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Using the theory of diffusion in graphs, we propose a
model to study mesoscopic transport through a diffusive
quantum dot. The graph consists of three quasi-1D regions:
a central region describing the dot, and two identical left-
and right- wires connected to leads, which mimic contacts
of a real system. We find the exact solution of the diffu-
sion equation for this graph and evaluate the conductance
including quantum corrections. Our model is complemen-
tary to the RMTmodels describing quantum dots. Firstly,
it reproduces the universal limit at zero temperature. But
the main advantage compared to RMTmodels is that it al-
lows one to take into account interaction-induced dephas-
ing at finite temperatures. Besides, the crossovers from
open to almost closed quantum dots and between differ-
ent regimes of dephasing can be described within a single
framework. We present results for the temperature depen-
dence of the weak localization correction to the conduc-
tance for the experimentally relevant parameter range and
discuss the possibility to observe the elusive 0D-regime of
dephasing in different mesoscopic systems.

1 Introduction

In the last decades, dephasing in quantum dots has been
studied experimentally and theoretically in great detail.
The theoretical description is largely based on results
from random matrix theory (RMT), emphasizing the uni-
versality in the description of a dot, when spatial degrees
of freedom become negligible. While the universal lim-
its are well understood and reproduced in many experi-
ments, a prediction of the full temperature dependence
of quantities which are sensitive to dephasing, such as
quantum corrections to the classical conductance, Δg ,
are challenging existing theories. Since RMT is not able

to describe the T dependence on its own, several exten-
sions were introduced in the past to describe their depen-
dence on a dephasing time τϕ, which has to be included
phenomenologically, see Sect. 2 for details.

One of the well-know problems in the theory of de-
phasing in quantum dots originated from the predic-
tions of a seminal paper by Sivan, Imry and Aronov, who
showed that dephasing in the so-called 0D regime (T �
ETh, where ETh is the Thouless energy), behaves as τϕ ∼
T −2, which results from Pauli blocking of the Fermi sea
[1]. However fundamental the origin of 0D dephasing is,
it has so far not been observed experimentally. One pos-
sible reason for this might be the fact that dephasing is
very weak in this regime, such that quantum corrections
may reach their universal limit Δg ∼ 1. In general, if the
dephasing time is much larger than the time the elec-
tron spends in the dot, Δg is governed by a dwelling time
τdw and becomes almost T independent. The remaining
small T -dependent part of Δg can be masked, for exam-
ple, by other T -dependent effects coming from contacts
or leads. Thus, to facilitate an experimental observation
of 0D dephasing, a comprehensive theory of transport in
the quantum dot connected to leads via some contacts is
needed, which goes beyond the simple picture provided
by RMT.

In this paper we propose an alternative to the RMT
description of the quantum dots. Namely, we follow the
ideas of [2,3] and model the quantum dot as a network of
1D wires and use the theory of diffusion in graphs to cal-
culate τϕ and Δg . Earlier papers either focused only on
small graphs, such as 1D rings [4–6], or the authors intro-
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duced τϕ only phenomenologically [2, 3, 7]. We general-
ize the theory of τϕ for arbitrary graphs and include the
regime T < ETh by taking into account the Pauli principle.
Using this theory, we calculate τϕ for a network describ-
ing a quantum dot, taking into account effects of the con-
tacts and the leads. This allows us to demonstrate that
the T 2-dependence of the dephasing rate in 0D regime is
substantially distorted in usual transport measurements
in quantum dots.

The rest of the paper is organized as follows: In Sect. 2
we give a brief review of known results for dephasing in
quantum dots. In Sect. 3, basic results from the theory of
diffusion in graphs are presented, and in Sect. 4 we will
apply this theory to construct a solvable quantum dot
model as an alternative to the well-known RMT models.
Results for the quantum corrections to the conductance
and the dephasing time are presented in the following
Sections. In the conclusions we compare different exper-
imental setups where 0D dephasing could be observed.

2 Dephasing in quantum dots: Brief review
of known results

It is well-known that the conductance g of a disordered
normal metal is reduced due to quantum mechanical
interference of the electron wave functions scattered at
static impurities. It has been found that the reduction of
g can be expressed via the return probability of coherent
electron paths, P(x , x , t ), (the so-called Cooperon) inte-
grated over time and space [8]:

Δg ≡ g − g0 =−4ETh

∫∞

0
dt

∫
dd x P(x , x , t ) . (1)

Here g0 is the classical conductance measured in units of
e2/h , ETh = D/Ω2 is the Thouless energy of the system,
D is the diffusion constant and Ω is the largest size of the
system. Δg is usually referred to as the weak localization
correction.

Quantum coherence is suppressed by a constant mag-
netic field and by time-dependent (noisy) fields, or when
closed electron paths contributing to P(x , x , t ) in Eq. (1)
are dephased due to inelastic scattering events. The time-
scale associated with the latter is called dephasing time
τϕ. In the absence of other sources of dephasing, τϕ
yields an infrared cutoff for the time-integral, Eq. (1), and
governs the temperature dependence of Δg [9]. At low
temperatures, T � 1K , where phonons are frozen, τϕ is
dominated by electron interactions and depends on the
dimensionality d and the geometry of the system. The T -
dependence of τϕ in different regimes is governed by an

interplay of τϕ with the thermal time τT = 1/T and the
Thouless time τTh = 1/ETh, see Table 1 for a summary of
known regimes in 1D and 2D [10]. For low temperatures
and small system sizes, when ETh is the largest energy
scale, dephasing becomes effectively zero-dimensional
(0D). Therefore, it must be relevant for transport in metal-
lic (diffusive or chaotic) quantum dots [1].

Table 1 Dephasing rate 1/τϕ as a function of temperature T .

τT � τϕ �
τTh

τT � τTh �
τϕ

τTh � τT �
τϕ

1D ∝ T 2/3 ∝ T ∝T 2

2D ∝ T ∝ T ln(T ) ∝T 2

Note that 0D dephasing requires confinement of the
electron paths during times larger than τTh, since quan-
tum corrections become T independent for τϕ � τTh in
fully open systems. As an example, consider the case of a
quasi-1D wire of length L connected to absorbing leads,
where Δg reads [11]:

Δg =−4
∞∑

n=1

1

(πn)2+τTh/τϕ

∣∣∣
τϕ�τTh

	−2

3
. (2)

Thus, a detailed calculation of Δg including τϕ requires
solving the full diffusion equation of the connected quan-
tum dot, which is hard to achieve analytically for con-
fined systems.

One way to circumvent this problem is to apply ran-
dom-matrix theory (RMT) to the scattering matrix S, de-
scribing transmission and reflection in the sample. In
such an RMT model one assumes that the elements of
the Hamiltonian H describing the systems are either real
(Gaussian orthogonal ensemble, βGOE = 1) or complex
(Gaussian unitary ensemble, βGUE = 2) random numbers
corresponding to a system with time-reversal symmetry
or broken time-reversal symmetry.1 Imposing a Gaussian
probability distribution P(H), the scattering matrix S can
be constructed using so-called R-matrix theory. Alterna-
tively, a simpler approach starts from a probability dis-
tribution of the scattering matrix directly, which is of the
form P(S) = const, and S is again only restricted by sym-
metry arguments. From the scattering matrix, the full
non-pertubative distribution of the transmission matrix

1 Note that in this paper, we consider only the spinless cases.
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Figure 1 (a) A graph consisting of 9 wires and 6 vertices, denoted
by Greek letters. (b) A quantumdot realized as a graph with dimen-
sionless coordinate Z = x/L. The labels Zi denote the position of

the leads (i = 0,9) and the vertices (i = 1. . . 8) on the scale Z .
Furthermore, the numbers i = 1. . . 8 correspond to the i th row or
column of the vertex matrix M γ, Eq. (10)

and the conductance can be obtained. While RMT is un-
able to predict the temperature dependence of Δg on its
own, the difference in g of the cases βGOE and βGUE is
equivalent to Δg in the universal limit of T → 0. The uni-
versal values for Δg calculated by RMT are ∼ 1, in par-
ticular Δg = 1/3 for a quantum dot with spinfull single-
channel (N = 1) contacts and Δg = 1/4 for many-channel
(N →∞) contacts [12,13], but we would like to stress that
taking into account dimensionality and geometry of the
contacts may lead to different values. Extensions to RMT
have been introduced in the past to describe the depen-
dence of Δg on a dephasing time [14], e.g. by including a
fictitious voltage probe into the scattering matrix which
removes electrons from the phase-coherent motion of
the electrons in the quantum dot [15], or by including
an imaginary potential equal to −i /2τϕ in the Hamilto-
nian from which the scattering matrix is derived [16]. It
is expected that τϕ included in such an approach has the
same form as stated in Table 1 for T � ETh, i.e. τϕ ∝ T −2,
but a proof of this expectation and a theory of a crossover
between different regimes is still missing.

3 Diffusion in graphs

In this section, we present basic results from the theory
of diffusion in graphs, following [11]. A graph is defined
as a set of quasi-1D wires connected to each other at ver-
tices, see the example shown in Fig. 1(a). In this section
we will show how the solution to the Laplace transformed
diffusion equation,
(
γ−DΔ

)
Pγ(x, y) = δ(x − y) , (3)

between arbitrary vertices (with coordinates x and y) of
such a graph can be obtained. The time-dependent prob-
ability, required to calculate Δg and τϕ, can be obtained
via an inverse Laplace transform:

P(x, y, t ) = 1

2πi

∫+i∞

−i∞
dγeγt Pγ(x, y) . (4)

It is convenient to introduce the following quantities:
We denote the wire between arbitrary vertices α and β

as (αβ) and its length as Lαβ. Furthermore, the running
coordinate along this wire (measured from α) is denoted
xαβ, and in the following, we will not distinguish a vertex
from the coordinate of the vertex on the graph: For ex-
ample, P(α, y) is equivalent to limxαβ→0 P(xαβ, y), for any
neighboring vertex β of α. The current conservation at
some vertex α can be written as follows:

− ∑
(αβ)

[
∂xαβ

Pγ(μ, xαβ)
]

xαβ=0
= δα,μ , (5)

where the symbol
∑

(αβ) means summation over all wires
(αβ) which are connected to α.

Consider the point x lying at the coordinate xαβ of
wire (αβ) in Fig. 1(a). The probability to reach x from
some arbitrary other point y of the graph can be ex-
pressed in terms of the probabilities from the neighbor-
ing vertices of x, i.e. α and β:

Pγ(y, x) = (6)

Pγ(y,α)sinh
(√

γ/D (Lαβ−xαβ)
)+Pγ(y,β)sinh

(√
γ/D xαβ

)
sinh

(√
γ/D Lαβ

) .

Validity of the solution (6) can be checked directly by sub-
stituting Eq. (6) into Eq. (3).

Inserting (6) into (5) yields the following equations for
vertex α:

Pγ(μ,α)
∑

(αβ)

√
γ/D coth

(√
γ/DLαβ

)

−
∑

(αβ)
Pγ(μ,β)

√
γ/D

sinh
(√

γ/DLαβ

) = Dδα,μ . (7)

Writing down Eq. (7), for every vertex of the graph, we ob-
tain a set of linear equations which can be solved for ar-
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bitrary vertices. Let us define a matrix M γ as follows:

M
γ

αβ
≡ ∑

(αδ)

(
δαβ

√
γ/Dcoth

(√
γ/D Lαδ

)

−δδβ
√

γ/D sinh
(√

γ/DLαδ

)−1
)

. (8)

It is easy to check that the diffusion probability between
arbitrary vertices of the graph is given by the entries of
the inverse matrix divided by the diffusion constant [7,
11]:

Pγ(α,β) = 1

D
(M γ)−1

αβ . (9)

4 A graph model for a connected quantum dot

In this section we explain how to describe a connected
quantum dot by a network of 1D wires. The main advan-
tage of this model is that an exact solution to the diffu-
sion equation can be found.

Consider the network shown in Fig. 1(b). It includes
8 vertices and describes a quantum dot of total length
2L attached via two contacts of length L to absorbing
leads.2 Multiple wires connecting the same vertices (e.g.
the three wires connecting vertex 4 with vertex 5) mimic
a larger number of channels. Below, we use a dimension-
less coordinate Z = x/L; the position of the leads is fixed
at Z0 = −2, Z9 = +2 and the position of the 3rd and

6th vertex, describing the connection of the dot to the
contacts, is fixed at Z3 = −1, Z6 = +1. The remaining
6 vertices are auxiliary: There are 3 regions in the system
marked by “L” (left contact), “D” (dot) and “R” (right con-
tact). We would like to describe diffusion from an arbi-
trary point in the system to another. Therefore, we have
to place two additional vertices in each region L, D, R. Po-
sitions of these vertices define running coordinates. They
are arbitrary within the corresponding region, thus each
region is subdivided into 3 wires of varying length. The

2 We have chosen this particular ratio of wire lengths to simplify
the calculations in the remainder of this section. Note that neither
very short nor very long connecting wires are experimentally rele-
vant for quantum dots, since either the confinement to the central
region would be lost or the contacts would be unrealistically large.

running coordinates can be expressed via the length of
the connecting wires, e.g. the length of the wire connect-
ing vertices 1 and 2 is given by (Z2 −Z1).

To describe confinement of the electrons, we assume
that all vertices in the regions L and R (including bound-
aries) are connected by single wires while the vertices
in the dot (including its boundaries) are connected via
Nd wires. This allows us to tune the system from a sim-
ple wire at Nd = 1 to an almost closed quantum dot for
Nd → ∞. The corresponding vertex matrix M γ, defined
in Eqs. (8), is given by

M γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
M

γ
L

] 0

SL

0 0

0 0

0

0

0 0

0 0

0 SL CLD SLD 0 0 0 0

0 0

0 0

SLD

0

[
M

γ
D

] 0

SDR

0 0

0 0

0 0 0 0 SDR CDR SR 0

0 0

0 0

0

0

0 0

0 0

SR

0

[
M

γ
R

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

We have introduced 2×2 blocks,

M
γ
L =M

γ
0123 , M

γ
D = NdM

γ
3456 , and

M
γ
R =M

γ
6789 , (11)

which are given by:

M
γ

i j kl =
(

coth
(√

γ̃[Z j −Zi ]
)+coth

(√
γ̃[Zk−Z j ]

) −1/sinh
(√

γ̃[Zk−Z j ]
)

−1/sinh
(√

γ̃[Zk−Z j ]
)

coth
(√

γ̃[Zk−Z j ]
)+coth

(√
γ̃[Zl −Zk ]

)
)

. (12)

Expressions for the entries “S” and “C”, which corre-
spond to connected vertices, read

SL;R =−1/sinh
(√

γ̃(−1∓Z2;7)
)

,

SLD ;DR =−Nd /sinh
(√

γ̃(1±Z4;5

)
,

CLD ;DR = Nd coth
(√

γ̃(1±Z4;5)
)
+coth

(√
γ̃(−1∓Z2;7)

)
,

where we have defined the dimensionless parameter γ̃=
γ/ETh, where ETh = D/L2 is the Thouless energy on the
scale L. Note that the total length of the wires which form
the graph is Ltotal = 2L(Nd+1). Thus, the probabilities ob-
tained via inversion of the matrix (10), cf. Eq. (9), are nor-
malized on Ltotal. For further calculations, it is more con-
venient to change this normalization from Ltotal to the ac-
tual length of the system, 4L: Firstly, we recall that all Nd

wires in the dot connecting the same two vertices have
the same length, i.e. these wires are identical. Consider a
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0.0

0.2

0.4

0.6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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4 )
LP(0, y, τTh

4 )

Figure 2 (online color at:www.ann-phys.org) Probability as a func-
tion of space for fixed t = τTh/4, Nd = 2 and initial position
x = −1.5L (red curve) or x = 0 (blue curve). The initial positions
are marked by arrows.

point X inside the dot which belongs a given wire (out
of Nd ) and is infinitesimally close to one of the vertices
α = 4 or 5. The probability to reach X from any other
point is equal to the probability to reach α itself. Let us
now introduce a probability P to reach X belonging to
any of the Nd wires:

Pγ(α,β) = N (β)Pγ(α,β) ≡ N (β) 1

D
(M γ)−1

αβ ; (13)

here N (β) = Nd if β is a vertex lying in the dot and N (β) = 1
otherwise. P is normalized on 4L and it reflects an en-
hancement of the probability for an electron to stay in
the dot by the factor Nd .

Furthermore, we define the piecewise continuous
function Pγ(x, y) of continuous variables x, y ∈ [−2L,2L]
by selecting two appropriate vertices and replacing the
wire-length parameters, Zα, by x/L or y/L. For example,
the probability to reach any point y ∈ [−L,L] in the dot
from a point x ∈ [−2L,−L] in the left contact, is given by
Pγ(x, y) = Nd

1
D (M γ)−1

14 after replacing Z1 by x/L and Z4

by y/L.
An analytic expression for Pγ(x, y) can be evaluated

efficiently, but it is lengthy and will be published else-
where. Besides, the inverse Laplace transform of Pγ(x, y),
cf. Eq. (4), can be calculated by exploiting the fact that all
poles of Pγ(x, y) are simple and coincide with the zeros
of the determinant of M γ. Direct calculation yields3

detM γ ∝ S(γ̃)

≡ sinh
(
2
√

γ̃
)(

(Nd −1)+ (Nd +1)cosh
(
2
√

γ̃
))

. (14)

3 We note in passing that S(γ̃) is proportional to the so-called spec-
tral determinant, det(−DΔ+γ), of the graph [11], implying that it
does not depend on any of the auxiliary coordinates Zi .

Solving equation S(γ̃) = 0 yields the following poles for
the graph under consideration:

γ̃k =−
(

kπ

2

)2

, k ∈N+ , or

γ̃k =−
(

kπ+arccos

√
Nd

Nd +1

)2

,k ∈Z . (15)

Note that there is no pole at γ̃ = 0 since the system is
open. Defining the dimensionless function

R(x, y, γ̃) = D

L

P γ̃ETh (x, y)S(γ̃)

S′(γ̃)
, (16)

where S′(x) = ∂x S(x), we can evaluate the time-depend-
ent probability using the residue theorem by closing the
integral contour in Eq. (4) on the left half-plane:

P (x, y, t )= 1

L

∑
k

R(x, y, γ̃k )exp
(
γ̃k ETht

)
. (17)

P (x, y, t ) is plotted in Fig. 2 for fixed t = τTh/4, Nd = 2
and x either in the left contact or in the dot. We em-
phasize that for Nd > 1, P (x, y, t ) is discontinuous at
y = ±L, describing confinement in the dot. In particular,
P (x, y, t ) = NdP (y, x, t ) for x in a contact and y in the
dot. Normalization is reflected by the fact that P (x, y, t )
satisfies a semi-group relation

∫2L

−2L
dyP (x, y, t1)P (y, z, t2) =P (x, z, t1+ t2) . (18)

In the next sections we will evaluate the correction to the
conductance and the dephasing time using the probabil-
ity P .

5 Quantum corrections to the conductance
for the quantum dot model

The classical conductance of the system described by
Eq. (10) is obtained via Kirchhoff’s circuit laws, since the
contacts of length L and the central region of length 2L
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(with Nd wires in parallel) are connected in series. Denot-
ing the contact conductance (i.e. the conductance of the
left or right wire) as gc , we obtain

g0 = gc

2
(1+1/Nd )−1 . (19)

Note that the value of gc cannot be chosen arbitrarily: As-
suming that the substrate, from which the wire (length
L and width W ) is constructed, is 2D or 3D with mean
free path 
 and Fermi wavelength λF , the conductance is
given by g 2D

c = 
W /λF L or g 3D
c = 2
W 2/3πλ2

F L. Our the-
ory requires gc > 4/3 in order to obtain g >Δg , and quasi-
1D diffusion requires λF � 
,W � L. For a quantum-dot
of the size of several µm, etched on a GaAs/AlGaAs het-
erostructure (λF ≈ 0.05 µm), we can estimate a typical
value of gc ∼ 5.

To evaluate the quantum corrections Δg , Eq. (1), we
need the return probability defined via Eq. (13) at coin-
ciding α and β. In this section, we consider the case
T = 0 (i.e., τϕ → ∞) and study Δg as a function of the
dissipation parameter γ. We calculate matrix elements
[(M γ)−1)]11, [(M γ)−1)]44 which yield the return probabil-
ity for the dot:

Pγ(x, x)
∣∣∣
x∈[−L,L]

= 1

2
√

γD(Nd+1)S(γ̃)

×
[

(Nd−1)sinh
(√

γ̃
x

L

)
− (Nd+1)sinh

(√
γ̃

( x

L
−2

))]

×
[

(Nd+1)sinh
(√

γ̃
( x

L
+2

))
− (Nd−1)sinh

(√
γ̃

x

L

)]
; (20)

and for the left wire:

Pγ(x, x)
∣∣∣
x∈[−2L,−L]

= sinh
(√

γ̃( x
L +2)

)
2
√

γD(Nd+1)S(γ̃)
(21)

×
[

(Nd−1)
(
(Nd+1)sinh

(√
γ̃

x

L

)
+(Nd−1)sinh

(√
γ̃

( x

L
+2

))

− (Nd+1)sinh
(√

γ̃
( x

L
+4

)))
− (Nd+1)2sinh

(√
γ̃(

x

L
−2)

)]
;

respectively. Pγ(x, x) for the right wire, x ∈ [L,2L], can
be obtained from the symmetry property Pγ(x, x) =
Pγ(−x,−x). In the limit γ→ 0, Eqs. (20) and (21) reduce
to

P0(x, x)
∣∣∣
x∈[−L,L]

= L((Nd +1)2 − ( x
L )2)

2D(Nd +1)
,

(22)

P0(x, x)
∣∣∣
x∈[−2L,−L]

= L(2+ x
L )(2−Nd

x
L )

2D(Nd +1)
.

Note that the return probability diverges for x ∈ [−L,L] in
the limit Nd → ∞, since the central region is effectively
closed in this limit.

Similarly to Eq. (19), the total quantum corrections
have to be properly weighted by using the circuit laws.
The total correction can be written as a sum over all wires
i of the network [17]:

Δg =−4D
1

L 2

∑
i

∂L

∂Li

∫
Wire No. i

dxPγ(x, x) , (23)

where L is the effective total length of the system ob-
tained similar to the total resistance. In the case under
consideration, we have

L = L0 + 1

1/L1 +·· ·+1/LNd

+LNd+1 = 2L(1+1/Nd ) ,

(24)

where L0 = L corresponds to the left wire, LNd+1 = L
to the right wire and L1 . . . LNd = 2L to the Nd wires of
the dot. We obtain the following expression for the total
quantum correction:

Δg =−ETh
1

(1+1/Nd )2

[∫−L

−2L
dx Pγ(x, x)

+ 1

N 2
d

∫L

−L
dx Pγ(x, x)+

∫2L

L
dx Pγ(x, x)

]
. (25)

In Fig. 3, we show the total correction to the conduc-
tance according to Eq. (25) as a function of the dissipa-
tion parameter γ for different values of Nd . Note that for

0.2

0.3

0.4

0.5

0.6

0.7

0.0001 0.001 0.01 0.1 1 10 100

Δg

γ̃

Δg = 2/3

Δg = 1/3

∝ 1/
√
γ̃

Nd = 1000
Nd = 100
Nd = 10
Nd = 1

Figure 3 (online color at:
www.ann-phys.org) Depen-
dence of the total quantum
correction to the conduc-
tance of the quantum dot
model, Eq. (25), on the di-
mensionless dissipation
parameter γ̃= γ/ETh.
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γ � 1 all curves are ∝ 1/
�
γ, similar to an infinite wire

with different prefactors corresponding to different effec-
tive wire width. We are mainly interested in the regime
γ � 1, where the main result originates from the left
and right wire and all curves approach the ergodic limit
limγ→0(Δg ) = 2/3, cf. Eq. (2). This limit can be checked
in this model by substituting Eqs. (22) into Eq. (25). Thus,
in the absence of dissipation, our model has qualitatively
the same behavior as RMT theory, albeit the precise uni-
versal value differs by a factor ∼ 1, cf. Sect. 2. This dif-
ference is due to the fact that RMT assumes structure-
less contacts and is a 0D model, whereas the validity of
the graph model requires L � (W ,
) for the connecting
quasi-1D wires. Since the time to reach one contact from
the other increases linearly with Nd , there is an interme-
diate regime at 1/Nd < γ̃< 1 for large Nd , where the sys-
tem is described effectively as two wires connected in se-
ries via the dot, which just plays the role of an additional
lead, such that Δg = 1/3.

6 Evaluation of the dephasing time
for the quantum dot model

The dephasing time, τϕ, can be calculated from the
phase difference acquired by an electron in a time-de-
pendent (fluctuating) potential V (x, t ) during a time-
reversed traversal of its trajectory x(t ) [9]:

Φ[x(τ)]=
∫t

0
dτ

[
V (x(τ),τ)−V (x(τ), t −τ)

]
. (26)

When averaged over the Gaussian fluctuations of the po-

tential 〈eiΦ〉V = e−
1
2 〈Φ2〉V , Eq. (26) leads to an exponential

cutoff of the return probability4

P (x, x, t )→P (x, x, t )·〈eiΦ[x(τ)]〉{x(τ)} ≈P (x, x, t )·e−F (x,t)

(27)

where 〈. . .〉{x(τ)} means the average is over closed trajec-
tories x(τ) of duration t , staring and ending at x, and we
defined the decay function F [18, 19]:

F (x, t )=
∫t

0
dt1,2〈〈V V 〉(x(t1), x(t2), t1− t2)

−〈V V 〉(x(t1), x(t2), t − t1 − t2)〉
{x(τ)}

. (28)

4 Note that in the second equality of Eq. (27), we exponentiate the
average over closed path, see [18] for details.

In the case of the graph model for the quantum dot, the
usual operational definition of τϕ reads

F (x,τϕ(x))= 1, (29)

such that the correction to the conductance is given by
Eq. (25) with a position dependent γ(x) = 1/τϕ(x). The
correlation function 〈V V 〉 entering Eq. (28) is well known
for the case of electron interactions in macroscopically
homogeneous disordered systems [9]. Recently, we have
generalized this theory for inhomogeneous, multiply-
connected systems [10]. It has been shown that 〈V V 〉
generically is given by

〈V V 〉(x, y, t )= 4πT

gc L
P0(x, y)δT (t ) , (30)

where P0(x, x)= limγ→0 Pγ(x, x) and

δT (t )=πT w(πT t ) with w(x)= xcoth(x)−1

sinh2x
(31)

is a broadened δ-function which allows us to take into
account the Pauli principle [18].

Inserting Eq. (30) into Eq. (28), we find

F (x, t )= 4πT

gc

∫t

0
dt1,2 Q(x, tm , tM − tm, t − tM )

× [δT (t1 − t2)−δT (t1 + t2 − t )] , (32)

where tm = min[t1, t2] and tM = max[t1, t2]. The function
Q is given by the dimensionless quantity DP0/L, aver-
aged over closed random walks:

Q(x0, t1, t2, t3) =
∫2L

−2L
dx1,2

× P (x0, x1, t1)P (x1, x2, t2)P (x2, x0, t3)

P (x0, x0, t1 + t2 + t3)

DP0(x1, x2)

L
. (33)

All probabilities in Eq. (33) can be evaluated analytically
from Eq. (17), Eq. (13) and Eq. (10), by deriving the cor-
responding entries in the inverted vertex matrix [M γ]−1.
The integrand is lengthy and we have chosen the follow-
ing strategy for calculating the integrals:

1) We use Eq. (17) to rewrite Eq. (33) as:

Q(x0, t1, t2, t3)

=
∑

n,k ,l

Q(x0, γ̃n , γ̃k , γ̃l )

P (x0, x0, t1 + t2 + t3)
eγ̃n t1+γ̃k t2+γ̃l t3 , with (34)

Q(x0, γ̃1, γ̃2, γ̃3) = D
∫

dx1,2

L3

×R(x0, x1, γ̃1)R(x1, x2, γ̃2)R(x2, x0, γ̃3)P0(x1, x2) . (35)
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The integrals in Eq. (35) over space are evaluated symbol-
ically with the help of a computer algebra program.

2) Since the time dependence of Q in Eq. (34) is sim-
ply exponential, one of the time-integrals in Eq. (28) is
calculated analytically. As a result, F (x0, t ) simplifies to a
single time integral and multiple sums:

F (x0, t )

= (4π)2

gc

∑
n,k ,l

Q(x0, γ̃n , γ̃k , γ̃l )
∫tT

0
dτE (τ, γ̃n , γ̃k , γ̃l )

∑
m

R(x0, x0, γ̃m )eγ̃m ETht
. (36)

Here, the remaining time dependence of the kernel is in-
corporated in the function E :

E (τ, γ̃1, γ̃2, γ̃3) = w(πτ)ec1tT

×
[

sinh (c2(t T −τ))ec3τ

2c2

− sinh
( c3

2 (t T −τ)
)

cosh(c2τ)ec3(tT−τ)/2

c3

]
, (37)

with

c1 = (γ̃1 + γ̃3)
ETh

2T
, c2 = (γ̃1 − γ̃3)

ETh

2T
,

c3 = γ̃2
ETh

T
−c1 . (38)

3) The sums and the integral over τ are calculated nu-
merically.

This strategy allows us to calculate τϕ and to describe
the T -dependence of Δg in the quantum dot model, in-
cluding the full crossover between different regimes of
dephasing.

7 Examples of application

In this section, we use the graph model of the quantum
dot to calculate τϕ(x0,T ) and Δg (T ) in the case gc = 5
for the parameter Nd ranging from Nd = 1 (no confine-
ment in the central region) to Nd = 100 (almost closed
quantum dot connected to ideal leads via two contacts).
Our model is valid for this choice of gc , see the discus-
sion in Sect. 5, and the total conductance of the system
1.25 < g0 < 2.5 is close to experimental setups [20, 21].
The results are shown in Fig. 4.

The dephasing time is shown in Fig. 4(a) for several
values of the origin of the Cooperon, x0, which can be-
long either to the central region (solid blue lines) or the
contact (dashed red lines). To check the validity of the

results, we compare τϕ at high and small temperatures
with earlier results for an almost isolated quasi-1D ring
of total length 4L and total conductance g1 [22].

If τT � τϕ � τTh ≡ 1/ETh, dephasing is not sensitive
to the boundary conditions and it is described by the the-
ory of infinite systems [9]. In the ring, the high-T regime
appears at T � g1ETh. The formula for τϕ in this regime,
including sub-leading terms, reads [22]:

τϕ

τTh
=

(
2g1ETh

π3/2T

) 2
3
(
1+ 2

5
2

3π
|ζ(1/2)|

(
π

3
2

2g1

) 1
3 (

ETh

T

) 1
6

+ 2

9
�
π

(
2g1

π
3
2

) 1
3
(

ETh

T

) 1
3
)

. (39)

We have reproduced this high-T behavior in the
quantum dot model, see Fig. 4(a): Numerically obtained
curves coincide with Eq. (39), after substituting Nd gc for
g1, when T � (gc Nd )ETh. We note that dephasing in the
high-T regime is substantially inhomogeneous in space,
since the relevant trajectories are restricted to a small re-
gion around x0. In particular, for sufficiently high T , all
curves for dephasing in the contact (Nd = 1,10,100) co-
incide with the curve for Nd = 1 in the central region,
since the number of channels in the central region is irrel-
evant for dephasing in the contact. On the other hand, de-
phasing in the central region itself becomes weaker with
increasing Nd , since Nd increases the effective conduc-
tance in this region.

In the low-T regime,5 τTh � τT � τϕ, typical electron
trajectories explore the whole system many times before
dephasing becomes effective [1]. The geometry of the sys-
tem is not important in this case and, therefore, the low-
T regime is usually referred to as the regime of 0D dephas-
ing. In the ring, it occurs at T � ETh with τϕ given by [22]

τϕ

τTh
= 135g1

32π2

(
ETh

T

)2 (
1+ 16π

45g1

T

ETh
+ 128π2

105

(
T

ETh

)2)
.

(40)

The quantum dot model shows similar behavior at T �
ETh, after substituting gc Nd for the ring conductance.

5 The intermediate regime, τT � τTh � τϕ , characterized by
τϕ ∝ T −1 is strongly distorted in the quantum dot, since: (a) The
conductance gc is relatively small, reducing the range of validity
of this regime, and (b) it occurs when typical electron trajectories
are of the order of the system size making τϕ sensitive to the
inhomogeneities of the graph.
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Figure 4 (online color at: www.ann-phys.org) (a) The dephasing
time in units of the Thouless time, 1/ETh, plotted for several val-
ues of Nd and x0. Solid blue lines, correspond to x0 = −0.05L
close to the center of the dot, while dashed red lines correspond
to x0 = −1.55L close to the center of the left contact. The thick-
ness (and brightness) of the curve determines the number of chan-
nels in the dot, Nd = 1,10,100 from thin to thick (and bright
to dark). The black dotted lines correspond to the asymptotic re-
sults, Eqs. (39) and (40), derived from an isolated ring geom-

etry, see main text for details. (b) The difference Δg + 2/3 be-
tween the correction to the conductance, Δg , and its universal
zero-temperature value, Δg (T = 0) =−2/3, plotted as function
of temperature. 0D behavior of the dephasing time, characterized
byΔg ∝ T 2, appears at very low temperatures, requiring a preci-
sion much larger than 1% on the conductance measurement. In-
set: (c) Total correction to the conductance−Δg (without subtract-
ingΔg (T = 0)), plotted as function of temperature.

We emphasize that 0D dephasing in our model is gov-
erned by atypical trajectories, which explore the dot and
the contacts many times during the time scale t � τdw.
Therefore, the dephasing time is nearly coordinate inde-
pendent: Dephasing in the central region and in the con-
tacts is essentially the same.

The correction to the conductance is shown in the in-
set, Fig. 4(c), for Nd = 1,10,100. We calculated Δg from
the integral in Eq. (25) with a position dependent γ(x) =
1/τϕ(x,T ). As expected from the discussion in Sect. 5, the
curves saturate to the universal value Δg = −2/3, when
γ̃≡ γ/ETh � 1/Nd . Since 1/γ̃= τϕ/τTh ∼ (gc Nd )(ETh/T )2

in this regime and gc is small and fixed, saturation occurs
when T � ETh. The intermediate regime for 1/Nd � γ̃�
1, where Δg = −1/3, cf. Fig. 3, is strongly distorted since
it lies in the crossover region between high-T and low-T
regime. We note that at T < 10ETh, curves for different
Nd look very similar. Moreover, dephasing is very weak

at T � ETh where Δg is governed by a dwell time, τdw,
of the entire system and is practically T -independent.
After subtracting the curve from its universal value, see
Fig. 4(b), 0D dephasing reveals itself as Δg ∝ T 2 for very
low temperatures T � 0.2ETh. At 0.2ETh < T < ETh one
can observe only a transient, since (i) dephasing is not
yet sufficiently weak to justify Δg ∝ T 2 and (ii) the 0D
regime of dephasing is not fully reached, cf. Fig. 4(a).
Moreover, if the leads are not perfectly absorbing, the
transient can be extended even to lower temperatures
due to additional dephasing in the leads. All this clearly
shows that 0D dephasing cannot be discovered directly
in transport measurements through the quantum dot.
Even at T � 0.2ETh, a fitting of the experimental data
would require g to be measured with a precision of much
better than 1%. Alternative possibilities for the experi-
mental observation of 0D dephasing are discussed in the
Conclusions.
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8 Conclusions

We have suggested a graph model, which allows one to
describe transport through mesoscopic quantum dots.
The graph includes three quasi-1D regions: identical left-
and right- wires and a central region. The identical wires
are connected to ideally absorbing leads and mimic the
contacts of a real system. The number of conducting
channels in the central region can be of the order of- or
substantially larger than the number of channels in the
contacts. The latter case corresponds to a strong confine-
ment of electrons in the central region. Thus the graph
model is able to describe a crossover from opened to
closed quantum dots.

The model which we suggest can be viewed as com-
plementary to the seminal RMT model. Firstly, the exact
solution to the diffusion equation can be found for the
graph model. Secondly, we have shown that our model
correctly reproduces the universal regime of transport in
full analogy with the RMT solution. Even more impor-
tantly, the graph model allows us to take into account
interaction induced dephasing in a broad temperature
range, i.e., we can describe the full crossover from 1D to
0D regimes.

Using the solution to the diffusion equation on the
graph, we have described in detail how to calculate the
dephasing time and the weak localization correction to
the conductance. Though the intermediate equations are
rather lengthy, we have suggested an efficient combi-
nation of analytical steps (involving computer algebra)
and numerical integration, which helped us to overcome
technical difficulties.

The general approach has been illustrated for the sys-
tem with gc = 5. We have demonstrated that 0D dephas-
ing (∼ T 2), which is governed by the Pauli principle and
is very generic, occurs in the system at T � ETh at arbi-
trary ratio of the channel numbers in the dots and leads.
In this regime, dephasing is governed by atypical trajecto-
ries which explore the dot and the contacts many times
during the time scale t � τdw where the conductance
is governed mainly by the dwell time and is almost T -
independent. Our results confirm that weak 0D dephas-
ing is substantially distorted by the influence of the con-
tacts and the leads. Therefore, its direct experimental ob-
servation in transport through the quantum dot would
require not only very low temperatures but also unrealis-
tically precise measurements. We conclude that alterna-
tive experimental approaches are needed, where either
the effects from the environment are reduced or the sys-
tem is closed. One possibility to improve the effective pre-
cision of the measurements is related to extracting τϕ
from the T -dependence of the Aronov-Altshuler-Spivak

oscillations of the magnetoconductivity in almost closed
mesoscopic rings. This option was discussed in recent
papers [6, 22] where all effects of the environment were
taken into account via a constant dwelling time. We plan
to study in more detail the sensitivity of the AAS oscil-
lations on the distortions from the environment using
a ring model similar to the model of the dot presented
here [23]. The other option is to extract τϕ from experi-
mental measurements of the electric or magnetic suscep-
tibility of closed mesoscopic systems, e.g. by measuring
the properties of resonators in which mesoscopic sam-
ples are deposited [24]. In closed systems, there is no uni-
versal limit of the quantum corrections at τϕ � τdw, typi-
cal for transport through opened systems. Therefore, the
saturation in the closed system can occur at much lower
T , making them more suitable for an experimental obser-
vation of 0D dephasing. A theoretical description of such
experiments will be published elsewhere.
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