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Deutsche Zusammenfassung

Diese Arbeit beschäftigt sich mit der 0.7 Anomalie im Leitwert von Quantenpunktkon-
takten (QPCen). Hierbei wird die Wechselwikung mit einer erst kürzlich entwickelten
Methode, der Funktionalrenormierungsgruppe (fRG) behandelt.

Bei QPCen ist der Leitwert in Einheiten von g0 = 2e2

h
quantisiert. Dies wurde schon

1957 von Landauer vorhergesagt und 1988 experimentell bestätigt [5, 10]. Zusätzlich zu
dieser Quantisierung fand man 1996 eine Zwischenstufe bei 0, 7g0 [6], die unter dem Namen
0.7 Anomalie bekannt wurde. Diese hängt in einer ganz bestimmten Art und Weise von
der Gatterspannung, dem angelegten magnetischen Feld, der Temperatur und der Trans-
portspannung ab, was in Kapietel 2 erläutert wird. Man ist sich einig, dass dieser Effekt auf
Vielteilchenwechselwirkung zurückzuführen ist, jedoch wurde noch kein Modell gefunden,
dass alle Aspekte dieses Effekts beschreiben kann.

In Kapitel 3 werden die fRG-Flussgleichungen hergeleitet, wobei ich mich im Wesent-
lichem auf das Vorlesungskript von Prof. Volker Meden [11] stütze und versuche alle
Konventionen zu übernehmen. Die fRG-Methode basiert auf einem Infrarotcutuff im
freien Propagators, bezüglich dessen Differentialgleichungen in der Selbstenergie und Ver-
texfunktionen höherer Ordnung hergeleitet werden. Die angewandten Vereinfachungen
führen dazu, dass die numerischen Resultate nur im Limes von Null Temperatur und
Transportspannung gültig sind. Daraufhin wird besprochen, wie fRG auf wechselwirkende
Quantendrähte anzuwenden ist (Kapitel 4).

Bei den numerischen Ergebnissen in Kapitel 5 konzentriere ich mich zunächst auf
Quantenpunkte (QDe) und untersuche die Gültigkeit der Methode im Vergleich mit nu-
merischen Daten, die mit der quasi-exakten Numerischen Renomierungsgruppe erzeugt
wurden. Schließlich werden numerische Ergebnisse füe QPCe vorgestellt, wobei der Kon-
takt mittels einer Barriere im Potential dargestellt wird. Es werden alle zu erwartenden
Eigenschaften reproduziert. Im Einzelnen sind das: (i) Der pinch-off Wert in der Gat-
terspannung wird durch das magnetfeld kaum beeinflusst. (ii) Ausserdem ergibt sich
für hohe Magnetfelder ein erhöter g-Faktor und (iii) der Rauschfaktor als Funktion des
Leitwerts für verschiedene Magnetfelder zeigt qualitative Übereinstimmung mit dem Ex-
periment. Das wichtigste Resultat ist jedoch, dass sich (iv) für kleine Werte der Zee-
manenergie die nicht Spin-entartete Stufe im Leitwert von “oben herab” entwickelt. Dabei
entsteht für bestimmte Werte des Magnetfeldes eine Zwischenstufe bei knapp 0, 7g0.
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Chapter 1

Introduction

In 1957 Landauer predicted that the electrical conductance of a narrow one dimensional
wire is quantized in units of g0 = 2 e

2

h
, where e is the electron charge and h is Planck’s

constant. It took over 30 years until the conductance quantization was first observed in
1988 simultaneously by van Wees et al. [5] and Wharam et al. [10].

Now, 20 years later, many body effects in short quantum wires, also called quantum
point contacts (QPCs), are still an important issue. The most important is the so called 0.7
anomaly, an additional shoulder-like step at around 0.7g0, that arises in the conductance as
the point contact is made so narrow that the last transport channel is closed, first observed
in 1996 by Thomas et al. [6]. Although a huge number of prevailing phenomenological
models have been proposed to explain this anomaly, and its rich and complex dependence
on gate voltage, magnetic field, temperature and source-drain voltage, no consensus has
yet been found. The most established models are the spontaneous spin polarization [12]
and Kondo related models [7]. But, to the best of our knowledge, no attempt has yet been
made to study the 0.7 anomaly with a theoretical tool sufficiently powerful to adequately
incorporate all relevant ingredients, namely (i) electron-electron interactions (ii) the spin
degrees of freedom (iii) spin-dependent correlations and (iv) the geometry (width, length,
shape) of the quantum point contact, within a single, consistent, theoretical framework.

In this work we use an auspicious method, namely the functional Renormalization
Group, which is able to treat interacting systems while taking into account microscopic
details. This method is based on a functional field integral representation of the partition
function with an additional infrared cutoff in the free propagator. Deriving an differential
equation with respect to this cutoff leads to coupled flow equations of the self energy and
higher order vertices. Solving this differential equation provides an effective noninteracting
system.

We will show that a one dimensional interacting wire with potential barrier representing
the QPC yields results for the dependence of the conductance on gate voltage and magnetic
field that are in qualitative agreement with experiment. This leads us to conclude that
the theoretical framework developed here is, in principle, appropriate for describing the
0.7 anomaly, although much further work theoretical will be required to also investigate
its dependence on temperature and source-drain voltage.



2 1. Introduction

The outline of this thesis is as follows:

• In chapter 2 we give a phenomenological overview of strong correlation effects for
quantum dots and quantum point contacts. The former is included because of the
Kondo related model of the 0.7 anomaly.

• In chapter 3 we develop the fRG flow equation for interacting systems, and state the
approximations one has to make to implement the differential equations.

• How one can use the fRG method to describe one dimensional interacting QWRs with
a smoothly varying local potential is described in chapter 4. We give an introduction
to one dimensional tight binding chains, which we use to set up the flow equations.
Furthermore we specify how the results can be used to calculate observables.

• We present results of the numerics in chapter 5. First we concentrate on QDs to
sort out the validity of the approximations we made. In the last section we turn to
QPCs and present details of the dependence of the conductance on gate voltage and
magnetic field.

• In the last chapter we conclude the present work, and give an outlook an futur topics.



Chapter 2

Overview of the Physically relevant
Aspects

In the last decades the progress in nano fabrication made it possible for experimentalists
to study many body phenomena for geometries where the typical length scale is in order of
the Fermi length. In such systems the electrons start to “feel” the boundaries: If in one of
the three spatial dimensions, which usually defines the z-direction, electrons are trapped
in a potential, so narrow that only the lowest resulting eigenstate (of the motion in the
z-direction) is occupied, then the time evolution in z-direction is only affected by the lowest
eigenenergy, which only produces some overall phase-factor. As a result, the dynamics of
the system is essentially independent of the z-direction, and governed entirely by the motion
in the other two dimensions. Such systems thus form a so-called two dimensional electron
gas (2DEG). It is usually realized by a GaAs/AlGaA hetero structure. A constriction
of the movement in one or both of the two remaining dimensions produces one and zero
dimensional systems.

One-dimensional systems are called Quantum Wires (QWRs). Wires where the elastic
mean free length le is much smaller then the length L are called diffusive. Electrons that
pass such wires are scattered several times before they reach the other end. If L� le the
wire is called ballistic. It forms only a point-like contact between two reservoirs, hence it
is called Quantum Point Contact (QPC). A good realization is a 2DEG with a top-gate
geometry as the one in figure 2.4 left panel. The advantage over other structures is that
one can control the effective width w of the wire via the applied gate voltage Vg.

Zero-dimensional systems are called Quantum Dots (QDs). If the charging energy EC
is comparable with the Fermi temperature they are also called Single Electron Transistors
(SETs). One possibility to realize tunable QDs are lateral QDs. They are also defined
by metallic gates on top of a 2DEG. The gates allow for a control of the tunnel barriers
between the QD and the source and drain. QDs are also called artificial atoms, since their
properties are similar to impurity atoms as we will discuss in the next section.
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2.1 Quantum Dots

The energy of the electrons inside a QD is determined by three factors:

Firstly, the energy levels caused by the geometry of the dot are discrete, i.e. the level
spacing is bigger than the width of the levels.

Secondly, the energy of the electrons is determined by the charging energy, which
depends on the dot size. A good estimate for the level spacing δE and the charging
energy U of a disc of diameter L is

δE ∝ 1/L2 (2.1)

U =
e2

2C
≈ e2

2ε0L
(2.2)

where C is the capacitance of the dot.

Thirdly, the energy is shifted by the potential of the gates. The transport through the
dot at zero temperature T = 0 and small applied voltage Vsd ≈ 0 only occurs when a
level of the QD is aligned with the Fermi energy of the leads. This leads to resonances in
the conductivity as a function of gate voltage Vg (see figure 2.1). These peaks are called
Coulomb peaks. They are smeared if temperature is higher than the level width. Raising
the applied voltage Vsd has the same effect. However if the applied voltage is big enough
new levels can get involved. This leads do a jump in the conductance as a function of Vsd.

Figure 2.1: Linear conductance G = limV→0
dI
dVsd

versus gate voltage Vg [1]. The peaks are
separated alternately by U and δE + U .
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Figure 2.2: Left: Image of the QD device used by Goldhaber-Gordon et al. [2]. Right:
Measurement of the linear conductance G vs. gate voltage Vg for temperatures higher than
TK (red curve) and temperatures lower than TK (blue curve) [3].

2.1.1 The Kondo Effect in QDs

Under certain circumstances, which we will discuss in the following, the so called Kondo
resonance can develop. As a consequence of this resonance the conductance through the dot
is equal to one in units of e2

h
for a wider range of gate voltage Vg. The origin of the Kondo

resonance is the Kondo effect and was first associated with magnetic impurities in metals.
For these magnetic impurities the Kondo resonance leads to an enhanced scattering of the
electrons and thus to a lager resistivity, i.e. smaller conductivity for small temperatures.
This effect was discovered by de Haas, de Boer and van den Berg [13] in 1934 and explained
30 years later in 1964 by Jun Kondo [14]. He found that if one takes into account spin flip
events, the second term in the perturbation expansion leads to a logarithmic divergent of
the resistivity as a function of temperature. These spin flip events lead to a many body
resonance which is pinned at the Fermi surface, the Kondo resonance. The important
energy scale for this effect is the Kondo temperature,

TK =
√

ΓUeπε(ε+U)/ΓU , (2.3)

where ε is the energy and Γ the width of a spin polarized level. The width of the resonance
scales with TK while the height scales with 1/Γ (compare figure 2.3 right panel). If the
temperature is raised to values larger than TK , the resonance is destroyed. TK is more
than just the temperature below which the Kondo resonance developes, it turns out that
the resistivity is a universal function f(T/TK), i.e. the parameters U , Γ, ε enter the low-
temperature properties only in the combination TK and thus TK is a universal scaling
parameter, for low temperature behavior.

The simplest model for a magnetic impurity is the single impurity Anderson model
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(SIAM)

H =
∑

σ;k∈L,R

εkσc
†
kσckσ +

∑
σ

εσd
†
σdσ + Un↑n↓ +

∑
σ;k∈L,R

[
Vkσc

†
kσdσ +H.c.

]
(2.4)

where c†kσ(ckσ) creates (annihilates) an electron in the bath with wave-vector k, spin σ and
energy εkσ, d†σ(dσ) creates (annihilates) an electron on the dot with spin σ and energy εσ.
nσ = d†σdσ counts the numbers of electrons on the dot with spin σ. A schematic sketch of
this model can be seen in the left inset of figure 2.2.

The SIAM can also be used to describe a QD. Thus it was predicted that the Kondo
effect also occurs in QDs, whenever they have a non-vanishing total spin,i.e. the total
numbers of electrons on the dot is odd. Goldhaber-Gordan et al. [2] were the first to
measure the Kondo effect in a highly controllable QD shown in figure 2.2, left panel.

The number of electrons on a QD is controlled via the gate voltage Vg. In the region of Vg
where the total number of electrons on the dot is odd, the Kondo resonance develops, if the
temperatures is below TK . This leads to a transmission T = 1. As a result the conductance
has a plateau as a function of gate voltage, which develops into two peaks with increasing
temperature (compare figure 2.2 right panel). If the the source-drain voltage Vsd becomes
larger than the width of the resonance, which is small compared to Γ, the conductance
reduces, as can be seen in figure 2.3. This feature is called zero bias anomaly (ZBA). The
origin of the ZBA is quiet obvious if one takes the sharp peak in the spectral function
(compare figure 2.3 right panel) into account. For nonzero frequency the spectral weight
is almost zero, and thus averaging over frequencies leads to a small conductivity.

Applying a magnetic field the resonance splits into two peaks. This leads to a reduced
transmission at zero source drain voltage. At higher voltage the separated peaks get
involved and thus the conductance increases, in contrast to the ZBA at zero magnetic
field. With increasing magnetic field the Kondo resonance gets more and more suppressed
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Figure 2.3: Left: Differential conductance dI/dVSD versus VSD of a QD for temperatures
ranging from 15mK (blue line) up to 900mK (red line) [3]. Right: Spectral function of
the SIAM with Γ

U
= 0.05 and εd = U

2
calculated with NRG.
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since the condition for the Kondo resonance are two degenerate local levels.
Systems where the exchange energy of the Coulomb interaction is big enough to produce

spin polarization at zero magnetic field are equivalent to systems with external magnetic
field. The polarization increases with lower temperature, since fluctuations are lowered.
Due to the intrinsic magnetic field the spin-flip events cost energy, and thus are less prob-
able.

2.2 Quantum Point Contacts

2.2.1 Conductance quantization and Landauer formula

In QPCs the conductance is quantized in units of 2 e
2

h
as a function of the applied gate

voltage (compare figure 2.4), where e is the electron charge and h is Planck’s constant. Since
a QPC is set up by a 2DEG we will describe it by the two dimensional time independent
Schrödinger equation

Eψ(x, y) = − ~2

2m
(∂2
x + ∂2

y)ψ(x, y) + V (x, y)ψ(x, y) (2.5)

where V (x, y) is the potential that defines the geometry of the structure. One can think
about V (x, y) to be zero where the electrons can move and infinity elsewhere. If the width
w(x) of the structure x changes smoothly in x one can use the WKB-approximation and
make the ansatz

ψ(x, y) = φn(x, y) exp

[
i

∫ x

0

k(x′)dx′
]
, (2.6)

Figure 2.4: Left: Micrograph of a QPC-device [4]. Right: Conductance versus gate voltage
Vg for a QPC [5].
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where φn(x, y) solves the equation

En(x)φn(x, y) = − ~2

2m
∂2
yφn(x, y) + V (x, y)φn(x, y). (2.7)

If the potential goes discontinuously from zero to infinity at the border of the structure,
En(x) has the energy of an infinite square well, En(x) = ~2π2

2mw2(x)
n2. This shows the qual-

itative behavior of En – it grows with decreasing w(x). Inserting this in the Schrödinger-
equation one gets

E = En(x) +
~2k2(x)

2m
(2.8)

with

k(x) =
1

~
√

2m(E − En(x)) (2.9)

As a result En(x) acts like an effective potential. For each n with En < εf , where εf is the
Fermi energy, one gets a one-dimensional quantum wire with the current

I = e

∫
dEρ(E)v(E) [fL(E)− fR(E)] (2.10)

where ρ is the density of states, v the velocity and fL/R the Fermi-Dirac-distribution on
the left/right side of the structure. Using

ρ(E) = 2 · 1

2π

dk

dE
(2.11)

(the 2 is due to spin degeneracy) and

v(E) =
1

~
dE

dk
(2.12)

one gets

I = 2 · e
h

∫
dE [fL(E)− fR(E)]

T=0
= 2 · e

2

h
VSD = g0VSD (2.13)

where g0 = 2 · e2
h

is the conductance quantum and VSD is the source-drain-voltage, not to
be confused with the potential. So the conductance is

G = Ng0, (2.14)

where N is the number of channels that contribute to the current. Consequently G is a
stepwise increasing function of the minimal width of the structure, wmin, which is controlled
by the gate-voltage Vg. As a result the conductance quantization of QPCs can be completely
understood in a noninteracting model.
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2.2.2 The “0.7 structure” of QPCs

In addition to the conductance quantization at integer multiples of 2e2

h
, Thomas et al. [6]

found a shoulder-like step at about 0.72e2

h
, known as the 0.7 anomaly. It is generally agreed

that the origin of this feature is the electron-electron interaction, but until now no theory
has been presented that fully explains this effect.

Properties With Magnetic Field and Temperature Dependence

Applying an in-plane magnetic field parallel to the current the 0.7 anomaly develops
smoothly towards the spin nondegenerated conductance quantization at 0.5g0 (see fig-
ure 2.5). This is far from being obvious, since for noninteracting electrons the step, that
arises due to the energy splitting caused by the magnetic field, is at 0.5g0, independent of
the strength of the field (compare figure 5.10).

The dependence of temperature is counterintuitive as well. With increasing tempera-
ture the 0.7 plateau gets more pronounced, even though the plateaus of the conductance
quantization become weaker (see graphs in figure 2.5 and insets in figure 2.7). It is still
visible at temperatures around 3K where the conductance quantization is totally smeared
out. Furthermore for these high temperatures the conductance is almost independent of
the magnetic field. I.e. the anomaly does not develop towards the spin-resolved step at
0.5g0 any more (see e.g. [9]). For small temperatures the anomaly gets less pronounced
and in the limit T → 0 it is expected to disappear completely (as argued, for example by
Lunde [15], who calculated the interaction perturbatively).

In this work we present only calculations for the T = 0 case, where we do not expect

Figure 2.5: Left: Conductance versus gate voltage Vg of a QPC for different magnetic
fields. Right: Conductance versus gate voltage Vg of a QPC for different temperatures [6].
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to see the anomaly at zero magnetic field, so we will focus on studying the magnetic field
dependence in detail.

Reduced Shot Noise - Indication of Spin Polarization?

In the 0.7-regime, measurements show a reduced shot-noise, as can be seen in figure 2.7.
The shot noise can be calculated as follows (compare section 4.3.4)

S ∝
∑
n

Tn(1− Tn) (2.15)

where Tn is the transmission of the nth channel. Consequently this is an indication that the
current is carried mainly by one channel, and a second channel contributes only partially.
So one explanation would be that in the 0.7-regime the exchange interaction is big enough
to produce a spin polarization. This theory is strengthened by measurements of Rokhinson
[16] who directly measured the spin polarization. However this is no prove for this theory
since one has to apply a magnetic field to measure spin polarization, that in turn can
produce it. This is likely, since Koop et. al. [9] measured an enhanced g-factor in the QPC
up to three times higher than in the bulk 2DEG.

The idea of spin-polarization does not explain the counterintuitive temperature depen-
dence. Spin polarization is lowered by fluctuations, and thus is expected to be enhanced
with decreasing temperature.

Kondo related measurements

Cronenwett et al. [4] reported a zero bias anomaly (ZBA), as can be seen in figure 2.6,
middle panel. Yet the comparison with the ZBA in the Kondo regime of QDs, as shown

1.0
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0.0

g 
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e2 /h
)

-1 0 1
Vsd (mV)

(a)

 80 mK
 100 mK
 210 mK

 320 mK
 430 mK
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(d)
1.0

0.8

0.6

-0.2 0.0 0.2
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0.0

 0T
 1T
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Figure 2.6: Left: Nonlinear differential conductance g = dI/dVSD versus VSD, with each
trace taken at a fixed gate voltage Vg [4]. Middle: Temperature dependence of the ZBA
for different gate voltages, at temperatures from 80mK to 670mK. Right: Evolution of
the ZBA with in-plane magnetic field, at Vg corresponding to high, intermediate, and low
conductance.
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in figure 2.3, is an indication, that the 0.7 anomaly might be related to Kondo physics.
An explanation for this assumption would be that the effective potential, which we have
derived in the last section, can look like a square barrier. In the low density regime the
borders of the barrier are less screened. Consequently electrons are reflected and a quasi-
bound state is formed, similar to a QD with relatively big coupling. As a result, the Kondo
resonance can develop for low temperatures. As we mentioned in section 2.1.1, the ZBA
of QDs arises due to a sharp peak in the QD spectral function, the Kondo resonance. This
many body state is destroyed by temperature effects, thus this interpretation explains not
only the ZBA but also why the conductance grows if temperature is lowered.

Moreover, Cronenwett et al. found that the conductivity follows a universal scaling law.
It can be expressed in terms of a single function, g′ = 2e2/h[1/2f(T/TK)+1/2], where TK is
a free parameter. However g′ differs from the one used for QDs, where g = 2e2/hf(T/TK).

Motivated by these facts Meir, et al. [7] postulated a quasi-bound state in the dot to
introduce a slightly modified Anderson Hamiltonian:

H =
∑

σ;k∈L,R

εkσc
†
kσckσ +

∑
σ

εσd
†
σdσ + Un↑n↓

+
∑

σ;k∈L,R

[
V

(1)
kσ (1− nσ)c†kσdσ + V

(2)
kσ nσc

†
kσdσ +H.c.

]
(2.16)

where c†kσ(ckσ) creates (destroys) an electron with momentum k and spin σ in one of the two
leads L and R , d†σ(dσ) creates (destroys) a spin-σ electron on the quasi-bound state and

nσ = d†σdσ. V
(1)
kσ (V

(2)
kσ ) are the hybridization matrix elements for transition between 0 and

1 (1 and 2) electrons on the site. They are taken to be step-like functions with V
(2)
kσ < V

(1)
kσ .

The idea behind this model can be explained as follows: if one electron is transferred
through the quasi-bound state, the probability that a second electron is transferred is
reduced due to Coulomb blockade. So the conductance can take any value between 0.5g0

and g0, depending on the parameters. For higher values of the gate voltage, the Coulomb
blockade energy decreases below the Fermi energy and the conductance reaches g0. For
temperatures below the Kondo-temperature, the scattering is enhanced due to the Kondo-
effect.

Qualitatively this model provides good results for the conductivity, but due to pertur-
bation theory used by Meir, the conductance is not bound by 2e2

h
and reduces, at large

magnetic fields, to values smaller than 0.52e2

h
. His results are shown in figure 2.7, left panel.

Golub et al. [8] used the same model to calculate the shot noise. The results are in
qualitative agreement with experiments as can be seen in figure 2.7 right panel.

One point one can retort to this model is that it contains physically not very well
motivated, free parameters.

It is worth mentioning that the idea of spin-polarization contradicts to the idea of
Kondo related physics. Spin-polarization suppresses the Kondo resonance and as men-
tioned before, the spin-polarization increases with decreasing temperature.

To conclude, the origin of the 0.7 anomaly appears to be a many-body phenomenon
which is not understood yet, but it it probable that some many body state, involving



12 2. Overview of the Physically relevant Aspects

0.0 0.2 0.4 0.6 0.8
εF/|ε0|

0.0

0.5

1.0

co
nd

uc
ta

nc
e 

[2
e2 /h

]

0.5

1.0

0.5

1.0

0.5

1.0

data

(a)

data
(b)

VG

VG

F

δ

ε+U0

ε0

ε

(a)Conductance at temperatures T = 0.05, 0.1, 0.2, 0.6
(solid curves, from high to low) as a function of εF (all ener-
gies in units of |ε0| = ε↑/↓). The parameters are U = 1.45,

ρV 2
1 = 0.12, ρV 2

2 = 0.015, and δ = 0.02. Right inset: ex-
perimental conductance of QPC at four different tempera-
tures [4]. Center inset: Schematic of the band structure for
the Anderson model (2.16) [7]. (b) Conductance in a mag-
netic field, for Zeeman splitting ∆ = 0, 0.07, 0.12, 0.4 at
T = 0.06 (solid curves from top to bottom). Inset: exper-
imental conductance of QPC at different magnetic fields
[4]

0T
3T
8T

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0T
2T
3T
4T
6T
7.5T

0 0.2 0.4 0.6 0.8 1

conductance [2e2/h]

0

0.1

0.2

Fano factor, theory Fano factor, data

Noise, dataNoise, theory

(b)(a)

(c) (d)

(a) The Fano factor, calculated from the theory, versus zero-
bias conductance at different magnetic fields, gBB/kBT = 0,
4.5, 12, compared to the experimental results of Ref. [17] (b),
for B = 0, 3, and 8T . The parameters used in the theory were
eV = kBT , V (1)2/2π = 1, V (2)2/2π = 0.01. In (c) the noise
is calculated for the same parameters as those corresponding to
the data of Ref. [18], depicted at (d), with the magnetic field
values denoted in the legend, kbT = 280mK and V = 240µV .
The values of V (i)2 are the same as in (a). A value of g-factor
of 0.44 was used.

Figure 2.7: Results of calculations by Meir et al. [7] (left) and Golub et al. [8](right) using
an Anderson-type Hamiltonian (2.16).

strong correlations is created. One reason why methods like bosonisation, which usually
provides good results for QWR, is not able to explain the 0.7 anomaly might be that
they all assume translation invariant systems. I. e. systems with constant filling over the
whole QWR. Considering equation (2.7) makes clear that one has to involve some space
dependence, especially in the 0.7 regime where the filling factor changes from zero to some
finite value.

To face the challenge describing a non translational invariant interacting quantum wire,
we will use a recently developed method, which is known as functional Renormalization
Group (fRG). We will set it up in a fashion such that we are able to treat smooth potentials
in a non isotropic system. fRG works good for T = 0 and zero frequency. An extension to
finite temperature and finite frequency is topic of current research. See e.g. Karrasch et
al. [19] for a first approach involving some frequency dependence for the SIAM.



Chapter 3

Functional Renormalization Group

Functional Renormalization Group (fRG) is based on the Renormalization Group (RG)
idea of Wilson. Renormalization in this context means that one integrates out certain
degrees of freedom determined by some parameter b, what leads to model with new effective
parameters, i.e. the action is mapped, due to the renormalization, on an effective action.

S
R−→ S ′. Iterating these steps leads to a new action which hopefully describes the desired

physical situation. Analytically this can be expressed in a differential equation the so called
RG flow equation

dS

db
= R[S] (3.1)

It is worth to say that the mapping S
R−→ S ′ does not obey a group structure, in general

there does not exist a inverse mapping of R, and thus it is at best a semigroup. Hence the
name Renormalization Group is somehow misleading.

In fRG we will not integrate out degrees of freedom, but we will cut off some low
energy scales of the interaction. This will lead to a RG flow equation with respect to the
parameter that determines the infrared cutoff. Solving the flow equation leads to a model
fully containing the interaction.

3.1 Fundamentals

Before introducing functional Renormalization Group (fRG) we recall some fundamentals
of functional integrals. This is the common framework to write down the flow equations.
Since we want to describe electrons we restrict ourselves to fermions (an introduction to
fRG for both fermions and bosons can be found in [11]).

3.1.1 The Partition Function

The grand canonical partition function of a fermionic many-body system can be written
in the continuous version of the functional integral. We will use it as a starting point, for
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a derivation see [20]. The partition function reads

Z =

∫
Dψψ exp

(
−
∫ β

0

dτ

[∑
l

ψl(τ + 0)
dψl
dτ

+H
(
{ψ}, {ψ}

)])
(3.2)

with

H =
∑
l

ξlψl(τ + 0)ψl(τ) +
1

4

∑
i,j,k,l

vi,j,k,lψi(τ + 0)ψj(τ + 0)ψk(τ)ψl(τ) (3.3)

(ξl = εl − µ)

where ψ and ψ are Grassmann variables. The summations run over a set of quantum
numbers which diagonalizes the interaction-free Hamiltonian. εl are the corresponding
one-particle energies, µ the chemical potential and vi,j,k,l the anti-symmetrized matrix
elements of the two-particle interaction.

With the inverse temperature β the boundary condition reads

ψl(β) = −ψl(0), ψl(β) = −ψl(0). (3.4)

Consequently it is possible to expand the Grassmann fields in fermionic, i.e. odd Matsubara
frequencies ωn = 2n+1

β
π

ψl
ψl

}
(τ) =

1√
β

∑
n

e±iωnτ
{
ψl
ψl

}
(iωn) (3.5)

where
ψl
ψl

}
(iωn) =

1√
β

∫ β

0

dτe∓iωnτ
{
ψl
ψl

}
(τ). (3.6)

Now we introduce the noninteracting single-particle propagator G0, and since we are using
a basis that diagonalizes H0 this is also the case for G0. Thus we have

ψl(iωn)
[
G0
l (iωn)

]−1
ψl(iωn) = ψl(iωn)(iωn − ξl)ψl(iωn) (3.7)

and we can write (3.2) in energy-space representation.

Z
Z0

=
1

Z0

∫
Dψψ exp

(∑
l

∑
ωn

eiω0+

ψl(iωn)
[
G0
l (iωn)

]−1
ψl(iωn)

−1

4

1

β

∑
i,j,k,l

∑
n,n′,m,m′

vi,j,k,lδm+m′,n+n′ψi(iωm)ψj(iωm′)ψk(iωn)ψl(iωn′)

)
(3.8)

However equation (3.8) holds for any basis since all properties of the noninteracting problem
follow from the Gaussian nature of the functional integral1. Using the shorthand notation

1For more details see [20] chapter 1.5
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(ψ, ψ) :=
∑

k ψk respectively (ψ,Xψ) :=
∑

k,k′ ψkXk,k′ψk′ , where k = (ωn, l), equation
(3.8) becomes

Z
Z0

=
1

Z0

∫
Dψψ exp

(ψ,
[
G0
]−1

ψ)− 1

4

∑
k′1,k

′
2,k1,k2

vk′1,k′2,k1,k2
ψk′1ψk′2ψk1ψk2


=:

1

Z0

∫
Dψψ exp (S0 − Sint). (3.9)

Here a factor β−1 and the frequency-conserving delta-functions have been absorbed into
the two-particle interaction v. Furthermore we dropped the factor eiω0+

which is one for
any finite ω, but will become important for the initial conditions (3.84).

3.1.2 Generating Functionals of Green’s Functions

In order to write expectation values for products of fields as functional derivatives with
respect to external fields we define the functional 2

W ({η} , {η}) =
1

Z

∫
Dψψ exp

(
S0 − Sint − (ψ, η)− (η, ψ)

)
. (3.10)

Now, we take the functional derivative with respect to the external source fields η and η
and set them to zero. This provides the desired identity for the m-particle Green’s Function

Gm(k′1, . . . , k
′
m, k1, . . . , km) : = (−1)m

〈
ψk′1 . . . ψk′mψk1

. . . ψkm
〉

=
1

Z

∫
Dψψ ψψ exp (S0 − Sint)

=
δm

δηk′1 · · · δηk′m

δm

δηk1 · · · δηkm
W ({η} , {η})

∣∣∣∣∣
η=0=η

. (3.11)

Setting Sint equal to zero leads to the well known result for the one-particle Green’s function

G1(l, iωn) = G0
l (iωn) =

1

iωn − ξl
. (3.12)

The logarithm of W
Wc = lnW (3.13)

generates the m-particle connected Green’s function.

Gc
m(k′1, . . . , k

′
m, k1, . . . , km) : = (−1)m

〈
ψk′1 . . . ψk′mψk1

. . . ψkm
〉
c

=
δm

δηk′1 · · · δηk′m

δm

δηk1 · · · δηkm
Wc ({η} , {η})

∣∣∣∣∣
η=0=η

(3.14)

2This might look very complicated but the idea behind this is in principle the same as the one of a
cumulants generating functionals.
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3.1.3 Vertex Functions and their Generating Functional

Like the self-energy corresponds to the one-particle Green’s function, there exist higher
order analoga that correspond to the m-particle Green’s functions: the so called m-particle
vertex functions. One can define them as the sum of all connected one-particle irreducible
diagrams with m amputated external legs.3 In the literature like [21] the two-particle vertex
function is sometimes just called vertex function and is denoted by Γ. Another often used
nomenclature is “effective interaction”. The existence of different names suggests that we
have met with an important object - which we have not defined yet. To do so we first
introduce the Grassmann fields

φk = − δ

δηk
Wc ({η} , {η}) , φk =

δ

δηk
Wc ({η} , {η}) (3.15)

which are needed to perform the Legendre transformation of Wc

Γ
({
φ
}
, {φ}

)
= −Wc ({η} , {η})−

(
φ, η
)
− (η, φ) +

(
φ,
[
G0
]−1

φ
)
. (3.16)

This is the generating functional of the vertex functions

γm(k′1, . . . , k
′
m; k1, . . . , km) =

δm

δφk′1 · · · δφk′m

δm

δφk1 · · · δφkm
Γ
({
φ
}
, {φ}

)∣∣∣∣∣
φ=0=φ

. (3.17)

We regard this as a definition of the vertex functions.

Note that in (3.16) we added an extra term to the common definition. This modification
does not have any influence on the definition of the vertex functions but it will cancel one
term when we will set up the fRG flow equation.

The reader might have got the impression that the self-energy Σ is equal to the one-
particle vertex function γ1. Unfortunately this is not the case. In the next section we show
that for fermions we have

Σ = −γ1. (3.18)

This should be kept in mind when checking all the numerous minus signs.

3.1.4 Relation between Vertex and Green’s Functions

In this section we will derive some identities which show the relations between vertex and
Green’s functions. On the one hand this will help to understand the significance of vertex
functions. On the other hand it is useful to have already some identities before we face the
challenge of setting up the differential equation.

3Since it is difficult to draw amputated legs the Feynman diagram of m-particle vertex function are
often polygons with 2m corners.
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General Relations

The fields defined in (3.15) satisfy the identities

δφk′

δφk
= δk,k′ =

δφk′

δφk
δφk′

δφk
= 0 =

δφk′

δφk
(3.19)

Differentiating the generating functional of the vertex function with respect to these fields
provides

δ

δφk
Γ
({
φ
}
, {φ}

) 3.16
=
∑
q

[
−δW

c

δηq

δηq
δφk
− δWc

δηq

δηq
δφk

+ φq
δηq
δφk
−
δηq
δφk

φq − φq
[
G0
]−1

q,k

]
+ ηk

3.15
= ηk −

∑
q

φq
[
G0
]−1

q,k
(3.20)

and

δ

δφk
Γ
({
φ
}
, {φ}

) 3.16
=
∑
q

[
−δW

c

δηq

δηq

δφk
− δWc

δηq

δηq

δφk
+ φq

δηq

δφk
−
δηq
δφk

φq + φq
[
G0
]−1

q,k

]
− ηk

3.15
= −ηk +

∑
q

[
G0
]−1

q,k
φq. (3.21)

Differentiating (3.20) with respect to φk′ and (3.21) with respect to φk′ and solving both
equations for the first term on the rhs yields

δηk
δφk′

=
δ2Γ

δφk′δφk
+
[
G0
]−1

k′,k

δηk
δφk′

= − δ2Γ

δφk′δφk
+
[
G0
]−1

k,k′
.

(3.22)

Note the different order of k and k′ of the free propagator. Using these identities one gets

δk,k′ =
δφk
δφk′

3.15
= − δ

δφk′

δWc

δηk
= −

∑
q

[
δηq
δφk′

δ2Wc

δηqδηk
+
δηq
δφk′

δ2Wc

δηqδηk

]

=
∑
q

[(
δ2Γ

δφk′δφq
−
[
G0
]−1

q,k′

)
δ2Wc

δηqδηk
− δ2Γ

δφk′δφq

δ2Wc

δηqδηk

]
(3.23)
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and in the same way

δk,k′ =
δφk
δφk′

=
∑
q

[(
δ2Γ

δφk′δφq
+
[
G0
]−1

k′,q

)
δ2Wc

δηqδηk
− δ2Γ

δφk′δφq

δ2Wc

δηqδηk

]
(3.24)

0 =
δφk
δφk′

=
∑
q

[
−

(
δ2Γ

δφk′δφq
−
[
G0
]−1

q,k′

)
δ2Wc

δηqδηk
− δ2Γ

δφk′δφq

δ2Wc

δηqδηk

]
(3.25)

0 =
δφk

δφk′
=
∑
q

[
−
(

δ2Γ

δφk′δφq
+
[
G0
]−1

k′,q

)
δ2Wc

δηqδηk
− δ2Γ

δφk′δφq

δ2Wc

δηqδηk

]
. (3.26)

(3.27)

We can write the last four equations in one compact form δ2Γ
δφδφ

+ [G0]
−1 δ2Γ

δφδφ

δ2Γ
δφδφ

δ2Γ
δφδφ
−
[
[G0]

−1
]T
 ·( δ2Wc

δηδη
− δ2Wc

δηδη

− δ2Wc

δηδη
δ2Wc

δηδη

)
= 1. (3.28)

This identity can be written as

V(φ, φ) :=

(
δ2Wc

δηδη
− δ2Wc

δηδη

− δ2Wc

δηδη
δ2Wc

δηδη

)
=

 δ2Γ
δφδφ

+ [G0]
−1 δ2Γ

δφδφ

δ2Γ
δφδφ

δ2Γ
δφδφ
−
[
[G0]

−1
]T
−1

(3.29)

where we introduced an abbreviation for this matrix. This equation connects the two
generating functionals thus we will need it later on.

Relations for One and Two Particle Vertex Functions

To show relations between vertex and Green’s function we set the outer sources to zero
and consider we’re not in a symmetry braking phase, i.e.

δ2Wc

δηδη

∣∣∣∣
η=0=η

=
δ2Wc

δηδη

∣∣∣∣
η=0=η

=
δ2Γ

δφδφ

∣∣∣∣
φ=0=φ

=
δ2Γ

δφδφ

∣∣∣∣
φ=0=φ

= 0. (3.30)

The (1,1) element of V then provides

Gc
1

3.14
:=

δ2Wc

δηδη
=

[
δ2Γ

δφδφ
+
[
G0
]−1
]−1

. (3.31)

If one compares this with the Dyson equation

G1 = G =
[[
G0
]−1 − Σ

]−1

(3.32)
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using the fact that for the one-particle propagator the linked cluster theorem provides
Gc

1 = G1, one gets the identity already mentioned in the last section

γ1 =
δ2Γ

δφδφ
= −Σ. (3.33)

Finally, we want to state the relation between two-particle vertex and Green’s function.
To this aim we differentiate equation (3.23) twice, first with respect to φl and second with
respect to φl′ . Setting the fields to zero yields

0 =
∑
q

[
δ4Γ

δφl′δφlδφk′δφq

δ2Wc

δηqδηk
+

(
δ2Γ

δφk′δφq
−
[
G0
]−1

q,k′

)∑
s,s′

(
δηs
δφl

δηs′

δφl′

δ4Wc

δηs′δηsδηqδηk

)]∣∣∣∣∣
φ=0=φ

(3.34)

= −
∑
q

γ2(l′, q, k′, l)Gk,q −
∑
q,s,s′

[G]−1
q,k′ [G]−1

s,l [G]−1
l′,s′ G

c
2(s′, k, q, s) (3.35)

where we again used that Gc
1 = G and equation (3.22). Solving for the two-particle vertex

provides

γ2(k′1, k
′
2, k1, k2) = −

∑
q′1,q
′
2,q1,q2

[G]−1
k′1,q

′
1

[G]−1
k′2,q

′
2

[G]−1
q2,k2

[G]−1
q1,k1

Gc
2(q′1, q

′
2, q1, q2). (3.36)

This proves that the two particle vertex is one-particle irreducible. We get it by cutting all
external legs of the connected two-particle Green’s function,as mentioned at the beginning
of the last section. From equation (3.36) and the definition of the connected Green’s
function (3.14), it follows that γ2(k′1, k

′
2; k1, k2) is antisymmetric under the exchange k′1

and k′2 or k1 and k2 and symmetric under the exchange of the first two with the last two
indices

γ2(k′1, k
′
2, k1, k2) = −γ2(k′2, k

′
1, k1, k2) = −γ2(k′1, k

′
2, k2, k1)

= γ2(k1, k2, k
′
1, k
′
2). (3.37)
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3.2 The fRG Flow Equation

We are now ready to use this machinery to set up the flow equation. The goal is to set up
a differential equation with respect to some flow-parameter for the vertex function in the
following fashion:

d

dΛ
γm = F(γ1, . . . , γn,Λ). (3.38)

Since we do not have such a flow parameter yet, we will modify the free propagator so that
it depends on Λ:

G0 → G0,Λ. (3.39)

In order to put the idea across, imagine that for some value Λinitial this modified propagator
is equal to zero. Expanding the vertex function in a perturbation series gives zero for all
summands that contain this propagator. As a consequence at Λinitial all vertex functions
are zero, with the exception of the two-particle vertex function, that is equal to the bare
interaction. Then it is the aim to integrate (3.38) from Λinitial to Λfinal, for which the
free propagator is the ordinary one (G0,Λfinal = G0). This would lead to the exact vertex
functions and we could calculate the full propagator from the one-particle vertex function
via Dyson’s equation.

Note that (3.38) in general is a set of infinitely many coupled differential equations,
which is impossible to solve. So the major task is to choose the Λ-dependence in a way
that allows us to make some physically motivated simplifications that closes the set of
differential equation.

As we will see in the next section, it is not necessary to specify the Λ-dependence to
set up the flow equations.

3.2.1 Flow Equation of the Generating Functionals

To get a coupled differential equation as indicated in (3.38) we will set up a differential
equation for the generating functional of the vertex functions:

d

dΛ
Γ = F̃(Γ, φ, φ,Λ,G0, . . . ). (3.40)

Then we will expand Γ on both sides in powers of φφ with the vertex functions as coefficients
and pull the derivative with respect to Λ on the lhs into the sum. Comparing powers of
φφ will lead to the desired equation.

Since the generating functional of the vertex function is defined via the generating
functional of the connected Green’s functions, we will need the following derivative:

d

dΛ
Wc,Λ =

d

dΛ
ln

[
1

ZΛ
0

∫
Dψψe

““
ψ,[G0,Λ]

−1
ψ

”
−Sint−(ψ,ηΛ)−(ηΛ,ψ)

”]
, (3.41)

ZΛ
0 =

∫
Dψψ exp

(
ψ,
[
G0,Λ

]−1
ψ
)
. (3.42)
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Note that the normalization of the functional differs from the original definition (3.11,3.13).
The free propagator now depends on Λ, hence this is also the case for S0, Z0, W and Wc,
as indicated by an index. Furthermore we require η and η to have a Λ-dependence chosen
such that the fields φ and φ, which are the natural variables of Γ, are Λ-independent. As
a result η and η depend on Λ via (3.20) and (3.21).

To decompose the derivative we write it as

d

dΛ
Wc,Λ =

∑
k,k′

∂Λ

[
GΛ

0

]−1

k,k′

δZΛ
0

δ [GΛ
0 ]
−1
k,k′

∂Wc,Λ

∂ZΛ
0

+
∑
k,k′

∂Λ

[
GΛ

0

]−1

k,k′

δWc,Λ

δ [GΛ
0 ]
−1
k,k′

+
∑
k

[
dηΛ

k

dΛ

δWc,Λ

δηΛ
k

+
dηΛ

k

dΛ

δWc,Λ

δηΛ
k

]
. (3.43)

Here we replaced already
d[GΛ

0 ]
−1

dΛ
by ∂Λ

[
GΛ

0

]−1
since G0,Λ explicitly depends on Λ.

For the last sum we can use the definition (3.15) of the fields - mind the minus sign in
the definition of φ.

∑
k

dηΛ
k

dΛ

δWc,Λ

δηΛ
k

=
∑
k

dηΛ
k

dΛ
φk = −

(
φk,

dηΛ
k

dΛ

)
(3.44)

∑
k

dηΛ
k

dΛ

δWc,Λ

δηΛ
k

= −
∑
k

dηΛ
k

dΛ
φk = −

(
dηΛ

k

dΛ
, φk

)
(3.45)

Furthermore it is easy to see from (3.41) that ∂Wc,Λ

∂ZΛ
0

= − 1
ZΛ

0
and with

1

ZΛ
0

δZΛ
0

δ [GΛ
0 ]
−1
k,k′

=

∫
Dψψ
ZΛ

0

ψkψk′e
SΛ

0 = −
∫
Dψψ
ZΛ

0

ψk′ψke
SΛ

0
3.11
= G0,Λ

k′,k (3.46)

∑
k,k′

∂Λ

[
GΛ

0

]−1

k,k′

δZΛ
0

δ [GΛ
0 ]
−1
k,k′

∂Wc,Λ

∂ZΛ
0

= −Tr
(
G0,Λ∂Λ

[
G0,Λ

]−1
)

(3.47)

The minus sign in (3.46) results from interchanging the two fields ψ and ψ. The same
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appears in the following:

1

WΛ

∑
k,k′

∂Λ

[
G0,Λ

]−1

k,k′

δ

δ [GΛ
0 ]
−1
k,k′

∫
Dψψ
ZΛ

0

e

““
ψ,[G0,Λ]

−1
ψ

”
−Sint−(ψ,ηΛ)−(ηΛ,ψ)

”

=− 1

WΛ

∑
k,k′

∂Λ

[
G0,Λ

]−1

k,k′

∫
Dψψ
ZΛ

0

ψk′ψke

““
ψ,[G0,Λ]

−1
ψ

”
−Sint−(ψ,ηΛ)−(ηΛ,ψ)

”

=
1

WΛ
Tr

(
∂Λ

[
G0,Λ

]−1 δ

δη

δ

δη
WΛ

)
=

1

WΛ
Tr

(
∂Λ

[
G0,Λ

]−1 δ

δη
WΛ δ

δη
lnWΛ

)
=

1

WΛ
WΛ

[
Tr

(
∂Λ

[
G0,Λ

]−1 δ

δη
Wc,Λ δ

δη
Wc,Λ

)
+ Tr

(
∂Λ

[
G0,Λ

]−1 δ2

δηδη
Wc,Λ

)]
=
(
φ, ∂Λ

[
G0,Λ

]−1
φ
)

+ Tr

(
∂Λ

[
G0,Λ

]−1 δ2

δηδη
Wc,Λ

)
(3.48)

Putting all together provides

d

dΛ
Wc,Λ =− Tr

(
G0,Λ∂Λ

[
G0,Λ

]−1
)

+ Tr

(
∂Λ

[
G0,Λ

]−1 δ2Wc,Λ

δηδη

)
+
(
φ, ∂Λ

[
G0,Λ

]−1
φ
)
−
(
φk,

dηΛ
k

dΛ

)
−
(
dηΛ

k

dΛ
, φk

)
(3.49)

This makes it easy to differentiate Γ

d

dΛ
Γ = − d

dΛ
Wc,Λ −

(
φk,

dηΛ
k

dΛ

)
−
(
dηΛ

k

dΛ
, φk

)
+
(
φ, ∂Λ

[
G0,Λ

]−1
φ
)

= Tr
(
G0,Λ∂Λ

[
G0,Λ

]−1
)
− Tr

(
∂Λ

[
G0,Λ

]−1 δ2Wc,λ

δηδη

)
= Tr

(
G0,Λ∂Λ

[
G0,Λ

]−1
)
− Tr

(
∂Λ

[
G0,Λ

]−1 V(1,1)
)

(3.50)

3.2.2 Flow equation for the Vertex Functions

For convenience we leave out the index Λ from now on, but we consider all operators to
have a Λ-dependence. To get the (1, 1) matrix element of V we use equation (3.29) and
expand the rhs around the full propagator G.

V =

 δ2Γ
δφδφ

+ [G0]
−1 δ2Γ

δφδφ

δ2Γ
δφδφ

δ2Γ
δφδφ
−
[
[G0]

−1
]T
−1

(3.51)

To get a dependence of the full propagator we insert a fat zero containing the self energy
and thus we can use the Dyson equation to bring the full propagator into play:

δ2Γ

δφδφ
+
[
G0
]−1

=
δ2Γ

δφδφ
− γ1 + γ1 +

[
G0
]−1

=
δ2Γ

δφδφ
− γ1 + [G]−1 (3.52)
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Since we will use it in the following, it is convenient to define an abbreviation for the first
two terms:

U :=
δ2Γ

δφδφ
− γ1.

Now we can factor out G

V =

(
U + [G]−1 δ2Γ

δφδφ

δ2Γ
δφδφ

−UT −
[
[G]−1]T

)−1

=

[(
[G]−1 0

0 −
[
[G]−1]T

)
+

(
U δ2Γ

δφδφ
δ2Γ
δφδφ

−UT

)]−1

= −

[
1−

(
−G 0

0 [G]T

)( U δ2Γ
δφδφ

δ2Γ
δφδφ

−UT

)]−1(
−G 0

0 [G]T

)

= −

1 +

:=A︷ ︸︸ ︷(
GU G δ2Γ

δφδφ

−GT δ2Γ
δφδφ

GTUT

)
−1

︸ ︷︷ ︸
=:Ṽ

(
−G 0

0 [G]T

)
(3.53)

With this definition V(1,1) = Ṽ(1,1)G and we can write the differential equation as

d

dΛ
Γ = Tr

(
G0,Λ∂Λ

[
G0,Λ

]−1
)
− Tr

(
G∂Λ

[
G0,Λ

]−1 Ṽ(1,1)
)
. (3.54)

Now we expand Ṽ into a taylor series around A = 0:

[1 +A]−1 = 1−A+AA−AAA+ . . . (3.55)

Inserting the definition of A and taking the (1, 1)-matrix element provides

Ṽ(1,1) = 1− GU +

(
GUGU − G δ2Γ

δφδφ
GT δ2Γ

δφδφ

)
−
(
GUGUGU + . . .

)
+ . . . (3.56)

where the brackets group the orders of expansion, and

Γ =
∞∑
m=0

(−1)m

(m!)2

∑
k′1...k

′
m

∑
k1...km

γm(k′1, . . . , k
′
m; k1, . . . , km)φk′1 . . . φk′mφkm . . . φk1 . (3.57)

Note the minus signs when performing the functional derivative: the factor (−1)m cancels
all minus signs due to permuting the φ-derivatives through the φ’s. Inserted in U gives

Uq′,q =
∞∑
m=1

(−1)m

(m!)2

∑
k′1...k

′
m

∑
k1...km

γm+1(k′1, . . . , k
′
m, q

′; k1, . . . , km, q)φk′1 . . . φk′mφkm . . . φk1 .

(3.58)
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U is a tensor of rank two what we indicated by the indices q′, q. These quantum numbers
appear in each vertex. Note that due to the differentiation all indices are shifted by one
and the first summand cancels. So U is at least of second order in the fields and does not
depend on γ0 and γ1.

The Zero-Particle Vertex Function

For completeness we want to write down the differential equation for γ0, although we won’t
need it. To this end we collect all terms off the rhs of (3.54) that do not depend on φ or
φ. For Ṽ(1,1) this is only the constant 1. Thus we get

d

dΛ
γ0 = Tr

(
G0,Λ∂Λ

[
G0,Λ

]−1
)
− Tr

(
G∂Λ

[
G0,Λ

]−1
)
. (3.59)

The One-Particle Vertex Function

Now we are in a position to set up the differential equation for the m-particle vertex. The
major task, as one could imagine, is to collect all terms with equal powers of φφ in the
expansion (3.56), in particular for higher powers. Later we will give some hints how one
can use Feynman diagrams to facilitate this exercise. We can get by without these for
the one-particle vertex, because only the second term in (3.56) is linear in φφ. This can
be seen from the expansion of U (3.58), noting that G δ2Γ

δφδφ
GT δ2Γ

δφδφ
contains only quadratic

terms in φφ. We will comment on this term later.

d

dΛ
γ1(k′, k) =

∑
q′,q

[
G∂Λ

[
G0,Λ

]−1 G
]
q,q′

γ2(k′, q′; k, q) (3.60)

To make the notation clear we replaced the trace by a sum over all quantum numbers, but
in the following we will use the more efficient notation:[

γm(k′1, . . . , k
′
m−1, · ; k1, . . . , km−1, · )

]
q′,q

= γm(k′1, . . . , k
′
m−1, q

′; k1, . . . , km−1, q). (3.61)

Furthermore, we use the convenient definition

S := G∂Λ

[
G0,Λ

]−1 G, (3.62)

so (3.60) becomes

d

dΛ
γ1(k′, k) = Tr [S γ2(k′, · ; k, · )] . (3.63)

Note the beauty of this formula. Now one can say we have done a good job, because the
derivative of the vertex contains only two particle irreducible diagrams, as is the case for
the vertex itself. However the rhs is not independent of γ1 since G and thus S depends on
it.
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The Two-Particle Vertex Function

Before writing down the flow equation for γ2, we consider on the following relations:

δ2Γ

δφδφ
=

∞∑
m=2

m(m− 1)(−1)m

(m!)2

∑
k′1...k

′
m−2

∑
k1...km

γm(k′1, . . . , k
′
m−2, · , · ; k1, . . . , km)

φk′1 . . . φk′m−2
φkm−2 . . . φk1

(3.64)

δ2Γ

δφδφ
=

∞∑
m=2

m(m− 1)(−1)m

(m!)2

∑
k′1...k

′
m

∑
k1...km

γm(k′1, . . . , km; k1, . . . , k
′
m−2, · , · )

φk′1 . . . φk′mφkm−2 . . . φk1 .
. (3.65)

As long as we have not a broken symmetry, all cross-terms in G δ2Γ
δφδφ
GT δ2Γ

δφδφ
that contain a

different number of creation and annihilation operators vanish. Note that the flow equation
(3.54) with the expansion of Ṽ (3.56) only contains products of (3.64), (3.65) and U (3.58).
Consequently, the derivative of the m-particle vertex contains vertices up to order m+ 1.

To set up the differential equation of γ2 we need all terms in (3.56) that are proportional
to φφφφ. As one can easily convince oneself they only appear in

GU − G δ2Γ

δφδφ
GT δ2Γ

δφδφ
+ GUGU (3.66)

The first term is proportional to γ3. The second and third are quadratic in γ2.

d

dΛ
γ2(k′1, k

′
2; k1, k2) =Tr (Sγ3(k′1, k

′
2, · ; k1, k2, · )) (3.67a)

− Tr
(
Sγ2( · , · ; k1, k2)GTγ2(k′1, k

′
2; · , · )

)
(3.67b)

− Tr(Sγ2(k′1, · ; k1, · )Gγ2(k′2, · ; k2, · )) (3.67c)

− Tr(Sγ2(k′2, · ; k2, · )Gγ2(k′1, · ; k1, · )) (3.67d)

+ Tr(Sγ2(k′2, · ; k1, · )Gγ2(k′1, · ; k2, · )) (3.67e)

+ Tr(Sγ2(k′1, · ; k2, · )Gγ2(k′2, · ; k1, · )). (3.67f)

Since, in this work, we will set all higher vertices to zero, the equations (3.60) and (3.67)
are the major results of this chapter. To understand the structure of the flow equation we
want to illustrate terms (b) - (f) in Feynman diagrams. We will represent the two-particle
vertex by a wiggly line, where both ends have one ingoing and one outgoing fermionic line.
Although normally it is used for the bare interaction, we will use it here for the effective
interaction, for reasons that will become obvious. Furthermore we will use a dashed line
for the propagator S, but in the first instance one can regard it as a standard fermionic
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propagator. Consequently the Feynman diagram of term (3.67 b) looks like

�GT
γ2 γ2

S

k1

k2

k′1

k′2

(3.68)

We call diagrams where two particle are interacting with each other particle-particle dia-
gram. By contrast term (3.67 c) can be illustrated as follows

�γ2

S G
γ2

k1

k2

k′1

k′2

(3.69)

Here a virtual particle-hole-pair is created, so this diagram is a particle-hole diagram. In
(3.67 d) k1 and k2 and k′1 and k′2 are interchanged. This is equivalent to flip the diagram
around the horizontal axis and interchange G and S. Thus the structure is the same as
the one of diagram (3.70)

Finally we draw the term in (3.67 e)

�γ2 G γ2

S

k1

k2

k′1

k′2

(3.70a)

Pulling on the lower external legs this can be deformed into the following diagram with
the same meaning:

�G

S

k1

k2

k′1

k′2

(3.70b)
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Finally we rotate the lower line.

�γ2
G

γ2

S

k′1

k2

k1

k′2

(3.70c)

What we get is a diagram where the arrows point in different directions, so again we have
a diagram of particle-hole type. For the terms (3.67 e) and (3.67 f) we can make the same
symmetry arguments as for (3.67 c) and (3.67 d).

These pictures should be kept in mind when checking conservation laws and other
symmetries. For example, when the two-particle vertex is diagonal in spin space, then

d

dΛ �k
′ k =�

S

k′ k

(3.71)

d

dΛ �
k′1

k′2

k1

k2

= �
S

k′2

k′1 k1

k2 −�
S

Gk′1

k′2

k1

k2

−�SG

k′1

k′2

k1

k2

−�SG

k′2

k′1

k2

k1

+ �G S

k′2

k2

k1

k′1

+ �G S

k′1

k1

k2

k′2

(3.72)

Figure 3.1: Feynman graph representation of equation (3.60) and equation(3.67)
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in diagram (3.70) the two propagators G and S have to be evaluated at the same spin
quantum number. This is not the case for the diagrams (3.68) and (3.70). For (3.68) S,
k2 and k′2, respectively G, k1 and k′1 have the same spin quantum number.

In general one could derive the differential equation of the vertices of arbitrary order
from (3.54) combined with (3.56). But it is convenient to define Feynman rules for this
task. We only want to sketch them, for details consult [22] and citation in there. The
diagrammatic version of the flow equation (3.60) and (3.67) are shown in 3.1.

Although external legs are amputated, we indicated the direction by little arrows. As
already mentioned, vertices up to order m+ 1 enter in the flow equation of the m-particle
vertex. The m + 1-particle vertex appears only linearly since it follows due to the second
term of (3.56) GU . All other vertices have to form one-loop diagram such that they have
m ingoing and outgoing legs.

3.3 Applying fRG on Concrete Problems

To be able to apply the fRG flow equations to physical problems we have to specify the
truncation and the explicit Λ-dependence of the free propagator. Furthermore we have to
make some approximations.

3.3.1 Truncation

We already mentioned that we will set all m-particle vertices with m ≥ 3 to zero. This can
be justified as follows: At Λinitial all vertices except the two particle vertex are zero and all
higher vertices are generated by the two-particle vertex at least in third power. So as long
as the effective interaction can be regarded as small, all higher vertices can be neglected.
If at any value of Λ, the flow equation generates a two particle vertex that can not be
regarded as small or even is divergent, this approximation brakes down. If one solves the
differential equation numerically one is well advised to implement some “emergency-stop”
for this case.

3.3.2 Further Approximations

The quantum numbers in (3.60) and (3.67) contain, in addition to the space or momentum
quantum number, Matsubara frequencies. Considering a Hamiltonian that does not depend
on time, the vertex functions stay diagonal in frequency space, i.e. the sum of all ingoing
is equal to the sum of all outgoing frequencies. For the one particle vertex, this means
we can write it as γ1(k′, k, iωn). Now k′ and k only contain space or momentum quantum
numbers. The problem is, there are infinitely many Matsubara frequencies, and thus solving
the system of differential equations numerically is impossible. To deal with this problem
we will follow the crudest way, i.e. we will neglect the frequency dependence of the bare
interaction altogether. This will lead to frequency independent vertex functions and thus
a frequency independent self energy. Consequently the self energy can be viewed as an
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effective potential. In real space the nonlocal part of the effective potential changes the
kinetic energy and thus has an influence on the spectral weight. However we can not hope
to obtain an accurate output for nonzero frequency. Only for the limit ω → 0 this ansatz
is meant to lead to the right results. As a consequence, we can only calculate observables
like the conductance for the case T = 0. This fact reduces our possibilities of analyzing
the origin of the 0.7 anomaly of QPCs since it has an interesting behavior for nonzero
frequencies, and a major goal of future work will be to to find a way to introduce some
frequency dependence.

Although we dropped the frequency dependence of the two-particle vertex, we have
to keep track of energy conservation. As a result, the frequencies for which we have to
evaluate the propagators S and G in equation (3.67) are not independent. Setting the three
particle vertex to zero, equation (3.67) becomes:

d

dΛ
γΛ

2 (k′1, k
′
2; k1, k2) =∑

iωn

∑
q,q′,s,s′

[
− SΛ

q,q′(iωn)γΛ
2 (q′, s′; k1, k2)GΛ

s,s′(−iωn)γΛ
2 (k′1, k

′
2; s, q)

− SΛ
q,q′(iωn)γΛ

2 (k′1, q
′; k1, s)GΛ

s,s′(iωn)γΛ
2 (k′2, s

′; k2, q)

− SΛ
q,q′(iωn)γΛ

2 (k′2, q
′; k2, s)GΛ

s,s′(iωn)γΛ
2 (k′1, s

′; k1, q)

+ SΛ
q,q′(iωn)γΛ

2 (k′2, q
′; k1, s)GΛ

s,s′(iωn)γΛ
2 (k′1, s

′; k2, q)

+ SΛ
q,q′(iωn)γΛ

2 (k′1, q
′; k2, s)GΛ

s,s′(iωn)γΛ
2 (k′1, s

′; k2, q)
]
. (3.73)

3.3.3 Λ-dependence of the free Propagator

We still have not specified the Λ-dependence of the free propagator. The only restriction
we made until now is that there has to exist some Λinitial for which the value of all vertices
has to be known. E.g. for GΛinitial = 0 all vertices except the two-particle vertex are
zero. Furthermore there has to be a Λfinal were the free propagator is the ordinary one
(GΛfinal = G).

In low-dimensional interacting systems one often faces the problem that perturbation
series are divergent at momentum-transfer zero, i.e. at the Fermi surface4. So the idea is
to cut off the frequencies around the Fermi surface, i.e. the zero-point of the energy scale,
in the following way.

G0,Λ = Θ(|ω| − Λ)G0 (3.74)

where Θ is the usual step-function. In this work we only consider the case T = 0. If one
wants to treat finite temperature one has to use a smoothed Θ-function. With this choice
GΛ conforms to the requirements with Λinitial =∞ and Λfinal = 0.

4compare e.g. [21] §17
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3.3.4 Morris’ Lemma

As we will need it in the following, we want to quote the result of Morris’ lemma without
proof: For a product of a δ and Θ-functions, where both are limits of smoothed functions

δ = lim
ε→0

δε, Θ = lim
ε→0

Θε, (3.75)

the following holds:

δεf (Θε)→ δ

∫ 1

0

f(t)dt. (3.76)

In equation (3.62) we defined the operator S, which now can be simplified, since we have
specified the cutoff. We will put an index Λ if the operators depend on the cutoff, thus if
we write G0 we mean the cutoff-free free propagator.

SΛ = GΛ∂Λ

[
G0,Λ

]−1 GΛ

=
1

1 + ΘG0γΛ
1

ΘG0
[
G0
]−1 1

Θ2
δ

1

1 + ΘG0γΛ
1

ΘG0

=
δ

(1 + ΘG0γΛ
1 )

2G
0

= δ∂Θ
1

1 + ΘG0γΛ
1

ΘG0

= δ(|ω| − Λ)∂ΘGΛ, (3.77)

where we used (3.74) and

GΛ =
1

[G0,Λ]−1 + γΛ
1

=
1

1 + ΘG0γΛ
1

ΘG0. (3.78)

3.3.5 Final Version on the flow Equations

Now we are able to carry out the frequency sum in equation (3.60), which in the limit
T = 0 is an integral.

d

dΛ
γ1(k′, k) =

1

2π

∫
dω
∑
q′,q

SΛ
q,q′(iω)γ2(k′, q′; k, q)

=
1

2π

∫
dω
∑
q′,q

δ(|ω| − Λ)∂ΘGΛ
q,q′(iω)γ2(k′, q′; k, q)

=
1

2π

∫
dω
∑
q′,q

δ(|ω| − Λ)

∫ 1

0

dt∂t GΛ
q,q′(iω)

∣∣
Θ=t

γ2(k′, q′; k, q)

=
1

2π

∑
ω=±Λ

∑
q′,q

G̃Λ
q,q′(iω)γ2(k′, q′; k, q), (3.79)
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where we defined the operator

G̃Λ =
1

[G0]−1 + γΛ
1

. (3.80)

Equation (3.79) now is the final form of the fRG flow equation. This equation and the
final flow equation of the two-particle vertex will be the starting point of our calculations.
In order to derive the latter we consider the following integral:

1

2π

∫
dωSΛ

q,q′(iω)GΛ
s,s′(±iω)

=
1

2π

∫
dωδ(|ω| − Λ)

∫ 1

0

dt
[
∂ΘGΛ

q,q′(iω)
]

Θ=t

[
GΛ
s,s′(±iω)

]
Θ=t

=
1

2π

∫
dωδ(|ω| − Λ)

∫ 1

0

dt
1

2
∂t
[
GΛ
q,q′(iω)GΛ

s,s′(±iω)
]

Θ=t

=
1

4π

∫
dωδ(|ω| − Λ)G̃Λ

q,q′(iω)G̃Λ
s,s′(±iω)

=
1

4π

∑
ω=±Λ

G̃Λ
q,q′(iω)G̃Λ

s,s′(±iω). (3.81)

This identity, together with (3.73), the symmetries (3.37), and the cyclic invariance of the
trace yields:

d

dΛ
γΛ

2 (k′1, k
′
2; k1, k2) =

1

2π

∑
ω=±Λ

∑
q,q′,s,s′

[
− 1

2
G̃Λ
q,q′(iω)γΛ

2 (q′, s′; k1, k2)G̃Λ
s,s′(−iω)γΛ

2 (k′1, k
′
2; s, q)

− G̃Λ
q,q′(iω)γΛ

2 (k′1, q
′; k1, s)G̃Λ

s,s′(iω)γΛ
2 (k′2, s

′; k2, q)

+ G̃Λ
q,q′(iω)γΛ

2 (k′2, q
′; k1, s)G̃Λ

s,s′(iω)γΛ
2 (k′1, s

′; k2, q)
]
. (3.82)

From now on the quantum numbers we use do not contain the frequency.
Note that we did not keep track of the inverse temperature β, since we absorbed it

from the beginning into the bare interaction.

3.3.6 Initial Condition

We already mentioned that, since at Λinitial =∞ the free propagator is equal to zero and
thus an expansion of all vertex function leads zero except for the two-particle vertex. As
a result, the initial condition reads:

γΛ=∞
2 (k′1, k

′
2; k1, k2) = vk′1,k′2;k1,k2

γΛ=∞
m = 0 (m 6= 2) (3.83)
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This is correct for Λinitial = ∞, however numerically it is not possible to start the flow
at infinity. One has to take some Λ0, which is much bigger than all relevant energies.
Although for large values of Λ nothing really happens, since G̃Λ0(iΛ0) ≈ 1

iΛ0
≈ 0, one has

to be careful, because we neglected the convergence factor eiω0+
in our calculations from

equation (3.8) on, which can only be done for finite ω. In the limit ω → ∞ this factor
leads to a finite value, which we get by integrating the differential equation of γ1 (3.79)
from infinity down to any finite value Λ = Λ0:

γΛ0
1 (k′, k) =

1

2π
lim
ε→0

∫ Λ0

∞
dΛ

∑
ω=±Λ

∑
q,q′

eiωεG̃Λ
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=
1

2π
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ε→0

∫ Λ0

∞
dΛ

∑
ω=±Λ

∑
q,q′

eiωε
δq′,q
iω

vk′,q′;k,q +O(Λ−1
0 )

=
1

π

∑
q

vk′,q;k,q lim
ε→0

∫ Λ0

∞
dΛ

sin Λε

Λ
+O(Λ−1

0 )

=
1

π

∑
q

vk′,q;k,q

lim
ε→0

∫ Λ0

0

dΛ
sin Λε

Λ︸ ︷︷ ︸
=0 independent of Λ0

− lim
ε→0

∫ ∞
0

dΛ
sin Λε

Λ︸ ︷︷ ︸
=π

2
independent of ε

+O(Λ−1
0 )

= −1

2

∑
q

vk′,q;k,q +O(Λ−1
0 ). (3.84)

In the second line we used that∫ Λ0

∞
dωG̃Λ

q,q′(iω) =

∫ Λ0

∞
dω

[
1

iω −H + γΛ
1

]
q,q′

=

∫ Λ0

∞
dω
δq,q′

iω
+

∫ Λ0

∞
dωO(ω−2)

=

∫ Λ0

∞
dω
δq,q′

iω
+O(Λ−1

0 ). (3.85)

Note that we have two limits: The first limit is the integral, since
∫
∞ is defined as lima→∞

∫
a
.

We showed that we are not allowed to interchange it with the second limit.
This provides the final version of the initial condition.

γΛ0
1 (k′, k) = −1

2

∑
q

vk′,q;k,q

γΛ0
2 (k′1, k

′
2; k1, k2) = vk′1,k′2;k1,k2

γΛ0
m = 0 (m > 2) (3.86)



Chapter 4

fRG in one Dimension

4.1 Microscopic Model

Our intention is to describe a QPC in the 0.7 region, i.e. in the transition between zero and
one open channel. This makes it plausible to consider only the lowest mode. The lowest
mode is a true one dimensional QWR, which can be described by a one dimensional tight
binding chain. Such a description is reasonable for two reasons: First, we want to describe
a semiconductor where we have a finite bandwidth, with a cosine-like dispersion relation
inside the first Brillouin zone. So we have to associate the lattice spacing with the distance
of two sites. The second reason is a practical one. In order to handle the flow equation
numerically we have to discretize the real space.

As discussed in section 2.2.1 the width of the QPC produces an effective potential which
has to be added to the actual potential. Both have to be extracted from the potential
generated by the top gate geometry considering many body effects like screening and
dielectric properties of the materials. This has been done for example by Siddiki and
Marquardt [23].

In order to take into account the effect of interaction we will use the extended Hubbard
model, i.e. the bare interaction ranges up to nearest neigbours. This may sound like a
crude simplification, since the bare interaction decays with 1

|r| . However using a 1
|r| inter-

action would be wrong as well, since our method only takes into account one dimensional
screening, not the screening that is caused by the material and the top gate. The latter
is expected to have the greatest influence, since it is made up of metal which has a much
higher mobility than semiconductors. A discussion about influences of metallic top gates
was given by Guinea [24].

On both sides the contact is coupled to semi infinite non-interacting tight binding chains
describing the baths - see figure (4.1). So the Hamiltonian reads

H = Hc +Hlc +Hl +Hint (4.1a)
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Figure 4.1: Microscopic Model

where

Hc =
∑
σ=↑,↓

 N
2∑

j=−N
2

+1

(Vj − µ−
σhj
2

) d†j,σdj,σ −
N
2
−1∑

j=−N
2

+1

τj

(
d†j+1,σdj,σ + h.c.

) . (4.1b)

N is the numbers of sites belonging to the contact region, dj,σ (d†j,σ) annihilates (creates) an
electron with spin σ at site j of the contact. µ is the chemical and Vj the space-dependent
potential, hj a space dependent magnetic field and τj the hopping-matrix element. In most
cases τj will be chosen independent of j.

Hl = −
∑
σ=↑,↓

∑
s=L,R

∞∑
j=1

[
µ c†j,s,σcj,s,σ + τl

(
c†j+1,s,σcj,s,σ + h.c.

)]
(4.1c)

cj,s,σ (c†j,s,σ) annihilates (creates) an electron with spin σ on the left (s = L) respectively
right (s = R) lead at site j. On both sides, site 1 is the one next to the contact. The
bandwidth of these leads is equal to 4τ . Thus we will set τ := 1 to define the energy scale.
All other energies are measured in units of τ .

Hlc = −τlc
∑
σ=↑,↓

(
c†1,L,σd−N

2
+1,σ + d†N

2
,σ
c1,R,σ + h.c.

)
(4.1d)

couples the leads with the contact.

Hint =

N
2∑

j=−N
2

+1

Uj nj,↑nj,↓ +
∑

σ,σ′=↑,↓

N
2
−1∑

j=−N
2

+1

U ′j nj,σnj+1,σ′ (4.1e)

with nj,σ = d†j,σdj,σ the local density operator. Uj is the charging energy when two electrons
are on site j. U ′j is the energy of two electrons being on the neighbouring sited j and j+ 1.

4.1.1 Fundamentals of the Tight-Binding Model

First we want to discuss some details of the noninteracting tight binding chain. Therefore
we want to diagonalize a infinite long tight binding chain with Vj = 0. It is convenient to
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write the Hamiltonian in bra-ket notation

HTB = −µ
∑
j

|j〉〈j| − τ
∑
j

(
|j〉〈j + 1|+ |j + 1〉〈j|

)
. (4.2)

The diagonalization is an easy application of Bloch’s theorem, which tells us that the
eigenstate has the form

|ψk〉 =
∑
j

eikj|j〉. (4.3)

Note that we can not normalize this state.

HTB|ψk〉 =

[
−µ
∑
j

|j〉〈j| − τ
∑
j

(
|j〉〈j + 1|+ |j + 1〉〈j|

)]∑
j

eikj|j〉

=
[
−µ− τ

(
eik + e−ik

)]∑
j

eikj|j〉

= [−µ− 2τ cos k] |ψk〉 (4.4)

This proves that |ψk〉 in fact is an eigenstateof HTB with eigenvalue

ωk = −µ− 2τ cos k. (4.5)

Thus, the density of states is given by:

A(ωk) =
dk

dωk
=

1
dωk
dk

=
1

2τ sin k
=

1√
4τ 2 − ω2

k

. (4.6)
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Figure 4.2: Left: Spectral function of an infinite long translationally invariant tight-binding
chain. Right: Potential used to illustrate the band geometry of a tight-binding chain (see
figure 4.3).
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A plot of the spectral function with µ = 0 is shown in figure 4.2, left panel. Note that the
tight binding chain creates a band, which reaches from µ − 2τ to µ + 2τ . If the length
of the chain is finite, with length N , the spectral function consists of N delta peaks with
equal weight. We get the eigenenergies and thus the position of the peaks by applying the
quantization condition on k, namely kn = ±n π

N

ωn = −µ− 2τ cos
(
±n π

N

)
. (4.7)

To obtain a smooth spectral function, the peaks have to be broadened by hand to with
some value bigger than the typical energy spacing.

We now consider a tight binding chain with a smooth potential. We use a potential
of gaussian shape, shown in figure 4.2, right panel. The smoothed spectral function as a
function of ω and j is shown in figure 4.3. Note that the band looks like a tube where
the center is defined by the local potential (blue line in figure 4.3). The band is filled up
to the Fermi energy (red line in figure 4.3) which we shall take to define the zero point
of the energy scale. For temperatures much smaller than the Fermi temperature, which is
the only case that we shall consider, only states around the Fermi energy are of physical
interest. As a result the conductance is one in units of e2

h
(compare section 2.2.1) if the

maximum of the potential is smaller than −µ + 2τ , so that the bottom of the shifted
band always lie below zero, ensuring that there are always states available for carrying
the current. Conversely, the conductance is zero if the potential maximum is larger than
−µ+ 2τ (compare for example figure 5.8).

If we now consider a system with µ = 0, i.e., a system, that for V = 0 is at half filling,
and a potential defining some plateau, then in the region of the plateau we locally have a
lower filling factor. Consequently we can always set µ to zero and adding an appropriate
potential inside the contact region, to achieve the desired filling factor.

Figure 4.3: Smoothed (with δ = τ/10) spectral function (see equation (4.36)) as a function
of ω and j for the potential shown in figure 4.2, right panel.



4.1 Microscopic Model 37

4.1.2 Influence of the Leads: The Projection Method

The model Hamiltonian (4.1) lives on an infinite-dimensional Hilbert space, which is im-
possible to threat numerically. But we are not interested in the details of the leads. The
flow equations won’t affect this part, since there is no interaction present. One effect of
the two leads is, they produce a finite lifetime on the end of the contact, thus electrons are
not reflected and boundary interference effects are suppressed. The second consequence
is, since there is an infinite number of electrons on the lead, the number of electrons is
not conserved. The electron-density at the end of the contact is fixed by the chemical
potential. Electrons that are pushed away (drawn forward) by a potential can escape to
(enter from) infinity.

To get a finite dimensional Hilbert space, we define a projection operator P that projects
on the states inside the contact and a projector Q, perpendicular to P , that projects on
the infinite-dimensional Hilbert space of the leads.

P +Q = 1, P 2 = P, Q2 = Q (4.8)

We only need the part of the propagator that connects states where the two-particle vertex
functions are nonzero. This applies only inside the contact. Consequently we need PGP .
We define PHP = HPP etc., and with the above definition of P and Q obviously

HPP = Hc +Hint, HPQ +HQP = Hlc, HQQ = Hl. (4.9)

GPP (ω) = P

[
ω −

(
HPP HPQ

HQP HQQ

)]−1

P =

[(
ωP −HPP −HPQ

−HQP ωQ−HQQ

)−1
]

1,1

=
1

ωP −HPP −HPQ
1

ωQ−HQQ
HQP

(4.10)

Furthermore we define

ΣPP (ω) := −HPQ
1

ωQ−HQQ

HQP

= −τ 2
∑

σ=↑,↓

[
|1, σ〉〈1, σ, L| 1

ω−HQQ
|1, σ, L〉〈1, σ|

+|N, σ〉〈1, σ, R| 1
ω−HQQ

|1, σ, R〉〈N, σ|
]

= −τ 2
∑
σ=↑,↓

[|1, σ〉gL,σ(ω)〈1, σ| +|N, σ〉gR,σ(ω)〈N, σ|] (4.11)

In the last line we defined the functions gs,σ (s = L/R) which in our case are independent
of s and σ due to symmetry, thus we will omit the indices. To calculate g we consider a
infinite long chain, i.e. a chain that goes from −∞ to ∞, with chemical potential µ. We
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pick out one single site randomly, which then provides

GPP,↑ =
1

ω + µ− τ 2(gL,↑(ω) + gR,↑(ω))

=
1

ω + µ− 2τ 2g(ω)
!

= −i dk
dω
,

⇒ g(ω) =
1

2τ 2

(
ω + µ− idω(k)

dk

)
, (4.12)

with ω(k) being the dispersion relation. This holds in general. Using the dispersion relation
of a tight binding chain with hopping matrix-element τ ,

ω(k) = −2τ cos k − µ, k = − arccos
ω + µ

2τ
(4.13)

we get

dω

dk
= 2τ sin k = ±2τa

√
1− cos2 k

= ±
√

4τ 2 − (ω + µ)2

⇒ g(ω) =


1

2τ2

(
ω + µ− i

√
4τ 2 − (ω + µ)2

)
= (ω) ≥ 0

1
2τ2

(
ω + µ+ i

√
4τ 2 − (ω + µ)2

)
= (ω) < 0

(4.14)

Note that the method we described here is exact. We now can thread the subspace of the
contact, which has 2N dimensions (the 2 is due to spin), separately.

4.2 The fRG-flow equations

4.2.1 Spinless Fermions

First we will consider the case of spinless fermions on the grounds that we have less terms
to keep track of, but all concepts can be illustrated. The spinfull case is more complicated,
but no new ideas enter. The second reason is, that we can separate spin-effects like the
Kondo resonance from other interaction-effects.

In the case of spinless fermions we have no sum over spins. Furthermore we have no
onside-interactions, since the Pauli principle forbids that two electrons are on the same
site. Consequently the different parts of our Hamiltonian (4.1) read

Hc =

 N
2∑

j=−N
2

+1

(Vj − µ) d†jdj −
N
2
−1∑

j=−N
2

+1

(
τjd
†
j+1dj + h.c.

) (4.15a)

Hl = −
∑
s=L,R

∞∑
k=1

[
µ c†k,sck,s + τl

(
c†k+1,sck,s + h.c.

)]
. (4.15b)
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Hlc = −τlc
(
c†1,Ld1 + d†Nc1,R + h.c.

)
(4.15c)

and

Hint =

N
2
−1∑

j=−N
2

+1

U ′j njnj+1 (4.15d)

This defines our system completely. So in principle one could solve the coupled flow equa-
tions for γ1 and γ2 numerically. But the number of variables is huge. The dimensionality
of the Hilbert space, as mentioned, is N (for the spinless case), and thus γ1 has N2 and γ2

N4 independent variables. With a computer with around 10GB of memory N is bounded
by 100. Using a computer with more memory does not really help, to push N one order of
magnitude up means we need 104 times more memory, i.e. 100TB!! This makes clear that
we need to make more approximations. Taking all independent variables of γ2 is absolutely
unnecessary, since, due to screening-effects, the range of the interaction is bounded. This
is a physical argument. One could also argue in the fRG scheme: the γ2(j, j + 2; j, j + 2)
is generated in power of two by γ2(j, j + 1; j, j + 1), which is regarded as being small;
γ2(j, j+ 4; j, j+ 4) is generated in second power by γ2(j, j+ 2; j, j+ 2), and so on, thus the
effective interaction decays strongly with the distance. A good approximation would be

γ2(j, j + l1; j + l2, j + l3) = 0 ∀ |l1|, |l2|, |l3| > l (4.16)

This reduces the number of independent variables to N · (2l + 1)3. Also the independent
variables of γ1 are reduced to N · (2l + 1), since γ1 is generated by γ2. Thus the total
number of independent variables grows linearly with the system size. This is the best we
can expect.

We will set l to 1, implying that the range of interaction, to be called the “numerical
screening length” is only one lattice spacing. Although this is significantly smaller than the
physical screening length (typically 50nm), we expect that this will nevertheless capture
the essential effect of interactions correctly, as long as the wavelength of relevant excitations
is larger than the physical screening length. This will be the case if the potential varies
smoothly on the scale of the physical screening length, and temperature is low enough.

With this choice of l, the only independent nonzero matrix element of the two-particle
vertex is γ2(j, j + 1, j, j + 1). All other matrix elements containing j and j + 1 can be
expressed by this using the symmetries of the two-particle vertex (3.37). By consequence
γ2 reduces to a vector and we use the abbreviation

UΛ
j = γΛ

2 (j, j + 1; j, j + 1). (4.17)

Before we write down the flow equation of UΛ we make some considerations on the one-
particle vertex. Because of computational technical reasons we do not use γ1 as operand,
instead we define a effective Λ-dependent Hamiltonian

HΛ
eff = Hc − γΛ

1 . (4.18)
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The flow equation for this effective Hamiltonian simply reads

d

dΛ
HΛ

eff = − d

dΛ
γΛ

1 (4.19)

and its initial conditions

HΛ0
eff = Hc − γΛ0

1 = Hc +
1

2

∑
q

vk′,q;k,q (4.20)

where we used the initial condition of the vertices (3.86). With (3.79) equation (4.19) takes
the form

d

dΛ
HΛ
j,j = − 1

2π

∑
ω=±Λ

∑
q,q

G̃Λ
q′,q(iω)γ2(j, q′; j, q)

= − 1

2π

∑
ω=±Λ

(
G̃j+1,j+1(iω)UΛ

j + G̃Λ
j−1,j−1(iω)UΛ

j−1

)
(4.21)

d

dΛ
HΛ
j,j+1 = − 1

2π

∑
ω=±Λ

∑
q,q

G̃Λ
q′,q(iω)γ2(j, q′; j + 1, q)

=
1

2π

∑
ω=±Λ

G̃j,j+1(iω)UΛ
j (4.22)

d

dΛ
HΛ
j+1,j =

1

2π

∑
ω=±Λ

G̃j+1,j(iω)UΛ
j (4.23)

d

dΛ
HΛ
j,j+l = 0 (|l| > 1). (4.24)

We dropped the index “eff ” to make room for the quantum numbers. Consequently the
effective Hamiltonian stays tridiagonal. Furthermore it stays real - if it is real in the
beginning. This is not obvious since the propagator is complex. Using the definition of G̃
(3.80) together with (4.10) we get

G̃Λ(−iΛ) =
1

−iΛ−HΛ
eff − 2τ 2g(−iΛ) (|1, σ〉〈1, σ|+ |N, σ〉〈N, σ|)

=
[
G̃Λ(iΛ)

]∗
(4.25)

where the star denotes the complex conjugate. Thus the sum∑
ω=±Λ

G̃i,j(iω) = 2 <
(
G̃i,j(iΛ)

)
. (4.26)

is real and HΛ
eff is real as long as UΛ is real. This property implies, that HΛ

eff is symmetric,

since it is hermitian, and thus G̃Λ is symmetric which is consistent with (4.22) and (4.23).
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We use the fact that the propagator is symmetric to simplify the flow-equation of U .
We get

d

dΛ
UΛ
j =

1

2π

∑
ω=±Λ

[
G̃Λ
j,j(iω)G̃Λ

j+1,j+1(−iω)
(
UΛ
j

)2

− G̃Λ
j,j+1(iω)G̃Λ

j+1,j(−iω)
(
UΛ
j

)2

−
(
G̃Λ
j−1,j(iω)

)2

UΛ
j U

Λ
j−1

−
(
G̃Λ
j,j+1(iω)

)2 (
UΛ
j

)2

−
(
G̃Λ
j−1,j+2(iω)

)2

UΛ
j−1U

Λ
j+1

−
(
G̃Λ
j+1,j+2(iω)

)2

UΛ
j U

Λ
j+1

+G̃Λ
j,j(iω)G̃Λ

j+1,j+1(iω)UΛ
j U

Λ
j

]

(4.27)

4.2.2 Spin 1
2-Fermions

For the spin 1
2
-fermions we make the same approximations as for the spinless case. Our

system is not isotropic, since a magnetic field is present, furthermore it is not translationally
invariant. Consequently we have 11 independent matrix elements for each site in the two-
particle vertex

Uj = γ2(j ↑, j ↓; j ↑, j ↓)
U ′j,↑ = γ2(j ↑, j + 1 ↑; j ↑, j + 1 ↑) U ′j↓ = γ2(j ↓, j + 1 ↓; j ↓, j + 1 ↓)
U ′j,↑↓ = γ2(j ↑, j + 1 ↓; j ↑, j + 1 ↓) U ′j,↓↑ = γ2(j ↓, j + 1 ↑; j ↓, j + 1 ↑)
Pj = γ2(j ↑, j ↓; j + 1 ↑, j + 1 ↓) Vj = γ2(j ↑, j + 1 ↓; j + 1 ↑, j ↓)

W
(1)
j = γ2(j ↑, j ↓; j ↑, j + 1 ↓) W

(2)
j = γ2(j ↑, j ↓; j + 1 ↑, j ↓)

W
(3)
j = γ2(j ↑, j ↓; j ↑, j − 1 ↓) W

(4)
j = γ2(j ↑, j ↓; j − 1 ↑, j ↓) (4.28)

One could argue that if the local potential does not change too fast in space and the
magnetic field is not too strong we can make the approximation W (1) ≈ W (2) ≈ W (3) ≈
W (4), but we will go even further. If we are in the Hubbard model, i.e. in equation (4.1e)
we set U ′ = 0, W is generated only in second order, so one can neglect these terms. To
go even further we will neglect it even in the extended Hubbard model. This can be done
with the same arguments if one sets U ′ � U . This reduces the number of independent
variables to seven. Since we want to be able to treat problems that strongly depend on
space we won’t make the approximation U ′j,↑↓ ≈ U ′j,↓↑.

For the spin 1
2
-fermions we also define an effective Λ-dependent Hamiltonian

HΛ
i,j,σ = Hc − γ1(iσ, jσ) (4.29)
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where we already implied that the Hamiltonian stays diagonal in spin-space, which is the
case since it is in the beginning of the flow and so is v. By consequence the propagator is
also diagonal in spin space. Thus the flow equation reads

d

dΛ
HΛ
j,j,σ =− 1

2π

∑
ω=±Λ

∑
q,q

G̃Λ
q′,q(iω)γ2(jσ, q′; jσ, q)

=− 1

2π

∑
ω=±Λ

(
G̃Λ
j,j,σ(iω)Uj + G̃Λ

j+1,j+1,σ(iω)U ′j,σσ

+ G̃Λ
j−1,j−1,σ(iω)U ′j−1,σσ + G̃Λ

j+1,j+1,σ(iω)U ′j,σ

+G̃Λ
j−1,j−1,σ(iω)U ′j−1,σ

)
(4.30)

d

dΛ
HΛ
j,j+1,σ =− 1

2π

∑
ω=±Λ

(
−G̃Λ

j,j+1,σ(iω)U ′jσ + G̃Λ
j,j+1,σ(iω)Pj

+G̃Λ
j,j+1,σVj

)
(4.31)

The flow equation of the two-particle vertex is quite long, so we put it in the appendix.

4.3 Interpreting Results

As discussed in section 3.3.2, the vertex functions that we get out of the fRG flow equation
are frequency independent. Consequently we can interpret the self energy as a renormalized
potential, leading to a noninteracting effective Hamiltonian

Heff = HΛ=0. (4.32)

The diagonal part, i.e. the local potential, keeps track of energy shifts due to charging
effects, screening etc. The nonlocal part, which in our approximation scheme is only the
first off-diagonal renormalizes the hopping, and thus the dispersion relation. Since the
bandwidth for constant hopping is equal to 4τ , it can change due to interaction. From the
effective Hamiltonian we can calculate the Green’ s function

Gi,j(ω) =
[
ω −Heff

]−1
(4.33)

The Green’s function in turn can be used to calculate observables.

4.3.1 Spectral Function

The diagonal part of the spectral function can be obtained directly from the Green’s
function [25],

Ai,i(ω) = − 1

π
=Gi,i(ω). (4.34)
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and is nothing but the local density of states. In the zero temperature case for finite
dimensional systems, Aii(ω) is a series of delta peaks

Aii(ω) =
∑
m

|〈m|i〉|2 δ(ω − ωm) (4.35)

Here m labels the energy eigenstates and i the position eigenstates. However since our
system is infinitely extended the energy spectrum is continuous inside the band and con-
sequently so is the spectral function. This does not apply to states lying outside the band.
Their spectral weight is δ-shaped, since they have an infinite life-time. In order to make
them visible one can broaden them by a small but finite complex constant iδ which shifts
the poles away from the real axis.

Aii(ω) = − 1

π
Im
[
ω −Heff − iδ

]−1
(4.36)

As already mentioned in section 3.3.2, we cannot expect to get reliable results for nonzero
frequency a priori, consequently we can trust the spectral function only in the limit
limω→0Ai,i(ω). Nevertheless Andergassen et al. [26, 27] showed that the method yields
good results not only for the zero frequency behavior but for the low frequency behavior
of the spectral function for Luttinger liquids with a single impurity.

4.3.2 Local Density

The expectation value at zero temperature for the local density operator is simply the local
density of states summed up to the Fermi energy.

ni =

∫ 0

−∞
dωAii(ω). (4.37)

Here we already implemented the fact that the Fermi energy is per definition equal to zero.
Now in the last section, we mentioned that the method we use does not provide reliable
results for the local density of states for nonzero frequencies, so why should we trust the
local density? In fact, in the standard RG terminology ni is a composite operator [28], and
one should renormalize it separately. Nevertheless, it turns out that calculating ni with
equation (4.37) provides surprisingly good results (for the SIAM at zero magnetic field the
occupation n and the conductivity G are not independent: G = e2

h
sin2 n

π
, this could be

used to check the validity of (4.37)). This fact can be explained as follows. In equation
(4.37) only the spectral weight below the Fermi surface enters, which is expected to be
adequate, since it is proportional to the charging energy.

For more careful analysis of the local density profile, one ought to renormalize the
density operator separately, as done by Andergassen et al. [27].
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4.3.3 Conductivity

Since fRG maps the interacting one dimensional system onto a noninteracting one-dimen-
sional system we can use Landauer-Büttiger formalism to describe transport. One could
say that this is not clear, since we are dealing with an interacting system and calculating
conductivity with the effective noninteracting Hamiltonian involves further approxima-
tions, but it turns out that this is not the case as showed for example by Enss et al.[22].
In linear response theory, only the zero frequency part of the transmission contributes to
the conductivity, for which this method is expected to provide reliable results.

A detailed derivation of the conductance in the fRG scheme can be found in [29]. Here
we only want to quote the final result for the zero temperature conductivity for linear
response applied for a one dimensional chain.

Gσ =
e2

h
Tσ (4.38)

where Tσ is the transmission for spin σ

Tσ =
∣∣2πρlead(µ)τ 2GσN,1(µ)

∣∣2 (4.39)

4.3.4 Shot Noise

The shot noise in a mesoscopic system at zero temperature and zero frequency is [30]

S(ω = 0) =
e3|VSD|
π~

∑
n

Tn(1− Tn) (4.40)

where Tn is the transmission of the nth channel. The shot noise vanishes in the limit
VSD → 0, thus it is convenient to define a shot noise factor

N =
∑
n

Tn(1− Tn) (4.41)



Chapter 5

Numerical Results

In this chapter we will present numerical results of the fRG flow equations in one dimension
set up in the last chapter. As already mentioned, we will use τl as an energy scale and set it
to one. When we do not specify the interaction explicitly, it will be taken as constant over
the whole contact region, with a smooth decay on both ends to avoid interference effects.
We pointed out that U has to be small to justify the truncation scheme; nevertheless,
in most cases we will set U = τ , which is not really small in comparison, e.g., to the
bandwidth 4τl. While we did not systematically analyze the reliability of fRG for such a
choice of U , its use is justified by the results of Andergassen et al. [27]. They made a
quantitative comparison with exact results, for the method used here applied to Luttinger
liquids with impurities. To give an example, they calculated the effective decay exponent
of long range Fridel oscillations. The error for spinless fermions was within a range of
about 5% for U = τ .

In systems for which we are using the extended Hubbard model we set U ′ = U/10, which
should be sufficient small to justify neglecting the vertices of type γ2(jσ, jσ; jσ, j + 1σ).

5.1 Main Effects of the Interaction

As already mentioned, the fRG flow equations map the interacting system onto a non-
interacting system with renormalized local potential and renormalized nonlocal potential
or effective hopping. Before applying the system to concrete models we want to analyze
the main effects of the interaction. Therefore we calculate the effective potential with the
method described in section 4.2.2 with U = τ and U ′ = 0.1τ . The region of interaction is
bounded and decays smoothly to zero (see figure 5.1 blue line). Furthermore we consider
a bare potential of gaussian shape with maximum τ in the middle of the wire (see figure
5.1 red line).

The effective potential emerging from the RG flow is shown in figure 5.1 green line. In
the region with nonzero interaction it is shifted, due to the charging energy. Consequently
we have a lower density, since the electrons are displaced out of this region to infinity. The
effective potential follows in general the bare potential, but since the density in regions
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Figure 5.1: Prototype of a QWR with interacting region and a gaussian potential.

with higher potential is lower, so is the charging energy. As a result in regions with higher
potential the effective potential is less shifted by renormalization than in the region with
zero potential.

Furthermore, the effective hopping is slightly bigger than the bare hopping. Since the
bandwidth is equal to 4τ eff , this results in a bigger bandwidth.

5.2 Quantum Dots

5.2.1 The Single Impurity Anderson Model

Before we try to model a QWR, let us study a zero dimensional system, in order to gain
intuition for the types of results that are to be expected. These systems are physically
well understood and there exist numerous exact results, obtained with various methods,
to which we can compare our results. The simplest model of a QD is the SIAM (2.4).
Translated to our model (4.1) reads

Hc =
∑
σ=↑,↓

(
εd −

σh

2

)
d†σdσ (5.1a)

Hlc = −τd
∑

σ,σ′=↑,↓

(
c†1,L,σdσ + d†σ′c1,R,σ′ + h.c.

)
(5.1b)

Hint = U n↑n↓. (5.1c)

Since the length of the contact region N = 1, the contact operators dσ and d†σ as well as nσ
have no site index. εd is the dot energy controlled by the gate voltage Vg. It is convenient



5.2 Quantum Dots 47

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
G

/e
2  h

-1
   

  n

Vg / U

Γ / U = 0.05
fRG Results:

Conductance
Occupation

NRG Results:
Conductance
Occupation

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A(
ω

) π
 Γ

ω / U

Γ / U = 0.05    εd = U / 2

fRG
NRG

Figure 5.2: Comparison of fRG results with exact NRG results of the SIAM with Γ/U =
0.05. Left: Conductance and occupation versus gate voltage. Right: Spectral function
versus frequency for the particle hole symmetric point (Vg = 0).

to measure the gate voltage with respect to the particle hole symmetric point, and thus

Vg = εd +
U

2
. (5.2)

The determining quantity for QDs is not the coupling τd of the dot to the reservoir but the
total hybridization Γ = ΓR + ΓL (again the indices R/L stands for the right/left reservoir)
with

Γs = πρs(0)τ 2
d (5.3)

where ρs(0) is the density of states at the Fermi energy of the left (s = L) and the right
(s = R) lead. Using πρs(ω) = −=gs(ω) and the fact that our system is symmetric, i.e.
ΓR = ΓL we get

τd =

√
− Γ

2=gs(0)
=

√
Γτl
2
. (5.4)

Furthermore, the absolute value of U does not have influence on the physics of the system,
provided that it is much larger than Γ. That means, since U is measured in units of
τl, the absolute value of τl has no influence on the physics neither, and is not useful to
determine the energy scale. The important quantity is the ratio Γ

U
. Consequently it is

convenient to use U as energy scale for the SIAM. We calculated the conductivity and the
occupation for Γ/U = 0.05, T = 0, Vsd = 0 and h = 0 with fRG as well as with NRG.
A comparison of both are shown in figure 5.2 left panel. This looks quiet good, but as
mentioned before the conductivity only depends on the zero frequency results. What is
about nonzero frequency? A comparison of the spectral function of NRG and fRG results
for the particle hole symmetric point, i.e. ed = −U

2
, can be found in figure 5.2 right panel.

For ω = 0 both are the same, but the shapes are totally different. The shape of the fRG
spectral function is the one of a single noninteracting level with hybridization Γ, whereas
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Figure 5.3: Effective level position as a function level energy εd without interaction (dashed
lines) and with U = 0.3τ (solid lines) at zero magnetic field (left) and with Zeeman splitting
(middle). Conductance versus gate voltage for different magnetic fields (right), for both
fRG (solid lines) and NRG (dashed lines).

the correct spectral function has a narrow central peak of width TK and two broad side
peaks, of width Γ. In fact the fRG method is not able to produce a spectral function of
a different shape, since the self energy is frequency independent. Only the position of the
level is shifted due to interaction. That means that there exist only one level, although
in the interacting case the spectral function is supposed to have two maxima, one for the
singe occupied level and the second for the double occupied one (compare figure 5.2 left
panel NRG results).

In figure 5.3, left panel, one can see the effective level position as a function of εd. For
εd � εf where the level is doubly occupied it is shifted up by U due to the charging energy.
In the case εd � εf the level is empty, and thus it stays unchanged during the flow. The
interesting physics happens between these two cases. The level is pinned at the Fermi
surface for a range of gate voltages mimicking the Kondo resonance. Upon switching on a
magnetic field by adding a corresponding Zeeman energy, the levels are pushed apart, as
can be seen in figure 5.3 middle panel. Note that the repulsion of the effective levels is about
103 times larger then the Zeeman splitting, although the splitting of the Kondo resonances
are known be of order of the Zeeman energy. To be precise, one expects the levelspacing

∆E to be for h � TK , ∆E = 4
3
h [31] and for h � TK , ∆E = 2h

(
1− 1

2 lnh/TK

)
[32].

However within the presented fRG scheme (with its frequency independent self energy)
the large repulsion is necessary to lead to the right zero frequency results: Since the level
width is equal to the hybridization, the splitting has to be of order Γ to reproduce the
exact local density of states at zero frequency. A comparison of the linear conductance
with NRG for different magnetic fields are shown in figure 5.3 right panel. We want to
mention that NRG is not expected to provide reliable results for Zeeman energies in the
order of TK (for εd = U/2 TK = 3.4 10−8U).
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5.2.2 A More Realistic Modeling of QDs

A QD in general is a small island where electrons are trapped in a potential. The potential
can be regarded as a box, thus the energies are quantized. In the SIAM one picks out one
of these energy levels, namely the one that is the closest to the Fermi energy. Since we set
up a method in one dimension, we can extend our system in one dimension, and directly
model the potential with two barriers. In the zero dimensional model the potential barriers
around the dot are replaced by small coupling constants.

The one dimensional model reflects in addition the following properties of the real
situation. First, we have a number of discrete levels, that are obtained from the diago-
nalisation of the dot region. Second, the strength of coupling of the levels to the bath
depends on the energy. Electrons with higher energy can tunnel through the barriers more
easily. For energies above the barrier, the transmission becomes one and thus the spectrum
continuous.

The starting point of this description is a continuous system, i.e. the coupling τj = τl =
τ is constant within the whole system. The interaction is constant in the contact region
and smoothly decays at both ends, so the system continuously merges into the leads, which
are noninteracting. The potential is chosen to consist of two gaussian peaks, separated by
a distance d. The bottom of the valley inside the dot can be controlled by a parameter
called Vg. The potential landscape is shown in figure 5.4, left panel. Note that Vg has to
be associated with the negative gate voltage because a higher bottom means that electrons
are suppressed, which is done by a lower voltage.

Figure 5.4, right panel, shows the spectral function for each site inside the dot. The
spectral function reproduces the density distribution of the square well eigenfunctions. To
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Figure 5.4: Left: Shape of the potential that we are using for ore model. The bottom
between the two barriers is controlled via Vg. Right: Spectral function versus site number
and frequency for the potential shown in the left panel with Vg = 0, the levels are broadened
by a finite value of δ = 0.002τ .
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a finite value of δ = 5 10−5τ and the spectral function is cropped at A(ω) = 40. Right:
Effective level position versus Vg for the interacting system U = 2τ and U ′ = U/10.

get a spectral function of the dot one has to integrate the local spectral function over the
whole dot region.

Ad(ω) =

d/2∑
j=−d/2

Aj,j(ω) (5.5)

This dot-spectral function for U = 0 and Vg = 0 can be seen in figure 5.5 left panel. As one
can see there are a number of discrete states inside the dot, which are, in the noninteracting
case, doubly occupied. So we expect to get a Kondo-plateau for each of these levels.

The occupation of the dot can be calculated using equation (4.37) with the dot spectral
function Ad(ω) instead of the local spectral function.

In order to make a rough estimate of the dot-charging energy Ud, we describe the dot in
the continuous space by an infinite square well with parabolic dispersion relation. Further-
more we neglect the nearest neighbor interaction, in other words we take the interaction
to be proportional to the Kronecker delta. In the continuum limit the Kronecker delta
becomes a Dirac delta δKronecker → aδDirac (where a is the lattice spacing and d/a = const).
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This makes it easy to calculate Ud from the eigenfunctions ψn(x) =
√

2
d

cos nπx
d

Ud ≈ a

∫ d/2

−d/2
dx

∫ d/2

−d/2
dx′ψ2

n(x)ψ2
n(x′)Uδ(x− x′)

= a
4U

d2

∫ d/2

−d/2
dx cos4 nπx

d

= a
4U

d2

∫ d/2

−d/2
dx

[
1

4
+ cos

2nπx

d
+

1

4
cos2 2nπx

d

]
= a

3

2

U

d
≈ 0.04U. (5.6)

In the last step we inserted the distance d/a = 40 that we used in our calculations. The
hybridization can be read off the dot-spectral function. At the Fermi energy we get for the
full width at half maximum 2Γf = 7 10−3τ and consequently

Ud
Γf
≈ 11

U

τ
(5.7)

In our calculations τ = U = 1, U ′ = 0.1 and d = 40 as mentioned before, in other words,
our parameter choice ensures that Ud/Γf � 1, s needed to see Kondo physics. We are
now able to scan the dot for its Kondo resonances. Since the dot consists of 40 sites we
expect just as many resonances. We picked out four of them, and calculated in addition to
the conductivity at zero magnetic field the occupation and transition phase. The absolute
value of the transition phase depends on the details of the potential outside the dot,
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however the absolute value of a phase has no physical meaning. Only relative phases can
be measured, and consequently we randomly choose two neighboring resonances and set
the phase between these two resonances to zero, i.e. we plot the phase relative to this
point. Furthermore we calculated the conductivity for several magnetic fields. The results
are shown in figure 5.6. Note that all important features of the Kondo resonance are
reproduced. In the region of the resonance the number of electrons on the dot is odd, the
phase is pinned at π

2
and the conductance is one. Applying a magnetic field leads to a

suppression of the conductance, the plateaus develop into two peaks.
We are now able to read off the dot-charging energy Ud, from the width of the plateaus.

It is between 0.045 and 0.05, which is in the order of magnitude of our estimation. Note
that additionally the distance of the plateau is of order Ud + δE. A plot of the effective
level positions – defined by the maxima of the spectral function – as a function of Vg is
shown in figure 5.5 right panel. All levels are expected to increase uniformly with Vg. This
is not the case. Since all level spacings are more or less fixed, each time one level is pinned
at the Fermi surface, all other level have to stand still as well. This again is an artifact of
neglecting the frequency dependence of the self energy.

5.3 Quantum Point Contacts

In the last section we showed that our method is able to reproduce a number of physical
relevant observables of the Kondo problem, for both a more cartoon like model – the SIAM
– and a more realistic model set up in one dimensional real space. Thus we are now in a
position to set up a model for the QPC. Since we are restricted to zero temperature, we do
not expect to see the 0.7 anomaly. However we are able to treat magnetic field, which in
the Kondo problem has a similar influence like temperature, in that it reduces the linear
conductance.

We showed that we cannot trust the nonzero frequency results provided by this model,
thus we will only use the linear response conductance, which only depends on zero fre-
quency, to analyze the data.

As discussed in section 4.1, we will describe the QPC by its lowest mode, with the
bare potential substantially determined by equation (2.7) and all screening effects outside
the QWR. Furthermore, one could adopt the same considerations as in equation (5.6)
for the transverse direction of the point contact. This would mean that the interaction
gets stronger with decreasing width, and thus depends on the position x. However, we
will refrain from incorporating the latter complication, since we do not want to use too
many independent variables. We are interested in properties of interacting QWRs with a
local potential, but need to keep U reasonably small to ensure that fRG remains reliable.
According to Andergassen et al. [27], this is still the case for U = τ , which is the choice
we shall adopt here (unless specified otherwise).

With this (somewhat) arbitrary choice we will analyze the physics of a interacting QWR
where the electrons are totally squeezed out of a region by an external potential. To do
so we will mainly use a potential of the shape shown for example in figure 5.7, which is
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essentially a product of two arc-tangent functions with the maximum set to Vg and the
infimum set to zero

Vj = Vg
arctan

(
a
(
j + b

2

))
arctan

(
a
(
−j + b

2

))
+ π2

4

arctan2(a b
2
) + π2

4

(5.8)

here b determines the width of the barrier and a the sharpness of the borders.
We have not (yet) tried to determine realistic values for the parameters a and b, or of

the Zeeman field h from a detailed modeling of the 3-dimensional electrostatic environment
of the QPC. This will be a topic of future work. However we have checked that a wide range
of choices for these parameters yields qualitatively similar behavior for the conductance.

For large values of a the potential changes strongly in space, and thus the approximation
of short ranged interactions is questionable. Calculations where a is large should thus not
be taken too seriously.

5.3.1 Spinless Point Contact

First we will take a brief look at the QPC for the spinless model set up in section 4.2.1.
The length of the region with interaction U = τ is equal to N = 100, where the interaction
smoothly decays at both ends. The width of the potential barrier is equal to b = 40. In
figure 5.7 left panel one can see the potential for U = 0 as well as U = τ , for Vg = 2τ .
Since the bandwidth is equal to 4τ this value of Vg is the point where the barrier breaks
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Figure 5.7: Left: Shape of the bare potential (5.8) with Vg = 2τ , b = 50, and a = 0.7 (red
line) and effective potential for the interacting system with U = τ at zero frequency and
the same parameters (green line). Right: Detail screen of the effective potential at zero
frequency for different values of Vg showing the emergence of a potential minimum for Vg
values near 2τ ; for comparison: the bare potential for Vg = 2τ (grey line)
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Figure 5.8: Conductance as a function of Vg for the spinless point contact, for the potential
shown in figure 5.7 left panel.

through the Fermi surface. In the noninteracting case at Vg = 2τ the transmission changes
from one to zero as can be seen in figure 5.8.

Note that due to the interaction (see figure 5.7 left panel) the width of the barrier
increases and the walls become steeper. Furthermore a small valley is formed inside the
dot. This is a first indication that a bounded state develops inside the dot. This does
not happen for every gate voltage as can be seen in figure 5.7 right panel, where the
potential is plotted for different values of Vg in a zoom-in onto the plateau region. The
local minimum in the effective potential arises for Vg near the Fermi energy (Vg = 2τ) and
disappears for higher gate voltages. Figure 5.8 shows how this affects the conductivity. In
the noninteracting case the transmission decreases uniformly to zero, while in the QWR
where interaction is present the conductivity oscillates as a function of Vg before it goes to
zero as well, in a way reminiscent of a square potential with infinitely sharp borders.

5.3.2 Spin 1
2 Contact

The next step is to implement the spin degree of freedom, and thus we use the model
of section 4.2.2 to describe the contact. We use a potential of the same shape as for
the spinless case. The width of the barrier is chosen equal to b = 150, and again the
steepness of its walls as a = 0.7 (see figure 5.9 left panel), and the length of the region
where the interaction U = τ and U ′ = 0.1τ is present is equal to N = 300. Again on both
ends the interaction decays smoothly to zero to suppress interference effects. The effective
potential in the spinfull case shown in figure 5.9 left panel for Vg = 2τ indicates the same
characteristics as for the spinless case, i.e the barrier gets broadened and the borders get
sharpened. Furthermore inside the contact a small valley develops.

As we already argued in section 2.2.2 we do not expect to see the 0.7 anomaly within the
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Figure 5.9: Left: Shape of the bare potential (redline) and effective potential at zero
frequency for Vg = 2τ (green line). Right: Conductance as a function of Vg for different
magnetic fields. right inset: shot noise factor versus conductance.

method we use here, since it is restricted to zero temperature. Thus it comes as no surprise
that the conductance as a function of Vg for zero Zeeman energy h = 0 (see figure 5.9 right
panel) does not show an additional feature. However there is another important feature
associated with the 0.7 anomaly, namely the magnetic field dependence of the conductance.
The spin resolved conductivity step due to magnetic field develops from above, as can be
seen in figure 2.5 left panel. Our method nicely reproduces this feature, as can be seen
in figure 5.9. Furthermore this leads to an asymmetric shot noise factor as a function of
conductivity, as can be seen in the inset of figure 2.5 left panel. The agreement with the
measurements (compare figure 2.7 right panel (d)) is remarkable.

In order to make a deeper analysis of the magnetic field dependence, we plotted the total
and spin-resolved conductance for both the noninteracting case (U = 0 figure 5.10 (a-c))
and the interacting case (U = τ , U ′ = 0.1τ figure 5.10 (d-f)). In the noninteracting case,
all lines of the total conductance go through the point G = 1

2
g0 at Vg = 2τ . The graphs are

symmetric with respect to this point. In the interacting case as well as in measurements,
we do not observe such a behavior. This is due to the fact that the conductivity of the
spin direction with lower energy (namely spin ↓) is strongly suppressed (compare 5.10 (f))
while the other spin direction is hardly affected by the magnetic field (compare 5.10 (e)).
Note that due to the latter the pinch-off value of Vg is hardly changed by magnetic field,
in agreement with experiment.

Furthermore, the step in the total conductivity at high magnetic field is much bigger
than the Zeeman splitting. This was also reported by Koop et al. [9]. They plotted
the separation between the maxima of dG

dVg
versus the applied magnetic field B. For high

magnetic fields this curve tends to a straight line, whose gradient is associated with an
effective g-factor (compare figure 5.11). The offset of this straight line is called ∆Ehfo
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Figure 5.10: Conductance as a function of Vg for different magnetic fields of the nonin-
teracting system for both spin direction (a), spin up (b) and spin down (c), and in the
interacting case, i.e. U = τ , U ′ = 0.1τ , of both spin direction (d), spin up (e) and spin
down (f).

(where ”hfo” stands for high frequency offset). Doing the same analysis we get a g factor
of g∗ = 3.15 (compare figure 5.11, middle panel) in agreement with Koop et al., who
reported a g-factor up to three times higher than in bulk 2DEG. For low magnetic fields
the curve extracted of the experimental data saturates at some value called ∆E0.7. We
do not observe such a behavior, since this has to be associated with the 0.7 anomaly at
zero magnetic fields, and thus can only be observed at nonzero temperature. We find the
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Figure 5.11: Left: Measurements on a QPC: dG
dVg

as a function of gate voltage (right) [9]

and distance of the maxima of dG
dVg

versus applied magnetic field (middle left) [9]. Right:

calculations with a potential shape shown in figure 5.9: distance of the maxima of dG
dVg

versus Zeeman splitting h (middle right) and effective g-factor g∗ versus interaction U
(right).
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Figure 5.12: Conductance for different values of Zeeman energy h using the potential (5.8)
with different values of a and b.

g-factor to be only weakly dependent on the shape of the one-dimensional potential and
the width of the barrier, but significantly on the strength of the interaction U . Recall
that we argued that the value of U depends on the effective width w of the contact, and
thus in this fashion the g-factor does depends on the details of the geometry. This fact
is confirmed by experimental data of Koop et al. [9], who found a correlation between
g∗ and the sublevel spacing ω12. Both U and ω12 depend on the effective width w of the
QWR. Figure 5.11, right panel, shows the U dependence of the g-factor. For U = 0 it
is equal to one, as it should be. The g-factor increases linearly with the interaction with
gradient approximately equal to 2 1

τ
. As a consequence the effective g-factor can be used to

determine the strength of the interaction U in our model. Fortunately the experimentally
observed value of g∗ . 3 corresponds to a choice U . τ which is still small enough for the
fRG approach to be fairly reliable.

To illustrate the geometry dependence of the conductance curves we calculated the
conductance for different values of Zeeman energies and the potential of equation (5.8),
for four different values of a, and for each value of a for four different values of b. The
results are shown in figure 5.12. The step around 0.7g0 for low magnetic fields gets less
pronounced if the length of the contact b is smaller, in agreement with measurements of
very short contacts around 50nm [33]. It gets more pronounced if the sharpness of the
borders, which is controlled via a, increases, i.e. if the width where the potential changes
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Figure 5.13: a-l: Effective potential for different values of Vg, a and b, for the noninteracting
case (U = 0) (green lines) as well as for U = τ (red lines) m-p: Effective potential for
different values of Zeeman energies h withe the parameters U = τ , Vg = 2τ , a = 0.7 and
b = 150, for spin up (red lines) and spin down electrons (blue lines).

from 0 to Vg is smaller. For high values of a (i.e. very sharp walls), the conductivity starts
to oscillate as can be seen in the last line of figure 5.12.

To get a deeper understanding of how the geometry influences the properties of the
QPC we plotted the effective potential for several different parameter choices. The effective
potential for the noninteracting case (U = 0) as well as for U = τ for a = 0.7 and b = 150
and different values of Vg is shown in figure 5.13 (a-d). Qualitatively we see the same
behavior as for the spinless case shown in figure 5.7, right panel. As the bottom of the
band is pushed upward past the Fermi energy, a valley arises in the middle of the contact.
For higher values of Vg a hump emerges in the middle of the valley which grows rapidly
with increasing Vg. We next fix Vg to 2τ and a to 0.7 and calculate the effective potential
for different values of b. The results are shown in 5.13 (e-h). The valley length scales
with the width of the barrier, while the borders remain unchanged, i.e. in comparison to
the width, the borders get sharper. Note that for the most narrow barrier the valley is
less pronounced than for the wider ones. Finally, we calculate the effective potential for
different values of a while Vg is fixed to 2τ and b to 150. We plotted the results in figure
5.13 (i-l), where we showed a larger range for the y-axis than for the figures (a-h). For the
smallest value of a = 0.1 the valley is less pronounced, as in the case of the smallest value
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of b. The borders get steeper with increasing a, as expected. To conclude we can say, that
the important quantity for the formation of the valley, and thus for the 0.7 anomaly, is the
length of the low density regime inside the dot, where screening is weaker and the effect of
interaction more pronounced.

Furthermore we want to mention that the step around 0.7g0 for low magnetic fields, as
well as the valley inside the dot for Vg ≈ 2τ , gets more pronounced if the nearest neighbor
interaction U ′ is bigger, but it does not vanish when we set U ′ = 0, since the nearest
neighbor interaction is generated during the flow. A lowering of U ′ can be compensated by
increasing the length b. In the spinless case the nearest neighbor interaction is dominant,
since there is no onsite interaction. Thus for the spinless contact the formation of a valley
is stronger.

Moreover, we calculated the effective potential for different values of Zeeman energies
h. The results are shown in figure 5.13 (m-p), whereas we chose the parameters U = τ ,
Vg = 2τ , a = 0.7 and b = 150. Note that the difference in the effective potential for spin
up and spin down electrons is about three times bigger than the Zeeman energy.

To conclude we can say that we have some indications that the formation of a step
around 0.7g0 for nonzero magnetic field is associated with a formation of a quasi-bound
state inside the dot. This lends support to a Kondo-related scenario like that advocated
by Meir and collaborators [7], although we take a somewhat critical view of models like
(2.16), since the details of the bound state change strongly for different Vg (compare figure
5.13), and it does not form for every value of Vg. On the other hand, our results also
indicate that the physics of field-induced interaction-enhanced spin polarization is relevant
for the 0.7 anomaly: At T = 0, the breaking of spin symmetry by magnetic field, leads to
a misbalance of the spin density in the point contact region, that is strongly enhanced by
presence of interactions, which are not well screened, due to the low density inside the QPC.
Thus based on our current fRG calculations, it appears that the 0.7 anomaly involves some
combination of Kondo type physics and spin-polarization physics. To investigate these
issues in more detail, our calculations will have to be extended to finite temperatures and
to finite frequency spectral information.
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Chapter 6

Conclusion and Outlook

In QPCs the conductance is quantized in units of g0 = 2e2

h
. In addition, at intermediate

temperature scales a shoulder-like step at around 0.7g0 develops, which has become known
as the so-called 0.7 anomaly. This anomaly depends, in a very particular manner, on
temperature, source-drain voltage and magnetic fields (chapter 2).

In this thesis we studied dependence on gate voltage and magnetic field of the conduc-
tance of QPCs, in the limit T = 0. The intention was to get a better understanding of
(geometry-dependent) many-body effects in QPC and their possible relevance for the 0.7
anomaly.

We used fRG, a powerful tool, to keep track of the effects of interactions. The presented
computation scheme extends previous work for translational independent filling factor and
isotropic Luttinger liquids [27], to arbitrary potential landscapes in non-isotropic systems
with short-ranged interactions. The fRG method treats the interaction by introducing an
energy cutoff as a flow parameter in the free propagator. Solving coupled flow equation in
the vertex functions, where we neglected the frequency dependence, leads to an effective
model for zero frequency. Due to the flow, the model covers all energy scales of the
microscopic model.

The restriction to zero frequency yields reliable results only in the limit T = 0. How-
ever in this limit many important features of the Kondo resonance in quantum dots are
recovered. We showed this by applying the fRG scheme to the SIAM as well as to a more
realistic model of a QD, based on a one-dimensional potential with two barriers repre-
senting the tunnel contacts. But we also observed, that we can trust the method only in
the limit ω = 0, and thus we are restricted to the linear response conduction as the only
observable that can be used to interpret the generated results.

This brought us in the position to calculate the conductance for QPCs, where we rep-
resented the contact by a potential barrier. We reproduced all features that could be
expected within our scheme: (i) The pinch-off value of the gate voltage is hardly affected
by magnetic fields, (ii) an enhanced electron g-factor is observed for high magnetic fields,
(iii) the noise factor as a function of conductance for different values of magnetic fields is
in qualitatively agreement with measurements and (iv) the non-spin degenerated conduc-
tance develops “from above” for low magnetic field, whereby a small step at around 0.7g0
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emerges for some intermediate value of the Zeeman energy. Although we did not attempt
to relate the used potential shape to a realistically-modelled three-dimensional potential
landscape, we showed that main qualitative features of the phenomenon are robust, in that
they are obtained within a wide range of parameters.

Based on our work, several further questions suggest themselves for future study:

(i) Do a self consistent calculation, containing the screening effects of the 2DEG and the
metallic top-gate, to get a realistic potential landscape for the QPC. This would be
a very important step for comparing our data quantitatively to experiments, but we
do not expect to get qualitatively new features.

(ii) Calculate the temperature dependence of the conductance. To this end, one has to
modify the cutoff dependence of the free propagator, since one deals with discrete
Matsubara frequencies. But this is not the major task. One also has to consider
finite frequencies, since they play an important role for finite temperatures. This
will lead to a far higher dimensionality of the Hilbert space, and also much more
complicated flow equations. Due to these facts the length of the region defining the
contact will have to be restricted to a much smaller value than is the case for the
calculations presented in this thesis (where the restrictions, to N = 107 sites, were
not severe).

(iii) Study spectral properties (such as Aj,j(ω) of the system in the point contact region.
In particular, try to establish more conclusively whether a quasi-bound state forms,
and if yes, under what conditions.

(iv) Calculate the dependence of the conductance on a finite source-drain voltage. To this
end, the fRG formalism must be extended to deal with non-equilibrium steady-state
transport.

(v) For (ii) to (iv), study the geometric crossover between the geometries of a quantum
point contact and a quantum dot, in order to investigate to what extent the 0.7
anomaly is related (or smoothly crosses over) to the Kondo effect that occurs for
quantum dots. To this end, reliable information on spectral quantities would be
particularly useful.

(vi) Apart from the work on QPCs, it would be intruiging to apply the fRG to Wigner
crystals. Since Wigner crystals arise only for long-ranged interactions, one would
have to extend the range of the effective two-particle vertex to include very many
sites, at the cost of not allowing it to flow (else the number of flowing parameters
would become prohibitively large, compare discussion on independent variables in
section 4.2.1).



Appendix A

Flow Equation of the Spin-1
2

Two-Particle Vertex

Here we present the flow equation of the two-particle vertex for the one dimensional spin
1
2

tight-binding chain of section 4.2.2. Starting from equation (3.82) using the condition
(4.16) with the nomenclature (4.28), and setting vertices of the type γ2(jσ, jσ; jσ, j + 1σ)
to zero one gets

d
dΛ
Uj = 1

2π

∑
ω=±Λ

(
G̃Λ,iω
j−1,j−1↑ Pj−1 G̃Λ,−iω

j−1,j−1↓ Pj−1

+2 G̃Λ,iω
j,j−1↑ Pj−1 G̃Λ,−iω

j,j−1↓ Uj +2 G̃Λ,iω
j+1,j−1↑ Pj−1 G̃Λ,−iω

j+1,j−1↓ Pj
+ G̃Λ,iω

j,j↑ Uj G̃Λ,−iω
j,j↓ Uj +2 G̃Λ,iω

j+1,j↑ Uj G̃Λ,−iω
j+1,j↓ Pj

+ G̃Λ,iω
j+1,j+1↑ Pj G̃Λ,−iω

j+1,j+1↓ Pj − G̃Λ,iω
j−1,j−1↓ U ′j−1,↓↑ G̃

Λ,iω
j−1,j−1↓ U ′j−1,↓

− G̃Λ,iω
j−1,j−1↑ U ′j−1,↑ G̃Λ,iω

j−1,j−1↑ U ′j−1,↑↓ − G̃Λ,iω
j−1,j↓ Uj G̃Λ,iω

j,j−1↓ U ′j−1,↓
− G̃Λ,iω

j−1,j+1↓ U ′j,↑↓ G̃Λ,iω
j+1,j−1↓ U ′j−1,↓ − G̃Λ,iω

j−1,j+1↑ U ′j,↑ G̃Λ,iω
j+1,j−1↑ U ′j−1,↑↓

− G̃Λ,iω
j,j−1↑ U ′j−1,↑ G̃Λ,iω

j−1,j↑ Uj − G̃Λ,iω
j,j+1↑ U ′j,↑ G̃Λ,iω

j+1,j↑ Uj
− G̃Λ,iω

j+1,j−1↓ U ′j−1,↓↑ G̃
Λ,iω
j−1,j+1↓ U ′j,↓ − G̃Λ,iω

j+1,j−1↑ U ′j−1,↑ G̃Λ,iω
j−1,j+1↑ U ′j,↓↑

− G̃Λ,iω
j+1,j↓ Uj G̃Λ,iω

j,j+1↓ U ′j,↓ − G̃Λ,iω
j+1,j+1↓ U ′j,↑↓ G̃Λ,iω

j+1,j+1↓ U ′j,↓
− G̃Λ,iω

j+1,j+1↑ U ′j,↑ G̃Λ,iω
j+1,j+1↑ U ′j,↓↑ + G̃Λ,iω

j−1,j−1↑ Vj−1 G̃Λ,iω
j−1,j−1↓ Vj−1

+2 G̃Λ,iω
j−1,j↑ Uj G̃Λ,iω

j,j−1↓ Vj−1 +2 G̃Λ,iω
j−1,j+1↑ Vj G̃Λ,iω

j+1,j−1↓ Vj−1

+ G̃Λ,iω
j,j↑ Uj G̃Λ,iω

j,j↓ Uj +2 G̃Λ,iω
j,j+1↑ Vj G̃Λ,iω

j+1,j↓ Uj
+ G̃Λ,iω

j+1,j+1↑ Vj G̃Λ,iω
j+1,j+1↓ Vj)

(A.1)



64 A. Flow Equation of the Spin-1
2

Two-Particle Vertex

d
dΛ
U ′j,σ = 1

2π

∑
ω=±Λ

(
G̃Λ,iω
j+1,j+1σ U ′j,σ G̃Λ,−iω

j,jσ U ′j,σ

− G̃Λ,iω
j,j+1σ U ′j,σ G̃Λ,−iω

j+1,jσ U ′j,σ − G̃Λ,iω
j,j−1σ U ′j−1,σσ G̃

Λ,−iω
j−1,jσ U ′j,σσ

− G̃Λ,iω
j,j−1σ U ′j−1,σ G̃Λ,−iω

j−1,jσ U ′j,σ − G̃Λ,iω
j,jσ Uj G̃Λ,−iω

j,jσ U ′j,σσ
− G̃Λ,iω

j,j+1σ U ′j,σσ G̃Λ,−iω
j+1,jσ U ′j,σσ − G̃Λ,iω

j,j+1σ U ′j,σ G̃Λ,iω
j+1,jσ U ′j,σ

− G̃Λ,iω
j+1,j−1σ U ′j−1,σσ G̃

Λ,iω
j−1,j+1σ Uj+1 − G̃Λ,iω

j+1,jσ Uj G̃Λ,iω
j,j+1σ Uj+1

− G̃Λ,iω
j+1,j+1σ U ′j,σσ G̃Λ,iω

j+1,j+1σ Uj+1 − G̃Λ,iω
j+2,j−1σ U ′j−1,σσ G̃

Λ,iω
j−1,j+2σ U ′j+1,σσ

− G̃Λ,iω
j+2,j−1σ U ′j−1,σ G̃Λ,iω

j−1,j+2σ U ′j+1,σ − G̃Λ,iω
j+2,jσ Uj G̃Λ,iω

j,j+2σ U ′j+1,σσ

− G̃Λ,iω
j+2,j+1σ U ′j,σσ G̃Λ,iω

j+1,j+2σ U ′j+1,σσ − G̃Λ,iω
j+2,j+1σ U ′j,σ G̃Λ,iω

j+1,j+2σ U ′j+1,σ

+ G̃Λ,iω
j+1,j+1σ Pj G̃Λ,iω

j,jσ Pj +2 G̃Λ,iω
j+1,jσ Vj G̃Λ,iω

j+1,jσ Pj
+ G̃Λ,iω

j,jσ Vj G̃Λ,iω
j+1,j+1σ Vj + G̃Λ,iω

j,jσ U ′j,σ G̃Λ,iω
j+1,j+1σ U ′j,σ

)
(A.2)

d
dΛ
U ′j,σσ = 1

2π

∑
ω=±Λ

(
G̃Λ,iω
j+1,j+1σ Vj G̃Λ,−iω

j,jσ Vj

+ G̃Λ,iω
j+1,j+1σ U ′j,σσ G̃Λ,−iω

j,jσ U ′j,σσ +2 G̃Λ,iω
j,j+1σ Vj G̃Λ,−iω

j+1,jσ U ′j,σσ
− G̃Λ,iω

j,j−1σ U ′j−1,σσ G̃
Λ,iω
j−1,jσ U ′j,σ − G̃Λ,iω

j,j−1σ U ′j−1,σ G̃Λ,iω
j−1,jσ U ′j,σσ

− G̃Λ,iω
j,jσ Uj G̃Λ,iω

j,jσ U ′j,σ − G̃Λ,iω
j,j+1σ U ′j,σσ G̃Λ,iω

j+1,jσ U ′j,σ
− G̃Λ,iω

j,j+1σ U ′j,σ G̃Λ,iω
j+1,jσ U ′j,σσ − G̃Λ,iω

j+1,j−1σ U ′j−1,σ G̃Λ,iω
j−1,j+1σ Uj+1

− G̃Λ,iω
j+1,j+1σ U ′j,σ G̃Λ,iω

j+1,j+1σ Uj+1 − G̃Λ,iω
j+2,j−1σ U ′j−1,σσ G̃

Λ,iω
j−1,j+2σ U ′j+1,σ

− G̃Λ,iω
j+2,j−1σ U ′j−1,σ G̃Λ,iω

j−1,j+2σ U ′j+1,σσ − G̃Λ,iω
j+2,jσ Uj G̃Λ,iω

j,j+2σ U ′j+1,σ

− G̃Λ,iω
j+2,j+1σ U ′j,σσ G̃Λ,iω

j+1,j+2σ U ′j+1,σ − G̃Λ,iω
j+2,j+1σ U ′j,σ G̃Λ,iω

j+1,j+2σ U ′j+1,σσ

+ G̃Λ,iω
j+1,j+1σ Pj G̃Λ,iω

j,jσ Pj +2 G̃Λ,iω
j+1,jσ U ′j,σσ G̃Λ,iω

j+1,jσ Pj
+ G̃Λ,iω

j,jσ U ′j,σσ G̃Λ,iω
j+1,j+1σ U ′j,σσ

)
(A.3)

d
dΛ
Pj = 1

2π

∑
ω=±Λ

(
G̃Λ,iω
j,j−1↑ Pj−1 G̃Λ,−iω

j,j−1↓ Pj

+ G̃Λ,iω
j+1,j−1↑ Pj−1 G̃Λ,−iω

j+1,j−1↓ Uj+1 + G̃Λ,iω
j+2,j−1↑ Pj−1 G̃Λ,−iω

j+2,j−1↓ Pj+1

+ G̃Λ,iω
j,j↑ Uj G̃Λ,−iω

j,j↓ Pj + G̃Λ,iω
j+1,j↑ Uj G̃Λ,−iω

j+1,j↓ Uj+1

+ G̃Λ,iω
j+2,j↑ Uj G̃Λ,−iω

j+2,j↓ Pj+1 + G̃Λ,iω
j,j+1↑ Pj G̃Λ,−iω

j,j+1↓ Pj
+ G̃Λ,iω

j+1,j+1↑ Pj G̃Λ,−iω
j+1,j+1↓ Uj+1 + G̃Λ,iω

j+2,j+1↑ Pj G̃Λ,−iω
j+2,j+1↓ Pj+1

+ G̃Λ,iω
j+1,j+1↓ Pj G̃Λ,iω

j,j↓ U ′j,↓ + G̃Λ,iω
j+1,j↓ Vj G̃Λ,iω

j+1,j↓ U ′j,↓
+ G̃Λ,iω

j+1,j↑ U ′j,↑ G̃Λ,iω
j+1,j↑ Vj + G̃Λ,iω

j,j↑ U ′j,↑ G̃Λ,iω
j+1,j+1↑ Pj

+ G̃Λ,iω
j+1,j+1↑ Pj G̃Λ,iω

j,j↓ U ′j,↓↑ + G̃Λ,iω
j+1,j↑ U ′j,↑↓ G̃

Λ,iω
j+1,j↓ U ′j,↓↑

+ G̃Λ,iω
j,j+1↑ Pj G̃Λ,iω

j,j+1↓ Pj + G̃Λ,iω
j,j↑ U ′j,↑↓ G̃

Λ,iω
j+1,j+1↓ Pj)

(A.4)
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d
dΛ
Vj = 1

2π

∑
ω=±Λ

(
G̃Λ,iω
j+1,j+1↑ Vj G̃Λ,−iω

j,j↓ U ′j,↓↑

+ G̃Λ,iω
j+1,j+1↓ U ′j,↑↓ G̃

Λ,−iω
j,j↑ Vj + G̃Λ,iω

j,j+1↑ Vj G̃Λ,−iω
j+1,j↓ Vj

+ G̃Λ,iω
j,j+1↓ U ′j,↑↓ G̃

Λ,−iω
j+1,j↑ U ′j,↓↑ + G̃Λ,iω

j+1,j↑ U ′j,↑ G̃Λ,iω
j+1,j↑ Pj

+ G̃Λ,iω
j,j+1↓ Pj G̃Λ,iω

j,j+1↓ U ′j,↓ + G̃Λ,iω
j,j↓ Vj G̃Λ,iω

j+1,j+1↓ U ′j,↓
+ G̃Λ,iω

j,j↑ U ′j,↑ G̃Λ,iω
j+1,j+1↑ Vj + G̃Λ,iω

j,j−1↑ Vj−1 G̃Λ,iω
j−1,j↓ Vj

+ G̃Λ,iω
j,j↑ Uj G̃Λ,iω

j,j↓ Vj + G̃Λ,iω
j,j+1↑ Vj G̃Λ,iω

j+1,j↓ Vj
+ G̃Λ,iω

j+1,j−1↑ Vj−1 G̃Λ,iω
j−1,j+1↓ Uj+1 + G̃Λ,iω

j+1,j↑ Uj G̃Λ,iω
j,j+1↓ Uj+1

+ G̃Λ,iω
j+1,j+1↑ Vj G̃Λ,iω

j+1,j+1↓ Uj+1 + G̃Λ,iω
j+2,j−1↑ Vj−1 G̃Λ,iω

j−1,j+2↓ Vj+1

+ G̃Λ,iω
j+2,j↑ Uj G̃Λ,iω

j,j+2↓ Vj+1 + G̃Λ,iω
j+2,j+1↑ Vj G̃Λ,iω

j+1,j+2↓ Vj+1)
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