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Abstract. We review recent developments in the theory of interacting quan-
tum many-particle systems that are not in equilibrium. We focus mainly on the
nonequilibrium generalizations of the flow equation approach and of dynamical
mean-field theory (DMFT). In the nonequilibrium flow equation approach one
first diagonalizes the Hamiltonian iteratively, performs the time evolution in this
diagonal basis, and then transforms back to the original basis, thereby avoiding a
direct perturbation expansion with errors that grow linearly in time. In nonequi-
librium DMFT, on the other hand, the Hubbard model can be mapped onto a
time-dependent self-consistent single-site problem. We discuss results from the
flow equation approach for nonlinear transport in the Kondo model, and further
applications of this method to the relaxation behavior in the ferromagnetic Kondo
model and the Hubbard model after an interaction quench. For the interaction
quench in the Hubbard model, we have also obtained numerical DMFT results
using quantum Monte Carlo simulations. In agreement with the flow equation ap-
proach they show that for weak coupling the system relaxes to a “prethermalized”
intermediate state instead of rapid thermalization. We discuss the description of
nonthermal steady states with generalized Gibbs ensembles.

1 Introduction

Strongly correlated electron systems and their rich phase diagrams continue to play a central
role in modern condensed matter physics. Key theoretical developments were the solution of
the Kondo model as the paradigm for correlated quantum impurity models using the numer-
ical renormalization group [I], and the solution of the Hubbard model as the paradigm for
translation-invariant correlated electron systems within dynamical mean-field theory (DMFT)
[203]. Until about ten years ago these investigations nearly exclusively focussed on equilibrium
or near-to-equilibrium (linear response) situations. This was mainly due to the fact that ex-
periments probed either equilibrium or linear response properties. For example electrical fields
applied to bulk materials are typically too weak to drive a system beyond the linear response
regime.

The experimental situation changed completely in the past ten years due to three key
developments. First of all, the realization of various model Hamiltonians using cold atomic
gases paved the way to study the real-time evolution of quantum many-body systems and
quantum quenches away from equilibrium. The seminal experiment in this context was the
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demonstration of collapse and revival oscillations in an ultracold gas of rubidium atoms that
are described by a Bose-Hubbard model quenched from the superfluid to the Mott phase by
Greiner et al. [4]. The second modern experimental development is femtosecond spectroscopy
[BU6I7IR], which permits to study the electron relaxation dynamics in pump-probe experiments.
Third is the realization of correlated quantum impurities in Coulomb blockade quantum dots
[OITOITT], which can easily be driven beyond the linear response regime with moderate applied
voltage bias [12].

These experimental developments have led to numerous theoretical investigations of
nonequilibrium quantum many-body systems in the past decade. Still it is fair to say that the
nonequilibrium properties of correlated systems are much less understood than their equilibrium
counterparts. The main reason for this is the lack of reliable theoretical methods that can cope
with the double challenge of strong correlations and nonequilibrium situations. In this paper
we therefore highlight two such theoretical approaches that have been applied successfully to
nonequilibrium quantum many-body systems, namely the analytical flow equation method [13],
generalized to nonequilibrium [I4], and nonequilibrium dynamical mean-field theory [I5/16]. We
discuss how these methods contributed to a first understanding of some paradigms of correlated
electron physics in nonequilibrium.

The paper is organized as follows. In Sec. 2l we introduce the flow equation approach for an-
alytic diagonalization of quantum many-body systems, especially its generalization to nonequi-
librium real-time evolution problems. Sec. [} deals with the application of this approach to the
ferromagnetic Kondo model, which can thereby be solved in a controlled way even for asymp-
totically large times. The results are in very good agreement with numerical methods [I7] and
also establish a key mechanism for thermalization after an interaction quench in the Hubbard
model. The time evolution of the Hubbard model is then analyzed in Sec. @ using the flow equa-
tion method. Sec. [fl contains an application of the flow equation method to a second important
class of nonequilibrium problems, namely to transport beyond the linear response regime. In
Sec. [6l we briefly review nonequilibrium DMFT, which maps the lattice system onto an effective
single-site problem with a self-consistency condition. We show how this self-consistency condi-
tion can be reduced to a single equation in some cases, which can reduce the numerical effort
for the solution of DMFT, in particular in the absence of translational invariance in time. In
Sec. [l we discuss DMFT results for interaction quenches in the Hubbard model, which agree
very well with the results from the flow equation method for small values of the Hubbard inter-
action (Sec. [)). For quenches to intermediate Hubbard interaction the system thermalizes on
short time scales, which shows that correlated systems in isolation can reach a new equilibrium
state, not because of a coupling to external baths but due to the interactions between particles.
In Sec. B we compare this behavior to that in a special solvable Hubbard model, for which
the system tends to a nonthermal state due to its integrability, i.e., the conservation of many
constants of motion. Finally in Sec. [0 we discuss the concept of generalized Gibbs ensembles,
which can make statistical predictions both for integrable and nearly integrable Hamiltonians.

2 Flow equation approach to quantum time evolution

Stationary eigenstates of a many-particle Hamiltonian are fundamental for the discussion of
quantum many-particle systems in equilibrium. A typical class of nonequilibrium situations are
systems that are prepared in a quantum state |¥;) which is not an eigenstate of the Hamiltonian
H that drives its time evolution. In this case, observables that do not commute with H will
generally become time-dependent. The canonical way to evaluate the real-time evolution of such
observables is the Keldysh technique. One of the notorious difficulties with this approach is that
often the limit of weak interactions does not commute with the limit of long times. A partial
sum over certain diagrams is usually not sufficient to guarantee a controlled approximation in
the limit of long times.

Another approach for calculating time-dependent observables is Heisenberg’s equation of

motion for an observable A,
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Fig. 1. The forward-backward transformation scheme induces a non-perturbative solution to the
Heisenberg equation of motion for an operator A. U denotes the full unitary transformation that
relates the B = 0 to the B = oo basis [20].

Again, a direct perturbative expansion of this equation of motion, e.g., in the interaction
strength, is usually not controlled in the limit of long times. However, one might think of
changing the basis representation of Eq. (). Ideally, this basis representation would transform
H into a non-interacting form. This idea is precisely at the heart of the flow equation approach,
invented by Wegner in 1994 [I3], and independently by Glazek and Wilson [I8/19].

The main concept is to implement this transformation as a sequence of infinitesimal unitary
transformations that allows to separate energy scales during the process of transformation.
This is achieved by introducing an appropriate generator n(B) that parameterizes a family of
unitarily equivalent Hamiltonians. By solving the differential equation

dH
— =[n(B),H(B 2
o5 = [n(B), H(B)] (2)
with the initial condition H(B = 0) = H, a unitary equivalent family of Hamiltonians is con-
structed. Wegner’s ingenious choice of a canonical generator is to construct it as the commutator
of the diagonal (Hp) with the non-diagonal part (Hint) of the Hamiltonian,

n(B) ¥ [Ho(B), Him(B)] . (3)

This ensures that H(B) becomes more and more energy-diagonal with an effective band width
Ageq during the flow. One can easily verify the identification Agq oc B~'/2. Generically one
reaches a non-interacting diagonal form in the limit B — oo [13].

Intuitively, the basis defined by constructing the non-interacting normal form of the Hamil-
tonian should be much more suitable to solve Heisenberg’s equation of motion. This has been
used in numerous examples for evaluating equilibrium correlation functions on all energy scales
using flow equations [I4]. At the same time it also allows the calculation of nonequilibrium
real-time evolution problems. Indeed, the analogy of constructing normal forms of interacting
Hamilton functions in order to integrate Hamilton’s equation of motion is a very successful con-
cept in classical mechanics, known as “canonical perturbation theory” [21]. Based on the flow
equation approach, this idea can be directly applied to quantum many-body systems [20[22].
The general setup is described by the diagram in Fig. [ where |&;) is some initial non-thermal
state whose time evolution one is interested in. Here and in the following, we describe operators
and coupling constants in the B = oo basis by a tilde. In order to study the real-time evolution
of a given observable A that one is interested in, the observable is transformed into the diagonal
basis by solving the differential equation

do

— = (B B 4
o5 = 1(B), 0(B)] (4)
with the initial condition O(B = 0) = A. The key observation is that one can now solve the real-

time evolution with respect to the energy-diagonal H exactly, thereby avoiding any errors that
grow proportional to time (i.e. secular terms): this yields A(t). Now since the initial quantum



state is given in the B = 0 basis, one undoes the basis change by integrating Eq. @) from B = oo
to B = 0 (backward transformation) with the initial condition O(B = oo) = A(t). One therefore
effectively generates a new non-perturbative scheme for solving the Heisenberg equation of
motion for an operator, A(t) = e#'A(0)e~*H! in exact analogy to canonical perturbation
theory. In a first successful application, this approach has been applied to dissipative quantum
systems [22/20]. In this paper, we will discuss recent work on the ferromagnetic Kondo model
(Sec. ), the fermionic Hubbard model (Sec. ) and on steady state transport through Kondo
dots (Sec. [).

Usually, the implementation of the flow equation approach relies on approximations that
allow to truncate the hierarchy of flowing interaction terms generated during the transformation
of an interacting many-particle Hamiltonian and all observables. Systems that are accessible by
perturbative RG are ideally suited for that purpose, since they allow for a controlled expansion
around a weak-coupling fixed point.

3 Ferromagnetic Kondo model

A well-known example for a weak-coupling many-particle system can be realized in the ferro-
magnetic regime of the Kondo model

H= ngc};acka + Z J,!,kSZsi,k + Z Jioe(ST s + 57 sh0) (5)
ko ke, K/ ke, K/

where S* = §%+4S¥ and likewise for the conduction electron spin densities. In the following, we
consider constant ferromagnetic exchange couplings with |J+| < J I, The canonical generator
is immediately obtained from n(B) = [Ho, Hint(B)], where the flowing interaction Hi,(B)

is parametrized by the flowing couplings JIQ w (B) and J,i:k, (B). At the Fermi surface (with

Jkl};”kF = J I and the density of states p), it can be shown that these couplings reproduce the
usual poor man’s scaling equations [23]

dJl

dlnd —p(77)"

dJ+

dln A —pd It (6)

For ferromagnetic couplings, the non-interacting fixed point of Eq. (@) is stable and allows
for a controlled perturbative expansion of all flow equations used to transform H and S*.
This example allows to analytically implement the approach outlined in Sec. 2] to calculate the
time-dependent impurity magnetization (S*(¢)) with respect to the initial state

i) = [ 1) @ |FS) . (7)

The state |¥;) has the physical interpretation of an initially decoupled system of a polarized
impurity spin | 1) and a non-interacting Fermi sea in equilibrium, |FS). The remaining technical
steps consist of transforming the operator S? according to Fig. [l in order to evaluate the
observable (S*(¢)).

The impurity magnetization is obtained as follows. It is straightforward to work out the
ansatz for the flowing spin operator as

S*(B) = h(B)S* + > wk(B): (S X sp)” : . (8)

Kk’
In the limit B — oo, the coupling constant h(B) approaches the value h(B — o0) =14 pJ/2+
O(J?) if JI = Jt. The value h(B — 00)/2 is equal to the equilibrium impurity magnetization
in presence of an infinitesimal Zeeman term 07 5% and has been calculated to the same accuracy



by Abrikosov [24] by a summation over parquet diagrams. According to our strategy for the
solution of Heisenberg’s equation of motion, the nonequilibrium magnetization follows from an

ansatz
S*(B,t) = h(B,t)S* + > ywk(B,t) : (8 x spk)”: . (9)
Kk’

Obviously, the flow equations for this operator have the same form as the time-independent flow
equations for the ansatz in Eq. (). It is furthermore trivial to determine the initial condition
as S*(B — 00,t) = h(B — 00)S* + 34 1 k(B — oco)eEw =En ¢ (ST s, + S7sh,) ¢ . Up
to neglected normal ordered terms of O(J?), the operator S?(t) readily follows from integrating
Eq. (@) with the initial condition S*(B — oo,t). Using these steps, the formal result for the
impurity magnetization reads

(5°() = B4+ 30 2 (it _ D)y — i) (10)

2 2 2
Kk’

By solving the flow equations for the couplings ggs for momenta close to the Fermi surface, it
is therefore possible to directly obtain the long-time dynamics of the impurity magnetization.
More details of the calculation can be found in Refs. [25]T7]. For isotropic couplings and using
a flat band with the dimensionless range [—1, 1], this yields the asymptotic behavior

(S%(t)) = %(m@% +1+pJ + (’)(JQ)) . (11)

This asymptotic behavior is confirmed by numerical calculations depicted in Fig. For
anisotropic couplings, the calculation is completely analogous and yields the result

2 2
(5700 =5 (1 o5t + 55 ) + O, (12)
2 2]” 2]”
with the dimensionless coupling jI = pvJ12 —J12 and a ~ pJI for |J+/JI| > 2. These
results allow for two interesting observations: (i) the time-dependent contribution to (S*(t))
is described by JI(A = 1/t), where JlI(A) flows according to the scaling equations. (ii) The
asymptotic result (S*(t — 00))w, —1/2 = 2((S%)eq — 1/2) is obeyed. Therefore, a factor of two
distinguishes the asymptotic results for the equilibrium magnetization vs. the nonequilibrium
magnetization.

In this section we discussed a rare example where the nonequilibrium dynamics of an inter-
acting many-particle system can be described analytically. The versatility of the flow equation
approach to describe both equilibrium and nonequilibrium quantities with common scaling
transformations allows to directly relate nonequilibrium relaxation laws to equilibrium prop-
erties obtained by a conventional renormalization group calculation. In our example, we could
establish that nonequilibrium dynamics is set by the flowing coupling constants, evaluated at
the energy scale equal to the inverse time scale of the relaxation process. Furthermore, we
could show that an equilibrium and a corresponding nonequilibrium observable in a steady
state differ by a factor of two. This observation appears in a much wider class of problems,
e.g. in a class of discrete models, where this result can be stated in form of a theorem [26].
The same factor two also appears for the real-time evolution in the weak coupling phase of the
quantum Sine-Gordon model [27], where it connects the equilibrium with the nonequilibrium
mode occupation numbers. It will be one of the central features for the real time evolution of
the Hubbard model in Sec. @ since it defines the prethermalization and ensuing thermalization
behavior.

4 Small interaction quenches in the Hubbard model

The forward-backward transformation scheme as it is depicted in Fig. [l became a fruitful
tool also for examining the nonequilibrium properties of closed translation-invariant interact-
ing quantum many-body systems. Since the trace of the squared density operator p does not
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Fig. 2. Time-dependent magnetization in the isotropic ferromagnetic Kondo model. [J denotes the
flow equation data points, which agree very well with time-dependent numerical renormalization group
calculations depicted by x [I7]. The deviations for larger values of the coupling constant J can be
understood from the perturbative nature of the flow equation calculation [25]. Using our analytical
result we fitted the flow equation data against (S*(¢)) = (1 + aJ + [In(t) — 1/(cJ)]™')/2 using a, c as
fit parameters (lines).

change under unitary time evolution, a closed quantum system which has been initialized in a
pure state (defined by Tr[p?] = 1) will never relax to a thermal state (defined by Tr[p?] < 1).
Nonetheless, the question of relaxation and thermalization can be addressed for expectation val-
ues of observables. As the conventionally studied simple observables typically only probe one- or
two-particle aspects of the many-particle quantum state, there is the generic expectation that
the full unitary evolution cannot be resolved; then the apparent dynamics of these observables
becomes arbitrary close to that of a thermal state. This is, however, not the case for integrable
models where the dynamics is limited by additional conserved integrals of motion. In the fol-
lowing we will show that the Hubbard model in more than one dimension, which is commonly
considered nonintegrable, exhibits the phenomenon of prethermalization. It is characterized by
the emergence of different relaxation times for various observables and has previously been
observed numerically in cosmological models [28]. This implies that there exists a transient
time regime during which the expectation values of some observables have already relaxed to
their long-time values while others have not. The relaxation of the latter ones, however, is only
delayed to a later time scale.

We start with imposing nonequilibrium initial conditions by a quantum quench, i.e. a sudden
change in a parameter of the Hamiltonian: We start in the ground state of a noninteracting Fermi
gas and assume that the strength of the Hubbard interaction remains small such that we always
remain within the Fermi liquid phase of the model. Therefore we first test the nonequilibrium
properties of a Fermi liquid beyond Landau’s theory. Quenches outside of the Fermi liquid phase
are discussed using the DMFT approach in Sec. [l Here we apply the forward-backward scheme
which allows for an analytical ab initio real-time analysis of the subsequent relaxation dynamics
of the kinetic energy and the momentum distribution [29J30]. It will turn out that the Fermi
liquid picture provides a most suitable framework to understand the origin of prethermalization
on the grounds of an analytical calculation. In the following paragraphs we will explain how
prethermalization emerges from the interplay of the Pauli principle with quantum correlations
induced by the two-particle interaction.

The time evolution of a closed many-particle quantum system is fully described by its
Hamiltonian. Let us assume that the latter contains different interactions between the various
degrees of freedom on well-separated energy scales, for instance a two-particle interaction be-



tween electrons, an additional electron-phonon coupling or one to an external light field. Then
one trivially expects that the relaxation of a generic excited state passes through a sequence
of transient time regimes: each of them corresponds to an energy scale of the Hamiltonian and
exhibits its own characteristic signatures; only afterwards full thermalization of all degrees of
freedom may be reached.

Prethermalization of a Fermi liquid describes a similar sequence of time regimes which orig-
inates, however, from a single two-particle interaction term in the Hamiltonian. Moreover, it is
reminiscent of a common effective approach for weakly interacting systems which discusses the
Hamiltonian time evolution in terms of two different relaxation mechanisms: dephasing of the
initial state and two-particle scattering between unrenormalized momentum modes. This cor-
responds to two distinct relaxation times: short time inelastic energy relaxation and long time
elastic momentum relaxation. Prethermalization implies that these time scales separate and are
observable in the relaxation behavior of different observables: ’bulk’ quantities like the total ki-
netic or potential energy of the system are 'momentum mode averaged’ quantities which already
relax due to dephasing. This can be seen as an implication of energy-time uncertainty which
allows for rapid energy exchange at short times. However, in a translationally invariant system,
(quasi-) momentum is conserved and the momentum distribution can only relax by momentum
exchange due to scattering processes. Yet in a zero temperature Fermi liquid, scattering pro-
cesses at the Fermi energy are suppressed by phase space restrictions which are imposed by the
Pauli principle. Hence the momentum distribution represents the simplest example of a 'mo-
mentum mode quantity’ which relaxes on a later time scale. The separation of both time scales
opens the transient regime of prethermalization during which a quasi-equilibrium description
based on temperature cannot be defined for momentum mode quantities.

We develop this scenario starting from a noninteracting Fermi gas at zero temperature, i.e.
in the noninteracting ground state |{2p). Its momentum distribution exhibits a discontinuity
of size Z° = 1 at the Fermi energy. Then the two-particle Hubbard interaction is switched on

instantaneously,
1 1
H=- 3 tijclcjo +UO)(niy — )i —3), (13)

(i,3),0

where ¢; denotes a local fermionic destruction operator, n; = c;.rcz- the number operator in real
space (ny in momentum space) and ©(t) the Heaviside step function. We assume that the
nearest-neighbor hopping ¢;; is larger than the local on-site two-particle interaction U < t;; =
1 to permit a weak-coupling description. The sudden change in the Hamiltonian initializes
the system in a highly excited state and violates the fundamental prerequisite of Landau’s
equilibrium theory of a Fermi liquid, namely the adiabatic continuity of the noninteracting
and the interacting Fermi system. Nonetheless we observe that important aspects of Landau’s
theory, in particular the quasiparticle picture of elementary excitations, are retained during the
subsequent nonequilibrium dynamics. Applying the unitary perturbation scheme of Fig.[lto the
creation operator in momentum space implements its Heisenberg equation of motion. Thereby,
it exhibits the decay of a physical fermion cl into a superposition of various many-particle
excitations which represent the 'dressing’ of the noninteracting particle with particle-hole pairs
due to interaction effects,

Cror (t = 0, B) ™3¢ 15 (t, B) = oo (t, B) ko + Mpgroos(t, B) chpclocs +... . (14)

This ansatz is analog to the ansatz for the impurity magnetization (8) in the ferromagnetic
Kondo model. Tt transfers the time evolution of operators (and/or their flow under infinites-
imal unitary transformations) to a set of coupled differential flow equations for the time and
B-dependent prefactors hiy(t, B) and Mpqros5(t, B). Higher order terms are truncated in a
systematic way: only terms are kept which are relevant for a second order in U result of the
momentum distribution function Ny (t) = (20| nk(t) |£20). At the Fermi surface, the coefficient
hipo(t) = v/ Z(t) relates to the time dependent value of the quasiparticle residue Z. The later
mirrors the discontinuity of the momentum distribution function at the Fermi energy which
is reduced under the time evolution. It approaches — in a formal long-time limit — a nonvan-
ishing value ZNFQ which mismatches the corresponding equilibrium value ZPQU by a factor



po=limgs 1,0 (Z2° — ZNEQ(1)) /(Z° — ZFQU) = 2. A comparison with exactly solvable models,
e.g. the sudden squeezing of a harmonic oscillator [26], indicates that the mismatch is a nonper-
turbative effect of nonequilibrium dynamics, while its numerical value g = 2 is a perturbative
result in the weak-coupling limit. Such a mismatch is the generic behavior of many systems and
observables [26]. We have found it also comparing the nonequilibrium and equilibrium magne-
tization in the ferromagnetic Kondo model (cf. Sec. B]). For the Fermi liquid, the persistence of
a nonvanishing quasiparticle residue up to late times has been confirmed recently [31]. Hence,
up to a factor the momentum distribution still resembles that of a zero temperature Fermi
liquid in equilibrium; therefore we conclude that a quasiparticle picture remains applicable.
Note that, due to the mismatch, the corresponding quasiparticle momentum distribution is a
nonequilibrium one: deviations from a description in terms of Landau quasiparticles are second
order in U and open phase space for additional quasiparticle scattering. Moreover, the kinetic
energy Eiin(t) = [ degerNe, (t) already relaxes to its final value during this first episode of the
dynamics, which is on a time scale given by t; ~ 1/prU?. More details of the calculation can
be found in Refs. [29/26130].

Corrections to the second order result imply a second stage of the dynamics. Motivated by
the explicit calculation of one (out of many) forth order term we describe them by an effective
kinetic evolution of the nonequilibrium momentum distribution using a quantum Boltzmann
equation. The later describes the redistribution of occupation among quasiparticle momentum
modes due to two-particle scattering events,

QP
WO _ 7 NP ()] = 02 S Prapar NP OIS0 ex + 6y~ g ). (15)

par

The scattering integral Z,[N®F ()] contains the characteristic fermionic phase space factor
which implements the constraints due to the Pauli exclusion principle on two-particle scattering,

Pipar [N = [NEPNP(1 = NO)(1 = N27) = (1= N2")(1 = NOP)NSPNEF] . (16)

Note that the scattering integral vanishes for arbitrary Fermi-Dirac distributions including that
one of the zero temperature Fermi gas N°. Hence a thermal state is an attractive fixed point
of the Boltzmann dynamics. Since a quasiparticle picture has been established during the first
stage we apply the quasiparticle momentum distribution of the transient state NQF (1) as the
initial condition of the further quantum Boltzmann dynamics. Linearizing the scattering inte-
gral around N° and noting that the displacement AN ,?P = N®P(t;) — N is proportional to
U? shows that this subsequent relaxation of the momentum distribution happens on a second
time scale given by to = 1/p3U%. For small interaction strength to > t1. This delayed relax-
ation behavior is reminiscent of the long nonequilibrium relaxation times in glasses. Those are
explained by a ragged potential landscape: local minima represent transient states which are
well-separated from the global thermodynamic ground state by energy barriers. The example
of the Fermi liquid shows that, in many-body quantum systems, analogue bottlenecks to the
relaxation can be imposed by particle correlations. For Fermi systems at very low tempera-
tures this is provided by the strong quantum statistical correlations due to the Pauli principle.
However, this restriction is not exact, and in nonequilibrium significant quasiparticle scattering
remains effective. Therefore thermalization of the momentum distribution can be expected on
times ¢ > t9. The existence of the prethermalization regime in the Hubbard model and its
subsequent relaxation has been confirmed numerically in DMFT calculations, see Sec. [1l

Prethermalization is particularly relevant in ultracold Fermi gases: There it limits the effi-
ciency of evaporative cooling since equilibration of the remaining atoms is very slow. However,
successive work has shown that this delayed thermalization may be turned into a feature and
might simplify the observation of characteristic nonequilibrium physics at zero temperature,
for instance nonequilibrium BCS behavior [32].
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Fig. 3. Comparison of correlation-induced corrections to the momentum distribution function in equi-
librium (broken line) and nonequilibrium (full line). One easily reads off the twice as large reduction of
the quasiparticle residue at the Fermi energy in the nonequilibrium case as compared to equilibrium.
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Fig. 4. Left: Conventional scaling picture where states are integrated out around the two Fermi
surfaces with voltage bias V' (here depicted for cutoff Arg < V). Right: Flow equation approach. Here
all scattering processes with energy transfer |[AE| < Ageq are retained in H(Ageq).

5 Transport beyond the linear response regime through Kondo dots

A second important class of nonequilibrium problems is posed by transport beyond the lin-
ear response regime. While transport in the linear response regime essentially only probes the
equilibrium ground state since the transport coefficients can be related to fluctuations in equi-
librium, a correct description of the nonlinear response regime requires an understanding of the
feedback of transport on the steady current-carrying state itself. In particular, many energy
scales contribute to transport in this regime, which makes it conceptually difficult to access
using traditional scaling techniques which focus on low-energy properties.

An experimental and theoretical paradigm for transport beyond the linear response regime
is realized in Coulomb blockade quantum dots in the Kondo regime, where a voltage bias V'
exceeding the Kondo energy scale Tk can easily be applied [QTOTIIT2]. The key theoretical
insight for understanding this situation is the observation that the shot noise of the current
across the dot leads to decoherence, which suppresses the coherent many-particle processes
responsible for Kondo strong coupling physics [33].

The flow equation method captures this physics easily since it makes the Hamiltonian suc-
cessively band-diagonal as opposed to projecting on the low-energy subspace as in traditional
scaling approaches. This difference is depicted in Fig. [ for transport between two leads at dif-
ferent chemical potentials. Clearly, all current-carrying states continue to contribute in the flow
equation scheme. It should be emphasized that there are other generalizations of conventional
scaling approaches that also incorporate these processes [34I35]3637].

Explicitly, the Kondo Hamiltonian (&) for two leads takes the following form

H= Z (ep - Ma)clpacapa+ Z Ja’a Z S - S(U«/P/)(GZD) ' (17)
p'sp

a,p,x a’,a
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Fig. 5. Flow equation results for the static spin susceptibility xo for nonzero voltage bias for various
asymmetry parameters r (increasing from bottom to top: r = 1.0,1.4,1.8,2.2,2.6,3.0). The data is
plotted as a function of the effective temperature Teg = V/(147)(14+77"). The dashed line is an exact
result for the behavior in the T.g — 0 limit independent of asymmetry [39].

Here a/,a = I,r label the two leads and the chemical potentials are given by u;, = £V/2.
The conduction band electron spin operators are defined by 8(4/p/)(ap) = % Za,ﬁ cj;,p,ao'aﬂcapﬂ,
where o are the Pauli matrices. The couplings J,/, describe the antiferromagnetic exchange
interaction with the localized spin degree of freedom and are related by JIQT = J,J,, and
Ju/Jm = I/, if the model can be derived from an underlying Anderson impurity model.

re 1/ T is the asymmetry parameter of the model.

The flow equation approach proceeds by using the canonical generator ([B]) and calculating
the Hamiltonian flow (2]) consistently including terms in third order of the coupling constant
(details can be found in Refs. [38/39040]). In equilibrium this amounts to a two loop calculation
and one recovers the well-known two loop scaling equation for the coupling constant g = p J at
the Fermi surface

dg 5, 9 4
PT +0(g%) - (18)

The calculation is actually not different in the nonequilibrium case with voltage bias V' except
that now normal ordering is done with respect to the shifted Fermi seas (see Fig. [)). This
changes the scaling equations significantly for Ageq S el With

1% 1
T = Var m*(V/Tx) (1+7r)(1+r-1) "’ (19)

which is just proportional to the shot noise generated by the current. E.g. the scaling equation
for the coupling g; at the Fermi surface of the left lead takes the form

dgi g 1 Lia
LR - = ) 20
dln Afeq g ( 14—t * 2 Afeq + el ( )

One notices that if the coupling is not already too large at the scale I}, then the strong
coupling flow crosses over into a weak coupling flow with g; — 0 for Agq — 0. This permits
the controlled evaluation of physical quantities like dynamical spin susceptibility and T-matrix
(for details see [39M40]). Fig. Bl for example shows the static spin susceptibility as a function
of voltage bias, which crosses over quite accurately into the strong coupling equilibrium Bethe
ansatz result in the limit V' — 0 (see inset of Fig. [Bl). The generalization to the case with
nonvanishing magnetic field can be found in Ref. [40], which leads to a more intricate interplay
of different decoherence scales.
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6 Nonequilibrium dynamical mean-field theory

Dynamical mean-field theory (DMFT) [3] usually gives a reliable description of correlated
systems in equilibrium whenever their physical properties are determined by local temporal
fluctuations, and spatial correlations are not too important. Within DMFT, local correlation
functions of the lattice model are obtained from an effective impurity problem which contains
a single site of the lattice that is coupled to a bath of noninteracting degrees of freedom. This
mapping becomes exact in the limit of infinite dimensions [2], and it can be formulated for both
equilibrium and nonequilibrium situations [I5], using either the imaginary-time Matsubara or
the Keldysh formalism. Nonequilibrium DMFT has been used to study nonlinear transport
in the Falicov-Kimball model [16/4TJ42I43/44], as well as the behavior of the Falicov-Kimball
model [45/46] and the Hubbard model [47] when the interaction is changed abruptly, or slowly,
as a function of time. Furthermore, the method can be used for the description of time-resolved
photoemission [48/49] and optical spectroscopy [50] in correlated systems.

We now briefly review the nonequilibrium DMFT formalism. A more detailed discussion of
the technical aspects of this approach can be found in Refs. [16] and [51]. We then present the
derivation of a class of closed-form self-consistency equations for the nonequilibrium case. The
simplest self-consistency equation results for the semi-elliptic density of states, and was used
already in several studies of interaction quenches in the Falicov-Kimball [45/46] model and the
Hubbard model [47] (cf. Sec. [).

The impurity problem of nonequilibrium DMFT is defined via the single-site action

] 3 /cT /C /
S = .AﬁHm@) E;Lﬁéﬁ LAt )eq (1) (21)

on the Keldysh-contour C that runs from t,,i, to some time ty.x (i.€., the largest time of interest)
on the real time axis, back to tmin, and finally to —i along the imaginary time axis [52/51]. The
first term on the right-hand side of this equation contains the dynamics due to the local Hamil-
tonian, e.g., Hioc(t) = U(t)nsn, —p(ne+ny) in case of the Hubbard model with time-dependent
interaction, e.g., as in Eq. (I3). The second term describes the hybridization of the site with
an environment that replaces the rest of the lattice, and the hybridization function A(t,t)
must be determined self-consistently. From the action (2IJ), local contour-ordered correlation
functions are obtained by computing the trace (A(t)B(t')---) = Tr[T¢ exp(S)A(t)B(t)---]/Z,
where T¢ is the contour-ordering operator, and real-time correlation functions can be read
off from contour-ordered correlation functions by choosing the time-arguments appropriately.
For the Hubbard model, the evaluation of those impurity correlation functions is the most de-
manding part of the DMFT solution. Real-time quantum Monte Carlo methods [53] were used
successfully [47] (cf. Sec. ), although the maximum accessible time is limited by the dynamical
sign problem. On the other hand, most nonequilibrium DMFT investigations have so far been
performed for the Falicov-Kimball model, where Monte Carlo methods are not needed because
one can derive a closed set of equations of motion for the impurity Green functions [54], which
is then solved on the real time axis.

To determine the hybridization function A(t,t’) self-consistently, one must first compute the
local self-energy X' from the Dyson equation of the impurity model,

G=[i0+p—A-X)", (22)

where G(t,t') = —i(Tecy(t)ch (#')) is the local Green function. Here and in the following,
correlation functions are matrices in their contour-time variables. Matrix multiplication denotes
a convolution along the contour C, the identity is the contour delta-function [52], and the
operator 0; denotes the time derivative. Furthermore, we restrict ourselves to the paramagnetic
phase and omit spin indices. Because there is usually no translational invariance in time in
nonequilibrium situations, Eq. (22) must be solved in the time domain instead of the frequency
domain. Next, the momentum-dependent Green function Gy = 7i<chkg(t)cLU(t’)> of the
lattice model is obtained from the lattice Dyson equation

Gr = [i@t +u— € — 2]_1, (23)
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where spatial homogeneity has been assumed, and € are the band energies. The DMFT self-
consistency is finally closed by computing the local Green function at a given site j in the lattice
model, Gjo = >, |(j|k)|*Gko, and requiring it to be equal to the local Green function G of the
impurity model. If the band energies ¢, are time-independent, i.e., when there is no external
electrical field, the momentum summation can be reduced into a single energy integral

G= /de p(e)G(e), (24)

where p(e) = >, [(j|k)|?6(e — €x) is the local density of states, and G(ex) = Gy is the
momentum-dependent Green function that depends on momentum only via the band energy
€k

The numerical solution of Egs. [22]) and ([23)) is achieved either via an explicit matrix inver-
sion [41] (after the contour C is discretized into N time slices, and all contour Green functions,
the derivative operator, and the identity are transformed into N-dimensional matrices), or the
equations are rewritten as a set of integro-differential equations of Volterra type which are
then solved by standard numerical algorithms [51]. Although both approaches are rather well
behaved and can be carried on to quite long times tyax (see, e.g., [46]) the numerical effort can
add up considerably if the k summation or € integration in Eq. (24) requires a large number
of k-points [L6/41]. It is therefore desirable to find cases in which Eqs. ([22)-(24) can be further
simplified. Such a simplification occurs for the semi-elliptic density of states (with bandwidth

W = 4), 2
o) = V% (25)

which corresponds to nearest-neighbor hopping on the Bethe lattice [5556/57I58], or a particular
kind of long-range hopping on the hypercubic lattice [59]. If the density of states (28] is inserted
in Eq. [24), the self-energy can be eliminated from Eqs. [22))-(24)), such that one obtains a closed
expression for the Weiss field [45],

A=G. (26)

This closed form of the self-consistency reduces the DMFT self-consistency cycle to a repeated
solution of Eq. (28) and the single-site problem for the local Green function G. In case of
the interaction quench in the Falicov-Kimball model the existence of a closed self-consistency
is crucial for the derivation of an analytical solution, thus providing the unique opportunity
to study the limit of infinite times. We will now give a detailed derivation of this relation
from a slightly more general statement, which in principle allows to obtain similar closed form
self-consistency equations for densities of states other than Eq. (25]).
Suppose that a density of states p(e) is given and that its Hilbert transform,

g(z) = /de %, (27)

for complex frequency z satisfies the equation

o0
29=1+ fug" (28)
n=1
with an analytical function F(g) = >~ fng™ with real coefficients f,. Note that the coeffi-
cients f, can be obtained order by order by first expanding Eq. (27)) for large z and inverting
the resulting moment expansion into a series of z in powers of g. For example, F(g) = g? for
the semi-elliptic density of states (2]).
Consider now square matrices Z and G that are related by

G = / de p(e) G(e) (29)
G = (70"
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Then, as we will show in the remainder of this section, the matrices Z and G are determined
by the matrix equation

ZG =1+ faG™ (31)
n=1
which is analogous to the scalar equation (28)). By setting Z = i0; + u— X we see that Eqs. (29)
and B0) correspond to Eqs. (24]) and (23)), respectively. Equation (28] can be transformed into
Eq. 22) if we multiply it with G from the right and set

A= fu1G". (32)

n=0

This last equation (which reduces to Eq. 28]) for F(g) = g?) provides the desired closed form of
the self-consistency equation. We note that if F'(g) is not a polynomial of finite degree, one can
think of a suitable expansion in terms of orthogonal polynomials, e.g., Chebyshev polynomials
[60]. Because orthogonal polynomial of G (which involve n-fold convolutions) can be computed
recursively, this might still be more efficient that performing the € integral (24]) with one matrix
inversion per integration point.

To prove Eq. (1)) for general square matrices, we multiply the equation (Z — €)G(e) = 1
with p(€) = —Im[g(e + 0)] /7, and integrate over e. Using Eq. (29)), this yields

1
ZG=1- - /deelm[g(e +140)] G(e). (33)
Employing Eq. (28]) for the scalar g, one can replace e Im[g(e +i0)] by Im[F (g(e +i0))], leading
to
1
7G=1-= | del 10)" . 4
G=1-2%1 [ detalgte+ 107166 (34)
It thus remains to prove that
1
L / de Tmg(e + 10)"]G(e) (35)
7r

holds for any integer n > 1, which is done by induction: The initial step (n = 1) follows from
the definition ([29). For the induction step, consider

@t = (G)"G
@ %/dede’lm[g(e+i0)”]1m[g(6'H'O)] G(e)G(€)

@ % /de dé' Tmg(e + i0)"|Tm[g (¢ + i0)] G (e) (M) G(€)

e —e+10
(i) % / e g mlg(e +Z;01”llf£%(6’+"0)] (G(e) — G())
@ —%/de G(€) (g(e +i0)"Im(g(e + i0)] + Im[g(e + i0)"]g(e — i0))

_ ! / de Im[g(e + i0)"+1] G(e) .

™

In step (i), proposition [BH]) is used. In (ii), the term in braces is unity, and in (iii), we use
Eq. (30). To proceed to (iv) one performs one of the two energy integrals by making use of the

spectral representation
1 Im[g(e +i0)"]
"=—— | de—F—"—. 36
O L s (36)
The latter holds because g(z)™ is analytic in the upper half plane. Summing up the terms in
step (iv) and using g(e —i0) = g(e 4 i0)* completes the induction, and hence the proof of the
closed self-consistency equation (32)).
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Fig. 6. Fermi surface discontinuity An after quenches from U = 0 to U < 3 (left panel) and U > 3.3
(right panel) [47I5T]. The expected thermal value for this quantity is zero, corresponding to a continuous
momentum distribution at finite temperature. The quarter-bandwidth V' is set to unity. Solid lines in
the left panel indicate the flow equation prediction for the prethermalization plateau [29] and the
transient behavior [26] for small values of U.

7 Interaction quenches in the Hubbard model in DMFT

We will now discuss the relaxation dynamics of Hubbard models after a sudden change in the
interaction parameter from 0 to a finite value of U, see Eq. ([I3]). Since only the dynamics
of the interacting fermions is considered, but no coupling to an external bath is present, it
is not immediately clear whether the system will thermalize, i.e., whether after sufficiently
long times it can be described by the thermal state that is predicted by equilibrium statistical
mechanics. Many models of isolated many-body systems have so far been investigated (see,
e.g., Refs. [6106206316465166/671684529/69/70I71I72/47], and [73] for a recent review), and in
fact thermalization is only rarely observed. In this section we will discuss results obtained with
nonequilibrium DMFT, which show that the system can thermalize quickly for certain values
of the interaction U [47J51].

For a quench from the ground state at U = 0 to finite values of U the DMFT equations for
the paramagnetic phase (Sec. [d]) were obtained in Refs. [47J51], using the semi-elliptic density
of states (28) and real-time quantum Monte Carlo methods [53] to obtain the Green function
for the action (ZI)). Fig. [6] shows the jump An(t) in the momentum distribution at the Fermi
surface as a function of time, in separate panels for small and large values of the final inter-
action parameter U. Clearly the time evolution after an interaction quench in the Hubbard
model depends sensitively on the parameter U. Note that An(t) remains finite for a finite time
after the quench; in the case of a local self-energy as in DMFT this is due to the relation of
An(t) to the retarded Green function at e = 0 [47]. From this relation one can infer that the
collapse of An is closely related to the decay of charge excitations that are created at the Fermi
surface by the quench. It should be noted that as long as An(t) is finite the system is not yet
thermalized, because a finite jump is possible in a Fermi liquid in thermal equilibrium only at
zero temperature, whereas the quenched system has finite excitation energy.

For quenches to U < 3 the Fermi surface discontinuity An(t) remains finite for times ¢t < 5
(left panel in Fig. [6]). The plateau in An(t) at intermediate times is given by 2Z — 1, where Z is
the quasiparticle weight in equilibrium at zero temperature and interaction U (cf. Sec. ). On the
other hand, the double occupation does essentially relax to its thermal value on this timescale
[47], confirming that the potential energy (and therefore also the kinetic energy) relax quickly,
whereas the occupation of individual states still changes. Interestingly the prethermalization
plateau remains well visible even for quenches to relatively large U < 2.5, even though the
timescales V/U? and V3/U* are then no longer well separated. Not only the prethermalization
plateaus, but also the transient behavior predicted from the flow equation analysis [26] agrees
well with the numerical DMFT results for U < 1.5. The prethermalization plateaus for small
U are due to the vicinity of the integrable point at U = 0, as discussed further below.
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The relaxation dynamics show different characteristics for quenches to large U (right panel
of Fig. [f)), namely so-called collapse-and-revival oscillations with approximate frequency 27 /U.
These are to due the vicinity of the atomic limit (V = 0), for which the propagator e~ *#* is
periodic with period 27 /U-periodic [4]. For finite V these oscillations are damped and decay on
timescales of order 1/V. For the double occupation these oscillations are not centered around
the thermal value, but rather around a different value that can be explained using perturbation
theory for strong coupling [47]. Somewhat analogously to the situation at small coupling the
relaxation to the thermal state is thus delayed because the system is trapped in a metastable
state close to an integrable point.

Interestingly both the weak-coupling prethermalization plateau in An(t) and the strong-
coupling oscillations disappear in a small region of interaction parameters around U™ ~ 3.2
[47). For quenches to values of U near UM™ the system thermalizes very quickly. Not only
the Fermi surface discontinuity and the double occupation relax to their thermal values, but
in fact the retarded nonequilibrium Green function relaxes to the corresponding equilibrium
quantity [5I]. Tt is therefore justified to say that the system indeed thermalizes in this case,
because a large set of observables tend to the thermal value predicted by equilibrium statisti-
cal mechanics. Note that the statistical theory contains no adjustable parameter, because the
effective temperature T is determined by the energy of the system after the quench, for ex-
ample T* = 0.84 for the quench to U = 3.3. The sharp crossover in the relaxation parameter
is intriguing, not least because the relation to the equilibrium Mott metal-insulator transition
is not obvious. The critical endpoint of the latter is located at T, ~ 0.055V [3], so that little
of it is visible at the much higher temperatures T*. For quenches of the anisotropy param-
eter in Heisenberg chains a remarkably similar behavior was found [72]. There the staggered
magnetization indeed relaxes fastest to zero for quenches to the equilibrium critical value.

It follows from these results that an isolated fermionic many-body system can thermalize
merely under the time evolution with the interacting Hamiltonian, without requiring coupling
to a bath. In the vicinity of an intermediate value U™ the system quickly thermalizes, but
for smaller or larger coupling thermalization has not been observed numerically for the short
available observation times.

8 Interaction quenches in the 1/r Hubbard chain

For comparison we now discuss results for the one-dimensional 1/r Hubbard model, which was
originally proposed and solved by Gebhard and Ruckenstein [74]. Its hopping amplitudes are
given by t,,,; = (—iW/2L)(—1)""9/sin[r(m— j)/L] with periodic boundary conditions, leading
to a linear dispersion e,=Wk/(27), where W (= 1) is the bandwidth. For U > —1 this model can
be mapped to an effective free Hamiltonian for hard-core bosons [74J75] for which the spectrum
can be determined at once. For half-filling a Mott-Hubbard metal-insulator transition occurs at
the interaction strength U, = 1 in this model, and the Mott gap is A = U — U, in the insulating
phase.

Based on this solution, the exact time evolution was obtained in Ref. [69] for a quench from
U =0 (or U = o0) to a finite value of U. For the quench from U = 0 to finite U at half-filling the
double occupation has the noninteracting value % at time ¢t = 0 and relaxes to a new constant
value with algebraic decay,

(1= U)? (- U?)? cos(Ut) cos(t) n O(i) - (37)

1
d(t)_ﬁ 16U 16U2 }1+U B 2U 2 13

In general the long-time limit of d(t) does not agree with the thermal prediction dgnerm. For
example, for quenches to the critical value U, = 1 the stationary value is d(t = co) = 0.125, and
this differs too from the thermal prediction diperm = 0.098 that is obtained from equilibrium
results [74] at the temperature that gives the same mean energy as the time-evolved state.
The reason for the nonthermal steady state in this model lies in its integrability. The interact-
ing fermionic Hamiltonian H can be mapped on an effective Hamiltonian without interactions,
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ie.,

H:Zea T, (38)

(e

where the Z, have the eigenvalues 0 or 1 and commute with each other (and hence with H).
This is a rather strong case of integrability, because not only are there many constants of motion
(their number is proportional to the system size), but also the energy levels can be populated
independently (unlike, e.g., in many other models that can be solved by Bethe ansatz). As a
consequence the fundamental postulate of statistical mechanics is not fulfilled, which states
that all accessible microstates are assumed to be equally probable in the ensemble description
of the equilibrium state. For an integrable system (38]), however, all the Z, remain at their
values in the initial state at ¢ = 0. That this restriction leads to nonthermal steady states has
been observed in a variety of models [626364J6566I6845], and also in experiments with cold
atomic gases [76].

9 Statistical description of nonthermal steady states with generalized
Gibbs ensembles

As described in the previous subsection, standard statistical mechanics cannot be expected to
predict the steady state after a quench in an integrable system correctly. This leads to the
question whether a suitably generalized statistical theory can make the correct prediction. The
general procedure to construct the statistical operator in statistical mechanics is to maximize
the entropy, and to take conserved quantities into account by fixing them on average using
Lagrange multipliers [77]. This means that for the integrable Hamiltonian (B8] all constants
of motion Z,, should be fixed on average such that they yield the correct initial expectation
value [64166], leading to a generalized Gibbs ensemble (GGE)

PGGE X € 2o AaTa ) (39)

with A, determined from (Z,)cee = (Za)o. For the 1/r Hubbard chain discussed in the pre-
vious subsection, the GGE prediction for the stationary value of the double occupation agrees
precisely with the calculated long-time limit [69]. However, GGEs have been found to fail for
some observables in other models [64].

It is possible to formulate sufficient criteria for the steady state to be correctly described by
the ensemble ([B9). In general this depends on both the initial state |¢)(¢t = 0)) and the observable
A [69]. The long-time average of (¢(¢)| A|¥(t)) is given by

(A) =3 (m|Alm)| (m|¥(t = 0)) , (40)

m

provided that the spectrum of H is nondegenerate. Note that (A) equals the long-time limit
of (A), if the latter exists. Here the eigenbasis of the constants of motion, Z,, |m) = m, |m),
was used. Let us assume that the constants of motion only have eigenvalue m, = 0,1 and
can be represented as bosons or fermions according to Z, = af,a,, (cf. [69] for a more general
case)). Consider then an observable A that can be written as a linear combination of products
of n creation operators a};i followed by m annihilation operators g, - The long-time average

(A) is given by a linear combination of expectation values ([]\; Za,)t—0 in the initial state;
off-diagonal terms drop out due to the diagonal character of ({@0). On the other hand the
GGE expectation value decouples each constant of motion from the others and instead involves
[T, (Za,)t=0, where the condition on the parameters A, has been used. If the expectation
value of the product equals the product of these expectation values for each «; that occurs in
the observable A, then the GGE is guaranteed to describe the expectation value of A in the

steady state correctly.
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We see that for the GGE prediction to be correct, the Z,,, that occur in A must in a certain
sense not be too correlated in the initial state, so that the expectation value of their product
factorizes. Unfortunately the physical meaning of this condition is not obvious and certainly
depends on the way in which the original degrees of freedom appear in the constants of motion.
Nevertheless the GGE is certain to work for quadratic operators aLaﬂ, and this is the reason

why the GGE succeeds for the double occupation in the 1/r Hubbard model, which can be
expressed precisely as a sum of such quadratic operators [75].

In any case we can conclude that statistical mechanics, when applied properly, does indeed
predict the steady state of an integrable many-body system that is isolated and not coupled
to any baths. The fact that GGEs cannot describe all expectation values correctly is actually
not surprising. Even standard statistical mechanics fails for the expectation values of specially
crafted operators, such as powers of the Hamiltonian or projectors onto energy eigenstates,
which remain at their initial values and thus never thermalize. But these observables are typ-
ically highly nonlocal and their expectation values correspond to correlation functions of very
high order. Since they are essentially impossible to measure they are not of practical importance,
implying no severe limitation on the applicability of equilibrium statistical mechanics.

So far we have discussed integrable systems in the sense of Eq. (B8], i.e., systems of inter-
acting particles whose Hamiltonian can be transformed into a basis in which the new effective
degrees of freedom are noninteracting, and their occupation numbers are thus constants of mo-
tion. However, any noninteracting Hamiltonian is of course also integrable, e.g., the Hubbard

model with U = 0, Hy = Zkg skc};gckg. In this case the conserved momentum occupation

numbers c};ackg play the role of the conserved Z,, so that thermalization is impossible when

quenching to Hy.

Moreover, noninteracting Hamiltonians of course also provide useful starting points for in-
teraction quenches, as used in Sec. @l As discussed there, a quench to a small value of the
interaction parameter will lead to prethermalization on an intermediate time scale [29], which
is due the vicinity of the integrable point at U = 0. In fact, the prethermalized expectation
value of an observable A can be obtained by using perturbation theory and taking the long-time
limit (provided [A, Ho] = 0) [26]. It is therefore useful to view the prethermalization plateau as

due to the conservation of certain perturbed constants of motion Z,, which hinder thermaliza-
tion on intermediate time scales. It is then possible to construct a generalized Gibbs ensemble
pccE based on these perturbatively conserved quantities, which predicts a stationary value that
agrees precisely with the long-time limit in second order perturbation theory, provided certain
factorization conditions are fulfilled [78]. Namely, for an observable A =[], Z,, the prethermal-
ization plateau, which occurs for small quenches away from Hy, is correctly predicted by pcgr
if (I[; Za,) = [1;(Za,)- Here the expectation value is to be taken in the (perturbed) eigenstate
after the quench. Again it is not surprising to see that only sufficiently simple observables can
be expected to be correctly predicted by the statistical theory. In the simplest case, the GGE
prediction for the prethermalization plateau is correct for the observables Z,, e.g., the mo-
mentum distribution for quenches to small U in the Hubbard model. The agreement between
the time-evolved state and the GGE prediction shows that prethermalization plateaus evolve
continuously from the nonthermal steady state in integrable models, at least perturbatively.

10 Conclusion

For the investigation of the nonequilibrium behavior of correlated systems robust theoretical
techniques are required, because both the interaction between particles and the time evolution
for sufficiently long times must be described reliably. On the one hand, we discussed the flow
equation approach and its applications to isolated many-body systems in nonequilibrium such as
the ferromagnetic Kondo model and the Hubbard model at weak coupling, as well as nonlinear
transport through Kondo dots. This method has the advantage that the emergence of time
and energy scales is explicit and transparent. For example, for small interaction quenches in
Hubbard models the method reveals that the system prethermalizes, i.e., that nonthermal
states form on an intermediate time scale. Quantum Boltzmann dynamics then shows that
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these nonthermal states thermalize on a longer time scale [29)26]. On the other hand, we
discussed applications of nonequilibrium dynamical-mean field theory, which maps a lattice
system onto an effective single-site problem that can be solved numerically. The numerical
results for interaction quenches in the Hubbard model confirm the prethermalization scenario
and also show that thermalization can indeed occur on short timescales in an isolated many-
body system at intermediate coupling. We compared with results for special solvable models, in
which nonthermal steady states occur due to the presence of many constants of motion. Within
second order perturbation theory, the statistical predictions of generalized Gibbs ensembles,
which take these constants of motion into account, show that prethermalization in nonintegrable
systems and nonthermal states in integrable systems can be related.
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