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An analytical description of nonequilibrium phenomena in interacting quantum systems is rarely possible.
Here we present one example where such a description can be achieved, namely, the ferromagnetic Kondo
model. In equilibrium, this model is tractable via perturbative renormalization-group techniques. We employ a
recently developed extension of the flow-equation method to calculate the nonequilibrium decay of the local
magnetization at zero temperature. The flow equations admit analytical solutions which become exact at short
and long times, in the latter case revealing that the system always retains a memory of its initial state.
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I. INTRODUCTION

Stimulated by the experimental developments in the fields
of ultracold gases and of nanosystems such as quantum dots,
nonequilibrium phenomena in interacting many-particle sys-
tems are a fascinating field of current research. In the theo-
retical treatment, a number of conceptual and methodologi-
cal problems arise. Some are related to the facts that many
interesting phenomena are not perturbatively accessible even
in equilibrium, and that moreover the limit of a perturbation
being small does not necessarily commute with the long-time
limit. Consequently, the majority of works on nonequilib-
rium physics in interacting systems rely on numerical meth-
ods. However, those come with their own complications and
analytically tractable test cases are desirable.

It is the purpose of this paper to provide one such test
case: we shall study the nonequilibrium spin dynamics in the
ferromagnetic Kondo model, described by the Hamiltonian

H = �
k��

�k�ck��
† ck�� + J�Szsz�0� + J��Sxsx�0� + Sysy�0�� �1�

in standard notation with S� and s��0� being the components
of the impurity spin and the conduction electron-spin density
at the impurity site, and J�, J� the exchange couplings with
�J���−J�. This model has the advantage that its equilibrium
physics is well understood and can be accessed by perturba-
tive methods, although bare perturbation theory needs to be
resummed using renormalization-group �RG� techniques.
Here we shall be interested in the decay of a spin prepared in
a pure state, say �↑ �, after the coupling to the bath is
switched on at a time t=0. To make controlled calculations,
we shall focus on the case of small Kondo couplings �J��,
�J���D, where 2D is the conduction-electron bandwidth.
While the equilibrium physics of Eq. �1� is that of an asymp-
totically free spin, the nonequilibrium problem is far from
trivial. In particular, it is not obvious whether the expectation
value 	Sz��t� relaxes to zero: The equilibrium flow of the
spin-flip coupling toward zero is slow �i.e., logarithmic�,
which suggests that spin-flip events occur even at long times.
In case the spin relaxes to a nonzero value, the follow-up

question is whether this value is identical to the equilibrium
expectation value 	Sz�eq obtained in the presence of an infini-
tesimal magnetic field.

In order to tackle this problem, we shall employ a non-
equilibrium extension of the flow-equation method, origi-
nally developed by Wegner1 and independently—in the field
of high-energy physics—by Głazek and Wilson.2 For equi-
librium settings, this method utilizes continuous unitary
transformations to successively eliminate off-diagonal terms
in the Hamiltonian, starting from the highest energies. Al-
though somewhat similar in spirit to RG techniques, the
flow-equation method has the advantage of diagonalizing,
instead of eliminating, the high-energy part of the Hamil-
tonian, such that the entire system is described at any stage
of the transformation. The flow-equation method can be ef-
ficiently employed to describe the nonequilibrium time evo-
lution of observables:3,4 the Hamiltonian is unitarily trans-
formed into a diagonal form, together with the observables
of interest. In this representation, the time evolution can be
determined exactly. Finally, the result is transformed back
using the inverse of the flow-equation transformation. In this
way, the accumulation of errors in the long-time limit is pro-
hibited and secular terms do not occur. In Refs. 3 and 4, this
method was applied to dissipative quantum impurity models,
namely, the dissipative harmonic oscillator and the ohmic
spin-boson model, and excellent agreement with available
analytical and numerical results was obtained.

A. Summary of results

In the following, we summarize our main results obtained
in the limit of weak coupling, distinguishing the cases of
isotropic and anisotropic Kondo couplings. Most impor-
tantly, in both cases the relaxation of 	Sz�t�� as t→� is nei-
ther to zero nor to the equilibrium value 	Sz�eq. Instead,
the asymptotic value is given by 1 /2− 	Sz�t→���
=2�1 /2− 	Sz�eq�, i.e., the spin polarization is reduced twice as
much compared to the equilibrium case.

The initial �short-time� decay of 	Sz�t�� is set by J�

�independent of J��, 	Sz�t��= 1
2 �1− �2J�Dt�2�.5 In the
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isotropic case, the long-time decay toward the asymptotic
value is logarithmic, 	Sz�t��− 	Sz�t→����1 / ln t. In contrast,
for anisotropic couplings with J� �−�J�� the logarithms in
the long-time limit are replaced by power laws,
	Sz�t��− 	Sz�t→���� t2 j̃�, where j̃� �0 is the dimensionless
fixed-point value of J�. These results do not come unex-
pected, considering the equilibrium RG flow for the ferro-
magnetic Kondo problem, which is characterized by loga-
rithmic �power-law� flow in the isotropic �anisotropic� case.
Below, we shall give explicit expressions for 	Sz�t�� for all
times, Eqs. �42� and �48�, and discuss in detail their evalua-
tion in both the short-time and long-time limits.

B. Relation to earlier work

Our work addresses both recent methodological develop-
ments and fundamental theoretical questions. Applications of
the flow-equation approach to interaction quenches in quan-
tum many-body systems have been applied in several recent
works studying dissipative quantum systems3,4 and interac-
tion quenches in the Hubbard model.6,7 These works relied
on either numerical implementations or analytical approxi-
mations restricted to finite time scales. Previous numerical
results exist for the real-time dynamics of the antiferromag-
netic Kondo model, which has also been treated with the
flow equation method.8 The ferromagnetic Kondo model has
been discussed numerically with the time-dependent numeri-
cal RG �TD-NRG� method9 at finite temperatures10 or in the
context of the underscreened Kondo effect.11 These works
did not identify the asymptotic long-time behavior of this
problem at T=0. This behavior has been addressed by a com-
parison of the flow-equation approach and the TD-NRG in a
recent letter.12 The asymptotic long-time tails have been
clarified by the analytical asymptotics of the flow-equation
approach, to be described in more detail in the present paper,
and the numerical implementation of the TD-NRG.

Relaxation of an impurity spin in a host model was al-
ready discussed by Langreth and Wilkins,13 who developed a
theory of spin resonance in dilute magnetic alloys. Based on
the Kadanoff-Baym approach, these authors derived Bloch-
type equations for the paramagnetic resonance, which predict
a relaxation of the disturbed magnetizations to the instanta-
neous local equilibrium magnetization. Our work differs in
predicting a relaxation toward a local nonequilibrium mag-
netization under slightly different conditions than considered
by Langreth and Wilkins. A perturbative expansion of
Kadanoff-Baym equations as used by Langreth and Wilkins
would fail to reproduce our result since bare perturbation
theory cannot reproduce our asymptotic long-time relaxation
laws.

C. Plan of the paper

The remainder of the paper is organized as follows: in
Sec. II we start our considerations by studying an exactly
solvable toy model of a spin coupled to two fermions. This
model illustrates a number of remarkable features which will
reappear in the treatment of the Kondo model. Section III
describes the flow-equation transformation for the ferromag-

netic Kondo model including the transformation of the rel-
evant observables. The explicit calculation of the time-
dependent impurity magnetization is subject of Sec. IV. The
central results, obtained both analytically for short and long
times and numerically from a full solution of the flow equa-
tions, are presented in Sec. V. A brief discussion of limita-
tions and applications closes the paper. Technical details will
be relegated to the appendices. A brief account of our results
has been published in Ref. 12, together with a comparison to
numerical data obtained by the TD-NRG method.

II. TOY MODEL

Several interesting features of the nonequilibrium pro-
cesses governed by the ferromagnetic Kondo model can be
captured by a simple exactly solvable toy model consisting
of two fermion levels coupled to a spin-1/2 impurity spin S�
through an SU�2�-symmetric exchange coupling

H = �
�

�c�
†c� − d�

†d�� +
g

2
S� · �

�,	
�c�

† + d�
†��� �	�c	 + d	� .

�2�

Due to the finite Hilbert space the real-time evolution prob-
lem for an arbitrary initial state becomes exactly solvable.
Specifically we look at �
�t=0��= �
0�, where

�
0� =
def

�0� � �↑↓� � �↑� �3�

denotes an unoccupied c-electron level state �0�, a doubly
occupied d-electron level state �↑↓� and the spin-up state �↑ �
of the impurity spin. Notice that �
0� is the ground state of
���c�

†c�−d�
†d��−BSz, where B�0 shall cause an infinitesi-

mal Zeeman splitting. Later we will generalize the initial
state to be a product state of a Fermi sea with the impurity
spin-up state for the dynamics generated by the actual ferro-
magnetic Kondo model.

In our toy model we now investigate how the spin expec-
tation value deviates from its initial value at time t=0 due to
the dynamics generated by Eq. �2�, that is, we study the
observable

Ô = Sz −
1

2
. �4�

Let us denote the exact eigenstates of H with eigenenergies

Ẽn by �
̃n�. Their explicit construction is shown in Appendix
A, in fact one just needs to diagonalize a 3�3 matrix.

Since the initial state �
0� is not an exact eigenstate, the

expectation value of Ô acquires a time dependence given by

O�t� = 	
0�eiHtÔe−iHt�
0� = �
n,n�

un
�un�e

−i�Ẽn�−Ẽn�t	
̃n�Ô�
̃n�� ,

where we have used the decomposition �
0�=�nun�
̃n�. For
an exemplary case O�t� is depicted in Fig. 1: one can clearly
observe oscillations with a finite number of Bohr frequencies

Ẽn�− Ẽn. Since there are no accidental degeneracies, the time
average is given by
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O�t� = lim
T→�


0
Tdt	
0�eiHtÔe−iHt�
0�

T
= �

n

�un�2	
̃n�Ô�
̃n� .

�5�

We compare this average with the ground-state expectation
value in the interacting system, Eq. �2�,

Oeq = 	
̃eq�Ô�
̃eq� , �6�

where �
̃eq� is the exact eigenstate with the smallest eigenen-

ergy Ẽn. The ratio O�t� /Oeq is depicted in Fig. 2 as a function
of the coupling strength. We observe that generically the ra-
tio differs from one, which shows that the time-evolved ini-
tial state �
0�t�� always retains a memory of its initial prepa-
ration. While this is not at all surprising for a finite Hilbert
space like in our toy model, we will later see that this obser-
vation is generalized to the ferromagnetic Kondo model in
the thermodynamic limit.

The second observation in Fig. 2 is the universal value 2
in the weak-coupling limit. The universality of this result is
guaranteed by a theorem proven in Ref. 7: take a discrete
quantum system governed by H=H0+gHint, where gHint is a

weak perturbation for which nondegenerate perturbation

theory is possible. Let �0� be the ground state of H0 and �0̃�
be the ground state of H. Let Ô be an observable that com-
mutes with H0 and which annihilates �0�. Then

r�g� =
def	0�eiHtÔe−iHt�0�

	0̃�Ô�0̃�
= 2 + O�g� . �7�

One can easily verify that the conditions of this theorem are
met in our toy model if we take

H0 = �
�

�c�
†c� − d�

†d�� − BSz

Hint =
1

2
S� · �

�,	
�c�

† + d�
†��� �	�c	 + d	�

with infinitesimal B�0. In Appendix A we show explicitly
how this theorem comes about in our simple toy model.

Again we will find that this universal factor 2 between the
time-averaged expectation value in the time-evolved initial
state and the equilibrium ground state also holds in the weak-
coupling limit of the ferromagnetic Kondo model.

III. KONDO MODEL AND FLOW-EQUATION
TRANSFORMATION

In this section, we summarize the equilibrium properties
of the ferromagnetic Kondo model which are relevant for the
subsequent discussion. We then explain in some detail the
flow-equation treatment of the model, which shall be used in
Secs. IV and V to calculate the nonequilibrium magnetiza-
tion.

A. Definition of the model

The Kondo Hamiltonian, Eq. �1�, can be rewritten as

H = �
k��

�k�ck��
† ck�� + �

k�,k��

J
k�� k�

�
Szs

k�� k�
z

+ �
k�,k��

J
k�� k�
�

�S+s
k�� k�
−

+ S−sk��k�
+ � .

�8�

Here, S
=Sx
 iSy, and the conduction electron-spin density
is given by

s
k�� k�
z,


=
1

2�
�,	

c
k�� �

†
��	

z,
ck�	, �9�

where �
= 1
2 ��x
 i�y� derive from the Pauli matrices. The

anisotropic exchange couplings J
k�k��
�

and J
k�k��
�

usually describe

scattering on an isotropic Fermi surface and their momentum
dependence can then be safely neglected. In physical results,
they enter proportional to the density of states at the Fermi
surface ��F�, thus we define the dimensionless couplings

j� =
def

�FJ� and j� =
def

�FJ�.

B. Low-energy fixed points

The important difference between the ferromagnetic and
the antiferromagnetic regime of the Kondo model can be

FIG. 1. The time dependence of the expectation value
	
0�Sz�t�− 1

2 �
0� is shown for g=−1 /2.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
g

1

1.5

2

2.5

3

r(g)

FIG. 2. We depict the ratio r�g�=
	
0�Sz�t�−1/2�
0�

	Sz−1/2�eq
as a function of

the coupling strength g. In the weak-coupling limit one finds the
universal ratio r�0�=2, see text.
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understood from Anderson’s poor man’s scaling analysis.14

In this approach, the bandwidth of the conduction electrons
is progressively reduced by a flowing cutoff energy � and
the renormalized interactions due to the elimination of vir-
tual excitations to the band edges are calculated perturba-
tively. As shown by Anderson, this procedure leads to the
scaling equations

dJ�

d ln �
= − �FJ�2,

dJ�

d ln �
= − �FJ�J� , �10�

where the scaling trajectory for ferromagnetic couplings with
�J���−J� is given by the conserved quantity J�2−J�2

=const.
For antiferromagnetic couplings, more precisely for

J� �0 or �J���−J�, the RG flow is driven to strong coupling,
i.e., J�→� and �J��→�, and the scaling equations have no
low-energy fixed point at finite coupling. On the level of
perturbation theory, logarithmic divergencies ln�kBT /D� oc-
cur at low temperatures.

In contrast, in the ferromagnetic Kondo model with
�J���−J�, the perturbative renormalization of the coupling
constant remains controlled in the limit ��T since the cou-
pling monotonously renormalizes to a finite value J�T� in the
limit �→0. At T=0 and for anisotropic couplings, the lon-
gitudinal coupling remains finite and the transverse coupling
renormalizes to zero according to the power-law

J�������F
�J�

2−J�
2

. In the isotropic case, both couplings
logarithmically renormalize to zero following
J���=J / �1+�FJ ln�� /D��, and the impurity becomes as-
ymptotically free at low energies. This important property
makes it possible to use the flow-equation renormalization
scheme in a perturbatively controlled manner in the follow-
ing.

C. Flow-equation method

Let us briefly review the basic ideas of the flow-equation
approach �for more details see Ref. 15�. A many-body
Hamiltonian H is diagonalized through a sequence of infini-
tesimal unitary transformations with an anti-Hermitian gen-
erator ��B�,

dH�B�
dB

= ���B�,H�B�� , �11�

with H�B=0� the initial Hamiltonian. The “canonical”
generator1 is the commutator of the diagonal part H0
with the interaction part Hint of the Hamiltonian,

��B� =
def

�H0�B� ,Hint�B��. Under rather general conditions the
choice of the canonical generator leads to an increasingly
energy-diagonal Hamiltonian H�B�, where interaction matrix
elements with energy transfer �E decay like exp�−B�E2�.
For B→� the Hamiltonian will be energy diagonal and we

denote parameters and operators in this basis by ,̃ e.g.,

H̃=H�B=��.

The key problem of the flow-equation approach is generi-
cally the generation of higher order interaction terms in Eq.
�11�, which makes it necessary to truncate the scheme in
some order of a suitable systematic expansion parameter
�usually the running coupling constant�. Still, the differential
nature of the approach makes it possible to deal with a con-
tinuum of energy scales and to describe nonperturbative ef-
fects. This has led to numerous applications of the flow-
equation method where one utilizes the fact that the Hilbert
space is not truncated as opposed to conventional scaling
methods.

In Refs. 3 and 4, these features have been utilized to treat
the real-time evolution of observables under nonequilibrium
conditions. The general setup is described by the diagram in
Fig. 3, where �
i� is some nonthermal initial state whose time
evolution one is interested in. However, instead of following
its full time evolution it is more convenient to study the
real-time evolution of a given observable A that one is inter-
ested in. This is done by transforming the observable into the
diagonal basis in Fig. 3 �forward transformation�,

dÔ

dB
= ���B�,Ô�B�� �12�

with the initial condition Ô�B=0�=A. The central observa-
tion is that one can now solve the real-time evolution with

respect to the energy-diagonal H̃ exactly, thereby avoiding
any errors that grow proportional to time �i.e., secular terms�:
this yields Ã�t�. Now since the initial quantum state is given
in the B=0 basis, one undoes the basis change by integrating
Eq. �12� from B→� to B=0 �backward transformation� with

the initial condition Ô�B→��= Ã�t�. One therefore effec-
tively generates a new nonperturbative scheme for solving
the Heisenberg equations of motion for an operator,
A�t�=eiHtA�0�e−iHt.

D. Flow equations for the Hamiltonian

It is a straightforward calculation to apply the flow-
equation technique in the outlined manner to the ferromag-
netic Kondo Hamiltonian.15,17 For the sake of simplicity, we
consider the case of S=1 /2 here and give a generalization to
arbitrary spin S in Appendix B. To start with, we split up the
flowing Kondo Hamiltonian as

FIG. 3. The forward-backward transformation scheme induces a
nonperturbative solution of the Heisenberg equations of motion for
an operator. U denotes the full unitary transformation that relates
the B=0 to the B=� basis �Ref. 16�.
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H�B� = H0 + Hint�B� , �13�

where H0=�k���k�ck��
† ck�� and Hint�B� describes the interaction

with the spin-1/2 degree of freedom S� ,

Hint�B� = �
k�� k�

J
k�� k�

�
�B�Sz:s

k�� k�
z

:+ �
k�� k�

J
k�� k�
�

�B��S+:s
k�� k�
−

:+ S−:s
k�� k�
+

:� .

�14�

Normal ordering of the fermion operators has been denoted
by::. It is used in order to safely truncate normal-ordered
terms with respect to a given reference state from the ansatz
Eq. �14�. These truncated terms are in addition proportional
to higher powers of the coupling J compared to the leading
order of the calculation.15 In the following, we will use nor-
mal ordering w.r.t. the equilibrium density matrix of the non-
interacting Fermi sea but other choices could be used as
well.3,15 According to the ansatz Eq. �14�, we will calculate
the flow of the Hamiltonian only to first order in the coupling
J. It would be straightforward to formulate an ansatz that
also contains coupling terms proportional to higher orders in
J, which are necessarily generated during the flow. For our
purpose, it will be sufficient to work only to lowest nontrivial
order, which includes only interaction terms of first order in
the coupling J. The canonical generator is immediately ob-
tained from �H0 ,Hint�B��,

��B� = �H0,Hint�B��

= �
k�� k�

��
k�� k�

�
�B�:Szs

k�� k�
z

:+ �
k�� k�
�

�S+:s
k�� k�
−

:+ S−:s
k�� k�
+

:�� ,

�15�

with

�
k�� k�

�
�B� =

def

��k�� − �k��Jk�� k�

�
�B� ,

�
k�� k�
�

�B� =
def

��k�� − �k��Jk�� k�
�

�B� . �16�

By comparing coefficients on both hand sides of the differ-
ential equation dH

dB = ���B� ,H�B��, one immediately finds the
flow equations for the coupling constants,15

dJ
k�� k�

�

dB
= − ��k�� − �k��2J

k�� k�

�
+ �

q�
�2�q� − �k�� − �k��Jk�� q�

�
Jq�k�

�

��1

2
− n�q��
 + O�J3� ,

dJ
k�� k�
�

dB
= − ��k�� − �k��2J

k�� k�
�

+ �
q�

�2�q� − �k�� − �k��

�
1

2
�J

k�� q�

�
Jq�k�

� + J
k�� q�

�
Jq�k�

� ��1

2
− n�q��
 + O�J3� . �17�

The initial conditions for the exchange interactions are
J

k�� k�

�
�B=0��J� /N and J

k�� k�

�
�B=0��J� /N, where N is the

number of band states. In the flow Eq. �17�, the Fermi dis-

tribution function n�k��=1 / �1+exp��k� /T�� has been intro-
duced, which enters the flow equations as a contraction gen-
erated by our normal-ordering procedure. Since the
couplings J

k�� k�

�
flow to zero in the limit B→�, the fixed point

of the flow-equation renormalization of H is

H�B = �� = �
k�

�k�ck��
† ck�� + �

k��

Jk�k�
� �B = ��Sz�ck��

† ck��. �18�

For a discussion of the magnetization curve 	Sz�t��, we can
neglect the term �k��Jk�k�

� �B=��Sz�ck��
† ck��, since the renormal-

ized couplings Jk�k�
� �B=�� shift the fermionic energy levels

proportional to the inverse number of band states �1 /N� and
will drop out of the impurity magnetization curve 	Sz�t�� in
the thermodynamic limit N→�. It is therefore possible to
exploit the noninteracting form H�B=��=�k��k�ck��

† ck�� by

transforming the impurity spin operator S� into the same basis
representation.

E. Flow equations for the spin operator

In order to transform the impurity spin operator S� into the
basis of the diagonal Hamiltonian H�B=��, we need to solve
the differential equation

dSa�B�
dB

= ���B�,Sa�B�� , �19�

with a= �x ,y ,z� and the initial condition Sa�B=0�=Sa. By
considering the commutator ���B� ,Sa�, it is straightforward
to work out the following ansatz for the flowing operator
Sa�B�

Sa�B� = h�B�Sa + �
k�� ,k�

�k�� k��B�:�S� � s�k�� k��a: , �20�

which is accurate to neglected normal-ordered contributions
of O�J2�. In the following, we transform only the operator Sz

which describes the impurity magnetization. By extending
the coefficients in the ansatz of Eq. �20� by a dependence on
time, the real-time evolution of the operator Sz�B� can be
parameterized. We will make use of this parameterization
later on, and therefore introduce here the following abbrevia-
tions for the couplings, which are related to specific values of
the parameters B and t,

h�B,t� = �
h�t� B = 0

h�B� t = 0

h̃�t� B → �

h̃ B → �, t = 0.
�

The differential flow of the ansatz Eq. �20� is readily ob-
tained from the commutator ���B� ,Sz�B�� as15

dh

dB
= �

k�� k�

��k�� − �k��Jk�� k�
�

�B��k�k�� �B�n�k����1 − n�k��� ,
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d�k�� k�

dB
= h�B���k�� − �k��Jk�� k�

�
�B� −

1

4�
u�

���k�� − �u��Jk�� u�

�
�B��u�k��B�

+ ��k� − �u��Ju�k�
� �B��k�� u��B���1 − 2n�u��� . �21�

In Sec. V, these differential equations will be simplified in
order to derive an approximate solution to them. For a check
of approximations, it will be useful that the flowing cou-
plings h�B� and �k�k���B� are related by the sum rule15

	Sz�B�2� =
1

4�h2�B� − �
k�k��

�k�k���k�� k�n�k����1 − n�k����
=

1

4
+ O�J2� , �22�

where 	Sz�B�2� is evaluated with respect to the noninteracting
Fermi sea at equilibrium and a polarized impurity spin. This
sum rule can be easily proven by differentiating it with re-
spect to B and inserting the flow Eq. �21�.

IV. TIME-DEPENDENT MAGNETIZATION

Since a ferromagnetically coupled Kondo spin is asymp-
totically free at low energies, its equilibrium properties are
only perturbatively renormalized in comparison to a free
spin. In the case of isotropic couplings, it has been shown by
Abrikosov and Migdal18 by diagrammatic means that for
general spin quantum number S the equilibrium magnetiza-
tion of the impurity �M =gi�B	Sz�� in a magnetic field B,
caused by the Zeeman term

HZeeman = − gi�BSzB

is renormalized to one-loop order as

M = gi�BS�1 −
�J�F�2x/2
1 + �J�F�x
 . �23�

Here, we introduced x=ln��F / �gi�BB�� with the Fermi en-
ergy �F, the gyromagnetic ratio gi of the impurity, and the
Bohr magneton �B. Spin-flip scattering effectively reduces
the magnetization but is not able to screen the spin com-
pletely. If otherwise an impurity spin is decoupled from the
conduction electrons and thus its magnetization is com-
pletely polarized, a subsequent coupling to the conduction
band will lead to spin-flip scattering and the impurity mag-
netization will start to decrease as a function of time. In order
to analyze this behavior quantitatively, we assume in the fol-
lowing that the complex of impurity and conduction elec-
trons is prepared in the product initial state

�
� = �↑� � �FS� , �24�

where �FS� is the noninteracting Fermi sea at equilibrium.
We assume furthermore that impurity and conduction elec-
trons become coupled instantaneously at the time t=0.

Using a perturbative expansion of the Heisenberg equa-
tion of motion for the magnetization operator Sz, it is
straightforward to calculate the perturbative time evolution
of the magnetization as �with 	Sz�= 1

2 � �Ref. 10�

	Sz�t�� = 	Sz� + 	Sz��iJ��2�
−�

�

d��
−�

�

d�����������

�f�����1 − f�����1 − cos��� − ���t�
�� − ���2 � + O�J3� ,

�25�

with the Fermi function f��� and the conduction electron
density of states ����=�k����−�k�� /N, where N is the number
of band states. This result neglects contributions of O�J3� in
coupling strength. It is a well-known property of the Kondo
model that renormalization of the couplings J� by J� sets in
precisely at third order in J.19 At sufficiently large time
scales, the low-energy couplings are expected to dominate
the magnetization dynamics, and the renormalization of spin-
flip scattering will become important. Beyond short times,
the perturbative result of Eq. �25� is therefore expected to
break down.

In the limit T→0 and for a flat band with density of states
�F=1 / �2D�,20 the integrals can be rewritten as

	Sz�t�� = 	Sz� − 	Sz��
0

2D k�x�
x2 j2�1 − cos�xt��dx , �26�

where we introduced the function

k�x� = �x , x � D

2D − x , x � D .
� �27�

This integral can be solved analytically with the result

	Sz�t�� = 	Sz� − 	Sz��2J��2�G�2Dt� − 2G�Dt�� , �28�

where the function G�x� is defined by the series expansion

G�x� = �
l=1

�
�− 1�l+1

�2l� ! 2l�2l − 1�
x2l. �29�

As argued above, Eq. �28� fails to predict the correct satura-
tion behavior of the magnetization, see also Figs. 4 and 6.

To improve upon this unsatisfactory result, we perform
the perturbative solution of the Heisenberg equation for the
operator Sz in the basis given by the diagonalized form of the
Hamiltonian, see Fig. 3. In several previous applications,3,4,6

this approach has been used to obtain the real-time evolution
of physical observables well beyond the perturbative short-
time regime.

In the corresponding new basis representation, the solu-
tion to the Heisenberg equation of motion for Sz is readily

obtained from S̃z�t�=eiH̃tS̃ze−iH̃t. Since the operator Sz is a
conserved quantity in this basis, in the ansatz Eq. �20� only
the coefficients �̃k�k�� will obtain time dependence, with the
result

S̃z�t� = h̃Sz + �
k�� ,k�

�̃k�� k��t�:��S+s
k�� k�
−

+ S−s
k�k��
+

��:

�̃k�� k��t� = �̃k�� k�e
it��k�� −�k��. �30�

The inversion of the unitary transformation �denoted by U,
see Fig. 3� will yield the effective nonperturbative solution of
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the Heisenberg equation of motion for the operator Sz, which
we write as

Sz�t� = h�t�Sz + �
k�� ,k�

�k�� k��t�:�S+s
k�� k�
−

+ S−s
k�k��
+

�:+ O�J2� .

�31�

All coefficients in Eq. �31� are obtained by integrating the
flow Eq. �21� from B→� to B=0 with the initial condition in

B→� posed by the operator S̃z�t�, Eq. �30�. From Eq. �31�,
the magnetization 	Sz�t�� can be readily read off as
	Sz�t��=h�t� /2. It remains to determine the coefficient func-
tion h�t�, for which an analytical result can be derived in a
limit of long times.

V. ANALYTICAL RESULTS FOR THE MAGNETIZATION

It is too ambitious to solve the flow Eqs. �17� and �21�
analytically as they stand but much progress can be made by
choosing a suitable ansatz for the flow of the coupling con-
stants J

k�k��
�

and J
k�k��
�

. Several suggestions along this line have

been given in Ref. 15, chapter 2. In the limit of exchange
couplings J

k�k��
�,�

close to the Fermi surface, meaning

��k�� /D , ��k�� � /D�1, the flow of these couplings can be for-
mally parameterized as

J
k�k��
�,�

�B� =
defJIR

�,��B�
N

e−B��k� − �k�� �2
. �32�

We call this parameterization of the flow the infrared param-
eterization with the infrared couplings JIR

�,��B�, since it is
asymptotically exact for �k� , �k�� =0. The flow of the cou-
plings JIR

�,��B� is identically to that of JkFkF

�,� �B�, which are the
couplings at the Fermi surface.15 Since during the flow, high-
energy couplings with energy transfer �E are eliminated ac-
cording to the relation �E�B−1/2, the flow of the low-energy

couplings can be shown to be negligible for B�D−2.15 By
suitably adjusting the initial conditions to J��B=D−2�=J� and
J��B=D−2�=J� the flow of the dimensionless coupling con-
stants j� =�FJIR

� and j�=�FJIR
� coincides then exactly with the

scaling Eq. �10�, where the flowing bandwidth � is identified
as �=B−1/2.

In addition, it is possible to simplify the flow Eq. �21� for
the spin operator Sz by neglecting the contribution to the
derivatives

d�k�� k�

dB of second order in the couplings J� and J�,
setting

d�k�� k�

dB
= h�B���k�� − �k��Jk�� k�

�
�B� + O���k�� − �k��J2� . �33�

This approximation has to be carefully justified for aniso-
tropic couplings �J��� �J�� and J� �0, since the couplings Jk��k�

�

contained in the neglected terms flow to a finite value at the
Fermi surface �given by �k� =�k��=0�, while J

k�� k�

�
�B� will flow

to zero. We justify this approximation in detail in Appendix
C.

Our approximations so far aim at the behavior of the cou-
plings �k�k�� near the Fermi surface, which therefore are suit-
able to obtain the long-time asymptotics of the impurity
magnetization. We will show now that these low-energy cou-
plings depend decisively on the behavior of the scaling Eq.
�10�, leading to qualitatively different results in the aniso-
tropic regime vs the isotropic regime of the exchange cou-
plings.

A. Isotropic regime

In the following, we restrict ourselves to the isotropic case
J=J�=J�.

1. Flow of the dimensionless coupling j

As already pointed out before, we will be mainly inter-
ested in the behavior of the flowing coupling Jk��k��B� for en-
ergies close to the Fermi surface. Exactly at the Fermi sur-
face, the flow of the dimensionless coupling j=J�F
according to the scaling Eq. �10� can be integrated exactly,
yielding

j��� =
j

1 + j ln��

D
� . �34�

We conclude that the flow of the infrared coupling is given
by JIR�B�=J / �1− �j /2�ln�BD2��, using the correspondence
�=B−2.

2. Couplings of the spin operator

For a further simplification of the flow Eq. �33�, it is im-

portant that the coupling h̃ will be a number close to 1, with
corrections that vanish continuously as J→0. Using this fact,
we set h�B��1 in Eq. �33�, leading to corrections that be-
come small for small J, as we explain now.

More precisely, this approximation can be justified by a
well-known approximation for the impurity magnetization in

FIG. 4. �Color online� We show 	Sz�t�� for isotropic coupling j
and short times. For very short times t�D−1, the perturbative result
from Eq. �28� �dashed line� is asymptotically coinciding with a fully
numerical solution of the flow Eq. �21� �full lines�. The renormal-
ization of J� by J� sets in at energy scales E�D, leading to a
reduction in spin-flip scattering. Beyond the short-time regime
t�D−1, the magnetization relaxes therefore slower than predicted
by the perturbative result.
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an external magnetic field. In presence of an infinitesimal

Zeeman splitting BSz , B→0+, the coupling h̃ describes the
ground-state expectation value of the operator Sz by the re-

lation h̃ /2= 	Sz�. By multiplying 	Sz�= h̃ /2 with the impurity
gyromagnetic ratio gi and the Bohr magneton �B, the impu-

rity magnetization is given as M =gi�Bh̃ /2. However, this
magnetization can be easily read off from Eq. �23� by taking
the limit B→0+, which is M = �1 /2�gi�BS�1+ j /2�, and thus
we obtain �for S=1 /2�

h̃ = 1 +
j

2
, �35�

where possibly corrections of O�j2� occur. Since h̃ is renor-
malized only to O�J�, Eq. �33� can be simplified by setting
h�B��1 and neglecting corrections of O�J2�.

We now aim at the flow of the couplings �k�� k��B�, which
can be evaluated asymptotically in the limits ��k�� , ��k�� ��D
and �D−�k�� /D�1, �D−�k��� /D�1. First, we concentrate
on couplings near the Fermi surface ���k�� , ��k�� ��D�, for
which the infrared parameterization from Eq. �32� can be
used in Eq. �33�, and we obtain

�k�k�� �B� = �
0

B

��k� − �k�� �
JIR�B��

N
e−B���k� − �k���

2
dB� + O�J2� .

�36�

According to Eq. �34�, the infrared couplings JIR�B� depend
only logarithmically on B, and in the integral, Eq. �36�, we
can set JIR�B��JIR�B= ��k�� −�k��−2�+O�J2�, leading to the re-
sult

�k�� k��B� =
JIR�B = ��k�� − �k��−2�

N��k�� − �k��
�1 − e−B��k�� − �k��2

� + O�J2� ,

�̃k�� k� =
JIR�B = ��k�� − �k��−2�

N��k�� − �k��
+ O�J2� . �37�

Now, it is possible to determine the coupling h̃ as a solution
of Eq. �21�. Employing Eq. �33� in Eq. �21� and setting
h�B��1, we first obtain the formal result

h̃ − 1 = −
1

2�
k�k��
�

0

�

dB
d

dB
�

k�k��
2

�B�n�k�� ��1 − n�k���

= −
1

2�
k�k��

�̃
k�k��
2

n�k�� ��1 − n�k��� . �38�

At low temperatures, only the low-energy couplings from
Eq. �36� contribute, and at zero temperature and using a flat
band with density of states �F= 1

2D , we can rewrite the mo-
mentum sums as an integral. Employing finally the logarith-
mic scaling behavior of the infrared couplings
JIR�B= ��k�� −�k��−2� from Eq. �10� in Eq. �38�, we arrive at the
result

h̃ − 1 = −
1

2
�

0

2D

dx
k�x�
x2

j2

�1 + j ln� x

D
�
2 . �39�

This integral can be evaluated exactly, and to leading order

in j we obtain the result h̃=1+ j /2+O�j2�. To leading order
in j, this result is confirmed by Eq. �35�, which has been
originally derived by Abrikosov and Migdal.18

3. Time-dependent magnetization

As discussed in Sec. IV, the time-dependent magnetiza-
tion 	Sz�t�� follows directly from the coefficient h�t�. It is
therefore necessary to solve the flow Eq. �21� for
time-dependent initial conditions, which endows the flowing
couplings with an additional time dependence, and we
change our notation according to h�B�→h�B , t� and
�k�k�� �B�→�k�k�� �B , t�.

Nevertheless, it is trivial to obtain �k�k�� �B , t� to leading
order in J, since the derivatives in Eq. �37� do not depend on
time and can be integrated in analogy to Eq. �37�, with the
result

�k�� k��B,t� = �̃k�� k��t� + �
�

B

��k�� − �k��Jk�� k��B��dB� + O�J2�

= �k�� k��B� + �̃k�� k��eit��k�� −�k�� − 1� + O�J2� . �40�

This expression can be employed in the flow Eq. �21� for the
coupling h�B , t�, which can be integrated in analogy to Eq.
�38�. The formal result for the coupling h�t� is finally

h�t� = h̃ + �
k�k��
�

�

0 d�k�� k�

dB
�̃k�k�� �eit��k�−�k�� � − 1�n�k�� ��1 − n�k���

+ �
k�k��
�

�

0 d�k�� k�

dB
�k�k�� �B�n�k�� ��1 − n�k���

= h̃ + �
k�k��

�̃
k�k��
2 �eit��k�−�k�� � −

1

2

n�k�� ��1 − n�k��� . �41�

In Appendix D, we derive this result in a different way by
employing the sum rule from Eq. �22�, thereby further justi-
fying all approximations. Aiming at the long-time behavior
at T=0, we employ Eq. �37� and rewrite h�t� as an integral,
in analogy to Eq. �39�. This yields directly the magnetization
	Sz�t��=h�t� /2,

	Sz�t�� =
1

2
+

1

2
�

0

2D k�x�
x2

j2

�1 + j ln� x

D
�
2 �cos�xt� − 1�dx ,

�42�

with k�x� defined in Eq. �27�.
For not too low energies, the logarithmic correction

j ln�x /D� can be neglected to leading order in j, and the
coupling j can be considered as unrenormalized. In this way,
the correct perturbative short-time limit of Eq. �26� is recov-
ered. In the long-time limit, 
0

�dx cos�xt�. . . can be replaced
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by 
0
f�t�/tdx. . ., where f�t� is a function with values of O�1�.

Thus, the long-time tail of the magnetization curve is readily
obtained as

	Sz�t�� =
1

2
�1/�ln t − 1/j� + 1 + j + O�j2�� �43�

with the asymptotic value

	Sz�t → ��� = 0.5�1 + j + O�j2�� . �44�

The steady-state magnetization mirrors the behavior ob-
served in our toy model: the reduction from full polarization
is j /2, which is twice the equilibrium value �see Eq. �35��.

We conclude that Eq. �42� describes both the short-time
and the long-time limit of 	Sz�t�� exactly. This result can be
also derived within a more sophisticated ansatz for the flow-
ing couplings J

k�k��
�,�

�B�, that parameterizes also the flow of

couplings considerably above the Fermi energy, as detailed
in Appendix E. In Fig. 5, we compare the analytical result
Eq. �43� against a full numerical solution of the flow equa-
tions. The asymptotic behavior depicted by Eq. �43� is
clearly visible.

B. Anisotropic regime

1. Flow of the exchange couplings

Before turning to the dynamical behavior of the observ-
able 	Sz�t��, we recall important scaling properties of aniso-
tropic exchange couplings J� and J�. In the ferromagnetic
regime, we have J� �0 and a stable fixed point of the scaling
Eq. �10� exists only if �J��� �J��. In this case, we have

j̃� = − �j�2 − j�2,

j̃� = 0, �45�

and according to Eq. �10�, the dimensionless transverse cou-
pling decays asymptotically as j��B�=�Bj̃�/2, where � is a
nonuniversal number. Numerical tests show that � is within
good accuracy identical to the coupling j� as long as
�J� /J���2. These properties will be used in the following.

2. Flow of the spin operator

Our discussion of the flowing spin operator starts again
with an analysis of the couplings �k�k�� �B� that are generated
during the flow of the observable Sz. As justified in Appendix
C, also for anisotropic couplings it is possible to approximate
the flow of the couplings �k�k�� �B� by Eq. �37�. In the limit of

small energy differences �� =
def

��k� −�k�� ��D, the integrated
flow 
0

�JIR
� �B�dB is dominated by the slow asymptotic decay

of JIR
� �B�, and we can set JIR

� �B�= �� /�F�Bj̃�/2, yielding the
approximated couplings

�̃k�k�� = �
0

�

��k� − �k�� �e−B��k� − �k�� �2 JIR
� �B�
N

dB

=
���

N�F
�

0

�

e−B��2
B1/2 j̃�dB =

� sgn����

N�F����1+ j̃�
+ O�� j̃�� .

�46�

Since Eq. �38� is valid also for anisotropic exchange cou-
plings, we can again use it to calculate the renormalized

coupling h̃, and by employing the couplings, Eq. �46�, in Eq.
�38�, we obtain the result

h̃ = 1 −
1

2
�

0

2D

dx�2 k�x�

x2+2 j̃�
= 1 +

�2

4 j̃�
+ O�J2� . �47�

3. Time-dependent magnetization

We proceed as in the isotropic regime and plug the ap-
proximate couplings �̃k�k�� from Eq. �46� into the formal ex-

TABLE I. For large times, we fitted the full numerical solutions
of the flow equations against the function 0.5�1+aJ+1 / �ln t
+1 / �bJ���. For couplings −j�0.1, quantitative agreement with the
analytical result 	Sz�t��=0.5�1 / �ln t−1 / j�+1 /2+ j /2+O�j2�� is
very good.

j= j�= j� −0.05 −0.1 −0.15

a 0.441 0.442 0.441

b 0.418 0.400 0.382

FIG. 5. �Color online� We show 	Sz�t�� for different isotropic
couplings j. In panel �a� the full numerical solution of the flow
equations �full lines in both panels� is compared to a fit to the
asymptotic analytical behavior of Eq. �43� �dashed lines, fit param-
eters given in Table I�. Beyond the perturbative short-time regime,
described by unrenormalized spin-flip scattering according to Eq.
�28�, the logarithmic renormalization of the spin-flip scattering cou-
pling J� sets in. This leads to a logarithmically slow relaxation of
the magnetization and the asymptotic value 	Sz�t→���=0.5+ j

2
�dashed lines in panel �b�� is reached extremely slowly.
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pression from Eq. �41� to obtain the coefficient h�t�. This
result is at least correct in the long-time limit. In this way, we
obtain the time-dependent magnetization as

	Sz�t�� =
1

2
−

1

2
�

0

2D

�2 k�x�

x2+2 j̃�
�1 − cos�xt��dx . �48�

As argued before, for anisotropies �J� /J���2, it is possible
to set �� j�. In this case, again the short-time limit of the
flow-equation result for 	Sz�t�� coincides with the exact per-
turbative result of Eq. �25�. Since our approximations be-
come only exact at low energies, we have in this case no
argument why they should in general hold in the short-time
limit, where the influence of higher-energy scales might in-
validate our approximations. In Fig. 6, the agreement of the
numerical solution of the anisotropic flow equations with the
perturbative short-time formula, Eq. �28�, is shown. Aniso-
tropy due to increasing �J�� does not influence the short-time
limit of the observable 	Sz�t�� since J� enters this quantity
only in third order of perturbation theory.

The long-time tail of the magnetization curve can be ob-
tained as in the isotropic case by replacing 
0

�dx cos�xt�. . .
with 
0

f�t�/tdx. . ., where f�t� is a function with values of O�1�.
This yields the asymptotic result

	Sz�t�� =
1

2�1 −
�2

2 j̃�
t2 j̃� +

�2

2 j̃�
+ O�j2�� . �49�

In Fig. 7, the qualitative difference between the anisotropic
and isotropic couplings is depicted. Clearly visible, aniso-
tropy leads to qualitatively faster saturation of the magneti-
zation to its steady-state value. The algebraic long-time tail
of the magnetization curve sets in immediately after the per-
turbative short-time limit. A numerical fit of the long-time
tails yields very good agreement with the analytical predic-
tion of Eq. �49�, as demonstrated in Table II. Furthermore,
our calculations show that the steady-state magnetization

	Sz�t→���= �2

2g̃�
is again reduced twice as much from full

polarization than in equilibrium.

C. Conclusions

The numerical results show that spin relaxation of ferro-
magnetic impurities is described by two different regimes,
which are well described within the flow-equation method.
An initial short-time regime, driven by unrenormalized spin-
flip scattering with an amplitude �J�2 can be described
within unrenormalized perturbation theory. At low-energy
scales �corresponding to large time scales�, renormalization
of spin-flip scattering slows down the relaxation rate. Quite
naturally, isotropic couplings are renormalized only logarith-
mically in comparison to algebraic renormalization of J� in

TABLE II. For large times, we fitted the full numerical solutions

of the flow equations against the function at−�J�
2−J�

2
+b, as depicted

in Fig. 7�a�. For couplings −j� �0.1, quantitative agreement with
the analytical result 	Sz�t��=0.5�1−�2 / �2 j̃��t2 j̃� +�2 / �2 j̃��+O�j2�� is
very good.

	Sz�t��=at−�J�
2−J�

2
+b j� =−0.05 j� =−0.1

a 1.66�10−3 7.07�10−4

b 0.4981 0.4991

FIG. 6. �Color online� Short-time behavior of the magnetization
for anisotropic couplings from a fully numerical solution of the flow
equations in comparison with the perturbative result from Eq. �28�
�dashed line�. The perpendicular coupling is fixed to J�=−0.04, the
curve with J� =−0.04 corresponds to the isotropic case. For increas-
ing �J��, the spin-flip scattering coupling J� is stronger renormal-
ized, and the magnetization tends to decay slower than predicted by
the unrenormalized perturbative result.

FIG. 7. �Color online� Long-time result of the magnetization
relaxation for anisotropic couplings and comparison with a long-
time fit. All parameters are equivalent to those from Fig. 6. In panel
�a�, the full numerical solution of the flow equations �full lines in
both panels� is fitted against the analytical power-law behavior
stated in Eq. �49� �dashed lines�. At time scales where renormaliza-
tion of J� by J� becomes significant and leads to a deviation from
the perturbative result, again the asymptotic fit describes the relax-
ation process very well. In panel �b�, a comparison with the satura-
tion value 	Sz�t→���=1 /2+�2�F

2 / �4 j̃�� �dashed lines� is given.
Clearly visible, anisotropic couplings J��J� lead to much faster
saturation of the magnetization than isotropic couplings. Fitting pa-
rameters are given in Table II.
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the anisotropic case, leading to much faster relaxation of
anisotropically coupled spins. It is important to note that our
results are to leading order in J independent on the spin
quantum number S of the impurity spin. As detailed in Ap-
pendix B, a generalization to arbitrary S leads to

	Sz�t�� = Sh�t� , �50�

where h�t� is the universal function which we calculated
above.

VI. SUMMARY AND DISCUSSION

We have discussed the real-time evolution of the ferro-
magnetic Kondo model initially prepared in the product state

�
� = �↑� � �FS� , �51�

where �FS� is the noninteracting Fermi sea. Using the flow-
equation method, we have shown that the time-dependent
magnetization 	Sz�t��
 approaches a nonvanishing asymptotic
value 	Sz�t→���
 logarithmically �with a power law� in time
if the model is isotropic �anisotropic�. One key observation is
the fact that 	Sz�t→���
 differs from the equilibrium value
	Sz�eq for infinitesimal positive magnetic field. In particular,
this implies that the system retains a memory of its initial
preparation for all times.

While this might appear surprising at first sight, it just
reflects the following well-known property of the equilib-
rium model: If one prepares the system in the initial state,
Eq. �51�, and then slowly switches on the ferromagnetic cou-
pling to the leads, according to the adiabatic theorem the
system will evolve to the equilibrium ground state with mag-
netization 	Sz�eq. However, if the initial state were �↓ �
� �FS�, then the asymptotic magnetization would be in-
verted. In this sense even the equilibrium model retains a
memory of its initial preparation due to ergodicity breaking.

In the weak-coupling limit we could prove that
asymptotic nonequilibrium magnetization vs equilibrium
magnetization differ by a factor 2,

�	Sz�t → ���
 −
1

2
� = 2�	Sz�eq −

1

2
� . �52�

This factor 2 occurs in a general class of discrete systems6,7

in weak-coupling perturbation theory. In a simple exactly
solvable toy model with two lead levels, we could explicitly
evaluate this factor r�g� beyond its weak-coupling limit
r�g=0�=2, see Fig. 2. The toy model results for positive
�that is, antiferromagnetic� coupling g are of course not rel-
evant for the actual Kondo model due to the strong-coupling
divergence that makes perturbation theory invalid for g�0.
On the other hand, the fact that the running coupling flows to
zero on the ferromagnetic side is just the reason why our
analytical flow-equation results become asymptotically exact
for small negative g. This is also supported by exact numeri-
cal results using time-dependent NRG,12 which showed ex-
cellent agreement with the analytical flow-equation calcula-
tion for weak ferromagnetic coupling. One can even
understand the differences between the exact numerical re-
sults and the perturbative flow-equation results in Ref. 12:

according to Fig. 2 one would expect the flow-equation cal-
culation to overestimate the nonequilibrium reduction in the
magnetization �since r�g��2 for g�0 in Fig. 2�, which is
exactly what one observes in Ref. 12 for larger ferromagnetic
coupling.

As discussed in Ref. 12, our results for the ferromagnetic
Kondo model have direct applications to molecular quantum
dots. For instance, the magnetic dynamics of single-molecule
magnets coupled to metallic leads may be captured �in the
cotunneling regime� by a ferromagnetic Kondo model.21 An-
other experimentally relevant situation are coupled semicon-
ductor quantum dots with partially screened spins.

On the methodological side, we have shown that the flow-
equation method can be applied successfully to real-time
evolution problems in quantum impurity models. We envi-
sion further applications of our method in the study of non-
equilibrium dynamics near impurity quantum phase
transitions.22

Note added in proof. Recently, we became aware of Ref.
23. This work derives the long-time limits for the magneti-
zation curve derived in our publication in an alternative way
that can be directly related to the poor man’s scaling equa-
tions of the Kondo model.
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APPENDIX A: MATRIX REPRESENTATION OF THE TOY
MODEL

The five basis states with total spin S=1 /2, Sz=1 /2, and
two fermions in the electronic levels are given by

�
0� = �0� � �↑↓� � �↑� ,

�
1� = �↑� � �↑� � �↓� ,

�
2� = �↓� � �↑� � �↑� ,

�
3� = �↑↓� � �0� � �↑� ,

�
4� = �↑� � �↓� � �↑� , �A1�

where the first ket in the tensor product corresponds to the c
electron in our toy model, the second ket corresponds to the
d electron, and the third ket corresponds to the impurity spin.
The subspace spanned by these five states is denoted by
H2,1/2. Due to the SU�2�-symmetric interaction, the time-
evolved initial state as well as the interacting ground state in
the presence of an infinitesimal positive magnetic field lie in
H2,1/2.

In the subspace H2,1/2, Hamiltonian �2� of the toy
model is represented by the matrix H=H0+gHint,

Hi+1,j+1 =
def

	
i�H�
 j� for i , j=0,1 ,2 ,3 ,4,
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H0 =�
− 2 0 0 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
� �A2�

Hint =�
0

1

2

1

2
0 0

1

2
0 0 0 0

1

2
0 −

1

4
0 0

0 0 0 0 0

0 0 0 0 0

� . �A3�

The states �
3� and �
4� decouple so that one effectively only
has to diagonalize a 3�3 matrix to �i� solve the dynamics of
the toy model exactly and to �ii� determine the ground-state
magnetization. Since the diagonalization is a trivial step with
lengthy expressions, we will not give details here.

However, it is interesting to see explicitly how the factor
2 in the ratio r�g� from Eq. �7� comes about in the weak-
coupling limit. In perturbation theory the interacting eigen-
states are given by

�
̃ j� = �
 j� + g�
i�j

�
i�
	
i�Hint�
 j�

Ej − Ei
+ O�g2� , �A4�

where E0=−2, E1=2 , E2=0 are just the eigenvalues of H0.

For the observable Ô=Sz−1 /2 one has 	
0�Ô�
0�
= 	
1�Ô�
1�=0 and therefore the ground-state expectation
value

Oeq = 	
̃0�Ô�
̃0� = g2	
2�Ô�
2�
�	
2�Hint�
0��2

�E2 − E0�2 + O�g3� .

The time-averaged expectation value starting from the initial
state �
0� is according to Eq. �5�,

O�t� = �
j

�	
̃ j�
0��2	
̃ j�Ô�
̃ j� �A5�

and one can easily verify that only the terms j=0,2 contrib-
ute plus corrections in order g3. Each of these terms is iden-
tical to Oeq plus again corrections in order g3, which proves

r�g� =
O�t�
Oeq

= 2 + O�g� . �A6�

The general proof in Ref. 7 is a generalization of this argu-
ment. The universal factor 2 in the weak-coupling limit
plays, e.g., a key role in the thermalization of a Fermi liquid
after an interaction quench, that is the opposite limit of the
adiabatic Landau Fermi-liquid paradigm.6,7

APPENDIX B: FLOW EQUATIONS FOR GENERAL SPIN S

We now analyze how the magnetization curve 	Sz�t�� is
modified if the impurity spin has a general quantum number

S�1 /2. The commutation relation �Si ,Sj�−= i�ijkS
k is inde-

pendent of S, and we will show that also the flow equations
for the spin components Sa remain unchanged to leading or-
der in J. We illustrate the proof only for the case of isotropic
couplings since the proof for anisotropic couplings requires
only slight modifications.

Using the ansatz Eq. �20� together with the generator, Eq.
�15�, it is readily seen that modifications to the flow equa-
tions for Sa�B� can only arise due to the commutator

�:S� · s�t�t�� :,�:S� � s�u�� u� :�a�−. �B1�

We now decompose

SiSj = xij +
i

2�
k

�ijkS
k, �B2�

where i /2�k�ijkS
k is the operator obtained by projecting SiSj

on the operator �k�ijkS
k as a basis operator in spin Hilbert

space: and xij is the operator defined by Eq. �B2�. Using this
decomposition in Eq. �B1�, we obtain

�:S� · s�t�t�� :,�:S� � s�u�� u� :�a�−

= �
ijk�	��

�1

4
xij���	

i ���
k �ajk�:ct�� �

†
ct�	

† :,:c
u�� �

†
cu��:�−�

+
1

4

i

2�
k�

��	
i ���

k �ajk�ijk�S
k��:c

t�� �

†
ct�	

† :,:c
u�� �

†
cu��:�+� .

�B3�

It is now readily seen that corrections to the flow equations,
Eq. �21�, can only arise from the term in Eq. �B3� that con-
tains the operator xij. This term can be rewritten as

i

8�
ijkl

xij�ajk�lik�st�� u�

l
�t�u�� + �t�� u�su�� t�

l
� , �B4�

and due to the decomposition assumption, Eq. �B2�, it is
readily seen that this expression has a vanishing projection
on the operator �:S� �s�u�� u�:�a. Thus it can only be generated as
a subleading correction in O�J2� of the flowing spin opera-
tors. From the identity �ixii=S�S+1�, it is finally seen that
the flowing spin components Sa have corrections which are
of O�J2S2�. For the magnetization curve 	Sz�t��, this means
that the relation

	Sz�t�� = 2S	Sz�t���S=1/2 + O�J2S2� �B5�

is fulfilled.

APPENDIX C: VALIDITY OF THE TREE-LEVEL
APPROXIMATION

In Sec. V, we made use of the approximative differential
equation

d�k�� k�

dB
= h�B���k�� − �k��Jk�� k�

�
�B� + O���k�� − �k��J2� . �C1�

In case of anisotropic couplings �J��� �J�� and J� �0, the
couplings Jk��k�

�
contained in the neglected terms flow to a

HACKL, VOJTA, AND KEHREIN PHYSICAL REVIEW B 80, 195117 �2009�

195117-12



finite value at the Fermi surface �given by �k� =�k��=0�, while

J
k�� k�

�
�B� will flow to zero. A justification of neglecting all

terms of O�J2� in
d�k�� k�

dB has therefore to consider the flow
equations including all terms of up to O�J2�,

d�k��k�

dB
= h�B���

JIR
� �B�
N

e−B����2
−

1

4
�

−D

D

d� sgn���

����� + �k�� − ��
JIR

� �B�
N

e−B��� + �k�� − ��2

��
0

B

dB��� − �k���JIR
� �B��e−B��� − �k���

2

+ ��k�� − ��
JIR

� �B�
N

e−B�� − �k���
2

��
0

B

dB���� + �k�� − �� � JIR
� �B��e−B��� − �� − �k���

2
 ,

�C2�

where we defined ��=�k� −�k�� and made use of the infrared
parametrization, Eq. �32�. Only in three integration intervals
of width ��, the integrand in Eq. �C2� is nonzero and we can
simplify

d�k�k��
dB according to

d�k��k�

dB
= ��

JIR
� �B�
N

e−B����2

+
1

2
�

−��

0

d����� + �k�� − ��
JIR

� �B�
N

e−B��� + �k�� − ��2

� �
0

B

dB��� − �k���JIR
� �B��e−B��� − �k���

2
 + O�e−BD2
� ,

�C3�

where O�e−BD2
� arises from integrals close to the band edges.

Since the perpendicular coupling JIR
� �B� asymptotically de-

cays as JIR
� �B��

�
�F

Bj̃�/2 �see Sec. V B�, a lower boundary for
the contribution of O�J� in Eq. �C3� is

��
�

�F
Bj̃�/2e−B����2

, �C4�

while it is readily seen that the contribution of O�J2� has the
upper boundary

BJ�J�O����3 �C5�

as long as B� ����−2. Hence, in the regime B� ����−2 we
can approximate

d�k��k�

dB ���J��B�e−B����2
if

��2B1− j̃�/2 �
1

j� . �C6�

The remaining regime B� ����−2 is described by exponential
decay of

d�k��k�

dB and is not of importance. In conclusion, we
showed that the approximation

d�k�� k�

dB
� ��k�� − �k��Jk�� k�

�
�B� �C7�

is valid also for anisotropic couplings with �J��� �J�� and
J� �0.

APPENDIX D: AN ALTERNATIVE ROUTE OF
CALCULATION FOR EQ. (23)

An alternative derivation of the formal result, Eq. �41�, for
the magnetization 	Sz�t��=h�t� /2 exploits the sum rule, Eq.

�22�. Since the operators Sz�t� and S̃z�t� are related to the
flowing operator Sz�B� by a unitary transformation, the sum
rule 	Sz�B�2�=1 /4 applies for both operators, and by sub-
tracting the corresponding sum rule for expression �30� from
that of expression �31�, the coefficient h�t� can be expressed
as

h2�t� = h̃2 + �
k�k��

���̃k�� k��t��2 − ��k�� k��t��2�

�n�k�� ��1 − n�k��� + O�J2� . �D1�

Equation �D1� is another starting point to calculate the mag-
netization h�t� /2. The coefficients �̃k��k��t� and �k�� k��t� in Eq.
�D1� are given by Eqs. �30� and �40�, and we obtain

h2�t� = h̃2 + �
k�k��

��̃k�k�� �2�− 1 + 2 cos���k� − �k�� �t��

�n�k�� ��1 − n�k��� + O�J2� . �D2�

Using the known result h̃=1+O�J�, it is easily seen that the
right-hand side of Eq. �D2� behaves as 1+O�J�, and the ex-
pansion of �h2�t� to first order in the coupling J is therefore

h�t� = h̃ + �
k�k��

��̃k�k�� �2�cos���k� − �k�� �t� −
1

2
�

�n�k�� ��1 − n�k��� + O�J2� . �D3�

This result is equivalent to Eq. �41�.

APPENDIX E: DIAGONAL PARAMETERIZATION OF
ISOTROPIC COUPLINGS

In Sec. V, we integrated the flow equation

d�k�k��

dB
= ��k� − �k���Jk�k��

� �B� �E1�

by using the approximative parameterization
Jk�k��

� �B�= �JIR�B� /N�e−B��k� − �k���
2
. This parameterization as-

sumes isotropic couplings Jk�k��
� �B��Jk�k��

� �B� and requires low
energies ��k���D , ��k����D. Here, we provide a more general
integration of Eq. �E1� by parameterizing the flow of the
couplings Jk�k�� �B� by an ansatz that also describes couplings
above the low-energy limit appropriately. One makes the
ansatz
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Jk�k�� �B� = Jk�k���B�e−B��k� − �k���
2
, �E2�

with Jk�k�� �B=0�=J /N�0, where k�� k� is a label for the energy
median

�k��k� =
def�k� + �k��

2
, �E3�

such that the couplings Jk�� k��B� depend only on the energy
�k�k�� and B. This approach has been dubbed diagonal param-
eterization since it approximates the full set of N�N cou-
plings by its N diagonal entries. It has been used previously
in the context of the nonequilibrium Kondo model in Ref. 17
and a detailed discussion is given in Ref. 15. It is trivial that
this ansatz becomes asymptotically exact for the low-energy
couplings near the Fermi surface since the coupling Jk�k���B�
will reduce to the IR-parameterization JIR�B� used in Sec. III
once �k� , �k��→0. In addition, it describes the deviations
from the flow of JIR�B� caused by interactions between ma-
trix elements of higher-energy scales.

The number of flow equations for the couplings reduced
now from N�N to the N differential equations

�using Jk� =
def

Jk�k��

dJk��B�

dB
= �

�

2��k� + ��� �Jk��� J�� k�e
−2B��k� − ��� �2�n��� � −

1

2



+ O�J2� . �E4�

Off-diagonal couplings with huge energy differences decay
exponentially fast and it is possible to make the approxima-
tion Jk�k�� �B��Jk��B� in Eq. �E4�. Furthermore, the initial con-
dition for Jk��B� can be adjusted to Jk��B=D−2�= J

N , since the
flow of Jk��B� is unrenormalized for energies near the band
cutoff, corresponding to B�D−2. Now, the diagonal cou-
plings flow approximately as

dJk��B�

dB
= �

��
2��k� − ��� �e−2B��k� − ��� �2

Jk��� J�� k��n��� � −
1

2



� −
Jk�

2�B��F

2BN
e−2B�

k�
2
, �E5�

where we evaluated the momentum sum at T=0. This differ-
ential equation can be integrated in the closed form

Jk��B� =
J

N
�1 − J

�F

2
�

D−2

B

dB�
exp�− 2B��k�

2�

B�

−1

. �E6�

In order to evaluate the couplings �̃k�k�� by integrating Eq.
�E1�, we approximate the couplings Jk��B� as
Jk��B= ��k� −�k�� �−2�. This is justified up to corrections of
O�J2�, since Jk��B� depends logarithmically or weaker on the
parameter B. We can further evaluate the couplings
Jk��B= ��k� −�k�� �−2� by performing the sequence of approxima-
tions

�
D−2

��k� − �k�� �−2

dB�
exp�− 2B��k�

2�

B�

= �
D−2

��k� − �k�� �−2

dB�
exp�− 2B���k� − �k�� �2�

B�
+ O�1�

= �
D−2

�

dB�
exp�− 2B���k� − �k�� �−2�

B�
+ O�1�

= − � − ln�2��k� − �k�� �2

D2 
 + O�2��k� − �k�� �2

D2 
 + O�1� .

�E7�

We assumed in the second line that �k� and �k� −�k�� are of the
same order, since the phase space where this is not the case
has subleading measure in momentum sums �k�k��. Assuming

furthermore �ln�
��k�−�k�� �2

D2 ���1 we made use of the asymptotic
expansion of the exponential integral

Ei�1,x� = �
x

� et

t
dt = − � − ln x + O�x�

in the last line, with ��0.5772.
The parameterization, Eq. �E2�, finally justifies that the

coefficients �̃k�k�� can be obtained using the infrared param-
eterization Jk�k��

� �B�= �JIR�B� /N�e−B��k� − �k���
2

in the limit

�ln�
��k�−�k�� �2

D2 ���1. This result is of particular importance for
the time dependence of the magnetization 	Sz�t��, which is
fully described by the couplings �̃k�k�� �see Eq. �41��.

APPENDIX F: NORMAL ORDERING

Within the flow-equation approach, fermionic operators
occurring in transformed observables are usually normal or-
dered in order to separate the various interaction terms gen-
erated during the flow into irreducible objects in the spirit of
a diagrammatic expansion using Wick’s theorem.15 In prac-
tice this procedure is implemented with respect to a given
reference state or density matrix, such that normal ordering
of a product ck��

† ck���� of fermionic operators amounts to sub-
tracting the expectation value with respect to the given ref-
erence state or density matrix,

:ck��
† ck���� ª ck��

† ck���� − 	ck��
† ck����� . �F1�

In our particular problem, we used the initial state �
i� as
reference state for the normal-ordering procedure, such that
	ck��

† ck�����= 	
i �ck��
† ck���� �
i�. However, this reference state

will look very different at some finite time t or if it is trans-
formed into the representation of the flowing operator ck���B�
by the unitary transformation

U�B� = TBe
0
B��B��dB� �F2�

induced by the generator ��B�, where the operator TB causes
B-ordering. In order to use a normal-ordering prescription
with respect to the same quantum state for all values of B, we
need to define normal ordering with respect to the time-
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evolved initial state in the basis for a given value of B,

�
i�B,t�� =
def

e−iHtU†�B��
i� . �F3�

The contraction of fermionic operators then depends on both
B and on time t,

nll��B,t� =
def

	
i�U�B�eiHtcl
†cl�e

−iHtU†�B��
i�

= 	
i�cl
†�B,t�cl��B,t��
i� , �F4�

where we introduced a general multi-index l comprising both
spin and momentum label. Since a calculation of the full
dependence of nll��B , t� on the parameters B and t turns out
to be a very complicated problem of its own, we show here
that the difference nll��B , t�−nll��B=0, t=0� enters the flow
equations for spin operators �the Hamiltonian� only to O�J2�
�to O�J3��, having no influence on the leading order of our
calculation, which is O�J� �O�J2��.

In order to reduce Eq. �F3� to the form
nll��B , t�=nll��B=0, t=0�+O�J�, we write the transformed
operators cl�B , t�=U�B�eiHtcle

−iHtU†�B� in the general form

cl�B,t� = f l�B,t�cl + J � composite operator + O�J2� ,

�F5�

with a flowing coupling parameter f l�B , t� and the unitary
transformation U�B� generated by the generator, Eq. �15�.
The time-evolved fermionic operator cl�B , t� can now be for-
mally calculated in the forward-backward transformation
scheme depicted in Fig. 3, which guarantees that f l�B , t� be-
haves as 1+O�J� once the flow of this operator is expanded
in powers of J. Now the contractions can be written as

nll��B,t� = 	
�B,t��cl�
† cl����
�B,t�� = 	
i�cl

†cl��
i� + O�J� .

�F6�

Since nll��B , t� enters our flow equations only in terms of
highest considered order in J the correction of O�J� occur-
ring in Eq. �F6� enters our calculation only to subleading
power in J. Therefore, it is sufficient in our calculation to use
the simplified contractions nll�= 	
i�cl

†cl��
i� for normal or-
dering.
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