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Discarded weight and entanglement spectra in the numerical renormalization group
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A quantitative criterion to prove and analyze convergence within the numerical renormalization group (NRG)
is introduced. By tracing out a few further NRG shells, the resulting reduced density matrices carry relevant
information on numerical accuracy as well as entanglement. Their spectra can be analyzed twofold. The smallest
eigenvalues provide a sensitive estimate of how much weight is discarded in the low-energy description of later
iterations. As such, the discarded weight indicates in a site-specific manner whether sufficiently many states
have been kept within a single NRG run. The largest eigenvalues of the reduced density matrices, on the other
hand, lend themselves to a straightforward analysis in terms of entanglement spectra, which can be combined
into entanglement flow diagrams. The latter show strong similarities with the well-known standard energy flow
diagram of the NRG, supporting the prevalent usage of entanglement spectra to characterize different physical
regimes.
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I. INTRODUCTION

The numerical renormalization group (NRG)1 is a powerful
method that provides a highly systematic nonperturbative
approach to the wide realm of so-called quantum impurity
systems. These consist of an arbitrary small quantum system
(the impurity) in contact with a macroscopic noninteracting
usually fermionic bath. Each part is simple to solve exactly
on its own. In the presence of interaction at the location
of the impurity, however, the combination of both gives
rise to strongly correlated quantum-many-body phenomena.2

Wilson’s logarithmic coarse-graining of the bath leads to a
semi-infinite chain with exponentially decaying couplings,
which justifies the concept of energy scale separation. That
is, the Wilson chain can be diagonalized iteratively by adding
one site at a time and retaining the lowest MK states only.
The obvious question, however, is how many states should
one keep on average for convergence in this procedure? At
a given iteration there is no quantitative a priori measure
that indicates how many low-energy states are required for
a proper description of the remaining low-energy physics.
Usually, the only way to check convergence within the NRG is
by repeating the entire calculation and showing that the results
no longer change when further increasing MK. Therefore an
NRG calculation is typically run somewhat blindly for some
predetermined MK.

This somewhat uncontrolled truncation in the NRG is in
stark contrast to the situation in the density matrix renor-
malization group (DMRG).3–5 DMRG is based on a (strictly)
variational principle, and as such has a clean well-defined
truncation of the state space for part of the system through the
discarded weight in its reduced density matrix.4 In contrast
to the less suggestive plain number MK of states kept, the
discarded weight represents a reliable quantitative measure
for the accuracy of a calculation. Within the DMRG, MK can
be easily adjusted according to some predefined threshold in
the discarded weight instead. Motivated by DMRG then, an
approximate similar criterion can be established within the
NRG as will be shown in the following. The analysis requires

a slightly longer chain, as shown schematically in Fig. 1. With
the extra n0 sites traced out again from the ground state space
of the enlarged system, this allows to estimate the discarded
weight. The latter offers a quantitative convergence measure
that is specifically of interest for numerically expensive models
such as multichannel models, or models where the energy
scale separation along the Wilson chain might be in question
due to modifications in the discretized Hamiltonian. In either
case, a small discarded weight provides a strong indication for
converged NRG data.

Furthermore, the reduced density matrices generated for
the evaluation of the discarded weight also allow a quite
different analysis in terms of their dominant correlations.
In particular, combining their entanglement spectra into
entanglement flow diagrams offers a complementary view
to the usual NRG energy flow diagram, which is entirely
based on the analysis of the low-energy state space of a prior
NRG run.

The paper is thus organized as follows. In Sec. I the
essentials of the numerical renormalization group are revisited,
including the construction of reduced density matrices. Sec-
tion II then uses a specific set of reduced density matrices in the
definition and analysis of the discarded weight within the NRG.
Section III offers a complementary view on these reduced
density matrices by analyzing their entanglement content in
terms of entanglement spectra. Section IV, finally, summarizes
and presents a brief outlook.

FIG. 1. Schematic depiction of tracing out the low-energy sector
of the Wilson chain at iteration n by including and analyzing n0 more
NRG iterations. The impurity (dot) is entirely contained in the first
site, while the bath is coarse-grained and mapped onto the remaining
semi-infinite tight-binding chain of sites n = 0,1,2, . . ..
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A. Numerical renormalization group

Within the NRG, the continuum of the noninteracting
bath of half-bandwidth W is logarithmically coarse-grained
in energy space, followed by an exact mapping onto a
semi-infinite so-called Wilson-chain.1,6 The impurity space
is coupled to the first site of this chain only, as depicted
schematically in Fig. 1. The logarithmic coarse-graining is
defined through the dimensionless discretization parameter
� > 1. With the chemical potential at energy zero, the contin-
uum of states in the energy intervals ±W [�−(n−z+1),�−(n−z)]
is effectively represented by single fermionic levels (coarse-
graining), including an arbitrary z-shift with z ∈ [0,1].7–9 The
subsequent exact mapping onto the semi-infinite chain (Lanc-
zos tridiagonalization)10 results in an effective tight-binding
chain with the exponentially decaying hopping tn ∼ �−n/2

between sites n and n + 1. For sufficiently large �, typically
� � 1.7, this then justifies the essential NRG assumption of
energy scale separation: by iterative diagonalization of the
Wilson chain by adding one site at a time, large energies
are considered first, with the (approximate) eigenstates at
large energies discarded and considered unimportant in the
description of the lower energy scales still to follow. Thus
each site of the Wilson chain corresponds to an energy shell
with a characteristic energy scale

ωn ≡ �z−1(� − 1)

log �
W�− n

2 . (1)

Here, the prefactor was chosen such that the rescaled couplings
limn→∞(tn/ωn) = 1 quickly approach unity for longer Wilson
chains for arbitrary � and z-shift, with the discretization
following the prescription of Ref. 9 for a flat hybridization,
i.e. �(E) = �θ (W − |E|).

With Ĥn the full Hamiltonian Ĥ of the Wilson chain up to
and including site n, its low-energy eigenstates, are given by
the NRG eigenstates Ĥn|sn〉 = En

s |sn〉. Complemented by an
arbitrary state |en〉 for the remainder of the system following
site n, the NRG assumption of energy scale separation can be
summarized then in the following approximation11

Ĥ |se〉n � En
s |se〉n, (2)

that is, the states |se〉n ≡ |sn〉 ⊗ |en〉 are, to a good approx-
imation, also eigenstates of the entire Wilson chain. The
energies En

s at iteration n are usually expressed relative to the
ground state energy of that iteration, and rescaled by a factor
W
2 (� + 1)�−n/2 ∝ ωn to resolve the energy shell at iteration
n. The resulting energies are referred to as rescaled energies.
For fully fermionic systems, they typically show an intrinsic
even-odd behavior. Thus combining the rescaled energies vs.
even and odd iterations n separately, this results in the standard
energy flow diagrams of the NRG.1,6

The approximate many-body eigenstates |se〉n are con-
structed iteratively, and therefore described in terms of matrix-
product states.5,12–14 Each iterative step results in a basis
transformation, encoded in an A-tensor, that combines an
existing effective basis |sn〉 for the system up to and including
site n with the state space |σ 〉 of site n + 1

|sn+1〉 =
∑

s ′
n,σn+1

|s ′
n,σn+1〉〈s ′

n,σn+1|sn+1〉︸ ︷︷ ︸
≡A

[σn+1]

s′nsn+1

, (3)

with |s ′
n,σn+1〉 ≡ |s ′

n〉 ⊗ |σn+1〉. The orthogonality of state
spaces, 〈sn+1|s ′

n+1〉 = δss ′ , directly implies the orthonormality
relation for A-tensors4∑

σn+1

A[σn+1]†A[σn+1] = 1. (4)

Without truncation, the dimension Mn of the state space |sn〉
increases exponentially with the number of sites included,
Mn ∼ dn, with d the dimension of a local Wilson site. There-
fore the maximum number of states MK, that one can maintain
in a calculation, is quickly reached after n0 � log(MK)/ log(d)
iterations. For every subsequent iteration, the state space |sn〉
is truncated by retaining the lowest MK states in energy only.
This leads to the distinction between |sK

n 〉 and |sD
n 〉 for kept

and discarded states at iteration n, respectively. Correspond-
ingly, this also splits the A-tensor into two parts, AKK and
AKD , that propagate the state kept space from the previous
iteration into the newly generated kept or discarded space,
respectively.

The truncation criteria with respect to a fixed prespecified
MK can be softened in terms of an energy cutoff,2 EK, that
is taken constant in rescaled energies. For a fair comparison
for different z-shifts, it will be specified in units of the
energy scale ωn in Eq. (1). Since NRG data typically appears
bunched at certain energies (e.g., see Fig. 3), EK may hit a
“gap” in the NRG spectrum at some iteration, and the last
“bunch” of states included may lie, on average, at clearly
smaller energies than EK. Given the empirical importance of
the first few NRG iterations, therefore as a safety measure,
by default, EK was taken by 20% larger for the very first
iteration where truncation occurred, i.e. using 1.2EK there
with EK specified in context. Typical values are in the range
EK = 5, . . . ,8.

The model system considered in this paper is the well
known standard single impurity Anderson model (SIAM)

H SIAM
N =

∑
σ

εdσ n̂σ + Un̂d↑n̂d↓ +
∑

σ

√
2�

π
(d̂†

σ f̂0σ + H.c.)

+
∑

σ

N−1∑
n=0

tn(f̂ †
n,σ f̂n+1,σ + H.c.), (5)

with the operators d̂†
σ (f̂ †

nσ ) creating a particle with spin
σ ∈ {↑ , ↓} at the impurity (at site n in the bath), respectively,
having n̂dσ ≡ d̂†

σ d̂σ . The energy εdσ ≡ εd − B
2 (n̂d↑ − n̂d↓)

is the spin-dependent level position of the impurity in the
presence of a magnetic field B. Furthermore, U is the on-site
Coulomb interaction and � the hybridization of the impurity
with the bath. All parameters will be specified in units of the
bandwidth W := 1 in context with the figure panels. The bath
in Eq. (5) is already represented in terms of a Wilson chain,1

described by the semi-infinite tight binding chain (N → ∞)
with exponentially decaying hopping amplitudes tn ∼ �−n/2.
In practice, N can be taken finite, with Ĥn describing the
Wilson chain up to and including site n � N .

Charge and spin are conserved in the SIAM in Eq. (5),
where, however, only the Abelian part of the symmetries
is included in the calculations. Hence the number of states
MK directly refers to the actual number of states kept in a
calculation (in contrast to the dimension of reduced multiplet
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spaces with non-Abelian symmetries). Similarly, also the
discussion of the entanglement spectra further below will
refer to the Abelian symmetry labels which also applies
when non-Abelian symmetries are broken. Note that while,
in general, a particle-hole symmetric impurity setting will be
used, this can be easily broken by applying a (small) gating
potential to the impurity level. Moreover, the SU (2) spin
symmetry, in fact, will be broken explicitly by the application
of an external magnetic field.

B. Density matrices

The NRG eigenbasis of Eq. (2) with respect to the discarded
space forms a complete many-body eigenbasis.11 Initially
introduced for the feat of real-time evolution within the
NRG, this eigenbasis is actually applicable and tractable more
generally within the NRG framework.15 In particular, this
allows the clean calculation of correlation functions in terms of
the full density matrix (FDM) in the many-body eigenbasis,12

in that

ρ̂(T ) ≡ 1

Z
e−βĤ ∼= 1

Z

∑
nse

e−βEn
s |se〉DD

n n〈se|, (6)

with β ≡ 1/kBT for arbitrary temperatures T , using non-
rescaled energies En

s relative to a common energy reference,
by construction of a thermal density matrix. Equation (6)
can be rewritten as ρ̂(T ) ≡ ∑

n wn(T )ρ̂n(T ), i.e. a normal-
ized distribution

∑
n wn = 1 of the density matrices ρ̂n(T )

generated in the basis of iteration n.12 For a given tem-
perature T , the distribution wn is strongly peaked around
iteration nT that corresponds to the energy scale of temper-
ature. Hence temperature essentially terminates the Wilson
chain.

In this paper, however, mainly reduced density matrices de-
rived from ground states will be considered, hence temperature
is essentially zero. More generally then, consider an arbitrary
density matrix defined in the many-body basis |sn〉 of iteration
n in either kept or discarded space, X ∈ {K,D},

ρ̂[X]
n ≡

∑
sns ′

n∈X

ρ
[X]
sns ′

n
|sn〉〈s ′

n|, (7)

where ρ[X]
n (i.e. without the hat) represents the space of matrix

elements ρ
[X]
sns ′

n
. The prototypical and well-known operation on

such a density matrix is tracing out the last site n,11,12,15–17

ρ̂
[K]
n−1 =

∑
sn−1,s

′
n−1

σn

(
A

[σn]
KXρ[X]

n A
[σn]†
KX

)
sn−1s

′
n−1

|sn−1〉〈s ′
n−1|

≡ P̂nρ̂
[X]
n , (8)

written as a matrix product of the matrices A
[σn](†)
KX and ρ[X]

n

in the first line. Equation (8), in the following referred to
as backward update, introduces the notational shorthand P̂n

for the bilinear product of the A- and A∗-tensor at site n,
that acts as a linear superoperator on the density matrix ρ̂n.
The corresponding contraction pattern is shown in a simple
graphical depiction in Fig. 2. By construction, the backward
update of a density matrix in Eq. (8) always results in a density
matrix in the kept space of the earlier iteration, and with Eq. (4)

FIG. 2. Backward update of a given density matrix ρn at iteration
n. Blocks represent data spaces, lines correspond to indices. The
lines connecting different blocks are contracted indices (i.e. indices
summed over), such as σn, sn, and s ′

n, while open lines represent open
indices (e.g., the indices sn−1 and s ′

n−1).

representing a complete positive map, Eq. (8) clearly also
preserves the properties of a density matrix.

II. DISCARDED WEIGHT WITHIN THE NRG

The standard notion of NRG is that it zooms in toward
the low-energy sector of a given many-body Hamiltonian,
while iteratively discarding states at higher energies. Having
a semi-infinite chain, this can continue to arbitrarily small
energy scales, which enables NRG to resolve dynamically
generated small energy scales as they appear, for example, in
the context of Kondo physics. From a variational point of view
for matrix-product states, this implies that the cost function
can be identified as

lim
N→∞

〈sN |HN |sN 〉 → MIN, (9)

yielding the ground state |0〉∞ of the semi-infinite Wilson
chain. For a sufficiently long chain of total length N then
included in a given calculation, the state |0〉N will be referred
to as the overall ground state of this Wilson chain. In fact,
the cost function in Eq. (9) is well captured within the NRG
through its principle of energy scale separation.18

If at a given iteration within the NRG states essentially
decouple with respect to the low-energy state space still to
follow, these states will quickly and efficiently be discarded
as high-energy states. The truncation toward the low-energy
sector also implies that the state space at large energies is
necessarily more crudely resolved, consistent with the coarser
discretization there. The lowest MK states kept at a given
iteration n then are important for the correct description of
the low-energy sector still to come. However, there is no real
quantitative a priori measure to indicate whether the number
MK of states to be kept is appropriate. Conversely, however,
at a given iteration n one can ask whether all states kept a few
iterations earlier were actually important. This question can
be answered entirely within the kept spaces of these iterations,
and hence is numerically cheap to analyze.

A. Construction of reduced density matrices

Consider the actual ground state space G at some arbitrary
but fixed iteration n′. In general, it may be gn′-fold degenerate,
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hence consider its fully mixed density matrix,

ρ̂0,n′ ≡ 1

gn′

∑
s∈G

|sn′ 〉〈sn′ |. (10)

By construction, the number of eigenvalues of ρ̂0,n′ unequal
zero, i.e. its Schmidt rank, is equal to gn′ . Now, tracing out
the last iteration n′, i.e. the lowest-energy scale included in
ρ̂0,n′ , is equivalent to the back-propagation ρ̂

[n′−1;1]
0 ≡ P̂n′ ρ̂0,n′

in Eq. (8). Through this operation, the Schmidt rank will rise,
in general, by a factor of d, with d the state space dimension
of a Wilson site. Repeating this process iteratively, this allows
to trace out the n0 smallest energy shells in ρ̂0,n′ . Thus with
n′ = n + n0, this leads to the reduced density matrix,

ρ̂
[n;n0]
0 ≡

(
n+n0∏
l=n+1

P̂l

)
ρ̂0,n+n0 ≡

MK∑
ss ′

ρ
[n;n0]
ss ′

∣∣sK
n

〉〈
s ′K
n

∣∣, (11)

which, by construction, is defined in the kept space of iteration
n. The Schmidt rank will grow quickly (i.e., exponentially) in
this process, until after n0 iterations, with

n0 � ceil[log(MK)/ log(d)] (n0 � N ), (12)

it reaches the full dimension MK of the kept space. Typically,
n0 is much smaller compared to the full length N of the
Wilson chain considered, and conversely also specifies the
initial number of NRG iterations in a forward direction that can
be typically performed without truncation. For the definition
of the discarded weight below, it is sufficient to stop the back
propagation of ρ̂0,n+n0 at this point.

The reduced density matrix ρ̂
[n;n0]
0 generated in Eq. (11)

is, in general, not diagonal in the energy eigenbasis |sK
n 〉,

since through the traced out lower-energy sites it does know
about an enlarged system. Its eigenvectors are described by a
unitary transformation u

[n;n0]
rs ′ within the NRG eigenstates kept

at iteration n,

|rn;n0〉 ≡
∑
s ′

u
[n;n0]
rs ′

∣∣s ′K
n

〉
,

(13)
with ρ̂

[n;n0]
0 |rn;n0〉 = ρ[n;n0]

r |rn;n0〉,
where the index r shall refer to the eigenstates of the
reduced density matrix, in contrast to the index s for the
energy eigenstates. Here, the eigenvalue ρ[n;n0]

r describes
the importance of a specific linear superposition of NRG
eigenstates at iteration n for the low-energy description of
later iterations.

This offers two routes for the analysis of the density
matrices ρ̂

[n;n0]
0 . (i) Adhering to the energy eigenbasis of the

NRG, the importance of the kept state |sK
n 〉 at eigenenergy En

s

for the later low-energy physics is given by the expectation
value

ρ[n;n0]
s ≡ 〈

sK
n

∣∣ρ̂[n;n0]
0

∣∣sK
n

〉
, (14)

i.e. the diagonal matrix elements ρ[n;n0]
ss . Alternatively,

(ii) using the eigenbasis of the reduced density matrices, the
weights of these states are given by the eigenvalues ρ[n;n0]

r ,
while now their energies are given by the expectation values

E[n;n0]
r ≡ 〈rn;n0 |Ĥn|rn;n0〉. (15)

Both routes will be analyzed and compared in the following.
However, the actual eigendecomposition of the reduced den-
sity matrices will be preferred for the remainder of the paper
as explained.

In either case, a set of states i with (average) energy Ei is
given together with their respective (average) weight ρi that
represents the states importance for later iterations. For the
first [second] route above this data is given by (En

s ,ρ[n;n0]
s )

[(E[n;n0]
r ,ρ[n;n0]

r )], respectively. Given that the reduced density
matrix ρ̂

[n;n0]
0 , by construction, exists in the kept space only,

therefore all states i refer to the kept space or a linear
superpositions thereof. Moreover, for every iteration, the
weights ρi are normalized, that is, they are positive and add
up to 1, while by combining data from different iterations, the
energies Ei are always specified in rescaled units.

The resulting data (Ei,ρi) then is clearly correlated. It is
analyzed threefold, (i) in terms of the average distribution of
the rescaled energies Ei

ν(E) ∼= 1

N ′

N∑
n=1

′ ∑
E<Ei<E+dE

1, (16)

(ii) the average distribution of the weights ρi ,

ν(ρ) ∼= 1

N ′

N∑
n=1

′ ∑
ρ<ρi<ρ+dρ

1, (17)

and (iii) their average dependence on each other

ρ(E) ∼= 1

N ′dE

N∑
n

′ ∑
E<Ei<E+dE

ρi (18a)

∼= κe−κE . (18b)

Here some appropriate linear (logarithmic) binning of the
data is assumed with energy (weight) intervals dE (dρ),
respectively. In particular, the densities in Eqs. (16) and (17) are
clearly dependent on these binning intervals, which therefore
will be properly indicated in the subsequent plots. The prime in
the summation and the normalization indicates that only those
iterations n are included where state space truncation occurred,
i.e. typically n � n0. The total number of these iterations is
given by N ′. With chosen normalization then, the sum over
the binned ν(E) and ν(ρ) data both yield the average number
of kept states, while the integrated weight distribution ρ(E) in
Eq. (18a) is normalized to 1 since tr(ρ) ∼ ∫ ∞

0 ρ(E) dE = 1.
As will be seen later, the weight distribution ρ(E) typically
shows a clear exponential decay with a characteristic exponent
κ , as indicated already in Eq. (18b), with the prefactor chosen
such that it also preserves normalization.

1. Energy eigenbasis

The correlation between the eigenenergies En
s and their

corresponding weights ρ[n;n0]
s is plotted as a scatterplot in the

main panel of Fig. 3. The model analyzed is the SIAM in
Eq. (5) in the Kondo regime using a fixed number of kept
states, with all parameters specified in the figure caption. The
weights ρ[n;n0]

s clearly diminish exponentially with energy,
which is intuitively expected as a consequence of energy
scale separation within the NRG. The integrated weight
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FIG. 3. (Color online) Weight distribution of energy eigenstates
over full NRG run at fixed MK = 512 for the SIAM [Eq. (5):
U = 0.20,εd = −U/2,� = 0.01]. The main panel shows the rescaled
eigenenergies En

s vs. their weights ρ[n;n0]
s as in Eq. (14). Data is

shown only for those iterations where truncation occurred, with data
from the same iteration shown in the same color. The two iterations
with smallest (largest) energy range, nmax (nmin), are highlighted in
strong colors [black diamonds (red crosses)], respectively, while light
colors are used for all other iterations. The top [right] panel shows
the energy [weight] distribution ν(E) [ν(ρ)], Eq. (16) [Eq. (17)],
respectively, for the data in the main panel, with matching energy E

[weight ρ] axis. The binning referred to in the text to Eqs. (16) and
(17) is indicated by the intervals between the data points in the top
and right panel.

distribution ρ(E) [dashed black line, cf. Eq. (18a)] shows a
clear exponential decay with an exponent κ � 2.7. As seen in
Fig. 3, this distribution clearly also serves as an upper bound
of the weights ρ[n;n0]

s at a given energy.
The upper panel in Fig. 3 shows the distribution ν(E) in

Eq. (16) of the energies En
s plotted in the main panel (matching

horizontal axis). This distribution shows a strong increase with
energy E, consistent with the notion that the many-body phase
space grows quickly as the available energy for excitations
becomes larger. Toward large energies, eventually, the data is
necessarily truncated to the finite number MK of kept states,
which leads to a drop in the density ν(E). The exact boundary
with respect to energy is somewhat blurred, though, since
in given case fixed MK allows the energy range to vary for
different iterations n. The right panel of Fig. 3, on the other
hand, shows the distribution ν(ρ) in Eq. (17) of the weights
ρ[n;n0]

s plotted in the main panel (matching vertical axis). This
distribution is peaked around the largest weights ρ[n;n0]

s for the
largest energies En

s .
The data in the main panel of Fig. 3 is typically bunched

around a set of energies for a fixed iteration n. This is also
reflected in the distribution ν(E) in the upper panel of Fig. 3,
and is due to the discretization of the model. Moreover, two
iterations are highlighted in strong colors. These correspond
to the iterations whose energy range is smallest [nmin = 6, red
bullets] or largest [nmax = 74, black diamonds]. Intuitively,
the largest numerical error is expected from iterations such as
nmin since, through Eq. (18b), stopping at premature energies

directly translates to the largest missing (i.e. discarded) weight
in the density matrix. As an aside, this serves as a strong
argument in favor of truncation with respect to a fixed energy
cutoff EK rather than a fixed number MK of states. Fixed EK,
however, also introduces more noise to the data in particular
for higher-lying states. Hence both truncations will be used
and pointed out in context.

The weights ρ[n;n0]
s in the main panel of Fig. 3 show

significant vertical spread, which translates into a pronounced
tail toward exponentially smaller ρ in the distribution ν(ρ) in
the right panel. For a given energy E therefore, many of the
states have orders of magnitude lower weight than the topmost
weights close to ρ(E) in the main panel. This indicates that the
energy representation with its corresponding diagonal weights
ρ[n;n0]

s is not necessarily the optimal basis to analyze accuracy.
Moreover, note that using the energy eigenbasis |sn〉 with
energies En

s in the analysis of the reduced density matrices
actually mingles the energy scales of an effectively larger
system Ĥn+n0 with the basis generated w.r.t. Ĥn only.

2. Eigenbasis of reduced density matrices

From the point of view of a variationally optimal repre-
sentation of the ground state space of an enlarged system,
on the other hand, one is directly led to the eigenspec-
trum of the reduced density matrix, as exemplified within
DMRG.3 The analysis of Fig. 3 therefore is repeated for the
same underlying Wilson chain, yet with two modifications:
(i) the eigen decomposition of the reduced density matrices
in Eq. (13) together with Eq. (15) is used instead of the
energy eigenbasis, and furthermore (ii) the NRG truncation
criterion is based on a fixed energy cutoff, EK = 6. The results
are shown in Fig. 4, with striking quantitative differences
compared to Fig. 3. The spread in the scatterplot is significantly

FIG. 4. (Color online) Similar analysis as in Fig. 3 (see caption
there for further information) for the same underlying Hamiltonian,
except that the eigenspectrum of the reduced density matrices in
Eq. (13) was used together with Eq. (15) and a fixed energy cutoff
EK = 6. Similar to Fig. 3, only those iterations are shown where
truncation occurred (same color for data from the same iteration), with
the same two iterations highlighted as in Fig. 3, indicated by n1 and
n2. The estimate for the overall discarded weight εD

χ=5% � 6 · 10−12

as defined in Eq. (21) is indicated by the horizontal dashed line.
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narrowed, and overall, the data decays much faster with κ �
4.6 [cf. Eq. (18b)]. Therefore this leads to a clearly improved
separation of the actually relevant states for the subsequent
description of the lower-energy scales. This suggests that
many of the NRG eigenstates, as their energy increases, loose
importance much faster as compared to Fig. 3, despite the
relatively large diagonal weights ρs in the density matrix
still seen there. In a sense, the weights there represent mere
matrix-elements in a nondiagonal representation.

The iterations highlighted in Fig. 4 are the same iterations
as in Fig. 3. Given a fixed energy cutoff EK = 6 here, however,
both have a comparable energy range (hence the altered
notation n1 and n2), with the number MK of kept states varying
from ∼1000 at very early iterations (in particular iteration n1),
down to ∼250 at late iterations (such as iteration n2). Note
also the markedly fewer data points seen for iteration n2.
This is only partly due to the reduced number of states, as
there are also large systematic (approximate) degeneracies at
the strong-coupling Kondo fixed point already reached at this
iteration. This results in many of the black diamonds lying
indistinguishably on top of each other (see also the discussion
on entanglement spectra later).

As seen from above discussion, rather than taking the
energy eigenstates |sn〉 and the corresponding diagonal matrix
elements ρ[n;n0]

s (Fig. 3), the eigenvalues ρ[n;n0]
r of the reduced

density matrix ρ̂
[n;n0]
0 do represent a clearly better choice for

the analysis of accuracy or entanglement in the system (Fig. 4),
and thus will be used henceforth. This prescription, in general,
also shows a more systematic exponential decay all the way
down to numerical double precision noise (10−16), with the
decay rate κ of ρ(E) roughly independent of the discretization
parameter �.

3. Definition of discarded weight

With the motivation above, the definition of the discarded
weight is based on the eigen decomposition of the reduced
density matrices ρ̂

[n;n0]
0 in Eq. (11), using the combined data

of Eqs. (13) and (15). In terms of Fig. 4, adding more states to
the calculation essentially extends the data to larger energies
and smaller weights, while the large-weight low-energy sector
already remains widely intact. Therefore the largest discarded
weight, i.e. the weight missing by states not included and hence
not available, can be estimated to a good approximation, up to
an overall prefactor, by the smallest weights in the kept space
which are easily accessible. Given the exponential decay of the
weights together with the residual spread in the data as seen
in Fig. 4, the discarded weight at given iteration n can thus
be defined through the average weights ρ[n;n0]

r for the highest
energies E[n;n0]

r in the kept space,

ε
Kχ

n;n0 ≡ 〈
ρ[n;n0]

r

〉
E

[n;n0]
r �(1−χ) max(E

[n;n0]
r ). (19a)

The parameter χ � 1 is considered small, yet is chosen large
enough (typically χ � 0.05) to average over the residual
spread of weights. Alternatively and for comparison, an even
simpler measure in terms of the minimum eigenvalue of ρ̂

[n;n0]
0

will be considered,
εK
n;n0

≡ min
(
ρ[n;n0]

r

)
, (19b)

which no longer makes any explicit reference to energies.
Note that even though ε

Kχ

n;n0 or εK
n;n0

, written ε
K(χ)
n;n0 in short, are

purely determined within the kept space, they clearly represent
a sensible estimate for the discarded weight at iteration n (i.e.,
ε

D(χ)
n ∼ ε

K(χ)
n;n0 ) defined as the fraction of relevant state space

missing from the latter description of the low-energy physics.
If no truncation has occurred at iteration n, however, such as
typically for the first n < n0 iterations, of course, then there is
no truncation error either, hence ε

D(χ)
n = 0 for these iterations.

In summary, the discarded weight εD
n at iteration n is defined

as follows,

ε
D(χ)
n ≡

{
ε

K(χ)
n;n0 in the presence of truncation

0 without truncation at iteration n.
(20)

Here ε
K(χ)
n;n0 can be determined efficiently by including and

analyzing n0 further NRG iterations within the kept space,
where typically n0 � N [cf. Eq. (12)]. The overall discarded
weight εD

(χ) of a full NRG run then is taken, for simplicity, as
the largest discarded weight per iteration,

εD
(χ) ≡ max

n

(
ε

D(χ)
n

)
. (21)

Using χ = 5% as in Eq. (19a), the discarded weight for the
NRG run in Fig. 4 is estimated by εD

χ � 6 · 10−12, indicated
by the horizontal dashed line. As seen from Fig. 4, the overall
discarded weight εD

χ for an NRG run essentially coincides
with ρ(E) at the largest energies within the kept space. On the
other hand, εD [i.e. without the usage of χ based on the plain
minimum eigenvalue of the reduced density matrices ρ̂

[n;n0]
0 ,

cf. Eq. (19b)] will, in general, lie a (constant) few orders of
magnitude lower, as it happens, for example, for the data in
Fig. 4. Nevertheless, as will be shown in the following, up
to an overall global prefactor the discarded weight based on
either, εD or εD

χ , both behave in an essentially similar fashion.

B. Application

The discarded weight εD
(χ) defined in Eq. (21) sensitively

depends on the number MK of states kept or the energy
threshold EK. From Fig. 4 one expects a strongly diminishing
discarded weight with increasing MK or EK, a quantitative
analysis of which is presented in Figs. 5 and 6 for the SIAM.
Figure 5 analyzes the dependence of the discarded weight εD

(χ )
on the number MK of states kept. As seen in Fig. 5(a), the
discarded weight εD

(χ) strongly decays with MK, with minor
variations when a new Wilson shell is fully included without
truncation, e.g. at MK ∈ {256,1024}. With Fig. 5(a) being
a log-log plot, the decay of the discarded weight with MK

rather resembles a polynomial convergence, yet with very
large power (on the order of 10). The reason for the slower
than exponential decay is due to the strong increase in the
density of states ν(E) of the full many-body eigenspectrum
with increasing E as discussed with Figs. 3 and 4.

Together with the analysis of the discarded weight in
Fig. 5, an independent physical check for convergence
is provided by the numerically computed conductance g0

in units of 2e2/h shown in Fig. 5(b). The conductance
was calculated via the (spin-resolved) spectral function
A(σ )(ω) = ∫

dt
2π

eiωt 〈{d̂σ (t),d̂†
σ }〉T of the impurity level, with
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FIG. 5. (Color online) Discarded weight εD for the SIAM [Eq. (5):
U = 0.20, εd = −U/2, � = 0.01 (same parameters as in Fig. 3), with
TK � 1.23 · 10−5]. Panel (a) shows the discarded weight εD

(χ ) defined
in Eq. (21) vs. MK using n0 ∈ {6,7,8}. The data εD

χ=5% is shown
in solid lines, while the data based on the minimum eigenvalue of
ρ̂

[n;n0]
0 [cf., Eq. (19b)] is shown in dashed lines. The distribution of

the discarded weight ε
Dχ
n along the Wilson chain is shown in the inset

for MK ∈ {128,256,512,1024}, also marked by the vertical dashed
lines in the main panels. Panel (b) shows the conductance g0 vs. MK

in units of 2e2/h while using a set of shifted discretizations, with
the z-values as specified. Convergence in the conductance toward the
expected unitary limit is seen for MK � 400, i.e. εD

χ � 10−12.

g0 = π�
∫

dω(− ∂f

∂ω
)A(ω). Here the Fermi function f (ω) and

the spectral function A(ω) are evaluated at small but finite
temperature T � 6 · 10−8, which is much smaller than the
Kondo temperature of TK � 1.23 · 10−5 for given parameter
set and corresponds to the energy scale close to the end
of the Wilson chain, having � = 2 and N = 60. Expecting
g0 = 1 for the symmetric SIAM, the data in Fig. 5 indicate
convergence for MK � 400. The data for smaller MK is not
yet converged, and therefore (strongly) depends on numerical
details, such as non-averaged z-shifts.8,9

With MK being constant, the energy of the topmost kept
states can vary significantly with Wilson shell n, which directly
also leads to a clear dependence of the discarded weight εD

(χ)
on n. This is shown in the inset to Fig. 5(a) for the set of
different values of MK marked in the main panels by the
vertical dashed lines. The discarded weight εD

χ clearly varies
over more than three orders of magnitude within a single
NRG run, irrespective of the actual MK. In particular, one
can see that earlier iterations dominate the discarded weight
εD
χ for physical reasons. In the strong-coupling regime for

FIG. 6. (Color online) Similar analysis as in Fig. 5, yet for
truncation with respect to fixed energy EK . For several values of EK,
marked by the vertical dashed lines in the main panels, the distribution
of the discarded weight ε

Dχ
n along the Wilson shell n is shown in the

inset to panel (a). With MK allowed to vary over a wider range, panel
(c) shows the correlation of MK with EK, plotting average, minimum,
and maximum of MK along the Wilson chain. For the average MK,
data for different z-shifts is shown [several lines on top of each other,
with same color coding as in panel (b)].

n � nK (with iteration nK � 35 corresponding to the energy
scale of TK), the discarded weight is smallest, while for the
intermediate free orbital or local moment regime for n � nK,
these regimes require a larger number of states for comparable
numerical accuracy from a physical point of view, indeed.

Given the underlying energy scale separation of the NRG, a
straightforward way to obtain a more equally distributed ε

D(χ)
n is

achieved using an energy cutoff EK, as demonstrated in Fig. 6
for exactly the same system as in Fig. 5 otherwise. For the
values of EK indicated by the vertical dashed lines in the main
panels, the inset to Fig. 6(a) shows the distribution of ε

Dχ

n . By
construction, the discarded weight is, up to even-odd oscilla-
tions, clearly more uniformly distributed over the Wilson shells
as compared to the case of fixed MK in Fig. 5(a). The discarded
weight in Fig. 6(a) clearly diminishes exponentially with EK,
yet with pronounced intermediate plateaus since the discrete
eigenenergies within an NRG run are usually bunched around
certain energies. The corresponding average MK as function of
EK, nevertheless, follows a rather smooth monotonic behavior,
as shown in Fig. 6(c). Given fixed EK, however, clear variations
of MK are seen within a given NRG run, hence also the smallest
and largest MK are shown in Fig. 6(c). Ignoring iterations
without truncation, in given example, typically the largest
MK is required at early iterations, while the smallest MK are
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encountered in the strong coupling regime at late iterations
n � nK .

The calculated conductance shown in Fig. 6(b) converges
clearly more uniformly with increasing EK as compared to
Fig. 5(b). In particular, it indicates converged NRG data for
EK � 5.5, which corresponds to εD

χ � 10−12. Therefore in
both settings, for constant MK in Fig. 5 as well as for constant
EK in Fig. 6, convergence of the physical data is found for
a similar discarded weight of εD

χ � 10−12 with a negligible
dependence on n0. This value therefore is considered a
sufficient bound in accuracy to capture the main physics, with
other quantities such as the NRG energy flow diagram already
also well converged.

Alternatively, using the plain minimum of the eigenvalues
of the reduced density matrices in Eq. (19b), this leads to
convergence for εD � 10−16. Given that εD refers to the
minimum eigenvalue in the kept space, εD consistently lies
about three orders of magnitudes lower than εD

χ and is
considered a lower bound to the actual discarded weight. While
εD fluctuates slightly more strongly compared to εD

χ owing
to the fact that it is not an averaged quantity such as εD

χ , it
nevertheless follows a similar consistent picture in terms of
convergence with the number MK of states kept or the energy
EK used for truncation. In this sense, either discarded weight,
εD as well as εD

χ , can be used quite generally as a quantitative
measure, indeed, to demonstrate accuracy within the NRG. To
avoid confusion, however, it shall be made clear which one is
used.

III. ENTANGLEMENT SPECTRA

The reduced density matrices ρ̂
[n;n0]
0 clearly also carry

physical information in terms of entanglement along the
Wilson chain. This is provided by the high end of their
spectral decomposition. There the exact details of the largest
eigenvalues of ρ̂

[n;n0]
0 are of interest, which do vary with n0

over a wider range depending on the underlying physics.
Hence, in the following, the actual entanglement spectra will
be calculated with respect to the reduced density matrices ρ̂

[n]
0

of the overall ground state of the system,

ρ̂
[n]
0 ≡ lim

n0→∞ ρ̂
[n;n0]
0 � ρ̂

[n;N−n]
0 . (22)

The length N of the Wilson chain is taken sufficiently large,
such that the energy scale of the last iteration N is much smaller
than any other energy scale in the system. Temperature is
therefore essentially zero. For comparison, also the truncated
entanglement spectra will be calculated from ρ̂

[n;n0]
0 for finite

small n0, with n0 specified in context. Motivated by the
discussion following Eq. (6), the later analysis can be linked
to finite temperature settings.

1. General definition

The partitioning of the Wilson chain into two parts, the
chain up to and including site n (part A), and the traced out
remainder of the system (part B) is generic. In particular, this
allows to make use of the recently introduced entanglement
spectra (ES)19 for the physical characterization of a given wave
function. Here these entanglement spectra provide a powerful

tool for the systematic analysis of the physical correlations in
the reduced density matrices ρ̂

[n]
0 in Eq. (22).

Consider a given wave function of some system partitioned
into parts A and B. The reduced density matrix ρ̂A ≡ trB(ρ)
is obtained by tracing out part B of the overall density matrix
ρ. Within this setting, the entanglement spectrum is defined as
the spectrum of the fictitious Hamiltonian ĤA

ρ ,19

ρ̂A =: exp
( − ĤA

ρ

)
.

One may assume an effective inverse temperature β := 1 to
make contact with a thermal density matrix. This β also sets the
(otherwise arbitrary) energy scale in the per se dimensionless
ĤA

ρ . With ρ̂A a positive operator, the entanglement spectrum
ξr is defined as the eigenvalues of ĤA

ρ , that is,

ξr := − log ρr , (23)

with ρr the spectral decomposition of the reduced density
matrix ρ̂A. Particular information can be read off from the en-
tanglement spectrum as soon as there is a rich amount of quan-
tum numbers specifying the entanglement levels and when
entanglement gaps appear which separate a low-lying generic
set of levels from irrelevant background correlations.19–21 The
spectra ρr and ξr are independent of whether A or B is traced
out, while, of course, they are dependent on the specific choice
of the partitioning. For entanglement spectra, the partitioning
typically occurs in real space for gapped systems, analyzing
the edge of the thus created boundary, while for gapless
systems momentum space is preferred.20 The second case
then is consistent with the systematic NRG prescription of
energy scales based on the underlying discretization in energy
(momentum) space.

By construction, the dominant correlations between sys-
tems A and B correspond to the lowest entanglement energies
ξr , while weaker correlations will rise to higher energies.
By tracing out a major part of the system, entanglement
spectra provide significantly more information, say, than just
the entanglement entropy between A and B. In particular, it
has been shown that it provides fingerprints of the underlying
physics, and as such allows to characterize the physical nature
of a given wave function.19,20 This analysis is therefore entirely
targeted at a given (ground state) wave function, without any
further reference to an underlying physical Hamiltonian that it
may have originated from.

2. Application to NRG

The general concept of the entanglement spectra can be
readily transferred to the NRG. At each iteration n, the reduced
density matrix ρ̂

[n]
0 in Eq. (22) is computed and diagonalized,

with its eigenspectrum mapped onto the entanglement spec-
trum in Eq. (23). Collecting these spectra and plotting them
vs. iteration index n for even and odd iterations separately,
the result will be referred to as entanglement flow diagram,
in complete analogy to the standard energy flow diagrams of
the NRG. For comparison, also the truncated entanglement
spectra for finite small n0 will be analyzed, which in their
combination will be referred to as truncated entanglement flow
diagram. In either case, the entanglement spectra are obtained
in a backward sweep, purely based on the iterative low-energy
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FIG. 7. (Color online) Comparison of the standard NRG energy
flow diagram (left panels) to the entanglement flow diagram (right
panels) for the symmetric SIAM [U = 0.2, εd = −U/2, � = 0.01,
TK = 1.2 · 10−5; � = 2, MK = 512, N = 80], with top (bottom)
panels for even (odd) iterations, respectively. In addition to the actual
entanglement flow diagram obtained from the ground state of the
last iteration at N = 80 [black lines], the truncated entanglement
flow diagram is shown, using n0 = 8 orange (gray) lines. For
better comparison with the energy flow diagram, the entanglement
spectra (right panels) are also shifted at every iteration with respect
to the smallest entanglement energy min(ξ ). The y-scale of the
entanglement spectra was adjusted to best match the energy fixed
point spectrum in the left panels. Degeneracies of energies at large n

(i.e., lines lying indistinguishably on top of each other) are specified
by the numbers on top of the lines in all panels.

FIG. 8. Comparison of spin-resolved fixed point spectra for the
symmetric SIAM in Fig. 7 in the SC regime (n = 60). Panel
(a),(b) show the energy [entanglement] fixed point spectrum, re-
spectively, vs. spin symmetry quantum number Sz. For all low-
energy multiplets the underlying (approximate) degeneracy is in-
dicated. The entanglement spectrum is shifted w.r.t. to its lowest
energy and scaled to match the energy fixed point spectrum in
panel (a).

Hilbert-space decomposition of a prior NRG run in terms of
the A-tensors in Eq. (3). This is in contrast to the energy flow
diagram, which is calculated with increasing shell index n in a
forward sweep making explicit reference to the Hamiltonian.

The entanglement spectra were calculated for the
symmetric SIAM in the absence of magnetic field. The
resulting entanglement flow diagram is presented in Fig. 7
together with a direct comparison to the standard NRG energy
flow diagram. The data is plotted for even (odd) Wilson shells
n in the upper (lower) panels, respectively. The energy flow
diagram, shown in the left panels, clearly distinguish the
well-known physical regimes of the SIAM, namely the free
orbital regime (FO; n � 10), the local moment regime (LM;
10 � n � nK), and the strong coupling regime (SC; n � nK),
where nK � 35 corresponds to the energy scale of the Kondo
temperature TK = 1.2 · 10−5, having � = 2. All degeneracies
for n > nK are explicitly specified in Fig. 7. In particular, for
even iterations, the ground state is unique throughout, i.e. the
Kondo singlet for n > nK Fig. 7(a)], while for odd iterations
the ground state space at small energies is four-fold degenerate
due to the particle-hole symmetric parameter set Fig. 7(c)].

Interestingly, a very similar picture emerges from the
entanglement flow diagram in the right panels, Figs. 7(b) and
7(d) (black lines). For comparison, also the truncated entan-
glement spectra are shown using n0 = 8 [orange (gray) lines],
which in given case converge rapidly, in fact, exponentially,
with increasing n0 � 10 toward the actual entanglement flow
diagram. These then mimic the energy flow diagram in the left
panels over a wide range. For example, the convergence toward
the Kondo fixed point occurs around similar iterations, and
even the degeneracies of the lowest states of the energy flow
diagram are exactly recovered by the entanglement spectra.
The same also holds on the symmetry-resolved level, as
demonstrated in Fig. 8 for the even iteration n = 60 (see later
discussion). Nevertheless, looking more closely, a few notable
qualitative differences of the entanglement flow diagrams in
the right panels of Fig. 7 are seen compared to the energy
flow diagrams in the left panels. Overall, the entanglement
flow diagrams appear shifted by about five iterations to
larger energies. This can be understood, considering that
the entanglement spectra are calculated for enlarged systems
together with the rapid convergence with increasing n0 in given
case. However, there are further pronounced differences with
the energy flow diagram for the earliest iterations in the FO
regime, n � 10.

These differences in the entanglement flow diagram can
be significantly enhanced by turning on a magnetic field on
the order of the Kondo temperature, as shown in Fig. 9 for
B = 1.6 TK. This corresponds to the energy scale at iteration
nB � 32, given � = 2. The magnetic field has been chosen
such that, for late iterations n � nB, the fixed point spectrum
for even and odd iterations become essentially the same
[compare the low-energy fixed point spectra in panel a(b) to
panel c(d) of Fig. 9, respectively]. Due to the magnetic field, the
Kondo singlet (previously the unique state at even iterations)
is largely destroyed for n � nB with a sizable magnetization
at the impurity. Clearly, the NRG eigenbasis at early iterations
n < nB does not yet know about the small energy physics to
come, e.g. the small B ∼ TK applied in given case. Therefore
the energy flow diagram essentially remains unaltered there,
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when compared to the case without magnetic field in panels
(a) and (c) of Fig. 7. The flow changes strongly only starting
from the energy scale of the magnetic field value, i.e. for
n > nB where it moves into a different fixed-point spectrum.
In particular, there also emerges a unique state now in the
energy flow diagram for odd iterations for n � nB, i.e. the
symmetry broken spinful state favored by the magnetic field.

By including magnetic field, the entanglement flow diagram
shows pronounced differences from the energy flow diagram
for n � nB, which includes large portions of the LM regime.
While the energy spectrum up to and including site n is
ignorant of the low-energy physics to come, this very low-
energy physics is captured by the reduced density matrices
and thus reflected in the entanglement flow diagram.22

Consider the entanglement spectra derived from the overall
ground state in Figs. 9(b) and (d) [black lines]. In Fig. 9(d)
the ground state remains unique throughout, i.e. remembers
the symmetry broken magnetic state, determined at much
lower energy scales, all the way up to the largest energies.
Within the split-up lowest-energy space with subsequent
degeneracies [1-2-1] in Fig. 9(d) for n � nB (to be called
[1-2-1] configuration), the first and second excited states cross
each other with decreasing n leading to a [1-1-2] configuration
for small n, i.e. large energies. Nevertheless, the singly
degenerate excited state clearly remains split off, and does
not merge with the ground state, which is in strong contrast to
the energy flow diagram in Fig. 9(c) with a [2-2] configuration
for n � nB. This degeneracy in the ground state space that
is ignorant of the small magnetic field is partly reflected only
in the truncated entanglement flow diagram. Using small n0

[orange (gray) lines in Fig. 9(d)], this eventually also misses
the low-energy physics. Therefore these spectra in Fig. 9(d)
eventually are also in a [2-2] configuration for the smallest n,
with a more irregular transient behavior with increasing n. A
similar trend is also observed for even iterations in Figs. 9(a)
and (b). While the ground state remains unique for all iterations
in both panels, the entanglement flow in Fig. 9(b) tends to split
off the excited levels right above the lowest [1-2-1] state space
configuration for small n. For the truncated entanglement flow,
on the other hand, the lines of these excited levels remain
entangled with higher excitations, which is similar to the
situation in the energy flow diagram in Fig. 9(a).

Nevertheless, the low-energy fixed-point spectra for n �
nB again agree well for both the energy and entanglement flow
diagram in Fig. 9, which again also holds for the symmetry-
resolved spectra, as demonstrated for the even iteration n = 60
in Fig. 10. This agreement in the spectra of the stable low-
energy fixed point, present in both the nonmagnetic as well as
the magnetic case, is understood as a generic feature. There
both the energy eigenstates as well as the reduced density
matrices are deeply rooted in the low-energy physics, i.e. of
the overall ground state of the system at T → 0, and hence
present a consistent description of the system.

The detailed structure of the energy fixed point spectra pro-
vides clear physical information.1,2 This includes, for example,
phase shifts if a Fermi-liquid point of view is supported as is
the case for the SIAM. This then directly explains all of the
splittings and degeneracies in the low-energy sector of the
energy fixed point spectra. For example, consider the energy
spectrum in Fig. 8(a) for the fully symmetric SIAM in the

FIG. 9. (Color online) Comparison of the standard NRG energy
flow diagram (left panels) to the entanglement flow diagram (right
panels) for the SIAM at finite magnetic field (same analysis as in
Fig. 7, otherwise, see caption there for details, with same model
parameters, except B = 2 · 10−5 � 1.6 TK).

FIG. 10. Comparison of spin-resolved fixed point spectra for the
SIAM at finite magnetic field in Fig. 9 at the even iteration n = 60
(similar analysis as in Fig. 8 otherwise).

nonmagnetic case. Note that while spin-resolved spectra are
shown in Fig. 8, in given case the charge-resolved spectra
would look exactly the same due to particle-hole symmetry.
With the spectra shown for an even iteration, the ground state
is unique (i.e., represents the Kondo singlet with Sz = 0). The
first excited states for Sz = + 1

2 correspond to an extra particle
with spin-up or a hole with spin-down. Given particle-hole
symmetry, both processes have the same energy δ/2 = 0.63
(in rescaled energy units), and hence are two-fold degenerate,
indicated by the number on top of the level in Fig. 8. By
symmetry, the same excitations exist for 2Sz = −1, leading to
the [2-2] degeneracy (four states) in the lowest excitations
in Fig. 8(a). The next higher excitation combines two of
the above processes. This leads to a total of six excitations,
all with energy δ and distributed over 2Sz ∈ {−2,0, +2}.
Here two of the excitations at 2Sz = 0 correspond to the
extraction or annihilation of two particles with opposite spin.
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This fully explains the [1-4-1] degeneracy of the excited states
at energy δ = 1.26 in Fig. 8(a), and also the combined six-fold
degeneracy seen in the energy flow diagram seen at this
energy in Fig. 7(a). The argument can be continued along
similar lines to explain the [4-4] (eight states) and [4-9-4] (17
states) degenerate subspaces of the next higher excitations.
Excitations with even higher energy eventually have missing
levels due to NRG truncation.

The same analysis as for the energy spectra, however,
cannot be applied with equal rigor to the entanglement spectra.
While the ground state 1 and the lowest [2-2] and [1-4-1]
excitations in Fig. 8(b) fully agree in symmetries, degeneracy,
and also in the precise relative level spacing, the next higher
[4-4] excitation in Fig. 8(a) is broken up in Fig. 8(b), with some
of the levels shifting to higher entanglement energy. Neverthe-
less, the degenerate set [2-10-10-2] further up in energy again
equally appears for both energy and entanglement spectra.

The same analysis as in Fig. 8 is repeated for the magnetic
case in Fig. 10 for the same even iteration n = 60. Despite
the rather different level spectrum for large n in the flow
diagram in Fig. 9, the actual spin-resolved fixed point spectrum
is qualitatively very similar to the nonmagnetic case in Fig. 8.
Aside from an overall tilt of the level structure, all degeneracies
and level positions of the lower part of the energy spectrum
in Fig. 8(a) are again fully described by elementary single-
particle excitations. The underlying reason for this similarity
of the fixed points spectra in the magnetic and nonmagnetic
case is that, apart from the (screened) impurity spin, the
system is well described by an effective Fermi-liquid picture.
With the low-energy fixed point spectra well reflected in the
entanglement spectra, a similar tilt in the level structure is also
observed in Fig. 10(b) when compared to Fig. 8(b). Note, for
example, that to the lower left of the spectrum the same [1-2-1],
as well as the [2-4-2, 2-4-2] state sequence with increasing
energy is seen.

IV. SUMMARY AND OUTLOOK

The reduced density matrices of the NRG by tracing out
the low-energy sector have been analyzed in detail. The low
end of their eigenspectra was used to estimate the discarded
weight εD

(χ) in Eqs. (19)–(21) as a quantitative and site-resolved
measure of the accuracy within the NRG. While, in principle,
the same reduced density matrices could also be utilized as the
basis for an altered truncation criteria similar to the DMRG,
this, however, requires sufficiently large MK to start with. In

practice, this is sufficiently close to a truncation with respect
to an energy cutoff EK. Either way, all of this can be easily
and quickly checked using the proposed analysis in terms
of the discarded weight which provides a useful quantitative
tool.

Furthermore, the dominant correlations of the reduced
density matrices were analyzed in terms of their entanglement
spectra. Due to the NRG flow toward small energy scales, these
spectra can be combined into entanglement flow diagrams.
There different physical regimes can be identified similar to
the standard NRG energy flow diagrams. Considering that
the entanglement spectra are obtained solely based on the
wave function, the agreement of the low-energy fixed point
spectra is stunning. A possible larger disagreement at higher
energies (i.e., for earlier Wilson shells), on the other hand,
depends on the specific physical situation. Given the NRG
background, this appears to suggest the following. For all
energy shells (iterations) n where the entanglement spectrum is
quantitatively comparable to the NRG energy spectrum for the
lowest set of states, the reduced density matrices themselves
are not crucially important in the description of the system.
Instead, they may be replaced by thermal density matrices in
the NRG eigenbasis. In a sense, by tracing out the low-energy
sector, the resulting reduced density matrices maintain an
approximate thermal character, with implications to thermal-
ization at a given energy shell.24 For energy shells with a
qualitative difference between the energy and entanglement
spectra, however, the reduced density matrices are crucially
important to capture the correct physics in the NRG calculation
that explicitly uses data from such energy shells.

A detailed analysis of the deeper connection and the
explicit differences between the energy and the entanglement
spectra appears interesting, yet is out of the scope of this
paper. In particular, it also appears instructive to analyze the
entanglement spectra for non-Fermi liquid systems such as
the symmetric two-channel Kondo model, as the analysis
presented in this paper suggests a strong physical connection
of the entanglement spectra to the underlying physics.
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