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We present a unified framework for renormalization group methods, including Wilson’s numerical renor-
malization group !NRG", and White’s density-matrix renormalization group !DMRG", within the language of
matrix-product-states. This allows improvements over Wilson’s NRG for quantum impurity models, as we
illustrate for the one-channel Kondo model. Moreover, we use a variational method for evaluating Green’s
functions. The proposed method is more flexible in its description of spectral properties at finite frequencies,
opening the way to time-dependent, out-of-equilibrium impurity problems. It also substantially improves
computational efficiency for one-channel impurity problems, suggesting potentially linear scaling of complex-
ity for n-channel problems.
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Wilson’s numerical renormalization group !NRG" is a key
method1 for solving quantum impurity models such as the
Kondo, Anderson, or spin-boson models, in which a local
degree of freedom, the “impurity,” is coupled to a continuous
bath of excitations. These models are of high relevance in the
description of magnetic impurities, quantum dots, and prob-
lems of decoherence. NRG has been used with great success
to calculate both thermodynamic1,2 and dynamical3–6 proper-
ties. It is, however, of limited use in more complex situa-
tions: computational cost grows exponentially for a coupling
to multiple bands in the bath. In systems out-of-equilibrium
or with time-dependent external parameters, such as occur in
the tuning of quantum dots, difficulties arise due to NRG’s
focus on low-energy properties through its logarithmic dis-
cretization scheme which looses accuracy at high spectral
frequencies.

In the present paper, we draw attention to the fact that
states generated by the NRG have the structure of matrix-
product-states !MPS"7,8 on a one-dimensional geometry. This
is a simple observation, which however has important con-
ceptual and practical implications:

!i" As White’s density-matrix renormalization group
!DMRG"9 for treating quantum chain models is in its single-
site version identical to variational MPS,8 NRG, and DMRG
are now seen to have the same formal basis of matrix-
product-states, resolving a long-standing question about the
connection between both methods. !ii" All NRG results can
be improved upon systematically by variational optimization
in the space of variational matrix-product-states !VMPS" of
the same structure as those used by NRG. This does not lead
to major improvements at "=0 where NRG works very well,
but leads to the inclusion of feedback from low-to-high-
energy states, also allowing the relaxation of the logarithmic
bath discretization of NRG: spectra away from "=0 can be
described more accurately and with higher resolution. !iii"
Recent algorithmic advances using VMPS,8 in particular
those treating time-dependent problems,10,11 can now be ex-
ploited to tackle quantum impurity models involving time
dependence or nonequilibrium; this includes applications to
the description of driven qubits coupled to decohering baths,

as relevant in the field of quantum computation. !iv" The
VMPS algorithm allows ground state properties of quantum
impurity models to be treated more efficiently than NRG: the
same accuracy is reached in much smaller ansatz spaces
!roughly of square-root size". Moreover, our results suggest
that for many !if not all" n channel impurity problems it
should be feasible to use an unfolded geometry, for which the
complexity will only grow linearly with n.

The present paper provides a “proof of principle” for the
VMPS approach to quantum impurity models by applying it
to the one-channel Kondo model. We reproduce the NRG
flow of the finite size spectrum,2 and introduce a VMPS ap-
proach for calculating Green’s functions, as we illustrate for
the impurity spectral function,3 which yields a significant
improvement over existing alternative techniques.12–15 Our
results illustrate in which sense the VMPS approach is nu-
merically more efficient than the NRG.

I. NRG GENERATES MATRIX-PRODUCT-STATES

To be specific, we consider Wilson’s treatment of the
Kondo model, describing a local spin-1/2 impurity in an ex-
ternal magnetic field B coupled to a fermionic bath. To
achieve a separation of energy scales, the bath excitations are
represented by a set of logarithmically spaced, discrete ener-
gies "n=#−n, where #$1 is a “discretization parameter.”1

By tridiagonalization, the model is then mapped onto the
form of a semi-infinite chain H=limN→% HN where1

HN = BSz − 2Js · S + #
n=1

N−1

&n!cn'
† cn+1,' + cn+1,'

† cn'" . !1"

HN describes an impurity spin S in a Zeeman field B, ex-
change coupled to the spin s= 1

2c1
†!c1 of the first site of a

chain of length N of fermions with spin ' and exponentially
decreasing hopping matrix elements along the chain !&n
$#−n/2". HN lives on a Hilbert space spanned by the set of
dIdN basis states %&i0 , i1 , i2 , . . . iN'(, where i0 labels the dI pos-
sible impurity states and in !for n=1, . . . ,N" the d possible
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states of site n !for the Kondo model, i0= %↑ ,↓( and for all
other sites in= %0, ↑ , ↓ , ↑↓(, i.e., dI=2 and d=4".

To diagonalize the model, NRG starts with a chain of
length !n̄−1", chosen sufficiently small that Hn̄−1 can be di-
agonalized exactly, yielding a set of eigenstates &()

n̄−1'. One
continues with the subsequent iterative prescription: project
Hn̄−1 onto the subspace spanned by its lowest D eigenstates,
where D*dIdn̄−1 is a control parameter !typically between
500 and 2000"; add site n̄ to the chain and diagonalize Hn̄ in
the enlarged !Dd"-dimensional Hilbert space, writing the
eigenstates as

&(+
n̄' = #

in̄=1

d

#
)=1

D

&()
n̄−1'&in̄'P)+

)in̄*, !2"

where the coefficients have been arranged in a matrix P)+
)in̄*

with matrix indices ), +, labeled by the site index n̄, and
state index in̄; rescale the eigenenergies by a factor #1/2; and
repeat, until the eigenspectrum converges, typically for chain
lengths N of order 40 to 60. At each step of the iteration, the
eigenstates of HN can thus be written )by repeated use of Eq.
!2"* in the form of a so-called matrix-product-state,

&()
N' = P)0

)i0*P)0)1

)i1* P)1)2

)i2* . . . P)N−1)
)iN* &i0,i1, . . . ,iN' !3"

!summation over repeated indices implied". The ground state
is then the lowest eigenstate of the effective Hamiltonian
H)+

N = +()
N&HN&(+

N', i.e., the projection of the original H on
the subspace of MPS of the form !3".

II. VMPS OPTIMIZATION

Let us now be more ambitious and aim to find the best
possible description of the ground state within the space of
all MPSs of the form !3", using the matrix elements of the
matrices %P)n*( with P)n*,%P)in*( as variational parameters
to minimize the energy. Using a Lagrange multiplier to en-
sure normalization, we thus study the following optimization
problem:

min
&(N'!%MPS(

)+(N&HN&(N' − ,+(N&(N'* . !4"

This cost function is multiquadratic in the dI+d!N−1" ma-
trices %P)n*( with a multiquadratic constraint. Such problems
can be solved efficiently using an iterative method in which
one fixes all but one !let’s say the n̄’th" of the matrices %P)n*(
at each step; the optimal P)n̄* minimizing the cost function
given the fixed values of the other matrices can then be
found by solving an eigenvalue problem.8 With P)n* opti-
mized, one proceeds the same way with P)n̄+1* and so on.
When all matrices have been optimized locally, one sweeps
back again, and so forth. By construction, the method is
guaranteed to converge as the energy goes down at every
step of the iteration, having the ground-state energy as a
global lower bound. Given the rather monotonic hopping
amplitudes, we did not encounter problems with local
minima.

In contrast, NRG constructs the ground state in a single
one-way sweep along the chain: each P)n* is thus calculated

only once, without allowing for possible feedback of P’s
calculated later. Yet viewed in the above context, the ground-
state energy can be lowered further by MPS optimization
sweeps. This accounts for the feedback of information from
low-to-high-energy scales. This feedback may be small in
practice, but it is not strictly zero, and its importance in-
creases as the logarithmic discretization is refined by taking
#→1. Note that the computational complexity of both
VMPS optimization and NRG scales as NdD3,8,9 and sym-
metries can be exploited !with similar effort" in both ap-
proaches. The inclusion of feedback leads to a better descrip-
tion of spectral features at high frequencies, which are of
importance in out-of-equilibrium and time-dependent impu-
rity problems. Moreover, it also allows to relax the logarith-
mic discretization scheme, further improving the description
of structures at high frequency as illustrated below.

The result of a converged set of optimization sweeps is a
VMPS ground state &(̃0

N' of the form !3"; exploiting a gauge
degree of freedom,8 the P̃’s occurring therein can always be
chosen such that all vectors &(̃)

n'= )P̃)i0* . . . P̃)in**)&i0 , . . . , in'
are orthonormal. The effective Hamiltonian at chain length n,
the central object in NRG, is then H̃)+

n = +(̃)
n &#n/2Hn&(̃+

n'. Its
eigenspectrum can be monitored as n increases, resulting in
an energy level flow along the chain.

III. GREEN’S FUNCTIONS

Similar techniques also allow Green’s functions to be cal-
culated variationally.15 The typical Green’s functions of in-
terest are of the form G-

c !""= +(0&c&.' where &.', commonly
called a correction vector,16 is defined by

&.' ,
1

" − H + i-
c†&(0' , !5"

with &(0' the ground state of the system, e.g. calculated using
the VMPS approach and thus represented as MPS. The spec-
tral density is then given by A!""=−lim-→0

1
/Im!G-

c !""".
The !unnormalized" state &.' may be calculated variationally
within the set of MPS by optimizing the weighted norm

N = -. $ −
1

H − " − i-
c†&(0'-

W=!H − ""2+-2
, !6"

where .&$.W
2 ,+&&W&&', and weight W$0 such that it yields

a quadratic equation. Writing &.',&.r'+ i&.i' and assuming
H, &(0', &.r',Re&.', and &.i',Im&.' real, this norm can be
written as !compare Ref. 14" N2= +.r&!H−""2+-2&.r'
−2+.r&!H−""c†&(0'+ +.i&!H−""2+-2&.i'−2-+.i&c†&(0'
+ +(0&cc†&(0'. Minimizing N efficiently by optimizing one P
at a time leads to two independent optimizations over &.r'
and &.i', respectively. Both involve only multilinear terms
such that each iteration step requires to solve a sparse linear
set of equations.10

Minimizing N involves the calculation of H2, which can
be done efficiently as follows. Generally speaking, H has the
structure of a spin chain with only nearest-neighbor cou-
plings as shown in Eq. !1". Naively one expects that one will
have to evaluate on the order of N2 expectation values of
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local observables. There is, however, a clever linear scheme
that only requires iterative update of a set of effective opera-
tors. Therefore the computational complexity of calculating 0
scales as ND3 similar to just evaluating the energy +(&H&('.
As a side product, this leads to efficient algorithms for cal-
culating excited eigenstates of Hamiltonians close to a fixed
energy E by minimizing +(&!H−E"2&('. Moreover, it can be
used to estimate errors on eigenenergies as it can be shown
that there exists an exact eigenvalue Eex within an interval
around E specified by 0=/+(&!H−E"2&('.

For quantum impurity systems with sharp features such as
the Kondo model discussed below, it should be noted, how-
ever, that the broadening - may have to be chosen extremely
small. In this case, the minimization of N in Eq. !6" can
become increasingly ill conditioned as -→0 !see Appendix",
with conditioning deteriorating quadratically in -. If one di-
rectly solves 1 /1+P)n*&)+.&!H−"− i-"&.'− +.&c†&('*,0 by a
nonhermitian equation solver such as the biconjugate gradi-
ent method, conditioning deteriorates only linearly. This is
the strategy that has been followed to obtain the results re-
ported below.

IV. APPLICATION TO KONDO MODEL

Let us now illustrate above strategies by applying them to
the Kondo model. Since the Hamiltonian in Eq. !1" couples ↑
and ↓ band electrons only via the impurity spin, it is possible
!see also Refs. 5 and 17" to “unfold” the semi-infinite Wilson
chain into an infinite one, with ↑ band states to the left of the
impurity and ↓ states to the right, and hopping amplitudes
decreasing in both directions as #−&n&/2. Since the left and
right end regions of the chain, which describe the model’s
low-energy properties, are far apart and hence interact only
weakly with each other )analyzed quantitatively in terms of
mutual information in Fig. 1!b"*, the effective Hamiltonian
for these low energies will be of the form H↑

eff
! 11↓+11↑

! H↓
eff. Due to the symmetry of the Kondo coupling, H↑

eff and
H↓

eff have the same eigenspectrum for n21, such that the
fixed point spectrum is already well reflected by analyzing
either one, as illustrated in Fig. 1!a". Note that for a direct
comparison with NRG, the spin chains can be recombined
within VMPS.17 The resulting standard energy flow diagram
presented in panel !a" for VMPS and NRG, respectively,
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FIG. 1. !Color online" Comparison of VMPS and NRG data for logarithmic discretization of the Kondo model as in Eq. !1" for J
=0.16 and #=2 if not specified otherwise. !a" Energy level flow of the Kondo model as a function of site index n obtained from H'

eff of a
variationally optimized MPS with DMPS=32 !light red/light solid", of the corresponding recombined spin chains !red/dark solid" !Ref. 17",
and from NRG using DNRG=322 states !dashed black". The Wilson shell corresponding to TK,/Je−1/J is indicated by the vertical dashed line
through panels !a" to !c". !b" Correlation along the Wilson chain between spin up and spin down at site n in terms of mutual information
IM!n",S!n↑"+S!n↓"−S!n↑ ,n↓". Here S is the entropy of the reduced density matrix of the groundstate with respect to the indicated subspace
!Ref. 17" !solid for even, dashed for odd sites n". !c" Bond entropy S along the unfolded Wilson chain, where S is the usual von Neumann
entropy of the VMPS reduced density matrix when going from site n to n+1, plotted for even and odd iterations, respectively. !d"
Comparison of T matrix !ImT', see also Fig. 2" for B=0 between VMPS and NRG, including deconvoluted VMPS data !see Appendix".
Inset shows zoom into peak at "=0. The significantly smaller #=1.2 applicable for VMPS !discretization intervals are indicated by vertical
lines" shows clearly improved agreement with the Friedel sum rule T!0"/2 /2=1. !e" Comparison of ground-state energy of the Kondo
Hamiltonian Eq. !1" for fixed chain length relative to the extrapolated energy for D→% for VMPS and NRG as function of the dimension
D of states kept.
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show excellent agreement for low energies for all n including
the fixed point spectrum.

In addition to the energy flow diagram in panel !a", con-
vergence with and hence sensitivity on the Kondo energy
scale is also nicely seen in other quantities typically calcu-
lated within VMPS: in the internal entanglement of the Wil-
son chain as function of site n in terms of mutual informa-
tion, shown in panel !b", and the entanglement of Wilson
chain up to site n with the remainder of the Wilson chain,
shown in panel !c". Note that due to intrinsic even/odd ef-
fects of the model, the data from even/odd Wilson sites is
plotted separately.

The dimensions of the effective Hilbert spaces needed for
VMPS for the unfolded Wilson chain and NRG for the in-
evitably folded chain to capture the low-energy properties
!here energy resolution better than TK" are roughly related by
DMPS$/DNRG,17 implying significant computational gain
with VMPS, as calculation time scales as D3 for both. In-
deed, Fig. 1!e" shows that VMPS has three orders of magni-
tude of better precision for the same D. More generally, if the
impurity couples to n electronic bands !channels", the Wilson
chain may be unfolded into a starlike structure of 2n
branches, with DMPS$DNRG

1/2n . This implies that for maintain-
ing a desired precision in going from 1 to n channels, DMPS
will stay roughly constant, and calculation time for all sites
other than the impurity will scale merely linearly with the
number of channels. Whether the chains can be unfolded in
practice can easily be established by checking whether or not
the correlation between them, characterized, e.g., in terms of
mutual information, decays rapidly with increasing n )cf.
Fig. 1!b" and caption*.

V. ADAPTIVE DISCRETIZATION

Through its variational character, VMPS does not rely on
logarithmic discretization crucial for NRG. The potential of
greatly enhanced energy resolution using VMPS is already
indicated by the #=1.2 data in Fig. 1!d". It is illustrated to
full extent in Fig. 2, showing the splitting of the Kondo peak
in the presence of a strong magnetic field calculated using
VMPS !bare: dots, deconvoluted: red solid", standard NRG
!blue dashed", and perturbatively18 !black".

To obtain the VMPS results of Fig. 2, we used an adapted
discretization scheme for the energies 3k of the conduction
band Hamiltonian Hband=#k'3kck'

† ck' that forms the starting
point for deriving the Wilson chain like Hamiltonian of Eq.
!1".1 Namely, we use a linear or logarithmic discretization
scheme for &3k&*B or $B, respectively, !as illustrated by
light vertical lines in Fig. 2". The nearest-neighbor coupling
amplitudes &n of the resulting, modified Wilson chain decay
only very slowly with n once the energy scale of site n,
namely, #−n/2, drops below B, in contrast to their usual ex-
ponential decay for a standard Wilson chain !see inset of Fig.
2, VMPS vs #=1.7 NRG coupling". The slow decay of &n
implies an increased energy resolution at energies up to B, at
the cost of a loss of energy scale separation. While the latter
fact implies that NRG cannot be used on such a chain, the
VMPS approach does not suffer from this limitation. Indeed,
it exploits the enhanced energy resolution at energies of or-

der B to yield spectral peaks around "0B that are signifi-
cantly sharper than those obtainable by NRG !Fig. 2, com-
pare dotted data points to dashed line". The resolution can be
enhanced even further !Fig. 2, solid thick light line" by ap-
plying a deconvolution scheme to the VMPS data, detailed in
the appendix, to account for the broadening effects of using
an a priori finite - required within the VMPS approach.

Note that such a resolution is out of reach for conven-
tional NRG, whose discretization intervals !shaded inter-
vals", even for comparatively small choice of #=1.7, are
much broader than the spectral features of interest. Note that
the NRG data shown here is, by conventional NRG stan-
dards, of high quality: first, we used a rather small value of
#=1.7, implying high-energy resolution, by NRG standards;
second, we employed the recently developed full density-
matrix !FDM" approach,19,20 which incorporates systematic
improvements relative to previous NRG implementations.
We have tried extensively to improve the quality of our NRG
data via z-averaging,21 but have found this to be of limited
use.

The line shape of our deconvoluted data !red solid line"
agrees well with the analytic RG calculation18 !black solid
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† and NF is the density of states at the Fermi energy,

calculated with VMPS !dots: raw data, red solid: deconvoluted",
NRG !dashed", and perturbative !black solid" !Ref. 18". For NRG,
D=1024 states were kept, using a log-Gauss broadening parameter
!Ref. 19" of b=0.4. According to Ref. 18, the peak of the perturba-
tive result should be shifted in " by B /2 log!B /TK" !arrow". NRG
and VMPS discretization intervals are indicated by shaded areas
and gray vertical lines, respectively. Due to the increased linear
resolution for &"&4B, the number of states retained within VMPS
needed to be increased, and was dynamically governed by either a
threshold of 4 ·10−8 in discarded weight or a maximum number of
states of D=512. The latter was required only for frequencies
around "$B. The inset shows the hopping amplitudes correspond-
ing to standard logarithmic !#=1.7" and adapted !VMPS" discreti-
zation schemes. The required Lorentzian broadening - of the
VMPS data smears out sharper features. Deconvolution !targeting
with adaptive spline" together with subsequent GAUSSIAN broaden-
ing was applied to obtain the solid light line !see Appendix".
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line", perturbative in 1 / log!B /TK". The peak positions agree
well also after a shift in " by −B /2 log!B /TK" of the pertur-
bative result suggested by18 is taken into account.

As pointed out in the context of Fig. 1, numerical re-
sources in terms of matrix dimensions can be drastically re-
duced within VMPS when applied to the NRG discretized
model, in that the variational freedom provides a highly
adaptive method. However, this does come at a price. While
the calculation of spectral functions within NRG for the full
frequency range are obtained in a single run about as expen-
sive numerically as the iterative diagonalization of the NRG
Hamiltonian and as such highly efficient, the correction vec-
tor method )cf. Eq. !5"* provides an optimal setting for one
frequency at a time. This is highly tailored toward analyzing
certain features in frequency space, but implies that for every
spectral data point a new correction vector must be obtained,
which is itself equally expensive numerically as the calcula-
tion of the ground state. Nevertheless, in situations that be-
come computationally hard in NRG or are simply out of
reach for NRG due to the required rather crude coarse grain-
ing of the conduction band, VMPS does provide a well-
controlled technique that can clearly compete and in certain
cases outperform NRG. In the example given in Fig. 2, the
logarithmic discretization scheme was adapted by introduc-
ing an energy interval from −B to B in which the level spac-
ing was chosen to be essentially uniform. It appears, indeed,
that for describing dynamical features at frequencies "$B,
all states with frequencies &"&4B are equally important,
which necessitates the use of a uniform level spacing from
−B to B. Of course, this does break energy scale separation
from the very outset.

VI. OUTLOOK

Let us finish by pointing out that the MPS approach can
readily be extended to the case of finite temperatures by us-
ing matrix-product density operators10 instead of MPS, and
to time-dependent problems )such as H=H!t" or nonequilib-
rium initial conditions*, by using the recently developed
adaptive time-dependent DMRG11 and MPS analogs
thereof.10 Exploratory work in this direction has been very
encouraging.22

In conclusion, the MPS approach provides a natural lan-
guage for simulating quantum impurity models. The under-
lying reason is that these models, when formulated on the
Wilson chain, feature only nearest-neighbor interactions.
Their low-energy states are thus determined mainly by their
nearest-neighbor reduced density matrices, for which very
good approximations can be obtained by suitably optimizing
the set of matrices constituting a MPS.23 We also showed
how these could be used for a direct !quasi" variational
evaluation of Green’s functions.

Recently, it has come to our attention that two recent pa-
pers by Freyn and Florens24 and Zitko and Pruschke25 who
claimed improved resolution of NRG spectral functions. Be-
sides properly accounting for the wave function renormaliza-
tion A# due to discretization,26 Ref. 25 is heavily based on
z-averaging21 with modest success for finite frequencies—
see for example Fig. 8 in Ref. 25 which shows spurious

oscillations. It is exactly these spurious oscillations we had
also seen in the z-averaging done excessively for our model.
In order to get rid of these spurious oscillations in a system-
atic unbiased manner, however, one would have to rebroaden
the data to get discretization-independent correlation func-
tion. Hence, although z-averaging does show modest im-
provements !as known since Ref. 21", it cannot be expected
to cure in much detail the rather crude coarse graining of the
conduction band put into the model from the beginning. Ref-
erence 24 introduced a procedure for broadening the raw
NRG data to obtain smooth spectral peaks, employing a
frequency-dependent broadening parameter b!"". This led to
significantly increased resolution for spectral peaks of the
spin-boson model with very weak damping. However, when
we tried this method for the present Kondo model, the im-
provements over conventional NRG broadening techniques
were also found to be rather modest.
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APPENDIX: DECONVOLUTION OF SPECTRAL DATA

DMRG obtains spectral data from a discretized model
Hamiltonian. In order for the spectral data to be smooth, an
intrinsic frequency-dependent Lorentzian broadening - is
applied during the calculation of the correction vector &.'k at
frequency "k )cf. Eq. !5"*,

1-k
!" − "k" ,

-k

/

1

!" − "k"2 + -k
2 . !7"

Since the original model has a continuous spectrum, the
broadening -k should be chosen of the order or larger than
the artificial coarse grained discretization intervals 1". Larger
- of course improves numerical convergence. However,
since Lorentzian broadening produces longer tails than for
example GAUSSIAN broadening, this makes it more suscep-
tible to pronounced spectral features close by. Our general
strategy for more efficient numerical treatment was then as
follows. !i" Choose somewhat larger -!-021"" throughout
the calculation. !ii" Deconvolve the raw data to such an ex-
tent that the underlying discrete structure already becomes
visible again, !iii" followed by a GAUSSIAN smoothening pro-
cedure which then acts more locally. Let us describe step !ii"
in more detail.
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Broadening, by construction, looses information. Hence
trying to obtain the original data from the broadened data via
deconvolution is intrinsically ill conditioned. In literature
there are several ways of dealing with this problem, most
prominently maximum entropy algorithms !see Refs. 5 and
27". Our approach is targeting the actual spectral function
using the knowledge about the Lorentzian broadening used
during the VMPS calculation, combined with adaptive
spline. Given the data Ã!"" obtained through VMPS, let us
propose the existence of some smooth but a priori unknown
target curve A!"", which when broadened the same way as
the VMPS data using exactly the same -k via a Lorenzian
broadening kernel

Ãk , Ã!"k" = 1
−%

%

d"!A!"!"1-k
!"! − "k" , !8"

reproduces the original data Ã!"". Direct inversion of above
equation as it is ill conditioned, as already mentioned, and
not useful in practice.

Let us assume the unknown target curve A!"" is smooth
and parametrized by piecewise polynomials. Given the data
points "k with k=1. . .N, the intervals in between these val-
ues will be approximated in the spirit of adaptive spline
functions27 by 3rd order polynomials !k=1. . .N−1"

fk!"" , 2ak + bk!" − "k" + ck!" − "k"2 + dk!" − "k"3 for " ! )"k,"k+1*
0 otherwise.

3 !9"

Since spectral functions decay as 1 /"2 for large ", for our
purposes the ends are extrapolated asymptotically to infinity,
allowing both 1 /" and 1 /"2 polynomials

f0!"" , 4a0

"
+

b0

"2 " 4 "1

0 otherwise
5

fN!"" , 4aN

"
+

bN

"2 " 5 "N

0 otherwise.
5 !10"

In total, this results in 4!N−1"+262=4N parameters, with
the target function parametrized piecewise as A!"", f!""
,#k=0

N fk!"". In cases where one has not approached the
asymptotic limit yet, the ends may simply be modeled also
by Eq. !9", taking c0=d0=cN=dN=0. Moreover, if informa-
tion about the gradient f!!"" is known, it can be built in
straightforwardly in the present scheme by replacing bk.

The parameters for the piecewise parametrization are
solved for by requiring the following set of conditions:

!i" The function f should be continuous and smooth by
requiring that f , f!, and f" are continuous !3N equations".

!ii" The function f , when broadened as in Eq. !8", should
reproduce the VMPS data Ãk

Ãk
c , #

k!=0

N 1
"k!

"k!+1

d"!fk!!"!"
-k//

!"! − "k"2 + -k
2 !11"

Ãk − Ãk
c = pkrk !12"

where rk, fk
!3"!"k"− fk−1

!3" !"k" and "0,−%, "N+1,+% !N
equations".

In the spirit of adaptive spline, the third derivative of the
piecewise polynomials is no longer required to be continu-
ous. Its jump rk is set proportional to the change in Ãk− Ãk

c

introducing the additional prespecified parameter set pk, kept
small for our purposes !note that enforcing the strict equality
Ãk

c= Ãk by setting pk=0 would result in an ill-conditioned
problem".

If interval spacings specified by "k are nonuniform, the pk
have to be adapted accordingly. For this paper we used pk
= p · !"k+1−"k") with p on the order of 10−6 and )01. With
pk fixed, Eqs. !11" and !12" determine all spline parameters
uniquely in terms of the original VMPS data Ãk. The inte-
grals emerging out of Eq. !11" can all be evaluated analyti-
cally. The final inversion of Eq. !11" to obtain the parameters
for f!"" is well behaved for small but finite p, small enough
to clearly sharpen spectral features.
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