sin(ωf t). This is
well visualized in fig. 2.3. There the particle starts with two oscillations. This can be explained by the
proximity to the border of the chaotic layer. The speed is changing periodically due to the periodic
potential. After these two oscillations (t ≈ 400) the particle overcomes the barrier and starts ballistic
motion. The direction can be explained by the driving force (Uf ) which acts to the positive direction.
The change in direction soon after (t ≈ 700) can also be explained by the driving force (Uf ) which has
now changed its direction. This change in driving force direction happens every ∆t = 100 · π. Later
on (t ≈ 1200, t ≈ 1800) the particle remains in a well for one oscillation. Weather or not the particle
does this or probably even changes its direction is chaotic. There sometimes are ballistic segments
which have neither of the above two phenomena for a longer period of time. Also good to see is the
proximity to the separatrix since the particle nearly reaches 0 speed each time it is at top of a potential
hill during its ballistic motion into one direction. For a theoretical discussion about the movement of
the particle in this system see [15]

medium range While in the detailed view of the trajectory there is some typical way of moving in
the medium-range movement it is quite chaotic. As one can see in fig 2.4 in medium-range-movement
one might only guess two kinds of movement: the ballistic like movement, this is when most of the
displacement is made, and the diffusional movement.
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Figure 2.3: detailed view of a trajectory
ω0 = 0.1; ωf = 0.01; q0 = −3.06 = −π + 0.081; ∆t = 0.001

time-coordinate-diagram
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Figure 2.4: some Trajectory

Figure 2.5: View of start
diffusional motion

abscissa (0 < t < 2 · 108)
ordinate (−2.2 · 105 < q < 2.2 · 105)

Figure 2.6: View of ballistic motion
abscissa (7.4 · 108 < t < 8.8 · 108)

ordinate (4.5 · 106 < q < 107)



Chapter 3

Simulation/ (Presentation of)
results

Figure 3.1: (100’000*)mean and std deviation of 1703 trajectories; q0 ∈ [−3.2267,−3.0565] Steppsize=0.0001

In fig. 3.1 multiple trajectories with different starting-positions were averaged and the standard
deviation was taken. The constants of the Hamiltonian were: ω0 = 0.1; ωf = 0.01; h = 0.001.
This lead to chaotic motion in the limits of q0 ∈ [−3.2267,−3.0565] and a time tch ≈ 105 to once
spread over the whole chaotic layer. The total time T was chosen much bigger than tch to get values
which are representatively spread over the chaotic layer (107 = T � tch = 105). On fig. 3.1 all 1703
trajectories were taken. These trajectories were evenly spread over the chaotic layer. The linear mean
is very small (already multiplied by 105) and can be said to go to 0 for more particles. The standard
deviation 〈(∆x)2〉 follows a mixture of a diffusive and ballistic behavior. When fitting fig. 3.1 as shown
in fig. 3.2 one get a the curve f(t) = 0.999 · t+ 4.07 · 10−6 · t2.
This was done for

ωf

ω0
= [0.6; 0.5; 0.1].
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Figure 3.2: fit for ωf = 0.1 · ω0 = 0.01: fit of 〈(∆x)2〉 = 0.999 · t+ 4.07 · 10−6 · t2

Figure 3.3: transport coefficients D and 300 · v plotted over
ωf

ω0
for 〈(∆x)2〉 = D · t+ v2 · t2



Chapter 4

Conclusion

It has been shown that the nature of stochastic properties of particles in a periodic, symmetric potential
with a symmetric, periodic driving force is changed as the frequency of the driving for vanishes ωf → 0.
In the adiabatic limit (ωf → 0) the diffusion constant D decreases slightly while v increases (see fig.
3.3). This means a noticeable ballistic contribution to the diffusive transport. This can be explained
as the ballistic flights become longer in the adiabatic limit.
So with an AC driving force the stochastic transport in an optical lattice can be made faster.
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