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a b s t r a c t

A general framework for non-abelian symmetries is presented
for matrix-product and tensor-network states in the presence
of well-defined orthonormal local as well as effective basis
sets. The two crucial ingredients, the Clebsch–Gordan algebra
for multiplet spaces as well as the Wigner–Eckart theorem
for operators, are accounted for in a natural, well-organized,
and computationally straightforward way. The unifying tensor-
representation for quantum symmetry spaces, dubbed QSpace,
is particularly suitable to deal with standard renormalization
group algorithms such as the numerical renormalization group
(NRG), the density matrix renormalization group (DMRG), or
also more general tensor networks such as the multi-scale
entanglement renormalization ansatz (MERA). In this paper,
the focus is on the application of the non-abelian framework
within the NRG. A detailed analysis is presented for a fully
screened spin-3/2 three-channel Anderson impurity model in the
presence of conservation of total spin, particle–hole symmetry,
and SU(3) channel symmetry. The same system is analyzed using
several alternative symmetry scenarios based on combinations
of U(1)charge, SU(2)spin, SU(2)charge, SU(3)channel, as well as the
enveloping symplectic Sp(6) symmetry. These are compared in
detail, including their respective dramatic gain in numerical
efficiency. In the Appendix, finally, an extensive introduction
to non-abelian symmetries is given for practical applications,
together with simple self-contained numerical procedures to
obtain Clebsch–Gordan coefficients and irreducible operators sets.
The resulting QSpace tensors can deal with any set of abelian
symmetries together with arbitrary non-abelian symmetries with
compact, i.e. finite-dimensional, semi-simple Lie algebras.
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1. Introduction

Numerical methods for strongly correlated quantum-many-body systems are confronted with
exponentially large Hilbert spaces. With a limited number of exact analytical solutions at hand and
with perturbative treatments for low-energy or ground-state physics often insufficient, a certain
systematic treatment with respect the Hilbert space is required. Besides quantum Monte Carlo
approaches, that explore quantumsystems in a stochasticway [1], a systematic state space decimation
is provided by renormalization group (RG) techniques such as the density matrix renormalization
group (DMRG) [2] or the numerical renormalization group (NRG) [3], both highly efficient for quasi-
one-dimensional systems, and since non-perturbative, considered essentially exact.

Quantum-many-body Hilbert spaces are built from the direct product of the state spaces of
the participating individual particles. As such particle statistics plays an essential role. While the
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focus of this paper is on fermionic systems, generalizations to spin systems are straightforward.
The treatment of bosonic systems, on the other hand, comes with the additional hurdle that even
a single local bosonic degree of freedom already has an infinite state space of its own which
must be truncated for numerical treatment. Nevertheless, assuming that the bosonic state spaces
can be properly categorized in symmetry sectors, the complications deriving from their infinite
dimensionality are considered separate form the issues regarding the description of pure symmetries
of the Hamiltonian. In the case of two-dimensional systems finally, more exotic types of particles exist
that are neither fermions nor bosons, but anyons. Much attention has been paid to these recently
within the framework of tensor networks [4–9]. While the treatment of particles with non-abelian
statistics is nicely complimentary to the work presented here, this shall not be pursued any further in
what follows.

Methods such as the DMRG or the NRG then, are based on the same algebraic structure of matrix
product states (MPSs) [10,11]. Initially introduced for one-dimensional systems with MPS owing its
name to this case, a wide range of activity has emerged within recent years to generalize MPSs to
tensor-networks for two- or higher-dimensional systems [8,12–14]. While clearly appealing from
the point of view of area laws for entanglement-entropy [15–17], tensor network states (TNSs) often
share the same disadvantage as linear systems with periodic boundary conditions within the DMRG,
namely that state spaces become intrinsically non-orthogonal. Therefore also the unique association
of symmetry labels with each index in a tensor is compromised. This, however, can be circumvented
by introducing an emerging extra-dimension, which is at the basis of the recently developed multi-
scale entanglement renormalization ansatz (MERA) [18,19]. Nevertheless, the traditional DMRG
approach applied to 2D systems [20] with open or cylindrical boundary conditions yet with long-
range interactions has continued to provide a highly competitive, extremely well-controlled, even
though numerically expensive approach.

Within both, traditional DMRG as well as NRG, state spaces of entire blocks are built iteratively
by adding and merging one site at a time. Clearly, the single index describing an effective basis for
the entire block or site can be chosen orthogonal. In addition, basis states can be labeled in terms
of the symmetries of the underlying Hamiltonian. Operators written as matrix elements in this very
same basis therefore also share the same well-defined partitioning in terms of symmetry sectors.
By grouping symmetry state spaces together, the Hamiltonian becomes block-diagonal, while more
general operators usually obeywell-defined selection rules between symmetry sectors. Consequently,
the sparsity of these operators due to symmetry can be efficiently and exactly included in the
numerical description, such that usually only a few dense data blocks with non-zero matrix elements
remain, given the symmetry constraints. While this well represents the advantage of implementing
generic abelian symmetries in a calculation, the presence of non-abelian symmetries offers yet
another strong simplification: many of the non-zero matrix elements are actually not independent of
each other, bearing inmind, for example, theWigner–Eckart theorem. Therefore going beyond abelian
symmetries, non-abelian symmetries allow to significantly compress the non-zero blocks in terms of
multiplet spaces [21–23]. In particular, this removes themixing of symmetry sectors, had only abelian
symmetries be used, instead.With the Clebsch–Gordan coefficient spaces factorizing [8,9,24], they can
be split off systematically in terms of a tensor-product and dealt with separately.

An MPS is optimal for one-dimensional systems. When exploring systems that are not strictly one
dimensional but acquire width, such as ladders of several rungs in DMRG or multi-channel models
in NRG, the price to be paid for orthonormal state spaces is that one must represent the system
as a one-dimensional MPS nevertheless. This introduces longer-range interactions to the mapped
1D system, with the effect that the typically required dimensions of the state spaces to be kept
in a calculation, grow roughly exponentially with system width. The number of symmetries then
that (i) are available and (ii) are also be exploited in practice, decides whether or not a calculation
is feasible. Abelian symmetries such as particle (charge Q ) or spin (Sz) conservation are usually
implemented in DMRG calculations. However, only very few groups have implemented non-abelian
symmetries, and these are also constrained to SU(2) symmetries only [21,22], due to its complexity
in the actual implementation. General treatment of non-abelian symmetries within the MERA, on the
other hand, is currently under development [8,25]. NRG, in contrast, had been set up including non-
abelian SU(2) spin symmetry from its very beginning [3], dictated by limited numerical resources. So
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far, however, only a very few isolated attempts including more complex non-abelian settings exist
within the NRG [26], while to our knowledge there exists no general realization yet of arbitrary non-
abelian symmetries in either method.

This paper focuses on the systematic description and implementation of non-abelian symmetries
of a given Hamiltonian within the generalized MPS framework through explicit evaluation to
Clebsch–Gordan coefficients. This naturally also includes the description of abelian symmetries,
as they can be trivially written in terms of Clebsch–Gordan coefficients. While the focus within
non-abelian symmetries belongs to SU(N) and the symplectic group Sp(2n), the generalization
to other non-abelian symmetries or also point groups is straightforward once their particular
Clebsch–Gordan coefficients are worked out. In contrast to the well-known SU(2) then, general non-
abelian symmetries, such as SU(N ≥ 3), represent a significant increase in algorithmic complexity,
in that they can and routinely do exhibit inner and outer multiplicity. The latter, for example, implies
that in the decomposition of the tensor-product of two irreducible representations (IREPs) into a direct
sum of IREPs, the same IREP may occur multiple times. Nevertheless, this can be dealt with properly
on the algorithmic level, as will be shown in detail in this paper.

While the presented non-abelian framework for general tensors is straightforwardly applicable to
traditional DMRG aswell as NRG, the paper focuses on the applicationwithin theNRG. Detailed results
are presented for a fully screened spin-3/2 Anderson impurity model with SU(3) channel-symmetry
[i.e. see Hamiltonian in Eq. (27)]. This model has been suggested as the effective microscopic Kondo
model for iron impurities in gold or silver [27], historically the first system where Kondo physics
was observed experimentally [28,29]. Being a true three-channel system, this cannot be trivially
rotated into a simpler configuration of fewer relevant channels. The result is an extremely challenging
calculation within the NRG that requires non-abelian symmetries for fully converged numerical
results for reasonable coarse-graining of the continuous bath. The non-abelian symmetries present in
themodel considered are (i) particle–hole symmetry in each of the three channels, SU(2)⊗3

charge, (ii) total
spin symmetry, SU(2)spin, and (iii) channel symmetry, SU(3)channel. The non-abelian particle–hole
SU(2) symmetry, however, does not commute with the channel SU(3) symmetry, while the plain
abelian charge U(1) symmetry does commute. Overall, this suggests a larger enveloping symmetry,
which turns out to be the symplectic symmetry Sp(6) [30] [for an introduction to Sp(2n), see
Appendix A.10]. With this, the following symmetry scenarios are considered and compared in detail,

SU(2)spin ⊗ SU(2)⊗3
charge,

SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel, and
SU(2)spin ⊗ Sp(6).

While the first setting represents a more traditional setup based on multiple sets of plain SU(2)
symmetries only, the second setting already includes the larger channel SU(3) symmetry. Both of
these symmetries do not capture the full symmetry of the model, which finally is achieved by using
the enveloping Sp(6) symmetry.

Due to the internal two-dimensional structure of the SU(3) symmetry based on the fact that
SU(3) has two commuting generators, i.e. is of rank 2, its multiplets have significantly larger internal
dimension, in practice, up to over a hundred. Therefore despite the reduction of the particle–hole
symmetry to a plain abelian symmetry, the second setting with the SU(3) channel symmetry allows
to outperform the more traditional setup based on SU(2) symmetries only. Similarly, with Sp(6) a
rank-3 symmetry, multiplets then easily reach dimensions of several thousands there, which allows
to reducemultiplet spaces significantly further still. A detailed analysis of this is provided in this paper,
with a more general self-contained introduction to non-abelian symmetries considered given in the
Appendix [cf. Appendix C.3].

From an NRG point of view [31], a few essential steps are required. These are (i) the evaluation of
relevant operator matrix elements required to construct the Hamiltonian, (ii) the generic setup of an
iteration, adding one site to the so-called Wilson chain, and finally, for thermodynamical properties
(iii) also the treatment of the full thermal densitymatrix [31]. All of these steps are simple in principle,
yet come with the essential challenge to have a flexible transparent framework for the treatment
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of non-abelian symmetries in practice. In this paper, such a framework is presented in terms of
generalized contractions of tensors in the presence of symmetry spaces, introduced asQSpaces below.

The paper is thus organized as follows. Section 2 describes theMPS implementation of non-abelian
symmetries in terms of QSpaces. Section 3 points out specific implications for DMRG and more
general tensor networks. Section 4 describes the implications for calculating correlation functions
in the presence of irreducible operator sets. Section 5 gives a short review of the NRG together
with specialties related to non-abelian symmetries, such as calculating reduced density matrices.
This section also introduces the model Hamiltonian of a fully symmetric 3-channel Anderson model.
Section 6 then presents explicit NRG results, followed by summary and outlook. Finally, also an
extended Appendix has been added to the paper. The latter is intended to provide a more general
pedagogical self-contained introduction to non-abelian symmetries as they occur in fermionic lattice
models, together with their actual implementation in practice in terms of QSpaces.

2. MPS implementation of non-abelian symmetries

Consider some Hamiltonian Ĥ that is invariant under a set of nS symmetries,

S ≡

nS
λ=1

Sλ, (1)

that is, [Ĥ, Ŝλα] = 0, where α identifies the generator Ŝλα for the simple (non-abelian) symmetry Sλ. To
be specific, for example, S = SU(2)spin ⊗ SU(2)charge ≡ S1

⊗ S2 with λ ∈ {1, 2} would stand for the
combination of spin and charge SU(2) symmetry, respectively. The tensor-product notation in Eq. (1)
indicates that the symmetries act independently of each other, that is [Ŝλα, Ŝ

λ′

α′ ] = 0 for λ ≠ λ′.
Given the symmetries as in Eq. (1), this allows to organize the complete basis of eigenstates of Ĥ

in terms of the symmetry eigenbasis. Every state then belongs to a well-defined irreducible multiplet
qλ for each symmetry Sλ. The multiplet itself has an internal state space structure that is described by
the additional quantum labels qλz . For example, in the case of Sλ = SU(2), qλ (qλz ) corresponds to the
spin multiplet S (the Sz label), respectively.

Thus all states in a given vector space can be categorized using the hierarchical label structure

|qn; qz⟩ (state-space label structure), (2)

where

(i) q ≡ (q1, q2, . . . , qnS ), to be referred to as q-labels (quantum labels), references the irreducible
representations (IREPs) for each symmetry Sλ, λ = 1, . . . , nS . All states in given Hilbert space
with the same q-labels are blocked together, to be referred to as symmetry block q.

(ii) Given a symmetry block q then, the multiplet index n(q) identifies a specific multiplet within this
space. It is therefore a plain index associated with given symmetry space q. Together with the q-
labels, this forms the multiplet level which is considered the topmost conceptual level. Using the
composite notation (qn) to identify an arbitrary multiplet, the subscript q to the multiplet index
n(q) is considered implicit and hence is dropped, for simplicity.

(iii) Finally, the set of labels qz ≡ (q1z , q
2
z , . . . , q

nS
z ), to be referred to as z-labels, resolves the internal

structure of each multiplet in q. That is, for each IREP qλ, referring to the symmetry Sλ in q,
qλz labels its internal IREP space. As such, the z-labels are entirely defined by the symmetries
considered. By construction, the eigenstates of the Hamiltonian Ĥ are fully degenerate in the z-
labels.

Here the symmetry labels q and qz describe the combined record of labels derived from all symmetries
considered. In practice, states canmostly be treated on the highermultiplet level, while the lower level
in terms of the z-labels is split off and taken care of by Clebsch–Gordan algebra and the coefficient
spaces derived from it.

When non-abelian symmetries are broken, they are often reduced to their abelian subalgebra. This
can be easily implemented, nevertheless, consistent with the presented framework. In particular, in
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the abelian case, the non-abelianmultiplet labels q are absent, while the abelian qz quantum numbers
remain. Therefore the qz labels can be promoted to the status of q-labels, q := qz . As a consequence,
the concept of the actual qz labels becomes irrelevant (therefore subsequently, the qz label space may
simply be set to zero, qz := 0). The corresponding Clebsch–Gordan coefficients are all trivial scalars, i.e.
equal to 1. Yet these ‘‘Clebsch–Gordan coefficients for abelian symmetries’’ do maintain an important
role, in that they take care of the proper addition rules that come with abelian symmetries, resulting
in ⟨q1; q2|q⟩ = 1 · δq,q1+q2 .

Given the MPS background of NRG or DMRG, states spaces are generated iteratively, in terms of a
product-space of a given effective state space with a newly added local site. Operators, on the other
hand, are typically represented in local state spaces, and starting from there, they can be written in
terms of matrix elements in the effective global state spaces. With this in mind, the implementation
of non-abelian symmetries within the MPS framework therefore is based on the following two basic
observations with respect to state space and operator representations, respectively.

(1) State spaces: consider two distinct state spaces, |Qn;Qz⟩ and |ql; qz⟩ that, for example, represent
a large effective state space and a small new local state space, respectively. Assuming that both
state spaces all well-categorized in terms of IREPs, then their tensor-product space can also be
decomposed into a direct sum of new combined IREPs |Q̃ ñ; Q̃z⟩ using Clebsch–Gordan coefficients
(CGCs),

|Q̃ ñ; Q̃z⟩ =


Qn;Qz


ql;qz


A[q]
Q Q̃

[l]
nñ · C [qz ]

Qz Q̃z
|Qn;Qz⟩|ql; qz⟩. (3)

Note that the Clebsch–Gordan coefficients given by C [qz ]
Qz Q̃z

≡ ⟨QQz; qqz |Q̃ Q̃z⟩ (i) fully define the
internal multiplet space as specified by the Lie algebra, and (ii) determine the splitting, i.e.which
output multiplets Q̃ occur for given multiplets Q and q. On the multiplet level, on the other
hand, where (A[q]

Q Q̃
)
[l]
nñ combines the multiplets Qn and ql into the multiplet Q̃ ñ consistent with

the splitting provided by the CGCs, the coefficients (A[q]
Q Q̃
)
[l]
nñ may encode an arbitrary unitary

transformation within the ñ output space for each Q̃ . The r.h.s. of Eq. (3) demonstrates, that the
CGC spaces clearly factorize from the multiplet space A[q]

Q Q̃
as a tensor product.

(2) Operators:within some state space |Qn;Qz⟩, thematrix elements of an irreducible operator (IROP)
set F̂ q [i.e. a set of operators that transforms according to multiplets q for given symmetries;
cf. Eq. (A.3b), or also Appendix A.7] can be written using theWigner–Eckart theorem as [32]

⟨Q ′n′
;Q ′

z |F̂
q
qz |Qn;Qz⟩ =


F [q]
QQ ′

[1]
nn′ · C [qz ]

QzQ ′
z
, (4)

with C [qz ]
QzQ ′

z
again the Clebsch–Gordan coefficients as in Eq. (3). On the multiplet level, the reduced

matrix elements (F [q]
QQ ′)

[1]
nn′ ≡ ⟨Q ′n′

∥F̂ q
∥Qn⟩ refer to the single irreducible operator set labeled by q,

which is indicated by the superscript [1]. The Wigner–Eckart theorem thus allows to compactify
the operator matrix elements on the l.h.s. of Eq. (4) as the tensor-product of reduced matrix
elements and CGCs, as shown on the r.h.s. of Eq. (4).

Therefore in both cases above, i.e. in all tensor objects relevant for a numerical calculation, the CGC
spaces factorize. This allows to strongly compress their size, and thus to drastically improve on overall
numerical performance. Moreover, note that in both cases, Eq. (3) as well as Eq. (4) the underlying
structure comprises tensors of rank-3 throughout. This rank-3 structure holds for both, the reduced
multiplet space as well as the CGC spaces. Therefore, in either case, the final data structure of either
state space decomposition as well as reduced operator sets is exactly the same. It is implemented, in
practice, in terms of what will be referred to as QSpace for general tensors of arbitrary rank.
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2.1. General quantum space representation (QSpaces)

The generic representation, used in practice to describe all symmetry related tensors B, is given by
a listing of the following type,

B ≡


q-labels reduced space ∥B∥ CGC spaces
{Q }1 B1 {C}1
{Q }2 B2 {C}2
· · · · · · · · ·

 . (5)

By notational convention, an actual operator B̂ will be written with a hat, while its representation in
terms of matrix elements in a specific basis will be written without the hat, hence the corresponding
QSpace is referred to as QSpace B. Many explicit examples of QSpaces are introduced and discussed
in detail in Appendix C. As an up-front illustration, consider, for example, the general Hamiltonian of
a single spinful fermionic site in the presence of SU(2) symmetry in the spin (S) and charge sector (C),
which can be written as the QSpace [see Eq. (C.8)]

H ≡


(S; C) (S ′

; C ′) ∥H∥ CGC spaces
1
2 ; 0

1
2 ; 0 h 1

2 ,0
1(2) 1.

0; 1
2 0; 1

2 h
0, 12

1. 1(2)

 . (6)

With every non-zero block listed as an individual row, one can see that the only two reduced matrix
elements ∥H∥ free to choose without compromising the SU(2)⊗2

SC ≡ SU(2)spin ⊗SU(2)charge symmetry
are the parameters (numbers) h1/2,0 and h0,1/2. By definition, the Hamiltonian is a scalar operator,
therefore it is the only operator within its IROP, hence can be written as plain rank-2 QSpace (the
third dimension for this IROP would be a singleton dimension, hence can be dropped). Being a scalar
operator, the Hamiltonian is block diagonal, which is reflected in equal symmetry sectors (S; C) and
(S ′

; C ′) in each row for the first and the second dimension, respectively. Moreover, in given case, the
corresponding Clebsch–Gordan coefficient (CGC) spaces also result in trivial identities, with 1(2) the
two-dimensional identity. Note that the full set of CGC spaces in each row needs to be interpreted as
appearing in a tensor product with the multiplet space, here the reduced matrix elements h1/2,0 or
h0,1/2 [e.g. see Eq. (8) below].

In general, the representation of a tensor B of arbitrary rank-r in theQSpace in Eq. (5) [with Eq. (6)
an example for a rank-2QSpace], only lists the non-zero, i.e. relevant symmetry combinations. Having
r tensor dimensions, each of its r indices refers to its specific state space |qn; qz⟩i ≡ |(q)ini; (qz)i⟩
with i = 1, . . . , r , and hence carries its own label structure as in Eq. (2). The q-labels (q)i ≡ {qλ}i
already represent the combined set of nS IREP labels from all symmetries Sλ for the state space at
tensor dimension i. In general, by convention, the internal order of the q-labels (q)i w.r.t. λ is fixed
and follows the order of symmetries used in Eq. (1).

For a certain row ν of the QSpace listing in Eq. (5) then, the set of r q-labels are grouped into

{Q }ν ≡ {(q)1, . . . , (q)r}ν . (7a)

The reduced matrix elements are stored in the dense rank-r tensor Bν indexed by ni with i =

1, . . . , r . This is a plain tensor, with the multiplet spaces possibly already rotated by arbitrary unitary
transformations and truncated. This is also reflected in the fact that the indices ni are plain indices, i.e.
carry no further internal structure. Finally, for every one of the λ = 1 . . . nS symmetries included, the
corresponding CGC space is stored in the sparse tensors Cλ,ν , each of which is also of rank r . These CGC
spaces are grouped into {C}ν in the last column,

{C}ν ≡ {C1;ν, . . . , CnS ;ν}. (7b)

As the q-labels {Q }ν also define the z-labels, there is no explicit need to store the z-labels (qz)i,ν . The
internal running indices in Cλ,ν , however, are uniquely associated with the z-labels. Note also the
different index setting: in contrast to Eq. (7a), which contains a set of r q-labels, i.e. one for every
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dimension of the rank-r tensor B, Eq. (7b) contains a set of nS rank-r CGC spaces, i.e. one for every
symmetry.

In addition to the QSpace listing in Eq. (5), also the type and order of symmetries considered is
storedwith aQSpace, cf. Eq. (1), even though this is usually the same throughout an entire calculation.
Moreover, note that the row or record index ν in Eq. (5) is purely for convenience without any specific
meaning, as the order of records in a QSpace can be chosen arbitrarily. Nevertheless, it is required to
refer to a specific entry in a QSpace.

For a given record ν in the QSpace in Eq. (5) then, the reduced space and the CGC spaces are to be
interpreted as an overall tensor-product,

Bν ⊗ {C}ν ≡ Bν ⊗


nS
s=1

Cs;ν


, (8)

which, of course, is never explicitly reexpanded into a single full object at any step, in practice. Eq. (8)
rather demonstrates the singlemost importantmotivation to implement non-abelian symmetries in a
numerical computation. By splitting off the CGC spaces in terms of a tensor product, block dimensions
can be strongly reduced for larger calculations with several symmetries present. For the models
analyzed in this paper, for example, this was typically an average dimensional reduction from plain
abelian symmetries by a factor of 10 up to several hundreds. Considering that both NRG and DMRG
scale like O(D3) with D the typical dimension of data blocks, this is an enormous gain in efficiency.
The factorized CGC spaces, on the other hand, can be dealt with independently, as will be explained
in detail later. Assuming that usually the dimensions of the reduced states spaces Bν still exceed by
far the typical dimensions encountered for the CGC spaces, the latter bear little numerical overhead.
Only for larger-rank symmetries, such as the symmetry Sp(6) discussed later, multiplet dimensions
can become large themselves such that one needs to pay more attention to an efficient treatment of
their corresponding CGC spaces [see Appendix C.3.2].

For QSpaces where the CGC spaces in Eq. (5) exactly correspond to the standard Clebsch–Gordan
coefficients for each symmetry, one may argue similar to the z-labels, that actually it is not explicitly
necessary to store the CGC spaces together with the QSpace, since these are known. This is true,
indeed, for these particular cases, and CGC spaces may simply be referenced then. Nevertheless, the
explicit storage of the CGC spaces with a QSpace as in Eq. (5) has practical value. When combining
QSpaces through contractions, i.e. sumover shared indices, for example, quite frequently intermediate
objects can arise that do have rank different, in particular also larger than 3 [e.g. see the intermediate
objects X indicated by the dashed boxes in Fig. 4]. These then elude a description in terms of
standard rank-3 CGCs. In this case, the actual CGC spaces for intermediate QSpace are important,
and even though they do not necessarily resemble the interpretation of the original standard rank-3
spaces of standard Clebsch–Gordan algebra anymore, these spaces will be referred to as CGC spaces
nevertheless, owing to their origin.

Furthermore, for specific algorithms such as NRG and DMRG, on a global level one typically deals
with simple scalar operators such as the Hamiltonian or a density matrix, apart from intermediate
steps where complex CGC structures can arise. Therefore the full sequence of contractions on the
CGC level [e.g. see Fig. 4] can be replaced by analytical expressions or sum rules for Clebsch–Gordan
coefficients. In particular, in many situations the explicit knowledge of 3j- and 6j-symbols, or more
general (3n)-j symbols, appears sufficient [7,22,24,33,34] with current applications in this direction
again mainly restricted at most to SU(2). If the (3n)-j symbols were known for arbitrary non-
abelian symmetry, the explicit storage of the CGC spaces with the QSpaces would no longer be
required, indeed, and could be avoided altogether. Note, however, that (3n)-j symbols require specific
contractions which must be implemented within the code dependent on the context. While vast
literature exists on (3n)-j symbols, this is limited to an overwhelming extent on the relatively
simple symmetry of SU(2), for which analytic expressions exist, indeed. For arbitrary non-abelian
symmetries, however, the (3n)-j symbols may or may not be known [35]. For the QSpace as outlined
in this paper, on the other hand, no special treatment is required for specific contractions, and no
explicit knowledge of possibly symmetry dependent CGC sum rules is required. TheQSpace approach
solely relies on the correct construction of the standard CGC spaces to start with, with the subsequent
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sums over CGC spaces performed explicitly numerically and not analytically through exactly the same
contraction as on the reduced multiplet level, as discussed in more detail later.

Finally, the explicit inclusion of the CGC spaces allows to build in strong consistency checks in the
actual numerical implementation. Imagine that the Hamiltonian is built by a sequence of complex
contractions. The Hamiltonian eventually must be a scalar operator, i.e. it is block diagonal in the
symmetries and the CGC spaces reduce to plain identities. This can simply be checked at the end of the
calculation, which thus provides a strong check of whether the symmetries have been implemented
correctly or not. At the stage of intermediate contraction, however, the CGC spaces guarantee the
correct splitting and weight distribution between different emerging symmetry sectors.

2.2. A-tensors and operators

Consider the prototypical MPS scenario as in Eq. (3) that takes some previously constructed state
space |i⟩ ≡ |Qn;Qz⟩ and adds a new local state space |σ ⟩ ≡ |ql; qz⟩, e.g. a new physical site. The
state spaces are thus combined in a product-space described in terms of the IREPs |j⟩ ≡ |Q̃ ñ; Q̃z⟩.
Here the states i, σ , and j are introduced as notational shorthand for better readability. The product
space then is spanned by |iσ ⟩ ≡ |σ ⟩|i⟩. The order of states in the latter product emphasizes that state
|σ ⟩ is typically added after and thus onto the existing state |i⟩, which is of particular importance for
fermionic systems. In general, the combined states [36,37]

|j⟩ =


lσ

|iσ ⟩ ⟨iσ |j⟩  
≡A[σ ]

ij

, (9)

are described in terms of linear superpositions of the product space |iσ ⟩ given by the coefficients
A[σ ]

ij , henceforth called A-tensor (rank-3) or A[σ ]-matrices (rank-2). Without truncation, A[σ ]

ij denotes a
full unitary matrix U(iσ),j where the round bracket indicates that the indices i and σ have been fused,
i.e. combined into an effective single index. The presence of symmetry and the proper categorization
of state spaces, however, imposes certain constraints on this unitary matrix, as pointed out already
with Eq. (3). In particular, the fully determined CGC spaces C [qz ]

Qz Q̃z
factorize from the A-tensor, allowing

an arbitrary rotation in the reduced multiplet space A[q]
Q Q̃

only. For the specific case then, that the
reduced multiplet spaces are identical to partitions of identity matrices with a clear one-to-one
correspondence still of input and output multiplets, the corresponding A-tensor will be referred to
as the identity A-tensor [see Fig. 2 later; for explicit examples, see Eq. (C.4) or Eq. (C.6)]. An identity A-
tensor therefore represents the full state space still without any state space truncation, and is unique
up to permutations in the combined output space. Its explicit construction is a convenient starting
point, in practice, when merging new local state spaces with existing effective state spaces.

The entire construction of an A-tensor can be encoded compactly in terms of a rank-3QSpace. Both
coefficient spaces in Eq. (3), C [qz ]

Qz Q̃z
as well as A[q]

Q Q̃
, directly enter the QSpace description in Eq. (5). A

schematic pictorial representation of an A-tensor is given in Fig. 1. There the states i (j) represent the
open composite index to the left (right), respectively, while σ refers to the open composite index at
the bottom.

As already argued with Eq. (4), an irreducible operator shares exactly the same underlying CGC
structure as an A-tensor. Thus also its representation in terms of a QSpace is completely analogous.
Consider an IROP set F̂ q

≡ {F̂ q
qz }, which transforms according to IREP q. Here, the composite index

σ ≡ (ql; qz), for short, identifies the specific operators in the IROP set. As already indicated by
the superscript [1] in Eq. (4), its associated multiplet index l has the trivial range l = 1, since, by
definition, the IROP represents a single IREP on the operator level. With the states |i⟩ ≡ |Q ′n′

;Q ′
z⟩ and

|j⟩ ≡ |Qn;Qz⟩ now representing the same state space within which the operator acts, with usually
many multiplets and different symmetries, the operator representation of the IROP F̂ q in the states
⟨i| and |j⟩ is evaluated using the Wigner–Eckart theorem in Eq. (4). Similar to the A-tensor earlier, the
resulting factorization of the CGC spaces C [qz ]

QzQ ′
z
together with the remaining multiplet space F [q]

QQ ′ of
reduced matrix elements directly enter the QSpace description in Eq. (5).
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Fig. 1. (Color online) Schematic depiction of a rank-3 QSpace as an example for a basic building block for an MPS or a tensor
network, where lines (boxes) represent indices (data spaces), respectively. Every index is assumed to refer to a state space
with similar physical background, hence refers to the same global symmetries as in Eq. (1), and has the generic composite
structure |qn; qz⟩ as in Eq. (2), where qz specifies the states within the CGC spaces. The rank-3 QSpace depicted can be
interpreted in two entirely different ways while sharing exactly the same underlying algebraic structure. These are (i) the
state space decomposition into IREPs and (ii) operator representation for a given IROP in a given basis (see text). For the general
interpretation of the QSpace depicted, consider for simplicity a single row ν in Eq. (5). The set {Q }ν defines the q-labels for
all tensor dimensions (here a total of three). For given q-labels then, the corresponding multiplet indices n keep track of the
reduced multiplet spaces. These are typically large still, as indicated by the thick black lines for each tensor dimension. The
corresponding reduced rank-3 multiplet space Aν is depicted by the large gray box in the background. With the q-labels fixed,
this also specifies the IREPs for every tensor dimension and every symmetry. The corresponding sparse CGC spaces are indicated
by the small boxes around the center,with one box for every symmetry. Examples are abelian particle conservation, non-abelian
spin SU(2), non-abelian channel SU(3), or other. By construction, all CGC spaces share the same rank as the underlyingQSpace.
Therefore each CGC space also has three lines attached, one for every tensor dimension. For non-abelian symmetries, in general
the CGC spaces refer to finite multiplet dimensions, while for simpler symmetries, such as abelian symmetries, the CGC spaces
actually become trivial, i.e. scalars. These, nevertheless, are also interpreted as having the same rank as the QSpace by using
singleton dimensions wherever required.

So even though an operator is usually considered a rank-2 object, the fact that an IROP consists of
an operator set indexed by σ , adds a third index to theQSpace. In contrast to the state interpretation of
σ for the A-tensor above, however, here the ‘‘index’’ σ has a different interpretation in that it points
to a specific operator in the IROP set. By convention, the operator index σ will always be listed as
third tensor dimension in its QSpace representation. Given the three-dimensional representation of
a general IROP, therefore its entire construction mimics the construction of an A-tensor in terms of a
QSpace. As a consequence, Fig. 1 exactly also resembles theQSpace structure of an IROP. The states i (j)
used for the calculation of thematrix element represent the open index to the left (right), respectively,
while the operator index σ refers to the open index at the bottom.

Scalar operators, finally, such as the Hamiltonian of the system or density matrices, represent a
special case, since there the IROP set contains just a single operator. Therefore the third index, i.e. the
operator index, becomes a singleton and hence can simply be dropped [e.g. see Eq. (6)]. Scalar operators
therefore are represented by rank-2 QSpaces. They are block-diagonal in their symmetries, and their
CGC spaces are all equal to identity matrices, with an example already given in Eq. (6).

2.3. Multiplicity

For general non-abelian symmetries, frequently inner and outer multiplicity occur [38,39]. Both
are absent in SU(2), yet do occur on a regular basis for SU(N ≥ 3). Inner multiplicity describes the
situation where for a given IREP, several states may share exactly the same z-labels. Let mq

z denote
the number of times a specific z-label occurs within IREP q. Then the presence of inner multiplicity
implies mq

z > 1 for at least one z-label. Within such degenerate subspaces an arbitrary rotation
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is allowed in principle. For global consistency, therefore the CGC spaces must adopt a well-defined
internal convention on how to deal with inner multiplicity. This issue, however, is entirely contained
within the CGC algebra, which is explored in more detail in the Appendix A [e.g. see discussion
following Eq. (A.19), and Appendix B.1]. On the level of a QSpace, it is of no further importance
otherwise. Essentially, the only implication of innermultiplicity is qz → (qz, αz)with αz = 1, . . . ,mq

z
[cf. Eq. (A.19)], where mq

z depends on the multiplet q. With this minor adjustment, it is assumed
throughout that the z-labels fully identify the internal multiplet space. Note that, in practice, the
extra labelαz is never included explicitly.What is important, however, is a consistent internal multiplet
ordering that respects multiplicity [see Appendix B.1].

Outer multiplicity, on the other hand, describes the situation where in the state space
decomposition of a product-space of two IREPs, q1 and q2, the same output IREP qmay appearmultiple
times, the number of which is specified by M [q1,q2]

q [cf. Eqs. (A.35)–(A.38) and discussion]. Therefore
outer multiplicity primarily also enters at the level of Clebsch–Gordan coefficients, as it is based
on pure symmetry considerations. In contrast to inner multiplicity, however, outer multiplicity also
affects the reduced multiplet space, as will be elaborated upon in what follows.

In the absence of outer multiplicity [i.e. M [q1,q2]
q ≤ 1 for all q1, q2, and q of the symmetry, an

example being SU(N ≤ 2)], all rows in the QSpace in Eq. (5) must have unique {Q }ν . If this is not
the case, then the rows can be made unique by combining the rows with the same {Q }. Assume,
for example, {Q }ν = {Q }ν′ with ν ≠ ν ′: clearly, the {Q }’s are already the same. Having the same
symmetry labels, this refers to the same set of IREPs, hence also the CGC spaces of these records must
be identical, up to a possible global normalization factor which can be associated with the multiplet
space, instead. Furthermore, given {Q }ν = {Q }ν′ , the Aν and Aν′ data blocks do live in exactly the
same vector spaces for each individual tensor dimension! Therefore Aν and Aν′ can be simply added
up [here multiple contributions with the same {Q } are considered additive, consistent with general
conventions regarding sparse tensors; otherwise, say having given the same matrix element twice
with different values, would immediately lead to contradictions].

In the presence of outer multiplicity, on the other hand, the uniqueness of the q-labels {Q }ν in the
QSpace in Eq. (5) has to be relaxed. The reason for this is as follows. Since outer multiplicity derives
from the Clebsch–Gordan algebra as in Eq. (A.38), the CGC spaces

C [qz ]
Qz Q̃z

→ C [qz ]
Qz Q̃z ,α

≡ ⟨QQz; qqz |αQ̃ , Q̃z⟩ (10)

acquire an additional label α = 1, . . . ,M [Q ,q]
Q̃

[different from the αz used with inner multiplicity],

where M [Q ,q]
Q̃

indicates the outer multiplicity in Q̃ , given the product space of the IREPs Q and q. In
terms of a QSpace object, one may therefore be tempted to enlarge the CGC space from rank-3 to
rank-4, with the dimension of the 4th index being equal toM [Q ,q]

Q̃
. This strategy alone, however, does

not capture the full picture since outer multiplicity also enlarges and thus effects the multiplet space
Aν of an A-tensor. By definition, outer multiplicity means that different multiplets with the same q
can emerge. The only way they can be distinguished is through their Clebsch–Gordan coefficients.
Therefore rather than enlarging the CGC space in a QSpace, M [Q ,q]

Q̃
records with the same {Q }ν are

allowed, instead. These records have CGC spaces of the same rank-3 dimensions, which, however,
are clearly distinguishable, as they are orthogonal to each other [cf. Eq. (A.39)]. The M [Q ,q]

Q̃
sets of

Clebsch–Gordan coefficients arising fromoutermultiplicity are thus spread overM [Q ,q]
Q̃

recordswithin
a QSpace object.

The situation in the multiplet space for an identity A-tensor is depicted schematically in Fig. 2.
In the absence of outer multiplicity, each symmetry combination (q, q′)i can only contribute at most
once to a given symmetry space q′′ and gets its space allocated, as depicted, for example, for (q, q′)4 in
Fig. 2(a), having only one non-zero block (shaded block)within the q′′ outputmultiplet. The symmetry
combinations (q, q′)1 and (q, q′)2, on the other hand, show outermultiplicity, in that they result twice
in the same multiplet q′′, i.e. M [q,q′

]1
q′′ = M [q,q′

]2
q′′ = 2.



A. Weichselbaum / Annals of Physics 327 (2012) 2972–3047 2983

a b

Fig. 2. Effect of outer multiplicity on multiplet space (Aν ) in terms of an identity A-tensor— Panel (a) Schematic depiction
of the state space decomposition of two input multiplet spaces with unique symmetry combinations (q, q′) into combined
multiplets q′′ (rows and columns, respectively). State spaces of the same symmetry are grouped into blocks separated by solid
lines (horizontally and vertically). For simplicity, an identity A-tensor is depicted, for which the individual sectors in q′′ can be
uniquely associated with the (q, q′) they originate from. Hence each column, separated by solid lines, has exactly one shaded
block considered non-zero, with all-zero blocks shown in white. Here vertical thin lines indicate sub-blocks that originate from
different (q, q′), yet are eventually combined in the same block as they belong to the same symmetry q′′ (separated by thick
lines). Now, in the presence of outer multiplicity a specific (q, q′) can contribute to the same q′′ several times, as depicted
schematically by the spaces M1 and M2 for the rows (q, q′)1 and (q, q′)2 , respectively, both showing a multiplicity ofMq′′ = 2.
Panel (b) depicts the enlarged multiplet space for the output multiplet q′′ of panel (a) in order to accommodate the additional
multiplets arising from outer multiplicity. Being an identity A-tensor, the entire block shown in panel (b) represents an identity
matrix (in contrast to an arbitrary A-tensor, which may have an arbitrary unitary matrix in its place). The vertical lineup of
(q, q′) sectors is arbitrary, making the identity A-tensor unique up to permutations. The identity matrix shown in the panel is
sliced into horizontal blocks as indicated, each of which is associated with its own unique CGC space [not shown] as derived
from the Lie algebra of the symmetry under consideration. Each of these slices then directly enters as a reducedmultiplet space
Aν in a separate row in the QSpace as in Eq. (5).

For simplicity, in the absence of truncation and without any further unitary rotation, the tensor-
product on the multiplet level can be represented as an identity A-tensor with a clear one-to-one
correspondence of input to outputmultiplets. This is depicted in Fig. 2(b) in terms of an identitymatrix
in the reduced multiplet space. The identity matrix in panel (b) then is sliced horizontally into blocks
for each (q, q′) that contributes to q′′. In the presence of outermultiplicity, the state space for q′′ needs
to be enlarged to accommodate the additional multiplets. The slicing (horizontal solid lines) then also
proceeds for every output multiplet resulting from outer multiplicity, as indicated in panel (b). As a
result,M [q,q′

]

q′′ slices are associated with exactly the same Q ≡ {q, q′, q′′
}, distinguishable only through

their Clebsch–Gordan coefficients. These slices directly enter as Aν in separate rows in a QSpace as in
Eq. (5).

In summary, outer multiplicity requires an adaptation of the multiplet space, which is naturally
incorporated into a QSpace by allowing multiplet entries with the same {Q }ν labels yet with clearly
distinguishable CGC spaces. That is, specific records are also considered to refer to different state spaces
if their CGC spaces are not exact copies (up to a global factor that can be incorporated into themultiplet
data) but rather orthogonal to each other [see Eq. (A.39)]. In practice, this is checked within a small
numerical threshold (∼10−12) accounting for numerical double precision noise. The great advantage
of this prescription is that thenmultiplicities fall completely in linewith the rest of theMPS algorithm
without any specific further treatment.

Finally, it is important to notice that the same concept of relaxing the uniqueness of the {Q }ν labels
actually also can become relevant for symmetries that do not have intrinsic outer multiplicity in its
actual sense. Yet, in fact, through contractions intermediate objects can arise of rank larger than three
[e.g. see theQSpaces indicated by the dashed boxes marked by X in Fig. 4], where records in aQSpace
with the same {Q }ν labels can also have incompatible CGC spaces, in the sense that they are not the
same up to overall factors. In this case, also the uniqueness of the {Q }ν must be relaxed temporarily.
For simplicity, this will also be referred to as outer multiplicity.
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2.4. Contractions

The contraction of QSpaces will be introduced in the following in terms of a simple example,
namely the orthonormalization condition on the combined state space in a tensor-product space.
Putting symmetry labels aside for the sake of the argument, the A-tensor A[σ ]

ij ≡ ⟨iσ |j⟩ in Eq. (9)
combines the state spaces |iσ ⟩ into a combined (possibly truncated) orthonormal state space |j⟩. This
directly leads to the standard orthogonality relation for an A-tensor,

iσ

A[σ ]∗

ij A[σ ]

ij′ = δjj′ , (11)

which is a simple example for the simultaneous contraction of two tensors w.r.t. to two common
indices, here i and σ . By construction, it is completely analogous in structure to the orthogonality
condition of CGCs as in App. Sec. (A.39). Including symmetries, the contraction in Eq. (11) is depicted
in terms ofQSpaces in Fig. 3. Overall, indices are represented by lines, and lines connecting two blocks
such as the indices i and σ are summed over, i.e. contracted. In practice, contraction of QSpaces as
defined in Eq. (5) happens at several levels, since state indices are labeled by composite indices that
refer to a symmetry basis of the type |qn; qz⟩. This implies for a contraction


i=i′ of two QSpace

objects with respect to some common state space i and i′, that (i) the q-labels qi and qi′ of theQSpaces
as in Eq. (5) must be matched for the indices i and i′, respectively. For a given specific match of rows ν
and ν ′ then, this is followed (ii) by the contraction of the corresponding reducedmultiplet spaces, and
(iii) by exactly the same contraction of the CGC spaces, one for each symmetry. This procedure derives
from Eq. (8), since the contraction of two tensors B(1) and B(2) for a givenmatch ν and ν ′, can be simply
decomposed as the sequential contraction of its constituents, i.e. the reduced multiplet space and the
corresponding CGC spaces,

B(1)ν ⊗


nS
s=1

C(1)s;ν


·


B(2)
ν′

⊗


nS
s=1

C(2)s;ν′


=


B(1)ν · B(2)

ν′


⊗


nS
s=1


C(1)s;ν · C(2)s;ν′


. (12)

Here themultiplication ‘‘· ’’ is interpreted as contractionw.r.t. to a certain subset of shared dimensions
between the tensors B(1) and B(2). Note that the rank of a QSpace and its index order are always
shared by the multiplet space and CGC spaces for consistency. Hence the overall contraction of the
QSpaces is directly reflected in the elementary contraction of the plain numerical tensors Aν and
{C}ν . That is, the contraction pattern depicted schematically in Fig. 3, drawn in terms of boxes with
connecting lines, is exactly the same on all levels of the contraction. By collecting the remaining
non-contracted q-labels, this forms a new entry ν ′′ in the resulting QSpace, with the (tensor) index
order of the resulting tensor dimensions again being the same for all {Q }ν′′ , Aν′′ , and {C}ν′′ for
consistency.

Finally, the resultingQSpace is made unique in the {Q }ν′′ labels as far as outermultiplicity permits.
Records can only be combined, i.e. summed over, iff the CGC spaces for given records are all the same
up to global factors which can be absorbed into the multiplet data, instead (see Section 2.3). Outer
multiplicity plays no special role with contractions otherwise. Note that independent of whether
or not outer multiplicity is present, when specifying a subset of tensor dimensions within {Q }ν for
contraction, the resulting QSpacewill, in general, always havemany contributions to the same {Q }ν′′ .
For comparison, consider the completely analogous case of regular square matrices of dimension
D > 1: a matrix element (M)ij is uniquely identified in the overall index (i, j), while for example,
the index i by itself is not sufficient, of course, as it refers to an entire row of matrix elements. When
two matricesM1 and M2 are multiplied together,

(B)jj′ = (M1M2)jj′ =


i=i′
(M1)ji(M2)i′j′ , (13)

the common index space (second index of M1 and first index of M2) is summed over, i.e. contracted.
Every match i = i′ results in a contribution. In particular, for some given j and j′, all D matches i = i′
contribute and are summed up to the same output space (j, j′). In the case of QSpaces the situation
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Fig. 3. (Color online) Contraction of (i) anA-tensor or (ii) an irreducible operator into a scalar. All indices specified are composite
indices of the type |qn; qz⟩. An A-tensor describes a (truncated) basis transformation of the product-space of the new local space
|σ ⟩ with an effective previously constructed basis |i⟩, resulting in the combined state space |j′⟩ ≡


i′σ ′ A[σ ′

]

i′ j′ |σ ′
⟩|i′⟩, with the

corresponding bra-space ⟨j| ≡


iσ A[σ ]∗

ij ⟨i|⟨σ | depicted in the lower part of the figure. The result is the scalar identity operator,
reflecting the orthonormality condition equation (11). An entirely different interpretation of the same contraction pattern can
be given when the A-tensor is replaced by an IROP Fσ . The contraction then describes Eq. (14b) and yields a scalar operator,
with its generic QSpace representation schematically depicted to the right.

is exactly analogous. All matches i = i′ in the q-labels qi and qi′ for the contracted index must be
included. The only real consequence of outer multiplicity is that in the resulting QSpace B in Eq. (13)
not necessarily all records with the same {Q }ν labels can be merged by adding them together. In the
specific case of the contraction in Eq. (11), however, the resulting QSpace is simply the identity, and
as such a scalar operator with unique {Q }ν .

2.5. Scalar operators

Given the definition of an A-tensor in Eq. (9), the contraction of the two QSpaces A and A∗ in
Fig. 3 leads to the identity operator 1̂(C) ≡


j |j⟩⟨j| in the possibly truncated combined space C

[cf. Eq. (11)]. Clearly, this also provides a strong check on the numerical implementation of the
symmetries. In particular, 1̂(C) represents a (trivial) example of a scalar operator, that can be described
as rank-2QSpace. The CGC spaces are all identitymatrices (up to overall factors that can be associated
with the multiplet space), and therefore the lines, that usually connect to the CGC spaces within a
QSpace, can be directly connected through from j to j′ on the r.h.s. of Fig. 3, with the CGC spaces
themselves no longer shown. In the given case, due the orthonormality condition in Eq. (11), also
the reduced multiplet space is given by identity matrices. This actually also would allow to connect
through the thick black line on the r.h.s. of Fig. 3, and thus also to skip the large remaining block on
the r.h.s. for the reduced multiplet space altogether.

Fig. 3, however, allows yet an entirely different interpretation. Remember that an irreducible
operator set F̂ q has a completely analogous structure and interpretation in terms of its internal CGC
spaces when compared to an A-tensor (cf. Fig. 1). Therefore it must hold that the scalar-product-like
contraction,

F̂ 2
≡ F̂ · F̂ Ď ≡


qz

F̂ q
qz (F̂

q
qz )

Ď (14a)

also results in a scalar operator (note that through the Wigner–Eckart theorem, by convention,
the state space associated with the right index of the operator F̂ q is combined with the multiplet
space q; cf. Appendix A.7). With σ ≡ (q1; qz) and the further sum through the operator (matrix)
multiplication, Eq. (14a) shares exactly the same contraction pattern as discussed in Fig. 3 in the
context of the orthonormality of A-tensors earlier. Here the resulting scalar operator, however, can
have arbitrary positive hermitian matrices in its multiplet space still, represented by the large gray
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a b

Fig. 4. (Color online) Typical evaluation of matrix elements given an A-tensor. The nested dashed boxes X (′) indicate the
sequential order of contractions prior to the final contraction. In panel (a), the local IROP set f̂ q acts within the state space
|σ ⟩ of a given site. Its local matrix elements, ⟨σ |f̂ q|σ ′

⟩, are assumed to be known and described in terms of the local rank-3
QSpace f . The local IROP set is mapped into the larger effective space linked through the A-tensor, |j⟩ =


iσ A[σ ]

ij |σ ⟩|i⟩. The

overall result is the rank-3 QSpace F on the r.h.s., i.e. the desired matrix elements F [q]
jj′ ≡ ⟨j|f̂ q|j′⟩. Panel (b) depicts a typical

scalar nearest-neighbor contribution to a Hamiltonian Ĥ ≡ [f̂ q]Ďk · [f̂ q]k+1 of two consecutive sites, say k and k + 1 using their
respective A-tensors. This contraction already uses an effective description of the local operator f̂ Ďk at site k in terms of the
QSpace FĎ , obtained from the A-tensor A(k) at site k as in panel (a) form the prior iteration. Using the A-tensor A(k+1) of site
k + 1, the overall contraction can be completed as indicated.

box on the r.h.s. of Fig. 3. The reduction of Eq. (14a) to a scalar operator is also intuitively clear,
given that the Hamiltonian itself is typically constructed in terms of scalar operators of exactly this
type [see, for example, Eq. (A.48) or Eq. (A.60) given the Hamiltonian in Eq. (A.46)]. The notation in
Eq. (14a) emphasizes that in the scalar product the same irreducible operator set F̂ q must be taken,
considering that the IROP F̂ q is different from the IROP (F̂ Ď)q. Nevertheless, since (F̂ q

qz )
Ď

∼ (F̂ Ď)q−qz , up
to possible signs originating from the definition of the CGC algebra [e.g. compare the QSpaces (C.3)
in Table C.1 and discussion], these signs are irrelevant in the scalar contraction. Hence it follows that
also

F̃ 2
≡ F̂ Ď · F̂ ≡


qz

(F̂ q
qz )

ĎF̂ q
qz (14b)

is a scalar operator, yet different from Eq. (14a), as indicated by the tilde on F̃ 2. Similarly, note that if
the A-tensor had been contracted on the right instead of the left index in Fig. 3, this also would have
yielded a scalar operator, namely a reduced densitymatrix up to normalization (e.g. Fig. 5 below using
ρk ≡ 1).

2.6. Operator matrix elements

The typical calculation ofmatrix elements of operators for iterativemethods such as NRG or DMRG
is depicted schematically in Fig. 4. While the complex many body states are generated iteratively
and described by A-tensors [cf. Eq. (9)], an elementary irreducible operator set f̂ q, on the other
hand, usually operates locally within the state space |σ ⟩ of a specific site. Therefore, the operator
is described initially in terms of the matrix elements f [q]

σσ ′ ≡ ⟨σ |f̂ q|σ ′
⟩. The link to the many body

states is given through the A-tensor that connects given site to a generated effective state space |i⟩,
|j⟩ =


iσ A[σ ]

ij |σ ⟩|i⟩. The matrix elements of an IROP in the combined space |j⟩ then become,

F [q]
jj′ ≡ ⟨j|f̂ q|j′⟩ =


iσ ,i′σ ′

A[σ ]∗

ij A[σ ′
]

i′j′ ⟨i|⟨σ |f̂ q|σ ′
⟩|i′⟩  

≡δii′ f
[q]
σσ ′

=


σ

A[σ ]Ď


σ ′

f [q]
σσ ′A[σ ′

]


jj′

. (15)

It is exactly this procedure that is depicted in Fig. 4(a). The matrix elements are calculated in a two-
stage process. The sum in the round brackets of Eq. (15) (contraction of σ ′) is carried out first, leading
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Fig. 5. (Color online) Backward update of density matrix ρk given in the effective basis |j⟩ of a system up to and including site
k (right index) by tracing out the local state space |σk⟩ (middle index) given the basis transformation Ak that introduced site k.
The result is the reduced density matrix ρk−1 in the effective basis |i⟩ of the system up to and including site k − 1.

to the temporary rank-4 tensor with open indices (i, j′, σ , q) [box X in Fig. 4(a)]. This rank-4 tensor
then is contracted simultaneously in the indices i and σ with the A∗ tensor, providing the final result
shown on the r.h.s. of Fig. 4(a). Quite generally, for contractions including several blocks as in Fig. 4,
these are always done sequentially, adding one block at a time. This is explicitly indicated in Fig. 4 by
the (nested) dashed boxes, with the final contraction connecting the remaining tensor to the outer-
most dashed box. Every individual contraction then follows the multi-stage process over composite
indices as described earlier in Section 2.4.

The so obtained effective description F [q]
k of an operator f̂ q acting on site k using Ak can be used

then to describe, for example, the typical scalar nearest-neighbor contribution [f̂ q]Ďk · [f̂ q]k+1 to the
Hamiltonian including site k + 1. This operation is shown in Fig. 4(b). In particular, one may use the
identity A-tensor AId

k+1 for site k + 1, such that the resulting Hamiltonian is constructed in the full
tensor-product space |σ ⟩k+1|i⟩k of the system up to and including site k + 1. Here |i⟩k describes the
effective space up to and including site k, whereas |σ ⟩k+1 describes the new local state space of site
k+1. This exactly corresponds the two-stage prescription used within the NRG (and similarly also for
the DMRG) to build the Hamiltonian for the next iteration: (i) the tensor-product space including
the newly added site must be mapped into proper symmetry spaces. This is taken care of by the
construction of the identity A-tensor AId

k+1. (ii) The new Hamiltonian is built using this identity A-
tensor through contractions as shown in Fig. 4(b) [note that while the presence of outer multiplicity
in QSpace f is typically inherited by QSpace F through the basis transformation as in Fig. 4(a), the
internal contraction over the IROP set index q in Fig. 4(b) eventually leads to a scalar contribution
to the Hamiltonian, as discussed with Eq. (14b)]. After diagonalization and state space truncation in
the combined state space, the part of the resulting unitary matrix describing the kept states can be
contracted onto AId

k+1, yielding the actual final Ak+1.

2.7. Density matrix and backward update

Consider the density matrix ρ̂k ≡


jj′(ρk)jj′ |j⟩⟨j
′
| given in the basis |j⟩(k), which is assumed to

include all sites of a system up to and including site k. With the local state space of the last site k
described by |σk⟩, tracing out this last site from the density matrix ρk corresponds to contracting the
Ak-tensor that connected site k to the system’s MPS,

ρ̂k−1 ≡ trσk

ρ̂k


=


ij,i′j′,σ

A[σk]∗
ij A[σk]

i′j′ (ρk)jj′ |i⟩⟨i
′
| =


ii′


A[σk]ĎρkA[σk]


ii′ |i⟩⟨i

′
|. (16)

Eq. (16) leads to a density matrix ρ̂k−1, which now is written in the many-body basis |i⟩(k−1) which
includes all sites up to and including site k−1. This backward update is awell-known operationwithin
the NRG [23,31,40,41]. Its graphical depiction is given in Fig. 5 [note that the sum over i and i′ in Eq.
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(16) connects to state spaces that are not yet contracted; hence these correspond to open indices in
Fig. 5].

The backward update of the density matrix in Eq. (16) preserves its properties as a density matrix
and as a scalar operator. The former directly follows from the realization that the orthonormality
condition equation (11) with the A-tensor in the last line of Eq. (16) is exactly equivalent to a complete
positive map. Moreover, by tracing out part of a system such as a site that has been added through
a tensor product space and that itself can be fully categorized using the symmetries present, this
isotropic averaging by itself cannot break symmetries. This is to say, that the partial trace in Eq. (16)
preserves the property of a scalar operator. However, the trace over CGC spaces adds importantweight
factors to the reducedmultiplet spaces, which are crucial, for example, to preserve the overall trace of
the density matrix during back-propagation. While the contraction in Fig. 5 can be easily performed,
in practice, without the explicit knowledge of these weights, their determination is straightforward
and instructive, nevertheless, as will be shown in the following.

The contraction in Fig. 5 clearly also holds for the CGC spaces of every symmetry individually.
Therefore it is sufficient to focus on one specific symmetry. Let i contain several multiplets qi, and
consider, for simplicity, the special case where the local state space σ contains one specific multiplet
qσ only. In addition, also the reduced density matrix ρ̂k is chosen such that it only picks one very
specific multiplet qj. Focusing on the Clebsch–Gordan coefficients C [qσ z ]

qizqjz ≡ ⟨qiqiz; qσ qσ z |qjqjz⟩ for
chosen symmetry then,which properly combine the irreduciblemultiplets qi and qσ into themultiplet
qj, the contraction in Eq. (16) with respect to the fixed qj is given by

qσ z qjzqj′z

⟨qi′qi′z; qσ qσ z |qjqj′z⟩⟨qiqiz; qσ qσ z |qjqjz⟩∗ · δqjzqj′z

=


qσ z

⟨qi′qi′z; qσ qσ z |


qjz

|qjqjz⟩⟨qjqjz |


|qiqiz; qσ qσ z⟩

= fqiqj · δqiqi′ δqizqi′z , (17)

where the δqjzqj′z in the first line comes from the assumption that the initial ρ̂k is a scalar. The last
identity follows from the fact that also ρ̂k−1 shall be a scalar operator. Alternatively, the last equality
can also be understood as a general intrinsic completeness property of Clebsch–Gordan coefficients.
Either way, the remaining factor fqiqj in the last line must be independent of the z-labels. The factor
fqiqj then, in a sense, reflects the weight of how the IREP qi together with the traced over IREPs qσ
contributes to the final total qj. If, for example, for fixed qi and the known set of qσ some final total qj
cannot be reached, then it holds fqiqj = 0 for this case.

From the scalar property of ρ̂k−1, Eq. (17) can be further constrained to some specific qi = qi′ . Also
summing over qiz = qi′z then, the second line in Eq. (17) becomes equal to tr


qjz

|qjqjz⟩⟨qjqjz |


= dqj ,
i.e. the internal multiplet dimension of the IREP qj. Together with the last line in Eq. (17), it follows,

fqiqj =
dqj
dqi

(18)

as demonstrated, for example, for SU(2) in Ref. [23]. Note that Eq. (18) holds in general for arbitrary
symmetries, and also in the presence of outer multiplicity. This follows by recalling that one of the
main assumptions that entered Eq. (17)was to pick one specificmultiplet qj. This single IREP, however,
may equally well also have been any of the multiplets resulting from outer multiplicity, say multiplet
qj → qj,α , which nevertheless again leads to Eq. (18).

3. Implications for DMRG and beyond

This section sketches strategies for using non-abelian symmetries in the traditional DMRG [2,20]
with generalizations to more general tensor networks. While the suggested procedures eventually
may be further optimized still, nevertheless, they demonstrate the versatility of the presentedQSpace
framework. A particularly useful object in this context is the identity A-tensor that was already
introduced in Section 2.2.
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Fig. 6. (Color online) Generalized A-tensor that combines multiple state spaces, i.e. four effective state spaces |i1⟩, . . . , |i4⟩
together with one local degree of freedom |σ ⟩. Here it is assumed that all input state spaces describe proper orthonormal state
spaces that act in different spaces, such that they can be combined into a simple product space. The index j, finally, represents
the common global state space. In particular, it can be used to truncate the global Hilbert space to the state space of interest
(within the DMRG, this may simply be the ground state, where the index j, being a singleton dimension, simply may be skipped
then). While the general Clebsch–Gordan coefficients for the entire object may not be easily available (object to the right), the
overall A-tensor can be built iteratively by adding one state space at a time (object to the left), starting, say, from A1 which
links the two state spaces i1 and i2 into the combined state space j2 and hence allows to employ Clebsch–Gordan coefficients
in the usual manner. The state space j2 can then be combined with state spaces i3 , and so forth. Contraction of the intermediate
indices j2, . . . , j4 , finally, leads to the generalized A-tensor to the right.

3.1. Generalized A-tensor for tensor networks

The prototypical A-tensor as defined in Eq. (9) combines two physically distinct state spaces in
terms of their tensor-product space. One may be interested, however, in the case where three or
more state spaces need to be combined in the description of a single combined state space, while
nevertheless also respecting symmetries. This situation, for example, occurs regularly in the context
of tree [42,43] or tensor network states [8,12–14,18]. Let m be the number of states spaces to be
combined. Then this requires the generalized Clebsch–Gordan coefficients ⟨q1q1z; . . . ; qmqm,z |qqz⟩.
Once known, in principle they can be combined compactly into a generalized A-tensor of rankm + 1.
The question is, how to obtain such a generalized A-tensor in a simple manner, in practice.

For this, the QSpace structure introduced in this paper proves very useful. In particular, a
generalized A-tensor can be obtained based on the iterative pairwise addition of individual state spaces,
which is a well-established procedure at every step. The situation is depicted schematically in Fig. 6.
To be specific, Fig. 6 considers four effective state spaces |iα⟩ ≡ |qαqα,z⟩ with α = 1, . . . , 4, together
with a local state space |σ ⟩ ≡ |q5q5,z⟩, thus having m = 5. This specific setting may correspond, for
example, to the situation in a tensor network state that describes a two-dimensional system which,
from the point of view of a specific site with state space σ , has four effective states spaces to the top,
bottom, left, and right, respectively. Note, however, that here at least in principle the state spaces |iα⟩
with α = 1, . . . ,m are assumed to be physically different, orthonormal state spaces, such that their
tensor-product space is a well-defined meaningful Hilbert space. Starting with state spaces |i1⟩ and
|i2⟩ in Fig. 6, their state space can be combined in terms of and identity A-tensor AId

2 in the usual fashion
using standard Clebsch–Gordon coefficients. The resulting state space |j2⟩ then can be combined with
state space |i3⟩ using another identity A-tensor AId

3 , thus obtaining |j3⟩. The procedure is repeated, for
example, until at the last step the local state space |σ ⟩ is added, resulting in the full combined state
space |j⟩, properly categorized in terms of symmetries. The iteratively generated m − 1 identity A-
tensors AId

k , on the other hand, can be contracted into a single tensor of rankm+ 1 by contracting the
intermediate indices j2, . . . , jm−1. This then results in the desired generalized A-tensor, shown at the
r.h.s. of Fig. 6. Furthermore, in the context of DMRGor tensor network states, one is typically interested
in a single state, such as the ground state of the system. In this case, the full combined state space |j⟩
is truncated to a single state. Thus the index |j⟩ becomes a singleton and as such can be dropped,
for simplicity. In general, by explicitly including the CGC spaces in the QSpace in Eq. (5), generalized
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Fig. 7. DMRG treatment of a two-site setup using identity A-tensors. The internal CGC structure [cf. Fig. 1] is hidden in given
case, for simplicity. Panel (a) Generic setup with orthonormalized state spaces for the left and the right block of the system
(open indices left and right), while explicitly considering the pair of intermediate sites n and n + 1. Panel (b) Insertion of an
identity, i.e. twice the unitary identity A-tensor, for site n and the left block (for site n + 1 and the right block) allows to fuse
the local state spaces with their respective environments. Contracting the QSpaces Xn and Xn+1 into X ≡ Xn · Xn+1 (panel c),
the setup in panel (d) is obtained. Overall, this allows to treat the more complex rank-4 two-site setup in panel (a) in terms of
an intermediate rank-2 QSpace X in panel (d) which is connected to two enlarged (fused) effective orthonormal state spaces l̃
and r̃ (indicated by thick lines).

Clebsch–Gordan coefficients can be easily obtained in terms of a generalized A-tensor, which itself is
constructed through a transparent iterative procedure.

3.2. Two-site treatment

A strategy for the treatment of a two-site setup common to the DMRG is sketched in Fig. 7. For
this, consider the generic setup of two adjacent sites n and n+ 1 within an MPS setup with local state
spaces |σn⟩ and |σn+1⟩, respectively (panel a). The state spaces |l⟩ to the left (n′ < n) and |r⟩ to the
right (n′ > n + 1) are assumed to be orthonormal and written in terms of proper multiplet spaces.
Using symmetries, this two-site configuration is considered inefficient, however, since the local
description of the Hamiltonian fractures into many contributions. Therefore from a practical point
of view, it turns out advantageous even already on the level of plain abelian symmetries, to transform
the rank-4 two-site setup [cf. Fig. 7(b)] to an intermediate rank-2 bond-configuration [cf. Fig. 7(d)].
Using identity A-tensors, this can be done exactly even in the presence of complex non-abelian
symmetries.

In order to simplify the description of the two site setup, the left state space and the local state
space |σn⟩ are linked through an identity tensor into the combined non-truncated multiplet spaces
|sn⟩. This mapping which respects symmetries, corresponds to a unitary transformation U . Therefore
inserting UUĎ

= 1, the identity A-tensor needs to be inserted twice, as indicated to the left of Fig. 7(b).
Here the identity A-tensor is drawn such that the two input spaces connect to the white triangle,
while the gray triangle solely links to the output space. This specific depiction serves to emphasize the
underlying unitary mapping in terms of CGCs from one basis to another. Nevertheless, for simplicity,
on the level of reduced matrix elements, i.e. the multiplet space, an identity matrix is maintained
(cf. Section 2.2). The original tensor An can be contracted now with the upper identity A-tensor in
Fig. 7(b), leading to the rank-2 QSpace Xn. Exactly the same treatment can be repeated for the right
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Fig. 8. State space truncation given the coefficient matrix X in Eq. (19) [cf. Fig. 10(d)]. Here X is schematically depicted in
multiplet space in terms of groups (blocks) of multiplets for both, the effective state space |l⟩ for the left part (rows), as well as
the effective state space |r⟩ for the right part (columns) of the physical system analyzed. Blocks shaded in gray are considered
non-zero, whereas white blocks are considered all-zero. For the purpose of truncation, it is sufficient to group the multiplets qi
for the left part of the system, while arranging (q′

i, qψ ) as columns in multiplet space, and perform SVD for each block of rows
for a specific qi in multiplet space only.

part of the system: site n + 1 is combined with the state space |r⟩ for the sites (n′ > n + 1)
through their own identity A-tensor. The latter is again inserted twice, and after contraction this
leads to QSpace Xn+1. The two QSpaces Xn and Xn+1, finally, are contracted into X ≡ Xn · Xn+1
(panel c).

As seen in panel (d), the configuration resulting from this transformation is such that sites n and
n + 1 are now fully fused without truncation through identity A-tensors with the left and the right
part of the system, respectively. The original wave function, on the other hand, is exactly encoded
in the intermediate rank-2 QSpace X . The enlarged tensor-product state-spaces [indicated by thick
lines in panels (b–d)] eventually connects to QSpace X in panel (d). The wave-function encoded in
QSpace X can be updated then in the usual DMRG spirit, after rewriting all operators relevant for the
Hamiltonian within this local bond-configuration. The resulting improved X̃ can be truncated then,
followed by an exact shift of the focus from sites n and n + 1 to the next pair of sites, e.g. n + 1 and
n + 2. The last two steps are explained in some more detail next.

3.3. State space truncation

Consider a wave function |ψ⟩ written in the effective local configuration of Fig. 7(d),

|ψ⟩ =


l,r

Xlr |l⟩|r⟩, (19)

having skipped the tildes, i.e. |̃l⟩ → |l⟩, and suppressing symmetry labels, for simplicity. Assume this
wave function |ψ⟩ has a well defined global symmetry described by the set of labels qψ . Now, both
state spaces, |l⟩ as well as |r⟩, represent multiplet spaces that are grouped into blocks of states that
belong to the same symmetry multiplets. This is depicted schematically in Fig. 8 for the matrix X in
multiplet space. Therewhite blocks are considered all-zero,while blocks shaded in gray are considered
non-zero. For a shaded block therefore, by definition, its product space of the symmetries qi in |l⟩
(rows) and q′

i in |r⟩ (columns)must allow qψ as a valid global multiplet. Given the labeling in terms of
multiplet labels qψ ,moreover, it is convenient to consider a full singlemultiplet |ψ⟩, rather than picking
a specific state from the internal space of multiplet qψ . Consequently, while the coefficient space X
corresponds to a matrix, i.e. a rank-2 object in the multiplets l and r as depicted in Fig. 8, overall it is
natural to consider the QSpace X to have rank-3. For a single multiplet qψ , this only affects the CGCs,
while the multiplet space acquires a singleton dimension.
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One may trace out the right part of the system (together with the third index regarding the CGC
space of |ψ⟩), equivalent to calculating X · XĎ in terms of QSpaces. Given a well defined global
symmetry for |ψ⟩, the resulting reduced density matrix, is a scalar operator, i.e. block-diagonal in
the multiplet spaces qi, corresponding to the blocks of rows in Fig. 8. From this, it follows that the
eigenvalues and eigenvectors of the reduced density matrix can be computed independently and thus
separately for each block of rows to the same label qi. When calculating the reduced density matrix
above, on the level of CGCs, this corresponds to the situation already discussed in Section 2.7 in that
the CGC spaces contract to identities. Note, however, that the labels of the indices (state spaces) in
Fig. 5 acquire a somewhat altered interpretation here, i.e. (i, σ ) → j becomes (l, r) → ψ . It follows
fromEq. (18) then, that the correspondingweight factors for the reduced densitymatrix, that originate
from the CGC spaces, are completely independent of the internal dimensionality dq′

i
of the multiplets

q′

i that represent the multiplet space |r⟩. Therefore for the purpose of truncation, instead of explicitly
calculating the reduced density matrix, it is equally sufficient to use standard SVD decomposition on
the non-zero blocks in a row for a specific qi in Fig. 8. That is, truncation can be performed fully on the
level ofmultiplets only, temporarily putting aside the CGC spaces. Consequently, SVDallows to rewrite
the QSpace X = U · (SV Ď), where U is a ‘‘scalar operator’’. That is, all CGC spaces of U are identities,
and the newly generated intermediate index inherits the symmetry labels of the multiplets l, i.e. is
block-diagonal in qi. In order to proceed to the next DMRG iteration then, say sites n+1 and n+2, the
resulting truncated QSpace R̃ from X̃ = U · (S̃V Ď) ≡ UR̃ can simply be contracted onto An+1, whereas
U is contracted onto An. Overall, this allows to truncate within properly orthonormalized state spaces
in the presence of arbitrary non-abelian symmetries, which thus again reduces the dimension on the
bond between sites n and n + 1.

Note furthermore, that the constraint to a single wave function with well-defined multiplet label
qψ can be significantly relaxed. It was already argued above, that it is convenient to consider the
QSpace X of rank-3, which thus keeps all states that constitute the single multiplet qψ . However, this
directly opens the door towards the simultaneous simulation of several multiplets {ψk} with possibly
different multiplet spaces {qψk}. Clearly, if each individual state ψk belongs to a well-defined overall
symmetrymultiplet, then the reduced density matrix built from the scalar operator ρ =


k |ψk⟩⟨ψk|

will still be block-diagonal in the symmetry spaces. Therefore SVD can still be performed for every
individual block of rows qi, while fusing the multiplet spaces for ψ with the multiplet spaces for the
right part of the system, i.e. q′

i → (q′

i, qψ ).

3.4. Wave function prediction

Following the two-site update depicted in Fig. 7 above together with subsequent truncation on the
multiplet level, the local description of the wave function ψ can be carried over exactly to the next
bond: using the respective identity A-tensors for sites n + 1 towards the left and n + 2 towards the
right part of the system, this then allows to switch to the bond-configuration between sites n+ 1 and
n + 2, exactly as already discussed in Section 3.2.

4. Correlation functions

Correlation functions are usually calculatedwith respect to operators whose transformation under
given symmetries is known. This is specifically so, as these operators often naturally derive from the
same fundamental building blocks, that also enter the Hamiltonian. In the presence of non-abelian
symmetries, a single specific operator then that is not a scalar operator, is usually part of a larger
irreducible operator set. In practice, thus also its correlation function is calculated w.r.t. the full IROP,
for simplicity, as will be explained in the following.

Consider, for example, the retarded Green’s function

Gσ (ω) ≡ ⟨dσ ||d
Ď
σ ⟩ω (20)

that, in the time domain, creates a particle of preserved flavor σ , and destroys it some time later.
Clearly, a particle with the same flavormust be destroyed later, otherwise the Green’s function is zero,
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i.e. the Green’s function is diagonal with respect to symmetries. Now in the presence of symmetries,
it must be possible to write the operators dĎσ as part of an irreducible operator set, e.g. some spinor
(IROP) ψ̂q that transforms according to IREP qwith internal dimension dq (in the case of plain abelian
symmetries, it typically holds dq = 1, i.e. the operator dĎσ is the only member of the IROP). Thus the
calculation of the very specific correlation function with respect to specific elements dσ and dĎσ above
can replaced by the Green’s function

Gψq(ω) ≡ ⟨(ψ̂q)Ď||ψ̂q
⟩ω. (21)

To be clear, if dq > 1, this includes the scalar product of the spinor components, and thus one is
actually calculating the same Green’s functions as in Eq. (20) dq times,

Gψq(ω) =

dq
qz=1

⟨(ψ̂q
qz )

Ď
||ψ̂q

qz ⟩ω = dq · ⟨d(σ )||d
Ď
(σ )⟩ω

⇒ G(σ )(ω) =
1
dq
Gψq(ω) (22)

with G(σ ) independent of σ within its multiplet, as implied by the round brackets. This apparent
overhead, however, only affects the CGC space, so this is negligible numerical overhead, yetmakes the
calculation conceptually simple. Specifically, when calculatingmatrix elements and their contribution
to the Green’s function, eventually all indices can be fully contracted, so there is no need for a special
treatment of a specific z-label that represents a peculiar dĎσ . Moreover, given the discussion of scalar
operators in Section 2.5 earlier, one realizes that the scalar product ψ̂Ď

· ψ̂ of the IROP ψ̂q yields a
scalar operator.

In the following, two explicit prototypical examples for correlation functions are given that are
used explicitly for the numerical results presented in this paper. The first example is the spin–spin
correlation function or magnetic susceptibility χd (ω) defined at some site d. In the presence of spin
SU(2) symmetry,

χd(ω) = ⟨Sx,d||Sx,d⟩ω = ⟨Sy,d||Sy,d⟩ω = ⟨Sz,d||Sz,d⟩ω

≡
1
3 ⟨Ŝd||Ŝd⟩ω. (23)

Clearly, the local operator Ŝ2d ≡ Ŝd · Ŝd is a scalar operator, with the corresponding spinor Ŝ(d) given
by [cf. Eq. (A.11)]

Ŝ ≡

−
1

√
2
Ŝ+

Ŝz
+

1
√
2
Ŝ−

 .
The second example is the spectral function for a single spinful channel in the presence of spin and
particle–hole SU(2) symmetry. The spinor is given by [cf. Eq. (A.59)],

ψ̂ ≡


sĉĎ

↑

ĉ↓
sĉĎ

↓

−ĉ↑

 .
In the evaluation of the correlation function,

⟨ψ̂Ď
||ψ̂⟩ω =

dq=4
qz=1

⟨ψ̂Ď
qz ||ψ̂qz ⟩ω = ⟨ĉ

↑
||ĉĎ

↑
⟩ω + ⟨ĉĎ

↓
||ĉ↓⟩ω + ⟨ĉ

↓
||ĉĎ

↓
⟩ω + ⟨ĉĎ

↑
||ĉ

↑
⟩ω

the signs, including s ≡ ±1, of the individual components are irrelevant. Given the spin symmetry and
the fact, that in the presence of particle–hole symmetry spectral functions are symmetric with respect
toω = 0, and in general GB,BĎ(ω) ≡ ⟨B||BĎ⟩ω = GBĎ,B(−ω), it follows that all four contributions above
describe exactly the same function, indeed, and therefore

Gσ (ω) ≡ ⟨ĉσ ||ĉ
Ď
σ ⟩ω =

1
4 ⟨ψ̂

Ď
||ψ̂⟩ω.
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5. The numerical renormalization group

The non-abelian setup described above is straightforwardly applicable to the NRG [3,44]. Before
doing so in detail, here a brief reminder of the essentials of NRG is given, followed by the introduction
of the model Hamiltonian to be analyzed. By construction, the NRG deals with so-called quantum
impurity models — an arbitrary small quantum system (the impurity) that is in contact with a
macroscopic non-interacting typically fermionic bath. Each part is simple to solve exactly on its
own. The combination of both, specifically in presence of interactions at the location of the impurity,
however, gives rise to strongly-correlated quantum-many-body effects.

The systematic approach introduced byWilson [3]was a logarithmic discretization in energy space
of the continuum of the bath (coarse graining), followed by an exact mapping onto a semi-infinite so-
called Wilson-chain, with the intact impurity space coupled only to the very first site of this chain.
Given the half-bandwidthW := 1 of the bath, the discretization parameterΛ > 1, typicallyΛ & 1.7,
defines the logarithmic discretization in terms of the intervals ±[Λ−m,Λ−(m+1)

] with m ≥ 0 an
integer, and energies taken relative to the Fermi energy εf ≡ 0. Each of these intervals is then
described by a single effective fermionic state, with its coupling and exact energy position chosen
consistentlyw.r.t. the hybridization of the original continuummodel [45,46]. The resulting discretized
model is then mapped onto the semi-infinite Wilson-chain (Lanczos tridiagonalization) [47]. Hereby,
the logarithmic discretization of the non-interacting bath translates to an effective tight-binding
chain, with the hopping tk ∼ Λ−k/2 between sites k and k + 1, decaying exponentially in the
discretization parameter Λ. The latter then justifies the essential renormalization group ansatz of
the NRG in terms of energy scale separation – large energies are considered first, with approximate
eigenstates at large energies discarded and considered unimportant for the description of the still
following lower energy scales. Thus each site of theWilson chain corresponds to an energy shell with
a characteristic energy scale ωk ≡

a
2 (Λ + 1)Λ−k/2. Here the constant a of order 1 is chosen such,

tk/ωk+1 → 1 for large k [41].
In practice, when considering the system up to site k, the Hamiltonian of the rest of the system is

ignored, equivalent to assuming degeneracy in the state space of the remainder of the system. With
Ĥk the full Hamiltonian Ĥ including the Wilson chain up to site k, its eigenstates |s⟩k, Ĥk|s⟩k = Ek

s |s⟩k,
and with |e⟩k an arbitrary state of the rest of the system following site k, then the essential spirit of
NRG after coarse graining of the bath can be condensed in the following approximation [48],

H|se⟩k ≃ Ek
s |se⟩k, (24)

expressing energy scale separation, with |se⟩k ≡ |s⟩k ⊗|e⟩k. The energies Ek
s are usually taken relative

to the ground state energy Ek
0 of iteration k, and rescaled by the energy scale ωk. All of this will be

referred to as rescaled energies, and has the advantage that independent of theWilson shell k, energies
are always of order 1.

In this paper, the state space truncation at a given NRG iteration is energy-based, i.e. all states with
Ek
s ≤ EK are kept, typically with EK ≃ 5 . . . 7 in rescaled energies. The number of kept states NK thus

changes dynamically [41,44,46].

5.1. Full density matrix

Within the NRG [3], a complete many-body basis set can be formulated from the state space
discarded at every iteration [48]. Initially introduced for explicit time-dependence of quantum
quenches, they actually can also be used to improve on existing calculations for thermodynamical
quantities and expectation values [49], with a clean extension to arbitrary temperatures using the
full density matrix (FDM) [31]. The density matrix ρ̂ ≡ e−βĤ/Z with β = 1/kBT , kB the Boltzmann
constant and T the temperature, obviously commutes with the Hamiltonian and is a scalar operator
in itself. Within the FDM-NRG approach [31], the density matrix

ρ̂ =
1
Z


k;qn;qz ;e

e−βEkqn |qn; qz; e⟩k k⟨qn; qz; e|, (25)
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Fig. 9. Schematic depiction of the fully screened Kondo–Anderson hybrid model [Eq. (27) with m = 3] in the NRG setup
of a Wilson chain. Three d-levels with onsite Hund’s interaction of strength JH couple uniformly to their respective channel
with hybridization Γ . The semi-infinite Wilson chain for each channel represents a tight-binding chain with exponentially
decaying couplings, that interacts with the other channels through the impurity only. For a given NRG iteration, all terms in the
Hamiltonian of the same energy scale must be included simultaneously, leading to an extended Wilson site [dashed boxes] of
three spinful fermionic levels with a state space of 34

= 64 states each.

can be constructed straightforwardly in terms of a QSpace for every Wilson shell k. Here s ≡ (qn)
stands for the multiplet label for a given shell k. Note that the symmetry of the states e is irrelevant
here, as this space is fully traced over. Given the usual practice of NRG to rescale and shift energies at
every iteration, all of this, of course, must be undone before entering Eq. (25) [given a general thermal
density matrix, of course, all energies in Eq. (25) must be (i) at the same energy scale, i.e. non-rescaled,
and (ii) specified with respect to a common energy reference, e.g. the overall ground state energy of
the Wilson chain] [31].

By construction, all eigenenergies Ek
qn are degenerate, i.e. do not depend on the z-labels. With the

reduced density matrix being a scalar operator, therefore the CGC spaces in the QSpaces describing
Eq. (25) are all proportional to identity matrices, leading to the overall normalization

Z =


k;qn

dqdN−k
w e−βEkqn , (26)

where dq is the internal dimension of multiplet q, and dN−k
s reflects the degeneracy w.r.t. the rest of

the Wilson chain of final length N , with dw the state space dimension of a Wilson site [31].

5.2. Model: symmetric three-channel system

The historically first physical systemwhere Kondo physics was observed was that of Fe impurities
in Au [28,29]. The effective microscopic model for this material, however, is far from trivial. It
was argued only very recently in an extended study [27] that the physics of the five d-orbitals of
substitutional Fe in Ag or Au is dominated by 3-fold degenerate triplet space t2g , with the doublet
space eg split-off by crystal fields and thus playing a minor role. Together with the effective spin 3/2
of the iron impurity, this then results in an SU(3) symmetric fully screened 3-channel Kondo model.

The actual model analyzed [27] is depicted schematically in Fig. 9. It consists of m = 3 spinful d-
levels comprising the impurity, that are interacting through the Hund’s coupling of strength JH . Each
of these impurity levels is coupled to its own spinful bath channel with uniform hybridization Γ . This
leads to the Kondo–Anderson hybrid Hamiltonian,

Ĥ ≡ Ĥd +

m=3
i=1


pσ


2Γ
π


d̂Ďiσ ĉipσ + H.c.


+ εpĉ

Ď
ipσ ĉipσ


, (27a)

where all energies will be given in context in units of the half-bandwidth W := 1. The impurity is
described by

Ĥd ≡ −JH Ŝ · Ŝ, (27b)

with the impurity spin

Ŝα ≡

m
i

Ŝi,α ≡

m
i=1


σσ ′

 1
2τα


σσ ′ d̂

Ď
iσ d̂iσ ′ (27c)
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given in terms of the Pauli matrices τα with α ∈ {x, y, z}. Here d̂Ďiσ [ĉĎipσ ] creates a particle with spin
σ ∈ {↑,↓} on d-level i at energy εd = 0 [in bath channel i at energy εp], respectively. For JH & Γ ,
an effective spin-3/2 forms at the impurity, leading to a symmetric fully-screened spin-3/2 system.
The resulting Kondo temperature TK decays exponentially with JH/Γ , with TK quickly becoming the
smallest energy scale in the system. In practice, choosing JH = 2Γ /(m+

1
2 ) leads to comparable Kondo

temperatures TK for different m. Compared to the standard Kondo Hamiltonian with S · s coupling of
the dot spin S with the lead spin s, the Hamiltonian in Eq. (27) in terms of Γ and JH also allows for
charge-fluctuations, while the model maintains particle–hole symmetry.

In particular, the Anderson-like model in Eq. (27) has the advantage that the impurity self-energy
Σ(ω) can be evaluated within the NRG in a simple fashion. From a more technical point of view, this
allows the straightforward calculation of an improved spectral function from the self-energy [50]. The
impurity Green’s function [cf. Eq. (22)]

G(iσ)(ω) ≡ ⟨d̂(iσ)||d̂
Ď
(iσ)⟩ω

≡ G′

(iσ)(ω)− iπG′′

(iσ)(ω), (28)

consisting of real and imaginary part, respectively, is constructedwithin the NRG framework, as usual,
from the spectral function A(iσ)(ω) ≡ −

1
π
ImG(iσ)(ω) ≡ G′′

(iσ)(ω). Subsequently, the real part G′

(iσ)(ω)

is obtained through the Kramers–Kronig transform of A(iσ)(ω) [44]. The calculation of the additional
correlation function F(iσ)(ω) then,

F(iσ)(ω) ≡ ⟨[d̂(iσ), Ĥd]|| d̂
Ď
(iσ)⟩ω, (29)

obtained similarly from its spectral part F ′′

(iσ)(ω) ≡ −
1
π
ImF(ω), allows to evaluate the self-energy

Σ(ω) at the impurity [50]

Σ(iσ),JH ≡
F(iσ)
G(iσ)

, (30)

Note that, the commutator of the IROP d̂(iσ) with the scalar Hamiltonian in Eq. (29) again leads to an
IROP w.r.t. the same IREP q. Moreover, by symmetry, both G(iσ) and F(iσ) are independent of (iσ), as
indicatedby the subscript bracket, andhencewill be skipped altogether in the following, for simplicity.

5.2.1. Kondo limit from numerical perspective
While the procedure to obtain the self-energy is straightforward for an Anderson-likemodel, there

is no simple way to do so for the plain Kondo-like model with S · s interaction [50]. However, from
the NRG point of view, the transition from one to the other is straightforward. That is, knowing that
the Kondo temperature TK decays exponentially with JH/Γ , both, JH as well as Γ can be taken much
larger than the bandwidthW := 1 of the model, while keeping their ratio constant,

JH , Γ ≫ 1, JH
Γ

≃ const. (31)

This is a well-known procedure in the analytical Schrieffer–Wolff transformation for the Anderson
model into a Kondo model [51]. But, of course, exactly the same strategy can also be pursued here
within the NRG [see Fig. 10 later]. For the local density of states at the impurity this leads to a
well-separated nearly discrete contribution to the spectral function at |ω| ≫ 1 far outside the
bandwidth. For the spectral range within the bandwidth, the actual spectral function for the Kondo-
model emerges. In particular, this procedure allows to fully eliminate the free-orbital (FO) regime
with strong charge-fluctuations in the Anderson-like model right within the first truncation step.
From a numerical point of view, this is desirable as the FO regime is typically the most expensive
one. For example, for the model discussed here using the symmetries below, using energy-based
truncation indicates that about a factor of 5 . . . 10 more multiplets are required for the FO regime as
compared to the local moment (LM) or strong coupling (SC) regime at later NRG iterations [cf. Fig. 11].
Nevertheless, by maintaining an Anderson-like description, the impurity self-energy remains easily
accessible numerically within the NRG, even though essentially the correlation functions for the
Kondo model are calculated.
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Fig. 10. (Color online) SU(2)spin ⊗U(1)charge ⊗ SU(3)channel analysis of the symmetric three-channel Anderson model [Eq. (27)
with model parameters specified in the lower left of panel (a)]; the same data as in panel (a) is shown vs. log(|ω|) in panel (b)
to zoom into the Kondo peak at small frequencies with the legend for both panels shown in panel (b). The spectral data ANRG
and the auxiliary F ′′

NRG are shown together with the derived self-energy Σ ′′(ω) and the improved spectral function Aimp (see
text). A zoom around ω = 0 is show in the right inset of panel (a), with the left (right) axis belonging to A(ω) [Σ ′′(ω) and
F ′′(ω)], respectively. The spectral data for A(ω) and Σ ′′(ω) is symmetric around ω = 0 and strictly positive, while F ′′(ω) is
antisymmetric. In panel (b) therefore the ω < 0 branch of F ′′(ω) has been plotted in dashed lines, same color otherwise. The
left inset to panel (a) shows the spin–spin spectral data χ ′′(ω), with the resulting TK ≡ 1/4χ0 indicated in panel (b) and the
left insets of both panels by the vertical dashed line.

6. NRG results

The model in Eq. (27) is a true three-channel system, in that it is not possible to simply decouple a
certain unitary superposition of bath channels. Furthermore, within an NRG iteration, a site from each
channel must be included as they have the same coupling strength, i.e. energy scale, as schematically
depicted in Fig. 9 [dashed boxes].

The non-abelian symmetries present in the system are,

• total spin symmetry: SU(2)spin,
• particle–hole symmetry in each of the three channels: SU(2)⊗3

charge, and
• channel symmetry: SU(3)channel.
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a

b

c

Fig. 11. (Color online) Comparison of the efficiency of the symmetry settings as outlined in Eq. (32) for the calculation of the
spectral data in Fig. 10 for the 3-channel model in Eq. (27). For a fair comparison, all calculations were performed using the
same energy-based truncation with EK = 7 for the same discretization Λ = 4 as in Fig. 10. The vertical dashed lines in all
panels indicates the energy scale of TK . Panel (a) compares the energy flow diagrams resulting for even iterations from the
individual NRG runs, indicating perfect consistency for all symmetry settings. Panel (b) shows the number of kept multiplets
for each iteration. For each symmetry setting, at the top of the panel the maximum dimension in the multiplet space over the
entire NRG run is specified for kept (NK) and total (Ntot), i.e. kept and discarded space, respectively. The inset shows the ratio
qk ≡ NK/NK

(c) of the multiplets that needed to be kept for the symmetry settings in Eq. (32a) and Eq. (32b) relative to the case
when the full Sp(6) is included [Eq. (32c)]. Panel (c) shows the ratio N∗

tot/Ntot of the actual Hilbert-space dimension (N∗
tot) at a

given iteration, which includes the internal multiplet dimensions, relative to the dimension of the multiplet space (Ntot). The
inset shows the ratio xk that describes the increase in the number of multiplets when adding a new site prior to truncation.

The latter symmetry SU(3)channel, however, does not commute with particle–hole symmetry, while it
does commute with the total charge U(1)charge, i.e. the abelian subalgebra of particle–hole symmetry
[cf. Eq. (A.72), and subsequent discussion]. Having non-commutative symmetries, however, directly
suggests a larger enveloping symmetry, which in the present case is the symplectic symmetry
Sp(6) [30] [i.e. Sp(2m)withm = 3, cf. Appendix A.10].
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This allows us to consider the following symmetry settings,

SU(2)spin ⊗ SU(2)⊗3
charge ≡ SU(2)⊗4

SC , (32a)

SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel, and (32b)

SU(2)spin ⊗ Sp(6). (32c)

All of these symmetry settings have been implemented, in practice, and applied within the NRG
framework, with results presented in the following. The first setting in (32a) represents a more
traditional NRG scenario based on a set of plain SU(2) symmetries. The second setting (32b) includes
SU(3)channel together with the simple abelian symmetry U(1)charge for total charge, while the last
setting (32c) represents the actual full symmetry of the model.

Even though the second setting in (32b) actually includes an abelian component in terms of
charge, it nevertheless represents a stronger symmetry as compared to the first setting (32a). Since
SU(3)channel is a rank-2 symmetry with two commuting z-operators, i.e. generators of the Cartan
subalgebra, it possesses a two-dimensional multiplet representation. This results in much larger
multiplets for setting (32b), with the bare SU(3)multiplet dimensions easily reaching up to 100 (e.g.
dq ≤ 125 for the NRG run underlying Fig. C.14, cf. Appendix C.3). As a consequence, this allows, on
average, smaller multiplet spaces and thus better numerical performance.

The first two symmetry settings in (32) emphasize different symmetry aspects, yet allow to
break certain symmetries which, nevertheless, are present in the model Hamiltonian in Eq. (27). The
first symmetry setup (32a) strongly emphasizes particle–hole symmetry, while it does not use the
symmetric coupling of the levels to their respective channels. The channel symmetry can thus be
broken without reducing the symmetry setting (32a). The second symmetry setting (32b), on the
other hand, emphasizes the channel symmetry (uniformΓ ), while it allows to break the particle–hole
symmetry. Hence, in principle, a uniform level-shift could be applied to the d-levels within this
setting. Only the third symmetry (32c) captures the full symmetry of the model, as it combines
channel symmetry with particle–hole symmetry into the enveloping symmetry Sp(6). This is a rank-3
symmetry withmultiplet dimensions now easily reaching up to a several thousands (e.g. see Table C.8
for actual multiplets generated in a full NRG run). A more detailed general discussion and comparison
of all of above symmetry setups in terms of their overall multiplet structure and representation of a
site with three spinful levels (i.e. a Wilson site) is given in Appendix C.3.

6.1. Spectral functions

The spinor ψ̂q to be used for fermionic hopping term as well as for the calculation of spectral
functions can be represented for all symmetry settings by IROPs with a well-defined multiplet label
q [cf. Eq. (22)]. For the first symmetry setting in (32), SU(2)⊗4

SC , the IROP for the calculation of spectral
functions involves three 4-component spinors, ψ̂ [4]

i for short, one for every channel i = 1, . . . , (m =

3). The corresponding IROP labels are q1 = ( 12 ,
1
2 , 0, 0), q2 = ( 12 , 0,

1
2 , 0), and q3 = ( 12 , 0, 0,

1
2 ),

respectively. The number of components in the spinor derives from the two participating SU(2)
multiplets (S, C) =

1
2 for spin and one specific channel, thus having 2 × 2 = 4 operators in

one specific IROP ψ̂ [4]
i , indeed. With this, the hopping in the Hamiltonian, for example, is given by

ĥk,k+1 =
m

i=1 ψ̂
[4]Ď
k,i · ψ̂

[4]
k+1,i. Note that this excludes the hermitian conjugate part, as this is already

fully incorporated through the particle–hole symmetry [see Eq. (A.73b)]. Furthermore, note that
particle–hole symmetry gives rise to intrinsic even–odd alternations for the spinors along a chain
[see Appendix A.9.2 for a detailed discussion].

In contrast, the second symmetry setting in (32), SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel, leads to a
single 6-component spinor, ψ̂ [6] for short. Its IROP multiplet label is given by q = ( 12 ,−

1
2 , 0 1). This

combines a 2-dimensional SU(2)spin multiplet S =
1
2 and an abelian 1-dimensionalmultiplet Cz = −

1
2

with the 3-dimensional SU(3)channel multiplet T = (0 1), resulting in the 2 × 1 × 3 = 6 operators in
the multiplet. For comparison, here the hopping term in the Hamiltonian in Eq. (27) is reduced to a
total of two terms, ĥk,k+1 =


ψ̂

[6]Ď
k · ψ̂

[6]
k+1 + H.c.


[see Eq. (A.73a)].
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Finally, for the third symmetry setting in (32), SU(2)spin⊗Sp(6), again a single spinor ψ̂q is obtained,
but nowwith 12 components, written as ψ̂ [12] for short. Its IROP label is given by q = ( 12 , 1 0 0), which
combines the 2-dimensional SU(2)spin multiplet S =

1
2 with the 6-dimensional Sp(6)multiplet (1 0 0),

i.e. defining representation of Sp(6). Overall, this again recovers the 2 × 6 = 12 components of the
spinor, indeed. For comparison, now the hopping term in the Hamiltonian in Eq. (27) is reduced to the
single term ĥk,k+1 =


ψ̂

[12]Ď
k · ψ̂

[12]
k+1


. The scalar contraction of the spinor ψ̂ [12] with itself recovers the

original 12 terms in the fermionic hopping structure between two sites in the Hamiltonian in Eq. (27).
Since particle–hole symmetry is part of Sp(6), this again implies that (i) the hermitian conjugate is
already taken care of in the hopping term, and (ii) that Sp(6) again gives rise to the same intrinsic
even–odd alternations for the spinors along a chain, exactly analogous to what has already been
encountered for standard particle–hole symmetry.

The correlation functions calculated for the model in Eq. (27) are presented in Fig. 10, with the
model parameters indicated at the bottom left of panel (a). Panel (a) shows the spectral data on a
linear scale, while panel (b) shows the same data vs. log(|ω|) which therefore allows a logarithmic
zoom into the low energy regime. The legend shown with panel (b) also applies to panel (a). The data
in Fig. 10 was obtained using the symmetry setting in (32b) including SU(3)channel. Note that having
chosen an energy-based NRG truncation with EK = 7, the spectral data for the other two symmetry
settings is identical, hence not shown. While the calculation is somewhat more involved for the more
traditional setup (32a), it becomes significantly more compact still when finally including Sp(6) as in
(32c). Their individual numerical efficiency will be discussed with Fig. 11 below.

In Fig. 10, the spectral function obtained from the NRG is plotted as ANRG(ω) ≡ G′′

NRG(ω). The spec-
tral data satisfies the Friedel sum-rule to an excellent approximation, in that limω→0


πΓ ANRG(ω)


=

1 [see right inset to panel (a) for a zoom around ω = 0]. The self-energy Σ(ω) was obtained by cal-
culating the additional correlation function FNRG(ω) [Eq. (29), to be used in Eq. (30)]. The imaginary
part Σ ′′(ω) ≡ −

1
π
ImΣ(ω), plotted in Fig. 10, clearly approaches zero in a smooth parabolic fash-

ion at the Fermi energy, i.e. limω→0Σ(ω) = limω→0
d
dωΣ(ω) = 0, as expected for a system whose

low-energy behavior corresponds to that of a Fermi liquid. This is seen more clearly still in the zoom
around ω = 0 in right inset of Fig. 10(a), with the self-energy data associated with the right axis.
The self-energyΣ(ω)/JH sharply drops within |ω| . TK from order 1 accurately down to about 10−4

which is considered the NRG resolution limit.
The improved spectral function Aimp(ω) derived from the self-energy [50] is also shown in Fig. 10

[dashed red (black) line]. Within the Kondo regime, the result closely follows the original ANRG(ω), as
demonstrated in the zoom in the right inset of Fig. 10(a) or also in panel (b). As expected from the
self-energy treatment [50], the improved spectral function Aimp(ω) allows clearly sharper resolution
for structures at finite frequencies, specifically so for largerΛ. This can be observed, for example, for
the hybridization side peaks in Fig. 10(b) at the energy of the Hund’s coupling JH . Having chosen JH
much larger than the bandwidth [with the bandwidth indicated by the vertical dotted line in panel
(b)], these hybridization side peaks essentially correspond to very narrow, nearly discrete peaks that
are much overbroadened through the standard log-Gauss broadening of the NRG [31,44]. In principle,
these side peaks could be narrowed significantly further by an adaptive broadening scheme [52]. For
the purposes of this paper, however, this was irrelevant.

The dynamically generated exponentially small Kondo temperature TK for the system can be
determined by taking the full-width-at-half-maximum (FWHM) of the Kondo peak in the spectral
function. However, with NRG somewhat sensitive to broadening of the underlying discrete data [44]
(see also supplementary material in Ref. [31]), TK is simply determined therefore through the static
magnetic susceptibility χ0 =: 1/4TK [50], where χ0 is obtained from the impurity spin–spin
correlation function χ(ω) ≡ ⟨S(z),d||S(z),d⟩ω ≡ χ ′(ω) − iπχ ′′(ω) evaluated at ω = 0, with S(z),d
the total spin at the impurity [cf. Eq. (23)]. The resulting spin–spin spectral function χ ′′(ω) is shown
in the left inset to Fig. 10(a), together with the resulting TK = 4.4 · 10−7 (in units of bandwidth). As
expected, χ ′′(ω) shows a pronounced maximum around TK. The value for TK is also indicated by the
vertical dashed line in panel (b).

The NRG data presented in Fig. 10 clearly suggests converged data, even without necessarily
having to resort to self-energy to get the low energy physics correct [27]. The convergence is also
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supported by the analysis of the discarded weight [41] which, inspired by DMRG, analyzes the decay
of the eigenspectrum of site-specific reduced density matrices built from the ground state space a
few iterations later. For given NRG run, the discarded weight is estimated as εDχ=5% = 3 · 10−11.
This suggests good convergence, in agreement with Ref. [41]. If, for example, an energy truncation
of EK = 5, . . . , 6 had been used, instead, NRG intrinsic parameter dependent deviations of up to ten
percents can still be seen w.r.t. to the Friedel sum-rule or the agreement of ANRG(ω)with Aimp(ω).

6.2. Detailed comparison of symmetry settings

An NRG specific technical comparison of the symmetry settings in Eq. (32) for the calculation in
Fig. 10 is presented in Fig. 11. The underlying truncation had been energy-based in all calculations
(EK = 7), thus leading to a fair comparison in terms of accuracy. With this, the physical properties,
and in particular the energy flow diagram [3,50] in Fig. 11(a), show perfect agreement using either
symmetry setting. Having sufficiently many states implies that for symmetries, that are not explicitly
and thus exactly included in the QSpace setup, their unintended breaking due to numerical double
precision noise does not play role.

Fig. 11(b) shows the number of kept multiplets for each iteration k. Having chosen JH and Γ much
larger than the bandwidth [cf. Fig. 10(a)], the free-orbital regime is absent, with the transition from
the local moment to the strong coupling regime given by the energy scale of TK [vertical dashed line
at k ≃ 22]. As expected from physical grounds, also the local moment regime (k < 22) requires a
larger state space (multiplet) dimension still for the same accuracy, i.e. the same EK, as compared to
the strong coupling regime (k > 22).

With the state space truncation based on the energy cutoff EK = 7, the actual Hilbert state
space dimension, i.e. when including the internal CGC space dimensions, is exactly the same for all
symmetry settings. In particular, the maximum total Hilbert state space dimension per iteration that
was diagonalized exactly for either symmetry setting was N∗

tot ≤ 4369,024 or N∗

K ≤ 68,266w.r.t. kept
space only. These state spaces could be strongly reduced to the effective and manageable multiplet
dimension as indicated at the top of Fig. 11(b), withWilson shell specificmultiplet dimensions plotted
in the panel.

Fig. 11(c) analyzes the actual reduction in multiplet space due to presence of the CGC spaces in
terms of the ratio of the actual Hilbert space dimension N∗

tot relative to the total multiplet dimension
Ntot for each site along the Wilson chain. Depending on the symmetry setting, on average, the
treatment of non-abelian symmetries allows to reduce the Hilbert space dimension by at least a factor
of 16, 20, or 300 for the symmetries in (32), respectively. This demonstrates an enormous numerical
gain, considering that the numerical cost of NRG roughly scales like O(N3

tot). Note that it is exactly
through the dimensional reduction tomultiplet spaces, that above NRG calculations had been feasible
in practice, and this within a few hours of runtime. In contrast, the plain abelian setting simply would
not have been able to deal with the underlying Hilbert state space dimension using state of the art
workstations [cf. App. Table C.6].

Within the kept space, the multiplet dimension of the first two settings in (32a) and (32b) relative
the setting including the Sp(6) are shown in the inset to Fig. 11(b) [(a) and (b), respectively]. This
clearly demonstrates a further reduction by a factor of about 5 . . . 8 when including the full Sp(6)
symmetry. From the same inset, it is also clear that the symmetry setting in Eq. (32b) including
SU(3)channel allows, on average, a 40% further reduction of the number of multiplets in the simulation
as compared to the SU(2)⊗4

SC setting.
Furthermore, the inset to Fig. 11(c) shows the ratio xk ≡ N (k+1)

tot /NK
(k) which indicates the increase

in the total number ofmultiplets when adding a new site prior to truncation.While this factor shows a
clear reduction from the actual dimension of the local Hilbert space of aWilson site of 43

= 64 states,
the ratio xk is somewhat larger than what one may naively expect, considering that, depending on
the symmetry, a Wilson site reduces to a total number of 4, 10 or 13 multiplets [see App. Tables C.5,
C.4 and C.3, respectively]. On the other hand, given non-abelian symmetries, the combination of two
multiplets typically leads to clearlymore than just one overall multiplet. In this sense, the major gain
of using non-abelian symmetries is given by the state space reduction demonstrated in Fig. 11(b). For
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the first two symmetry settings in (32), the multiplet space increase by adding a new site in terms of
a product space reduces the original abelian factor of 64 only modestly down to about 38. Only when
using of the full Sp(6), this leads to a significant further reduction of the ratio xk down to about 20,
which thus becomes nearly comparable in numerical cost to a two-channel calculation with abelian
symmetries, where a Wilson sites adds 42

= 16 states to the system.
The SU(3) representations that are explicitly generated in the calculation of Fig. 10 using

SU(2)spin ⊗U(1)charge ⊗ SU(3)channel are listed in Fig. C.14 [Appendix C.3]. The largest Clebsch–Gordan
space that is split off with respect to the SU(3) sector only is the (4, 4) representationwith an internal
multiplet dimension of 125. In other words, by explicitly accounting for SU(3) symmetries, in the
present case, a 125-fold degeneracy in theHamiltonianhadbeen reduced to a singlemultiplet,with the
SU(3) symmetry space taken care of separatelywithminor computational overhead. Nevertheless, the
eigenstates in the SU(3) setting still show significant degeneracies. These can be entirely removed only
by using the full Sp(6) symmetry, which allows to remove original degeneracies in the Hamiltonian of
several thousands. Note that on top of above symmetries, the spin SU(2)multiplets present yet another
independent multiplet space that enters as a tensor product, thus enlarging the overall symmetry
space still further.

In terms of overall runtime on a state-of-the-art 8-core workstation, this translated to about 6 h
of runtime for the SU(2)⊗4

SC symmetries, as compared to about 4.5 h of runtime when including
SU(3)channel. Using the full symmetry as in (32c), on the other hand, took about 24 h.While significantly
more efficient in terms of storage requirements [cf. App. Table C.7] thus facilitating calculations on
standard workstations, the huge CGC spaces in the last setting must be dealt with carefully. As can be
seen fromFig. 11(b), the total number of keptmultiplets hardly reaches 400,while the Sp(6)multiplets
are fully comparable in terms of dimensionality, with some multiplets even much larger internally
than the actual number ofmultiplets considered [cf.App. Table C.8].While the sparse algebra had been
optimized by ourselves to alsomake use of the parallel sharedmemory capacity [cf.Appendix C.3.2], in
contrast, the full multiplet spaces had access to the highly optimized shared BLAS libraries. The latter
benefitted the first two symmetry settings (32a) and (32b) in terms of overall runtime. However, there
is clearly room for further improvement in dealing with the sparse algebra for larger rank symmetries
as in (32c).

7. Summary and outlook

A generic and transparent framework has been presented for the implementation of non-abelian
symmetries in tensor-networks in terms of QSpaces. For this, it was assumed that all participating
state spaces are strictly orthonormal and can be assigned proper well-defined symmetry labels.
Therefore the presented framework is straightforwardly applicable to the traditional DMRG as well
as to the NRG. The latter was demonstrated in detail in this paper for an SU(3) symmetric 3-
channel problem, which in the presence of particle–hole symmetry can be further enlarged still to the
symplectic symmetry Sp(6). By reducing the actual state space to the reduced multiplet space, while
factorizing the Clebsch–Gordan coefficient space, this allows an efficient description of all relevant
tensors. While the explicit Clebsch–Gordan algebra bears little overhead for combinations of lower
rank symmetries, the average internal multiplet dimensions grow quickly with increasing rank r of a
symmetry. In practice, one may roughly estimate that the typical internal multiplet dimension grows
like O(10r), for example, having r = 0, 1, 2, 3 for abelian, SU(2), SU(3), and Sp(6), respectively.
Starting with r = 3, an efficient sparse scheme on all CGC spaces becomes crucial. For symmetries
with rank larger than three, finally, it appears desirable to develop general strategies and sum rules
for the contraction of extended complex networks of CGC spaces based on 6n-j symbols.

A detailed self-contained general introduction to non-abelian symmetries is given in Appendix A,
followed by many explicit examples that arise in practice (Appendix C). Several further highlights
explained in detail in Appendix B are: (i) a straightforward numerical recipe for the general calculation
of Clebsch–Gordan coefficients based on explicit product space decomposition in the presence of
multiplicity, (ii) a generic recipe for the determination of irreducible operator sets, and last but not
least, (iii) also a general algorithm to get the framework for several symmetries initialized from plain
Fock space. The latter does not require any initial detailed knowledge of specific symmetry labels other
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than the general action of the underlying generators. These are known in second-quantized form and
thus also easily defined in Fock space.

While thework presented here is limited to situationswhere effective state spaces are orthonormal
and thus can be simply categorized using well-defined symmetry labels, this eventually may be
relaxed to some extent. For example, orthonormal state spaces are not straightforwardly applicable
to two-dimensional systems with two-dimensional tensor networks due to the presence of loops.
Nevertheless, the indices that connect tensors may be given a more physical interpretation in terms
of actual auxiliary physical state spaces [53,54]. This had been at the very basis of the original
AKLT construction [37,55] which subsequently was generalized to two-dimensional (i)PEPS networks
[56,57]. With parity symmetry [58–60] and simple abelian symmetries such as Zn [61] successfully
employed for two-dimensional fermionic systems, iTEBD based algorithms [62,63] may open the
grounds to also use the non-abelian tensor framework as described in this work in a widened context.

Finally, it is emphasized that also superoperators permit full treatment in terms of symmetries
using Clebsch–Gordan coefficient spaces [64,65]. Note, for example, that the reduced densitymatrices
considered in this work are all block-diagonal w.r.t. symmetries. As such they correspond to vectors
in superoperator space with well-defined symmetry label, in that the difference of its quantum labels
in regular operator space is zero throughout. In general, this may also open the door to using the
QSpace framework presented here to the simulation of Liouvillian superoperators such as they occur,
for example, in the Lindblad equation for driven systems.
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Appendix A. Non-abelian symmetries 101

The general more pedagogical introduction of non-abelian groups in this appendix emerges from
a practical numerical background of treating quantum many-body phenomena. It does not claim to
cover non-abelian symmetries in every theoretical detail, yet requires certain elementary concepts
which will be reviewed briefly. The main focus of this appendix then is on practical applications in
quantum lattice models. Specifically, this targets the numerical renormalization group (NRG) [3,44],
density matrix renormalization group (DMRG) [2,36,37] or more generally tensor networks [8,25],
yet also exact diagonalization, which itself may be formulated in a matrix product state language.
This appendix offers a general treatment of continuous non-abelian symmetries, with modifications
towards abelian, point-groups, or discrete non-abelian symmetries straightforward. Overall, this
appendix should be self-contained, sufficient and hopefully helpful to deal with general abelian and
non-abelian symmetries in numerical simulations.

The non-abelian symmetries of concern in this paper are continuous symmetries. An element Ĝ of
the corresponding Lie group Ĝ can be parameterized by a set of g continuous, independent, and real
parameters aσ [38,66,67],

Ĝ(a1, . . . , ag) = exp

i

g
σ=1

aσ Ŝσ

, (A.1)

with g the dimension of the symmetry group. Infinitesimal operations with aσ ≪ 1 then define the
set of g generators {Ŝσ }, the number of which thus also reflects the dimension of the group (note that
the identity operator is a trivial operation which therefore is never part of the set of generators). For
unitary symmetries, as considered throughout in this paper, the generators in Eq. (A.1) are hermitian.
Furthermore, when dealing with exponentially large yet finite-dimensional quantum-many-body
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Hilbert spaces, the non-abelian symmetries necessarily also have finite-dimensional, i.e. compact Lie
algebras.

The commutator relations of the generators in Eq. (A.1),

[Ŝσ , Ŝµ] =


ν

fσµν Ŝν, (A.2)

determine the tensor of the structure constants fσµν , which itself fully defines the underlying Lie
algebra. The tensor fσµν is antisymmetric in that by construction fσµν = −fµσν , yet not necessarily fully
antisymmetric alsow.r.t. to the last index ν [in principle, it can bemade fully antisymmetric using the
Cartan–Killing metric, while distinguishes between co- and contravariant indices in Eq. (A.2) [66,67];
for simplicity, however, this distinction is not made in this paper]. All generators are assumed to be
connected to each other through above commutator relations. That is, if a subgroup of generators fully
decouples in that it commutes with the rest of the generators, then this subgroup forms a symmetry
of its own. In this sense the group of generators for a specific simple symmetry is irreducible.

A set of matrices {Rσ }, that obeys exactly the same commutator relations as the generators
(operators) {Ŝσ } in Eq. (A.2), allows a one-to-one correspondence between the matrices {Rσ } and the
generators of the symmetry. It is called amatrix representation of the Lie algebra. If the carrier space, i.e.
the vector spacewithinwhich thematrix representation is defined, is fully explored through repeated
application of the individual matrices of the representation, then this is called an irreducible matrix
representation, to be denoted as {Iσ }henceforth. It is unique up to an overall similarity transformation.
Together with its carrier space it refers to an irreducible representation (IREP), specified by a unique
label q. If, on the other hand, part of the carrier space of a matrix representation decouples, the
representation is called reducible. Thiswill be discussed in significantlymore detail later in the context
of state space decomposition in Appendices A.5 and A.6.

Consider an irreducible matrix representation {Iqσ } for IREP q of dimension dq. Its carrier space is
spanned by themultiplet |q⟩ ≡ {|qqz⟩}, where qz references the individual states within the multiplet
q (consider, for example, spin multiplets, where |qqz⟩ ≡ |S, Sz⟩). The states |qqz⟩ forms an irreducible
space w.r.t. the action of the generators, in that for an arbitrary symmetry operation Ĝ as in Eq. (A.1),

Ĝ|qqz⟩ =


q′
z

Gq
qz ,q′

z
|qq′

z⟩, (A.3a)

some linear superpositionwithin the samemultiplet space arises. The coefficientsGq
qz ,q′

z
form a dq×dq

dimensional matrix, which represents the symmetry operation Ĝ within multiplet q, and is given by
Gq

≡ exp

i


σ aσ Iqσ

for some arbitrary but fixed values aσ .

Similar to the multiplet space |qqz⟩ of dimension dq, an irreducible operator (IROP) set F̂ q
≡ {F̂ q

qz }

can be defined in a completely analogous manner. While it is not constrained to a specific carrier
space, the IROP F̂ q consists of a set of dq operators that are associated with multiplet q. As such, it can
be written as a vector of operators, i.e. a generalized spinor. For a given symmetry operation Ĝ then,
the IROP transforms analogously to Eq. (A.3a), which for an operator implies

ĜF̂ q
qz Ĝ

−1
=


q′
z

Gq
qz ,q′

z
F̂ q
q′
z
. (A.3b)

On the level of infinitesimal operations, |aσ | ≪ 1, in contrast to the plain action of generators on a
ket-state as in Eq. (A.3a), Eq. (A.3b) shows that the transformation of an IROP directly translates to
commutator relations [l.h.s. of Eq. (A.3b)] with the generators of the symmetry, instead.

The practical relevance of above general statements will be discussed in much detail in what
follows, together with many examples relevant in actual numerical calculations.

A.1. Simple example: rotational symmetry

A simple and well-known example of a non-abelian symmetry is the rotational group SO(3) in
real space in three dimensions. An arbitrary rotation can be written as G = eiS with S an arbitrary
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hermitian, yet fully complex three-dimensional matrix (hence no hats). The latter is required for G to
be real. Consequently, this leaves three real parameters (ax, ay, az), with S = axSx + aySy + azSz . The
generators [38]

Sx =

0 0 0
0 0 −i
0 i 0


, Sy =

 0 0 i
0 0 0
−i 0 0


, Sz =

0 −i 0
i 0 0
0 0 0


(A.4)

represent infinitesimal rotations around the x, y, and z-axis, respectively. The SO(3) symmetry
therefore has dimension g = 3, and its Lie algebra is defined by,

[Ŝσ , Ŝµ] = i

ν

εσµν Ŝν, (A.5)

with σ ,µ, ν ∈ {x, y, z} and εσµν the Levi-Civita tensor, having switched to general operator notation
[operator Ŝ (with hat) rather thanmatrix S]. Being generators of SO(3), thematrix representation in Eq.
(A.4) already represents a 3-dimensional IREP. As it is the simplest non-trivial IREP for the Lie algebra
of SO(3), it is also called its defining representation. By combining state spaces that share this symmetry
then, many other IREPs can be generated, including, for example, the (trivial) scalar representation of
dimension one.

With respect to continuous functions f (x, y, z) in three-dimensional space, the generators of
infinitesimal rotations are given by the differential operator described by the angular momentum
operator L̂ = r̂ × p̂ with p̂ ∼ ∇r. By construction, its three components L̂i also obey exactly the
same Lie algebra as the generators in Eq. (A.5). The same also holds for the spin algebra SU(2) in
complex space, which describes the symmetry for spinful particles such as electrons if rotational spin
symmetry is not broken, i.e. in the absence of an external magnetic field. Hence the rotational group
SO(3) is isomorphic to the spin SU(2). In contrast to SO(3), however, the defining representation of
SU(2) is two-dimensional [cf. Eq. (A.6)], and hence also allows half-integer spin multiplets, which are
entirely absent in SO(3). Having essentially twice as many multiplets in SU(2) as compared to SO(3),
SU(2) is thus called a double cover or 2:1 cover of SO(3).

A.2. SU(2) spin algebra

In this paper, the setup and notation for non-abelian symmetries is generalized from SU(2).
Therefore the symmetry SU(2) will be recapitulated in some more detail, introducing the semantics
used for the general treatment of non-abelian symmetries later. In this sense, the semantics used in
this paper is somewhat more inclined towards the physics background, rather than strictly adhering
to the mathematical language of Lie algebras. The latter, nevertheless, will be indicated in context.

Similar to the SO(3) symmetry, an arbitrary unitary transformation in two-dimensional complex
space is given by G = eiS with S an arbitrary two-dimensional hermitian matrix. This again has three
independent real parameters (ax, ay, az), such that S = axSx + aySy + azSz . Here Sσ =

1
2τσ , with

σ ∈ {x, y, z}, is given by the standard Pauli spin matrices τσ ,

τx =


0 1
1 0


, τy =


0 −i
i 0


, τz =


1 0
0 −1


. (A.6)

For SU(2), this represents the smallest non-trivial matrix representation, therefore this also becomes
its defining representation. The commutator relations of the matrices τσ are exactly the same as for
SO(3) in Eq. (A.5), since SU(2) also refers to the same rotational symmetry. Therefore, the generators
for SU(2)will again also be denoted by the operators {Ŝσ } with σ ∈ {x, y, z} in what follows.

For a general irreducible representations of SU(2), e.g. a spin multiplet, the usual choice of basis is
such that the z-component of the spin operator, Ŝz , becomes diagonal in its matrix representation Sz ,
while the other two operators Ŝx and Ŝy remain non-diagonal (due to their non-commuting properties,
only one spin component can be fully diagonalized, given the freedom of a similarity transformation
for the whole representation). Using the notation |qqz⟩ ≡ |S, Sz⟩ for general spin multiplets, the
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multiplet label q (q-label) then can take the values q = 0, 1
2 , 1,

3
2 , 2, . . . with the internal multiplet

label (z-label) spanning the 2q + 1 values qz ∈ {−q,−q + 1, . . . ,+q}. The raising and lowering
operators (RLOs) are defined as [32]

Ŝ± ≡ Ŝx ± iŜy, (A.7)

such that Ŝ− ≡ (Ŝ+)
Ď, with the commutator relations

[Ŝz, Ŝ±] = ±Ŝ± (A.8a)

[Ŝ+, Ŝ−] ≡ [Ŝ+, Ŝ
Ď
+] = 2Ŝz . (A.8b)

For spin multiplets |qqz⟩ then, it holds [32]

Ŝz |qqz⟩ = qz |qqz⟩

Ŝ±|qqz⟩ =


q(q + 1)− qz(qz ± 1) |q, qz ± 1⟩. (A.9)

While the operator set {Ŝx, Ŝy, Ŝz} generates the SU(2) symmetry group, this set itself does not
yet represent an irreducible operator (IROP), in that it does not yet transform according to a specific
symmetry multiplet. For this, a specific linear superposition of the original operators as in Eq. (A.8b)
is required. In particular, the transformation of an IROP set under given symmetry is completely
analogous to the transformation of the symmetry eigenstates in Eq. (A.9). As indicatedwith Eq. (A.3b),
the major difference is that the action of a generator Ŝσ applied onto a state is simply replaced by the
commutator of the generator with an operator. For example, for an IROP F̂ q given in terms of the set of
operators {F̂ q

qz } which transform like the (state) multiplet q, it follows for consistency with Eq. (A.9),

[Ŝz, F̂ q
qz ] = qz F̂ q

qz (A.10a)

[Ŝ±, F̂ q
qz ] =


q(q + 1)− qz(qz ± 1) · F̂ q

qz±1. (A.10b)

This allows, for example, to complete the operator Ŝz into an irreducible spin operator set as follows.
Clearly, [Ŝz, Ŝz] = 0 · Ŝz , which implies that the operator Ŝz has z-label qz = 0, i.e. Ŝq0 ≡ Ŝz with q still
unknown. Applying the RLOs yields the operators corresponding to qz = ±1,

[Ŝ±, Ŝ
q
0]  

=[Ŝ±,Ŝz ]=∓Ŝ±

=


q(q + 1)+ 0 · Ŝq

±1.

With the further application of RLOs yielding zero, i.e. [Ŝ+, Ŝ+] = [Ŝ−, Ŝ−] = 0, the operator space is
thus exhausted. The irreducible spin operator set therefore has three members qz ∈ {−1, 0,+1}, and
thus transforms like a spin multiplet q = max(qz) = 1,

Ŝ1 ≡ {Ŝ1qz } ≡

Ŝ1,+1

Ŝ1,0
Ŝ1,−1

 =

−
1

√
2
Ŝ+

Ŝz
+

1
√
2
Ŝ−

 . (A.11)

Note that the signs and prefactors are crucial for consistency with the Wigner–Eckart theorem later.
In above derivation, the z-operator in Eq. (A.10a) allowed to directly determine the z-label qz . The

RLOs in Eq. (A.10b), on the other hand, served to explore the multiplet space, in that they generated
the remaining operators F̂ q

q′
z
with proper well-defined prefactors. In the given case of spin SU(2), these

factors are known [cf. r.h.s. of Eq. (A.10b)]. In situations,where theymay not be known right away, they
can nevertheless be determined in a straightforward manner. For simplicity, in the absence of inner
multiplicity for a given multiplet, for canonical raising or lowering operator S± (see Appendix A.3.2)
the combined application of Ŝ

±
followed by ŜĎ± onto an operator of given multiplet q results in the

same operator, i.e.

[ŜĎ±, [Ŝ±
, F̂ q

qz ]] = a2
±
F̂ q
qz ,
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from which the prefactor a2
±

can be easily determined. The analogous situation for a state space
multiplet |qqz⟩ is Ŝ

Ď
±Ŝ±

|qqz⟩ = a2
±
|qqz⟩, with a2

±
≥ 0 since ŜĎ±Ŝ±

is a positive operator; in the case of
spin SU(2), this exactly reflects the prefactor on the r.h.s. of Eq. (A.10b), i.e. a2

±
= q(q+1)−qz(qz±1) ≥

0. Therefore if the application of Ŝ± results in a new operator component in the multiplet, i.e. a2
±
> 0,

then this operator is exactly given by

F̂ q
q′
z
=

1√
a2
±

[Ŝ
±
, F̂ q

qz ]. (A.12)

This already contains the correct normalization and sign, with the latter strictly determined by the
outcome of the commutator. The z-label qz can be derived directly from the structure constants of
the underlying Lie algebra, i.e. Eq. (A.10a). For a more general discussion on IROPs and their general
decomposition also in the presence of inner multiplicity for the IROP multiplet q, see Appendix A.7.

A.3. Generators and symmetry labels

Within a quantum mechanical framework, symmetries S are described by a set of generators Ŝσ
that leave the Hamiltonian Ĥ of the system invariant. Therefore it must hold for all generators of the
symmetries considered that

[Ŝσ , Ĥ] = 0. (A.13)

Thus by definition, the Hamiltonian is a scalar operator. The generators of independent symmetries S
and S′ commute trivially, by definition, as they operate in independent symmetry sectors. Therefore,
for simplicity, a single specific non-abelian symmetry S is considered in the following, also referred
to as simple non-abelian symmetry, a prototypical example being SU(N).

Therefore let S be a simple non-abelian symmetry. By construction then, its set of generators {Ŝσ }
is fully connected via the structure constants in Eq. (A.2), i.e. is irreducible but not necessarily an IROP
yet [e.g. see previous discussion for SU(2)].With the symmetry reflected in the unitary transformation
Ĝ = eiεŜσ with hermitian Ŝσ [cf. Eq. (A.1)], it follows that for infinitesimal ε ≪ 1, the invariance of the
Hamiltonian under this unitary transformation, i.e. ÛĤÛĎ

= Ĥ , is trivially equivalent to Eq. (A.13).
In order to ensuremaximally independent generators, all operators in {Ŝσ } can be taken orthogonal

with respect to each other and specifically also with respect to the identity matrix (which is always
excluded from the set of generators {Sσ }). This requires a scalar or inner product for matrices, which
is provided by

⟨A, B⟩ ≡ tr

AĎB


, (A.14)

together with the resulting Frobenius norm ∥A∥
2

= ⟨A, A⟩ = tr

AĎA


. For the generators of the

symmetry, thus one requires

tr

SĎσ Sσ ′


= aσ δσσ ′ (A.15a)

tr

Sσ


= tr

1(Ď)Sσ


= 0, (A.15b)

The generators in Eq. (A.15b) are understood as finite-dimensional matrix representations of
the operators Ŝσ in some specific carrier space, here the defining representation. Moreover, the
orthogonality w.r.t. to the identity in the last equation implies that all generators Sσ are traceless.
Note that if 1 had been amongst the generators, it would form a subgroup of its own, and hence can
be split off as a U(1) factor. This is exactly, for example, what distinguishes the unitary group U(N)
from the special unitary group SU(N).

A.3.1. Z-operators (Cartan subalgebra)
For a given simple non-abelian symmetries, it is always possible to identify a maximal set

of mutually commuting hermitian generators which form the so-called Cartan subalgebra of
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the symmetry’s Lie algebra. These can be fully diagonalized simultaneously (together with the
Hamiltonian), and hence can be considered diagonal. They shall be referred to as the z-operators [as
they generalize the concept of the operator Sz for SU(2)],

[Ŝz , Ŝz′ ] = 0 (z-operators). (A.16)

For a given Hamiltonian Ĥ then, this implies that every eigenstate Ĥ|n⟩ = En|n⟩, in addition, can also
be labeled with its respective set of symmetry labels |n⟩ → |qn; qz⟩, leading to

Ĥ|qn; qz⟩ = Eqn|qn; qz⟩. (A.17)

Here q identifies the multiplet, i.e. a set of states qz that are connected in an irreducible manner
through all of the generators of the symmetry. While the index n originally identified all states in
given Hilbert space, it is now sufficient that it labels the multiplet within the space of multiplets that
share the same q. The composite index (qn) then is referred to as themultiplet index. Similarly, also the
eigenenergies Eqn in Eq. (A.17) acquire symmetry labels. These, however, are independent of qz since,
by construction, the states within a symmetry multiplet are degenerate in energy. More generally,
with qz entirely determined by symmetry for a given multiplet q, they can easily be generated and
thus omitted where convenient.

Given a specific multiplet qn, the labels qz are equal to the eigenvalues of the z-operators,

Ŝz |qn; qz⟩ = qz |qn; qz⟩ (z-labels), (A.18)

which will be referred to as z-labels. If more than one z-operator is associated with given symmetry
S, say a total of r z-operators, where r thus defines to the rank of the symmetry, then the z-label
structure associated with a multiplet also consist of a collective set of r z-labels (note that r needs to
be differentiated here from the rank r of a tensor or QSpace as used in the main text). For example,
the symmetry group SU(N) has rank r = N − 1. Therefore the rank of SU(2) is 1, e.g. a single label q
suffices to identify a state within an SU(2) spin multiplet. SU(3), on the other hand, already acquires
a two-dimensional label structure for qz , and thus also for q.

Note that the z-labels in Eq. (A.18) for the states of a specific multiplet q may not necessarily be
unique, in that the same qz may occur multiple times. Let mz describe how often a specific z-label
occurs within given multiplet q. Then the presence of mz > 1 for at least one z-label is called inner
multiplicity. It is then necessary to introduce an extra label α that uniquely identifies the state within
this degeneracy,

|qn; qz⟩ → |qn; qzαz⟩, (inner multiplicity) (A.19)

with αz ∈ {1, . . . ,mz}. While inner multiplicity is absent for SU(N ≤ 2), it occurs on a regular basis
for SU(N ≥ 3). The situation for outer multiplicity is analogous (see Appendix A.5).

The label for the entiremultiplet q (to be referred to collectively as q-labels) is in principle arbitrary,
yet must be unique to identify the multiplet. Since for a continuous symmetry infinitely many
IREPs exist, it is natural that the q-labels inherit the r-dimensional label structure of the z-labels. In
particular, it is possible to construct a set of r scalar operators, called Casimir operators, that define
a unique set of r constants for each multiplet. In practice, however, the q-labels are derived from
q ≡ max{qz}, i.e. by the z-labels corresponding to the maximum weight state (see Appendix A.3.3)
which in principle can be related to the constants derived from the Casimir operators [38].

A.3.2. Raising and lowering operators (roots)
While for an arbitrary unitary element Ĝ of the symmetry hermitian {Ŝσ } are required, on the level

of generators, in principle, arbitrary linearly-independent linear superpositions within the space of
generators Ŝσ can be taken. Using such a reorganized set of generators, instead, this still preserves
Eq. (A.13), yet alters the structure constants fσµν for given symmetry S. This freedom is used in the
following to define canonical raising and lowering operators, which are non-hermitian, in general.

Consider the action of a generator Ŝσ onto a symmetry eigenstate |qn; qz⟩. The z-operators are
special, in that they are diagonal and hence return the same state, yet weighted by the eigenvalue qz .
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The remaining generators, however, are non-diagonal, hence change the state and thus explore the
multiplet space. In general, these generators can be reorganized such that all of them represent proper
raising or lowering operators (RLOs), with the canonical commutator relations,

[Ŝz, Ŝσ ] = fzσσ Ŝσ ≡ fzσ Ŝσ , (A.20)

with no summation over σ . The action of these canonical RLOs in z-label space, in the literature
also referred to as root space, then defines the canonical form. By definition, the canonical RLOs {Ŝ±}

of a specific Lie algebra are expected to have the property that their application onto a symmetry
eigenstate in the multiplet with well-defined z-labels will generate another eigenstate of the z-
operators, yet with raised or lowered, i.e. well-defined different z-labels. This is exactly what is
expressed through the commutator relations in Eq. (A.20). In particular, the structure constants
take the simple form, where a non-zero contribution can only arise if the last two indices in fzσσ ′

are identical, hence the shortcut notation fzσ in the last term in Eq. (A.20). By construction, fzσ is
fully antisymmetric. Note that Eq. (A.20) also can be interpreted as an eigenvalue equation for the
generators of the group. Since the z-operators Ŝz are symmetric, the resulting eigenvalue problem is
always well-defined with real eigenvalues fzσ .

As a specific example, Eq. (A.20) was already encountered for SU(2) in Eq. (A.8a). Here it states
more generally that the commutator of an arbitrary generator Ŝσ with a z-operator yields the very
same operator Ŝσ up to the scalar structure factor fzσ . This factor can be zero, e.g. when Ŝσ refers to
another z-operator as in Eq. (A.16), therefore fzz′ = 0. For every z-operator, however, there must exist
at least one RLO Ŝσ with fzσ ≠ 0, since otherwise the group of generators would be reducible.

With Eq. (A.20), the application of a generator Ŝσ onto a symmetry eigenstate |qn; qz⟩ yields

Ŝz · Ŝσ |qn; qz⟩ = [Ŝz, Ŝσ ]  
(A.20)
= fzσ Ŝσ

|qn; qz⟩ + Ŝσ · Ŝz |qn; qz⟩  
=qz |qn;qz ⟩

= (qz + fzσ )Ŝσ |qn; qz⟩. (A.21)

If Ŝσ is an RLO with fzσ ≠ 0, the state Ŝσ |qn; qz⟩ is again a symmetry eigenstate, yet with a uniform
shift in the z-labels,

qz → qz′ ≡ qz + fzσ . (A.22)

Therefore the action of an RLO Ŝσ in root space is generic, i.e. independent of the specific multiplet q
or the state qz under consideration. Nevertheless, the RLOmay annihilate the state, i.e. Ŝσ |qn; qz⟩ = 0,
which is essential to obtain a finite-dimensional multiplet space. Furthermore, Eq. (A.22) allows to
pair up raising and lowering operators. That is, if Ŝσ is a raising operator, then with

[Ŝz, (Ŝσ )Ď] = −[Ŝz, Ŝσ ]Ď = −fzσ (Ŝσ )Ď, (A.23)

the operator (Ŝσ )Ď changes the z-labels exactly in the opposite direction as Ŝσ in Eq. (A.22). In this
sense, (Ŝσ )Ď ≡ Ŝ−σ represents the corresponding lowering operator. The actual definition of what is
a raising or lowering operator is not entirely unique, as it depends on the specific underlying sorting
scheme of the z-labels adopted in root space. This does not matter, however, as long as the sorting is
done consistently throughout [66,67].

In the presence of inner multiplicity a few complications arise. Most importantly, an RLO usually
will generate a superposition in themz′-fold degenerate state space in the resulting qz′ ,

Ŝσ |qn; qzαz⟩ =

mz′
αz′=1

s[qσ ]

qzαz ;qz′αz′
|qn; qz′αz′⟩ (A.24)



3010 A. Weichselbaum / Annals of Physics 327 (2012) 2972–3047

with some coefficients s[qσ ]

qzαz ;qz′αz′
. As a consequence, the application of a raising operator Ŝσ followed

by its complimentary lowering operator ŜĎσ onto a symmetry eigenstate,

ŜĎσ Ŝσ |qn; qzαz⟩ =

mz
αz′=1

s[qσ ]

qz ;αzαz′
|qn; qzαz′⟩ (A.25)

with some other coefficients s[qσ ]

qz ;αzαz′
, does return to the same symmetry labels qz , yet not necessarily

to the same state. If the resulting state in Eq. (A.25) does not replicate the initial state |qn; qzαz⟩ up to
an overall factor, then this allows to explore the other states in the degenerate subspace at qz . This is
relevant for the decomposition of state spaces, where the resulting state as in Eq. (A.25) needs to be
orthonormalized in a consistent fashion with respect to the already explored states of the multiplet
including the state |qn; qzαz⟩ (see Appendix B.1, for more details on the numerical implementation).

While all z-operators are required, e.g. for the definition of the z-labels, it is usually not required
to explicitly construct all of the RLOs, as some of these operators can be generated through a product
of a smaller set of RLOs. As will be seen below in the case of SU(N) or Sp(2n), the number of actually
required RLOs can always be reduced to the rank of the symmetry, i.e. the number of z-operators.
This minimal set of RLOs will be referred to as simple RLOs, consistent with their general notation in
the literature as simple roots of the symmetry. In a sense, these simple RLOs are the ones that induce
the smallest shifts in the z-labels [66,67]. Again, their definition is not entirely unique, depending on
conventions such as normalization of generators or what specific sorting scheme is applied to the z-
labels. The simple RLOs still fully generate and connect the state spaces of any IREP. The underlying
intuitive reason is that an r-dimensional z-label structure only requires r linearly independent vectors
to explore its space (for a rigorous proof, see for example Refs. [66,67]). Therefore given r z-operators
{Z1, . . . , Zr}, it is sufficient to choose a specific subset of r raising operators {S1+, . . . , Sr+}, with
the corresponding lowering operators Si− ≡ (Si+)Ď. This reduction to simple RLOs is very useful in
practice, yet does not restrict the non-abelian treatment in any way.

A.3.3. Maximum-weight state
Consider some multiplet q of internal dimension dq for a given non-abelian symmetry group S

of rank r . Then each of the dq states carries a set of r z-labels. When depicted graphically as points
in r-dimensional space, this is called the weight diagram for the multiplet [for SU(3), for example,
a collection of weight diagrams generated in an actual NRG run is shown in Fig. C.14]. Since the
z-operators are traceless, the values of the z-labels are naturally centered around the origin, i.e.
qz = 0. Inner multiplicity, if present, decreases as a function of distance |qz | to the origin, such
that the outermost points in a weight diagram always refer to unique states without any remaining
multiplicity. By choosing a lexicographic ordering in the r z-labels [38], the maximum weight (MW) is
defined by

qMW ≡ max

qz

. (A.26)

The state with qz = qMW is called the maximum-weight state. This state is guaranteed to be unique
to the multiplet for non-abelian symmetries [38,66,67], hence can be used as label for the entire
multiplet, i.e. q = qMW. While the state space |qz | = max(|qz |) will not be unique, in general, since
it refers to several states at the circumference of the weight diagram, max{qz} does provide a unique
set of z-labels. This underlines the importance of lexicographic ordering.

As an example, consider the well-known spin SU(2). The states within the multiplet q are labeled
by |qqz⟩ where qz = −q, . . . ,+q identifies each state within the multiplet. This results in a one-
dimensional weight diagram, with the multiplet itself labeled by the maximum weight states, q =

max(qz), indeed.
Clearly, the q-labels for a multiplet themselves are also not entirely unique and hence depend on

convention. In particular, if the rank of a symmetry group S is r > 1, the order of the z-operators
themselves is a priori arbitrary. Hence there is a certain freedom in the order of the z-labels, which
in return affects the definition of the maximumweight state. Given a certain order in the z-operators
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then, the lexicographic sorting of sets of z-labels is typically done in reverse order, i.e. startingwith the
last of the r label for a given qz . Moreover, having identified qMW, this still leaves the freedom to use
a linearly independent transform of qMW as a label for the entire multiplet for consistency with the
literature. For example, for SU(3) [Sp(6)] this is discussed with Eq. (A.34) [Eq. (A.91a)], respectively.

A.4. Example SU(N)

A.4.1. Defining representation
The symmetry SU(N) is defined as the unitary symmetry of an N-dimensional space. The defining

representation, i.e. the IREP with smallest non-trivial dimension, is therefore given by N × N
dimensional matrices. Since according to Eq. (A.15b) all generators are traceless, only N − 1 diagonal
z-operators exist, the diagonals of which form an N-dimensional orthogonal vector space that is also
orthogonal to the diagonal of the identitymatrix. The raising (lowering) operators are chosen asN×N
matrices with a single entry of 1 anywhere in the upper (lower) triangular space, respectively, away
from the diagonal. For this, let

|ei⟩ ≡ (0, . . . , 0, 1(i), 0, . . . , 0)T , (A.27a)

with i ∈ {1, . . . ,N} be the N-dimensional cartesian column basis vectors, and

Eij ≡ |ei⟩⟨ej|, (A.27b)

the matrices of the related operator basis, which also contain just a single entry of 1 in their N × N
dimensional matrix space, i.e. (Eij)i′j′ = δii′δjj′ . Then the generators can be written as follows,

SSU(N)i≠j = Eij =


raising operator for i < j
lowering operator for i > j (A.28a)

SSU(N)
z,k<N

=


k

i=1

Eii


− kEk+1,k+1. (A.28b)

These matrices are orthogonal as in Eq. (A.15), while the (arbitrary) normalization was chosen
such that, for convenience, all entries are integers. The choice of generators for SU(N) in Eq. (A.28)
guarantees canonical RLOs, and thus simplifies the group’s commutator relations w.r.t. z-operators
exactly the way as indicated in Eq. (A.20). This can be easily seen by observing that for a diagonal
operator of the type (Ẑ)ij = ziδij, the matrix elements of the commutator with an arbitrary operator
(Ŝ)ij = sij is given by

[Ẑ, Ŝ]ij = sij(zi − zj),

that is, existing non-zero matrix elements in Ŝ are weighted by differences in diagonal elements of Ẑ ,
while there cannot arise any newmatrix elements unequal to zero in [Ẑ, Ŝ] as compared to Ŝ. Clearly,
if Ŝ± only has a single non-zero entry as for the operators in Eq. (A.28a), it follows [Ẑ, Ŝ±] = const · Ŝ±,
in agreement with Eq. (A.20).

From Eq. (A.28a) above, a total of 1
2N(N − 1) different raising operators arise. However, not all of

these are required to fully explore the multiplet space. Consider, for example, the subset of r = N − 1
raising operators

{SSU(N)+ }r ≡ {ŜSU(N)12 , ŜSU(N)23 , . . . , ŜSU(N)N−1,N}, (A.29)

which thusmatches the rank r of the symmetry group SU(N) and thus also the number of z-operators.
From repeated application of these operators, it is easily seen that the remaining raising operators not
contained in Eq. (A.29) can be generated. For example, ŜSU(N)13 is generated by ŜSU(N)12 · ŜSU(N)23 . Therefore,
above minimal set of r raising operators with their hermitian conjugate set of lowering operators is
sufficient, indeed, to explore all multiplet spaces.
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A.4.2. The symmetry SU(3)
The defining representation for SU(3) is chosen as in Eq. (A.28), with the z-operators given by,

Z1 ≡

1 0 0
0 −1 0
0 0 0


, Z2 ≡

1 0 0
0 1 0
0 0 −2


. (A.30)

Their diagonals can be collected as rows into a matrix,

z =


1 −1 0
1 1 −2


, (A.31)

the columns of which give the z-labels (z1, z2) for the three states in the defining representation (see
large black dots in Fig. A.12). This represents the weight diagram for the defining representation.

The canonical commutator relations as in Eq. (A.20) yield the structure constants (f )z,σ ≡ fzσ for
z ∈ {1, 2} and σ ∈ {12, 23, 31},

f =


2 −1 −1
0 3 −3


. (A.32)

The columns in Eq. (A.32) thus define the roots, i.e. the shift in z-labels when applying either S12, S23,
or S31, respectively. These vectors (roots) are depicted in Fig. A.12 by large thick arrows. Clearly, the
three points in the weight diagram of the defining representation can be connected by these roots,
equivalent to (repeatedly) applying raising or lowering operators.

With the convention, that z-labels are lexicographically sorted starting with the last z-label, i.e.
sorting w.r.t. z2 first and then z1, the three states in the defining representation are already properly
sorted from largest to smallest [left to right in Eq. (A.30)]. Furthermore, Eq. (A.32) shows that S12 and
S23 correspond to positive roots, since (2, 0) > (0, 0) and also (−1, 3) > (0, 0). As their application
makes z-labels larger, they represent raising operators, indeed, while S31 is a lowering operator, all
in agreement with Eq. (A.28a). The third raising operator thus would be S13 with root (1, 3) which,
however, is not a simple root and hence can be dropped.

Finally, SU(3) still contains well-known SU(2) subalgebras. That is, for example, by using S12 as
a raising operator for the (x, y) subspace together with its corresponding z-operator [S12, S

Ď
12] =:

2S(12)z = Z1 while keeping the y component abelian, this shows that every line of points in the (z1, z2)
plane in Fig. A.12 parallel to S12 must correspond to a proper SU(2) multiplet. The same also holds
for the two remaining permutations of (x, y, z) using S23 or S31 for the SU(2) subspace, instead. These
SU(2) subalgebras clearly obey the standard commutator relations for SU(2).

A.4.3. Symmetry labels for SU(3)
The q-labels for a given IREP within SU(3) are derived from its maximum-weight labels qMW ≡

max{(z1, z2)}. With the z-labels additive through tensor products (see Appendix A.6 below), the z-
labels of arbitrary multiplets must be integer multiples of the z-labels of the defining representation.
This immediately excludes the z-labels (points) in Fig. A.12 that are crossed out. In particular, with
the columns of Eq. (A.31) being linearly dependent, one may therefore use the columns of

z̃ =


1 0
1 2


, (A.33)

as basis for the maximumweight labels, for consistency with literature [38,68]. Given qMW, the actual
label of the multiplet then is determined by

q ≡ (q1, q2) ≡ z̃−1
· qMW =


1 0

−
1
2

1
2


qMW. (A.34)

This prescription makes the q-labels independent of the specific normalization conventions chosen
for the z-operators. Furthermore, with z̃ = z · (1, 0,−1)T and the vectors in the columns in Eq. (A.33)
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Fig. A.12. (Color online) Root space (z1, z2) for SU(3). The three large black dots depict the weight diagram of the three-
dimensional defining representation of SU(3). Large arrows indicate the shifts in z-labels due to the action of the raising
operators S12 , S23 , and the lowering operator S31 , while dashed lines close to orthogonal to these arrows indicate lines of constant
S12 , S23 , and S31 (color match with corresponding arrows). Dark symbols indicate accessible z-labels, while light crossed-out
symbols are not accessible within SU(3) (see text).

being positive by the adopted sorting scheme, this guarantees plain positive integers for themultiplet
labels q. These labels also lie dense, in the sense that any (q1, q2)with qi ≥ 0 results in a validmultiplet.

The defining representation with qMW = (1, 1) has the q-label (1, 0). Its weight diagram together
with many further examples for multiplets, as generated, in practice, from an actual NRG run using
SU(3), are presented in Fig. C.14. Note, however, that weight diagrams are mainly a matter of
presentation ofmultiplets,while in practice a listing of z-labels suffices to describe themultiplet space.

A.5. Decomposition into irreducible representations

The generators of a specific symmetry group S represent an irreducible finite set of operators
{Ŝσ }, assumed to act in the full Hilbert space of a given physical system. Within (small) subspaces of
the system, finite dimensional matrix representations can be constructed that obey exactly the same
commutator relations as the generators in terms of their structure constants in Eq. (A.2). As such, a
givenmatrix representation {Rσ } inherits all the properties of the generators. In particular, thematrix
representation has the same number of operators as {Ŝσ } with a one-to-one correspondence in the
symmetry label σ . Therefore the z-operators as well as the RLOs share exactly the same interpretation
within the D-dimensional carrier space of {Rσ }.

Consider some arbitrary matrix representation {Rσ } that may have emerged, for example, from
a tensor product space. As it operates in a D-dimensional carrier space, all of its matrices share the
same dimension D× D. Assume a well-defined symmetry eigenstate within this space is available, to
be called seed state, with a typically easy example being a maximum weight state. Then repeated
application of RLOs from the set {Rσ } generates a (sub)space which eventually describes a full
symmetry multiplet, i.e. an IREP. By construction this subspace already diagonalizes the z-operators.
Thus the z-labels are known, which also provides the q-labels for the multiplet, e.g. by simply taking
the maximum weight labels, q1 = qMW.

If this multiplet q1 with dq1 symmetry eigenstates spans the entire D-dimensional carrier space,
then the matrix representation {Rσ } is already irreducible. If only a subspace of the D-dimensional
carrier spacewas generated, i.e. dq1 < D, thematrix representation {Rσ } is reducible.Multiplet q1 then
defines a fully separated space, given the symmetry operations in {Rσ }. Combining the orthonormal
state space of multiplet q1 as columns into a matrix V1, the matrix representation {Rσ } can be cast
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into the space of multiplet q1, Rσ → I [q1] ≡ V Ď
1 RσV1, which thus constructs the irreducible matrix

representation I [q1] for IREP q1.
In case theD-dimensional vector space is not exhausted yet, above procedure can be repeatedwith

another seed state within the remainder of the vector space, generating further irreducible multiplets
q2, q3, . . . , until the D-dimensional vector space is fully exhausted. By combining the state spaces
of the multiplets thus generated, the resulting unitary matrix V ≡ [V1, V2, . . .] allows to block-
decompose the original matrix representation {Rσ } in terms of its irreducible representations,

V ĎRσV =


q

MqI [q]σ (A.35)

where q runs through all IREPs I [q]. Note that a given IREP may be generated multiple times in the
decomposition, which is indicated by the outer multiplicity Mq ∈ [0, 1, 2, . . .]. The presence of outer
multiplicity therefore refers to the situation that Mq > 1 for at least one q in the decomposition.
In this case, also inner multiplicity may occur, which refers to non-uniqueness of z-labels within an
irreduciblemultiplet [cf. Eq. (A.19)], both ofwhich are specifically relevant, for example, for SU(N > 2)
or Sp(2n > 2).

As seen from above construction, thematrix representation I [q] of IREP q is tightly connected to the
symmetry multiplet q. In general, I [q] is unique only up to a global similarity transformation, as this
does not affect commutator relations. By using its related multiplet state space, however, this space
(i) can be chosen such that it diagonalizes all z-operators, and (ii) can put into a well-defined order
as provided, for example, by the lexicographic ordering in the z-labels used to define the maximum
weight state. Based on this basis, the matrix representation I [q] can be determined uniquely. This
procedure on obtaining unique irreducible matrix representations will be adopted throughout.

The decomposition in Eq. (A.35), finally, can be done fully numerically along the same lines as
already sketched above. Particular attention, however, must be paid to issues related to inner and
outer multiplicities for overall consistency. This will be discussed in more detail in Appendix B.1.

A.6. Tensor product spaces

Consider two irreducible matrix representations I [q1] and I [q2] of some non-abelian symmetry
group S, with their matrix elements written in the basis of the symmetry eigenstates |q1q1z⟩ and
|q2q2z⟩ of the two IREPs q1 and q2, respectively. The two multiplets are assumed to live in different
spaces, so they can be joined through a tensor product, i.e. |q1q1z⟩|q2q2z⟩ ≡ |q1q1z; q2q2z⟩. Then the
generators of the symmetry in the combined space are defined in an additive fashion, which derives
from the origin of the generators in infinitesimal symmetry operations, cf. Eq. (A.1),

Rtot
σ ≡ I [q1]σ ⊗ 1[q2] + 1[q1] ⊗ I [q2]σ . (A.36)

Note that the additivity of the symmetry generators directly also implies the additivity of z-labels for
non-abelian symmetries in general. And even if the non-abelian part of the SU(N) symmetry is broken,
e.g. reduced to an abelian symmetry with quantum labels qz , these are, of course, still additive.

By construction, the tensor product representation {Rtot
σ } in Eq. (A.36) is also a representation of

the symmetry, as it obeys the same commutator relations within the combined system as the IREPs
I [qi]σ within their individual space,

[Rtot
σ , R

tot
σ ′ ] = [R[q1]

σ , R[q1]
σ ′ ]  

=

µ

fσσ ′µR
[q1]

µ

⊗1[q2] + 1[q1] ⊗ [R[q2]
σ , R[q2]

σ ′ ]  
=

µ

fσσ ′µR
[q2]

µ

=


µ

fσσ ′µRtot
µ . (A.37)

The product representation {Rtot
σ }, however, is typically reducible. The resulting decomposition into

IREPs is done exactly the same way as in Eq. (A.35).
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The unitary transformation that rotates the product space |q1q1z; q2q2z⟩ into its combined
symmetry multiplets |qqz; (α)⟩ is given by the Clebsch–Gordan coefficients (CGCs),

|qqz; (α)⟩ =


q1z ,q2z

|q1q1z; q2q2z⟩ ⟨q1q1z; q2q2z |qqz; (α)⟩  
≡C

[q2z ]

q1z qz ;(α)

, (A.38)

with the shorthandnotationC [q2z ]
q1zqz ;(α)

for CGCs, consistentwith theMPS tensors in themain body of the
paper [cf. Eq. (10)]. Note that the CGCs implicitly also carry themultiplet labels q1, q2, and q. The index
α has been added to account for possible outer-multiplicity [cf. Eq. (A.35)], in that for input multiplets
q1 and q2 the same output multiplet q can appear M [q1,q2]

q times, therefore α = 1, . . . ,M [q1,q2]
q for a

given q. If outer multiplicity is absent, the index α can be omitted, hence the round brackets around
α in Eq. (A.38) or Eq. (A.39).

As outer multiplicity also refers to different multiplets and hence state spaces, the Clebsch–Gordan
coefficients, reflecting a unitary transformation, obey the general orthogonality condition,

q1zq2z

C [q2z ]
q1zqz ;(α)

C [q2z ]
q1zq′

z ;(α
′)

= δqz ,q′
z
·

δα,α′


. (A.39)

This holds within the same output multiplet q, whereas the overlap between different output
multiplets is strictly zero. While outer multiplicity is intrinsically connected to the underlying
symmetry and hence to CGCs, in addition, this also affects the output multiplet space which must
accommodate the additional multiplets [e.g. see QSpace discussion in the main text; note also
that Eq. (A.39) is completely analogous in structure to the orthogonality relation of A-tensors as in
Eq. (11)].

A.7. Irreducible operator sets and Wigner–Eckart theorem

Consider a set of generators {Ŝσ } of some symmetry group S that a Hamiltonian Ĥ commutes with.
Then all energy eigenstates of the Hamiltonian can be categorized with well-defined quantum-labels,
as indicated in Eq. (A.17). In order to maintain an effective book keeping of the quantum labels when
calculating matrix elements of operators, it must be possible to similarly categorize the operators
themselves. Typically, the operators of interest are closely related to the Hamiltonian, i.e. consist of
operators that also appear in theHamiltonian or are composites thereof, such as creation, annihilation,
occupation, spin operators, etc. Since the Hamiltonian can be properly constructed within the given
symmetry, so can be its constituents.

An irreducible operator set is constructed in a completely analogous fashion as an irreducible state
space, with an explicit example already derived for the spin operator in Eq. (A.11) using Eq. (A.10).
Consider the generic setup of a set of generators {Ŝσ } including RLOs. Then irreducible statemultiplets
can be generated through iterative application of these operators,

Ŝσ |qqz⟩ = s[qσ ]

qzq′
z
|qq′

z⟩, (A.40)

as in Eq. (A.24), while ignoring innermultiplicity for the sake of the argument and having dropped the
energy multiplet index n for simplicity. Given an operator F̂ , on the other hand, its transformation
according to a symmetry is fully reflected in its commutator relations with the generators of the
symmetry. This is easily motivated through infinitesimal symmetry operations as in Eq. (A.3b). The
commutator relations, on the other hand, also emerge naturally when analyzing the effect of a
generator of the symmetry acting onto a symmetry state |qqz⟩ that already also has the operator F̂
applied to it,

Ŝσ · F̂ |qq′

z⟩ = [Ŝσ , F̂ ]|qq′

z⟩ + F̂ · Ŝσ |qq′

z⟩. (A.41)

The second term on r.h.s. clearly describes the symmetry properties of the state |qqz⟩, while the first
termyields the transformation properties of the operator F̂ which are independent of the carrier space.
This is similar to what has already been seen in Eq. (A.21) for the combined action of two generators.
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Now iff an operator set F̂ q
≡ {F̂ q

qz } transforms exactly the same way as the state space of IREP q in
Eq. (A.40), that is

[Ŝσ , F̂ q
qz ] = s[qσ ]

qzq′
z
F̂ q
q′
z
, (A.42)

then the operator set F̂ q is called an irreducible operator (IROP) set that transforms like the multiplet
q. It carries the symmetry labels (q, qz) the same way as an irreducible state multiplet does.

A.7.1. IROP decomposition
In the case that a specific member of the IROP set is already known, then Eq. (A.42) allows to

generate the full IROP set exactly the same way as a state multiplet can be generated. Again, the
maximum weight label determined the multiplet q that the IROP represents. This was exactly the
procedure adopted, for example, to obtain the spin operator in Eq. (A.11). Furthermore, Eq. (A.11) also
serves as a simple demonstration that the space of generators itself clearly also can be cast into a single
IROP. The corresponding multiplet is called the regular representation then.

More generally, it is instructive to realize that irreducible operator sets (IROPs) and symmetry
multiplets (IREPs) can be treated on a nearly equal footing. In particular, the notion of proper
orthonormalization of state spaces can be directly applied also to IROP sets, up to a global
normalization factor. This is motivated by the observation, that given a scalar multiplet |0⟩ for which
|F q

q′
z
⟩ ≡ F q

q′
z
|0⟩ ≠ 0, i.e. does not vanish, then |F q

q′
z
⟩ represents the multiplet vector space for IREP q.

With proper overall normalization of the IROP F q, it follows
δqz ,q′

z
= ⟨F q

qz |F
q
q′
z
⟩ = ⟨0|F qĎ

qz F
q
q′
z
|0⟩.

The last equation also holds, if the scalar multiplet |0⟩ is replaced by an arbitrary other symmetry
eigenstate |qqz⟩. For matrix representations of IROPs and operators more generally, this motivates
the scalar or inner product for two matrices as in Eq. (A.14). Thus equipped with scalar product
and norm for matrices, an IROP decomposition can be done exactly the same way as the multiplet
decompositions for symmetry multiplets starting from a specific symmetry eigenstate (IROP
component). This is important, in particular, in the presence of inner multiplicity in the multiplet
of an IROP for consistency with the Wigner–Eckart theorem.

A.7.2. Wigner–Eckart theorem
It follows from Eqs. (A.41) and (A.42), that the states resulting from the IROP {F̂ q1

q1z } applied to a
multiplet |q2q2z⟩,

Ŝσ · F̂ q1
q1z |q2q2z⟩ = [Ŝσ , F̂ q1

q1z ]  
=s

[q1σ ]

q1z q
′
1z

F̂
q1
q′1z

|q2q2z⟩ + F̂ q1
q1z · Ŝσ |q2q2z⟩  

=s
[q2σ ]

q2z q
′
2z

|q2q′
2z ⟩

,

transforms exactly the same way under given symmetry as a tensor product of two state multiplets,

Ŝσ · |qqz⟩1|qqz⟩2 = Ŝ1σ |qqz⟩1  
=s

[q1σ ]

q1z q
′
1z

|qq′
z ⟩1

⊗|qqz⟩2 + |qqz⟩1 ⊗ Ŝ2σ |qqz⟩2  
=s

[q2σ ]

q2z q
′
2z

|qq′
z ⟩2

,

using Eqs. (A.36) and (A.40). Therefore the action of an IROP F̂ q1 onto the state space of an IREP q2
shares exactly the same algebraic structure in terms of symmetries like the product space of the two
multiplets q1 and q2.

Thismotivates theWigner–Eckart theorem.With the definition of the Clebsch–Gordan coefficients
in Eq. (A.38), it is thus clear that up to scalar factors depending on the normalization of the operator
set, the same CGCs also apply for the state space decomposition arising out of F̂ q1

q1z |q2q2z⟩. In particular,
it follows for the matrix elements of the operator w.r.t. a given state space,

⟨qqz; (α)|F̂ q1
q1z |q2q2z⟩ ≡ ⟨qqz; (α)| ·


F̂ q1
q1z |q2q2z⟩


= ⟨q; (α)∥F̂ q1∥q2⟩ · C [q2z ]

q1zqz ;(α)
, (A.43)
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where, again, α accounts for possible outer multiplicity. ⟨q; (α)∥Âq1∥q2⟩ is called the reduced matrix
element. It is entirely independent of the z-labels, i.e. the internal structure of the IREPs q1, q2, and q.

The first line in Eq. (A.43) specifies the adopted convention for matrix elements given the
Wigner–Eckart theorem: the operator is acting to the right ket-state, the symmetry labels of which
are combined. The resulting object is contractedwith the bra-states. This is important for consistency,
since the IROP F̂ q is subtly different from the IROP (F̂ Ď)q. Therefore onemust be carefulwith expressing
a matrix element through ⟨qqz |F̂ |q2q2z⟩ = ⟨q2q2z |F̂ Ď|qqz⟩∗. Even though usually ( ˆF q

qz )
Ď

∼ (F̂ Ď)q−qz ,
further signs may be needed to ensure for consistency within the Clebsch–Gordan coefficients [e.g.
see discussion around Eq. (A.49) later].

A.8. Several independent symmetries

A physical system often exhibits several symmetries. Each of the λ = 1, . . . , nS symmetries Sλ

is completely described by its own set of generators {Ŝλσ }. As these symmetries act independently of
each other, this implies that their generators must commute,

[Ŝλσ , Ŝ
λ′

σ ′ ] = 0 for λ ≠ λ′. (A.44)

This allows to assign independent quantum labels (qλqλz ) with respect to each individual symmetry
[cf. discussion following Eq. (1) in the main paper]. On the multiplet level, the symmetries are given
compactly by the combined q-labels, q ≡ (q1, q2, . . . , qnS ), while similarly their z-labels are given by
qz ≡ (q1z , q

2
z , . . . , q

nS
z ). Here the elementary multiplet labels qλ and qλz can already consist of a set of

labels themselves, the number of which is determined by the rank r of the respective symmetry Sλ

[cf. Eq. (A.18)].
When a non-abelian symmetry is broken, it is reduced to simpler subalgebras. In particular, it may

be reduced to its abelian core of z-operators (Cartan subalgebra). For example, consider the rotational
spin SU(2) symmetry. This symmetry can be broken by applying a magnetic field. The system still
maintains, however, a continuous rotational symmetry around the axis of the magnetic field, leaving
the qz symmetry intact, while themultiplet label q becomes irrelevant. Similarly, if particle–hole sym-
metry (see later) is broken, only the abelian quantum number of total charge [i.e. the z-label] remains.

Abelian symmetries therefore fit seamlessly into the general non-abelian framework outlined in
this paper. With themultiplet label q irrelevant, the qz are promoted to the status of a q-label, instead,
with no z-labels remaining [with all multiplets being one-dimensional, the z-labels are no longer
required, i.e. can be set to zero, for simplicity]. This then allows towrite the abelian symmetry in terms
of trivial scalar Clebsch–Gordan coefficients. The latter, nevertheless, are important as they account
for the proper addition rules w.r.t. the abelian z-labels,

⟨q1(z)q2(z)|q(z)⟩ = δq(z),q1(z)+q2(z) . (A.45)

A.9. Symmetries in physical systems

In the following, several examples of symmetries in simple physical systems will be given, with
the associated spinors and irreducible operator sets explained in detail. In particular, this concerns
fermionic systems with spin or particle–hole symmetry.

For the model Hamiltonians in strongly correlated electron systems, correlation through
interaction plays an important role, while the terms describing interaction typically preserve certain
underlying global symmetries. Since the arguments of demonstrating symmetries of a specific
Hamiltonian, however, are rather similar, in general, it suffices to consider a simple non-interacting
Hamiltonian. Simple issues related to interactions are discussed with Eq. (A.58) below.

For simplicity, therefore much of the following discussion will be exemplified in terms of the
Hamiltonian of a plain spinful fermionic tight-binding chain,

Ĥ =


k

tk

σ


ĉĎkσ ĉk+1,σ + H.c.


  

≡ĥk,k+1

, (A.46)



3018 A. Weichselbaum / Annals of Physics 327 (2012) 2972–3047

where ĉĎkσ creates a particle at site k with spin σ ∈ {↑,↓}. The Hamiltonian in Eq. (A.46) has
spin-independent hopping amplitudes tk, hence possesses spin- SU(2) symmetry, SU(2)spin for short.
Furthermore, it is particle–hole symmetric, implying particle–hole SU(2) symmetry, also called
charge- SU(2) symmetry, or SU(2)charge for short.

A.9.1. SU(2) spin symmetry
Using the two-dimensional spinor

ψ̂S,k ≡


ĉk↑
ĉk↓


(A.47)

for each site k, the Hamiltonian in Eq. (A.46) can be rewritten as

Ĥ =


k

tk

ψ̂

Ď
S,k · ψ̂S,k+1 + H.c.


, (A.48)

where the sum over σ was incorporated in the scalar product of the vector of operators in ψ̂S,k.
Clearly, the two-dimensional scalar product is invariant under an arbitrary unitary two-dimensional
transformation U , i.e. ψĎ

kψk+1 = (Uψk)
Ď(Uψk+1), thus exhibiting spin- SU(2) symmetry. The spinor

in Eq. (A.47) is defined in a site specific manner. When concentrating on a single site, therefore the
index k can be dropped for convenience.

The generators of spin- SU(2) symmetry are constructed in terms of the two-dimensional defining
representation of {Sσ } ≡ {S+, Sz, S−} [cf. Eq. (A.7)]. These can be written as operators (distinguished
by the hat) through second quantization in the full Hilbert space,

Ŝσ = ψ̂
Ď
S Sσ ψ̂S,

which up to prefactors leads to the spin IROP Ŝ1 ≡ {−
1

√
2
Ŝ+; Ŝz; +

1
√
2
Ŝ−}, already derived in Eq. (A.11).

The raising operator, for example, is given by

Ŝ+ = ψ̂
Ď
S


0 1
0 0


ψ̂S = ĉĎ

↑
ĉ
↓
,

which flips a down-spin to an up-spin for given site. Similarly, the z-operator is given by

Ŝz = ψ̂Ď
 1
2τz

ψ̂ =

1
2 (ĉ

Ď
↑
ĉ
↑

− ĉĎ
↓
ĉ
↓
) ≡

1
2 (n̂↑ − n̂↓).

Furthermore, [Ŝ+, ĉ
Ď
↓
] = [ĉĎ

↑
ĉ
↓
, ĉĎ

↓
] = ĉĎ

↑
shows that the spinor ψ̂Ď

S already represents an IROP for
the q =

1
2 multiplet of SU(2)spin,

(ψ̂
Ď
S )

[1/2]
=


ĉĎ
↑

ĉĎ
↓


. (A.49a)

This is already properly sorted w.r.t. z-labels, in that the second component correspond to the lower
qz = −

1
2 element of the multiplet, since [Ŝz, ĉ

Ď
↓
] = (− 1

2 ) · ĉĎ
↓
.

In contrast, the IROP for the spinor ψ̂S , i.e. without the dagger, is similar, yet has subtle differences.
In particular, with [Ŝ+, ĉ↑] = [ĉĎ

↑
c
↓
, ĉ

↑
] = −ĉ

↓
, the role of spin within the multiplet is reversed, i.e.

qz → −qz , while also an additional sign is acquired,

(ψ̂S)
[1/2]

=


−ĉ↓
ĉ↑


. (A.49b)

This extra sign is important in context of the Wigner–Eckart theorem in Eq. (A.43), where the
particular order of first applying, i.e. combining an operator with the ket-state is directly related to
the order in the Clebsch–Gordan coefficients. This is convention, of course, but consistency is crux.
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In terms of the proper IROPs in Eq. (A.49), finally, the Hamiltonian in Eq. (A.46) can be written in
either IROP while, however, one must not mix them,

Ĥ =


k

tk

(ψ̂S)

[1/2]Ď
· (ψ̂S)

[1/2]
+ H.c.


(A.50a)

=


k

tk

(ψ̂

Ď
S )

[1/2]
·

(ψ̂

Ď
S )

[1/2]Ď
+ H.c.


. (A.50b)

The second line is essentially the same as the spinor expression in Eq. (A.48), yet with the difference,
that here the underlying IROP structure has been pointed out explicitly.

A.9.2. SU(2) particle–hole symmetry for spinful system
The particle–hole symmetry SU(2)charge of the Hamiltonian in Eq. (A.46) can be made apparent in

a similar way as for the spin symmetry above. Consider the spinor in the charge sector,

ψ̂C,kσ ≡


ĉkσ

skĉ
Ď
k,−σ


with alternating phases sk = (−1)k along the chain in Eq. (A.46). Again, theHamiltonian canbewritten
as sum over scalar products in the spinors,

σ

ψ̂
Ď
C,kσ · ψ̂C,k+1,σ =


σ


ĉĎkσ ĉk+1,σ − ĉk,−σ ĉ

Ď
k+1,−σ


= ĥk,k+1,

suggesting another underlying SU(2) symmetry. Note that the alternating sign sk is crucial to recover
the correct hopping structure in Eq. (A.46). Given the spinor in the charge sector, the raising operator
becomes

ψ̂
Ď
C,kσ


0 1
0 0


ψ̂C,kσ = skĉ

Ď
kσ ĉ

Ď
k,−σ

which, up to a sign, is the same for both spins. It is therefore sufficient in the charge sector to consider
a spinor for one specific σ in ψ̂C,kσ only. Therefore, again concentrating on a single site and hence
dropping the site index k, now with fixed σ = ↑, the spinor in the charge sector is given by,

ψ̂C ≡


ĉ↑
sĉĎ

↓


. (A.51)

The associated raising operator becomes

Ĉ+ = sĉĎ
↑
ĉĎ
↓
, (A.52)

which now creates a pair of particles with opposite spin, while the z-operator is

Ĉz = ψ̂
Ď
C

 1
2τz

ψ̂C =

1
2 (ĉ

Ď
↑
ĉ
↑

− ĉ
↓
ĉĎ
↓
)

≡
1
2 (n̂↑ + n̂↓ − 1). (A.53)

With n̂ ≡ n̂↑ + n̂↓, the z-operator Ĉz counts the total charge on given fermionic site relative to half-
filling. With

[Ĉ+, ĉ↑] = [sĉĎ
↑
ĉĎ
↓
, ĉ↑] = −sĉĎ

↓
(A.54a)

[Ĉ+, ĉ↓] = [sĉĎ
↑
ĉĎ
↓
, ĉ↓] = sĉĎ

↑
, (A.54b)
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this allows to construct the q =
1
2 IROPs for SU(2)charge,

(ψ̂C )
[1/2]

=


sĉĎ

↓

−ĉ↑


(A.55a)

(ψ̂
Ď
C )

[1/2]
=


sĉĎ

↑

ĉ↓


, (A.55b)

again associating the lower component with the qz = −
1
2 element of the q = (1/2) multiplet [cf.

Eqs. (A.49)]. An irrelevant overall minus sign has been applied to the spinor in Eq. (A.55a) for later
convenience. With this, the hopping term in the Hamiltonian in Eq. (A.46) can be rewritten in terms
of the scalar products

ĥk,k+1 =

(ψ̂Ck)

[1/2]Ď
· (ψ̂C,k+1)

[1/2]

+

(ψ̂

Ď
Ck)

[1/2]
]
Ď
· (ψ̂

Ď
C,k+1)

[1/2]. (A.56)

The spinors in the charge sector do mix spin components, which essentially also requires full spin
symmetry [see later discussion of symplectic group Sp(2m) in Appendix A.10]. More importantly, the
construction of the SU(2)charge symmetry allows it to fully commute with the spin- SU(2) symmetry
introduced earlier,

[Ŝz, Ĉz] =
1
4 [n̂↑ − n̂↓, n̂ − 1] = 0

[Ŝz, Ĉ+] =
s
2 [ĉĎ

↑
ĉ
↑
, ĉĎ

↑
ĉĎ
↓
]  

=ĉĎ
↑
ĉĎ
↓

−
s
2 [ĉĎ

↓
ĉ
↓
, ĉĎ

↑
ĉĎ
↓
]  

=ĉĎ
↑
ĉĎ
↓

= 0

[Ŝ+, Ĉz] =
1
2 [ĉĎ

↑
ĉ
↓
, ĉĎ

↑
ĉ
↑
]  

=−ĉĎ
↑
ĉ
↓

+
1
2 [ĉĎ

↑
ĉ
↓
, ĉĎ

↓
ĉ
↓
]  

=ĉĎ
↑
ĉ
↓

= 0

[Ŝ+, Ĉ+] = s[ĉĎ
↑
ĉ
↓
, ĉĎ

↑
ĉĎ
↓
] = scĎ

↑
ĉĎ
↑

= 0. (A.57)

That is, the two symmetries act completely independent of each other and thus can coexist
simultaneously, written as the overall symmetry SU(2)spin ⊗ SU(2)charge.

If interactions are present in the system, such as local Coulomb interaction Un̂↑n̂↓, then the
particle–hole symmetric regime requires a specific altered onsite energy relative to the chemical
potential. With n̂2

σ = n̂σ , and n̂ ≡ n̂↑ + n̂↓, it follows that n̂↑n̂↓ =
1
2 (n̂ − 1)2 +

1
2 (n̂ − 1), and

therefore

εdn̂ + Un̂↑n̂↓ =

εd +

U
2


(n̂ − 1)  

=Ĉz

+
U
2


n̂ − 1

2
+ const. (A.58)

The first term on the r.h.s. is proportional to the Ĉz operator, which thus acts like a magnetic field for
SU(2)spin. Therefore for full particle–hole symmetry to hold, this term must be zero, which requires
εd = −

U
2 . In particular, in the absence of interaction, this implies εd = 0. The actual interaction

term, i.e. the second term on the r.h.s. in Eq. (A.58), also resembles Ĉz . Yet it is quadratic, and for
this it also holds, Ĉ2

z = Ĉ2
x = Ĉ2

y . Therefore, this term can actually be written as Ĉ2 which itself,
like spin Ŝ2 for SU(2)spin, represents the Casimir operator for SU(2), and thus is compatible with
SU(2)spin ⊗ SU(2)charge.

The actual IROP for particle creation and annihilation given SU(2)⊗2
SC ≡ SU(2)spin ⊗ SU(2)charge

symmetry can be generated using above symmetry operations. This generates a four-dimensional
spinor. As it turns out, the resulting IROP is the combination of the two IROPs generated in the spin
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symmetric case in Eqs. (A.49) as well as in the particle–hole symmetric case in Eqs. (A.55),

ψ̂

 1
2 ,

1
2


CS ≡


sĉĎ

↑

ĉ↓
sĉĎ

↓

−ĉ↑

 . (A.59)

The multiplet labels
 1
2 ,

1
2


will be derived with Eq. (A.61) below. The signs for the individual

components in above IROP have been properly adjusted, considering that the raising operator in the
charge sector itself, Eq. (A.52), carries the alternating sign s(k) = (−1)k. For example, commuting
Ĉ+ onto the fourth component, yields the third component of the spinor ψ̂CS [cf. Eq. (A.54a)], while
commuting Ŝ+ onto the third component yields the first component, and so on. Again, keeping track
of the alternating sign sk = (−1)k is crucial to recover the hopping structure in Eq. (A.46),

ψ̂CS,k
Ď

· ψ̂CS,k+1 = − ĉk↑ĉ
Ď
k+1,↑  

=−ĉĎk+1,↑ ĉk↑

+ ĉĎk↓ĉk+1,↓ − ĉk↓ĉ
Ď
k+1,↓  

=−ĉĎk+1,↓ ĉk↓

+ ĉĎk↑ĉk+1,↑

= ĥk,k+1. (A.60)

The full tight-binding Hamiltonian simply becomes Ĥ =


k tk(ψ̂CS,k)
Ďψ̂CS,k+1 where the hermitian

conjugate termhas been incorporated already in the spinor structure. This also reflects the irrelevance
of taking the hermitian conjugate version of the IROP in Eq. (A.59) as this results in essentially the same
object after properly reordering of its components and taking care of signs.

With Eq. (A.60) being a scalar product in a four-dimensional spinor space, one may be tempted
to think that a plain tight binding chain actually has a non-abelian symmetry with a defining
representation of dimension 4. This cannot be the symmetry SU(4), however, since SU(4) has rank-
3 and thus requires three commuting abelian z-operators. The symmetries discussed here, however,
only have two abelian z-operators, namely total spin and total charge. The symmetry that appears
compatible with this scenario, at second glance, is the symplectic symmetry Sp(4) [see Appendix A.10
below]. Nevertheless, even the latter can be excluded, since raising and lowering operators are
severely constrained by the fact that the creation and annihilation operators appear in pairs for
the same fermionic particle in the IROP of Eq. (A.59). Consequently, quadratic operators of the type
(ĉσ )ĎĉĎσ = (ĉĎσ )

Ďĉσ = 0 are immediately excluded. With this, the symmetry of the spinor in Eq. (A.59)
has to remain the product of two symmetries, i.e. SU(2)⊗2

SC ≡ SU(2)spin ⊗ SU(2)charge.
Having determined the IROP ψ̂CS in Eq. (A.59) by repeated application of RLOs Ŝ± and Ĉ±, the z-

labels for each of the four components, on the other hand, can be determined through the z-operators
Ĉz ≡

1
2


ĉĎ
↑
ĉ
↑

− ĉ
↓
ĉĎ
↓


and Ŝz ≡

1
2


ĉĎ
↑
ĉ
↑

− ĉĎ
↓
ĉ
↓


, resulting in the z-labels qz ≡ (Cz, Sz), respectively.

The results are summarized in the following table.

[ z-operator, IROP component ] (Cz, Sz)

[Ĉz, sĉ
Ď
↑
] = +

1
2 (sc

Ď
↑
)

[Ŝz, sĉ
Ď
↑
] = +

1
2 (sĉ

Ď
↑
)


(+ 1

2 ,+
1
2 )

[Ĉz, ĉ↓] = −
1
2 (ĉ↓)

[Ŝz, ĉ↓] = +
1
2 (ĉ↓)


(− 1

2 ,+
1
2 )

[Ĉz, sĉ
Ď
↓
] = +

1
2 (sĉ

Ď
↓
)

[Ŝz, sĉ
Ď
↓
] = −

1
2 (sc

Ď
↓
)


(+ 1

2 ,−
1
2 )

[Ĉz,−ĉ↑] = −
1
2 (−ĉ↑)

[Ŝz,−ĉ↑] = −
1
2 (−ĉ↑)


(− 1

2 ,−
1
2 )

(A.61)
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These z-labels demonstrate that both the charge and spin multiplet contained in ψ̂CS corresponds to
a q =

1
2 multiplet. The maximum weight state has the z-labels ( 12 ,

1
2 ), which thus labels the spinor,

as was already indicated in Eq. (A.59).
Similarly, the local state space of a fermionic sitemust be organized consistentwith the SU(2)spin⊗

SU(2)charge symmetry above. The local state space consists of the empty state |0⟩, the singly occupied
states |↑⟩ and |↓⟩, and the doubly occupied state s |↑↓⟩. Note that the sign in the last state is crucial,
as it is generated by the raising operator Ĉ+ acting on the empty state |0⟩. In summary,

State C Cz S Sz
|0⟩ 1

2 −
1
2 0 0

|↑⟩ ≡ ĉĎ
↑
|0⟩ 0 0 1

2 +
1
2

|↓⟩ ≡ ĉĎ
↓
|0⟩ 0 0 1

2 −
1
2

s |↑↓⟩ ≡ sĉĎ
↑
ĉĎ
↓
|0⟩ 1

2 +
1
2 0 0

(A.62)

Therefore the local four-dimensional state space of fermionic site is spanned by the two multiplets,
q ≡ (C, S) ∈ {(0, 1

2 ), (
1
2 , 0)}. If particle–hole symmetry is broken yet particle number still preserved,

then 2Cz from the middle column describes the total number of particles relative to half-filling [cf. Eq.
(A.53)].

With the ordering convention of state labels being |C, Cz; S, Sz⟩ and σ ∈ {↑,↓} ≡ {+1,−1}, the
non-zero matrix elements of the 4-component spinor in Eq. (A.59) can be calculated. For example,

+sσ = ⟨−σ |ĉσ · s| ↑↓⟩ = s⟨↑↓ |s · sĉĎσ · | − σ ⟩
(∗)

≡ s
 1
2 ,

+1
2 ; 0, 0

 ψ̂
(
1
2

+1
2 ;

1
2
σ
2 )

0, 0; 1
2 ,

−σ
2


= s ⟨ 1

2 ,
+1
2 |

1
2 ,

+1
2 ; 0, 0⟩  

=1 (charge)

⟨0, 0| 12 ,
σ
2 ;

1
2 ,

−σ
2 ⟩  

=
+σ
√
2

(spin)

⟨
1
2 , 0∥ψ∥0, 1

2 ⟩

⇒
 1
2 , 0∥ψ∥0, 1

2


=

√
2.

The order inversion of the matrix element in the first line was used since the spinor ψ̂CS in Eq. (A.59)
contains the creation operator sĉĎσ and not its hermitian conjugate. The overall complex conjugation
⟨·⟩

(∗), however, is irrelevant since all matrix elements are real, hence the notation of putting the
asterisk in brackets.

The second non-zero reduced matrix element can be calculated in a similar fashion,

1 = ⟨0|ĉσ |σ ⟩ = s⟨σ | · sĉĎσ · |0⟩(∗)

≡ s⟨0, 0; 1
2 ,

σ
2 |ψ̂

(
1
2

+1
2 ;

1
2
σ
2 )

|
1
2 ,

−1
2 ; 0, 0⟩

= s ⟨0, 0| 12 ,
+1
2 ;

1
2 ,

−1
2 ⟩  

=+
1

√
2

(charge)

⟨
1
2 ,

σ
2 |

1
2 ,

σ
2 ; 0, 0⟩  

=1 (spin)

⟨0, 1
2∥ψ∥

1
2 , 0⟩

⇒ ⟨0, 1
2∥ψ∥

1
2 , 0⟩ = s

√
2.

Overall, this leads to the reduced matrix elements in the charge–spin sectors (C, S) ∈ {(0, 1
2 ), (

1
2 , 0)}

ψ
[1/2,1/2]
CS =


0 s

√
2

√
2 0


. (A.63)

Note that although the spinor in Eq. (A.59) has four components, i.e. is of rank-3, on the reduced
multiplet level in Eq. (A.63) the spinor becomes a two-dimensional object as expected from an
IROP. The further internal structure is entirely taken care of by rank-3 Clebsch–Gordan coefficients,
which have been omitted in Eq. (A.63) [for a full description of ψ [1/2,1/2]

CS including Clebsch–Gordan
coefficients, see QSpace (C.5) in the Appendix].
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The operator in Eq. (A.63) is non-hermitian. In the context of two-site hopping, however, this
nevertheless leads to a hermitian term in the Hamiltonian, as required. Indicating the local symmetry
eigenspace for site k by |σ ⟩k, the matrix elements of the hopping term in the tensor-product basis
|σk+1⟩ |σk⟩ (in this order, assuming site k + 1 is added after site k) are given by

⟨σk|⟨σk+1|ψ̂
Ď
k ψ̂k+1|σ

′

k+1⟩|σ
′

k⟩ = ψ
Ď
k ⊗ [zψ]k+1, (A.64)

where the ψ ’s to the right without the hat denote the matrix elements in the local |σ ⟩ basis. Note,
that fermionic signs apply, when ψ̂Ď

k is moved, for example, to the left of ⟨σk+1|, such that the tensor-
product on the r.h.s. of Eq. (A.64) contains [zψ]k+1 rather than ψk+1, where ẑk ≡ (−1)n̂k is diagonal
in |σk⟩ and adds signs corresponding to the number of particles in |σk⟩. Note that with the particle
number being related to Ĉz =

1
2 (n̂ − 1), the operator ẑ is well-defined in terms of the symmetry

labels. It is a scalar operator, since (−1)n̂−1
= (−1)(n̂−1)2

= (−1)4Ĉ
2
z , hence does not alter the

Clebsch–Gordan content of the operator ψ̂ but rather acts on themultiplet level only. For the hopping
ψ̂

Ď
k ψ̂k+1 between two nearest-neighbor sites, Eq. (A.63) finally leads to

Hk,k+1 =


0

√
2

sk
√
2 0


⊗


−1 0
0 1


0 sk+1

√
2

√
2 0


  

=

 0 −sk+1
√
2

√
2 0



,

written as a plain tensor product on the level of themultiplet spaces of two fermionic sites. For the sake
of the argument, the product space here is not yet described in terms of proper combined symmetry
multiplets of sites k and k + 1.

With sk = (−1)k, Hk,k+1 in the last equation clearly yields a hermitian object for all iterations. For
example, for even k, the hopping term is given by

H [k even]

k,k+1 =


0

√
2

√
2 0


⊗


0

√
2

√
2 0


similar in structure to a hermitian object of the type τx ⊗ τx in terms of Pauli matrices, while for odd
k,

H [k odd]
k,k+1 =


0

√
2

−
√
2 0


⊗


0 −

√
2

√
2 0


similar in structure to the hermitian (iτy) ⊗ (iτy) = −τy ⊗ τy. Hence for every even (odd) iteration,
one has a τx ⊗ τx (τy ⊗ τy) structure, respectively, a prescription that is periodic with every pair of
iterations. This intrinsic even–odd behavior is not specifically surprising, considering, for example,
that two particles are needed to return to the same charge quantum numbers related to particle–hole
symmetry.

In summary, using Eq. (A.60), the hopping in the Hamiltonian is given by

Ĥ =


k

tkψ̂
Ď
k ψ̂k+1. (A.65)

In a sense, the net effect of incorporating spin SU(2) was to eliminate the spin index, while
incorporation of particle–hole SU(2) eliminates the hermitian conjugate term in the Hamiltonian.
Together they reduce the four terms initially required for a single hopping in Eq. (A.46) to the single
scalar term ψ̂

Ď
k ψ̂k+1.
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A.9.3. Particle–hole SU(2) symmetry for several channels
The alternating sign in the raising operator Ĉk,+ = sĉĎ

↑
ĉĎ
↓
in Eq. (A.52) defines the doubly occupied

states as |
1
2 ;

+1
2 ⟩ = Ĉk,+|

1
2 ;

−1
2 ⟩ = sĉĎ

↑
cĎ
↓
|0⟩; for even sites, s = +1, therefore |

1
2 ;

+1
2 ⟩ = ĉĎ

↑
ĉĎ
↓
|0⟩. For

odd sites, on the other hand, | 12 ;
+1
2 ⟩ = −ĉĎ

↑
ĉĎ
↓
|0⟩ = ĉĎ

↓
ĉĎ
↑
|0⟩. In practice, for consistency, usually a

certain well-defined fermionic order is adopted. Above raising operator Ĉk,+ thus suggests that it may
be useful to reverse the fermionic order of every other site for the local state space included there.

Fully reversing the fermionic order of a given site k with several fermionic channels i = 1, . . . ,m
implies for thematrix elements for particle creation or annihilation operators,

ck,iσ → c̃k,iσ ≡ zkck,iσ
cĎk,iσ → c̃Ďk,iσ ≡ −zkc

Ď
k,iσ .

This transformation is equivalent to a unitary transformation local to site k. Similar to Eq. (A.64),
ẑk ≡ (−1)n̂k with n̂k ≡


iσ n̂k,iσ and n̂k,iσ ≡ ĉĎk,iσ ĉk,iσ again takes care of fermionic signs for the

full multi-level site k. Being a scalar operator, ẑk is independent of the fermionic order.
Now consider the effect of flipping the fermionic order for the odd sites in the tight-binding chain

that carry the sign s = −1, assuming particle–hole symmetry in every channel. For a specific channel,
this (i) takes away the sign in the raising operator Ĉk,+, and (ii) implies, for example, for the 4-
component spinor in Eq. (A.59) for a single channel,

ψ̂CS,k odd ≡


−ĉĎ

↑

ĉ↓
−ĉĎ

↓

−ĉ↑

 →


+ẑĉĎ

↑

ẑĉ↓
+ẑĉĎ

↓

−ẑĉ↑

 ≡ ẑkψ̂CS,k even, (A.66)

having intermittently dropped the index k for readability. Therefore, up to the local operator ẑk which
assigns fermionic signs to the full Hilbert space of a local site, thematrix elements of the spinor for the
odd sites are exactly the same as the matrix elements of the spinor for even sites. Therefore with ψ̂
taken as the spinor for even sites in the chain, the required spinor for odd sites becomes ẑψ̂ . Together
with the additional fermionic signs in the nearest-neighbor hopping term as already encountered in
Eq. (A.64), the hopping structure ĥk,k+1 of the tight-binding Hamiltonian in Eq. (A.65) becomes,

ψ
Ď
k ⊗ [z · (zψ)]k+1 = ψ

Ď
k ⊗ ψk+1 for k even

(zψ)Ďk ⊗ [z · ψ]k+1 = (zψ)Ďk ⊗ (zψ)k+1 for k odd.

This result generalizes to any number of channels with particle–hole symmetry. As such it much
simplifies the structure and thus the treatment of the two different kinds of spinors for even and
odd sites, respectively, that had been required initially.

A.9.4. Symmetric three-channel system
Consider the generalization of the spinful one-channel setup in Eq. (A.46) to a spinful three-channel

system,

Ĥ =


k

tk ·

m=3
i=1


σ

(ĉĎk,iσ ĉk+1,iσ + H.c.)  
≡ĥk,k+1

, (A.67)

where ĉĎk,iσ creates a particle at site k in channel i with spin σ . This model is relevant for the
system analyzed in the main body of the paper where the specific number of three channels, for
example, originates from the underlying orbital band structure in terms of a partially filled d-shell.
The Hamiltonian in Eq. (A.67) can also be complemented with interaction terms that are compatible
with the symmetries discussed in the following. This can include onsite interaction U at half-filling
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[cf. Eq. (A.58)], or uniform local Hund’s coupling JH [e.g. see Eq. (27b)]. Here, however, the focus of the
discussion is on symmetries, for which the Hamiltonian in Eq. (A.67) suffices.

The Hamiltonian in Eq. (A.67) possesses SU(2) spin symmetry, SU(2) particle–hole symmetry in
each channel, and also SU(3) channel symmetry, while not all of these symmetries necessarily are
independent of, i.e. commute with each other. All of these symmetries can be defined within the
Hilbert space of a local site, hence again focusing the discussion on a single site k in the following,
while dropping the site index k, for simplicity. For each of the three channels, the associated spinful
fermionic level is represented by the four states as in Eq. (A.62), leading to a total of 43

= 64 state for
a given site.

The total spin-SU(2) symmetry of a site is described by the generators

Ŝ+ =


i

Ŝi+ =


i

ĉĎi↑ĉi↓

Ŝz =


i

Ŝiz =
1
2


i

(n̂i↑ − n̂i↓),
(A.68)

where Ŝiσ represents the spin operators for the fermionic level i, with Ŝz =
1
2 [Ŝ+, Ŝ

Ď
+], as expected for

SU(2).
The particle–hole symmetry exists for every channel i, and is described by the SU(2) symmetry,

Ĉi+ = sĉĎi↑ĉ
Ď
i↓

Ĉiz =
1
2 [Ĉi+, Ĉ

Ď
i+] =

1
2


n̂i − 1


,

(A.69a)

which includes the same sign-factor sk = (−1)k as in Eq. (A.52) to correctly represent the hopping
structure in the Hamiltonian equation (A.67). The total charge relative to half-filling is given by (up to
a factor of 2)

Ĉz ≡


i

Ĉiz . (A.69b)

Finally, the channel symmetry is given by the minimal set of two raising operators {T̂+, Û+} ≡

{Ŝ12, Ŝ23} togetherwith the z-operator {T̂z, Ŷ } ≡ {Ẑ1, Ẑ2} as introduced through Eq. (A.28) in Eq. (A.30),

T̂+ =


σ

ĉĎ1σ ĉ2σ , T̂z =


σ


n̂1σ − n̂2σ


,

Û+ =


σ

ĉĎ2σ ĉ3σ , Ŷ =


σ


n̂1σ + n̂2σ − 2n̂3σ


.

(A.70)

Here the notation for the generators of SU(3) has been changed to another notation frequently also
found in the literature, so these generators can be better distinguished from the generators for spin
and particle–hole symmetry. In particular, the operators T̂+ and T̂z generate an SU(2) subalgebra,
that is linked to the full SU(3) symmetry through the generators Û+ and Ŷ . The normalization of
the z-operators, however, has been chosen consistent with Eq. (A.28), such that plain integer matrix
elements arise.

The spin symmetry clearly commutes with the particle–hole symmetry in each channel, which
follows from the previous one-channel discussion in Eqs. (A.57). Therefore it remains to analyze the
compatibility of the SU(3) channel symmetry. All z-operators clearly commute. For the SU(3) raising
operators, it follows with respect to the spin symmetry,

T̂+, Ŝ+


=


σ ,i


cĎ1σ ĉ2σ , ĉ

Ď
i↑ĉi↓


=


σ

(δσ↑ − δσ↓) · ĉĎ1↑ĉ2↓ = 0 (A.71)

with a similar expression for Û+ instead of T̂+ with a shift in the channel indices. Note that in order for
the r.h.s. to vanish, the sum over the spin σ is essential which shows the importance of the summation
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over σ in Eqs. (A.70). As a consequence, the SU(3) channel symmetry in Eq. (A.70) commutes with the
SU(2) spin symmetry, indeed.

The compatibility of the SU(3) channel symmetry with the SU(2) particle–hole symmetry,
however, cannot be established, since

T̂+, Ĉi+


=


σ


cĎ1σ ĉ2σ , sĉ

Ď
i↑ĉ

Ď
i↓


= sδi2(ĉ

Ď
1↑ĉ

Ď
2↓ − ĉĎ1↓ĉ

Ď
2↑) ≠ 0 (A.72)

cannot be made to vanish for all channels i at the same time. Therefore the non-abelian channel and
particle–hole symmetries cannot coexist independently of each other. Nevertheless, the generators of
each individual symmetry do commute with the Hamiltonian, which thus suggests a larger symmetry,
with Eq. (A.72) already indicating one of the additional generators. As it turns out, this symmetry is
Sp(2m) with m the number of channels [30]. This symmetry will be introduced and discussed in the
next section.

By reducing the non-abelian particle–hole symmetry to its abelian conservation of total charge,
however, this abelian symmetry does commute with the SU(3) channel symmetry,

i


T̂+, Ĉiz


=


σ ,iσ ′

1
2


cĎ1σ ĉ2σ , c

Ď
iσ ′ ĉiσ ′


=


i

1
2 (δi2 − δi1)


σ

ĉĎ1σ ĉ2σ = 0.

In order to get a commuting abelian charge symmetry, the z-operators for the channel-specific
particle–hole symmetry must be summed over all channels i. With all commuting symmetries
combined, this leads to the overall symmetry SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel, consisting of the
SU(2) total spin symmetry in Eq. (A.68), the abelian total charge of the system in Eq. (A.69b), and the
channel SU(3) symmetry in Eq. (A.70).

A more conventional symmetry setup can be obtained by giving up the channel SU(3) symmetry.
Bearing in mind that the channel-specific SU(2) particle–hole symmetries commute with total spin,
this also allows the symmetry setup SU(2)spin ⊗ SU(2)⊗3

charge.
The symmetry combinations above can be motivated also by a simple counting argument with

respect to conserved abelian quantum numbers. Note that the preserved abelian quantum numbers
in theHamiltonian equation (A.67) are the particle number in each of the three channels togetherwith
the total spin Sz . This results in a total of four z-operators, and thus four z-labels. Now, by including
non-abelian flavors, the number of z-operators clearly cannot increase, but will remain the same.
Total spin has one z-operator, the channel SU(3) symmetry has two z-operators, and the channel-
specific particle–hole symmetries have three z-operators, which combined results in 1+2+3 = 6 z-
operators. This set of z-operators therefore cannot be independent of each other, as already seen in the
earlier discussion. Yet, in fact, both of the alternative symmetry setups above do have a total of four
z-operators. For SU(2)spin⊗U(1)charge⊗SU(3)channel, these are 1+1+2 from spin, charge, and channel
symmetry, respectively, while for SU(2)spin ⊗ SU(2)⊗3

charge these are 1+ 3 from spin and each channel.
For the symmetry setting SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel then, the hopping term in the

Hamiltonian in Eq. (A.67) is described by a 6-component IROP ψ̂ [6]
k (annihilation operators for

spin-up and spin-down combined), that can be obtained, for example, numerically as described in
Appendix B.2. This leads to

ĥk,k+1 = ψ̂ [6]Ď
n · ψ̂

[6]
k + H.c. (A.73a)

In contrast, for the second symmetry setting SU(2)spin ⊗ SU(2)⊗3
charge, the IROPs ψ̂ [4]

k,i required for the
hopping term are already exactly the 4-component spinors in Eq. (A.59), i.e. one for each individual
channel, i = 1, . . . , 3. The hopping in the Hamiltonian is thus described by

ĥk,k+1 =

m=3
i=1

ψ̂
[4]Ď
k,i ψ̂

[4]
k+1,i, (A.73b)
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i.e. without the hermitian conjugate part as this is already included through particle–hole symmetry.
Furthermore, note that particle–hole symmetry also acquires even–odd alternations for the spinors
along a chain [see Appendix A.9.2].

A.10. The symplectic group Sp(2m)

All Hamiltonians considered in this paper are time-independent, hence obey time-reversal
symmetry. Time-reversal symmetry then is described by an anti-unitary operator T̂ = Σ̂yK̂ [32], that
includes a standard unitary operation Σ̂y together with the operator K̂ , which stands for complex
conjugation [the notation of Σ̂y has been chosen for latter convenience; see Eq. (A.77) below]. The
time-reversal operator obeys T̂ 2

= ±1, where for spin-half particles, such as electrons as considered
throughout in this paper, it holds T̂ 2

= −1. The latter is important for the symmetry Sp(2m), since
it implies that the unitary Σ̂y must be antisymmetric. This follows simply by looking at the matrix
elements of the time-reversal operator for arbitrary states |a⟩ and |b⟩ in some real basis i,

⟨a|T̂ b⟩ =


i,j

a∗

i (Σy)ijb∗

j ,

yet it also holds,

⟨a|T̂ b⟩ = ⟨ T̂ 2
−1

b|T̂ a⟩ = −


i,j

b∗

j (Σy)jia∗

i .

As this applies for arbitrary states |a⟩ and |b⟩, this shows that, given T̂ 2
= −1, the unitary Σ̂y must be

antisymmetric, indeed.
Since a time-independent Hamiltonian obviously commutes with the time-reversal operator, it

follows that all eigenstates of the Hamiltonian can also be written as eigenstates of the time-reversal
operator T̂ . As a consequence, all unitary symmetry operations Ĝ = exp(i


σ aσ Ŝσ ) can be constrained

to unitaries which also leave the time-reversal operator invariant. That is,

T̂ !
= ĜT̂ Ĝ−1

= ĜΣ̂y K̂ ĜĎ
=ĜT K̂

⇒ Σ̂y = ĜΣ̂yĜT . (A.74)

For the generators Ŝσ of a symmetry group this implies (e.g. by expansion of the exponential in Ĝ to
first order in aσ ), that

Ŝσ Σ̂y + Σ̂yŜTσ = 0. (A.75)

This exactly corresponds to the definition of the Lie algebra Sp(2m). Having a unitary, i.e. non-
singular, yet also antisymmetric Σ̂y, this requires a global Hilbert space of even dimension N , since
det(Σy) = det(ΣT

y ) = (−1)Ndet(Σy) ≠ 0. While this argument holds on the entire Hilbert space,
for a specific symmetry subspace (carrier space) of an irreducible representation of Sp(2m) this is not
necessarily the case. Specifically, there are IREPs with odd dimensions, a simple example being the
scalar representation with dimension 1. Within such an irreducible representation, a non-singular
antisymmetricΣy does not exist. This is not a problem, however, since the existence ofΣy is required
only globally, and also in the defining representation, which thus has to be of even dimension.

Consider such a matrix representation of Sp(2m) of even dimension, which allows to explicitly
construct the non-singular antisymmetric Σy. In this case, an arbitrary matrix S(σ ) within the space
of the generators of the symmetry can be written as a tensor-product with a two-dimensional space,
which itself can be expanded in terms of the Pauli matrices τσ [cf. Eq. (A.6)],

S(σ ) ≡

3
x=0

τx ⊗ S(σ )x , (A.76)
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where x ∈ {0, 1, 2, 3} ≡ {0, x, y, z} and τ0 ≡ 1(2) the two-dimensional identitymatrix. Here the same
letter S is used left and right in Eq. (A.76), as their interpretation is related. Nevertheless, they refer to
different objects. So in order to distinguish them, the generators on the l.h.s. are written with Greek-
letter subscripts (σ ), while their decomposition S(σ )x is denoted in roman font with roman or numeric
subscripts. Moreover, for readability, the index σ referring to a specific generator will be skipped in
the following where not explicitly required (hence the σ has been put in brackets).

Now, with representations of a symmetry unique up to similarity transformation, one is free to
choose the form of the matrix representation of the operator Σ̂y in Eq. (A.75). In the two-dimensional
(block) space described by the Pauli matrices then,Σy is chosen as follows [66,67],

Σy = τy ⊗ 1(m) ≡


0(m) −i1(m)

i1(m) 0(m)


, (A.77)

where the last term explicitly denotes the tensor block-decomposition of m × m matrices, with
0(m) [1(m)] an m × m dimensional zero [identity] matrix, respectively. This Σy fulfills the minimal
requirement that it is (i) unitary and (ii) antisymmetric. Using the Σy in Eq. (A.77) in the defining
equation for Sp(2m), Eq. (A.75), and the fact that the generators S(σ ) in Eq. (A.76) shall refer to
hermitian operators to start with, this implies for the decomposition Sx, that S0 ≡ iA is a purely
imaginary and antisymmetric matrix, while the remaining Sx for x = (1, 2, 3)must be real symmetric
matrices. In summary, this allows to rewrite the matrix block-decomposition in Eq. (A.76) in the form
[66,67],

S =


iA + S3 S1 − iS2
S1 + iS2 iA − S3


≡


C DĎ

D −CT


, (A.78)

where C ≡ iA + S3 (D ≡ S1 + iS2) is an arbitrary hermitian (symmetric) m × m matrix, respectively.
The resulting number of free parameters is m2

+ m for the matrix D (where the +m comes from the
fact that the diagonal can be fully complex), and m2 for the hermitian matrix C. The total number of
free parameters of the (N ≡ 2m)-dimensional matrices therefore is,

g = m (2m + 1) ≡
N
2 (N + 1) . (A.79)

In the case of the defining representation, by construction, this also corresponds to the dimension of
the symmetry group Sp(2m). For comparison, for example, the orthogonal group O(N) has dimension
N
2 (N − 1).

Setting the off-diagonal block-matrix D in Eq. (A.78) to zero, and using arbitrary hermitian yet
also traceless matrices C, this directly demonstrates that SU(m) is contained as a subalgebra within
Sp(2m). This subalgebra SU(m) has rank m − 1, i.e. has m − 1 z-operators. Now, the full Sp(2m)
symmetry also includes the tracefull hermitian matrix C. This introduces the remaining m-th z-
operator, Zm = τz ⊗ 1(m). With a total of mz-operators, Sp(2m) therefore has rank m, with the z-
operators given by

Zk ≡ τz ⊗ Z (m)k , (A.80a)

where

Z (m)k =


(Z (m)k )SU(m) k = 1, . . . ,m − 1
1(m) k = m,

(A.80b)

with

Z (m)k

SU(m)
the standardm × m dimensional z-operators for SU(m). By construction, all of these

z-operators can be considered diagonal, as they form a mutually commuting set of matrices.
Leaving the space of strictly hermitian generators, the canonical RLOs from the SU(m) subalgebra

are given by

Sij ≡


Sij 0
0 −STij


, (i ≠ j) (A.81)
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with Sij ≡ Eij given by the non-symmetric matrices in Eq. (A.27b). This encodes both, raising and
lowering operators, depending on i < j or i > j, respectively. Having (m2

− 1)+ 1 = m2 generators
from the SU(m) subalgebra together with Zm, the remainingm (m + 1) operators are split equally into
complimentary raising and lowering operators. The corresponding canonical RLOs can be chosen as
follows [66,67],

S̃±

ij ≡
1
2


τx ± iτy


⊗ S̃ij, (all i, j) (A.82)

with the symmetric matrices S̃ij ≡
1
2 (Eij + Eji). Here the tilde serves to differentiate the RLOs from the

SU(m) subalgebra in Eq. (A.81). Having symmetric S̃ij, i.e. S̃ij = S̃ji, this describes a total of 1
2m (m + 1)

raising operators. Complemented by 1
2m (m + 1) lowering operators, indeed, this completes the group

of generators for the Lie algebra Sp(2m).
Using the canonical representation for SU(m) together with above extension to Sp(2m), this

provides the canonical representation for Sp(2m) as in Eq. (A.20). For example, with

(z⃗i)k ≡ z(m)k,i ≡ (Z (m)k )ii (A.83)

referring to the i-th diagonal matrix element of the diagonal matrices Z (m)k , it follows

Z (m)k S̃ij = S̃ijZ
(m)
k =


z(m)k,i + z(m)k,j

  
≡(z⃗i+z⃗j)k

·S̃ij,

and thus
Zk, S̃±

ij


=


τz ⊗ Z (m)k , 1

2 (τx ± iτy)⊗ S̃ij


=
1
2 [τz, τx ± iτy]  

=±(τx±iτy)

⊗

(z⃗i + z⃗j)kS̃ij


= ±(z⃗i + z⃗j)k · S̃±

ij , (A.84a)

(no summation over i or j). Similarly, for the RLOs Sij from the SU(m) subalgebra, with
Z (m)k , Sij


= (z⃗i − z⃗j)k · Sij

it follows,
Zk, Sij


=


τz ⊗ Z (m)k ,


Sij 0
0 −STij


=


Z (m)k , Sij


0

0 +

Z (m)k , STij


= (z⃗i − z⃗j)k · Sij, (A.84b)

since

Z, ST


= − [Z, S]T . This confirms that the z-operators together with the raising and lowering

operators are in the expected canonical form, indeed.

A.10.1. Internal multiplet ordering
The block-decomposition of Eq. (A.76) is not yet ordered w.r.t. to the RLOs, i.e. the z-labels [here,

by definition, it is assumed that a raising (lowering) operator leads to a larger (smaller) z-label in root
space which directly links to the underlying sorting implemented in root space]. The starting point,
however, is correct: (i) The (D = 2m) dimensional first state |e1⟩ [cf. Eq. (A.27a)] does represent the
maximum weight state, indeed, and (ii) by applying the m − 1 lowering operators from the SU(m)
subalgebra, this iteratively demotes the MW-state through the states |e2⟩, . . . , |em⟩. So far the state
order is correct.

However, the next lower state is obtained by the m-th lowering operator, i.e. the one that links
to the full Sp(2m) symmetry. This will generate the state |eD⟩, which thus is not in order. Through
another sequence of lowering operators from the SU(m) subalgebra, finally this proceeds through the
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states |eD−1⟩, . . . , |eD−m+1⟩ with additional alternating signs. The full sequence of normalized states
thus obtained starting from the MW-state, can be collected as columns into a unitary matrix U ,

U ≡


1(m) 0
0 Σ (m)


, (A.85a)

with the m × m dimensional matrixΣ (m)

Σ (m)
≡

 · · ·

· · +1 ·

· −1 · ·

+1 · · ·

 , (A.85b)

to be distinguished from Σy in Eq. (A.77) associated with time-reversal symmetry. The unitary U in
Eq. (A.85a) maps the basis into the correct order w.r.t. to sorted z-labels, as is assumed throughout
this paper. Therefore this basis convention will be used henceforth, which requires U to be applied to
all generators.

The transformation of an arbitrary symmetry operation S in Eq. (A.78) then leads to S → UĎSU ,
that is

C DĎ

D −CT


→


C


ΣTD

Ď
ΣTD −C t


. (A.86)

In ΣTD, ΣT flips the order of the rows in D with alternating signs, starting with +1 on the new first
row. The transformation C t

≡ ΣTCTΣ in the lower right block, finally, corresponds to inversion of C
w.r.t. its center with alternating checker-board likeminus signs applied, starting with plus signs along
the regular matrix diagonal. With C hermitian, when taken real, C t is equivalent to transpositionw.r.t.
the minor diagonal [67], thus indicated by superscript lowercase t [this is in contrast to the standard
transposition (·)T around the regular diagonal].

All generators inherited from the SU(m) subalgebra thus become

S →


Si 0
0 −Sti


. (A.87)

In particular, all z-operators have the diagonal in the lower-right diagonal flipped to reverse order.
The simple RLOs from the SU(m) subalgebra now have two strictly positive entries +1 at the first
upper subdiagonal at symmetric positionsw.r.t. the center of thematrix. The remaining simple raising
operator completing the Sp(2m) algebra (see below) is given by the matrix S̃mm = Emm → EmmΣ =

+Em1 in the upper right block, thus naturally completing the set of simple raising operators of the type

S+

(α=1) =



0 1 · · · ·

· 0 0 · · ·

· · 0
. . . · ·

· · ·
. . . 0 ·

· · · · 0 1
· · · · · 0


, (A.88)

with α = 1, . . . ,m indicating the position of the entries of 1 moving towards the center of the first
upper off-diagonal.

A.10.2. Multiplet labels for Sp(2m) for m = 3
With the RLOs defined to have at most two matrix elements exactly equal to 1, the canonical

commutator relations in Eq. (A.84) directly depict the diagonal elements of the z-matrices. As already
indicated in Eq. (A.83), these diagonals can be combined as rows into an r×Dmatrix zk,i, to be referred
to as z-matrix, with r = m being the rank of the symmetry and D = 2m the dimension of the
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defining matrix representation. The vectors z⃗i in Eq. (A.83) thus refer to the columns in the z-matrix,
and therefore directly reflect the qz-labels, i.e. the root space.

For Sp(6), this 3 × 6 dimensional z-matrix reads

z =

1 −1 0
1 1 −2
1 1 1

  
≡z̃

0 1 −1
2 −1 −1

−1 −1 −1


. (A.89)

By construction, all matrix elements are integers, for simplicity. The z-labels of the defining
representation are directly specified by the columns z⃗i of the z-matrix. Moreover, since the z-labels
are additive for tensor-product spaces, this implies that the z-labels for arbitrary IREPs also contain
integers only.

Consequently, the root space is fully spanned by simple linear integer combinations of the vectors
z⃗i. Furthermore, also the action of the RLOs themselves can be expressed as simple shifts in root space
[cf. Eq. (A.84)].While in the defining representation, the z-labels in the carrier space are clearly unique,
they are not linearly independent. In particular, it is sufficient to focus the discussion on the linearly
independent subset of the vectors z⃗i in terms of the leading 3× 3 block z̃ of the z-matrix in Eq. (A.89).

In terms of the three column vectors z⃗i in z̃, the simple roots are given (i) by the simple roots of
SU(m), which (ii) is complemented by one further root involving z⃗3,

α⃗1 = z⃗1 − z⃗2 = ( 2, 0, 0 )T =̂ S12
α⃗2 = z⃗2 − z⃗3 = ( −1, 3, 0 )T =̂ S23
α⃗3 = 2z⃗3 = ( 0, −4, 2 )T =̂ S̃+

33

, (A.90)

where the correspondence with the raising operators indicated in the last column follows from
Eq. (A.84). Having α⃗i · α⃗j ≤ 0 for i ≠ j together with taking smallest integer combinations derived
from the action of RLOs in Eq. (A.84), this suggests simple roots [66,67].

Similar to SU(N), the convention on the sorting of the z-labels is chosen lexicographic, yet as
always, starting from the last z-label. In this sense, the vectors α⃗i in Eq. (A.90) are greater than
(0, 0, 0)T , hence positive. The corresponding operators thus increase the z-labels, i.e. correspond to
raising operators, indeed. Moreover, having reduced the symmetry to its simple roots, equivalently,
this also defines the set of simple RLOs that are sufficient to fully explore multiplet spaces. Note that
above convention on the sorting of the z-labels is already also consistent with the state order in the
defining representation in Eq. (A.89): the z-labels strictly decrease, starting from the MW-state (the
very left column) all the way to the last state represented by the very right column.

In principle, the z-labels of the MW-state already could be used as labels for the entire multiplet.
However, using the vectors ẑi as (non-)orthogonal basis that spans the root space, also q⃗ ≡

z̃−1 max

z⃗

could be used as multiplet label, instead. The latter has the advantage that it guarantees

that the multiplet labels are strictly positive integers or zero. For consistency with the literature,
however, themultiplet labels for Sp(2m) are still modified somewhat further, and thus finally derived
from the MW-state as follows,

q⃗ ≡ Mz̃−1  
≡Q

·max

z⃗


(A.91a)

where the matrix M ,

M ≡

1 −1 0
0 1 −1
0 0 1


, (A.91b)

has been added as a furtherminormodification for consistencywith the standard literature [68]which
further ensures that the multiplet labels lie dense, i.e. with q = (q1, q2, q3) any qi ≥ 0 will result in a
valid multiplet. Overall,

Q ≡

 1 0 0
−

1
2

1
2 0

0 −
1
3

1
3

 . (A.91c)
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For example, when applied from the right to the z-matrix in Eq. (A.89), all resulting matrix elements
(z-labels) are either ±1 or 0. In particular, the MW-state of the defining representation of Sp(2 · 3)
has the q-labels (1, 0, 0).

A.10.3. Construction of Sp(2m) for m-channel setup
Given the three-channel setup in the previous section with m = 3, the resulting defining

representation for Sp(2m) is (2m = 6)-dimensional. As seen from the earlier introduction of this
model in Appendix A.9.4, this contains an SU(3) subalgebra, together with a third z-operator, namely
total particle conservation. This subalgebra of a total of 9 generators can nowbe completed by 6 raising
operators together with their hermitian conjugates, i.e. their corresponding lowering operators. This
leads to a total of 21 generators, consistent with the dimension of the group Sp(2 · 3).

Using a sorted z-label space, this requires that the unitary U in Eq. (A.85a) is applied
to all generators of the defining representation, as well as to the initial spinor ψ̂ [2m]

≡

(ĉ1↑, . . . , ĉm↑, ĉ
Ď
1↓, . . . , ĉ

Ď
m↓
)T derived from Eq. (A.76). In the case of m = 3, the properly sorted 6-

dimensional spinor (IROP) spinor becomes,

ψ̂
[6]
(↑) ≡



ĉ1↑
...

ĉm↑

+ĉĎm↓

−ĉĎm−1,↓
...

(−1)m−1ĉĎ1↓


. (A.92)

This naturally generalizes particle–hole symmetry in the presence of channel symmetry. The
symmetry preserving hopping term in Eq. (A.67), for example, can nowbewritten as scalar contraction
ĥk,k+1 =


σ


ψ̂

[6]
kσ

Ď
· ψ̂

[6]
k+1,σ . Note that if, in addition, also SU(2)spin is present, this would further

double the dimension of the IROP in Eq. (A.92) to a set of 12 operators, such that the hopping term in
Eq. (A.67) can be written as single scalar contraction ĥk,k+1 =


ψ̂

[12]
k

Ď
· ψ̂

[12]
k+1 .

All generators are given in second quantization by the quadratic form Ŝσ ≡ ψ̂ĎSσ ψ̂ , with Sσ a
2m-dimensional generator from the defining representation. Specifically, the remaining 1

2m(m + 1)
raising operators for them-channel setup in Eq. (A.82) that complete Sp(2m) are given by

S̃+

ij =
1
2


τx + iτy


⊗

S̃ijΣ


≡


0 S̃ijΣ
0 0


, (A.93)

which leads to

Ŝ+

ij ≡ ψ̂ĎS̃+

ij ψ̂ =
1
2


ĉĎi↑ĉ

Ď
j↓ + ĉĎj↑ĉ

Ď
i↓


(all i, j). (A.94)

This generates a pair of particles, the nature of which originates from the underlying general
particle–hole symmetry. With


ψ̂i, ψ̂

Ď
j


= δij for ν = 1, . . . , 2m, and therefore

Ŝσ , Ŝσ ′


≡

ψ̂

Ď
i (Sσ )ij ψ̂j, ψ̂

Ď
i′ (Sσ ′)i′j′ ψ̂j′


= ψ̂Ď [Sσ , Sσ ′ ] ψ̂, (A.95)

the commutator relations within the matrix representations of the defining representation earlier
directly carry over to the quadratic second-quantized operators as in Eq. (A.94).



A. Weichselbaum / Annals of Physics 327 (2012) 2972–3047 3033

Appendix B. Numerical implementation

Tensor-product spaces are an essential ingredient to numerical renormalization group techniques
such as NRG or DMRG. State spaces are enlarged iteratively by adding a small local state space at a
time, i.e. a physical site with a few degrees of freedom. With respect to the description of strongly-
correlated entangled quantum many-body states, this leads to a description which is well-known
as matrix product states (MPSs). Both, the existing state space (iteratively constructed itself) as
well as the newly added state-space, have finite dimension and well-defined symmetry labels. New
representations can therefore only emerge through the tensor product of the two spaces. In particular,
all iteratively constructed quantummany body states strictly derive from the IREPs of the elementary
sites. With operators usually acting locally, these are also expressed in the symmetries of the local
basis. Furthermore, the local state space of a site is usually small. For example, a fermionic site has the
four states described in Eq. (A.62). Therefore the IREPs present within the local state space are usually
just the smallest non-trivial IREPs, often just the defining representation itself. For identical sites, the
local symmetry space can be setup once and for all at the beginning of the calculation.

Having identified and labeled all symmetries on the local site level, this sets the stage for generic
iterative algorithms such as NRG or DMRG. The remainder is a large exercise on tensor-product
spaces. By construction, the iteratively combined spaces are finite, yet as they grow rapidly, they
are eventually truncated on the multiplet level while leaving the symmetry content of the individual
multiplets, i.e. the CGC spaces, fully intact.

B.1. Tensor product decomposition of symmetry spaces

The decomposition of the tensor-product space of two IREPs into irreduciblemultiplets has already
been discussed more generally in Appendices A.5 and A.6. In the actual numerical implementation,
however, in particular the presence of inner and out multiplicity must be taken care of meticulously
for overall consistency. This will be discussed in the following.

Similar to Appendix A.6, consider a specific arbitrary non-abelian symmetry group S whose
Clebsch–Gordan coefficients may not necessarily be easily accessible analytically for arbitrary
multiplets. Assume two of its IREPs, q1 and q2, with dimensions dq1 and dq2 , respectively, are known
together with their irreducible representations of the generators I [q1]σ and I [q2]σ , specifically the z-
operators (Cartan subalgebra) and the simple RLOs (simple roots). In practice, these representations
either refer to small IREPs such as the defining representation, or have been generated through prior
iterative calculations. As in Eq. (A.36), consider their tensor-product,

Rtot
σ ≡ I [q1]σ ⊗ 1[q2] + 1[q1] ⊗ I [q2]σ , (B.1)

resulting in matrices of dimension D = dq1dq2 . Clearly the commutator relations are preserved, and
the z-labels are additive under this operation [cf. Appendix A.6].

In order to determine the decomposition into IREPs, a tempting route may be through the
construction of the group’s Casimir operators in the combined state space and their simultaneous
diagonalization togetherwith the z-operators. However, in the presence of outer or innermultiplicity,
subspaces exist that are fully degenerate in Casimir operators as well as in the z-operators. In this
case, for overall consistency a unique deterministic algorithm must be constructed that (i) separates
multiplets in the presence of outer multiplicity, and (ii) fixes a choice of basis for degenerate spaces
within a multiplet in the presence of inner multiplicity. Moreover, the explicit construction of the
Casimir operators bears someefforts of its own. In practice, therefore amore straightforward approach
has been adopted, instead, as will be explained in the following.

The main hurdles in the decomposition of the tensor-product in Eq. (B.1) into IREPs is the possible
occurrence of outer and inner multiplicities. The strategy employed here to deal with this situation
is based on the uniqueness and accessibility of the MW (maximum-weight) states as introduced in
Appendix A.3.3. For this, throughout the procedure below, the same lexicographic sorting scheme of
the z-labels, used to obtain the MW-state in Eq. (A.26), is employed to order all states within an IREP.
The sorting is descending, such that the MW-state appears first within a multiplet.
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Fig. B.13. Schematic procedure of state space decomposition of givenD dimensional vector spacewith known set of generators
{R(tot)σ }.

Since the z-labels are additive, it also follows for a tensor product of two such representations that
the first state automatically also represents a MW-state of some multiplet,

|MW⟩1 ≡ |e1⟩, (B.2)

where the vectors |ek⟩ [cf. Eq. (A.27a)] form the cartesian basis for the D-dimensional space of the
representation Rtot

σ in Eq. (B.1). Given that the MW-state of a representation is guaranteed to be
unique [38,66,67], the state |MW⟩1 is already a proper symmetry eigenstate, i.e. an eigenstate of all
z-operators. This was always double checked, in practice, as a safety measure. The further procedure
then is schematically depicted in the work flow diagram in Fig. B.13: starting with |MW⟩n=1,

1. the symmetry eigenstate |MW⟩n is used as the seed state to sequence its complete IREP (the
current multiplet). This is done by repeatedly applying an arbitrary but fixed order of simple lowering
operators only to the current set of vectors in the multiplet. Therefore starting with the MW-
state |MW⟩n and adding the newly acquired symmetry states one at a time, this introduces a
well-defined state order, independent of whether their z-labels are degenerate or not. In the
presence of inner multiplicity, it is important to notice, however, that it is not guaranteed that a
newly acquired state is automatically orthogonal to the already existing states within the current
multiplet. Therefore, a newly acquired state, if it represents a new vector space component, must
be orthonormalized with respect to the existing states. This is repeated, until the current multiplet
space is exhausted.

2. The states in the multiplet thus generated, by construction, already have well-defined z-labels
(this again was double-checked, in practice); the states are sorted with respect to these labels in
descending lexicographic orderwhile keeping subspaces that are degenerate in the z-labels in their
original order in order to remain deterministic.Within this order, the first state defines the label for
the generatedmultiplet, i.e. q = qMW. In addition, the matrix representation in Eq. (B.1), when cast
into the current IREP space results in the newly generated irreducible matrix representation Î [q]σ .

3. If the D-dimensional vector space is not fully exhausted yet, a new seed state is determined by
finding the smallest k for which |ek⟩ exhibits a new vector component w.r.t. the symmetry states
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already collected. Having started with k = 1 above, it follows k > 1. After proper orthonormal-
ization with respect to the previously explored space, this state becomes the next seed state. If it
already does represent a MW-state, which is typically the case in that it is destroyed by all raising
operators, then |MW⟩n+1 has been found. Otherwise repeatedly apply simple raising operators on
the current seed state until the unique newmaximumweight state |MW⟩n+1 is reached. Continue
with (1), setting n → n + 1.

4. If on the other hand, the D-dimensional vector space in Eq. (B.1) is already fully exhausted, the de-
composition of the tensor-product space into n irreducible representations is completed, and the
procedure terminates.

Note that no explicit reference to z-labels has beenmade, except for step (2). That step, however, is
actually not required right away for the decomposition, with its results only relevant for subsequent
calculations. By construction, therefore this procedure is deterministic and does not dependent
on dealing with degeneracies in the z-labels or inner and outer multiplicities. The MW-states are
accessible by keeping IREPs sorted in their z-labels throughout. They represent the entry point in
sequencing its IREP, which guarantees that inner and outer multiplicities are dealt with in a consistent
fashion. Finally, note that the choice of the seed states |MW⟩n, i.e. starting with +|e⟩k, also provides
the sign convention.

The resulting unitary transformation into the irreducible symmetry subspaces directly determines
(i) the Clebsch–Gordan coefficients, and (ii) the matrix-representations of the newly generated
IREPs. With only a few Clebsch–Gordan coefficients usually unequal to zero and of order 1, small
numbers below a numerical noise threshold for double-precision (10−12) are neglected, i.e. set to zero.
Moreover, a non-zero Clebsch–Gordan coefficient can typically be expressed as a rational number,
or the square root of a rational number, an efficient approximation of which can be found through
continued fraction techniques. Therefore if an excellent fractional approximation was found within
the same accuracy of 10−12, this rational approximation also was used, instead.

B.2. State space initialization and operator compactification

In the presence of several symmetries, a given state space is represented by a certain set of
multiplet combinations. For a single fermionic site in the presence of spin-symmetry andparticle–hole
symmetry, this still can be easily characterized by hand [cf. Eq. (A.62)]. The situation, however,
can quickly become more involved. For example, for a spinful three-channel calculation with SU(3)
channel symmetry as in Eq. (27a), a site is represented by 43

= 64 states (4 fermionic states for
each of the 3 channels). If for example, particle number, spin symmetry and channel symmetry is
preserved, then this system exhibits SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel symmetry, as discussed
in Appendix A.9.4. Given these symmetries, the 64-dimensional Hilbert space of a site cannot be
decomposed into a tensor product of convenient smaller units with already well-defined SU(2)spin ⊗

U(1)charge ⊗ SU(3)channel symmetry labels themselves. For the channel symmetry it is essential, of
course, that all three channels are present, while it is also essential for the spin symmetry that both
spin species are present. Therefore in the example above, the 64-dimensional space of site already
appears as the smallest building block. It can be reduced to a set of irreduciblemultiplet combinations,
of course, but explicit determination can quickly become tedious if done by hand, while the problem
can be tackled completely generally and straightforwardly on a numerical level.

In order to get started numerically, a simple and natural starting point is the Fock space
representation. While this usually does not represent the symmetry eigenbasis, of course,
nevertheless all generators of the symmetries present, in particular its raising, lowering, and z-
operators, are known in second-quantized form and can be equally constructed in Fock space.

The z-operators typically have a simple form. In particular, for 3-channel setup mentioned above,
the z-operators are already all diagonal in the Fock space, cf. Eq. (A.68), (A.69b), or (A.70). This
thus already provides the z-labels. Next, note that the order of the states w.r.t. to their z-labels is
important for consistency with the Clebsch–Gordan coefficients later, which suggests using the same
lexicographic order as for the determination of the MW-states. Sorting the states in this order and
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applying the same prescription for state space decomposition as explained in Appendix B.1, this
suffices to fully identify all symmetry multiplets within the given D-dimensional Hilbert space.

B.2.1. Compactifying operators using Wigner–Eckart theorem
Irreducible operator sets can be equally constructed starting from the Fock space representation

of a seed operator that is part of some irreducible operator set. This seed operator is typically known,
yet can be completed to an IROP set, by using the RLOs in Fock space representation and numerically
evaluating the commutators in Eq. (A.42) (see also subsequent discussion in Appendix A.7.1). Using
the same unitary transformation that brings the Fock space into the correct symmetry eigenbasis as
described above, the IROP set is rotated into the space of symmetry eigenstates. With this, however,
this IROP set is still represented in the fully expanded multiplet space, i.e. this space still references
both multiplet labels and their corresponding z-labels on the same flat level. However, through the
Wigner–Eckart theorem, Eq. (A.43),

⟨qqz |F̂ q1
q1z |q2q2z⟩ = ⟨q∥F̂ q1∥q2⟩ · C [q2z ]

q1zqz (σ )
, (B.3)

many of the matrix elements can be related to each other through Clebsch–Gordan coefficients. The
IROP set can therefore be compactified as a tensor-product of reduced matrix-elements ⟨q∥Âq1∥q2⟩ in
the multiplet space times the CGC space C [q2z ]

q1zqz (σ )
.

The CGC spaces are known from a separate numerical calculation, e.g. they can be generated
by several iterations of tensor-product decompositions starting from the defining representation.
Therefore, the final compactification in Eq. (B.3) of the fully expanded matrix elements of the IROP
also serves as a major consistency check. The first non-zero matrix-element ⟨qqz |F̂

q1
q1z |q2q2z⟩ for the

already known multiplet spaces (q; q1, q2) can be used to determine the reduced matrix element
⟨q∥F̂ q1∥q2⟩, with its corresponding Clebsch–Gordan coefficient known. This, however, immediately
predicts the existence of a set of other non-zero matrix elements within the same multiplet spaces
(q; q1, q2). These matrix elements must exist and agree within numerical noise. The matched matrix
elements aremarked and considered taken care of. If the samevalue of amatrix element occurs several
times within the multiplets (q; q1, q2) for the same z-labels, the first one that matches is taken. This
check is thus not entirely unique, but nevertheless a strong one, and sufficient to obtain the space of
reducedmatrix elements. Finally, having identified all non-zeromatrix elements, themultipletmatrix
element space ⟨q∥F̂ q1∥q2⟩ are stored together with their referenced CGC space in terms of a QSpace
as discussed in the main text.

Appendix C. Example QSpaces

QSpaces represent an efficient numerical description of tensors of arbitrary rank in the presence
of arbitrary quantum symmetries [cf. Eq. (5)]. This includes both abelian and non-abelian symmetries,
with the extension to further symmetries such as point symmetries being straightforward. The
QSpaces are decomposed into a set of reduced multiplet spaces together with their respective CGC
(Clebsch–Gordan coefficient) spaces. In the following several elementary examples of QSpaces are
given as they appeared in practice. ElementaryQSpaces typically have rank-2 (such as scalar operators
with identity CGC spaces) or rank-3 (IREPs and IROPs with reference to standard rank-3 CGC spaces),
while combinations of these through subsequent algebraic operations can easily result in higher-rank
intermediate objects.

The notation regarding the elementary data arrays will be as follows. Plain matrices of dimension
m×nwill be written as a = [a11, . . . , a1n; . . . ; am1, . . . , amn], i.e. m rows of equal length n separated
by semicolons. The commas within a row are considered optional. In order to deal with m × n × k
dimensional rank-3 objects, the notation {a1, a2, . . . , ak} is used,which shall indicate that thematrices
a1, . . . , ak, all of the same dimension m × n, are concatenated along the third dimension. Trailing
singleton dimensions will be considered implicit if required, e.g. a scalar such as 1. can stand for an
arbitrary rank-r object in that a number also represents a 1 × 1 × · · · × 1 object. Identity matrices of
dimension nwill be denoted by 1(n).
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C.1. Fermionic site with U(1)charge ⊗ SU(2)spin symmetry

Consider the state space of a single fermionic site with the four states: empty |0⟩, singly occupied
| ↑⟩ and | ↓⟩, and double occupied | ↑↓⟩. The symmetries considered are particle conservation
U(1)charge, and full spin symmetry SU(2)spin. The z-operators are Ĉz ≡

1
2 (n̂↑ + n̂↓ −1) and Ŝz ≡

1
2 (n̂↑ −

n̂↓), with the corresponding quantum labels Cz for charge and S for total spin. For consistency with
later discussion to follow, here the charge is treated as the reduction of the non-abelian particle–hole
symmetry to its abelian part, which also reduces the set of symmetry operations to the z-operator
Ĉz only [hence the factor 1

2 ]. Consequently, the z-label of the underlying non-abelian symmetry is
promoted into a q-label, while the CGC space becomes trivial (1.) with internal multiplet dimension
of 1. In order to stress the difference between the original z-label which can become negative, and
the SU(2)q-labels of multiplets which are positive, by definition, the q-labels are therefore written as
(+Cz, S), emphasizing the origin of the q-label Cz being derived from a z-operator.

C.1.1. Symmetry space and operators of one site
The states |0⟩, |↑⟩, |↓⟩, and |↑↓⟩ already represent the correct symmetry eigenstates [cf. Eq. (A.62)],

multiplet space dimension
|Cz; S⟩ dCz × dS = dtot− 1

2 ; 0


≡ |0⟩ 1 × 1 = 1+ 1
2 ; 0


≡ |↑↓⟩ 1 × 1 = 1 0; 1

2


≡ {|↑⟩ , |↓⟩} 1 × 2 = 2

(C.1)

The matrix elements of a generic Hamiltonian in this basis can be written as QSpace [see definition
in Eq. (5)],

H ≡



(Cz; S)

C ′
z; S

′


∥H∥ CGC spaces

−
1
2 ; 0 −

1
2 ; 0 h

−
1
2 ,0

1. 1.

+
1
2 ; 0 +

1
2 ; 0 h

+
1
2 ,0

1. 1.

0; 1
2 0; 1

2 h
0, 12

1. 1(2)


. (C.2)

The Hamiltonian is a scalar operator, hence its rank as an IROP can be reduced from three to two, as
it is the only operator in its irreducible set. Consequently, all CGC spaces reduce to the identity, as
reflected in the last two columns of the QSpace (C.2). Each of the remaining two indices explicitly
refers to symmetry states, hence the QSpace requires the two sets of q-labels q ≡ (Cz; S) and q′

≡
C ′
z; S

′

referring to the first (second) index shown in the first (second) column, respectively. With the

Hamiltonian preserving the symmetries, it must be block-diagonal, i.e. q = q′ for all records in (C.2).
Both of the symmetry spaces


±

1
2 ; 0


have a single state only, therefore the corresponding entries in

the multiplet space h±1/2,0 are 1 × 1 dimensional blocks, i.e. numbers. The last symmetry multiplet
0; 1

2


has two states owing to the SU(2) symmetry [see (C.1)]. By means of the Wigner–Eckart

theorem, the space of reduced matrix elements, h0,1/2, is therefore again a number while the CGC
space becomes a 2-dimensional identity matrix. Therefore themost general representation of a scalar
operator for a single fermionic level in the presence of U(1)charge ⊗ SU(2)spin symmetry is given by
the three numbers {h−1/2,0, h+1/2,0, h0,1/2} in the multiplet space. The remaining matrix elements are
constrained due to symmetry.

As an example for a non-scalar IROP, consider the spinor of particle creation operators ψ̂Ď
S =

{ĉĎ
↑
, ĉĎ

↓
} that encodes SU(2) spin symmetry [cf. Eq. (A.49)], with its QSpace representation shown in

(C.3a). The z-labels of the IROP set ψ̂Ď
S are determined through the z-operators Ĉz and Ŝz acting on the

components of ψ̂Ď
S ,

[Ĉz, ĉĎσ ] =
+1
2 · ĉĎσ

[Ŝz, ĉĎσ ] =
σ
2 · ĉĎσ ,
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Table C.1
Example QSpaces in the presence of U(1)charge ⊗ SU(2)spin symmetry for a single fermionic site. Having the two symmetries
of abelian U(1)charge and non-abelian SU(2)spin , the respective CGC spaces C (trivial) and S appear in the right columns. The
record index ν in the first column, as well as the explicit specification of the dimensions of the reduced multiplet space and
the combined CGC spaces are just added for better clarity. The specific order of the records, however, is irrelevant and hence
chosen as convenient. (C.3) shows the QSpaces for ψ̂Ď

S = {ĉĎ
↑
, ĉĎ

↓
} and ψ̂S = {−ĉ↓; ĉ↑}; cf. Eq. (A.49)]. (C.4) shows the identity

A-tensor for the combination of the state spaces of two sites. For comparison, Table C.2 shows how theQSpaces (C.3a) and (C.4)
are modified for the case that the abelian charge symmetry also becomes a non-abelian SU(2)charge particle–hole symmetry.

with σ ≡ {↑,↓} ≡ {+1,−1}. The IROP ψ̂Ď
S is therefore identified with the multiplet q′′

≡

C ′′
z ; S ′′


=

+1
2 ;

1
2


, as indicated in the third column of (C.3a). The QSpace representation of ψ̂Ď

S derives from the
matrix-elements

ψ
Ď
S → ⟨CzS| ·


(ψ̂

Ď
S )


+1
2 ;

1
2


|C ′

zS
′
⟩


using the Wigner–Eckart theorem as in Eq. (A.43).

The operator index in the QSpace (C.3a) is listed third, by convention. The two non-zero matrix
elements of each ĉĎσ within the four-dimensional space of single fermionic site implies a total of four
non-zero matrix elements in ψĎ

S , all having norm 1, with one matrix-element being negative. These
matrix elements can be directly identified in QSpace (C.3a). Since the reduced matrix elements ∥ψ

Ď
S ∥

and the CGC spaces are to be interpreted as tensor product, the
√
2 factors in the last line cancel. With

ψ̂
Ď
S representing non-hermitian operators, the first column q ≡ (Cz; S) is in general different from the

second column q′
≡

C ′
z; S

′

. Moreover, since ψ̂Ď

S creates one particle, the first column, for example,
cannot contain the empty state (−1

2 ; 0), while the second column cannot contain the double occupied
state (+1

2 ; 0).
In contrast, the QSpace representation of the IROP ψS , i.e. without the dagger, is shown in (C.3b).

Note that for ψ̂S ≡ {−ĉ↓; ĉ↑) to be an irreducible operator as compared to ψ̂Ď
S = {ĉĎ

↑
, ĉĎ

↓
}, the reverse
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order in spin and the minus sign in the first component is essential [see discussion along with Eq.
(A.49)]. In terms of the QSpace (C.3b), this leads to the extra minus signs in the multiplet space of
the second row. Moreover, the z-labels of the operator ψ̂S itself flipped sign w.r.t. ψ̂Ď

S as expected
as it removes a particle rather than adding one [see the multiplet labels q′′

≡ (C ′′
z ; S ′′) in the third

column of (C.3b)]. This is to emphasize that the application of the Wigner–Eckart theorem must be
performed consistently, i.e. switching sides in the application of an operator as in ⟨CzS| · (ψĎ

|C ′
zS

′
⟩) =

(ψ |CzS⟩)Ď · |C ′
zS

′
⟩ must be dealt with carefully.

C.1.2. Identity A-tensor for two fermionic sites
Consider the combination of two fermionic sites. Similar to Fig. 1, let site 1 (2) be described by |i⟩

(|σ ⟩), respectively, both representing a 4-dimensional state space {|0⟩ , |↑⟩ , |↓⟩ , |↑↓⟩} of their own.
The decomposition of the combined space in terms of the overall symmetry U(1)charge ⊗ SU(2)spin is
fully described by the rank-3QSpace (C.4): site 1 with symmetries (Cz; S) and site 2 with symmetries
(C ′

z; S
′) are combined into the global symmetry (C ′′

z ; S ′′). For better clarity, the records have been
sorted with respect to the combined quantum labels q′′

≡ (C ′′
z ; S ′′), where groups with the same

q′′ are separated by horizontal lines. The dimensions in the last (third) index are therefore the same
within a group that shares the same (C ′′

z ; S ′′).
Given the U(1)charge ⊗ SU(2)spin symmetries, the abelian charge quantum number Cz simply adds

up, while for the SU(2) spin symmetry, the usual SU(2) addition algebra applies. The overall number
of multiplets in the combined space q′′ is given by the last number (index 3) in the dimensions
specifiedwith themultiplet space. The specific input combinations entering a certain combined space
q′′ are easily verified. The q′′

= (− 1
2 ;

1
2 ) sector, for example, derives from the two configurations

{q, q′
} = {(− 1

2 ; 0), (0;
1
2 )} and {(0; 1

2 ), (−
1
2 ; 0)}. Therefore the dimension of the reduced multiplet

space for this q′′ is 2. Each of thesemultiplets has an internal z-spacewhich is itself of dimension 2 [last
column]. The combined total dimension of the q′′

= (−1
2 ;

1
2 ) sector is therefore given by the product

2 · 2 = 4. Consistently, the dimension of the two 4-dimensional sites combined add up correctly to
16 states total. That is, multiplying the last dimension in the reduced multiplet space with the last
dimension in the combined CGC spaces for each block separated by horizontal lines, bearing in mind
that the multiplet space and the CGC spaces are to be combined in a tensor-product, yields the overall
dimension of the combined space, 1 · 1 + 2 · 2 + 3 · 1 + 1 · 3 + 2 · 2 + 1 · 1 = 16.

The A-tensor in (C.4) is an identity A-tensor, in that up to permutations, plain identity matrices are
split-up on the reduced multiplet level. By considering, for example, the q′′

=

±

1
2 ;

1
2


symmetry

sector in records 2–3 or 8–9 of the QSpace (C.4), the multiplet space when viewed together, i.e.
ignoring all brackets, resemble the structure of a 2-dimensional identity matrix. Similar so for the
q′′

= (0; 0) space in records 4–6, having essentially a 3-dimensional identity matrix in the multiplet
space. Allowing for arbitrary unitaries in the multiplet space in QSpace (C.4), this then becomes the
most general unitary transformation of the product space of two fermionic sites that also respects the
symmetries considered.

C.2. Fermionic sites in the presence of particle–hole symmetry

The tensors introduced in the previous section for U(1)charge ⊗ SU(2)spin symmetry can be written
more compactly still by assuming the stronger particle–hole SU(2)charge symmetry instead of the plain
abelian U(1)charge. The symmetry considered in the following is therefore SU(2)⊗2

SC ≡ SU(2)spin ⊗

SU(2)charge. The z-operator for charge, Ĉz , is now complemented by the raising operator Ĉ+ for charge
SU(2) [cf. Eq. (A.52)]. The combined symmetries are given by the multiplet label for both charge and
spin SU(2), i.e. the non-negative labels q = (C, S)with the z-labels of the charge symmetry now also
taken care of by the CGC spaces.

The basis for a single fermionic level given SU(2)⊗2
SC symmetry has been introduced in Eq. (A.62).

Therefore the full space of the four states {0,↑,↓,↑↓} can be reduced to the two symmetry
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Table C.2
Example QSpaces in the presence of SU(2)⊗2

SC ≡ SU(2)spin ⊗ SU(2)charge symmetry for a single fermionic site. The CGC spaces
for SU(2)charge and SU(2)spin are indicated by C and S, respectively. The record index ν as well as the explicit specification of the
dimensions are just added for clarity. (C.5) shows the QSpace for the spinor ψ̂CS defined in Eq. (A.59), with the reduced matrix
elements already calculated in Eq. (A.63). The operator index within the IREP is listed third, as usual. (C.5) shows the identity
A-tensor for the combination of the state space of two fermionic sites. For comparison, Table C.1 shows the same QSpaces for
the case where the particle–hole symmetry is reduced to abelian charge conservation .

multiplets

multiplet space dimension
|C, S⟩ dC × dS = dtot 1
2 ; 0


≡ {|0⟩ , s |↑↓⟩} 2 × 1 = 20; 1

2


≡ {|↑⟩ , |↓⟩} 1 × 2 = 2

(C.7)

The most general scalar operator such as the Hamiltonian is given by the QSpace,

H ≡


(C; S)


C ′

; S ′


∥H∥ CGC spaces
1
2 ; 0

1
2 ; 0 h 1

2 ,0
1(2) 1.

0; 1
2 0; 1

2 h
0, 12

1. 1(2)

 . (C.8)

Thus only the two reduced matrix elements h1/2,0 and h0,1/2 are left free to choose without
compromising SU(2)⊗2

SC symmetry.
An example for a non-scalar IROP is given by the 4-component spinor ψ̂CS in Eq. (A.59), which

contains two creation and two annihilation operators. Its symmetries have been identified in
Eq. (A.61), leading to the IROP ψ̂CS with the QSpace presented in (C.5). Note that the size of the third
dimension is 4 [see combined CGC dimension in the last column], consistent with the four operators
that constitute the IROP. The alternating sign s required with particle–hole symmetry appears with
the reduced matrix elements in the first record only [cf. Eq. (A.63); note that the same sign s is also
picked up by the double occupied state, cf. Eq. (A.62) or (C.7)].

The QSpace representation for the identity A-tensor combining two fermionic sites is given in
(C.6). Again, the symmetry records are sorted with respect the combined symmetry q′′

≡ (C ′′, S ′′),
where groups with the same (C ′′, S ′′) are separated by horizontal lines for clarity. The property of
QSpace (C.6) being an identity A-tensor, is seen, for example, in the combined reduced multiplet
space of records 1–2, or 4–5). The standard SU(2) addition rules are also quickly confirmed. For
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Table C.3
State space of 3-channel site with SU(2)⊗4

SC ≡ SU(2)spin ⊗ SU(2)⊗3
charge symmetry.

Row Multiplet space CG dimension

Index |S, C1 , C2 , C3 ⟩ Dim. dSdC1dC2dC3 = dtot
1 | 0; 0; 0; 1

2 ⟩ 1 1 × 1 × 1 × 2 = 2
2 | 0; 0; 1

2 ; 0 ⟩ 1 1 × 1 × 2 × 1 = 2
3 | 0; 1

2 ; 0; 0 ⟩ 1 1 × 2 × 1 × 1 = 2
4 | 0; 1

2 ;
1
2 ;

1
2 ⟩ 1 1 × 2 × 2 × 2 = 8

5 |
1
2 ; 0; 0; 0 ⟩ 2 2 × 1 × 1 × 1 = 2

6 |
1
2 ; 0; 1

2 ;
1
2 ⟩ 1 2 × 1 × 2 × 2 = 8

7 |
1
2 ;

1
2 ; 0; 1

2 ⟩ 1 2 × 2 × 1 × 2 = 8
8 |

1
2 ;

1
2 ;

1
2 ; 0 ⟩ 1 2 × 2 × 2 × 1 = 8

9 | 1; 0; 0; 1
2 ⟩ 1 3 × 1 × 1 × 2 = 6

10 | 1; 0; 1
2 ; 0 ⟩ 1 3 × 1 × 2 × 1 = 6

11 | 1; 1
2 ; 0; 0 ⟩ 1 3 × 2 × 1 × 1 = 6

12 |
3
2 ; 0; 0; 0 ⟩ 1 4 × 1 × 1 × 1 = 4

example, the combined symmetry q′′
= (0, 0) [records 1–2] can result from two combinations,

namely ( 12 , 0)⊗ ( 12 , 0), or (0,
1
2 )⊗ (0, 1

2 ), leading to a two dimensional multiplet space. All of this is
transparently encoded in given QSpace.

Considering the tensor-product of multiplet and CGC spaces, the combined space has total
dimension of 2 · 1 + 1 · 3 + 2 · 4 + 1 · 3 = 16 as expected for two spinful fermionic levels. Compared
to the A-tensor in (C.4) with abelian charge conservation, the number of combined symmetry sectors
has been further reduced from 6 to 4 [i.e. number of horizontally separated groups sharing the same
q′′], with an overall reduction in the number of multiplets present in the QSpace reduced from 10 to
6 [having 1 + 2 + 3 + 1 + 2 + 1 = 10 in (C.4), and here 2 + 1 + 2 + 1 = 6].

C.3. Three channels with SU(3) channel symmetry

Consider a system with three spinful particle–hole symmetric channels, as introduced in
Appendix A.9.4. A single site then has a full Hilbert space of dimension 43

= 64. Three symmetry
settings are analyzed: a set of plain SU(2) symmetries, a combination with the SU(3) channel
symmetry, and finally the largest symmetry present which includes the enveloping symplectic
symmetry Sp(6). Since the QSpaces in given context are extensive, a more compact comparison of
these symmetry settings in the numerical context is given, instead.

The first setting, SU(2)⊗4
SC ≡ SU(2)spin ⊗ SU(2)⊗3

charge, is based on four independent SU(2)
symmetries. The 64-dimensional state space of single site decomposes into 13 multiplets in 12
symmetry sectors, as listed in Table C.3. All of these contain a single representative multiplet,
except for the space |

1
2 ; 0; 0; 0⟩ in row 5, which contains two multiplets. In contrast, using the

SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel symmetry, instead, the 64 states of the three fermionic levels
decomposes into the 10multiplet spaces listed in Table C.4. Thus compared to the SU(2)⊗4

SC symmetry
setting in Table C.3, the number of multiplet spaces is further reduced with all multiplet spaces
containing a singlemultiplet only. This suggests that the latter symmetry including the channel SU(3)
is somewhat more efficient as it allows to compactify multiplet spaces more strongly. Given the
multiplet space in Table C.4, for example, the most general Hamiltonian in the 64 × 64 dimensional
Hilbert space compatible with given symmetry consists of the 10 reduced matrix elements appearing
in the multiplet space only.

A further strong boost in numerical efficiency can be obtained, if the Hamiltonian supports it,
by combining the particle–hole symmetry of SU(2)spin ⊗ SU(2)⊗3

charge with the channel symmetry in
SU(2)spin ⊗U(1)charge ⊗ SU(3)channel to their enveloping Sp(6) symmetry. The resulting state space for
the state space of a single 3-channel site is given in Table C.5. The 64 × 64 dimensional Hilbert space
has thus been reduced to a total of four multiplets only.



3042 A. Weichselbaum / Annals of Physics 327 (2012) 2972–3047

Table C.4
State space of 3-channel site with SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel
symmetry.
Row Multiplet space CG dimension

Index | S Cz T ⟩ dim. dS · dCz · dT = dtot
1 | 0; −

3
2 ; 0 0 ⟩ 1 1 × 1 × 1 = 1

2 | 0; −
1
2 ; 2 0 ⟩ 1 1 × 1 × 6 = 6

3 | 0; 1
2 ; 0 2 ⟩ 1 1 × 1 × 6 = 6

4 | 0; 3
2 ; 0 0 ⟩ 1 1 × 1 × 1 = 1

5 |
1
2 ; −1; 1 0 ⟩ 1 2 × 1 × 3 = 6

6 |
1
2 ; 0; 1 1 ⟩ 1 2 × 1 × 8 = 16

7 |
1
2 ; 1; 0 1 ⟩ 1 2 × 1 × 3 = 6

8 | 1; −
1
2 ; 0 1 ⟩ 1 3 × 1 × 3 = 9

9 | 1; 1
2 ; 1 0 ⟩ 1 3 × 1 × 3 = 9

10 |
3
2 ; 0; 0 0 ⟩ 1 4 × 1 × 1 = 4

Table C.5
State space of 3-channel site with SU(2)spin ⊗ Sp(6) symmetry.
Row Multiplet space CG dimension

index | S Sp(6) ⟩ dim. dS · dT = dtot
1 | 0; 0 0 1 ⟩ 1 1 × 14 = 14
2 |

1
2 ; 0 1 0 ⟩ 1 2 × 14 = 28

3 | 1; 1 0 0 ⟩ 1 3 × 6 = 18
4 |

3
2 ; 0 0 0 ⟩ 1 4 × 1 = 4

All three symmetry settings have been successfully implemented within the NRG framework. By
startingwith a single site [i.e. the basic fermionic three-level unit as introduced inAppendix A.9.4], and
iteratively adding a sitewithin theNRG, newmultiplet spaces are quickly explored and built upwithin
the first few NRG iterations. In practice, the CGC spaces of newly generated multiplets are also stored
for latter retrieval. Once truncation of the state space within NRG sets in, however, the generation of
IREPs eventually saturates to within a finite range of multiplet spaces.

The resulting space for adding up to three further sites without truncation is indicated in Table C.6.
With reasonable numerical resources, it is feasible within the SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel
(second) or SU(2)spin ⊗ Sp(6) (third) setting, to keep all states up to three sites total within the NRG,
first truncating only when a fourth site is added. This leads toNK = 9086 [NK = 1232] keptmultiplets
for the second and the third symmetry setting, respectively. The correspondingmemory requirements
for a general basis transformation for adding another site (A-tensor) then amounts to about 7 G [0.3G].
The corresponding full NRG iteration for adding another site then takes several hours on a state-of-
the-art 8-core workstation.

The same calculation, however, gets quickly impossible as fewer symmetries are available or used
in the actual computation as can be seen from Table C.6. For example, if only the abelian part of the
symmetry had been accounted for in the computation, the corresponding memory requirement can
be estimated by considering the explicit tensor product of the multiplet space with the CGC spaces,
leading in terms of the SU(2)⊗4

SC setting to about 23 G and 65 T(!) for n = 3 and n = 4, respectively,
the latter being completely hopeless in practice. The explicit treatment of non-abelian symmetries,
however, clearly makes the latter case feasible with a reasonable amount of numerical resources.

C.3.1. SU(3) symmetry
The irreducible SU(3) multiplets generated in the actual NRG run using SU(2)spin ⊗ U(1)charge ⊗

SU(3)channel symmetry as presented in themain text [cf. Section 6], are shown in terms of their weight
diagrams in Fig. C.14. For comparison, the SU(3) IREPs present in the description of a single site are
qSU(3) ≡ (q1, q2) ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)}, cf. Table C.4. The apparent symmetry w.r.t.
to flipping the quantum numbers in (q1, q2) is also reflected in the overall set of multiplets generated
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within the NRG. As seen in Fig. C.14, all IREPs (q1, q2) with q1 + q2 ≤ 8 are present, except for (0, 8)
and (8, 0).

Inner multiplicity, as expected for SU(3), is clearly present and depicted in the weight diagrams
of Fig. C.14 by the encircled set of points. There the number of points inside a circle stands for the
multiplicity of the corresponding z-labels in the multiplet. Inner multiplicity decreases in shells as
one moves outward the multiplet, which is seen particularly well for the multiplets q1 = q2. The
states on the outer circumference have no multiplicity, i.e. have unique z-labels, as expected. This
demonstrates the uniqueness of the maximumweight state [cf. Appendix A.3.3], which was required
for the numerical state space decomposition in Appendix B.1.

Due to the two-dimensional label structure of the SU(3) multiplets together with inner
multiplicity, their internal dimensions can get significantly larger as compared to SU(2) multiplets.
The largest SU(3) multiplet (4, 4) encountered in the actual NRG run presented in Fig. C.14, for
example, has an internal irreducible dimension of d = 125 [see also Table C.7]. This implies, for
example, that with respect to the diagonalization of a Hamiltonian, a 125-fold degeneracy has been
reduced to a single multiplet. In contrast, the multiplet structure for SU(2)⊗4

SC is clearly weaker as it
only includes SU(2) symmetries. There the largest quantumnumbers encountered in anNRG runwith
comparable number of kept states include S ≤ 6 in the spin sector, leading to an individual multiplet
dimension of atmost 13 [see also Table C.7]. In the overall combination of the symmetries, this implies
that for comparable number of states, i.e. for a comparable accuracy within the NRG, on average about
50% more multiplets need to be kept within the SU(2)⊗4

SC setting as compared to the case when SU(3)
is included [see Fig. 11 in the main text].

Finally, the individual weight diagrams in Fig. C.14 show well-known symmetries, such as a
reflection symmetry of each diagram around the vertical y-axes, or the reflection symmetry between
the multiplets (q1, q2) and (q2, q1) around the horizontal axis. These Weyl symmetries may be used
to evaluate or encode CGC spaces more efficiently [39]. For the purpose of this paper, however, these
symmetries were not exploited, given also that the pure numerical evaluation of the CGC spaces as
outlined earlier was already sufficiently fast.

C.3.2. Sp(6) symmetry
The complete set of Sp(6) symmetries generated in the fully converged NRG run (using Λ = 4

and Etrunc = 7 as used in the results in the main text), is listed in Table C.8. All multiplets had been
generated within the first four Wilson shells. The fact that the symmetry Sp(6) fully incorporates
non-abelian particle–hole and channel symmetry, manifests itself by observing that all eigenenergies
in the multiplet spaces are now strictly non-degenerate throughout an entire NRG calculation. Huge
degeneracies of several thousands can be split off in terms of tensor products with Sp(6)multiplets.

For givenmodel, the symmetry Sp(6) in fact also allowed to reduce the rather coarse discretization
ofΛ = 4 in the NRG calculation underlying Table C.8. For comparison, ifΛ = 2 is used, instead, while
keeping the same Etrunc = 7, it turns out, the largest multiplet generated is (2, 1, 2) of dimension
5720. The largest intermediate product space to be decomposed into IREPs becomes as large as
14×1386 = 19,404. HavingΛ = 2, this required twice theWilson chain length for the same range in
energy scales, leading to an overall run time of the entire NRG run of about 32 h with still reasonably
manageable memory requirements of .20G.

As a rough general estimate, typical multiplet dimensions, as they occurred in practice, scale like
10r where r is the rank of the symmetry. For SU(2)spin, this implies multiplets of dimension .10, for
the SU(4)channel symmetry, indeed, one had multiplets of dimension of .100, while now for Sp(6), a
symmetry of rank 3, one easily reachesmultiplet dimensions on the order of a few 1000 (cf. Table C.8).
Thereforewith increasing rankof the symmetry, thenumerical effort strongly shifts from themultiplet
space to the CGC spaces. For sets of smaller symmetries with rank r ≤ 2 this leads to a strong gain in
numerical efficiency, while the numerical overhead for the CGC spaces remains negligible. Reaching
symmetries of rank 3, such as Sp(6), the numerical effort within the CGC spaces can now become
comparable to or even larger than the operations on the higher multiplet level.

Table C.7 summarizes the situation by comparing the maximal multiplet spaces with the
corresponding sparsity andmemory requirements of the CGC spaces for the first few A-tensors, when



3044 A. Weichselbaum / Annals of Physics 327 (2012) 2972–3047

Ta
bl
e
C.
6

Co
m
pa

ri
so

n
of

di
ffe

re
nt

sy
m
m
et
ry

sc
en

ar
io
s
fo
r
th
e
sa
m
e
un

de
rl
yi
ng

ph
ys
ic
al

sy
st
em

of
a
sy
m
m
et
ri
c
3-
ch

an
ne

ls
et
up

,a
na

ly
zi
ng

th
e
pr

od
uc

t
sp

ac
es

of
up

to
n

=
4
si
te
s.

Ea
ch

si
te

re
pr

es
en

ts
a
H
ilb

er
t
sp

ac
e
of

di
m
en

si
on

64
,t
hu

s
n
si
te
s
am

ou
nt
s
to

an
ov

er
al
lH

ilb
er
t
sp

ac
e
of

di
m
en

si
on

D
∗

=
64

n
[s
ec

on
d
co

lu
m
n]
.T

hi
s
st
at
e
sp

ac
e
ca
n
be

de
co

m
po

se
d
in
to

D
m
ul
tip

le
ts

in
N
S
sy
m
m
et
ry

se
ct
or
s
us

in
g
an

A-
te
ns

or
fo
r
th
e
ad

di
tio

n
of

ev
er
y
ne

w
si
te
.T

he
se

A-
te
ns

or
s
ar
e
en

co
de

d
in

te
rm

s
of

Q
S
pa

ce
s.

Th
e
to
ta
lm

em
or
y
re
qu

ir
em

en
tf

or
ea

ch
A-

te
ns

or
is
lis

te
d,

gi
ve

n
sp

ar
se

CG
C
re
pr

es
en

ta
tio

n.
In

ad
di
tio

n,
as

a
co

m
pa

ri
so

n
to

a
fu
lly

ab
el
ia
n
se
tt
in
g,
M
EM

∗
in
di
ca
te
st

he
m
em

or
y
th
at

ha
d
be

en
re
qu

ir
ed

if
th
e
te
ns

or
pr

od
uc

ts
be

tw
ee

n
re
du

ce
d
m
ul
tip

le
ts

an
d
CG

C
sp

ac
es

w
as

ca
rr
ie
d
ou

te
xp

lic
itl
y
[K

,M
,G
,T

fo
rk

ilo
-,
m
eg

a-
,g

ig
a-
,a

nd
te
ra
-b
yt
es
,r
es
pe

ct
iv
el
y]
..

Si
te
s

Ab
el
ia
n
di
m
.

SU
(2
) s

pi
n
⊗

SU
(2
)⊗

3
ch

ar
ge

SU
(2
) s

pi
n
⊗

U
(1
) c

ha
rg
e
⊗

SU
(3
) c

ha
nn

el
SU
(2
) s

pi
n
⊗

Sp
(6
)

n
D

∗
=

64
n

N
S

D
D

∗
/
D

m
em

or
y

M
EM

∗
N
S

D
D

∗
/
D

m
em

or
y

M
EM

∗
N

S
D

D
∗
/
D

m
em

or
y

M
EM

∗

1
64

12
13

4.
9

<
18

K
10

10
6.
4

<
13

K
4

4
16

<
6
K

2
4
09

6
61

38
8

10
.6

52
8
K

>
8.
7
M

69
26

0
15

.8
35

9
K

>
12

M
23

61
67

.1
16

2
K

>
34

M
3

26
2,
14

4
19

2
14

,2
29

18
.4

27
M

>
23

G
22

6
9,
08

6
28

.9
11

M
>
31

G
60

1
23

2
21

3
7
M

>
11

2
G

4
16

,7
77

,2
16

46
9

59
0,
85

6
28

.4
24

G
>
65

T
56

5
36

6,
74

4
45

.7
6.
8
G

>
85

T
13

2
31

,6
40

53
0

33
4
M

>
35

5
T

Ta
bl
e
C.
7

Co
m
pa

ri
so

n
of

di
ffe

re
nt

sy
m
m
et
ry

sc
en

ar
io
sa

si
n
Ta

bl
e
C.
6
in

te
rm

so
f(
i)
la
rg
es
tm

ul
tip

le
td

im
en

si
on

d
fo
re

ac
h
in
di
vi
du

al
sy
m
m
et
ry
,a
nd

(ii
)o

ve
ra
ll
av

er
ag

e
sp

ar
si
ty

of
th
e
CG

C
sp

ac
es
,

i.e
.t
he

nu
m
be

r
of

no
n-

ze
ro

el
em

en
ts

di
vi
de

d
by

th
e
to
ta
ln

um
be

r
of

m
at
ri
x
el
em

en
ts
.T

he
la
st

co
lu
m
ns

fo
r
ea

ch
sy
m
m
et
ry

(C
G
S/
A)

sh
ow

s
th
e
m
em

or
y
re
qu

ir
em

en
to

fa
ll
sp

ar
se

CG
C

sp
ac
es

in
a
gi
ve

n
Q
S
pa

ce
A n

re
la
tiv

e
to

th
e
en

tir
e
Q
S
pa

ce
..

Si
te
s

SU
(2
) s

pi
n
⊗

SU
(2
)⊗

3
ch

ar
ge

SU
(2
) s

pi
n
⊗

U
(1
) c

ha
rg
e
⊗

SU
(3
) c

ha
nn

el
SU
(2
) s

pi
n
⊗

Sp
(6
)

n
d S

d C
d C

d C
Sp

ar
si
ty

CG
S/
A

d S
d U
(1
)

d C
Sp

ar
si
ty

CG
S/
A

d S
d S

p(
6)

Sp
ar
si
ty

CG
S/
A

1
4

2
2

2
0.
36

0.
8

4
1

8
0.
12

0.
8

4
14

0.
02

7
0.
90

2
7

3
3

3
0.
36

0.
8

7
1

27
0.
12

0.
8

7
12

6
0.
02

7
0.
90

3
10

4
4

4
0.
28

0.
11

10
1

64
0.
06

4
0.
33

10
61

6
0.
01

1
0.
94

4
13

5
5

5
0.
22

<
10

−
3

13
1

12
5

0.
03

9
0.
00

3
13

24
57

0.
00

6
0.
55



A. Weichselbaum / Annals of Physics 327 (2012) 2972–3047 3045

Fig. C.14. Weight diagrams of SU(3)multiplets generated in a typical NRG run for the symmetric 3-channel system including
SU(2)spin ⊗ U(1)charge ⊗ SU(3)channel symmetries (Λ = 4, Etrunc = 7). The multiplet label (q1, q2), as defined in Eq. (A.34),
is specified with each multiplet in the upper left corner of its panel. For a weight diagram of a specific IREP (q1, q2), the
corresponding z-labels (qz1, qz2) of SU(3) for each individual state within the multiplet are depicted as points in a two-
dimensional plot. In the case of inner multiplicity, i.e. that several states within the same IREP share exactly the same z-labels,
these states are shown as an encircled group of smaller points. The dimension for every multiplet (number of points drawn
within a panel) is indicated to the lower right of each panel. The first panel [multiplet (0, 0)] represents the scalar representation
withmultiplet dimension d = 1.Multiplet (1, 0) represents the defining three-dimensional representation [cf.Appendix A.4.3],
and (1, 1) the regular representation of dimension 8 equal to the dimension of SU(3), i.e. the number of its generators. The
largest multiplet encountered in given NRG run is the multiplet (4, 4)with an irreducible dimension of d = 125.

combining up to n = 4 sites without truncation. As the internal multiplet dimensions quickly grow
for higher rank symmetries, nevertheless only an ever smaller fraction of Clebsch–Gordan coefficients
are non-zero. As seen from Table C.7, the sparsity roughly grows exponentially with the rank of the
symmetry. Nevertheless, with the memory requirement of the sparse CGC for Sp(6) comparable or
even larger than the storage of the reduced matrix elements on the higher multiplet level (see last
column in Table C.7), full storage including also the zero CGC spaces would have extremely inflated
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Table C.8
Sp(6) multiplets generated in a fully converged NRG run for the
symmetric 3-channel system using SU(2)spin ⊗ Sp(6) (Λ = 4, Etrunc =

7). Multiplet (0, 0, 0) represents the scalar representation of dimension
1, multiplet (1, 0, 0) the defining representation of dimension 6, and
multiplet (2, 0, 0) the regular representation of dimension 21 which is
also equal to the number of generators for Sp(6). The largest tensor-
product decomposition was between the product spaces of IREPs of
dimension 14 and 512, yielding a combined product space dimension
of 7168. Run time of the bare NRG run was about 2 h on a state-of-the-
art 8-core workstation with moderate memory requirements of .4.5G.
Sp(6)multiplet Dimension Sp(6)multiplet Dimension

q d [cont’d]
(0 0 0) 1 (1 2 0) 350
(1 0 0) 6 (1 0 2) 378
(0 0 1) 14 (0 3 0) 385
(0 1 0) 14 (3 1 0) 448
(2 0 0) 21 (1 1 1) 512
(3 0 0) 56 (3 0 1) 525
(1 1 0) 64 (0 1 2) 594
(1 0 1) 70 (0 2 1) 616
(0 0 2) 84 (2 2 0) 924
(0 2 0) 90 (2 0 2) 1078
(0 1 1) 126 (1 3 0) 1344
(4 0 0) 126 (2 1 1) 1386
(2 1 0) 189 (1 2 1) 2205
(2 0 1) 216 (1 1 2) 2240
(0 0 3) 330

overall storage requirement. In this sense, sparse storage of CGC spaces becomesmandatory for larger-
rank symmetries. With the standard CGC spaces already tensors of rank-3, sparse storage of general
CGC spaces requires the extension of standard sparse storage and sparse operations to arbitrary-rank
tensors. All of these is achieved, in general, by proper efficient permutations in sparse index space
which requires a fast sorting scheme, together with reshaping of higher rank-objects to standard two-
dimensional sparse objects with fused indices, since this allows to employ efficient algorithms for
standard sparse matrix multiplication.

In order to distinguish numerical noise, i.e. negligible CGC matrix elements, from actual matrix
elements then, this requires an accurate evaluation of the CGC matrix elements. Double precision
accuracy as compared to the exact theoreticalCGCswas sufficient, in practice. In particular, this implies,
that also thematrix elements of the generators for given IREPs of the symmetry are known numerically
exact at any step. In the iterative approach, however, when new multiplets are generated through
tensor productswith smaller entities, numerical errors canpile up. For large-rank symmetries then the
accuracy of the matrix elements of the generators must be better than double precision. For practical
purposes, quad precision on matrix elements of the generators turned out sufficient. Alternatively, it
is also emphasized that the matrix elements in the numerical representation of the generators w.r.t.
some given IREP can actually be corrected even for sizable numerical errors. The underlying reason is that
the generators for a given IREP are unique up to similarity transformation. Nevertheless, the similarity
transformation is largely fixed by the construction of the z-operators: these are (i) diagonal, and
(ii) their diagonalmatrix elements are integer-superpositions of the diagonals of the z-operators in the
defining representation, e.g. can be chosen to be integer or half-integer valued. Hence small numerical
errors ε ≪ 1 can be easily correctedw.r.t. the z-operators. However, knowing the z-operators exactly,
also the matrix elements of the remaining operators can be fixed, in principle, while paying attention
to conventions regarding inner multiplicity.
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