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The concept that electromagnetic radiation can exert
forces on material objects was predicted by Maxwell,
and the radiation pressure of light was first observed ex-
perimentally more than a century ago [1} 2]. The force
F exerted by a beam of power P retro-reflecting from
a mirror is F = 2P/c. Because the speed of light is so
large, this force is typically extremely feeble but does
manifest itself in special circumstances (e.g. in the tails
of comets and during star formation). Beginning in the
1970’s it was appreciated that one could trap and ma-
nipulate small particles and even individual atoms with
optical forces [3}4].

Recently there has been a great surge of interest in the
application of radiation forces to manipulate the cen-
ter of mass motion of mechanical oscillators covering a
huge range of scales from macroscopic mirrors in the
LIGO project [5} [6] to nano- or micromechanical can-
tilevers [7,18,19, 110,111, [12]], vibrating microtoroids [13}14]
and membranes [15]. Positive damping permits cool-
ing of the motion, negative damping permits paramet-
ric amplification of small forces [13} [16} [17]. Cooling a
mechanical system to its quantum ground state is a key
goal of the new field of optomechanics.

Radiation pressure also appears in the form of un-
avoidable random back action forces accompanying op-
tical measurements of position as the precision of those
measurements approaches the limits set by quantum
mechanics [18| [19]. The randomness is due to the pho-
ton shot noise, whose observation is a second key goal
of the field.

In pioneering work, Braginsky and collaborators [20,
21] first detected mechanical damping due to radiation
in the decay of an excited oscillator. Very recently both
measurement and mechanical damping of (the much
smaller) random thermal Brownian motion (i.e. cooling
of the center of mass motion) was achieved by several
groups using different techniques (see also [22] for a
brief review). These include the intrinsic optomechan-
ical cooling (to be described below) by photothermal
forces [7] or radiation pressure [6} 8, 9, [14, [15] and ac-
tive feedback cooling [10, 23] based on position mea-
surements.
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FIG. 1: (a) Schematic optomechanical setup. (b) Radiation
pressure force vs. position. (c) In the quantum picture of cool-
ing, Raman-scattered laser photons see a density of states that
is changed by the presence of the cavity.

Retarded radiation forces

The typical experimental setup in optomechanics
consists of an optical cavity where one of the end-
mirrors can move (Fig. . For example, experimental-
ists have attached micromirrors to AFM cantilevers or
nanobeams [8, 9] [10]. When the cavity is illuminated
by a laser, the circulating light gives rise to a radia-
tion pressure force that deflects the mirror. Any dis-
placement of the mirror, in turn, will change the cav-
ity’s length and thereby alter the circulating intensity,
since the optical cavity mode frequency shifts with re-
spect to the fixed laser frequency. It is this coupled dy-
namics that produces a wealth of interesting effects in
such systems. The role of the cavity is twofold: It reso-
nantly enhances the circulating intensity, and it makes
the intensity depend very sensitively on the position.
Although the setup described here may seem rather spe-
cial at first sight, it is in fact just one incarnation of
a very generic nonlinear nonequilibrium situation: On
the most general level, we are dealing with a resonance
(the optical cavity mode) that is driven (by a laser), and
whose resonance frequency is pulled by the displace-
ment of some mechanical degree of freedom (the mov-
able mirror). Having the resonance frequency depend
in this manner on the position immediately implies that
there will be a mechanical force. Given this general de-
scription, it is no wonder the same physics has by now
been realized in a diverse variety of physical systems,
including superconducting microwave circuits [12] and



ultracold atoms [24, 25]. However, in the following we
will employ the terms appropriate for the simple optical
setup, keeping in mind that the concepts can readily be
translated to other situations.

Intrinsically, the movable mirror is a harmonic oscilla-
tor. However, as the radiation force depends on the mir-
ror’s position, it modifies the mechanical properties of
the mirror. The force gradient will change the mirror’s
spring constant, an effect known as “optical spring”,
which has been used to increase the frequency of a mir-
ror by a factor of more than twenty, essentially trap-
ping it using light [6]. The potential in which the mir-
ror moves can be changed drastically by the radiation
forces, eventually giving rise to multiple stable positions
if the circulating intensity is large enough [26].

There is yet another crucial feature about the radia-
tion forces: they respond with a time-lag. In the setup
discussed here, this is due to the finite ring-down time
of the cavity, i.e. the time needed for photons to leak out
(proportional to the cavity’s finesse). The radiation force
as a function of mirror position is a simple Lorentzian
(Fabry-Perot resonance). Let us imagine that the mirror
is placed on the slope of the resonance (see Fig.[I). As
the mirror oscillates, e.g. due to thermal fluctuations or
because of driving, it moves back and forth along the
slope. On approaching the resonance, the force will be
smaller than expected, due to the time-lag, and it re-
mains larger when the mirror retracts. Overall, the ra-
diation force extracts work from the mirror: § Fdz <
0. This amounts to an extra damping, which will cool
down the mirror by reducing thermal fluctuations. As
discussed below, positioning the mirror on the opposite
side of the resonance leads to a negative effective damp-
ing constant. These effects are sometimes labeled "“dy-
namical back-action”, since they involve the light field
acting back on the mechanical motion after having been
perturbed by the mirror. Alternative optomechanical
cooling schemes include Doppler-cooling in Bragg mir-
rors [27] and “active feedback cooling” [10) 23} 28]

The optomechanical damping rate I, scales linearly
with laser intensity and depends sensitively on the po-
sition of the mirror. In the naive classical picture de-
scribed here, it reduces the effective temperature ac-
cording to Teg = TT/(T + T'opt), where T is the bulk
equilibrium temperature and I" the intrinsic mechanical
damping rate. Note that we are talking about the ef-
fective temperature of a single mechanical mode of the
structure that carries the mirror: Optomechanical cool-
ing will not reduce the bulk temperature of the setup.
This, however, is fully sufficient, if in the end the ex-
periment is only sensitive to this particular degree of
freedom. An analogous situation arises in molecule in-
terferometers, where the center-of-mass motion may be
quantum, even though the internal motion of atoms in
the molecule remains hot.

Quantum picture of cooling: Towards the ground state

The classical time delay description given above
shows how the viscous damping force is produced. As
a transition to the full quantum picture, it is convenient
to switch from the time domain to the frequency do-
main. Periodic motion of the mechanical system at fre-
quency wy leads to amplitude and phase modulation of
the optical amplitude inside the cavity. This modulation
leads to sidebands displaced from the optical carrier fre-
quency by twy. This is precisely analogous to Raman
scattering from a solid whose index of refraction is peri-
odically modulated in time (and space) by sound waves.
Hence the lower and upper sidebands are referred to as
Stokes and anti-Stokes respectively. If both phase and
amplitude modulation are present, they interfere caus-
ing one sideband to be stronger than the other. This can
be achieved by detuning the optical carrier frequency
from the cavity resonance.

Quantum mechanically, the lower sideband comes
from a process in which a carrier photon loses energy
hwy by creating a phonon inside the mechanical oscil-
lator. Correspondingly the anti-Stokes upper sideband
comes from a process that removes energy fwy from
the mechanical oscillator. This is the process needed for
cooling. Because the sideband photons differ in energy
by 27w, a difference in intensity of the two sidebands
implies a net energy transfer by the optical field from or
to the mechanical system. The required asymmetry is
achieved by putting the optical carrier frequency below
the nominal cavity Fabry-Perot resonance. As shown in
Fig. |1} this puts the anti-Stokes line closer to the cavity
resonance and the Stokes line further away. This yields
an asymmetry in the density of states seen by the Stokes
and anti-Stokes photons and hence an asymmetry in the
rate of their production, as can be analyzed nicely in the
”quantum noise” approach [19} 29].

Although this scheme produce cooling, we cannot ap-
proach the quantum ground state unless the Stokes in-
tensity is close to zero. This is reasonable since the
Stokes process excites the mechanical system to higher
energy levels. As shown in Fig. (1)) the huge Stokes/anti-
Stokes asymmetry can be achieved only in the good cav-
ity limit where the cavity resonance linewidth is smaller
than the sideband spacing 2wy. Another condition is
that the optical intensity be high enough that the result-
ing optical damping almost instantly removes any ther-
mal phonons which enter the mechanical oscillator from
the surroundings. Then, the full quantum expression for
the minimum achievable mean phonon number of the
oscillator is [29}30]

2
K
Nmin = 5 1
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where k is the optical ring-down rate of the cavity. While
not technically easy, one can in principle detect the ap-
proach to the mechanical ground state by the disappear-




100000
10000

1(1)88 o 8

10

1

0.1
0.01
0.001
0.0001
0.00001 Eud

0.01 0.1

phonon number

10

Wi /K

FIG. 2: Examples of recent progress in optomechanical cooling.
The initial and final phonon numbers are plotted vs. mechan-
ical frequency divided by the optical linewidth. The quantum
limit for optomechanical cooling is indicated as a blue curve
[29L130]. wam/k < 1is the ‘bad cavity’ limit, and wyn/k > 1is
the “good cavity” limit, for which Eq. [[holds and ground-state
cooling is possible. Red labels indicate cooling from room tem-
perature, blue labels refer to cryogenic setups. Initial phonon
numbers vary even for the same temperature due to differ-
ent frequencies. Data (and setup pictures, left to right) from
experiments at MIT [6], Laboratoire Kastler Brossel (LKB) [9],
Yale [15], Vienna (IQOQI) [32], MPQ Munich [33]], and JILA at
Boulder [34].

ance of the anti-Stokes sideband. Mechanical and opti-
cal resonances hybridize [29] 31] in the strong-coupling
regime when I'y,¢ exceeds the cavity decay rate .

At present, experiments have not yet reached the
ground state, though phonon numbers as low as 30 have
been obtained very recently using optomechanical cool-
ing [32, 33]. Current challenges include starting from a
low bulk temperature (requiring cryogenic operation),
making sure to have a large mechanical quality factor
(which limits the achievable cooling ratio), and fighting
spurious heating from light absorption. Figure [2]illus-
trates the current status for intrinsic cooling (without
feedback).

Displacement readout

Detecting the mirror’s motion is in principle straight-
forward, since the optical phase shift is directly pro-
portional to the mirror’s displacement x. Typically, the
Lorentzian frequency spectrum of the mirror’s position
fluctuations is obtained in this way. The peak width
yields the total damping rate, including the effective op-
tomechanical damping. The area under the spectrum
reveals the variance of x, which is a measure of the effec-
tive temperature, according to the classical equipartition

theorem.

It is well known that quantum mechanics puts a
fundamental constraint on the sensitivity of any such
"weak” displacement measurement[18) [19]. Indeed, be-
ing able to follow the motion over time with arbitrary
precision would reveal the mirror’s trajectory, which
is forbidden by Heisenberg’s uncertainty relation. The
photon shot noise limits the precision for estimating the
phase shift. In principle, this can be overcome by in-
creasing the light intensity. However, then another ef-
fect kicks in: The shot noise of photons being reflected
from the mirror imprints an unavoidable “jitter”, mask-
ing the mirror’s “intrinsic” motion. This effect is called
measurement back-action. The standard quantum limit
is reached when both effects are equally strong. It cor-
responds to resolving the mirror’s position to within
its ground state uncertainty, after averaging the signal
over a damping time. The quantum limit has been ap-
proached up to a factor of five recently[33], with an im-
precision of 107'¥m/v/Hz. Detecting the measurement
back-action effects is still an outstanding challenge (but
see [35]]). Back-action free measurements of quadratures
of the mechanical motion[36] are another option.

However, in order to see genuine "quantum jumps”,
it is necessary to carry out a quantum non-demolition
measurement with respect to an observable that, unlike
position, is conserved by the Hamiltonian. The most im-
portant example in this context would be the phonon
number. Recently, a modified optomechanical setup
was introduced [15| [37], with a movable membrane in-
between two fixed end-mirrors. In such a situation, the
optical frequency shift can be made to depend quadrat-
ically on the displacement. This would enable phonon
number (Fock state) detection, once the parameters are
optimized further and the system can be cooled into the
quantum regime.

Nonlinear dynamics, instability, amplification

Beyond the linearized dynamics discussed up to now,
such systems can display much richer, nonlinear ef-
fects as well. Recall that on the decreasing slope of
the force vs. position curve, work is performed on
the mirror, effectively reducing the overall damping as
I',pt Now becomes negative. Once the laser intensity is
strong enough to make the total “damping rate” nega-
tive, any tiny amplitude oscillation will grow exponen-
tially [38] [39] 40]. This growth finally saturates due to
nonlinear effects, and the mirror settles into periodic,
self-sustained oscillations, as observed in experiments
[13, 16, 17]. Their amplitude is determined by the laser
intensity, the detuning, and the strength of the intrinsic
mechanical friction, as well as other parameters.

Note that the parametric instability we have just de-
scribed is conceptually identical to what happens in a
laser above the lasing threshold. Here, the mechanical
vibration plays the role of the laser’s light mode, and
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FIG. 3: Attractor diagram for nonlinear optomechanical mo-
tion. Stable self-sustained oscillations occur when the aver-
age power P;,q fed into the mechanical motion by the radia-
tion pressure equals the power Py dissipated through fric-
tion. Their ratio depends on the amplitude A of mirror mo-
tion (plotted in terms of the width of the optical resonance,
rrwaM), and on the detuning between laser and optical reso-
nance, as well as the input power (fixed in this plot).

the pump is provided by the radiation that drives the
cavity.

To obtain the attractors for the motion, one may pose
a simple question: How does the work per cycle per-
formed by the radiation field depend on the mirror’s
oscillation amplitude? The power fed into the system
has to match the power dissipated by friction. When
one draws a map of the possible amplitudes of oscilla-
tion that are consistent with this condition, an intricate
structure emerges [40, 41]] (see Fig.[3). In particular, at
fixed parameters a large number of possible amplitudes
may exist simultaneously. This multistability has begun
to be explored in experiments [17], and it might even be
useful for sensitive measurements [40].

At even higher optical drive powers, the mirror may
enter a state of chaotic motion [42], which still remains
mostly unexplored. In addition, one may ask about pos-
sible quantum effects in the nonlinear dynamics [41].

Nonclassical states, squeezing, entanglement

The question arises how to use the optomechanical in-
teraction to produce genuinely nonclassical states of the
light field and/or the mechanical motion. We list some
ideas in the following that may be implemented in the
future.

As we have seen, the cavity length changes in re-
sponse to the circulating intensity. In this regard, the
setup is equivalent to a nonlinear optical medium, with

an intensity-dependent index of refraction. Such a Kerr
medium may be used to produce squeezing in the light
field, e.g. by suppressing the intensity fluctuations (am-
plitude squeezing), and this can be translated directly to
optomechanics [43]]. With regard to the mirror, squeezed
states might be produced by varying the optical spring
constant in time. As indicated above, mechanical Fock
states could be produced via measurements.

Entanglement between the light field and the mirror
can be generated easily, in principle. Suppose for a mo-
ment that the cavity is closed and the field is in a super-
position of different photon numbers, e.g. in a coherent
state. Each of these Fock states of the radiation field will
exert a different radiation pressure force, thereby dis-
placing the mirror by a different amount. This creates
an entangled state, which may be called a “Schrédinger
cat”, as the mirror involves many billions of atoms (see
e.g. [44] 45,146, [47] and others). Remarkably, after a full
period of the mirror oscillation, the entanglement would
be undone, like in a quantum eraser experiment. It
has been suggested that producing entanglement in this
way and checking for its decay over time could eventu-
ally be a means to test for potentially unknown sources
of decoherence, probably even including hypothetical
gravitationally induced collapse of the wave function of
the massive mirror [46].

When several movable mirrors or membranes are in-
cluded, the radiation field can be exploited as a medium
which couples these mechanical elements to each other
[48, 49| 50], leading to entanglement if thermal fluctua-
tions are sufficiently suppressed. Experimental proof of
entanglement then requires correlation measurements
via optical probe beams.

Overview of experimental setups

Among the setups that have been realized during
the past five years, most involve cantilevers [7, [10]
or nanobeams [8] 9] as mechanical elements. Masses
typically range from 10~ *%kg to 10~ '%kg (and even 1g
[6]), while frequencies are often in the MHz regime
(wm/27 = 1kHz to 100MHz). Light is typically reflected
from Bragg mirrors made from multi-layered dielectric
materials. A rather different approach is based on mi-
crotoroid optical cavities made from silica on a chip
[13] 14} 51]]. The light circulating inside an optical whis-
pering gallery mode inside the toroid exerts a radiation
pressure that couples to a mechanical breathing mode.

The biggest challenge in all of these devices is to ob-
tain both a high optical finesse (currently in the range
from 10% to 10°), and a high mechanical quality factor
(10% to 10° for beams and cantilevers). As explained
above, an alternative approach [15] 37] involving a 50
nanometer thin membrane inside a fixed optical cavity
can circumvent this problem to some degree, and has
reached a finesse of 10* and a mechanical quality factor
of 106.



Optomechanical ideas have recently been realized in
a number of other systems as well. For example, it is
possible to replace the optical cavity by driven radio-
frequency [52]] or microwave [12}34] circuits, whose res-
onance frequency depends on the motion of a capaci-
tively coupled nanobeam. The setup involving super-
conducting microwave resonators is especially promis-
ing as it can be coupled to Josephson junctions, qubits
and amplifiers on the same chip. Incidentally, the
essence of optomechanical cooling has also been demon-
strated using a current-driven superconducting single
electron transistor in place of the optical cavity [53].

Another recent development exploits the radiation
forces that occur between two glass fibres or between
a fibre and a dielectric substrate, where the coupling is
through the evanescent light field [54] 55]. These de-
vices operate on the nanoscale, and they can generate
large forces without the need for a high finesse cavity.
One may thus envisage integrating mechanical devices
with photonic crystals, fibres and other optical elements
on a chip, serving as the basis for optically controlled
mechanical information processing and sensing.

For a long time, radiation forces had already been
used to cool, trap and manipulate atoms, before being
applied to mechanical structures. It is therefore amus-
ing to note that the concepts of optomechanics are be-
ing transferred back to the domain of cold atoms. Sev-
eral experiments [24), 25] have now demonstrated how
the mechanical motion of clouds of ultracold atoms in-
side an optical cavity can couple to the light field and
display the effects we have been discussing. Given the

small mass of the atom cloud, the mechanical effects of
a single photon can be significant. This allows to study
optomechanics in a new domain. One might also entan-
gle an atomic ensemble and a nanomechanical system
(e.g. [56]).

Outlook, new directions, and challenges

In the short term, experiments are racing towards the
ground state of mechanical motion, to enable manipula-
tion in the quantum regime. Achieving this goal would
open the door towards possible applications, for exam-
ple in the area of quantum information processing. It
would also permit us to answer fundamental questions,
such as whether we understand decoherence processes
in massive objects. Sensitive measurements (of displace-
ment, mass, etc.) are another area where optomechani-
cal systems will find applications, and while they do not
urgently require going into the quantum regime, they
could benefit from the improved sensitivity.

In the longer term, optomechanics may also be
viewed as a light-mechanics interface to realize hybrid
structures for (classical or quantum) information pro-
cessing, switching or storage, in integrated photonic cir-
cuits on a semiconductor chip.
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