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We analyze the properties of a Luttinger liquid under the influence of a periodic driving of the interaction

strength. Irrespective of the details the driven system develops an instability due to a parametric resonance. For
slow and fast driving, however, we identify intermediate long-lived metastable states at constant time-averaged
internal energies. Due to the instability perturbations in the fermionic density are amplified exponentially leading
to the buildup of a superlattice. The momentum distribution develops a terrace structure due to scattering processes

that can be associated with the absorption of quanta of the driving frequency.
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I. INTRODUCTION

Due to remarkable progress in experiments it is within
the scope of present technology to implement and simulate
the dynamics of quantum many-body systems with a high
degree of controllability on the system parameters even under
nonequilibrium conditions. While quantum dots provide the
framework for the study of quantum impurity systems,’
ultracold atoms in optical lattices constitute the basic structure
for the experimental realization of interacting quantum many-
body systems such as the Bose- or Fermi-Hubbard model.”

In principle, one can imagine a variety of different
nonequilibrium driving protocols. By now the nonequilibrium
dynamics following interaction quenches or ramps is studied
in great detail.® The influence of a periodic driving, however,
on strongly correlated many-particle systems poses new chal-
lenges especially in terms of methodology and has only been
studied for a restricted class of systems. There has been consid-
erable work on periodically driven strongly correlated impurity
systems such as the Anderson impurity* and Kondo models.>¢
Besides impurity systems, Falicov-Kimball”® and Hubbard
models”!? have been analyzed on the basis of a nonequilibrium
extension of dynamical mean-field theory. Periodically driven
systems of interacting fermions in one dimension have been
studied for small system sizes'' and in the Luttinger liquid
limit.'>"'* Periodically driven one-dimensional Bose-Hubbard
models have been investigated by exact diagonalization for
small systems'> and for large systems based on the time-
dependent density matrix renormalization group.'®

In this work we investigate the nonequilibrium dynamics
of interacting fermions in one dimension within a Luttinger
liquid description induced by a periodic time dependence of
the interaction strength. The impact of a periodic modulation of
the Fermi velocity onto the fermionic momentum distribution
has been investigated recently.'? Due to the above-mentioned
complexity of periodically driven systems it is instructive to
explore those particular cases where exact and nonperturbative
solutions are accessible such as in the case studied in this work.

The periodically driven Luttinger liquid shows an instability
in the long-time limit due to a parametric resonance.'”"'*
However, on intermediate time scales metastable steady states
of constant time-averaged energy densities can form with long
lifetimes in cases of slow and fast driving. In the adiabatic
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limit the instability occurs after a fixed number of periods
independent of the driving frequency. Thus it is impossible
to adiabatically follow the ground state of the system for
a large number of periods irrespective of how slowly the
system is driven. The periodic driving promotes fermionic
scattering processes under the absorption of quanta of the
driving frequency yielding a terrace structure in the fermionic
momentum distribution. In the slow driving limit the system
becomes unstable against perturbations in the fermionic
particle density resulting in an exponential amplification of
the perturbation in consequence of the parametric resonance.

This paper is organized as follows. In Sec. II we introduce
the model of a periodically driven Luttinger liquid whose
dynamics including the parametric instability we analyze in
Sec. III. In Sec. IV we identify a metastable state for fast
and slow driving based on the study of the internal energy
density. The impact of the instability on the fermionic density
and the momentum distribution is analyzed in Secs. V and VI,
respectively.

II. PERIODICALLY DRIVEN LUTTINGER LIQUID

Consider a system of 1D fermions of length L whose
interaction strength is varied periodically with a frequency €2
termed the driving frequency in the following. Introducing left-
as well as right-moving fermions indicated by a label L /R and
linearizing the dispersion relation around the respective Fermi
points one arrives at the following Hamiltonian:

H = Hy + Hiy,

d
Ho = vr f W) — Y R@IAYRCOT

dx dx’ 1 ,
Hine = Z/ 7 Py(x) EU(x — x50 py(x) s
0,

(1)

This Hamiltonian differs from the equilibrium case only
through the periodic time dependence of the interaction
U(x —x';t) with an associated Fourier transform U,(t) =
[ dx e™'7* U(x;t). We assume a repulsive interaction potential
U,(t) > 0 of finite range such that it is cut off beyond some
momentum scale g.. The colons : - - - : denote normal ordering
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relative to the Fermi sea and vp is the Fermi velocity. The
fermionic density p,(x) with n = L/R is determined by the
fermionic fields v, (x) = /27/L Y, e ' ¢y, via p,(x) =
: x[fg(x)xlf,,(x) .. The operator c,tn creates a fermion of the
species n = L/R with wave vector k.

Note that we restrict ourselves to the case of spinless
fermions. This reduced model system already incorporates
most of the characteristic features of interacting fermions in
ID. For a system of fermions with spin in equilibrium, for ex-
ample, the dynamics separates into two independent sectors of
spin and charge, a phenomenon called spin-charge separation,
each of which can be modeled by a Hamiltonian of the form
in Eq. (1). Note that the influence of a periodic modulation of
the Fermi velocity onto the momentum distribution in case of
fermions with spin has been investigated recently.'?

In the nonequilibrium scenario under investigation the
system is initially prepared in the ground state |1) at some
fixed interaction strength such that U,(t < 0) = V,(1 +v)
is chosen to be time independent for times ¢ < 0. At time
t =0 the periodic driving is started with the following
parametrization of the time dependence of the interaction
potential

U, (1) = V, (1 + v cos(Q)). )

The dimensionless coupling v of the periodic driving is chosen
v < 1 such that the interaction remains repulsive for all times.
The interaction strength is characterized by the dimensionless
number
Vi
o« == 3)

2T VE

which within the validity of the Luttinger model is always
chosen o < 1. We assume that the interaction potential V,
is cut off beyond the momentum scale g.. In our numer-
ical simulations we choose a Gaussian for simplicity; i.e.,
V,/Qmvrp) = aexpl—(q/qc)*].

Although the Hamiltonian in Eq. (1) is quartic in fermionic
operators it can be mapped onto a quadratic and exactly solv-
able problem using the bosonization technique.!” Introducing
bosonic operators'’

27
byy = —i E chlqnckm q >0,
k

21
o2 § : 1
bqr] =! Lq k Ck+quckr]7 q = 07

for each right- and left-moving branch n = L/R, the Hamil-
tonian in Eq. (1) can be mapped onto a quadratic but time-
dependent bosonic problem

H= > w,0b}bg )
q¢>0,n=L/R
U,(t)
Y q - b} 0]k + barber] + A@D).  (6)
q>0
The dispersion of the diagonal part of the above Hamiltonian
is given by
U,(t
wq(z)=un<1+ o )). (7
2 Vf
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The overall constant A(¢) = (27)~! > 40 qU,(t) hasno effect
on the time evolution of observables except the internal energy
itself as discussed in Sec. IV. In principle, it is possible to
diagonalize this Hamiltonian using a time-dependent unitary
transformation. However, it turns out to be suitable to deter-
mine the dynamics in the untransformed basis; see Sec. III
below.

III. NONEQUILIBRIUM TIME EVOLUTION

For the dynamics of all quantities considered such as energy
density, fermionic density, and the momentum distribution it
is sufficient to solve the Heisenberg equations of motion for
the bosonic operators

Uy(0)
2

d . .

Tbyy(1) = —iwy(Dby (1) + ig bl (8)
with 7 the conjugate species of 7; i.e., L = R and vice versa.
These differential equations for operators can be transformed
into differential equations for complex functions x,,(t) and
Agn(t) defined by

bqn(t) = an(t)bfﬂl + )“qn(t)bj]ﬁ (9)

when inserted into Eq. (8). The resulting system of coupled
differential equations can be cast into a more familiar form by
regarding appropriate superpositions

Ogn = Xgqn — )‘Zn’ Ban = Xan + )‘;n- (10)

The function «,, is the solution of a parametrically driven
harmonic oscillator and obeys a Mathieu equation in properly
scaled parameters

dzaq,,(r) n

dr?
with the dimensionless time t = Q¢/2, the natural frequency
€ = 20pqQ /1T + V,/(@vE) of the harmonic oscillator,
and y, =vV,/2nvp +2V,) the coupling strength of the
periodic perturbation. The initial conditions for the solution
of the Mathieu equation are «,,(t = 0) = 1 and ajm(t =0)=

es[l =+ 2y, cos(21)]ag,(t) =0 (11)

—ivrg. The remaining function B,, = i(quvr)~'da,,(t)/dt is
proportional to the time derivative of «;,.

Concluding, the time evolution in the periodically driven
Luttinger liquid is equivalent to a set of parametrically driven
harmonic oscillators. The Mathieu equation in Eq. (11) in
general exhibits no analytic solution in terms of elementary
functions. For special cases, however, such as parametric
resonance, approximate analytical solutions are available;
see below. For the general case we solve the differential
equations numerically using a standard fourth-order Runge-
Kutta algorithm.

The driven harmonic oscillator in Eq. (11) shows an
instability with exponentially growing amplitudes in the case
of parametric resonance which occurs for that particular
plasmonic mode g* for which €, = 1 or equivalently /2 =
vrg* /1 + Vq*/(JTUF).IS

In the following it is important to distinguish two different
cases of fast and slow driving. The energy scale Q* associated
with the crossover between the two limits is set by

Q" = vpq.. (12)
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For slow driving 2 < Q* the resonant bosonic mode g* for
which parametric resonance occurs is determined by

q* f@; 1 Q

qc V1420 202%
to leading order in ©2/Q*. Note, however, that not only ¢*
but also momenta g within a finite interval of nonzero length
contribute to the resonance.'® The rate I' of the associated

exponential growth in time can be determined using standard
methods'®

13)

Qgg*l (02
41420

The time scale t* for the onset of the instability is then
determined by the rate I" via

tr=T"" (15)

(14)

In the opposite case Q2 > Q* of fast driving the resonant mode
q" aso Q
1 >
qe 2Q*

is independent of the interaction potential up to corrections

suppressed by the cutoff ¢.. The associated rate of the
exponential growth is then given by

(16)

Q>

F=" 1QuV,. (17)

Its precise behavior for 2/ Q* > 1 or equivalently g*/q. > 1
depends on the details of the large momentum behavior of
the interaction potential. If V,, ~ exp[—Cgq] for some constant
C > O therate I' ~ exp[— D2/ Q*] with D = Cq,/2 is sup-
pressed exponentially. Analogously, algebraically decaying
potentials V, ~ (g/q.)™" yield a power-law dependence I" ~
(/9! for pu > 1.

As T is linear in 2 for slow driving, see Eq. (14), the
adiabatic approximation breaks down after a fixed number of
periods Nper ~ /T = 4(1 + 2a)/(av) set by the interaction
strength o and the coupling to the periodic perturbation v
irrespective of €2. By reducing the driving frequency one
cannot increase the number of periods for the validity of the
adiabatic approximation.

IV. INTERNAL ENERGY DENSITY

Typically, the periodically driven quantum many-body
systems considered so far in the literature ignore the possible
influence of dissipation mechanisms onto the dynamics, with
the exceptions of Refs. 8 and 10. This is an important issue
because the energy in the system will in general increase
during the considered nonequilibrium protocol. For bounded
Hamiltonians, fermionic or spin systems on a lattice, for
example, the internal energy will necessarily saturate; for
unbounded Hamiltonians this need not be the case. Even
though the internal energy for bounded Hamiltonians will
always stay finite, the question whether the unavoidable
presence of dissipation mechanisms may at some point in time
have a considerable influence onto the dynamics is still largely
unanswered. Due to the parametric instability the internal
energy of the Luttinger liquid diverges as we will show below.
The existence of the instability naturally sets the time scale
t*, see Eq. (15), beyond which additional internal properties
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such as the curvature of the fermionic dispersion relation or
external dissipation mechanisms have to be included for a
realistic description.

The internal energy density £(¢) = L™ (yo(t)| H (1) |o(2))
of the periodically driven Luttinger liquid system at time 7 is
given by

_ [T dq W U o AWM
£ty = fo o [2wq(r>l<q - q L0k Pw |+ 52,
(18)
where
KD(1) = sinh*(6,) + |2, ()] cosh(26,)
+Rel xgL(1)A7, (1)] sinh(26,),
KP(t) = sinh(26,)Re[2, + x7, |
+2cosh(26,) Re[Ayz X411, (19)

and w,(t) given by Eq. (7). The Bogoliubov angles 6, for
the initial state are determined by the formula tanh(26,) =
V,(1 +v)/[2rvr + V,(1 + v)]. Note that the Luttinger liquid
Hamiltonian in Eq. (1) appears typically as the low-energy
theory derived from more complicated many-body systems.
Within such a mapping additional time-dependent contribu-
tions to A(¢) in Eq. (6) can be generated in the periodically
driven case. Those contributions depend on the details of
the model and have to be worked out for each particular
case. In the present work we are interested in the generic
low-energy properties that are all contained in the Luttinger
liquid description of the model Hamiltonian in Eq. (1). Thereby
we ignore additional contributions to the energy density that
are generated by the mapping onto this low-energy theory.

In Fig. 1 plots for £(¢) are shown for different driving
frequencies. Periodically driven systems without instabilities
develop stationary states at long times where expectation val-
ues time-averaged over one period become time independent.
Besides the internal energy density we have included its time

0.5 0.5
N Q/Q*=0.1 Q/Q* =04 N
2 o o 2
&X «X
w w
D 05 -05 @
> >
o <)
2 -1 2
(0] (0]
-15 -1.5
Q/Q*=3.0 Q/Q*=5.0
% 05 0 )
o, %
e 05 ©
8 -0.5 1 S
(0] (0]
c -1 c
o -1 )
-15 15

0 20 40 60 0 20 40 60 80

time Qt time Qt

FIG. 1. (Color online) Time evolution of the internal energy
density £(z) (blue lines) and its time average £(r) (red dashed
lines) for different driving frequencies €2 in units £* = ¢.Q2*. For
these numerical simulations we have chosen an analytic interaction
potential V,/(2nvr) = a exp[—(g/q.)*] withe = 1/2 and v = 1/5.
The zero of energy has been chosen such that £(r = 0) = 0.
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average

_ Q 42/ Q2

E@) = —f dr' E(t) (20)
2w J;

in Fig. 1 for the identification of such stationary states.

In the case of fast driving Q2 > Q, the rate I' of the
parametric resonance is strongly suppressed due to the finite
cutoff scale g, of the interaction potential; see Eq. (17). After
the initial transient dynamics following the start of the periodic
driving the system settles to a stationary state with a constant
time-averaged energy density. As I' is small but still finite
the system will nevertheless develop the instability for times
t > t*. Consequently this intermediate state is only metastable.

In the limit 2 — oo the dynamics becomes effectively
equivalent to one of a time-averaged Hamiltonian if there
exists a mechanism that prevents the absorption of high-energy
photons.® In the present model system this mechanism is
provided due to the finite range g, of the interaction. Physically
speaking, the system is not able to follow the fast external
perturbation and only perceives its average contribution. As
the initial state is not an eigenstate of the time-averaged
Hamiltonian for times ¢ > 0 the dynamics becomes equivalent
to that of an interaction quench. Indeed, we find that the time-
averaged energy density £(r) follows precisely the behavior of
the interaction quench scenario.

When the driving frequency is lowered the rate of the
instability I" grows and thus the onset of the instability moves
to smaller times ¢*. For Q2 ~ Q* the transient dynamics is
directly followed by an exponentially increasing contribution
due to the influence of the instability. In this way the instability
is so strong that it hinders the buildup of a metastable
state completely. For even lower frequencies, however, the
rate I’ ~ Q decreases again opening up the window for the
metastable state as can be clearly observed in Fig. 1.

V. FERMIONIC DENSITY

The internal energy density of the system mirrors the
instability by showing a divergence at times ¢ > t*. However,
up to now we have not touched upon the question of which
internal perturbations can prevent the buildup of the instability.
Regarding the time evolution of the fermionic density we
argue that it may be sufficient to include the curvature of the
fermionic dispersion relation.

In the following we analyze the dynamics of an initially
localized fermionic density wave packet in the presence of the
periodic driving. The time evolution of a local perturbation
in the fermionic density is solely determined by the solution
a4y (t) of the Mathieu equation, see Eq. (11),

*d
plx.1) =2 f ﬁ cos(qx) py Re[ag ()] (21)
0

with ,02 =/ dge™'9% py(x) characterizing the initial density
profile po(x) = p(x,t = 0). In Fig. 2 we show for the fast and
slow driving regimes the dynamics of the fermionic density
where we have chosen a Gaussian wave packet as initial
condition for illustration.

For fast driving 2 > Q, the initial local perturbation splits
into right- and left-moving contributions. As in the case of
the internal energy density in Sec. V the dynamics becomes
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FIG. 2. (Color online) Time evolution a localized perturbation
in the fermionic density p(x,t) for the cases of fast (upper plot)
and slow (lower plot) driving. Again, we have chosen an analytic
interaction potential V,/2mvr) = o exp[—(g/q.)*] with & = 1/2
and v = 1/5 for these numerical simulations. The initial density
profile is a Gaussian p(x,t = 0) = py exp[—(x/x.)*]/2 withx.q. = 2
in the slowly and x.q, = 10 in the fast driven case. The buildup of the
superlattice in the slowly driven limit is independent of the precise
choice of the width x, of the initial density wave packet. In the fast
driving case, that is equivalent to an interaction quench, see main text,
the universal low-energy limit corresponds to x.g. > 1.

equivalent to the interaction quench scenario. This picture is
suitable for times ¢ < ¢* before the onset of the instability. In
this regime the time scale t* oc Q7!, see Eq. (14), is large and
grows in a power-law fashion for small values of the driving
frequency.

In the opposite case 2 < €2, a completely different picture
emerges. After a fixed number of periods Npe ~ Q/I =
4(1 4+ 2a)/(av) to leading order in 2/Q* the dynamics
is dominated by the parametric resonance leading to an
exponential growth of the initial perturbation for x << vpaxt

* Qt
o(x,1) 25 qcA cos(g*x) cos (7 + 7r/4>er’ (22)
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FIG. 3. (Color online) Time evolution of the momentum distri-
bution f;(¢) for fast (upper plot) and slow (lower plot) driving. The
parameters of the numerical simulation are chosen as for the previous
plots.

with A a constant nonuniversal prefactor. A superlattice forms
with a period

x*=2n/q* (23)

set by the resonant mode, see Eqs. (13) and (16), whose
amplitude is growing exponentially at a rate I'. Note that this
does not lead to a violation of particle number conservation as it
might seem from the plot in Fig. 3. For each density hump there
also exists a valley of depletion of fermionic charge carriers.
Moreover, the superlattice extends only over a distance d ~
Umax? Within the light cone set by the maximal sound velocity.
Integrating over the whole real-space shows that the particle
number is still conserved as one can directly check via Eq. (21).

Now we want to argue that including the curvature of
the fermionic dispersion relation will cut off the exponential
growth of the superlattice for sufficiently large densities.
In the limit of slow driving we can approximately neglect
the influence of the finite range of the interaction and set
V, & Vy. For a g-independent interaction the influence of
a nonlinear fermionic dispersion relation can be accounted
for approximately.'” The time-independent version of the
Hamiltonian in Eq. (1) including the quadratic curvature
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contribution can be mapped to a free Fermi gas.'® For a free
Fermi gas the buildup of large densities is prevented due to
the nonlinear dispersion eventually leading to the production
of shock waves.’

VI. MOMENTUM DISTRIBUTION

In equilibrium the momentum distribution for the fermionic
particles exemplifies the different influence of repulsive
interactions in one dimension compared to higher dimensions
where Fermi liquid theory holds. In Luttinger liquids the
momentum distribution shows no jump at the Fermi energy
even at zero temperature reminiscent of the absence of a finite
quasiparticle weight.

The momentum distribution function f;(¢) for the left-
moving fermions

fult) = (Wole] L (Dern O], (24)

with [r) the initial state, is connected to an equal-time corre-
lation function f(x,t) in real space via Fourier transformation

d‘x —ikx
fult) = / e, 25)
T
FOrat) = (Wolvr} (W 0.01%0) 26)

that can be calculated analytically using the bosonization
technique!’

EE— 27
a—|—ixe @7

fxn) =

with ¢~ an ultraviolet cutoff. The rate function F(x,t) =
Feq(x) + Fp(x,t) can be separated into an equilibrium part
Feq associated with the initial state and a nonequilibrium
contribution Fp(x,?) due to the periodic driving:

© g
Feg(x) = 4 / 2 Gin? (ﬂ) sinh2(4,).
0 q 2

© g
Fy(x,1) :4/ 29 Gin? <%>[|AqL|2cosh(29q)
0o 9

+Re(xgL A%, ) sinh(26,)]. (28)

Here, 6, denotes the Bogoliubov angles of the diagonalizing
transformation for the initial equilibrium Hamiltonian obeying
the equation tanh(20,) = V,(1 +v)/[2rvr + V,(1 +v)]. In
Fig. 3 we show numerical results for the momentum distribu-
tion for fast and slow driving.

For © > Q* the behavior under time evolution is consistent
with the picture observed for the internal energy density
in Sec. IV. Following the initial transient dynamics the
momentum distribution becomes metastable on intermediate
times ¢ < t*. The momentum distribution is self-averaging in
the sense that it is time independent in contrast to the energy
density where only the time average becomes constant. In
the limit 2 — oo we recover the interaction quench limit of
an effectively time-averaged Hamiltonian as for the internal
energy density; see Sec. IV. In the vicinity of the Fermi level
the momentum distribution shows a nonanalytic behavior for
large times

Q—o00
ni(t — 00) — 1 =" sgn(k)k/q.|” (29)
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FIG. 4. (Color online) Time evolution of the fermionic defect

density ng(t) (blue line) and its time average ng.(t) (red dashed

line) over one period. The parameters for the numerical simulations
have been chosen as before.

with sgn(k) the sign function. The exponent y is in precise
agreement with an interaction quench scenario.?!

For slow driving Q <« Q* the momentum distribution
develops steps as can be seen in Fig. 3; see also Ref. 13.
A similar observation has been made recently for the case of
a periodic modulation of the Fermi velocity in a Luttinger
liquid.'? These steps may be associated with scattering pro-
cesses between fermions under the absorption of quanta of the
driving frequency 2. Thus, the dominant processes under the
periodic driving are not only energy-conserving ones but also
those where energy is conserved up to multiples of the driving
frequency. Note that this step structure is remarkably similar
to a simplified picture where in the spirit of the work by Tien
and Gordon?? for noninteracting systems the periodic driving
generates a weighted superposition of equilibrium momentum
distributions shifted by an energy n€2. It is, however, not
possible to establish such a superposition principle precisely in
the present interacting system. Due to the parametric instability
the fermions are redistributed completely for times ¢t — oo
leading to a momentum distribution f(t — o0) = 1/2 of
infinite temperature.

Due to scattering processes induced by the periodic driving
fermions are redistributed in the vicinity of the Fermi surface
already for small times. This excludes the possibility for an
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adiabatic limit where the momentum distribution follows adi-
abatically the external perturbation. This generates fermionic
defects

Naer(t) = / N ﬂ[fku) - o] (30)
¢ 0 27[ k

compared to the adiabatic limit. Here, f; () is the equilibrium
momentum distribution for the instantaneous interaction po-
tential U, (¢). The integral can be restricted to positive momenta
as fi(t) — fkeq(t) = —[f(t) — ffc,‘c(t)]. As shown in Fig. 4
after some transient dynamics the time-averaged defect density
ngef(¢) increases linearly in a regime where in contrast the
time-averaged energy density £() settles to a constant value
on intermediate time scales which we have identified as a
metastable state. Even though £(¢) approaches a constant value
interaction energy is successively transferred to kinetic energy
reminiscent of a heating process with an increasing entropy.

VII. CONCLUSIONS

In this work we have studied the dynamics of a Luttinger
liquid with a periodically time-dependent repulsive interaction
potential. Under the periodic driving the system develops an
instability due to a parametric resonance. The associated time
scale 1*, see Eqgs. (14) and (17), sets the limit beyond which
dissipation mechanisms or internal perturbations have to be
included into an appropriate description of the dynamics. On
intermediate time scales before the onset of instability, it is
possible to identify metastable states for fast and slow driving
with constant time-averaged internal energies. The parametric
instability generates an exponential growth of perturbations in
the fermionic density leading to the buildup of a superlattice
with period x*; see Eq. (23). The fermionic momentum
distribution develops a step structure that can be associated
with fermionic scattering processes under the absorption or
emission of quanta of the driving frequency 2.
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