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We show that the simple update approach proposed by Jiang et al. [H. C. Jiang, Z. Y. Weng, and T. Xiang, Phys.
Rev. Lett. 101, 090603 (2008)] is an efficient and accurate method for determining the infinite tree tensor network
states on the Bethe lattice. Ground-state properties of the quantum transverse Ising model and the Heisenberg
XXZ model on the Bethe lattice are studied. The transverse Ising model is found to undergo a second-order
quantum phase transition with a diverging magnetic susceptibility but a finite correlation length which is upper
bounded by 1/ ln(q − 1) even at the transition point (q is the coordinate number of the Bethe lattice). An intuitive
explanation on this peculiar “critical” phenomenon is given. The XXZ model on the Bethe lattice undergoes a
first-order quantum phase transition at the isotropic point. Furthermore, the simple update scheme is found to be
related with the Bethe approximation. Finally, by applying the simple update to various tree tensor clusters, we
can obtain rather nice and scalable approximations for two-dimensional lattices.
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I. INTRODUCTION

The investigation of quantum lattice models is one of
the central themes in modern condensed matter physics.
A crucial step is to develop novel numerical methods to
efficiently simulate the interesting and complex phenomena
of quantum many-body systems. In particular, the tensor
network states and the related renormalization group methods,
including the tree tensor network state (TTN),1–3 the multiscale
entanglement renormalization ansatz,4 the projected entangled
pair state,5 the tensor renormalization group (TRG),6–8 and the
second renormalization group (SRG),9,10 are now under rapid
development. These methods provide promising numerical
tools for studying strongly correlated systems, especially for
the frustrated magnetic systems and fermion models, and can
be regarded as an extension of the fruitful density matrix
renormalization group (DMRG)11 in two or higher dimensions.

In the study of the tensor network methods, one needs
to first determine the tensor network wave function for the
ground state. In Refs. 7 and 10, a simple update scheme is
proposed to determine the ground-state tensor network wave
function in two dimensions. This scheme is efficient and
robust. It proceeds in three steps: (1) apply the imaginary
time projection operators simultaneously on bonds of the same
type, for example, the x-directional bonds in Fig. 1(a), and
enlarge the bond dimension; (2) construct a local evolving
block matrix and simulate the environment contribution by the
diagonal matrices on the external bonds [λy and γz in Fig. 1(b)];
(3) decompose the evolving block matrix by singular value
decomposition (SVD) and decimate the vector space of the
enlarged geometric bond according to the singular values in the
updated diagonal matrix θ ′

x . This technique has been combined
with the TRG/SRG to evaluate the ground-state properties
of two-dimensional (2D) Heisenberg models.8,10,12–14 It is
an accurate numerical method for evaluating local physical
quantities, but it is less accurate in evaluating the long-
range correlation functions.10 This is the major drawback
of this simple update scheme. It results from a mean-field

approximation for the environment tensor. A way to go beyond
this approximation is to enlarge the size of the cluster that is
used for evaluating the environment tensor. This, as shown by
Wang and Verstraete,15 can indeed improve the accuracy for
the long-range correlation function.

In this work, we apply the simple update scheme to infinite
TTN (iTTN) states on the Bethe lattice. We will show that
this is a quasicanonical approach for treating an iTTN. Here
by the word “quasicanonical” we mean that with increasing
the number of iteration steps and decreasing the Trotter error,
the tree tensor network state obtained by the simple update
scheme would become asymptotically canonical [i.e., the
tensors satisfy certain canonical orthonormality conditions,
see Eq. (3) below]. Thus the simple update scheme provides an
accurate and efficient approach for evaluating the ground-state
wave function on the Bethe lattice.

The Bethe lattice, as shown in Fig. 1(a), has a self-similar
structure with an infinite Hausdorff dimension. The size of the
lattice is infinite, hence the boundary effects do not need to be
explicitly considered. The Bethe lattice was first used in the
study of classical statistical mechanics.16–18 It has attracted
broader interest since a number of chemical compounds with
the Bethe lattice structures, such as the dendrimers,19 have
been synthesized in the laboratory.20

A finite Bethe lattice is called a Cayley tree. Soon after
White’s invention of DMRG,11 the DMRG algorithm for
the quantum lattice models defined on the Cayley tree was
proposed.21,22 Based on the DMRG calculation of local
physical quantities in the central part of the Cayley tree,
Otsuka21 claimed that the anisotropic S = 1/2 Heisenberg
model (i.e., the XXZ model) on the Bethe lattice should
exhibit a first-order phase transition at the isotropic point.
Later Friedman22 proposed an improved DMRG scheme
and evaluated the spin-spin correlations in the ground state.
Based on the DMRG result, he suggested that long-range
magnetic order might exist at the isotropic Heisenberg point.
Recently, Kumar et al. calculated the magnetization with a
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FIG. 1. (Color online) (a) The q = 3 Bethe lattice. Every site has
three nearest neighbors, and the three bonds are labeled according to
their directions as x, y, and z, respectively. (b) The two-site cluster
used in the single-bond projection of the simple update scheme. The
diagonal matrices λy and γz on the dangling bonds should be included
in the projection to mimic the entanglement renormalization of the
environment to this two-site system. (c) A minimum cluster that is
used in the Bethe approximation. It consists of one A tensor and three
nearest-neighbor B tensors (or vice versa).

further improved DMRG algorithm,23 and showed that such
long-range magnetic order does exist at that point.

The above DMRG calculations were done on the Cayley
tree lattice, not on the true infinite Bethe lattice. Furthermore,
it should be pointed out that the boundary effect is very strong
on a finite Cayley tree since more than one-half of the total
sites reside on the lattice edge. This may strongly affect the
properties of the system. In some cases, the results obtained
on a Cayley tree lattice can be completely different from those
for the corresponding Bethe lattice. For example, the classical
Ising model shows a phase transition on the Bethe lattice, but
not on the Cayley tree lattice.24

To unambiguously resolve the above problems, it is
necessary to calculate the spin models directly on the Bethe
lattice. The recent development of the TTN algorithms1–3 has
indeed made this feasible.25,26 In particular, Nagaj et al. in
Ref. 25 extended the infinite time evolving-block decimation27

technique to the Bethe lattice and determined the ground
-state wave function by imaginary time evolution. For the
transverse Ising model on the Bethe lattice, it was found
that a second-order quantum phase transition exists at a
critical transverse field. An interesting result revealed in this
calculation is that even at the second-order critical point, the
correlation length remains finite. For the Bethe lattice with
coordination q = 3, the correlation length is shown to be less
than 1/ ln 2. However, in the calculation Nagaj et al. used a
three-site projection operator to simultaneously evolve the two
equivalent incoming legs of the tensors, the computational cost
is thus very high. The computational time scales as O(D8) with
D the tensor dimension, which limits the value of D that can
be handled to D � 8.

Recently, Nagy26 proposed a different algorithm to reduce
the computational cost by making use of the C3 rotational
symmetry of q = 3 Bethe lattice. This algorithm reduces

the computational cost to O(D4) hence greatly improves the
efficiency. It can be used for studying the spin-1/2 quantum
lattice models. However, the application of this method is
restricted to the translation invariant spin-1/2 system.

As will be shown below, the simple update scheme is very
efficient. Its computational costs scale as O(D4), similar as
for the algorithm proposed by Nagy.26 But it is much more
flexible. It can be applied to treat arbitrary TTN states, with
or without translation invariance. Here we studied two spin
models defined on the Bethe lattice. One is the transverse Ising
model and the other is the antiferromagnetic XXZ Heisenberg
model. The quantum phase transitions and the ground-state
phase diagrams of these models are studied.

The rest of the paper is arranged as follows. An introduction
to the simple update scheme and its relationship with the Bethe
approximation is presented in Sec. II. The study of the quantum
phase transitions of transverse Ising and XXZ Heisenberg
models are presented in Secs. III and IV, respectively. In
Sec. V, the present scheme is generalized to larger tree tensor
clusters, in order to provide more accurate approximations for
two-dimensional (2D) lattices. Finally, Sec VI is devoted to a
summary.

II. THE CANONICAL FORM AND THE SIMPLE
UPDATE SCHEME

The iTTN state on the Bethe lattice comprises four-indexed
tensors Am

x,y,z and Bm
x,y,z defined on the vertices, and the

diagonal matrices θ , λ, γ defined on the bonds along the x, y,
and z directions as shown in Fig. 1(a), respectively. The bond
indices represent the quantum numbers of the virtual basis
states. The physical index m runs over the d basis states of the
local Hilbert space at each lattice site. The diagonal matrices
store the entanglement information, and play an important role
in the simple update scheme.

In order to determine the ground-state wave function, the
imaginary time-evolving operators U (τ ) = exp (−τhi,j ) are
applied to the iTTN iteratively. At each step, the dimension
of the evolved bond is increased by a factor of d2. Thus
the tensor dimensions will proliferate exponentially with the
increasing number of projection steps. In order to sustain the
projections until the iTTN converges to the true ground-state
wave function, one needs to truncate the bond dimension after
each projection step. This needs a proper consideration of the
renormalization effect of the environment tensor.

An accurate and full determination of the environment
tensor is computationally costly. This limits generally the
tensor dimension D that can be handled to a rather small
value, say D � 6. The simple update scheme,7,9,10 on the
other hand, takes the product of the dangling bond matrices
as a mean-field approximation to the environment tensor. It
converts the complicated global optimization problem into a
local one, and hence greatly simplifies the calculation. On the
regular 2D lattice, the bond matrix is an approximate measure
of the entanglement between the system and environment
tensors. However, as will be shown later, the square of the
diagonal bond matrix on the Bethe lattice is the eigenvalue of
the reduced density matrix if the iTTN is canonicalized (i.e.,
if the tensors in the network are always kept in canonical form
by some transformations). Thus the simple update scheme is
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an accurate treatment for the renormalization of the iTTN on
the Bethe lattice.

The simple update scheme is also closely related to the
famous Bethe approximation.16–18 To understand this, we show
in Fig. 1(c) a four-site cluster, which contains one A tensor
and three B tensors. In the simple update calculation, the two
local tensors, A and B, and the three inner bond matrices
(θx , λy , γz) should be evaluated and updated iteratively. After
each single projection step on the inner bonds, to keep the
scheme self-consistent, one should also update all the dangling
bonds of the cluster, by replacing the bond matrices with the
corresponding ones on the inner bonds.

This cluster structure and the self-consistent scheme is in
fact the Bethe approximation that was first proposed by Bethe
in the 1930s, in the context of statistical mechanics.16 The key
idea is to treat the correlations between the central spin and its
nearest neighbors in the cluster exactly, and to use an effective
mean field to approximate the interactions between the cluster
and the rest lattice spins. By solving this simple cluster
problem, and assuming that all the spins in the cluster have
exactly the same local magnetization, one can determine the
spontaneous magnetization self-consistently. For the quantum
cases, the six diagonal matrices on the dangling bonds of
the cluster are taken as the mean fields acting on the inner
block. The self-consistent condition requires that the matrices
θ , λ, and γ on dangling bonds are equal to the corresponding
matrices on the inner bonds between A and B tensors [see
Fig. 1(c)].

A tensor network state contains redundant gauge degrees
of freedom on each bond. It is invariant if one inserts a product
of two reciprocal matrices on a bond and absorbs separately
each of them to a local tensor at the two ends of the bond.
This gauge invariance of a tensor network state can be used
to simplify the calculation of local tensors, especially for the
iTTN states on the Bethe lattice, where a special gauge, called
canonical form, can be introduced.

To be specific, the local tensors of canonical iTTN states
satisfy the following orthonormality conditions:∑

m

∑
x,y

θ2
x λ2

y

(
T m

x,y,z′
)∗

T m
x,y,z = δz′,z, (1)

∑
m

∑
y,z

λ2
yγ

2
z

(
T m

x ′,y,z

)∗
T m

x,y,z = δx ′,x, (2)

∑
m

∑
z,x

γ 2
z θ2

x

(
T m

x,y ′,z
)∗

T m
x,y,z = δy ′,y, (3)

where T represents the A or B tensor. If we cut an arbitrary bond
to divide the Bethe lattice into two parts, denoted as a system
and an environment subblock, one can then define the reduced
density matrix of the system block by integrating out all the
degrees of freedom of the environment block. For the tensors
that satisfy Eqs. (1)–(3), the square of the diagonal bond
matrices are the eigenvalues, and the renormalized bond bases
are the eigenvectors of the corresponding reduced density
matrix, which are orthonormal to each other. Thus, in terms
of the Schmidt decomposition, the square of the diagonal
matrix elements represent the probability amplitudes of the
corresponding eigenvectors appearing in the wave function.

The existence of this simple canonical form of the iTTN
[i.e., Eqs. (1)–(3)], is very useful in the calculations. First, the

FIG. 2. (Color online) One iteration step in the simple update
scheme: (a) A and B tensors are connected by the bond x, which
will be involved in the following projection steps. There are diagonal
matrices on the dangling bonds (y and z bonds) of A and B tensors.
(b) Absorb the four dangling matrices into A and B, and define
the block matrix Ma(b). Then take the QR decomposition for Ma(b),
obtaining Qa(b) and Ra(b) matrices. (c) Project U (τ ) onto the bond by
contractions, and obtain the block matrix G [see Eq. (7)]. (d) Take
singular value decomposition of G to find the unitary matrices U

and V T , and the new diagonal matrix θ ′. (e) Truncate the x-bond
dimension to D according to the diagonal values of θ ′. Merge U

(V T ), γ −1
y , and λ−1

z together into Qa(b); finally we arrive at the updated
A′(B ′) tensors.

diagonal bond matrix describes the entanglement spectrum
between the system and environment subblocks. Thus to
select the virtual bond basis states according to the values
of these diagonal matrix elements provides an optimal scheme
to truncate the bond dimension. Second, the contribution of
the environment tensors can be faithfully represented by the
four diagonal matrices on the dangling bonds surrounding the
central bond under projection [see Fig. 2(a)]. It means that the
imaginary time evolution on each bond can be done rigorously
and locally. Furthermore, we can also evaluate the expectation
value of a local operator simply by contracting a small cluster
comprising those tensors and bond matrices on which the op-
erator acts. This significantly reduces the computational cost.

Bearing in mind the benefits of the canonical iTTN states,
one can perform explicitly the canonical transformations
during the projection processes. However, to further save
computational costs, in practical calculations we choose to
carry out the imaginary time evolution just using the simple
update scheme, and gradually reduce the Trotter step τ ,
which would bring the iTTN states into its canonical form
step by step. This scheme works because the diagonal bond
matrix provides an approximate measure for the entanglement
between the two sides of the bond and can be used to
substitute approximately the environment tensor. Therefore,
it can stabilize the algorithm of the imaginary time evolution,
provided that the Trotter step τ is small enough so that the bond
projection operator U (r) is nearly unitary.27 This near unitary
evolution can modify the wave function and reshape it in order
to satisfy the canonical conditions. The simple update scheme
hence provides a quasicanonical evolution of the iTTN state,
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which will finally converge to the ground state and become
canonical in the limit τ → 0. In practical calculations, the
Trotter step τ is gradually decreased from 10−1 to 10−4, and
the total number of projections steps varies from 20 000 to
200 000.

Now let us consider how to implement the simple update
scheme efficiently. A simple approach is to do directly the
singular value decomposition of the evolving block tensor,
which is a matrix of D2 × D2. The computational cost for
doing this singular value decomposition is high, since it scales
as O(D6). This cost can in fact be reduced to O(D4) if we
carry out this singular value decomposition in the following
steps (again, projection on the x bond is taken as an example):

(1) Define the following two D2 × Dd block matrices
[Fig. 2(b)]:

(Ma)y,z;x,m = λyγzA
m
xyz, (4)

(Mb)y,z;x,m = λyγzB
m
xyz, (5)

by absorbing the diagonal matrices λy and γz into the tensors
A and B, and calculate their QR decomposition,

(Mα)y,z;x,m =
∑

k

Qα
y,z;kR

α
k;m,x, (6)

where α = a or b. Qα is a D2 × Dd column orthonormal
matrix. Rα is a Dd × Dd upper diagonal matrix.

(2) Apply the bond projection operator U (τ ) to the system
and define the gate matrix [Fig. 2(c):

Gm1k1;m2k2 =
∑

x,m′
1,m

′
2

〈m1m2|U (τ )|m′
1m

′
2〉Ra

k1;m′
1x

θxR
b
k2;m′

2x
.

(7)

(3) Take the singular value decomposition for this matrix
[Fig. 2(d)],

Gm1k1;m2k2 = Um1k1;lθ
′
l Vm2k2;l , (8)

where U and V are two Dd × Dd unitary matrices, and θ ′ is
a semipositive defined matrix.

(4) Truncate the inner bond dimension by keeping the
largest D matrix elements of θ ′, and update the local tensors
by the formula [Fig. 2(e)]:

A′m
xyz =

∑
k

λ−1
y γ −1

z Qa
y,z;kUm,k;x, (9)

B ′m
xyz =

∑
k

λ−1
y γ −1

z Qb
y,z;kVm,k;x. (10)

Combining this efficient simple update scheme and the local
determination of physical observables using the canonical
form, we can keep the computational cost in a low level. In
practice, this allows us to keep a relative large bond dimension.

III. THE TRANSVERSE ISING MODEL

The transverse Ising model is defined by the Hamiltonian,

HTI = −
∑
〈i,j〉

JSz
i S

z
j −

∑
i

hxS
x
i −

∑
i

hzS
z
i , (11)

where the spin-spin exchange constant J is set as the energy
scale (J = 1, ferromagnetic coupling). The second term
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FIG. 3. (Color online) (a) The longitudinal and transverse mag-
netizations mz and mx versus the transverse fields hx . The transverse
magnetization mx increases monotonously with hx , while the lon-
gitudinal magnetization mz decreases and vanishes at the transition
point. (b) The second-order derivative of the ground-state energy per
site e with respect to hx , d2e/dh2

x , obtained by taking the first-order
derivative of mx , dmx/dhx .

represents the transverse field along the Sx direction, and the
last term is the longitudinal field along the Sz direction.

Figure 3(a) shows the longitudinal and transverse mag-
netizations, mz = 〈Sz〉 and mx = 〈Sx〉, as a function of the
transverse field hx . A continuous order-disorder phase transi-
tion is found at hc. For hx < hc, the ground states undergo a
spontaneous Z2 symmetry breaking with a finite longitudinal
magnetization mz, which decreases with increasing hx and
vanishes at the critical field. By utilizing the Hellmann-
Feynman theorem, the second-order derivative of the ground-
state energy can be calculated by d2e/dh2

x = −dmx/dhx . As
shown in Fig. 3(b), d2e/dh2

x exhibits a discontinuity at hc,
indicating that hc is a second-order phase transition point.
The critical field is found to be hc � 1.115, in agreement
with previous calculations.25,26 It is also close to the critical
field hc = 1.06625(2) for the transverse Ising model on the
honeycomb lattice.28

Figure 4 shows the bipartite entanglement entropy SE:

SE = −Tr[�2 log2(�2)], (12)

and the correlation length ξ for the ground state. In Eq. (12),
� = θ , λ or γ is a diagonal matrix that satisfies the canonical
condition. SE shown in Fig. 4(a) is obtained by taking the
average over the three bonds.

195137-4



EFFICIENT SIMULATION OF INFINITE TREE TENSOR . . . PHYSICAL REVIEW B 86, 195137 (2012)

1 1.04 1.08 1.12 1.16 1.2
0.05

0.06

0.07

0.08

0.09

0.1

0.11

h
x

en
ta

ng
le

m
en

t e
nt

ro
py

 

 

D=10

D=20

D=30

1 1.04 1.08 1.12 1.16 1.2
1

1.1

1.2

1.3

1.4

h
x

co
rr

el
at

io
n 

le
ng

th

 

 

D=10

D=20

D=30

(b)

(a)

1/ln(2 )

FIG. 4. (Color online) (a) The entanglement entropy SE of the
ground state for the transverse Ising model. The cusp at hc � 1.115
corresponds to the second-order phase transition point. (b) The
correlation length ξ of the ground state, which also shows a cusp
at the transition point.

The correlation length ξ is evaluated from the ratio of the
the largest (a0) and the second largest eigenvalue (a1) of the
transfer matrix for the iTTN state,

ξ = 1/ ln
a0

a1
. (13)

For the q = 3 Bethe lattice, there are six kinds of transfer
matrices, depending on the site and the bond direction. For
example the transfer matrix along the yz direction is defined
by (for A sublattice site)

T a
y,z;y ′,z′ =

∑
m,x

√
λyγz

(
Am

x,y,z

)∗
θ2
x Am

x,y ′,z′
√

λy ′γz′ . (14)

The other five transfer matrices including T b
y,z;y ′,z′ , T a,b

z,x;z′,x ′ , and

T
a,b
x,y;x ′,y ′ can be similarly defined. The results of the correlation

length shown in Fig. 4(b) are evaluated from the product of
the six transfer matrices along a specific path.

A distinctive feature revealed by Fig. 4 is that the correlation
length ξ , as well as the entanglement SE, does not diverge at
the critical point. ξ is found to be upper bounded by 1/ ln 2,
in agreement with the published results.25,26 This peculiar
behavior is not observed in the ordinary continuous phase
transition systems, where the correlation length is always
divergent at the critical point.

We will now show that this noncritical behavior of the
correlation length at the critical point is due to the peculiar
geometry of the Bethe lattice. For the Bethe lattice, the number
of sites on the boundary of a finite connected region is roughly
equal to the number of internal sites within that region. It means
that the lattice sites are highly nonuniformly distributed as a
function of lattice distance away from a given center. This is a
feature of the Bethe lattice that differs from a regular lattice.

In order to understand why the correlation length is finite at
the critical point, let us take a scaling transformation to convert
the Bethe lattice to a “regular” 2D lattice whose lattice sites
are uniformly distributed in space. To do this, we first choose
an arbitrary site, to be viewed as “center” of the lattice, and
define the distance R for a given layer r to the center as

R ∝
√

N (r)

π
∼

√
(q − 1)r

π
, (15)

where N (r) ∝ (q − 1)r is the number of sites enclosed by the r

layer. In this rescaled lattice, r ∼ 2 ln R + const, and the expo-
nentially decaying correlation function C(r) ∼ exp(−r/ξ ) in
the original Bethe lattice corresponds to a power-law decaying
function of R,

C(R) ∼ R−2/ξ . (16)

The algebraic decay of this correlation function suggests the
spins on the Bethe lattice are actually long range correlated in
the rescaled framework, even away from the critical point. This
is the reason why the system can undergo a phase transition
without exhibiting a divergent correlation length at the critical
point in the original Bethe lattice.

To understand why the correlation length is upper bounded,
let us consider the longitudinal magnetic susceptibility χz of
the ground state (Fig. 5):

χz = dmz

dhz

=
∑

i

〈
Sz

0S
z
i

〉
GS − 〈

Sz
0

〉
GS

〈
Sz

i

〉
GS, (17)
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FIG. 5. (Color online) The field dependence of the longitudinal
susceptibility χz. It shows a divergent peak at the transition point hc �
1.116. The susceptibility is calculated by χz = [mz(hz) − m(0)]/δh
with hz = 10−4.
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where Sz
0 is the spin at a reference center, i runs over all the

sites on the lattice. 〈Ô〉GS is the expectation value of operator
Ô in the ground state. Exploiting the C3 rotational symmetry of
the Bethe lattice, we define Cz(r) = 〈Sz

0S
z
i 〉GS − 〈Sz

0〉GS〈Sz
i 〉GS,

with r the layer number where site i resides. Thus χz can be
rewritten as

χz =
∑

r

n(r)Cz(r), (18)

where n(r) is the number of spins on layer r . On a regular
lattice, n(r) ∝ rν−1, where ν is the spatial dimension of the
lattice, the susceptibility is always finite if the spin-spin
correlation function Cz(r) decays exponentially. However,
in the Bethe lattice, n(r) ∝ (q − 1)r−1. Now if we assume
Cz(r) ∝ exp(−r/ξ ), then

χz ∝
∑

r

(q − 1)re−r/ξ =
∑

r

er[ln(q−1)−1/ξ ], (19)

which diverges if ξ approaches the threshold value 1/ ln(q −
1). This shows that the susceptibility can diverge even if Cz(r)
decays exponentially with r . The critical point occurs when
ξ = 1/ ln(q − 1), and the correlation length ξ is therefore
upper bounded by 1/ ln(q − 1) on the Bethe lattice.29

IV. ANISOTROPIC HEISENBERG MODEL

The anistropic Heisenberg model, for example, the XXZ
model, is defined by the Hamiltonian,

HXXZ =
∑
〈i,j〉

(
Sx

i Sx
j + S

y

i S
y

j + δSz
i S

z
j

)
, (20)

where δ is the anisotropy parameter.
The above model has been intensively studied on the

honeycomb and square lattices by different numerical meth-
ods, which include exact diagonalization,30 quantum Monte
Carlo,30,31 coupled cluster methods,32,33 and tensor network
algorithms.12,34 It is found that the system possesses magnetic
long-range orders for all values of δ. The antiferromagnetic
ordering vector points within the easy xy plane for δ < 1 or
along the z axis for δ > 1. There is a first-order phase transition
at δ = 1, the Heisenberg point.35

This model was also studied on the Bethe lattice (more
precisely, on the Cayley tree lattice) by DMRG.21–23,36 It was
found that there exists a long-range magnetic order at the
isotropic point δ = 1. It was also suggested that a quantum
phase transition occurs at this point. However, the properties
of this transition and the phases on the two sides of the critical
point have not been clarified.

Figure 6 shows the δ dependence of the ground-state energy
per bond and the entanglement entropy for the XXZ model.
A clear first-order quantum phase transition is observed at
δ = 1. The energy per bond shows a change of slope at
δ = 1 (the first-order energy derivative is shown in the inset),
which suggests that there is an energy level crossing. The
entanglement entropy varies continuously across the transition
point, but exhibits a cusp.

Figure 7 shows the staggered magnetization ms
x and ms

z

around the critical point. The ground state is found to possess
in-plane antiferromagnetic order with a finite ms

x for δ < 1,
and z-axis antiferromagnetic order with a finite ms

z for δ >
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FIG. 6. (Color online) (a) The ground-state energy and (b) the
bipartite entanglement entropy as a function of δ for the XXZ model.
The appearance of the cusp in the energy, as well as the discontinuity
in the first-order energy derivative [inset in (a)], suggests that this is
a first-order phase transition point.

1. At the transition point, the two order parameters change
suddenly, displaying a spin flip transition. This result verifies
the conjecture made by Otsuka.21
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FIG. 7. (Color online) The staggered magnetization along the z

axis (ms
z) and x axis (ms

x). The spin orientations flip suddenly at the
transition point δ = 1. For δ < 1, the spins are ordered within the xy

plain, while for δ > 1, the ordering is along the z axis.
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At the transition point, we find that the ground-state
energy per bond has the value eb = −0.359817(3) and the
spontaneous magnetization has the value ms = 0.34736(1)
for D = 40. The errors in the parentheses are estimated
by comparing the results for different bond dimension D

and different Trotter slices τ . Our results agree well with
the DMRG data published in Ref. 23, where the local
magnetization is found to be m = 0.347 on the central lattice
site and the bond energy between the central spin and a spin
on the first layer is e = −0.359. This satisfactory agreement
suggests that by calculating the Bethe lattice, we can reproduce
the results of local properties in the very center of a large
Cayley tree.

V. CLUSTER UPDATE SCHEME

In the previous sections, the simple update has been
applied to study the quantum spin models on the Bethe
lattice, leading to very accurate results. What is more, in
terms of the Bethe approximation, these results can also be
regarded as approximations for the corresponding 2D lattice
models. Actually, the simple update scheme has already been
used to study regular 2D lattices, such as the honeycomb or
square lattices. Combined with the TRG/SRG techniques, it
can achieve rather accurate results.7,9,10 Nevertheless, in this
section, we would provide a different way of using the simple
update to calculate 2D lattices. Inspired by the generalization
of the Bethe approximation to larger clusters in classical
statistical mechanics,17 we apply a simple update to various
tree tensor clusters. In this way, the advantage (efficiency) in
treating a tree tensor network, namely the fact that it can be
readily canonicalized, is utilized to improve the calculation
accuracy on a regular 2D lattice.

To start, as a first-order approximation, let us compare
the results on the q = 3 Bethe lattice (which has no loops)
with those on the 2D honeycomb lattice (whose coordination
number is also q = 3, and it does have loops). Our result for
the ground-state energy of the Heisenberg model on the q = 3
Bethe lattice is eb = −0.359817(3), while the corresponding
energy on the honeycomb lattice obtained by the recent
quantum Monte Carlo calculation is eQMC = −0.36303(14).37

The relative difference between these two energies is less than
0.9%. However, the spontaneous magnetization for the ground
state of the Heisenberg model on the Bethe lattice, namely
ms = 0.34736(1), is much larger than the corresponding value
on the honeycomb lattice, which is about 0.27 as obtained by
the quantum Monte Carlo.37 Notice that some other results for
the magnetization on the honeycomb or square lattice obtained
with the tensor network algorithms are also found to be higher
than the Monte Carlo ones.7,34

As a next step, our approximate treatment of the 2D
honeycomb lattice can be improved by using tensor networks
that include rings. In Fig. 8, the cluster with one hexagonal
ring is shown, some geometric bonds are removed (dashed
lines in Fig. 8) to form a tree tensor cluster. Note although the
tensor network does not have geometric bonds on the dashed
lines, in the Hamiltonian the couplings along these bonds
nevertheless exist. Therefore, the projections by imaginary
time evolution should be executed also on the dashed lines.
This cannot be done directly as on usual bonds, but can be

FIG. 8. (Color online) The one-ring cluster with 12 sites. The
diagonal matrices � are defined on the dangling bonds. The dashed
lines represent removed bonds (the physical couplings on the dashed
line still exist).

accomplished as follows with the help of the swap gates.
The swap gates are used to exchange the physical indices
of two tensors, which proceeds similarly as the projection
scheme illustrated in Fig. 2, with the minor revision that the
imaginary time-evolving operator U (τ ) is now replaced with
a swap operator Us , that conducts Us |mi,mj 〉 = |mj,mi〉.

In Fig. 8, take the dashed bond between site A and F as
an example, swap gates moves the physical index on site A
in the order A → B → C, and the physical index on site F
as F → E → D. After that, the two spins are linked by the
solid bond between C and D, then we can take the projection
and update processes as on a usual bond. After that, we have
to move the two spin indices back to their original positions
by reversed swap operations, which accomplishes the special

FIG. 9. (Color online) The four-ring cluster with 26 sites. The
inequivalent lattice sites are numbered from 1 to 16. �i,j labels the
diagonal matrix on the bond linking sites i and j .

195137-7



WEI LI, JAN VON DELFT, AND TAO XIANG PHYSICAL REVIEW B 86, 195137 (2012)

0 1 2 3 4
−0.545

−0.544

−0.543

−0.542

−0.541

−0.54

−0.539

Number of rings

en
er

gy
 p

er
 s

it
e

 

 
Simple update, D=40

QMC

FIG. 10. (Color online) The ground-state energy per site for the
Heisenberg model on the honeycomb lattice. The results are evaluated
in the central area of the clusters. The dashed line is the recent
quantum Monte Carlo result.37 The number of hexagonal rings is
used to label the cluster size.

projection step on a dashed bond. Through iterative and self-
consistent projection processes on the solid and the dashed
bonds of the tree cluster, an approximation for 2D lattices can
be obtained. Compared with the simple Bethe lattice, this tree
tensor cluster approach can provide better approximation for
two dimensions. On the other hand, it can also be regarded
as an ideal method for evaluating the “super Bethe lattice,” of
which each “single site” is now placed with a hexagonal ring,
instead of a single site, and the coordinate number q = 6.

Beyond the one-ring cluster, more rings can be included
to further enlarge the cluster. As an example, Fig. 9 shows
a cluster with 4 hexagonal rings. The accuracy of energy
versus different cluster size (labeled by the number of rings
included) are shown in Fig. 10, which verifies that the accuracy
could be improved consistently with enhancing the cluster size.
To obtain better approximation for true 2D lattices, the local
observables are detected in the center area of the cluster. In
practice, for the four-ring tree tensor cluster in Fig. 9, the results
are obtained by averaging over sites 3 and 4. We find an energy

per site of e � −0.54441 (bond energy eb � −0.36294) and a
local magnetization of m = [e(hs) − e(hs = 0)]/hs � 0.3147
(with a staggered magnetic field hs = 0.01). Hence, the
inclusion of rings clearly improves the agreement with QMC
data. For the transverse Ising model, through the four-ring
cluster calculations, the phase transition point is estimated as
hc � 1.1, which is also more accurate than the simple Bethe
approximation. More numerical results with larger clusters
and further details of this cluster Bethe approximation will be
published separately.

VI. CONCLUSION

In summary, the simple update scheme is employed to study
two spin models on the Bethe lattice (i.e., the transverse Ising
and the Heisenberg XXZ model). For the Ising model, it is
found that the correlation length, as well as the entanglement
entropy, does not diverge at the second-order transition point.
Through a scale transformation, we have given an intuitive
explanation of this peculiar “critical” phenomenon. Moreover,
by studying the magnetic susceptibility, we show that the
correlation length is upper bounded. For the Heisenberg
XXZ model, the existence of a first-order phase transition at
the isotropic point is clearly verified, and the two different
magnetic ordered phases are identified as the easy-plain
and easy-axis phases, respectively. Furthermore, in terms of
the Bethe approximation, we obtain accurate and scalable
approximations for the 2D lattice models by applying the
simple update to tree tensor clusters.
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arXiv:1208.1773.
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