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We study Johnson-Nyquist noise in macroscopically inhomogeneous disordered metals and give a microscopic

derivation of the correlation function of the scalar electric potentials in real space. Starting from the interacting
Hamiltonian for electrons in a metal and the random phase approximation, we find a relation between the
correlation function of the electric potentials and the density fluctuations, which is valid for arbitrary geometry
and dimensionality. We show that the potential fluctuations are proportional to the solution of the diffusion

equation, taken at zero frequency. As an example, we consider networks of quasi-one-dimensional disordered
wires and give an explicit expression for the correlation function in a ring attached via arms to absorbing leads.
We use this result in order to develop a theory of dephasing by electronic noise in multiply-connected systems.
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I. INTRODUCTION

Electronic noise generated by the thermal excitation of
charge carriers has been observed and explained by Johnson
and Nyquist more than 80 years ago' and discussed in
great detail in the literature since then. More recently, it
has been found that this so-called Johnson-Nyquist noise is
the main source of dephasing in mesoscopic systems at low
temperatures of a few Kelvins where phonons are frozen out.
Dephasing puts an IR cut-off for interference phenomena, such
as quantum corrections to the classical conductivity.”

The current interest in this topic arises from studies of
dephasing in mesoscopic systems which consist of connected
quasi-one-dimensional (1D) disordered wires, see Fig. 1,
including connected rings and grids.>* It has been found (both
experimentally’ and theoretically®~!?) that dephasing depends
not only on the dimensionality, but also on the geometry of the
system. The noise correlation function is well-understood for
macroscopically homogeneous systems such as infinite wires
or isolated rings, but has so-far not been studied in multiply-
connected networks with leads attached at arbitrary points.
The goal of this paper is to give a transparent and systematic
description of the thermal noise properties for such systems. In
particular, we will derive an expression for the fluctuations of
the scalar electric potentials for arbitrary geometries, Eq. (31),
and a general expression for the corresponding dephasing
rate, Eq. (45). Throughout, we assume that a description of
the noise in terms of scalar potentials is sufficient, i.e., we
neglect the fluctuations of the transverse component of the
electromagnetic field (for a detailed discussion of the latter,
see Ref. 2).

Let us start by reviewing simplified arguments to derive the
noise correlation function: Johnson and Nyquist concluded
that thermal noise in electrical conductors is approximately
white, meaning that the power spectral density is nearly
constant throughout the whole frequency spectrum. If, in
addition, the fluctuations are uncorrelated for different points
in space, a correlation function for the random thermal currents
in the classical limit is independent of frequency  and
momentum ¢ . The power spectrum of the current density reads

(17i1*)(g,0) = 2Ty (1)
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Here, oy = ¢?v D is the Drude conductivity of the disordered
system, D and v are the diffusion constant and the density
of states, respectively. Naively applying Ohm’s law, j(q) =
00E(q), to Eq. (1) and using the relation between the electric
field and the scalar potential, e E(q) = —iqV(q), we find
2Te% 1
F .

The correlation function, Eq. (2), corresponds to the coupling
of a given electron to the bath of the surrounding electrons.?
Thus (|V|?) describes the process of successive emission and
reabsorption of a photon, which is described effectively by the
scalar potential V. The factor 1/g> coincides with the solution
of a diffusion equation in an infinite system, which reflects the
fact that the currents, Eq. (1), are uncorrelated in space.

These simple arguments are based on the homogeneity of
the system and have assumed a local relation between potential
and current, whereas transport properties in disordered metals
are substantially nonlocal.'®"* In this paper, we derive an
analogy of Eq. (2) for disordered systems with arbitrary
geometry and dimensionality; this will in particular apply to
networks of disordered wires. A detailed calculation, which
takes into account all properties of the mesoscopic samples,
has to be done in the real-space representation. Starting points
are the usual linear response formalism and the fluctuation-
dissipation theorem (FDT).!* Although most ingredients of
the following discussion will be familiar to experts, we hope
that the manner in which they have been assembled here will
be found not only to be pedagogically useful, but also helpful
for further theoretical studies.

The paper is organized as follows: in Sec. II, we propose a
heuristic description of the potential fluctuations. In Sec. III,
we review a microscopic approach to the noise correlation
function, based on a relation of the fluctuations of the scalar
potentials to the fluctuations of the density, using the random
phase approximation (RPA). In Sec. IV, we evaluate the
density response function x for disordered systems by using
a real-space representation for arbitrary geometries. We apply
this result to the noise correlation function in Sec. V. In Sec. VI,
we show how the noise correlation function can be calculated
for networks of disordered wires. Finally, in Sec. VII, we

IV (q,0) = )
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FIG. 1. A network of wires. We are interested in the noise
correlations between arbitrary points x and y of multiply-connected
networks attached to leads (denoted by the usual ground symbol) at
arbitrary points.

discuss the relation to the fundamental problem of dephasing
by electronic interactions.

II. HEURISTIC DESCRIPTION OF POTENTIAL
FLUCTUATIONS

A description of fluctuations in metals within the linear
response formalism naturally starts with an analysis of the
density fluctuations in the model of noninteracting electrons
described by the standard free-electron Hamiltonian A®. This
system is perturbed by an external scalar potential V(x,t)
coupled to the density operator 7i(x):

AV = [dx V(x,r)Ax). 3)

The response of the (induced) charge density,

Hind () = / dt LA por — ()]

= —/dy X(xvy’w) V(y’w)v (4)

is governed by the (retarded) density response function:

x(x.y,0) = i/ dt TG, 0, A, 001 . (5)
0

Here, (- - - )pert and (- - - ) denote quantum/statistical averaging
with respect to the perturbed and unperturbed Hamiltonian,
respectively. The FDT relates the equilibrium density fluc-
tuations to the imaginary (dissipative) part of the response
function,

(In2)(x,y.0) = / di ' (EDA0)  (6)
— F(w) Imx(x,y.0)] . ™)
where

In writing Egs. (6)—(8), we have exploited detailed balance
and time-reversal symmetry. The latter implies x(x,y,w) =
x(y.x,0)."

The question, which we are going to address in this paper,
is how to characterize the fluctuations of the electric potential
V. For this purpose we consider the “dual” case, where some
external density n.x(x,?) is the perturbation that couples to the
“potential operator” V:!3

H® = / dx V(x) nex(x.1) . ©)
The linear response of V to the perturbation can be written as

(V(x,0))pert = / dy T(x,Y,0) nexi(y, ) , (10)
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defining the response function Y. In analogy to Eq. (7),
the response function also characterizes the equilibrium
fluctuations of the potential:'®

IV (x,y,0) = F(w) Im[—Y(x,y,0)] . (11)

Calculating the response function Y(x,y,w) is a com-
plicated task because it requires precise knowledge of the
potential operator V (x). Instead, we can identify the potential
V(x,w) in Eq. (4) with the response (V(x,a)))pm in Eq. (10)
to relate Y to x: in the limit of strong screening in good con-
ductors (called the unitary limit”), electroneutrality is satisfied
locally. Therefore, the induced charge exactly compensates
the external charge: njg(x,w) = —nex(x,®). Now inserting
Eq. (4) into Eq. (10) (or vice versa), we obtain

/dx’ Tx,x',0)x(x',y,w) =8x —y). (12)

If x is known, Eqgs. (11) and (12) allow one to calculate the
correlation function of the scalar potential.

Let us recall the well-known case of macroscopically homo-
geneous diffusive systems. The expression for the disordered

averaged response function  reads'”'®
_ Dgq’
X(g,0)=v——-=1/T(q,0), (13)
Dg* —iw

where we used Eq. (12). Inserting Eq. (13) into Eq. (11), we
find

1 wF(w)
Dgq?
which reduces to Eq. (2) in the limit w < T'.

(IVI)(g,0) =

; (14)

III. NOISE CORRELATION FUNCTION FOR ARBITRARY
GEOMETRIES: MICROSCOPIC APPROACH

In Eqgs. (3) and (9), we introduced the operators 7i and
1% assuming that either V(x,r) or ne(x,t) are external
perturbations. In fact, the fluctuations originate inside of the
system and the starting point of a microscopic description is the
part of the Hamiltonian, which describes electron interactions,

A

A = / dxdy Up(x, )¥ ) e (x),  (15)

where Uy(x,y) is the bare Coulomb interaction. In the mean-
field approximation, Eq. (15) gives rise to a correction, called
Hartree contribution, to the electron energy:

A EHartree) /dxdy Uo(x,y)(A(x)){a(y)) , (16)

where A(x) = ¥ (x)¥ (x).

The Coulomb interactions are dynamically screened, which
can be accounted for in the framework of the RPA, provided
that the electron density is high,

Urpa(x,y,0) = Up(x,y) — /dx’dy’Uo(x,x’)x(x’,y/,a))

x Urpa(y',y.0), (17)

see Fig. 2. Note that —x [see the definition in Eq. (5)] is
equal to the bubble diagrams of Fig. 2, see e.g., Ref. 18. In
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FIG. 2. The Coulomb interaction in the RPA according to Eq. (17).

Appendix A, we recall how to obtain Eq. (17) within a self-
consistent treatment of the screening problem.

Using the RPA in Eq. (16) and comparing the result with
equation Eq. (9), we observe that the potential fluctuations are
due to electronic interactions and that the operator of the scalar
potential is given by

Vix,w)= f dy Urpa(x,y,0) i(y). (18)

Equation (18) allows us to relate the correlation function
of the potentials to the correlation function of the density
fluctuations:

AV, y,0) = / dx'dy Ugen(x.x',0)

x (In*)(x,y @) Ugpa (¥, y, @) . (19)

By inserting Eqgs. (17) and (7) into Eq. (19), reordering the
terms in the RPA series and using the fact that Uj is real, we
find (see Fig. 3)

(V) (x,y,0) = F(w)Im[—Ugpa(x,y,0)] (20)

We emphasize that the derivation of Eq. (20) has not used
any other assumption than the RPA. Thus Eqs. (17) and (20)
are a microscopic (and more rigorous) counterpart of the
phenomenological Eqgs. (11) and (12).

IV. DENSITY RESPONSE IN DISORDERED SYSTEMS:
CALCULATIONS IN COORDINATE REPRESENTATION

In disordered metals, the motion of the electrons is diffusive,
provided that k;l <« ¢ <« L, where kp is the Fermi wave
vector, £ the mean free path and L the system size. It can
be accounted for by substituting the disorder-averaged density
response function Y, into the phenomenological Eqs. (11)

Urpalm[x]Ugps = — WI’“[@]M

= Im[—URpA]

FIG. 3. Diagrammatic proof of Eq. (20) by using Eqs. (17)-(19)
(i.e., Fig. 2).
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FIG. 4. (a) Equation for the disorder-averaged density response
function; solid lines denote the disorder-averaged retarded and/or
advanced Green functions, cf. Eq. (21). (b) Equation for the impurity
vertex; the dashed line represents impurity scattering, cf. Eq. (23).

and (12) or the microscopic Eqgs. (17) and (20). The function
X has been calculated for macroscopically homogeneous
systems by Vollhardt and Woélfle.!” In the following, we will
show how to generalize their calculation to inhomogeneous
systems. A useful starting point is a coordinate representation
of the density response function, Eq. (5), in terms of the
advanced and retarded Green’s functions G*/4(x,y,w),

1
xX(x.y.0) = i /dé [f(e + @) = f(e)]

x (GR(x,y,e + )GA(y,x,€)
+ f(e)GR(x,y,e + w)GR(y,x,€)
_f(6+a))GA(x7y1€+w)GA(ysxa6))v (21)

see Fig. 4(a). Here, f(w) is the Fermi distribution function and
- denotes disorder averaging. The combinations GRGR and
GAGA give short-range contributions, since the average of the
products decouple, e.g., GRGR ~ GF . GR + O(1/kpt), and
the disorder averaged Green’s functions GR and GA decay
on the scale £ <« L. We will consider contributions to the
thermal noise, which are governed by distances larger than ¢,
cf. Ref. 2. Therefore, details of the behavior on short scales
are not important for our purposes and we replace the short-
range contributions GRGX and GAG* by a delta function. The
long range contributions GRG4 can be calculated by standard
methods,'®

GR(x,y.e + 0)GA(y,x,€) = fdx’ﬁ(x,x/,e + )

x GA(x',x,e)l (x,y,0), (22)

where I'(x, y,w) is the impurity vertex function,
1 _
Px,y.0) = 8(x — y) + —/dx’ GRx.x' e + )
2rvt

x GA(x' x,e)T(x',y,0) (23)

(the factor 1 /2w v, where T = £/vp is the transport time, orig-
inates from the impurity line), see Fig. 4(b). The short-ranged
product GX - GA can be expanded as GR - G4 ~ 27vT §(x —
x)[1 + iwt + T DA,], which is obtained by transforming the
product to momentum space and expanding in the transferred
momentum ¢ and frequency w, realizing that terms of order
¢ vanish due to symmetry. As a result, Eq. (23) reduces to a
diffusion equation:

(—iw — DAY T (x,y,0) = %S(x -y, 24)
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where D = vp£/d is the diffusion constant for a d dimensional
system. Thus, the vertex function is proportional to the
diffusion propagator, I'(x,y,w) = P(x,y,w)/t.

Collecting the short- and long-range contributions and
taking the limit 7 < €, we obtain from Eq. (21)

X(x.y,0) =v(@x —y)+ioP(x,y). (25)

Equation (25) is valid for arbitrary geometries since it is based
only on the diffusive approximation and does not require
macroscopic homogeneity.

V. NOISE CORRELATION FUNCTION IN DISORDERED
SYSTEMS

Let us simplify Eq. (17) for a disordered conductor. Using
Eq. (25) and

1
——— A Up(x,x") = 8(x — x), (26)
4 e?

Eq. (17) can be written as

A
(1 - —2) Urea(¥,y,0) + i f dx' P(x,x,0)
K

, 1
X Urpa(x',y,0) = ;5(35 -y, 27

where we introduced the Thomas-Fermi screening wave vector
k = ~/4me?v, which corresponds to the inverse screening
length in three dimensional (3D) bulk systems. The kernel
of Eq. (27) is a solution to the diffusion equation (24), which
can be expanded in terms of eigenfunctions of the Laplace
operator. Consequently, the kernel is always separable and
Eq. (27) has a unique solution (see, e.g., Ref. 19 for details on
how the solution can be found). Using the semigroup property
of the diffusion propagators,

/dx’ P(x,x ,w)P(x',y,0) = l; [P(x,y,0) — P(x,y,w)],

one can check that

1 1 1 \!
UrpA(X,y, @)= — P(x,y,0 28
RPACK, Y, ) U(_DAx_iw+DK2> (x,5,00  (28)

satisfies Eq. (27). In practice, the 3D Thomas-Fermi screening
length k! is a microscopic scale, thus the typical value of the
first term of the right-hand side of Eq. (28), (Dqg,, — iwyp) ™",

is larger than 1/Dk? = 1/4moy for good conductors (this is
the so-called unitary limit, for details see Ref. 9):

1 1
; > .
|Dq[2yp — [ Wypl Dk?

(29)
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In this limit, using the diffusion Eq. (24), we obtain from
Eq. (28):

1
URPA(stCU) = ;[8(x _y)_lwp(xsyvo)] (30)
We remind that P(x,y,0) is always real. As a result, Egs. (20)

and (30) yield
1
(V) (x.y.0) = " wF(w)P(x,y,0), (3D

where F(w) is given by Eq. (8). The real-space demonstration
of Egs. (30) and (31) for macroscopically inhomogeneous
systems, are among the main results of the paper. It is
worth emphasizing the frequency-space factorization of the
correlator, which plays an important role in the theory of
dephasing, cf. Sec. VII. The relation of Eq. (31) to the
correlation function of the currents, Eq. (1), is discussed
in Appendix B, and allows to put the presentation of the
introduction on firm ground.

Note that Eq. (29) allows one to neglect the term A, /x>
in Eq. (27) and thus reduce Eq. (27) to the form of the
phenomenological integral equation (12), with Ugpa taking
the place of Y. [The same replacement leads from Eq. (11) to
Eq. (20).] In other words, the electric potential of the fluctuat-
ing charge densities itself is negligible when screening is strong
enough (i.e., good conductors in the unitary limit), justifying
a posteriori our assumptions in the phenomenological Sec. II.

The fact that the correlation function of the potential is
proportional to the solution of the diffusion equation at zero
frequency, cf. Eq. (31), may be understood as a nonlocal
version of the Johnson-Nyquist theorem, since P(x,y,0) can
be related to the classical dc resistance R(x,y) between the
points x and y (see Ref. 20):

2D |1
R(xvy) = O'_() {E[P(xvx70)+ P(y,y,o)] - P(xvyvo)} .
(32)

For example, in an infinitely long quasi-1D wire of cross
section s, the solution of the diffusion equation is P(x,y,0) =
—|x — y|/(Ds), where x is the component of x along the wire.
Hence, we recover a resistance proportional to the distance
between the points, R(x,y) = |x — y|/(s0p).

VI. NOISE CORRELATION FUNCTION IN NETWORKS OF
DISORDERED WIRES

Let us now illustrate the calculation of the noise correlation
function, Eq. (31), for a network of disordered wires. The
main ingredient to Eq. (31) is the solution of the diffusion
equation (24) at zero frequency. Wires allow a quasi-1D
description of diffusion, where transverse directions can be
integrated out since P(x,y,w) is assumed to be constant on
the scale of the width of the wire. As a result, we replace
P(x,y,w) — P(x,y,w)/s, where s is the cross section of
the wires and P(x,y,w) solves the 1D diffusion equation
in the network, x and y being coordinates along the wires.
Recently, effective methods have been developed to solve the
resulting diffusion equation for arbitrary networks.'%29-22 We
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FIG. 5. The network corresponding to a symmetric ring made of
four wires connected to two absorbing leads. The length of the arcs
is [ and the length of the connecting arms is b. Vertices are labeled
by numbers o = 1,2,3, and 4. Vertices “1” and “4” denote the
points where the ring is connected to the arms. Vertex “2” is always
placed in the upper arc, defining the running coordinate x. Vertex “3”
determines the y coordinate and is placed either in the adjacent arc
(panel a) or in the left arc (panel b) or in the same arc (panel c).

will review these methods in this section and evaluate the noise
correlation function for a simple example.

We start by introducing some basic notations: a network is
a set of vertices, labeled by an index «, connected via wires of
arbitrary length, say [, for the wire connecting vertices o and
B. Let us define a vertex matrix M as

Ay Ao
Map =8ap 3 75 = 75, (33)
o ey lap

where aqp =1 if the vertices @ and B are connected and
aqg = 0 otherwise. The solution of the diffusion equation
at zero frequency between arbitrary vertices o and 8 of the
network is given by the entries of the inverse matrix M divided
by the diffusion constant:

P(a,B,0) = (M Nyp/D. (34)

This allows us to calculate the noise correlation function
between arbitrary points of a network by inserting vertices
and inverting M. As an aside, note that arbitrary boundary
conditions can be included in this scheme easily (see Refs. 22
and 20 for details).

Let us consider the network shown in Fig. 5, representing a
ring connected to absorbing leads. For simplicity, we assumed
that the ring is symmetric: the two arcs are of the same length
! and the connecting arms of length b. We evaluate the noise
correlation function for two points in this network by inserting
two vertices, called “2” and “3”. Vertex 2 is always placed in
the upper arc, encoding the running coordinate x in the length
of the connected wires. Vertex 3 determines the y coordinate
and is placed either in the lower arc or in the left connecting

FIG. 6. (Color online) The solution to the diffusion equation at
zero frequency, P(x,y,0) o< {|V|*)(x,y,w)), where {|V|?) is given
by Egs. (36)—(38), for a fixed coordinate x in the upper arm of the
ring (indicated by the dot), as a function of y traversing the network.
(IV|*)(x,y,w) is linear in y and its derivative has a discontinuity at
y=x.

arm or in the upper arc. In the first case, Fig. 5(a), the vertex
matrix, Eq. (33), is given by

1 1 1 1 1
FHi+s L ! 0
1 1 1 1
—= =4 — 0 —
X x ' l=x I—x
M=l ) o Lyt 1
y y o l-y I=y
1 1 1 1 1
0 = Ty bt

(35)

The diffusion propagator is then given by P(x,y,0) =
(M™1)3/D, and we obtain from Eq. (31) the correlation
function as a function of the running coordinates x, y € [0,/]:

wF(w) b(2b +1) — (x + y) + 2xy)

2 _
VI y.@) = =5 14b + 1)

(36)

When vertex 3 is placed in the connecting arm, x € [0,/] and
y € [0,b] [Fig. 5(b)], we get
oF(w) y2b+1—x)
VIH(x,y,0) = . 37
(VD y.w) Dvs b+ (37
Finally, when vertex 3 is placed in the same arc of the ring as
vertex 2 [see Fig. 5(c)], following the same logic we obtain,
with) <x <y </,

(V) (x,y,o)
wF(w)bl2b + 1)+ xI(3b + 1) — ybl — xy(2b + 1)
" Dvs 1(4b +1) ’

(38)

All other configurations can be found by symmetry arguments.
We plot P(x,y,0) for y traversing the whole network in Fig. 6.
Note that the resulting function is linear in y and its derivative
has a discontinuity at y = x (cf. Ref. 7).

VII. APPLICATION TO DEPHASING

The precise characterization of potential fluctuations is very
important in studying phase coherent properties of disordered
metals at low temperatures. To be specific, let us discuss a
particular coherent property: the weak localization correction
to the conductivity. Let us recall that the weak localization
(WL) correction Aog =@ — oy is a small contribution to the
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averaged conductivity arising from quantum interference of
reversed diffusive electronic trajectories.”®

At low temperatures, dephasing is dominated by electron
interactions, that can be accounted for through a contribution
to the phase accumulated by two time-reversed interfering
trajectories in a fluctuating electric field:

Plx(7)] = / dr [V(x(7),t) — V(x(x),t —1)]. (39)
0

When averaged over the Gaussian fluctuations of the electric
field, (¢/®)y = e~ 2(®)V yields a phase difference that cuts
off the contributions of long electronic trajectories. Intro-
ducing the trajectory- dependent dephasing rate I'[x(7)] =
2—1,(<I>[x(r)]2)v, the weak localization correction takes the

form:7:20:24.25
2e’D [
Ao (x) = — / dt P(x,x,1) (e 0y, (40)
0
where (- - - ) (x(r)) 18 the average with respect to closed diffusive

trajectories of duration ¢ starting from x (not to be confused
with the thermal average (---)y over the electric potential
V). The phase fluctuations can then be related to the potential

fluctuations:
[ dtdt’ /
0

X (V) (x(0),x(' o). (41)

Here, we have introduced a new noise correlator,

[ —iw(t—1") 7iw(r+r’7t)]

CD[x] —e

1
(IVI)(x,y,0) = ~ 0Fy(©)P(x,y,0), 42)

obtained from Eq. (31) by replacing F(w) with a modified
function F,(w) (given below), on the origin of which we
now comment. Equation (20) is well-known in the theory
of dephasing: its version symmetrized with respect to fre-
quency arises naturally when comparing the diagrammatic
calculation of the dephasing time®®?’ with the influence
functional approach describing electrons moving in a random
Gaussian field V.?*?2% Diagrammatically, the symmetrized
Eq. (20) represents the Keldysh component of the screened-
electron-interaction propagator, the only substantial difference
being that the diagrammatically calculated correlation function
involved in the dephasing process acquires so-called Pauli
factors that account for the fact that the Fermi sea limits the
phase space available for inelastic transitions.”® These factors
lead to the following replacement of the function F(w) in
Eq. (20) and also in Eq. (31):

Pauh w / 2T
sinh?(w/2T)
This restricts the energy transfer to || < T,>*?” but does not

affect the factorization of the correlator. Inserting Eq. (42) into
Eq. (41) leads to

F(w) o coth(w/2T) — = Fy(w). (43)

1 , 2T /' ) ) /00 do
S(@[x]") = — [ drdt P(x(7),x(1),0) 5=
2 Y 0 00 2

—iw(t—1") _ —1w(r+r z)]

x [e F o). (44)

The fact that the frequency dependent functlon 37 Fy(w) is
symmetric allows us to add to P(x(1),x(t’),0) the term
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— % [P(x(7),x(1),0) + P(x(t"),x(t"),0)], which does not con-
tribute to the integral (44). Therefore, we finally end up with
the following expression for the dephasing rate,

2 ldT ! / i /
Tx(t)] = e T/ 7/ dt' [8r(t+17 — 1) = 87(r — 7))
0 0
X R(x(1),x(1")), (45)

written in terms of the resistance R, defined in Eq. (32). The
function §7(¢), a broadened delta function of width 1/T and
height 7', is the Fourier transform of % Fy(w), which is given
by

Sr(t)=nT w(xTrT), (46)
Equation (45), which is one of the main results of our paper,
generalizes the results obtained in Refs. 8,9,24, and 28 for an
infinite wire and an isolated ring to arbitrary geometry. In the
classical noise limit T — oo, 67(7) may be replaced by a 6(t)
function: the second term of Eq. (45) vanishes and we recover
the results of Refs. 7 and 20.

Let us now illustrate Eq. (45) by calculating the dephasing
time for the well-understood case of one and two-dimensional
isolated simply-connected samples. The dephasing time can
be extracted from the condition

1 =T(z,)1,, @7)

where I'(¢) is given by the functional Eq. (45), averaged over
the typical closed random walks x(t) of duration ¢ in the
system. The problem is governed by the interplay of three
time scales: the Thouless time tr, = L?/D, depending on
the system size L, the thermal time 7 = 1/T (related to the
thermal length Ly = /D/T), and the dephasing time .

(i) Diffusive regime, 17 < 7, < Tty (L7 K L, K< L):
this is the regime considered in Refs. 2 and 25, where the
width of the broadened delta functions in Eq. (45), 77, is
the shortest time scale. Thus, when averaging over paths
x(t), the characteristic length scale |x — y| entering the
resistance R(x,y) can be determined as follows: for the first
or term, this length is governed by free diffusion, since
|x(t) — x(t — )| ~ /D1, hence |x — y| ~ +/Dt. For the
second term, the characteristic length is set by the width of the
delta function, |[x — y| ~ /Dt7r.In 1D, where R(x,y) ~ |x —
y|/oos, the first term dominates and we immediately obtain
from Eq. (47) 1/t, ~ (e>~/DT /aps)*>. In 2D, the diffuson
at zero frequency is logarithmic as well as the resistance (32),
R(x,y) ~ In(|x — y|)/ood, where d is the width of the sample,
which can be understood from the fact that the resistance of a
plane connected at two corners scales logarithmically with the
system size. Equation (47) gives 1 ~ ezTr(p In(T't,)/00d, and
for the dephasing time, 1/7, ~ 2T In(e?*/ood)/ood.

(ii) Ergodic regime, 17 < tmh K 7, (LT < L < Ly,): the
width of §7(7) in Eq. (45) is still the shortest time scale
but, in contrast to (i), the typical trajectories x(t) explore
the whole system, setting the length scale of diffusion to
the system size L, cf. Refs. 6 and 7. In full analogy to the
diffusive regime, but replacing ~/Dt by L, we find for 1D,
/7y ~ e?’LT /oys, and for 2D, /7y ~ e>T In(try/17)/00d. >
These examples show that for nontrivial geometries, dephasing
due to electron interactions cannot be accounted for through
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a unique dephasing rate depending only on dimensionality,
but must be described by a functional of the trajectories x(t)
since the qualitative behavior of 7, follows from the geometry
dependent typical distance |x(t) — x(t')|.

For sufficiently low temperatures, on the other hand,
Eq. (45) is capable to describe the crossover to a 0D regime,
where, apart from a dependence on the total system size,
geometry becomes unimportant.

(iii) OD regime, tm, < 77 K 7, (L < L7 < Ly): here,
the width of the delta functions in Eq. (45), 77, is larger
than tr,. Hence, the trajectories reach the ergodic limit
x(t > ) ~ L before the electric potential has significantly
changed: dephasing is strongly reduced. Let us denote the
maximal resistance reached at the ergodic limit as Ry
and replace the resistance in Eq. (45) by R — R — Rerg,
without changing the result, since Ry is constant and its
contribution vanishes after integrating over t and t’. The
difference R — R is nonzero only during time differences
7 — v/ < 1y before reaching ergodicity. Thus the leading
contribution comes from the second 67 term in Eq. (45),
which is constant at its maximum 7 during such short time
scales. We find 1 ~ —e?T?7, fomdt [R(x(7),0) — Rerg] and
since the R term dominates, we obtain a dephasing time
1/7, ~ €Tt Rere. independent of geometry and with the
characteristic ~T?2 behavior.>!

VIII. CONCLUSIONS

In this paper, we have considered fluctuations of the scalar
electric potentials in macroscopically inhomogeneous metals.
We have shown how to relate the density fluctuations to
the potential fluctuations, emphasizing the role of electronic
interactions, provided a real space derivation of the density
response function, and illustrated these general ideas for the
case of networks of metallic wires. Finally, we have obtained
a trajectory-dependent functional, Eq. (45), which describes
dephasing by electron interactions for arbitrary geometries and
accounts for the quantum noise contribution. When applied to
networks, Eq. (45) can describe the full crossover from the 0D
to the 1D and the 2D regime.
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APPENDIX A: SELF CONSISTENT ANALYSIS OF
SCREENING

We recall here how to obtain Eq. (17) using a self-consistent
treatment of screening in real space.’? Starting points are the
following three equations: (i) the excess charge density is
decomposed into external and induced contributions

In(x,w) = Rex(X,0) + njng(x, ). (A1)

PHYSICAL REVIEW B 84, 054204 (2011)

(i1) The induced charge is related to the potential V(x,w) by
the density response function, cf. Eq. (4):

nind(wi) = - fdy X(xava) V(yﬂw) (Az)
(iii) The Poisson equation
AV(x,0) = —4me? Sn(x,w). (A3)

Self-consistency lies in the fact that the response involves
the screened potential V(x,w) and not the bare “external”
potential related to nex(x,®). The screened effective interac-
tion between electrons Ugrpa(x,y,w) is obtained by placing
an external charge at y, so that the external density is
next(x,w) = 8(x — y), and associating the resulting screened
potential V(x,) in Eq. (A3) with Ugrpa(x,y,w). We obtain

1 /
— =5 AxUrpa(x,y.0) + /dx X (x,x',0)Urpa(x', y,0)

dre
=38(x — y). (A4)

Convolution with the Coulomb interaction gives Eq. (17).

APPENDIX B: CURRENT DENSITY CORRELATIONS

We discuss here the relation between the density and the
current density correlations. The response of the (induced)
current density is characterized by the conductivity tensor o,

(ja(xsw»neq = /dy aaﬂ(xay9a)) Eﬁ(va)9 (Bl)
which is related to Eq. (5) by current conservation:

Vo Voap(x.x ,0) = —iwe’ x(x,x',0). (B2)

The thermal fluctuations of the current density can be obtained
from (jo,jg)(x,y,a)) = wF(w)Re[oy(x,y,w)], in analogy to
the discussion in Sec. II, assuming time-reversal symmetry,
Uaﬁ(xaysw) = O'ﬁa(ysx’a))-

Let us now examine the case of disordered metals. The
classical contribution to the averaged nonlocal dc conductivity
has been derived in Ref. 12. Their result can be generalized
straightforwardly to nonzero frequencies,

Tap(x,x",0) = 09 [84p8(x — x) — DV Vi P(x,x",0)], (B3)

which obeys the condition (B2) with Eq. (25) substituted for
x . For the current correlations, we find3?

(ad ) (X" 0) = 00 0F () {84p8(x — x)
— DV, V;Re[P(x.x' w)]}. (B4)

Since the diffuson P(x,x’,w) decays exponentially on a
length scale L,, = +/D/w, this expression shows that current
correlations can be considered as purely local over the scale
[lx —x'|| > Lo, ie., {|j]?)(x,x,0) >~ cpwF(w)§(x — x'). In
the limit of classical noise, F'(w) w =~ 2T, we recover precisely
Eq. (1).
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