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Chapter 1

Introduction

Dephasing processes suppress quantum mechanical interference phenomena and are responsible for
the transition from the microscopic quantum coherent world into the macroscopic world, which is
characterized by the absence of interference effects. Whereas the physics of decoherence has been
studied in great detail for single particle systems, only recently a couple of experiments have drawn
attention to physical systems, in which many-body effects play an important role. For instance, the
coherence of interacting one-dimensional electrons is of great interest. In order to test the electrons’
coherence in experiment, e.g., one can send them through an interferometer structure, as a Mach-
Zehnder interferometer. The electronic Mach-Zehnder interferometer is one of the simplest systems
where the interplay of quantum mechanical coherence and many-body effects can be studied, both
in theory and experiment. This electronic analogue to the ubiquitous optical Mach-Zehnder interfer-
ometer, was first realized in the group of Moty Heiblum at the Weizmann institute in 2003 [20]. The
main idea was to employ integer quantum-hall edge channels playing the role of the interferometer
arms. In these quasi one-dimensional channels the electron movement is purely chiral, i.e., all the
spin-polarized electrons move in a single direction. The interferometer arms enclose a magnetic flux
Φ. Due to the Aharonov-Bohm effect the phase of electrons passing the interferometer through one
or the other arm differs. As a result of the interfering paths, the electronic current through the inter-
ferometer displays an interference pattern, which can be controlled by changing the flux Φ. Today,
there are several groups [27, 28, 42, 39] investigating the electronic Mach-Zehnder interferometer in
experimental setups closely related to that pioneering one in [20].

In these experiments, the interference contrast, i.e., the difference between maximum constructive
and maximum destructive interference, as a function of voltage and temperature has been analyzed.
The interference contrast can be considered as a direct measure for the coherence of the propagating
electrons. After the first realization of the Mach-Zehnder interferometer, it became clear that a
simple single-particle picture description of the propagating electrons is not sufficient to explain all
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the interesting physics emerging in this system. Today, only a fraction of the observed features have
been explained by now. For instance, increasing the applied bias voltage between the interferometer
arms, even for equal arm lengths, the interference contrast gets suppressed. This effect can not
be obtained from a single-particle calculation and it is assumed that a loss of phase coherence the
electrons suffer during their propagation is responsible for this effect.

On the theoretical side, dephasing in such a setup has been discussed both for dephasing by external
fluctuations [34, 33, 13, 31, 36, 40, 18] (such as phonons, defect fluctuators or Nyquist noise from
external gates, or “dephasing terminal” reservoirs), as well as by the intrinsic electron-electron inter-
action [44, 45, 40, 18, 6, 26]. More recently [39, 27], it was reported that the interference contrast
changes periodically with maxima and zero minima increasing the applied bias voltage. This “lobe
structure” is one of the most prominent features of the Mach-Zehnder interferometer and motivated
the further theoretical investigation of this system, for instance in [40, 18, 45, 6, 26].

1.1 Decoherence in one-dimensional electron systems

In this work, we investigate the coherence properties of interacting electrons in one dimension. We
restrict the considerations to spinless, chiral fermion systems, such as edge states in the integer
quantum Hall effect, employed for the realization of the Mach-Zehnder interferometer.

One dimensional systems differ crucially from electron system in higher dimensions. The reason for
this is the breakdown of the Fermi liquid picture. While in dimensions higher than one, the low-energy
excitations can be considered as well defined (Landau) quasi-particles, in one dimension the Fermi
liquid theory does not hold. In 1950 Tomonaga proposed an exactly solvable model [46], which was
extended by Luttinger in 1963 [29], describing the low-energy properties of one-dimensional electron
systems. The main achievement was the recognition that the low-energy excitations in such systems
can be considered as (nearly)well defined bosons. These bosonic excitations are closely related to the
creation of modulations in the electron density, i.e., the excitation of electron-hole pairs. Furthermore,
it turned out that even taking into account electron-electron interactions, the model remains solvable.
Today, the bosonization of one-dimensional electron systems has become a standard tool in condensed
matter physics [21, 4, 2, 14]. In fact, the chiral interacting electron system is the simplest possible
realization of a Luttinger liquid.

Usually, within bosonization one considers point-like interparticle interactions, i.e., in momentum
space the interaction potential reduces to a constant. It turns out that in this case the only effect of
the interaction shows up as a renormalization of the bare Fermi velocity, such that the chiral Luttinger
liquid reduces to an ordinary Fermi liquid. However, taking into account a finite interaction range
between the electrons, even the chiral interacting electron system gives rise to some very non-trivial
features. Therefore, in this work we assume the interaction between the electrons to be of finite range.
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Only recently, taking into account the full interaction potential, in a pioneering work, Chalker, Gefen
and Veillette [6] studied the interesting properties of chiral electron systems. There, the influence of
the electron-electron interaction on the interference contrast in a Mach-Zehnder interferometer setup
is investigated. It is the first atttempt to consider the electrons within one and the same channel as the
source of dephasing. The authors modeled the interacting Mach-Zehnder interferometer as consisting
of two one-dimensional chiral interacting fermion systems (the arms of the interferometer). The two
channels are tunnel-coupled weakly at two locations, representing the quantum point contacts (i.e.
the beam splitters) of the experimental setup. In a next step the interferometer current is evaluated
in lowest order in tunneling. The result is a formula for the current that only involves the single-
particle Green’s functions of the interacting channels in the absence of tunneling. These Green’s
functions are obtained using the tools of bosonization. The main outcome of their study is that at
low voltages and temperatures the interference contrast becomes perfect, while the suppression of
contrast at increasing voltages and temperatures depends on the details of the interaction potential.
However, even taking into account the full electron-electron interaction, no explanation for the lobe
structure mentioned above was found. The proposal in [6] serves as a starting point for the analysis
presented here.

Starting with the bosonization of the system, the main restriction is that the tunneling between the
interferometer arms can be treated only perturbatively. As in the experiment the lobe structure
gets more and more pronounced increasing the tunnel coupling between the interferometer arms, an
extension of the theoretical description to higher orders in the coupling seems to be fruitful. For
example, taking into account higher orders in tunneling, the influence of shot-noise on the coherence
of the propagating electrons should become observable. Mainly, this is motivated by the observation
in [40, 39]. The authors investigate the influence of so-called non-Gaussian shot noise [1] on the
interferometer visibility. There, an external electron channel is coupled to one of the interferometer
arms, while the number of electrons in this “detector channel” is assumed to be very small (1-3
electrons). As a result, the detector channel acts as a non-Gaussian noise source. In this model, the
interference contrast displays oscillations as a function of the applied bias voltage showing a striking
similarity to the reported lobe-structure in [39, 27].

1.2 This work

Analyzing decoherence in one-dimensional electron systems, the main difficulty arises from the fact
that in one-dimension the many-body character of the strongly interacting electrons can not be
neglected. Thus, investigating the decoherence in such systems, means dealing with renormalization
effects resulting from the indistinguishability of the electrons, the influence of the Pauli principle, etc..
We investigate the decoherence of electrons resulting both from the electron-electron interaction and
from the coupling to an arbitrary harmonic oscillator bath (consisting for example of two-dimensional
phonons).
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For this, we employ the Mach-Zehnder interferometer (MZI) to “test” the electrons’ coherence. In
Chapter 2 we introduce the MZI and derive an expression for the current assuming weakly tunnel-
coupled interferometer arms. As it turns out that the interference contrast and therefore the coherence
for weakly coupled interferometer arms only depends on the Fourier transform of the single-particle
Green’s function G>(x, ε), we consider it as a direct measure for the coherence and devote the main
part of this work to its analysis. The Green’s function G>(ε, x) can be interpreted as the amplitude
for an electron with energy ε to propagate the distance x without losing its phase coherence.

In Chapter 3, assuming a finite range of the electron-electron interaction, we derive the exact solution
for the single-particle Green’s functions with help of the bosonization method. Whereas the formal
calculation of the Green’s function is a straightforward task, taking into account an interaction
potential of finite range, in the end, it can be evaluated only numerically. The chapter is concluded
by a discussion of the Green’s function and of the interference contrast. As a main result, only due
to the finite interaction range, two distinct energy regimes show up. While the decoherence of low-
energy electrons is suppressed strongly, the coherence of electrons flying high above the Fermi sea is
destroyed to the full extent. Although bosonization provides us with the exact result for the Green’s
function, the physical interpretation of the results remains difficult.

Thus, in order to understand the physical mechanism of decoherence in these two energy regimes,
there is some need for an alternative point of view. That is why, in Chapter 4, we propose a simple
semiclassical model for deriving the Green’s function. It asssumes the electron to move ballistically
experiencing a fluctuating background potential stemming from the intrinisc density fluctuations in
the Fermi sea. Thereby, we neglect any “backaction” of the single electron onto the bath. The only
effect of the interaction is that the electron accumulates an additional random phase. In the end, one
has to average over these random phases leading to a suppression of the coherence, i.e., of the Green’s
function G>(ε, x). It is one of our main results that, compared to the full bosonization solution, this
simple semiclassical approach becomes exact considering electrons propagating with large energies.
We reported in [41] that at zero temperature in this limit the coherence displays a universal power
law |G>(ε, x)| ∼ 1/x1, where most remarkably the exponent turns out to be independent from the
coupling strength of the electron-electron interaction.

In Chapter 5, we try to extend the semiclassical approach in order to re-derive the Green’s function
for electrons of arbitrary energy. While the semiclassical ansatz for the Green’s function does not
fully reproduce the bosonization solution, nevertheless it might be an interesting starting point for
further investigations. It could provide an alternative interpretation of the Green’s function and the
most general mechanism of decoherence in chiral one-dimensional electron systems.

We conclude the analysis of the single-particle Green’s function of interacting electrons employing in
Chapter 6 Keldysh perturbation theory up to second order in the inter-electron coupling. Mainly, this
perturbative approach is meant to study the decoherence of low-energy electrons. In particular, it
clarifies the suppression of decoherence suffered by electrons in close vicinity to the Fermi edge, during
their propagation. We formulate the perturbation theory in Keldysh time, as this allows for an ex-
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tension to non-equilibrium situations as well. Furthermore, treating the electron-electron interactions
perturbatively, in principle one is not restricted to weakly tunnel-coupled interferometers. As already
mentioned, to explain many interesting features of the Mach-Zehnder interferometer considering the
current only in the lowest order in tunneling is not sufficient. Thus, the Keldysh perturbation theory
presented here might be a starting point for going beyond this limitation.

Alternatively, one can remain in the framework of bosonization, taking into account the next non-
vanishing order in the tunnel coupling (O(t4A)) contributing to the current trough the interferometer.
It turns out that in the next highest order, the current depends on two-particle Green’s functions.
Unfortunately, the resulting expressions for the current involve complicated convolutions of two-
particle Green’s functions and at this point it is not clear, whether their numerical evaluation is
possible at all.

Chapter 7 has to be considered as a first step following these lines. There, we focus on the analysis of
two-particle Green’s functions of particular interest describing the energy and momentum relaxation of
one-dimensional electrons due to electron-electron interaction. The purpose of this Chapter is twofold.
On the one hand, relaxation processes in interacting one-dimensional systems out of equilibrium are
of greatest interest. For instance, it is an amazing fact [3] that in these systems, electrons, injected
with some energy do not transfer its energy to the full extent to the Fermi sea, i.e., they do not
“thermalize”. The numerical evalutation of the corresponding Green’s functions is in agreement with
this prediction. On the other hand, in Chapter 7 it is tested, whether the precise numerical evaluation
of two-particle Green’s functions can be done with some reasonable effort. So far, the main outcome
of this investigation is that in fact the numerical evvaluation of these functions is possible, however
there is some need for a further optimization of the numerics.

We conclude this work by investigating the influence of an external harmonic oscillator bath on the
coherence properties of chiral one-dimensional electrons in Chapter 8. In this case, the single-particle
Green’s function can still be derived exactly in the framework of bosonization. However, in order
to obtain G>, the bath degrees of freedom have to be traced out with help of the imaginary-time
functional field integral method. The coupling to a quantum bath is already investigated to a large
extent. Following the famous proposal by Castro-Neto et al., here we present a formally exact solution.
As a main result, expanding the resulting Green’s function G>(ε, x) up to first order in the coupling
between bath and the one-dimensional electron system, we calculate a decay rate for the coherence,
which is shown to be in agreement with a simple Fermi’s golden rule calculation. While this decay
rate was derived earlier in [31, 36, 32, 11], we re-derive their results starting from an exact expression
for the Green’s function, thereby taking into account possible renormalization effects, etc.. It is shown
that the presence of the filled Fermi sea, influences the decoherence of electrons coupled to a quantum
bath crucially. The reason is that the Pauli principle does not allow for scattering processes, where
the corresponding final state of the scattered electron lies below the Fermi edge. This phenomenon
is known as Pauli blocking and suppresses the decoherence of low-energy electrons.
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Chapter 2

Mach-Zehnder interferometer

An electronic Mach-Zehnder interferometer is described as two parallel one-dimensional channels in
which electrons propagate into the same direction (see Fig. 2.1a). At two tunnel contacts (quantum
point contacts (QPC’s) in the experimental realization), these channels are coupled by tunneling
amplitudes tA and tB . Below, we will assume these tunneling probabilities to be small perturbations,
coupling lead 1 (left channel) and lead 2 (right channel). Furthermore, a magnetic flux is enclosed
by the interferometer, which leads to an Aharonov-Bohm phase φ. In the experiment the current I
through the interferometer, i.e., the current between the two leads measured at some output port is
the quantity of interest (see Fig. 2.1). It contains two types of contributions: one flux-independent
constant term and one interference term that depends oncos(φ). The contrast of the interference
fringes observed in I(φ) = I0 + Icoh(φ) can be quantified via the so-called visibility:

vI =
Imax − Imin

Imax + Imin
, (2.1)

where Imax (Imin) is the maximum (minimum) current as a function of flux. This definition is chosen
in order for the visibility to be equal to one for perfect interference contrast. The visibility can be
used as a direct measure for the coherence of the system.

In this chapter, we derive an expression for the steady state current I in lowest order in tunneling
between the interferometer arms (Section 2.1). Then, in Subsection 2.1.1 we define the single-particle
Green’s functions (GFs) G>(x, t) describing the coherent propagation of electrons through the inter-
ferometer arms in the absence of tunneling. It turns out that the current can be expressed only in
terms of these GFs. At this point, there is no need for specifying the GFs in more detail. Making use
of the bosonization technique, in Chapter 3 the Green’s function will be calculated, thereby taking
into account the intrinsic electron-electron interaction. Consequently, the Hamiltonian H1 responsible
for the time evolution of the electrons in the quantum-hall edge channels is introduced there, as well.
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In contrast to [6], we decide to present the final expressions for the current in terms of the Fourier
transform of the GF, G>(ε, x). The Green’s function in energy and real space G>(ε, x) gives the am-
plitude for an electron with energy ε to propagate the distance x without loosing its phase coherence.
As a result, the current through the interferometer is brought to a transparent form emphasizing
the physical origin of each contribution (Subsection 2.1.2). Finally, the visibility can be written in a
compact form (Section 2.2).

The main outcome of this first chapter is that the visibility and therefore the coherence of the electron
system in lowest order in tunneling only depends on the single-particle Green’s function G>(ε, x).
Thus, in the following we sometimes refer to G>(ε, x) itself as the “coherence” of the electron system.

2.1 Current

The observable of interest in the present setup is the current through the interferometer (cf. Fig. 2.1a)
due to a finite bias voltage between the two leads, i.e. µ1−µ2 6= 0, where µj is the chemical potential
of the j-th channel. Dealing with the electron-electron interaction exactly using the bosonization
technique has one main disadvantage: one has to treat the tunneling between the channels in per-
turbation theory. In the following, the quantum point contacts A and B be at positions xAj = 0
and xBj = xj , respectively (where j = 1, 2 is the channel index). We introduce the fermionic single-
particle operators ψ̂j(x) (ψ̂†j (x)), annihilating (creating) an electron at x in channel j. They fulfill
the fermionic anti-commutation relations (here the anticommutator is denoted by {.., ..}){

ψ̂i(x), ψ̂j
†
(x′)

}
= δijδ(x− x′)

{
ψ̂i(x), ψ̂j(x′)

}
=
{
ψ̂i(x), ψ̂j(x′)

}
= 0. (2.2)

With these definitions, the tunneling Hamiltonian is given by

ĤT := tAψ̂
†
1(0)ψ̂2(0) + tBψ̂

†
1(x1)ψ̂2(x2) + h.c. . (2.3)

The current into channel 1 is defined as (qe < 0 is the electron charge):

Î = qe
d

dt
N̂1, (2.4)

where as usual the N̂j is the number operator: N̂j ≡
´
dx ψ̂†j (x)ψ̂j(x). The current can be evaluated

making use of the Heisenberg equation of motion (for the remainder of this work we set ~ ≡ 1)

Î = −iqe
[
N̂1, Ĥ1 + ĤT

]
, (2.5)

where Ĥ1 (cf. with Eq. (3.11)) denotes the interacting electron Hamiltonian in the absence of tunneling
which will explicitly be defined in Chapter 3. The Hamiltonian Ĥ1 determines the electrons’ dynamics
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chiral Luttinger

 liquids

(a) (b)

electrons

deformation

of density

visibility

Figure 2.1: (a) Scheme of the interferometer setup. The two channels 1 and 2 of length x1,2 and
the corresponding chemical potentials µ1,2 are indicated. The electrons can tunnel at QPCs A and
B, with tunnel amplitudes tA and tB . Tuning the magnetic flux Φ through the interferometer, an
interference pattern I(φ) is observed. The solid blue lines denote the interferring paths (here µ2 > µ2)
through the interferometer.
(b) Pictorial plot of the physical situation, we investigate in this work. In the absence of tunneling,
the electrons in the quantum-hall edge channels form chiral Luttinger liquids. The bosonization of
one-dimensional electron systems (cf. Chapter 3) emphasizes that the bosonic low-energy excitations
in these systems are closely related to excitations of density fluctuations (depicted as solid dark green
lines). These are of collective nature. In contrast, the tunnel Hamiltonian ĤT in Eq. (2.3) describes
the hopping of single electrons between opposite channels. Once a single electron is created in the
opposite interferometer arm, it creates a sharp peak in the electron density (dashed dark green lines).
With increasing propagation distance, it suffers a loss of phase coherence due to intrinsic interactions.
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inside each interferometer arm. It will be shown that the Hamiltonian Ĥ1 and the number operators
commute. Therefore, applying only the relations Eq. (2.2) we obtain (for the lengthy, but simple
calculation see Appendix A.1) :

Î = −iqe
[
N̂1, Ĥ

T
]

= −iqe
ˆ
dx
[
ψ̂†1(x)ψ̂1(x), tAψ̂

†
1(0)ψ̂2(0) + tBψ̂

†
1(x1)ψ̂2(x2) + h.c

]
= −qei

[
tAψ̂

†
1(0)ψ̂2(0) + tBψ

†
1(x1)ψ̂2(x2)

]
+ h.c. . (2.6)

Now, we change to the interaction picture with respect to Ĥ1, setting ÂH1(t) ≡ eiĤ1tÂe−iĤ1t. We are
interested in the steady-state current through the interferometer I(t) = 〈Î(t)〉. The thermal average
is defined as 〈. . . 〉 ≡ 〈e−βĤ1〉−1〈e−βĤ1 . . . 〉, where the inverse temperature β = 1/T is introduced
setting for the remainder of this work kB ≡ 1.
To derive the steady state expectation value of the current operator in Eq. (2.6), we expand I(t) in
orders of the tunnel amplitude tA,B employing the identity

eiĤ1te−iĤ1t−i
´ t
0 dt
′ ĤT = T̂ e−i

´ t
0 dt
′ ĤTH1 . (2.7)

Here, T̂ is the time-ordering symbol, ordering operators with the largest time to the left. Analogously,
the anti-time ordering symbol is denoted with T̃ (ordering the largest times to the right)1. Restricting
to the first non-trivial order in the tunnel amplitude O(t2A), one derives

I =
〈
Î
〉

=
〈{

T̂ e−i
´ t
−∞ dt′ ĤTH1

}†
ÎH1(t)

{
T̂ e−i

´ t
−∞ dt′ ĤTH1

}〉
=

〈{
1 + iT̃

ˆ t

−∞
dt′ ĤT

H1
(t′)
}
ÎH1(t)

{
1− iT̂

ˆ t

−∞
dt′ ĤT

H1
(t′)
}〉

=
〈
ÎH1

〉
− i
〈ˆ t

∞
dt′
[
ÎH1(t), ĤH1(t′)

]〉
. (2.8)

The first term in Eq. (2.8) vanishes as in the absence of tunneling between the interferometer arms
no current can flow at all. Once the system has settled into a steady state (after switching on the
tunneling at t = −∞), the average current does not depend on the particular time it is measured.
Therefore, we can simply set t = 0 . The average current I in lowest order in tunneling yields

I =
1
i

ˆ 0

−∞
dt
〈[
ÎH1(0), ĤT

H1
(t)
]〉
. (2.9)

1Note that for arbitrary operators Â(t): (T̂ Â(t1)Â(t2))† = T̃ Â†(t1)Â†(t2)
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One may note that the current I is obtained as a Kubo-type expression, in linear response with
respect to the tunneling Hamiltonian ĤT

H1
, at arbitrary bias voltages.

Before we proceed further expressing the interferometer current I in terms of the single-particle
Green’s functions, we introduce the GFs, which will be employed in the remainder of this work.

2.1.1 Definition of single-particle Green’s functions

In the following more general definitions and relations we omit the channel label j. As usual, we
define the single particle propagators as 2:

G>(x, t) ≡ −i
〈
ψ̂(x, t)ψ̂†(0, 0)

〉
G<(x, t) ≡ i

〈
ψ̂†(0, 0)ψ̂(x, t)

〉
. (2.10)

For later purposes, we also introduce the Fourier transformed Green’s function with respect to time

G>(ε, x) ≡
ˆ
dt eiεtG>(<)(x, t), (2.11)

as well as the retarded Green’s function GR(x, t), its Fourier transform and the spectral density
A(ε, k)

GR(x, t) ≡ −iΘ(t)
〈{
ψ̂(x, t), ψ̂†(0, 0)

}〉
GR(ε, k) =

ˆ
dt

ˆ
dx eiεt−ikxGR(x, t)

A(ε, k) ≡ − 1
π

ImGR(ε, k). (2.12)

In the remainder of this work, G>(x, t) (G<(x, t)) will be referred to as the electron (hole) propagator.
It can be interpreted as the amplitude that an electron (hole) propagates the distance x in the one-
dimensional interacting electron system without suffering a loss of its phase coherence. To put it
differently, one creates an electron at (x = 0, t = 0) and asks for the amplitude for re-extracting
an electron at (x, t) whose phase is correlated to that of the injected one. Of course, the same
interpretation holds considering holes as well, the only difference being that in diagramatic language
holes are moving backwards in time. Equivalenty, G>(<)(ε, x) gives the amplitude for an electron
(hole) of energy ε to propagate after its injection the distance x coherently.

Finally, the spectral density A(ε, k) is interpreted as a probability function [30]. It is the probabil-
ity that an electron has momentum k and energy ε and therefore fulfills the important sum rule:

2With ψ̂(x, t), we denote the single particle operators in the interaction picture with respect to the Hamiltonian Ĥ1

omitting an extra label.
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´
dωA(ω, k) = 1. The spectral density3 and the propagators G>(<) are related via the fluctuation-

dissipation theorem [4] (with G>(ε, k) ≡
´
dx e−ikxG>(ε, x))

iG>(ε, k) = 2π[1− f(ε)]A(ε, k)

−iG<(ε, k) = 2πf(ε)A(ε, k), (2.13)

where we introduced the Fermi-Dirac distribution function f(ε) = [exp(β(ε− µ)) + 1]−1. Finally, we
can define the tunnel density of states as

ν(ε) ≡
ˆ

dk

2π
A(ε, k). (2.14)

2.1.2 Calculation of the current

The calculation of the current in linear response to the tunnel-operator ĤT
H1

is straightforward, but a
bit cumbersome. Therefore, the calculation is postponed to Appendix A.2 and only the final results
are presented here. The crucial point is that the current consists of two contributions. One of these
is independent of the flux Φ through the interferometer, which is why we refer to it as the “classical
current”. The second contribution is an interference term, dependent on the flux. It is sensitive to
the coherence of the electrons flying through the interferometer. This contribution is suppressed as
a result of decoherence electrons suffer during their flight. In the following G>j denotes the bulk
Green’s function in interferometer arm j. As we consider only the case of weakly tunnel-coupled
interferometer arms, both arms are assumed to be in equilibrium.

Flux independent part The flux-independent part of the current is found using Eqs. (2.3), (2.6)
and (2.8)

I0 = qe(|tA|2 + |tB |2)
ˆ ∞
−∞

dt
[
G>1 (0,−t)G<2 (0, t)−G<1 (0,−t)G>2 (0, t)

]
, (2.15)

which we rewrite by going to the frequency domain

I0 = qe

(
|tA|2 + |tB |2

)ˆ dω

2π
[
G>1 (0, ω)G<2 (0, ω)−G<1 (0, ω)G>2 (0, ω)

]
. (2.16)

3For a non-interacting system the spectral density is a δ-function, A(ε, k) = δ(ε−ε0(k)) (where ε0(k) is the dispersion
relation of a free electron). In a Fermi liquid the spectral density turns into a Lorentzian of finite width, reflecting the
finite lifetime of the quasi-particle excitations. In contrast, in one dimension the spectral density displays characteristic
power-laws with exponents depending on the coupling strength of the electron-electron interaction.
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To clarify the physical meaning of Eq. (2.16), we employ the fluctuation-dissipation theorem in
Eq. (2.13):

G>(x = 0, ω) =
ˆ

dk

2π
G>j (k, ω) = −i2π [1− fj(ω)] · νj(ω) (2.17)

G<(x = 0, ω) = i2πfj(ω) · νj(ω). (2.18)

Thus, we can reformulate the expression as a function of the tunneling density of states ν(ω),

I0 = 4π2qe

(
|tA|2 + |tB |2

)ˆ dω

2π
ν1(ω)ν2(ω)

f2(ω)[1− f1(ω)]︸ ︷︷ ︸
2→1

− f1(ω)[1− f2(ω)]︸ ︷︷ ︸
1→2


which finally yields the most intuitive form describing the sum of tunneling currents at two point-like
locations:

I0 = 4π2qe

(
|tA|2 + |tB |2

)ˆ dω

2π
ν1(ω)ν2(ω) [f2(ω)− f1(ω)] (2.19)

In particular, these expressions show that the flux-independent part of the current only depends on
the tunneling density of states. It is independent of the length of the interferometer arms. This is to
be expected, as that part of the current is insensitive to the electrons’ coherence, and therefore the
decay of coherence as a function of propagation distance will not enter here.

Interference part The Mach-Zehnder setup is intended to investigate the coherence of the electron
system and therefore the most interesting quantity is the interference part of the current, which we
define to be the flux-dependent contribution. Using Eqs. (2.3), (2.6) and (2.9) it yields:

Icoh(φ) = qe

ˆ
dω

2π
[
(tAt∗B)e−iφ ·G>1 (ω, x1)G<2 (ω,−x2)

−(t∗AtB)eiφ ·G<1 (ω,−x1)G>2 (ω, x2) + c.c.
]
. (2.20)

At T = 0, in a situation where the particle current flows from channel 2 to 1, only the first term
(and its complex conjugate) contributes. It might be helpful to see how the structure of this term
G>1 G

<
2 can be understood in an intuitive, if slightly imprecise, way, that also relates to our subsequent

semiclassical discussion. When the full beam in channel 2 impinges onto the first beam-splitter A,
we obtain a superposition between two many-particle states: With an amplitude near unity, nothing
happens (no tunneling takes place), and we denote this state as |0〉. There is a small chance (of
amplitude tA) for a particle to tunnel through A into channel 1, leaving behind a hole in channel
2. As time passes, the second part acquires an amplitude (relative to the first) that is given by the
product of propagation amplitudes for the electron (ψ1) and the hole (ψ∗2), resulting in:

|0〉+ tAψ1ψ
∗
2 |1p, 2h〉 . (2.21)
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coherent superposition

dephasing of electron & hole 

electron hole

Figure 2.2: Illustration of an electron impinging onto the first beam-splitter A of the Mach-Zehnder
interferometer in the situation that electrons flow from 2 to 1 for weakly coupled interferometer arms.
One obtains a superposition of the electron flying through channel 1 or channel 2. The crucial point
is that phase coherence between the two many-body states is destroyed if the electron and/or the
hole is dephased, e.g., due to electron-electron interaction. As only the relative phase between the
states is important we let the noise act only on the left ket. In the upper left corner of the pictorial
kets the Fermi distributions of the two channels are illustrated.

Including the action of the second beam splitter B, and the Aharonov-Bohm phase, the total proba-
bility to detect an extra electron in the output port (channel 1) is therefore∣∣tBeiφ + tAψ1ψ

∗
2

∣∣2 , (2.22)

which gives rise to the interference term

tAt
∗
Be
−iφψ1ψ

∗
2 + c.c.. (2.23)

Averaging the amplitudes over phase fluctuations induced by the interaction, we arrive at the propa-
gators, replacing 〈ψ1〉 by the particle propagator G>1 , and 〈ψ∗2〉 by the hole propagator G<2 . The full
analysis keeps track of energy conservation. Thus, in the many-body picture, the observation of an
interference term in the current is seen to depend both on the passage of an electron through channel
2 (G>2 ) as well as on the coherent propagation of the corresponding hole, of the same energy ω, in
channel 1 (G<1 ). This issue has been discussed before, both for the Mach-Zehnder interferometer and
for weak localization [11, 36, 32, 31]. For instance, in Chapter 8, investigating the influence of an
external quantum bath on the coherence of one-dimensional electrons, we will derive a dephasing rate
for the Green’s function which is a sum of hole and electron scattering rate.
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2.2 Visibility

In the Mach-Zehnder setup, the so called visibility is used as a measure of the coherence of the system.
There are different definitions (experimentally, often the differential visibility is employed). However,
we will define the visibility in terms of the total current, as

vI(V, T ) ≡ maxφIcoh(φ)
I0

=
Imax − Imin

Imax + Imin
. (2.24)

The bias voltage is defined as µ1 − µ2 = qeV and we set V > 0. After a short calculation (see
Appendix A.3) the visibility can be written in a compact form:

vI =
2|tat∗b |

|ta|2 + |tb|2

(
4π2

ˆ ∞
−∞

dω ν(ω) · ν(ω − |qe|V )(f(ω − |qe|)− f(ω))
)−1

×∣∣∣∣ˆ ∞
−∞

dω G>(ω, x1) ·G<(ω − |qe|V,−x2)−G<(ω, x1) ·G>(ω − |qe|V,−x2)
∣∣∣∣ . (2.25)

We will also focus on zero temperature, as this seems to be the most interesting case. For T = 0 the
visibility yields

vI =
2|tat∗b |

|ta|2 + |tb|2
·

∣∣∣´ |qeV |0
dω G>(ω, x1) ·G<(ω − |qe|V,−x2)

∣∣∣
4π2
´ |qeV |

0
dω ν(ω) · ν(ω − |qe|V )

(V ≥ 0). (2.26)

Note that the channel indices of the Green’s functions are omitted, as in this formula the GFs are
defined with respect to a fixed density and all the explicit dependence on the bias voltage is shifted
to the GF arguments.

2.3 Summary

The main outcome of this introductory chapter is that a compact expression for the current and
thereby for the visibiliy in lowest order in tunneling was derived. In lowest order in tunneling, the
visibility vI and therefore the coherence of the one-dimensional electron system only depends on
the Green’s functions G>/<(ε, x). Therefore, investigating the coherence of one-dimensional electron
systems is particularly reduced to the analysis of the Green’s function. Consequently, in the upcoming
Chapter 3, with help of bosonization we calculate the GF of a one-dimensional interacting electron
system and evaluate numerically the current through the interferometer as well as the corresponding
visibility.
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Chapter 3

Single-particle Green’s function

In the previous chapter, restricting the considerations to only weakly tunnel-coupled interferome-
ter arms, the steady state current I and the visbility vI were derived. The main result was that
in this limit, the visibility and therefore the coherence of the electron system only depends on the
single-particle Green’s functions (GFs) G>(ε, x) and G<(ε, x). In the present chapter, we employ
bosonization of the chiral one-dimensional electron system in order to calculate the GFs, thereby
taking into account the full electron-electron interaction. For this, we follow closely the bosonization
procedure in [21, 4, 14, 2, 6] .

Bosonization allows for the calculation of Green’s functions even more complicated as the single-
particle GFs considered in this chapter. For example, in Chapter 7 four-point correlation functions
are derived, employing the bosonization technique. Although, the bosonization provides us with the
correct solution for G>, the physical interpretation of the result remains fairly difficult. This is one
of the disadvantages of the bosonization formalism. In this work, we are mainly concerned with
interpreting the results stemming from bosonization in most physical terms. To put it differently,
bosonization serves as reference point for any further analysis. For example, in Chapter 4 we employ
a physically motivated semiclassical ansatz for G> and compare the outcome to the bosonization
solution.
It turns out that taking into account the full interaction potential, i.e., going beyond the usually
assumed point-like electron interaction, as a main result two distinct energy regimes show up. While
electrons flying high above the Fermi sea are dephased to the full extent, the decoherence of electrons
in the close vicinity to the Fermi edge is largely suppressed. In general, for low-energy electrons
the only significant effect of the electron-electron interaction is a certain velocity renormalization,
compared to the non-interacting case. This is why, the chiral Luttinger liquid usually is considered
as an effective Fermi liquid. However, allowing for a finite interaction range, in the high-energy limit
the spectral properties of chiral systems are completly non-trivial.
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While the GF G>(x, t) was studied in great detail, for instance in [6], besides the analysis in [43]
(where the authors consider an artificial interaction potential with a sharp momentum cutoff), up to
now, no particular attention was paid to its Fourier transform G>(ε, x).

In Section 3.1 the bosonization method is introduced in two step: First of all, the bosonized Hamilto-
nian for the chiral one-dimensional electron system in terms of bosonic operators is derived (Subsec-
tion 3.1.1). In a second step, the fermionic field ψ̂ is expressed only in terms of these bosonic modes
(Subsection 3.1.2). After deriving the solution for the Green’s function G> in Section 3.2, we discuss
the GFs G>(x, t) and G>(ε, x) (Subsections 3.2.2 and 3.2.3). Finally, we evaluate the visibility of the
Mach-Zehnder interferometer in Eq. (2.26) for some interaction potential (Section 3.3).

3.1 Bosonization

In this section we bosonize the chiral one-dimensional electron system taking into account electron-
electron interaction of finite range. Instead of introducing the bosonization with mathematical rigour
(cf. [21]), the intention of this short introduction is to emphasize the reason why, in one dimension,
one can find an expression for the fermionic field ψ̂ in terms of bosonic operators. The bosonization
procedure involves two steps. After introducing bosonic operators, so-called “plasmons”, the Hamil-
tonian for the interacting electron system is re-expressed in terms of these bosonic fields. In a second
step, one derives an operator identity connecting the fermionic field ψ̂ and the plasmonic modes.

3.1.1 Bosonized Hamiltonian

We start from the Hamiltonian containing two-particle interactions for spin-polarized electrons moving
in both directions

Ĥ ′1 = Ĥ ′0 + Ĥ ′int

= −
ˆ
dx ψ̂†(x)

(
1

2m
∂2
x

)
ψ(x) + Ĥ ′int

Ĥ ′int =
1
2

ˆ
dx

ˆ
dx′ψ̂†(x)ψ̂†(x′)U(x− x′)ψ̂(x′)ψ̂(x), (3.1)

where U(x) denotes the real interaction potential. The fermionic fields are defined as

ψ̂(x) =
1√
L

∑
k

eikxĉk, (3.2)

where ĉ†k applied to the vacuum state creates an electron with momentum k. Here, we assume a finite
interaction range, i.e. the Fourier transform of U , Uq =

´
dx e−iqxU(x), is cut off for q � qc with
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qc � kF . Linearizing the electronic dispersion relation about the Fermi momentum |kF |

Ĥ0 =
∑
k

{
vF

(
k : ĉ†k,Rĉk,R : −k : ĉ†k,Lĉk,L :

)
− vF kF (δN̂R + δN̂L)

}
, (3.3)

where vF denotes the Fermi velocity (in the Mach-Zehnder interferometer the edge channel velocity),
we introduce the so called Luttinger model. For this, the electrons are separated into two species,
i.e., into right- and left moving electrons, ĉk,R and ĉk,L respectively and their linear spectrum is
extended down to −∞ [14]. The Fermi sea where all the states below the chemical potential are filled
is replaced by a ’Dirac sea’ where the infinite number of states with negative energy are assumed
to be filled (cf. Fig. 3.1a). Nevertheless, the low-energy properties of Ĥ0 and Ĥ

′

0 are similar, as
the interaction potential Uq is cut off for q � qc (where qc � kF ) and the deep lying electrons do
not contribute to the low-energetic excitations of the system. Formally, the Dirac sea is filled by
an infinite number of electrons, which is why we normal order the Hamiltonian Ĥ0 with respect to
the filled, non-interacting Dirac sea (denoted as |vac〉). As usual, we label normal ordered operators
with : · · · :, where equivalently we could write : A := Â −

〈
vac|Â|vac

〉
. For example, in Eq.(3.3)

δN̂R ≡
∑
k : ĉ†k,Rĉk,R : is the normal ordered number operator. As we are only interested in a chiral

electron system, the following considerations are restricted to right-moving electrons. The chiral,
interacting part of the Hamiltonian in the momentum representation yields

Ĥint =
1

2L

∑
q,k,k′

Uq : ĉ†k,Rĉ
†
k′,Rĉk′−q,Rĉk+q,R : . (3.4)

In the next step we re-express Eq. (3.4) in terms of density fluctuations.

Density operators The normal ordered density operator ρ̂R(x) is introduced for the chiral system
consisting of right-moving electrons as

ρ̂R(x) ≡ : ψ̂†R(x)ψ̂R(x) :

ρ̂q,R =
∑
k

ĉ†k,Rĉk+q,R ≈
∑
k>0

ĉ†k,Rĉk+q,R, q 6= 0. (3.5)

In the second line we safely neglect the low-lying electrons (with formal momentum k < 0) as due
to the momentum cutoff qc � kF in the interaction potential Uq they do not contribute to the low-
energy properties of the system. We can now re-express the interacting part of the Hamiltonian Ĥint
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Figure 3.1: (a) Pictorial plot of the dispersion relation of non-interacting one-dimensional electrons
(solid gray line). As mentioned in Subsection 3.1.1, the Luttinger theory assumes a spectrum lin-
earized about the Fermi momentum kF (solid blue lines), which is extended down to −∞. Thereby,
the right and left moving electrons are separated into two species. The filled Fermi sea is substi-
tuted by the filled “Dirac sea”. Due to the linearization procedure, the theory is only valid at low
energies, where only electrons in the close vicinity to the Fermi edge are involved in excitations (the
finite bandwith, related to the cutoff parameter a (see main text) is indicated by red boxes). Inset:
Applying the density operator ρ̂†q to the vacuum state creates a superpostion of electron-hole pairs.
Basically, these are the relevant low-energy excitations. (b) Dispersion relation of the bosonic modes
b̂q for an interaction potential Uq = 2παvF e−(q/qc)

2
with 2πα = 5. For q � qc , the velocity of the

plasmons is renormalized to v̄ = vF (1 + α), while due to the finite interaction range in the limit
q � qc the bare velocity vF is reproduced, i.e., there are two distinct energy regimes.
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Eq. (3.4) in terms of the density operators ρ̂q,R:

Ĥint =
1
2

∑
q,k,k′

Uq : ĉ†k,Rĉ
†
k′,Rĉk′−q,Rĉk+q,R :

=
1
L

∑
q>0

Uqρ̂
†
q,Rρ̂q,R +

1
2L
U(q = 0) :

[∑
k

ĉ†k ĉk

]2

:︸ ︷︷ ︸
Hartree term

− U(x = 0)
2

∑
k

: ĉ†k ĉk :︸ ︷︷ ︸
Fock term

. (3.6)

The emerging of the Hartree-Fock terms in Eq. (3.6) has to be noted in particular. The Fock correction
naturally cancels out contributions stemming from the unphysical interaction of the electrons with
itself, as the Pauli principle does not allow for two particles to be exactly at the same position in
space. For small changes in the particle number we can linearize the Hartree-Fock term in δN̂R. As
a consequence, we can simply incorporate the Hartree-Fock contribution into a re-definition of the
chemical potential. The main point is that it is obviously possible to reformulate the interacting part
of the Hamiltonian only in terms of the density operators ρ̂q,R.

Bosonic operators {b̂q, b̂†q} The crucial step behind the bosonization of the Hamiltonian Eq. (3.3)
is that it is possible to find operators {b̂q, b̂†q} which diagonalize the Hamiltonian and fulfill the bosonic
commutation relations. It can be shown [21, 14, 4] that for the Tomonaga-Luttinger model (where
the linearized dispersion relation is is extended down to −∞ ) the operators

(q > 0) b̂q =
(

2π
Lq

)1/2

ρ̂q,R b̂†q =
(

2π
Lq

)1/2

ρ̂−q,R (3.7)

represent well defined bosonic excitations, i.e., they fulfill

[b̂q, b̂
†
q′ ] = δq,q′ . (3.8)

In the remainder of this work we will refer to these modes as ’plasmons’, i.e., modulations in the
electron density. Furthermore, it turns out [21, 4, 14] that the free part of Ĥ0 can be written in terms
of those operators:

Ĥ0 ∼
∑
q>0

vF qb̂
†
q b̂q. (3.9)

Formula Eq. (3.9) lies at the root of the bosonization method; however, we still have to fix the constant
in Eq. (3.9). As the bosonic operators {b̂q, b̂†q} only describe the low-energetic excitations of the chiral
interacting electron system, we have to add the energy related to a change in the electron number.
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Adding n electrons to the filled Fermi sea increases the energy by

2πvF
L

N̄R+n∑
j=N̄R

j =
πvF
L

{(
n+ N̄R

) (
n+ N̄R + 1

)
− N̄R

(
N̄R + 1

)}
. (3.10)

where N̄R is the mean electron number in the channel. Therefore, up to a constant we have to add
the contribution πvF

L (N̂R + N̄R)(N̂R + N̄R + 1).

Bosonized Hamiltonian Finally, we can sum up the different terms. Linearizing the part depend-
ing on the normal ordered electron number δN̂R, i.e., keeping only terms linear in δN̂R yields the
bosonized Hamiltonian (omitting a further constant)

Ĥ1 =
∑
q>0

ωq b̂
†
q b̂q + µδN̂R, (3.11)

where µ = u + 2πvF ρ̄R (with ρ̄R = N̄R/L ) and u is a constant which fixes the chemical potential
of the channel. For example, u contains the energy shift due to the Hartree-Fock contribution in
Eq. (3.6) and to any external applied gate voltage (here we set u = 0). The plasmonic dispersion
relation (see Fig. 3.1b) is given by

ωq = vF q

(
1 +

Uq
2πvF

)
. (3.12)

For the following discussions, we introduce the dimensionless coupling constant α = U(q→0)
2πvF

, where
α ∈] − 1,∞[. The renormalized plasmon velocity at small wavenumbers is v̄ = vF (1 + α). Negative
values of the coupling constant are related to attractive interactions, positive values to repulsion
(at small wavenumbers). For α → −1 the plasmon velocity tends to zero, v̄ → 0. For α < −1
the system is unstable, i.e. formally ω(q) < 0 for q > 0. To conclude, we sucessfully mapped the
Hamiltonian (quartic in fermionic fields) in Eq. 4.39 to a representation diagonal (and quadratic)
in bosonic operators (Eq. (3.11)). However, this is not the whole story. As we are interested in
electronic properties of the system, such as the single particle Green’s function G>(x, t), we still have
to establish a connection between the bosonic operators {b̂q, b̂†q} and the fermionic fields {ψ̂, ψ̂†}.

3.1.2 Bosonization of the Fermionic field

There are various ways to introduce the bosonization of fermionic operators, ranging from mathe-
matical rigorous derivations of the underlying operator identity [21, 14] to more intuitive and rather
simple approaches, for instance presented in [14, 2]. Here, we want to point out the physical reason
why in one dimension a representation of a fermionic field in terms of bosons can be found. The
bosonic representation is constructed “from scratch”, closely following the derivation in [2]. What
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are the physical properties a fermionic operator ψ̂†(x) must fulfill? First of all, it has to create a
particle at x thereby deforming the particle density and it has to increase the particle number by
one unit. Secondly, it has to fulfill the fermionic exchange statistics, i.e. {ψ̂†(x1), ψ̂†(x2)} = 0. The
construction scheme starts from a bosonic field B̂†(x) creating a unit charge excitation at x and the
corresponding density operator δρ̂(x) ≡ B̂†(x)B̂(x) − ρ̄. Note that we introduced δρ̂ as the den-
sity operator describing the deviations from the mean particle density ρ̄. The operator δρ̂ is closely
related to the operators ρ̂R we introduced in the previous subsection, however it also contains the
homogeneous change in the density by a variation of the total particle number: δρ̂ = ρ̂+ δN̂/L. The
main point is that in one dimension, with help of a Jordan-Wigner transformation, one can re-express
the fermionic field in terms of the bosons B̂:

ψ̂†(x) = exp
(
iπm

ˆ x

−∞
dx′ [δρ̂(x′) + ρ̄]

)
B̂†(x), (3.13)

where m is an arbitrary odd integer. The physical meaning of the exponent in Eq. (3.13), the so-called
Wigner string, is rather simple. Namely, it counts the number of particles to the left of the particle
created at x. This ensures the fermionic exchange statistics, as (we set x1 > x2 and let N̄ denote the
number of particles in the vacuum state |vac〉)

ψ̂†(x1)ψ̂†(x2) |vac〉 = eiπ
´ x1
−∞ dx′ ρ̂(x′)B̂†(x1)eiπ

´ x2
−∞ dx′ ρ̂(x′)B̂†(x2) |vac〉

= ei2πN̄+iπB̂†(x1)B̂†(x2) |vac〉 ,

but

ψ̂†(x2)ψ̂†(x1) |vac〉 = eiπ
´ x2
−∞ dx′ ρ̂(x′)B̂†(x2)eiπ

´ x1
−∞ dx′ ρ̂(x′)B̂†(x1) |vac〉

= ei2πN̄ B̂†(x2)B̂†(x1) |vac〉 .

Therefore, it follows that the representation in Eq. (3.13) produces an additional minus sign inter-
changing two fermionic creation or annihilation operators. Yet this is exactly what was demanded.
Now, we can define a bosonic field

φ̂(x) ≡ −π
ˆ x

−∞
dx′ δρ̂(x′), (3.14)

yielding: δρ̂(x) = −∇φ̂(x)/π. In a next step, we switch to the usual phase-density representation of
the bosonic field B̂(x)

B̂(x) ≡ (ρ̄+ δρ̂(x))1/2
eiθ̂(x)

B̂†(x) ≡ (ρ̄+ δρ̂(x))1/2
e−iθ̂(x), (3.15)
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where the hermitian field θ̂(x) takes care of the phase of the bosonic excitation created by B̂†. In
order to fulfill the bosonic commutation relations [B̂(x), B̂†(x′)] = δ(x − x′) one can show that the
density δρ̂(x) and θ̂(x) are required to form a canonically conjugated pair. Thus, the important
relation follows:

[δρ̂(x), θ̂(x′)] = [θ̂(x′),
1
π
∇φ̂(x)] = iδ(x− x′). (3.16)

The meaning of the identity Eq. (3.16) is obvious, thinking of the analogous situation in single particle
quantum mechanics. There, the position operator x̂ and the momentum operator p̂ form such a
conjugated pair and the application of exp(−ip̂x) shifts the whole wave functionby x. This is why p̂
is denoted as the generator of translation. Remaining in this picture, Eq. (3.16) identifies θ̂(x) with
the generator of a ’charge shift’, i.e. the application of exp(iθ̂(x)) to the vacuum state increases the
charge by one unit. Note that in Eq. (3.13) some ambiguity arises as the relation is valid for any odd
integer m. The most general representation of ψ̂ is given by a superposition of all possible terms.
To derive the final result (to get , e.g., the correct normalization, etc.) one can invoke the fermionic
anti-commutation relation

{
ψ̂(x), ψ̂†(x′)

}
, yielding

ψ̂†(x) =
(
ρ̄− 1

π
∇φ̂
)1/2 ∑

m odd

{
exp

(
iπm

ˆ x

−∞
dx′ [δρ̂(x′) + ρ̄]

)
e−iθ̂(x)

}
. (3.17)

=
(
ρ̄− 1

π
∇φ̂
)1/2 ∑

m odd

{
eimπ(ρ̄x−φ̂(x)/π)e−iθ̂(x)

}
. (3.18)

In a one-dimensional system consisting of right- and left moving electrons, the average density is given
by: ρ̄ = kF /π. Thus it follows that the representation in Eq. (3.17) contains terms proportional to
e±ikF x, but also higher momenta. However, as we are interested only in the low-energy properties
of the system it suffices to restrict to the contributions with e±ikF x [2, 14]. This approximation
sometimes serves as a starting point of the bosonization and is equivalent with assuming that only
the part of the single-particle operator acting close to the Fermi edge determines the low-energy
properties [14]. Then, separating the right- and left moving electron one can write

ψ̂(x) =
1√
L

∑
k

eikxĉk

≈ 1√
L

∑
k∼kF

eikxĉk +
1√
L

∑
k∼−kF

eikxĉk

= ψ̂R + ψ̂L. (3.19)

Turning back to Eq. (3.17) in the lowest order of ∇φ̂ leads us to:

ψ̂(x) ≈
√
ρ̄eikF xei(θ̂(x)−φ̂(x)) +

√
ρ̄e−ikF xei(θ̂(x)+φ̂(x)). (3.20)
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Klein factors Before the final expression for the single particle operators in terms of bosonic fields
can be given, there is still one problem left. Namely, the expression for the fermionic field does
not fulfill all of the demanded criteria, as it does not increase the fermion number of the system by
one unit. For this task one introduces so-called Klein factors F̂R, which annihilates a fermion in a
spatially homogeneous way and obeys the following commutation relations (where the label j = R,L

the chirality of the electron created):

{Fi, F †j } = δij ; {Fi, Fj} = {F †i , F
†
j } = 0. (3.21)

In addition the Klein factors are assumed to commute with the bosonic excitations b̂. This yields the
final expression for the chiral fermionic fields ψ̂R,L(x)

ψ̂(x) ≈ F̂R
√
ρ̄eikF xei(θ̂(x)−φ̂(x)) + F̂L

√
ρ̄e−ikF xei(θ̂(x)+φ̂(x))

≡ ψ̂R + ψ̂L. (3.22)

In the following we focus our attention on the right-moving electrons:

ψ̂R(x) = F̂R
√
ρ̄eikF xei(θ̂(x)−φ̂(x)). (3.23)

The only step left is, to find the expression for the bosonic fields φ̂ and θ̂ in terms of the bosonic
operators {b̂q, b̂†q}, whose dynamics are governed by the bosonized Hamiltonian in Eq. (3.11).

Finite bandwith and chiral field ψ̂R(x) The Hamiltonian in Eq. (3.9) describes the low-energy
properties of a one-dimensional electron system under the assumption of a linearized dispersion re-
lation. In the framework of the Luttinger model one extends the linear dispersion relation down to
−∞. As a consequence, the commutation relations (Eq. (3.8)) for the fields b̂q, b̂†q are fulfilled exactly.
In turn, one has to introduce a finite bandwith, i.e., a cutoff parameter a with the dimension of a
length ([a] = m) regularizing the involved momentum integrals (cf. Fig. 3.1a). Formally, the cutoff
parameter sets the length scale of the system. However, in the end one recovers the Luttinger model
by taking the limit a→ 0. Under the assumption of a finite interaction range (i.e., Uq → 0 for q � qc)
this is possible, as in the final expressions we can replace the original cutoff a by q−1

c (we will see
this when calculating the single particle Green’s function G>(x, t)). Therefore, in the remainder of
this work the length scale is set by q−1

c . To stay in the low-energy regime where the linearisation of
the dispersion relation is valid, the involved momenta are demanded to be much smaller than kF .
Therefore, for the cutoff parameter and qc it follows: a, q−1

c � k−1
F .
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The canonical conjugated fields φ̂ and θ̂ What is the explicit form of the bosonic fields φ̂ and θ̂
if we consider only right-moving particles? At this point, one has to establish the connection between
the operators {b̂q, b̂†q}, whose dynamics are governed by the Hamiltonian Ĥ0 in Eq. (3.9) and the fields
φ̂ and θ̂. This can be done, comparing each of those fields to the density operators ρ̂q, i.e., considering
Eqs. (3.7) and (3.14). By definition, φ̂ is given by − 1

π∇φ̂(x) ≡ ρ̂R(x) + δN̂R/L. Thus we have

φ̂(x) = −πx
L
δN̂R + iπ

∑
q>0

1√
2πLq

e−aq/2
{
b̂qe

iqx − h.c.
}
. (3.24)

Furthermore, from the commutation relation between θ̂ and ρ̂R,
[
ρ̂R(x), θ̂(x′)

]
= iδ(x−x′), for chiral

systems, it follows that

θ̂(x) = −φ̂(x). (3.25)

In the limit of infinitely large chiral electron systems L→∞ we can drop the first term in Eq. (3.24).
According to Eq. (3.22) we can combine the fields φ̂ and θ̂ into one chiral bosonic field Φ̂(x), such
that the single-particle operator ψ̂R(x) can be written as

ψ̂R(x) =
F̂R√
2πa

eikF xe−iΦ̂(x)

Φ̂(x) = i
∑
q>0

√
2π
Lq
e−aq/2

{
b̂qe

iqx − h.c.
}
. (3.26)

Note that here we substituted the mean density ρ̄R by (2πa)−1, as ρ̄R =
´ 0

−∞(dk) eak = (2πa)−1.

3.2 Single particle Green’s function

In Chapter 2 it was derived that the effect of the intrinsic electron-electron interactions on the
coherence properties of a Mach-Zehnder interferometer in the weak-tunneling limit is contained in
the single-particle Green’s function. In this section, with help of the bosonization method, the Green’s
function is evaluated explicitly.

3.2.1 Green’s function from bosonization

The single-particle Green’s function G>(x, t) defined in Eq. (2.10), can be evaluated explicitly using
the bosonized single particle operators ψ̂ defined in Eq. (3.26). The calculation is done quickly using
the fact, that the Hamiltonian in terms of the bosonic operators is quadratic, i.e. the field Φ̂[b̂, b̂†] can
be treated like a Gaussian (quantum) variable. In terms of the bosonized representation the Green’s
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function for right moving electrons yields (where we omit the label noting the chirality)

G>(x, t) = −i
〈
ψ̂R(x, t)ψ̂†R(0, 0)

〉
=

−i
2πa

eikF x
〈
F̂R(t)F̂ †R

〉〈
e−iΦ̂(x,t)eiΦ̂(0,0)

〉
. (3.27)

The time dependence of the Klein factors can be obtained from the Heisenberg equation d
dt F̂R =

−i[F̂R, Ĥ0]. While the Klein factors commute with the bosonic operators b̂q, the commutator with
the number operators yields: [F̂R, δN̂R] = F̂R. Therefore, from Eq. (3.11) it follows: F̂R(t) = e−iµtF̂R.
For a chiral electron system we have µ = 2πvF ρ̄R and ρ̄R = kF /2π. Thus, the Green’s function can
be simplified to

G>(x, t) =
−i
2πa

e−iµ(t−x/vF )
〈
e−iΦ̂(x,t)eiΦ̂(0,0)

〉
=

−i
2πa

e−iµ(t−x/vF ) exp
[〈

Φ̂(x, t)Φ̂(0, 0)
〉
−
〈

Φ̂(0, 0)2
〉]
, (3.28)

where in the last line we make use of the fact that the bosonic field Φ̂ is a linear function of the
operators {b̂q, b̂†q}. As the Hamiltonian is quadratic in those operators, the well known formula for
averages over Gaussian random variables ϕ̂ :

〈
e−iϕ̂

〉
= exp

(
− 1

2

〈
ϕ̂2
〉)

can be applied. In a very last
step, we only have to calculate the exponent in Eq. (3.28). For this, we start from the definition of
the chiral field Φ̂ in Eq. (3.26):〈

Φ̂(x, t)Φ̂(0, 0)
〉

= −2π
L

∑
q,q′>0

1√
qq′

e−a(q+q′){

〈(
b̂q(t)eiqx − b̂†q(t)e−iqx

)(
b̂q′ − b̂†q′

)〉
}

=
2π
L

∑
q,q′>0

1√
qq′

e−a(q+q′){

ei(qx−ωqt)
〈
b̂q b̂
†
q

〉
δq,q′ + e−i(qx−ωqt)

〈
b̂†q b̂q

〉
δq,q′},

where we plugged in the time dependence of the bosonic operators b̂q(t) = e−iωqtb̂q. Finally the
exponent in Eq. (3.28) yields (introducing the Bose-Einstein distribution function n̄(ω) ≡ [exp(βω)−
1]−1) 〈

Φ̂j(x, t)Φ̂j(0, 0)
〉
−
〈

Φ̂j(0, 0)2
〉

=
ˆ ∞

0

dq

q
e−aq

{[
ei(qx−ωqt) − 1

]
(n̄(ωq) + 1)[

e−i(qx−ωqt) − 1
]
n̄(ωq)

}
. (3.29)

In the end we have to send a → 0. Therefore we replace the cutoff parameter a by the interaction
range q−1

c . This can be achieved by factoring off the non-interacting Green’s function g>j (x, t).
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Following, the same lines we can easily derive the corresponding expressions for the hole Green’s
function G< ≡ i〈ψ̂†R(0, 0)ψ̂R(x, t)〉. The result is

G>/<(x, t) = e−iµ(x/vF−t)g>/<(x, t) exp[SR(x, t)± iSI(x, t)], (3.30)

where the non-interacting Green’s function for right moving electrons is given by (for instance, see
[21])

g>/<(x, t) =
1

2βvF
· 1

sinh[ π
βvf

(x− vF t± i0+)]
. (3.31)

One may note the following identities for µ = 0: G>/<(x, t) = −[G>/<(−x,−t)]∗ and [G>/<(x, t)]∗ =
G</>(x, t). All the effects of the interaction are now included in the exponent where we have to
subtract the non-interacting contribution, as we factored off the non-interacting Green’s function

SR =
ˆ ∞

0

dq

q
{coth[

βωq
2

] [cos[qx− ωqt]− 1]︸ ︷︷ ︸
S̃R(ωq)

−S̃R(ωq → qvF )} (3.32)

SI =
ˆ ∞

0

dq

q
{sin[qx− ωqt]︸ ︷︷ ︸

S̃I(ωq)

−S̃I(ωq → qvF )}. (3.33)

One may note that in Eqs. (3.32) and (3.33) the non-interacting parts S̃R,I regularize the integrand,
as in the limit q/qc → ∞ the interacting dispersion relation turns into the non-interacting one:
ωq → vF q.

3.2.2 Discussion of the Green’s function in space and time

In this section, we discuss the Green’s function as a function of space and time. A more detailed
discussion can be found in [6]. The modulus of the Green’s function G>(x, t) is shown in Fig. 3.2,
at zero temperature (to which we restrict our discussion).In the following, all numerical evaluations
are performed using a generic smooth interaction potential Uq = U0e

−(|q|/qc)s . We note that all
the qualitative results are valid for potentials which are finite at zero momentum (U0 6= 0) and
which are cut off beyond some momentum scale. Those assumptions are not restrictive and, for
example, are fulfilled for a Coulomb potential with screening in a quasi one-dimensional channel of
finite width. In Fig. 3.2, we observe as the main feature that the Green’s function splits into two
parts during its propagation. One of them propagates with the bare Fermi velocity vF and represents
the unperturbed Green’s function, i.e. the high energy part. For increasing time its weight decreases,
i.e., the amplitude of the bare electron to arrive at x without being scattered decreases. The other
peak represents the low energy part, stemming from energies below ε− µ ∼ vF qc. It moves with the
renormalized velocity v̄.
We can obtain this structure of G>(x, t) from a crude approximation. Namely for T = 0, in a first
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Figure 3.2: Numerical evaluation of |G>(x, t)| at zero temperature T = 0 resulting from bosonization,
as a function of x and t (solid blue lines). The weight of the sharp peak at x = vF t decreases for
increasing propagation times t. The dashed blue line shows an approximation of the Green’s function
(see Eq. (3.35)), which yields good qualitative agreement with the full solution. The plot is done for
Uq = U0e

−(q/qc)
2
with U0

vF
= 2πα = 5 .
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approximation we can cut the momentum integral due to the fact that for q � qc the integrand
vanishes, i.e.,

S[x, t] ≡ SR + iSI ≈
ˆ ∞

0

dq

q
e−q/qc [exp[iq(x− v̄t)]− 1]−

ˆ ∞
0

dq

q
e−q/qc [exp[iq(x− vF t)]− 1] .

The integrals are known and yield

S[x, t] ≈ ln
[
x− vF t+ iq−1

c

x− v̄t+ iq−1
c

]
. (3.34)

The structure of the Green’s function is thus given by

G>T=0(x, t) ≈ 1
2π

1
x− vF t+ i0+

·
[
x− vF t+ iq−1

c

x− v̄t+ iq−1
c

]
, (3.35)

displaying both the sharp peak at x = vF t and the broadened peak at x = v̄t, whose width is set
by q−1

c . In Fig. 3.2 one can observe a fairly good agreement between the full result and this first
approximation.

3.2.3 Green’s function vs. position and energy

As shown above in Eq. (2.20) and (2.26), the current through the interferometer is determined by the
propagators G>/<(ε, x). Therefore, in the following our main focus will be on this function, which can
be thought of as the amplitude for an electron of energy ε to propagate unperturbed over a distance
x. The function is shown in Fig. 3.3, where we plot the numerical evaluation of the exact result
obtained using the bosonization technique. This is done for two values of coupling strength α and
for different interaction potentials. There are some main features which can be observed in Fig. 3.3:

• At x = 0, where |G>(x = 0, ε)| = 2πν(ε) equals the tunneling density of states, there is a finite
dip at low energies. This is a static interaction effect. For repulsive interactions it represents the
suppression of the tunneling density by a factor vF /v̄, due to the interaction-induced increase of
the velocity v̄. At high energies (ε� vF qc), the non-interacting density of states is recovered.

• At any fixed energy ε, the Green’s function decays with increasing propagation length x. The
shape of the decay (as a function of x) becomes independent of energy for high energies. In
contrast, the decay is suppressed for energies below ε ∼ vF qc, and there is no decay in the
limit ε → 0. The decay of the GF is equivalent to dephasing (since in our model there are
no interbranch interactions and correspondingly no vertex corrections). As a consequence, the
absence of decay at zero energy will lead to perfect visibility at T = 0, V → 0.

• At larger x, there are oscillations in the Green’s function. These result from the double-peak
structure in the time-domain, with peaks at x = vt and x = v̄t. These lead to a beating term
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Figure 3.3: a) The electron Green’s function |G>(x, ε)| for various lengths x as a function of energy
ε, evaluated using bosonization, for U(q) = U0e

−(q/qc)
2

[solid blue lines] and for U(q) = U0e
−|q/qc|

[dashed red lines]. At high energies, the result coming from the semiclassical approach for the Gaussian
potential [solid black line] is shown. The red area indicates the regime of validity for the semiclassical
(high-energy) approximation we introcude in Chapter 4. The interaction strengths are: 2πα = 2 (a)
and 2πα = 15 (b). In the high-energy limit, the semiclassical solution is valid for arbitrary coupling
strength. However, the energies for which the description is valid become larger for increasing coupling
strength. In (b) this limit is beyond the presented energy interval. Therefore, the semiclassical
solution is not shown here.
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exp[iωx(v−1− v̄−1)] in |G>(x, ω)|. Therefore, the period of oscillations in the energy domain is
determined by the difference between the bare and the renormalized velocity (see Fig.3.3), viz.:

δε ≈ 2π
xη

; with η =
1
v
− 1
v̄
. (3.36)

For small energies the decoherence is largely suppressed. This relies on the well known fact that in
this regime chiral one-dimensional electrons can be considered as Landau quasiparticles described by
the usual Fermi liquid theory. For this, we refer to reader to the analysis in [43], where the spectral
density of a chiral “Luttinger liquid” is considered.

3.2.4 Large coupling constants

In this subsection we want to discuss briefly the shape of the Green’s function in terms of the
coupling strength. We emphasize that once the shape of the interaction potential is given, the only
dimensionless parameter left is the coupling constant α = U0/(2πvF ). All the other parameters may
be absorbed into a rescaling of the result.

In Fig. 3.4 we show |G>(ε, x)| as a function of energy for various coupling strengths (different curves),
both at x = 0 and at some finite propagation distance x 6= 0. For small coupling α > 0, we just
observe the suppression of the tunneling density of states discussed above. Upon increasing the
coupling strength, a series of rounded steps emerges, suppressing the tunneling density even further.
The same features can be seen in the shape of the GF at finite x, though there they are superimposed
by the decay (describing decoherence) and the oscillations as a function of energy (discussed in the
preceding section). To identifiy the oscillations in energy which we observe even for small coupling
strength in Fig. 3.4c we divide the GF for x 6= 0 showed in Fig. 3.4b by the tunnel density of states. As
expected, these oscillations are robust against a change in the coupling strength. We have not found
any simple analytical model to discuss the structures observed here. However, note that in Fig.3.3b
one observes that the step structure is more pronounced for the Gaussian potential compared to the
results for the exponential shape. That shows the strong influence of the shape of the interaction
potential on the step structure. We note that previous discussion in the (ε, k)-space (as opposed to
(ε, x)) had found non-analytic structures for the case of a box-shape potential Uq [43].

3.3 Visibility and Current

As mentioned in Chapter 2, the results for the GF G>(ε, x) we worked out in the foregoing section can
be applied directly to the evaluation of the current and the visibility (Fig. 3.5). Fig. 3.5a shows the
current through the interferometer as a function of voltage for different arm lengths. Here, we restrict
the considerations to the symmetric case, i.e. x1 = x2. For x = 0 the coherent part of the current
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Figure 3.4: Green’s function at zero temperature T = 0 as a function of energy ε for various coupling
strengths α, at x = 0 (a) and xqc = 2 (b).
c) |G>(ε, x)| for xqc = 2, divided by the tunnel density of states 2πν(ε) = |G>(ε, x = 0)|. This might
be interpreted as the electron’s coherence as a function of propagation energy and distance.
Here the potential is Uq = 2παvF e−(q/qc)

2
, where the various values of α are (from top to bottom):

α = 0.16, 0.9, 1.6, 2.3, 3 .

obviously is identical with the flux-independent part, which implies a perfect visibility (at T = V = 0).
The suppression of the current at small voltages is due to the velocity renormalization which lowers
the tunnel density (for repulsive interactions). However, as the change in the tunnel density influences
the classical and the coherent part in the same way, it does not show up in the visibility at all, i.e.
vI(V, x = 0) ≡ 1 (see Fig. 3.5b). In the limit of high voltages V and T = 0 the visibility is determined
by the factor |G>(ε → ∞, x)|2. This follows from the fact that for higher voltages the contribution
of the high-energy electrons becomes dominant. As the Green’s function saturates for large energies
(cf. Subsection 3.2.3), it also implies that the visibility at high voltages becomes voltage-independent.
For x 6= 0 the dephasing reduces the coherent (flux-dependent) part of the current which leads to a
decrease of the visibility. At small voltages |qeV | � qcvF the visibility decays only very slowly with
increasing interferometer length (see the discussion of the Green’s function in subsection 3.2.3). In
the limit V → 0 the visibility is approaching unity vI → 1 , which is consistent with the fact that in
equilibrium and at zero temperature there is no dephasing. In contrast to the Green’s function itself,
which shows oscillations as a function of ε, the visibility does not show pronounced oscillations as a
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Figure 3.5: a) The amplitude of the coherent (flux-dependent) part of the current Icoh through the
interferometer for different arm lengths x. The curve for x ≡ 0 is equal to the flux-independent
current Icoh(x ≡ 0, V ) = I0(V ) (red line), which implies that the interference contrast is perfect at
zero armlength.
b) The visibility vI as a function of bias voltage V for various arm-lengths x1 = x2 = x. The
red line denotes the semiclassical calculation we introduce in Chapter 4. The small deviations from
the bosonization result vanish completly for larger V . The plot is done for Uq = U0e

−(q/qc)
2

with
U0
vF

= 2πα = 3.

function of V .

3.4 Summary

In this Chapter 3 we introduced the bosonization of the one-dimensional electron system providing
us with the single-particle Green’s function G>(ε, x), which in the previous Chapter was shown to
determine the coherence properties of the system. Assuming a finite range of the electron-electron
interaction, it was evaluated numerically. The main result is that, only due to the finite interaction
range, two distinct energy regimes energe. While the decoherence of low-energy electrons is suppressed
strongly (as for these the Fermi liquid theory applies), the coherence of electrons flying high above
the Fermi sea is destroyed to the full extent. Finally, the visibility was evaluated. In agreement with
the analysis of Chalker et al. [6], even taking into acount the full interaction potential the reported
“lobe structure” is not observed.



Chapter 4

Universal dephasing and

semiclassical approach

At low energies and temperatures, chiral interacting fermions form a Fermi liquid and are fully
coherent at T = 0 and ε = εF . The deviations when slightly increasing the energies in general
depend on the details of the interaction potential [43]. In this Chapter however, we will study the
coherence of interacting chiral fermions at high energies, i.e., ε � vF qc. In [41], we reported on the
central result that (at T = 0) there is a universal power-law (1/x) decay of the single particle Green’s
function G>(ε, x) with propagation distance, where in the leading order the exponent turns out to
be independent of the interaction strength α.

This is derived within a semiclassical ansatz for G>(ε, x), which becomes exact in the high-energy
limit. It is based on the observation that at high energies the electrons propagate at the unperturbed
speed vF . For example, this can be obtained from the corresponding limiting behaviour of the
plasmonic dispersion relation, limq→∞ ωq = vF q . In addition, the Keldysh perturbation theory in
Chapter 6 shows that the influence of exchange processes leading to a renormalization of the electron
velocity is restricted to electrons in close vicinity to the Fermi edge. The main idea is to consider the
electron propagating ballistically through the channel in the presence of the plasmonic bath formed by
all the other electrons. Neglecting the backaction of the moving electron onto the bath, the electron
is assumed to experience only a fluctuating potential landscape (which has its origin in the plasmonic
bath) at its classical position x = vF t (Fig. 4.1). This is why the method is called “semiclassical”.
To model the effective, bosonic bath acting on the single electron, we make use of the plasmonic
dispersion relation which was derived with help of the full bosonization of the system (cf. Eq. ( 3.12)).
Due to the intrinsic fluctuations of the plasmonic quantum bath, the electron moving ballistically
with vF accumulates a random phase (even at T = 0, as a result of the zero point fluctuations). In
the end one has to average over all possibe bath configurations (this is exactly what is done in an



36 4. Universal dephasing and semiclassical approach

experiment, measuring a large number of electrons). As a result of the averaging, the coherence is
suppressed, which is equivalent to the decay of G>(ε, x).

From a theoretical point of view, the correctness of this simple model in the high-energy limit has
important implications. Especially the fact that the decoherence of a high-energy chiral electron is
only related to a dephasing process, i.e., during its propagation the electron is not scattered out of its
initial state, enables a deeper understanding of such systems, e.g., of its non-equilibrium properties
(cf. Chapter 7).

The Chapter is structured as follows. First, we introduce the semiclassical approach as a physicallly
motivated ansatz resulting in an expression for G>(ε, x) that is in a next step shown to be exact in
the high-energy limit (Section 4.1). This is done by comparison with the full bosonization solution
given in Chapter 3. While starting from bosonization the Fourier transform of G>(x, t) can only
be obtained numerically, the advantage of the semiclassical approach is that it provides us with
an analytical expression for G>(ε, x). It turns out that it is only the fluctuation spectrum of the
plasmonic bath, experienced in the electron frame of reference, which determines the properties of
the Green’s function. In Section 4.2 it is shown that the low-frequency spectrum in this co-moving
frame is of the ohmic type, i.e., the spectrum increases linearly with frequency. Most importantly,
the slope of the low-frequency spectrum turns out to be independent of the coupling strength α.
At T = 0, in the leading order this fact is shown to translate into a universal power-law decay
of G>(ε, x) ∼ 1/x (Section 4.3). We will also discuss deviations from the leading behaviour and
the situation at finite temperatures. Finally, we will motivate the semiclassical ansatz with some
more rigour referring to the “equations of motion” approach used in [11, 36, 32, 31] to describe the
decoherence of non-interacting electrons subjected to a quantum bath (Section 4.4).

4.1 Dephasing of high-energy electrons

We propose a very simple description of dephasing in chiral one-dimensional electron systems for
electrons flying high above the Fermi sea. The main advantage is that the formalism emphasizes the
physical origin of dephasing in those systems. The method is inspired by the equations of motion
approach [36, 32, 31], which will be discussed in more detail in Section 4.4 and by the physical picture
the bosonization of the problem suggests. The equations of motion approach was proposed in order
to study the decoherence of electrons subjected to some external noise potential in presence of a
filled Fermi sea. The main idea is that the electrons moving ballistically with vF experience some
fluctuating potential due to the coupling to the external bath, thereby collecting a random phase
(Fig.4.1). In the end, averaging over all possible bath configurations the coherence of the electrons
effectively gets suppressed. The backaction of the flying electron onto the bath is included taking
into account the quantum nature of the bath. It turns out that this has important consequences for
the coherence properties of the electron, as it introduces the influence of the Fermi edge. Namely,
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high-energy electron

Figure 4.1: A single electron propagating at high energies feels a fluctuating quantum potential
V̂ (t), due to the interaction with the density fluctuations in the sea of other electrons. We show
a density plot of the potential, which is produced by the electronic density fluctuations (plasmons)
in the channel. The plasmons are moving with a renormalized velocity v̄ (see main text) while the
high-energy electron moves with the bare Fermi velocity vF . It picks up a random phase, which leads
to dephasing. This is the picture underlying the semiclassical approach we apply in this Section.

the Pauli principle precludes any inelastic scattering processes which would transfer the electron to
an occupied state below the Fermi edge. This effect is known as Pauli blocking.

The equations of motion approach was applied, e.g., studying the influence of a quantum noise
potential (i.e., the noise source itself is treated quantum mechanically) on the weak localization of
electrons [11] and on the visibility of a Mach-Zehnder interferometer [36, 32, 31].

However, here we are interested in the influence of the electron-electron interactions on the coherence
properties of the injected electron. The main question is, whether one can replace the complicated
interparticle interactions by considering all the other electrons to form an effective“external”quantum
bath. The density fluctuations in this effective electron bath, the plasmons, would give rise to a
random quantum potential dephasing the inserted electron. Indeed, it turns out that if the energy
of the injected electron is large enough, i.e., ε� qcvF , this approach exactly reproduces the Green’s
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function G>(ε, x) calculated with help of bosonization.

The plasmonic bath is assumed to be governed by the full dispersion relation ωq, derived in the frame-
work of bosonization (cf. Eq. (3.12)). At first sight this idea suggesting to start from a ballistically
moving single electrons seems to contradict the main message of the bosonization technique: in one
dimension, instead of single electrons one has to think of collective, bosonic modes. Nevertheless, it
is crucially inspired by the bosonization method. Namely, in the semiclassical approach as well as
in the bosonization of the system, all the information concerning the electron-electron interaction is
exclusively stored into the plasmonic dispersion relation ωq. As we will see in the upcoming section, in
the semiclassical description of the system the dispersion relation determines the fluctuation spectrum
of the plasmonic bath.

In this chapter we restrict the considerations to high-energy electrons (ε � vF qc) as those move
with the bare Fermi velocity vF , while in Chapter 5 we investigate a more general anatz and try to
extend the approach to arbitrary energies. The semiclassical approximation we propose here, first
has the status of an intuitive physical ansatz, resulting in an expression for the single particle Green’s
function G>(ε, x). This is compared to the full bosonization solution, thereby verifying the ansatz
in the high-energy limit. To start, we consider an electron moving with vF and being coupled to
the potential stemming from the interactions with the plasmonic modes {b̂q}. The potential acting
on such a single high-energy electron is obtained by convoluting the density fluctuations ρ̂ with the
interaction potential U(x) (which is identical to the one used in the bosonization of the problem):

V̂ (t) =
ˆ
dx′ U(x′ − vF t)ρ̂(x′, t). (4.1)

The definition implies, that the effective potential fluctuations V̂ (t) experienced by the single electron
are just the fluctuations of the bath evaluated at the classical electron position x = vF t at time t. This
is why we call this model “semiclassical”. In the many-body language the particles are represented
by the particle fields ψ̂ whose time-evolution reflects this additional potential by collecting an extra
phase. If we were dealing with a classical fluctuating potential V (t), the electron would simply pick
up a random phase ϕ(t) = −

´ t
0
dt′ V (t′), i.e. ψ̂(t) → ψ̂(t)eiϕ(t). Therefore, in that case the non-

interacting Green’s function g>(x, ε) would have to be multiplied by a factor e−F (t) =
〈
eiϕ(t)

〉
(where

one has to take the average with respect to the bath degrees of freedom) to obtain the full Green’s
function. Then the ansatz reads (for ε� qcvF )

G>(ε, x) = g>(ε, x) · e−F (x), (4.2)

where in the exponent we replaced t by x/vF . In the following, the factor e−F (x) is denoted as the
’coherence’ of the electron. However, if the quantum nature of the bath becomes important one has
take care of the non-commutativity of the operator V̂ (t) at different times. This can be done by
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introducing a time-ordering symbol:

e−F (x) ≡
〈
T̂ exp

[
−i
ˆ t

0

dt′V̂ (t′)
]〉

= exp
[
−1

2

ˆ t

0

dt1

ˆ t

0

dt2

〈
T̂ V̂ (t1)V̂ (t2)

〉]
. (4.3)

Again, the time t = x/vF in Eq. (4.3) is determined by the propagation length. In the last line we
made use of the well known identity

〈
e−iϕ̂

〉
= exp

(
− 1

2

〈
ϕ̂2
〉)

for Gaussian random variables ϕ̂. One
may note that this is actually identical to the decay of the coherence of a single level whose energy
fluctuates. In various contexts, this is known as the “independent boson model” [30], or the case of
“pure dephasing” in a (longitudinally coupled) spin-boson model [48]. The same kind of approach to
dephasing of ballistically propagating electrons has been introduced previously, both for a situation
with a general quantum bath [34, 31, 32, 36], as well as for two coupled Luttinger liquids [24].

Furthermore we note that the decay is independent of energy ε. This is because the propagation speed
is energy-independent, and the distance to the Fermi edge becomes unimportant at high energies as
well. Qualitatively, we have seen this feature before in our discussion of the full bosonization solution
(see Section 3.2.3 and Fig.3.3).

In the following we calculate the time-ordered bath correlation function 〈T̂ V̂ (t1)V̂ (t2)〉, which solely
determines the coherence properties of the high-energy electron.

4.1.1 Calculation of the correlation function

In this subsection, we rewrite the exponent of Eq. (4.3) in terms of the spectrum of the plasmonic
excitations in frequency space. The decay of the electron coherence, described by F (t), is com-
pletely determined by the fluctuation spectrum 〈V̂ V̂ 〉ω ≡

´
dt eiωt〈V̂ (t)V̂ (0)〉 of the potential seen

by the electron in the moving frame. To proceed further, we express the time-ordered correlator
〈T̂ V̂ (t1)V̂ (t2)〉 as a sum of commutator and anti-commutator part:〈

T̂ V̂ (t1)V̂ (t2)
〉

=
1
2

[〈{
V̂ (t1), V̂ (t2)

}〉
+ sgn(t1 − t2)

〈[
V̂ (t1), V̂ (t2)

]〉]
. (4.4)

As a general property the commutator part of the correlation function is purely imaginary reflecting
its origin in the quantum nature of the potential V̂ (a classical noise correlator is purely real). The
commutator part represents the linear response of the bath potential to a change in the electron
density. Therefore, even if we assume that the fluctuations of the bath are only the intrinsic ones
(at T = 0 the zero point fluctuations), due to the quantum nature of the bath some kind of response
automatically is included in the correlation function in Eq. (4.4). The real part of F (t) and therefore
the decay of the Green’s function depends only on the symmetrized part of the correlator. Formally,
this part is similar to the correlator of classical noise, though it also contains the zero-point fluctuations
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of the plasmon field:

ReF =
1
4

ˆ t

0

dt1

ˆ t

0

dt2

〈{
V̂ (t1), V̂ (t2)

}〉
=

1
4

ˆ
dω

2π

∣∣∣∣ˆ t

0

dt1 e
−iωt1

∣∣∣∣2 〈{V̂ , V̂ }〉
ω

=
ˆ +∞

−∞

dω

2π
sin2(ωx/2vF )

ω2

〈{
V̂ , V̂

}〉
ω
, (4.5)

where in the last line we replace the propagation time by x
vF

= t. In addition, a phase −ImF shows
up in the exponent. As already mentioned, it is related to the commutator of V̂ for different times
and thus represents a purely quantum mechanical contribution. In terms of the Fourier transform of
the spectrum we get

iImF =
1
4

ˆ t

0

dt1

ˆ t

0

dt2 sgn(t1 − t2)
〈[
V̂ (t1), V̂ (t2)

]〉
=

1
4

ˆ
dω

2π

{ˆ t

0

dt1

ˆ t

0

dt2 sgn(t1 − t2)e−iω(t1−t2)

}〈[
V̂ , V̂

]〉
ω

=
i

2

ˆ
dω

2π
Im
{ˆ t

0

dt1

ˆ t1

0

dt2e
−iω(t1−t2)

}〈[
V̂ , V̂

]〉
ω

= − i

2

ˆ ∞
−∞

dω

2π

[
t

ω
− sin(ωt)

ω2

]〈[
V̂ , V̂

]〉
ω
. (4.6)

In a next step we have to calculate the potential correlators experienced in the electron frame of
reference (the co-moving frame) determing the exponent F (x, t). Those are directly obtained from
the definition of the potential V̂ Eq. (4.1). We use that the convolution Eq. (4.1) can be written as:
V̂ (t) =

´
(dq) eiqvF tUqρ̂q(t). It follows

〈
V̂ V̂

〉
ω

=
ˆ
dt eiωt

ˆ
dq

2π
eiqvF t|Uq|2 〈ρ̂q(t)ρ̂−q〉

=
ˆ

dq

2π
|Uq|2 〈ρ̂ρ̂〉q,ω+vF q

. (4.7)

The argument ω + vF q indicates that we are dealing with the Galileo-transformed spectrum of the
density fluctuations. As a result of the Galileo transformation, the effective spectrum of the density
fluctuations gets tilted compared to the original dispersion relation (see Fig. 4.2). The density-
density correlator 〈ρ̂ρ̂〉qω of the plasmons is obtained via the fluctuation-dissipation theorem (FDT).
In equilibrium it connects the commutator part of the correlator (dissipation) with the symmetrized
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part (fluctuations). There are two equivalent versions we will use extensively:

〈{ρ̂, ρ̂}〉ω = coth(
βω

2
) 〈[ρ̂, ρ̂]〉ω . (4.8)

〈ρ̂ρ̂〉ω =
1
2

(1 + coth(
βω

2
)) 〈[ρ̂, ρ̂]〉ω , (4.9)

where β = 1/T and T denotes the temperature in the laboratory frame. The last statement seems
to be somehow redundant, as we already introduced the inverse temperature β. Nevertheless, we
show below that while the fluctuation-dissipation theorem holds for the potential fluctuations 〈ρ̂ρ̂〉qω
measured in the laboratory frame, for the potential fluctuations 〈V̂ V̂ 〉ω experienced in the co-moving
frame one has to define an effective temperature Teff such that the fluctuation-dissipation theorem
remains valid connecting the various potential correlators. Postponing this important discussion to
4.3.3, in the following derivations we only make use of the FDT in relation to the density correlators
itself. For the plasmonic spectrum in the laboratory frame 〈ρ̂ρ̂〉ω the fluctuation-dissipation theorem
yields:

〈ρ̂ρ̂〉qω =
1
2

(1 + coth(
βω

2
)) 〈[ρ̂, ρ̂]〉qω

= [n̄(ω) + 1]
ˆ
dt eiωt

ˆ
dx e−iqx{

1
L2

∑
k

(
L|k|
2π

)eikx(Θk

〈[
b̂k(t), b̂†k

]〉
+ Θ−k

〈[
b̂†|k|(t), b̂|k|

]〉
)}

= [n̄(ω) + 1]
ˆ
dk δ(q − k)|k|

{
Θkδ(ω − ωk)−Θ−kδ(ω + ω|k|)

}
= [n̄(ω) + 1]|q|

{
Θqδ(ω − ωq)−Θ−qδ(ω + ω|q|)

}
. (4.10)

We made use of the identity ρ̂q =
√

L|q|
2π b̂q (for q > 0) (see Eq. (3.7)), noticed the time evolution

of the bosonic operators b̂q(t) = e−iωqtb̂q and finally used the fact that the bosonic commutation
relation holds for the plasmonic operators, i.e. [b̂q, b̂

†
q′ ] = δqq′ per construction. The Bose distribution

function is denoted as n̄(ω).

After these preliminary calculations, now we focus on the potential correlation functions experienced
by the electrons in the co-moving frame as those are directly responsible for the decoherence properties
of the system. The potential correlation functions become〈[

V̂ , V̂
]〉

ω
=
ˆ

dq

2π
|Uq|2 〈[ρ̂, ρ̂]〉q,ω+qvF

(4.11)〈{
V̂ , V̂

}〉
ω

=
ˆ

dq

2π
|Uq|2 coth(

β(ω + qvF )
2

) 〈[ρ̂, ρ̂]〉q,ω+vF q
, (4.12)

where we avoid a direct usage of the FDT to connect 〈{V̂ , V̂ }〉ω and 〈[V̂ , V̂ ]〉ω. Being interested in
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the most general representation of the decoherence, we allow even for attractive interactions, i.e.,
α < 0. The symmetrized and the commutator part of the correlator give (here for ω > 0):

〈{
V̂ , V̂

}〉
ω

=
ˆ ∞

0

dq

2π
|Uq|2q coth(

βωq
2

)δ(ω − |Uq|q
2π

),〈[
V̂ , V̂

]〉
ω

= sgn(α)
ˆ ∞

0

dq

2π
|Uq|2qδ(ω −

|Uq|q
2π

). (4.13)

Having evaluated the potential correlation functions in the co-moving frame, we can substitute these
in the defining equations for the exponent F (x) (Eqs. (4.5) and (4.6)):

ReF (x) =
ˆ ∞

0

dq

q
coth

(
βω(q)

2

)[
1− cos

(
Uqq

2π
t

)]
(4.14)

ImF (x) =
ˆ ∞

0

dq

q
sin
(
Uqq

2π
t

)
−
ˆ ∞

0

dq

[
Uq
2π

]
t. (4.15)

Discussion In order to compare the ansatz G>(ε, x) = g>(ε, x) · e−F (x) with the bosonization
solution, we have to evaluate the Fourier transform of G>(x, t) in Eq. (3.30) numerically in the limit of
large energies ε� vF qc. In Fig. 4.2 we compare both the phase and the modulus of the bosonization
solution and the semiclassical ansatz, respectively. Obviously, these are identical confirming the
semiclassical ansatz (cf. Fig. 3.3)

G>(ε, x) = g>(ε, x) · e−F (x) ε� vF qc. (4.16)

Furthermore, a comparison of the semiclassical exponent e−F (x), i.e., Eqs. (4.14) and (4.15), with
G>(x, t) in Eq. (3.30) shows that, up to an additional energy renormalization −

´∞
0
dq

Uq
2π , the ansatz

reproduces the Green’s function G>(x, t) along the classical trajectory x = vF t:

G>(x, t) = g>(x, t) · e−F (x) x = vF t, (4.17)

where we omit the constant energy shift or equivalently incorporate it into a redefinition of the
chemical potential. This is exactly what we have done in the derivation of the Green’s function
with help of the bosonization method. There, the density-density interaction 1

2

´
dx′
´
dx ρ̂(x′)U(x−

x′)ρ̂(x) (the first term in the second line of Eq. (3.6)) still contains the unphysical interaction of an
electron with itself. However, in principle the Fock term (the third term in Eq. (3.6)), which was
incorporated into a redefinition of the chemical potential, cancels against this contribution. For a
single electron the shift in energy due to this self-interaction yields: 1

2

´
dx
´
dx′ δ(x)U(x− x′)δ(x−

x′) = (2π)−1
´∞

0
dq Uq. But this is exactly the energy, which is substracted in Eq. (4.15). In contrast

to the Green’s function resulting from bosonization (where we hide the Fock term by a redefinition
of µ) within the semiclassical approach the Fock term shows up explicitly.
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Equation (4.17) proofs that the decoherence of electrons moving along x = vF t can be understood
in terms of a semiclassical approach. This is in agreement with the foregoing analysis of G>(x, t)
in Section 3.2.2. Beside a broad peak moving with v̄, one observes a sharp peak in time, moving
along the trajectory x = vF t. There, we argued that it is this sharp peak, which is responsible for
the contributions to G>(ε, x) at large energies (cf. Fig. 3.2 and Fig. 3.3). Equations (4.16) and (4.17)
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Figure 4.2: a) Plot of the effective spectrum 〈{V̂ , V̂ }〉T=0
ω of the plasmonic bath experienced by

the electron in its co-moving frame of reference. The spectrum is linear in ω for small frequencies
and diverges like 1√

ωmax−ω
when approaching ωmax . The inset shows the dispersion relation of the

plasmonic bath in the laboratory frame of reference as well as in the electron frame of reference,
where it is getting tilted [dashed curve].
b) G>(ε, x) as a function of x for large energies ε� qcvF . The solid orange line denotes the numerical
evaluation of the bosonization result, while the solid black line shows the semiclassical result. For a
better comparison of the results, the inset shows a blow-up of the oscillations. The small deviations
are due to finite numerical precision. (c) Phase ϕ̃(ε, x) of G>(ε, x) = |G>(ε, x)| exp(iεx/vF + iϕ̃(x))
both from the semiclassical ansatz (dashed, black line) and from the bosonization solution (orange
line). Obviously, those are identical. All plots are given for Uq = U0e

−(q/qc)
2

with U0
vF

= 2πα = 5 and
T = 0.

display one of our main results. First of all the identity in Eq. (4.2) provides us with an analytical
expression for the Fourier transformed Green’s function G>(ε, x) at large energies, which enables
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the detailed study of the decoherence in this regime. Secondly, the agreement of bosonization and
the very simple and intuitive semiclassical approach gives us much more insight into the physics of
decoherence in chiral electron systems. It proves that the dephasing of hig-energy electrons relies
only on the influence of the fluctuating plasmonic potential V̂ created by all the other electrons, but
there are no scattering processes involved at all.

The semiclassical approach enables the detailed analysis of the decoherence due to electron-electron
interactions, only in terms of the plasmonic spectrum 〈V̂ V̂ 〉ω. In Section 4.3 it becomes clear that
exciting physics can be brought to light along these lines.

4.2 Plasmonic spectrum

Having established the connection between the semiclassical approach and the full bosonization so-
lution, we now turn to the properties of the potential spectrum experienced by the injected electron
in the co-moving frame. Considering the Green’s function within the semiclassical approach, the
coherence G>(ε, x) solely depend on the potential spectrum 〈V̂ V̂ 〉ω, which the electron experiences
in the co-moving frame of reference (cf. Eqs. (4.14) and (4.15)).

Therefore, this section is concerned with a detailed study of this spectrum. First, we focus on the
zero temperature case T = 0 (see Fig. 4.2) and restrict the considerations to analytical interaction
potentials of the form Uq = 2παvF e−|q/qc|

s

. In Subsection 4.3.2 we extend the analysis allowing for
non-analytic potentials as Uq = 2παvF |q/qc|−n. Starting from Eqs. (4.7),(4.10), the calculation of
the spectrum 〈V̂ V̂ 〉T=0

ω gives (we substitute for T = 0: 1
2 (1 + coth(βω2 )) = Θ(ω) )

〈
V̂ V̂

〉T=0

ω
=
ˆ

dq

2π
|Uq|2Θ(ω + qvF )|q|

(
Θqδ(ω + qvF − ωq)−Θ−qδ(ω + qvF + ω|q|)

)
=
ˆ

dq

2π
|Uq|2|q|

(
Θ(ωq)Θqδ(ω −

Uq|q|
2π

)−Θ−qΘ(−ω|q|)δ(ω +
Uq|q|
2π

)
)

=
ˆ ∞

0

dq

2π
|Uq|2|q|δ(ω −

Uq|q|
2π

), (4.18)

where we set Θ(−ω|q|) = 0, as the dispersion relation of the plasmonic excitations has to be positive
definite, i.e. ωq ≥ 0. This restricts the range of the coupling constant α to: α ∈ (−1,∞). The
following analysis of the spectrum shows that there are two distinct features which are of crucial
importance for the coherence properties of the system.

4.2.1 Square root singularity in the spectrum

At high frequencies, we obtain a singularity 〈{V̂ , V̂ }〉T=0
ω>0 ∝ 1/

√
ωmax − ω at the cutoff frequency

ωmax = max(ω(q) − vF q) (see Fig.4.2), which is the maximum frequency in the Galilei-transformed
plasmon dispersion relation. This can be obtained by expanding the integrand in Eq. (4.13) around
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ω ≈ ωmax + δω. For this we introduce h ≡ |Uq|q2π and qmax, such that ωmax = h(qmax). Furthermore
we set: ∂2

qh
∣∣
qmax
≡ h′′(qmax) ≡ ξ.

Then the spectrum in the close vicinity to ωmax yields〈{
V̂ , V̂

}〉T=0

ω>0
≈
ˆ ∞

0

dq

2π
|Uq|2qδ

(
ωmax + δω − h(qmax)− 1

2
h′′(qmax)(q − qmax)2

)
=
ˆ ∞

0

dq

2π
|Uq|2qδ

(
δω − 1

2
h′′(qmax)(q − qmax)2

)
=
ˆ ∞

0

dq

2π
|Uq|2q

∑
i=1,2

δ(q − q∗i )
|ξ(q∗i − qmax)|

, (4.19)

where we set q∗i = qmax ±
√

2δω
ξ . After some further steps we get (for ω < ωmax)

〈{
V̂ , V̂

}〉T=0

ω>0
≈ 4π

qmax

√
2|ξ|
· ω2

max√
ωmax − ω

+
(|Uq|2q)

′
∣∣∣
qmax

2π
·


√

2δω
ξ −

√
2δω
ξ√

2δωξ


=

4π
qmax

√
2|ξ|
· ω2

max√
ωmax − ω

(4.20)

Such a maximum frequency arises due to the momentum cutoff in the dispersion relation (which
results from the finite range of the interactions). By transforming the potential to the moving frame,
it gets tilted (cf. Fig. 4.2). As the velocity of the plasmons in the limit of large momenta is identical to
the velocity of the moving frame, the effective dispersion relation shows a maximum. The singularity
in the spectrum arises due to the fact that ω(q) ≈ ωmax + ω′′(q − q∗)2/2 in the vicinity of q∗, where
ω(q∗) = ωmax. Note that an interaction potential Uq with a non-monotonous decay in q may give rise
to several such singularities, corresponding to local maxima of ω(q)−vF q. As a direct consequence, the
electron experiences a fluctuating potential with a dominant frequency ωmax, with ωmax ∼ |α|vF qc.
The exact value of ωmax depends on the particular form of the interaction potential.

4.2.2 Ohmic noise spectrum

At low frequencies ω � vF qc and T = 0 the spectrum increases linearly in ω, corresponding to
“Ohmic” noise, which is ubiquitous in various other physical contexts [48].

Smooth interaction potentials For interaction potentials that are smooth in real space (i.e.,
where all the moments of |Uq| are finite), we find that the leading low-frequency behaviour is deter-
mined solely by the contribution to Eq. (4.7) stemming from small q. Considering the limit ω → 0 of
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Eq. (4.13) one gets

lim
ω→0

〈{
V̂ , V̂

}〉T=0

ω
= 2π|ω| . (4.21)

Most remarkably, the dimensionless prefactor (the slope) of the noise spectrum turns out to be
completely independent of the coupling strength α, which drops out of the calculation. This is in
contrast to the typically studied non-chiral Luttinger liquids, where an Ohmic spectrum has been
found with an interaction-dependent prefactor [24]. As a direct consequence, the electron’s Green’s
function shows a universal power-law decay at long distances, as we will discuss in more detail in the
next section.

4.3 Universal dephasing

In this section we show the surprising result that in one-dimensional chiral electron systems, the
coherence of an injected electron due to the electron-electron interactions in the leading order decays
as 1/x. The universal behaviour, i.e., the exponent does not depend on the coupling strength α relies
on an interplay between the Galileo transformation and the plasmonic dispersion relation. Within the
semiclassical approach the decoherence the elecron suffers has its origin in a fluctuating background
potential (which has its origin in the fluctuations of the electron density) it experiences in its frame of
reference. Therefore, one has apply a Galileo transformation on the noise spectrum in the lab-frame
to derive the effective potential fluctuations. In the previous section we showed that as a result the
noise spectrum is of the ohmic type, with a linear slope independent on the interaction strength
(cf. Eq. (4.21)), i.e. 〈{V̂ , V̂ }〉ω≈0 = 2π|ω|. In the following, we will show that it is this fact, which
translates into the universal power-law decay. Before we proceed, we offer a simple explanation for
this amazing fact. For this, consider the plasmonic excitations moving with v̄ = vF (1 + α) from the
electrons point of view. The electron feels the plasmonic density waves passing it with the relative
velocity v̄ − vF . Now, decreasing the coupling α lowers the strength of the potential fluctuations
thereby suppressing the low-frequency spectrum. However, this is compensated as at the same time
the relative velocity is decreased as well, increasing the low-frequency contributions to the noise
spectrum.

Inserting the spectrum Eq. (4.21) into the long-distance limit of F (x) Eq. (4.5) yields

ReF (x) = 2 lim
x→∞

ˆ +∞

0

dω

2π
sin2(ωx/2vF )

ω2

〈{
V̂ , V̂

}〉T=0

ω

≈ x2

2v2
F

ˆ vF
x

0

dω ω +
ˆ ωc

vF
x

dω

ω
+ 2
ˆ ωmax

ωc

dω

2π
sin2(ωx/2vF )

ω2

〈{
V̂ , V̂

}〉T=0

ω

≈ const.+ ln
(
ωcx

vF

)
+ 2
ˆ ωmax

ωc

dω

2π
sin2(ωx/2vF )

ω2

〈{
V̂ , V̂

}〉T=0

ω
, (4.22)
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Figure 4.3: Coherence of an electron propagating at high energies in an interacting chiral system,
as a function of propagation distance for various values of interaction strength α: 2πα = 0.1 (solid
black line), 2πα = 1.0 (solid green line) and 2πα = 5.0 (solid red and blue lines). The potential is
taken as Uq = U0e

−|q/qc| and temperature is zero except for the red line where T/qcvF = 0.005. The
non-interacting case would give vF |G>(ε, x)| ≡ 1. The long-distance decay is universally given by
∝ 1/x, independent of interaction strength. Note that for decreasing coupling strength the asymptotic
power-law decay sets in for increasingly larger propagation distances. At finite temperatures, this
power-law decay turns into an exponential decay for large x with a decay rate Γϕ depending on
interaction strength (inset).
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where the choice of ωc � ωmax is arbitrary (but related to the constant), and |G>(ε → ∞, x)| =
e−Re[F (x)]. As a consequence of the logarithmic contribution to the exponent, the leading asymptotic
behaviour of the Green’s function is a power-law decay with an interaction-independent exponent 1:

∣∣G>(ε, x)
∣∣ ∝ 1

x
. (4.23)

More precisely, we claim: limx→∞ ln |G>(ε, x)|/ lnx = −1. In writing down Eq. (4.22), we have
neglected the contributions of large momenta in Eq. (4.7). These will lead to a subleading correction
to the power-law, which we discuss in Subsection 4.3.2. The third term in Eq. (4.22) is responsible
for oscillations in the coherence |G>(ε, x)|, on top of the decay (cf. Subsection 4.3.1). Fig. 4.3
shows the decay of G>(ε → ∞, x) for different coupling constants α. In order to understand how
this generic result for the asymptotic decay is compatible with the non-interacting limit (α = 0,
where |G>(ε, x)| ≡ 1), we have to discuss the range of validity of the asymptotic behaviour. As the
linear slope in the effective spectrum 〈{V̂ , V̂ }〉ω applies only at ω � ωmax, we must certainly require
ωmaxx/vF � 1. Since ωmax vanishes linearly with α, the limiting regime is reached at ever larger
values of x when the interaction strength is reduced. This shift of the range of validity of the universal
power-law decay is shown in Fig. 4.3.

4.3.1 Oscillatory modulation

The oscillatory modulation in G>(ε, x) is due to the square root singularity at ω → ωmax in the
spectrum 〈{V̂ , V̂ }〉ω. Its amplitude depends on the interaction strength |α| but vanishes at long
distances. The third term in the long-time limit of the exponent ReF (x) in Eq .(4.22) is responsible
for the oscillations in G>(ε→∞, x). The main contribution to this term stems from the square-root
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singularity at ω = |ωmax|. In the limit limx→∞ this oscillatory part gives (with δω > 0)

2
ˆ |ωmax|

|ωmax|−δω

dω

2π
sin2(ωx/(2vF ))

ω2
·
〈{
V̂ , V̂

}〉
ω≈|ωmax|

≈ const.− Re

{ˆ |ωmax|

|ωmax|−δω

dω

2π
ei
ω
v x

ω2
·
〈{
V̂ , V̂

}〉
ω≈|ωmax|

}

≈ const.− 2
qmax

√
2|ξ|

Re

{ˆ |ωmax|

|ωmax|−δω
dω

e
i ωvF

x√
|ωmax| − ω

}

= const.− 2
qmax

√
2|ξ|

Re

[ˆ δ x
vF

0

dν
e−iν√
ν
· e

i|ωmax| xvF
√
t

]

= const.− 1
qmax

√
2π
|ξ|

sin
(
|ωmax| xvF + π

4

)
√
x/vF

= const.− C · sin(|ωmax|x/vF + π/4)√
2π|α|qcx

,

where C ≡ 2π
qmax

√
|α|qcvF
|ξ| denotes a numerical prefactor, depending only on the form of the interaction

potential, but not on the interaction strength α. Here, we derive this prefactor only for analytical
potentials of the type Uq = 2παvF exp(−(q/qc)s). For this, we have to calculate the constant ξ =

1
2π∂

2
q (qUq)

∣∣
qmax

which was introduced in Eq. (4.19). With qmax = qc/s
1/s it follows

ξ =
1

2π
∂2
q (q|Uq|)

∣∣∣∣
qmax

=
1

2π
(2|U |′ + q|U |′′)|qmax

=
ωmax

q2
c

{
s2

s2−2/s
− s(s− 1)

s1−2/s
− 2s
s1−2/s

}
︸ ︷︷ ︸

ξ̃s

. (4.24)

Thus the constant C = 2πe
1
2s s3/(2s)|ξ̃s|−

1
2 .

4.3.2 Subleading contributions to decay

The previous calculation showed that in the leading order the decoherence shows a power-law be-
haviour. This was derived considering the low-frequency spectrum of〈{

V̂ , V̂
}〉T=0

ω
=
ˆ ∞

0

dq

2π
|Uq|2qδ(ω −

|Uq|q
2π

).
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In the derivation of Eq. (4.21) we neglected contributions resulting from large q. Those are strongly
suppressed, as the integrand is proportional to U2

q decaying for q � qc. Here, we calculate these
contributions.

For this we introduce qs as the solution of [ω − q|Uq|/(2π)] = 0 in the limit q →∞. It follows

ω

vF qc|α|
=

q

qc
e−(q/qc)

s

ln
(

ω

vF qc|α|

)
= ln

q

qc
−
(
q

qc

)s
ln
(
vF qc|α|
ω

)
≈

(
q

qc

)s
. (4.25)

Thus, qs is given by: qs = qc ln(vF qc|α|ω )1/s. Inserting qs in Eq. (4.12) yields for T = 0

〈{
V̂ , V̂

}〉sub

ω>0
=
ˆ ∞

0

dq |Uq|
|Uq|q
2π︸ ︷︷ ︸
=ω

δ (q − qs)∣∣∣∂q ( |Uq|q2π

)∣∣∣
q=qs

=
2πω|Uqs |

||Uq| (1 + q∂q|Uq|)|q=qs

≈ 2πω
s ln

(
qcvF
ω |α|

) . (4.26)

As a result for smooth potentials like Uq = U0e
−(|q|/qc)s the correction to the zero temperature decay

is 〈{V̂ , V̂ }〉sub
ω = 2πω/(s ln(|α| vF qc/ω)). In real space this expression translates into a correction

1
s ln(ln(|α|qcx)) to the decay function F . This can be seen calculating the contribution to the exponent
in Eq. (4.22) which results from Eq. (4.26). Setting ω∗ = qcvF |α| the subleading contribution gives

ˆ ωc

vF /x

dω

2π
1
ω2

2πω

s ln
(
qcvF |α|

ω

) = −1
s

ˆ ωc

vF /x

dω
1

ω ln
(
ω
ω∗

)
= −1

s

ˆ ωc/ω
∗

vF /(xω∗)

dω
1

ω lnω
. (4.27)

This expression can be simplified further as in Eq. (4.22) we have some freedom in the choice of ωc
such that we can set: ωc/ωmax < 1. Performing the substitution ω = e−y, yields

− 1
s

ˆ ln(ω∗/ωc)

ln(xω∗/vF )

dy
1
y

=
1
s

ln ln
xω∗

vF
− const

=
1
s

ln (ln (xqc|α|)) . (4.28)

To conclude the zero temperature analysis, we sum up the different contributions yielding the long
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time limit of the decoherence in chiral one-dimensional electron systems at T = 0 and for high-energy
electrons (under the assumption of an analytic interaction potential Uq = 2πvFαe−|q/qc|

s

):

|G>(ε, x)| ∝ 1/x1+ 1
s ln(ln(xqc|α|))/ ln(x) exp

{
C · sin(ωmaxx/vF + π/4)√

2π|α|qcx

}
ε� vF qc. (4.29)

In Fig. 4.4, the modulus of the Green’s function in the long-time limit is compared to the approxima-
tion in Eq. (4.29). Obviously, those match rather well.

Non-analytic potentials Even assuming non-analytic interaction potentials like (n > 1): Uq =
u|q/qc|−n, the low-frequency spectrum still is of the ohmic type. However, due to the subleading
contributions to the spectrum, here the prefactor depends on the particular form of the potential:

lim
ω→0

〈{
V̂ , V̂

}〉sub

ω
=
ˆ ∞

0

(dq)U2
q qδ(|ω| −

|Uq|q
2π

)

= uqnc

ˆ ∞
0

dq q1−2n δ(q − q̄)
|(1− n)q−n|q̄

=
u

|1− n|
q̄1−nqnc =

2π|ω|
|1− n|

. (4.30)

4.3.3 Finite temperature

At finite temperature T 6= 0, the long-time limit is given by an exponential decay |G>(x, ε)| ∝
exp[−Γϕx/vF ], with a decay rate

Γϕ = πT
∣∣∣1− vF

v̄

∣∣∣ = πT |1 + α−1|−1 . (4.31)

This follows from the long-time limit of Eq. (4.5) together with Eq. (4.12)using the identity lima→∞
sin2(ax)
ax2 =

πδ(x):

lim
x→∞

ReF (x) = 2
ˆ ∞

0

dq
sin2(q|Uq|x/(4πvF ))

q
coth(

ωq
2T

)

= 2
ˆ ∞

0

dq

q

1
π

sin2(q|Uq|x/(4πvF ))
x(|Uq|/(4πvF ))2

· xπ(|Uq|/(4πvF ))2 coth(
ωq
2T

)

= xπ lim
q→0

2T
qvF (1 + α)

· (2π|α|vF /(4πvF ))

=
πT

|1 + α−1|
x

vF
= Γϕ

x

vF
. (4.32)

Thus, we obtain the aforementioned decay rate Γϕ.
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In Fig. 4.3 the decay rate is shown as a function of the coupling α. For small α, this rate vanishes as
Γϕ = πT |α|, i.e., it is non-analytic in U0 ∝ α. Such dephasing rates proportional to T have also been
found in non-chiral Luttinger liquids [25, 24, 15]. At large repulsive coupling, U0 → +∞, we have the
universal result Γϕ → πT . For attractive interaction, Γϕ diverges upon approaching the instability at
α → −1, where v̄ → 0 and where the resulting low-frequency modes are thermally strongly excited.
We note that this behaviour is somewhat surprising when compared to other problems of dephasing.
When considering pure dephasing of a two-level system by an Ohmic bath, a power-law decay t−γ at
T = 0, with an exponent γ set by the coupling, automatically implies an exponential decay at a rate
Γϕ = πγT at finite temperatures. This follows from the fluctuation-dissipation theorem which turns
the T = 0 Ohmic spectrum into a white-noise spectrum with a weight proportional to T . However, in
the present case, we have to take into account the Galileo transformation, which turns the laboratory-
frame temperature T into an effective temperature Teff in the frame moving along with the particle
at speed vF . In order to establish the FDT for the effective potential fluctuations in the electron
frame of reference we therefore have to define the effective temperature Teff by demanding for ω ↓ 0〈{

V̂ , V̂
}〉α

ω
=
ˆ ∞

0

dq

2π
|Uq|2q coth(

ωq
2T

)δ(ω − |Uq|q
2π

)

≡ coth(
ω

2Teff
)
〈[
V̂ , V̂

]〉|α|
ω
. (4.33)

In this limit we get: 〈{V̂ , V̂ }〉ω = 2πω · coth[ω
∣∣1 + α−1

∣∣ /(2T )]. Together with the result for
〈[V̂ , V̂ ]〉|α|ω>0 at small frequencies: 〈[V̂ , V̂ ]〉|α|ω>0 = 2πω, this yields the effective temperature

Teff ≡ T

|1 + α−1|
. (4.34)

In the moving frame the frequencies are reduced by qvF and therefore the effective temperature is
also smaller. Only for large repulsive interactions (v̄ � vF ), the transformation does not matter.
Therefore, in this limit Teff = T and the universal, coupling-independent power-law for T = 0 turns
into a universal decay rate at finite temperatures. Fig. 4.4b shows the modulus of G>(ε, x) for different
values of α at finite temperature.

4.3.4 Experimental observation of the power-law decay

To answer the question, whether a direct experimental observation in principle is possible, various
aspects has to be taken into account:

• The arms of the interferometer must be long enough, such that the limit of long distances is
reached: x� vF /ωmax.

• The applied bias voltage has to be large enough in order to ensure that the energy of the
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(a) (b)

Figure 4.4: (a) Plot of limε→∞ |G>(ε, x)| for large x (solid green line, heavily oscillating) and T = 0.
Here Uq = 2πvFα exp(−(q/qc)2) with α = 1.0. The dashed blue line shows 1/x, while the solid blue
line includes the subleading corrections Eq. (4.28) to the universal power-law stemming from large
q in Eq. (4.12). (b) Plot of limε→∞ |G>(ε, x)| at T/(qcvF ) = 0.01 for α = 1/4 (solid blue line) and
α = −1/4 (solid red line). This is compared to exp(−Γϕ(α) x

vF
) (dashed lines).

propagating electrons reaches the high-energy limit: ε� qcvF .

• The temperature must be small enough such that the power-law for intermediate propagation
distances can be observed and only for x → ∞ the exponential decay mentioned above comes
into play.

• In the long-distance limit, the visibility vI of the interference contrast has to be large enough
in order to ensure the direct observation of the power-law decay.

The following rough estimates are based on the assumption of a screened Coulomb potential:

U(x) =
q2
e

4πε0εr
· e
−qc
√
x2+b2

√
x2 + b2

, (4.35)

where b ∼ 10−7m denotes the finite width of the quantum-hall edge channel and qc is the inverse
of the mean screening length. As typically the interferometer sizes [27, 28, 42, 20] are of the order
∼ 10−6m and several metallic gates (as the top-bridge used in [39, 20]) screen the electron-electron
interactions, for qc we assume: q−1

c ∼ 10−7m. The coupling constant α can be estimated starting
from the Fourier transformed of Eq. (4.35) in the limit q → 0:

lim
q→0

Uq =
q2
e

4πε0εr

ˆ
dx

e−qc
√
x2+b2

√
x2 + b2

. (4.36)
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As the integral is dimensionless, it follows

lim
q→0

Uq =
q2
e

4πε0εr
· U(∼ ln

[
1
qca

]
) U = O(1),

and we can determine the dimensionless coupling constant α = U0
2π~vF

α =
1

8π2εr︸ ︷︷ ︸
O(103)

·q
2
e

ε0
· 1

~vF
· C (4.37)

for εr[GaAs] ∼ 10. In [6] the edge state velocity vF is quoted as vF ∼ (104 − 105)ms . With
q2e
ε0
∼ 10−38/10−11Jm and 1

~vF ∼ 1034 · 10−4J−1m−1 for vF = 104m
s , we have

α ∼ 10−3 · 10−27 · 1030 ∼ O(1). (4.38)

The frequency ωmax ∼ 1
2π~U0qc = αvF qc determing the period of the oscillations on top of the decay,

is: ωmax ∼ 1011s−1. The long-distance limit, in which the power-law decay should emerge is given for
x� vF /ωmax ∼ 10−1µm, which compares to the typical length of the interferometer channels (in [39]
the arm length is of the order ∼ 101µm). The semiclassical method is only valid in the high-energy
regime, i.e., ~vF qc � 1. In order to reach that limit we have to apply bias voltages V � ~qcvF /qe ∼
102µV . Again, this is in the range of the experiments: In [39] the typical bias voltages are of the
order ∼ µV . The interferometers usually are cooled down to T ∼ 10−3K [39], therefore the inverse
decay rate of the coherence is obtained from Eq. (4.32): Γ−1

ϕ = (kBT/~vF )−1 ∼ 102µm. As a result
there should be some intermediate regime 10−1µm � x � 102µm where the universal power-law
decay in principle could be observed (cf. Fig. 4.3 where this intermediate regime for α = 1 and
T 6= 0 obviously shows up). However, as the visibility decays drastically once the long-distance limit
is reached, a direct observation might be a difficult experimental task. This can be obtained from
Fig. 4.3 where one can observe that in regime of validity the magnitude of the Green’s function has
already fallen to |G>(ε, x)|/|ν0(ε)| ∼ 10−2. Therefore, one can estimate the corresponding visibility
to be of the order vI ∼ 10−4 [cf. Eq. (2.26)].

4.4 Equations of motion approach

To conclude this chapter, we give a more rigorous motivation for the semiclassical ansatz in Eq. (4.3),
which served as the starting point of the whole analysis. It is motivated by the equations of motion
method proposed in [36, 32, 31] for describing the coherence properties of non-interacting electrons
influenced by some external bath. Beside the transparency of the method, the main advantage is that
it can deal with many-body effects as Pauli blocking. The equations of motion approach is based on
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the Heisenberg equation for the single particle operators ψ̂(x, t). Linearizing the electronic dispersion
relation, the normal ordered Hamiltonian in total reads

Ĥ = Ĥel + Ĥbath + Ĥint

= −ivF
ˆ
dx ψ̂†(x)∂xψ̂(x) + Ĥbath +

ˆ
dx
{
ψ̂†(x)ψ̂(x)

}
V̂ (x). (4.39)

The time evolution of the single particle operators ψ̂(x) can be obtained from the Heisenberg equation
d
dt ψ̂ = −i

[
ψ̂, Ĥ

]
:

∂tψ̂ = −vF
ˆ
dx′

[
ψ̂(x), ψ̂†(x′)∂x′ ψ̂(x′)

]
− i
ˆ
dx′

[
ψ̂(x), ρ̂(x′)

]
V̂ (x′) + Ĥbath

= −vF
ˆ
dx′

{
ψ̂(x), ψ̂†(x′)

}
∂x′ ψ̂(x′)− i

ˆ
dx′

{
ψ̂(x), ψ̂†(x′)

}
ψ̂(x′)V̂ (x′) + Ĥbath.

In order to proceed further we make use of the canonical anti-commutation relation for fermionic
operators

{
ψ̂(x), ψ̂†(x′)

}
= δ(x− x′). Then it follows

∂tψ̂(x) = −vF
ˆ
dx′ δ(x− x′)∂x′ ψ̂(x′)− i

ˆ
dx′ δ(x− x′)ψ̂(x′)V̂ (x′) + Ĥbath

= −vF∂xψ̂(x)− iψ̂(x)V̂ (x) + Ĥbath, (4.40)

so that finally we are left with an ordinary transport equation determing the dynamics of the single
particle operators ψ̂:

i [∂t + vF∂x] ψ̂(x, t) = V̂ (x)ψ̂(x, t). (4.41)

Equation (4.41) is the reason why this approach is called “semiclassical”, as it suggests thinking of
a particle represented by the fermionic field ψ̂ collecting some fluctuating phase along its classical
trajectory x = vF t. If we were dealing with a classical fluctuating potential V (t), the electron
would simply pick up a random phase: ψ̂(x, t) ∼ exp

[
−i
´ t
t0
dt′ V (x− vF (t− t′), t′)

]
. However, if the

quantum nature of the bath becomes important one has take care of the non-commutativity of the
operator V̂ (t) at different times. This is done by introducing a time-ordering symbol T̂ , such that
the formal solution of Eq. (4.41) gives

ψ̂(x, t) = T̂ exp[−i
ˆ t

t0

dt′ V̂ (x− vF (t− t′), t′)]ψ̂(x− vF (t− t0), t0). (4.42)

We emphasize that here we are dealing with a quantum potential V̂ , which in general contains the
response of the bath to the particle’s motion as well (for more details we refer the reader to [31, 36, 32]).
The backaction allows for an energy transfer between the electron and the bath; however, here Pauli
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blocking comes into play. Namely, it suppresses all transitions that would take the electron into an
occupied state. In the end, the Green’s function G>(x, t) = −i

〈
ψ̂(x, t)ψ̂†(0, 0)

〉
for a translational

invariant system is found as

G>(x, t) = g>(x, t)
〈
T̂ e−i

´ t
0 dt
′ V̂ (x−vF (t−t′),t′)

〉
, (4.43)

where the average on the right side of Eq. (4.43) refers to the bath degrees of freedom. But this
is obviously the expression for the Green’s function we used as a physically motivated ansatz in
Eq. (4.3), where we restricted the considerations to G>(x = vF t). In contrast to the more general
equations of motion approach, despite the quantum nature of the plasmonic bath we neglected any
backaction effects, i.e., the bath was assumed to evolve autonomously. On the basis of Eq. (4.42) in
the upcoming Chapter we will consider the semiclassical ansatz for arbitrary points in the space-time
plane, thereby extending the approach to electrons with arbitrary energies.

4.5 Summary

We proposed a simple semiclassical ansatz for the Green’s function G>(ε, x). It is one of our main
results that, compared to the full bosonization solution, this simple semiclassical approach becomes
exact considering electrons propagating with large energies ε � qcvF . At zero temperature in this
limit the coherence displays a universal power-law |G>(ε, x)| ∼ 1/x1, where most remarkably the
exponent turns out to be independent from the coupling strength of the electron-electron interaction.



Chapter 5

Semiclassical approach and

functional bosonization

Bosonization is a powerful tool for calculating Green’s functions of strongly-interacting electron sys-
tems. Besides providing us with the single particle Green’s function G>(x, t), we already discussed
in Chapter 3 it enables, at least the numerical evaluation of more complicated correlators as the
two-particle Green’s functions we discuss in Chapter 7. However, the main disadvantage of the
bosonization method is that it does not allow for a simple interpretation of its results. This relies on
the fact that in physical applications as the Mach-Zehnder interferometer, we are interested in the
particle current, i.e. in the physical properties of single electrons. Thus, two very different points of
view collide. On the one hand, the bosonization of the one-dimensional systems identifies collective,
bosonic modes {b̂q} (the density fluctuations) as the relevant degrees of freedom. All the information
about the electron-electron interaction is stored in the plasmonic dispersion relation ωq. On the other
hand, being interested in the electronic properties of a device like the Mach-Zehnder interferometer
we have to calculate the appropriate Green’s function. For example, considering the propagator func-
tion G> = −i〈ψ̂(x, t)ψ̂†(0, 0)〉, we insert a single electron into the strongly interacting system and
ask for its phase coherence after some propagation time. The main question is, what happens with
the single particle in the moment it tunnels into the liquid? Is it possible to ’trace’ the electron after
the tunnel event or is it, in some sense, directly absorbed into the liquid?

The semiclassical approach we introduced in the previous Chapter 4 clarifies the nature of chiral
one-dimensional electrons in the high-energy limit. Despite of the strong interactions, it suggests to
think of single electrons flying through the channel experiencing all the other electrons only in form
of a fluctuating potential background (cf. Fig. 4.1). The purpose of this Chapter is to extend the
semiclassical approach for describing electrons of arbitrary energies. There are some good reasons to
be sceptically about this plan. Especially, it seems to be a well known fact that for small energies the
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chiral, interacting electron system is equivalent to an ordinary Fermi liquid (cf. Sections 3.2.2 and
3.2.3). This implies a certain velocity renormalization at low energies, which a description via the
semiclassical approach can not take into account.

However, there is one main motivation for analyzing the semiclassical method in more detail. Namely,
there is an alternative method for describing interacting one-dimensional electron systems, the so-
called “functional bosonization” [12, 23, 10, 16]. This method, based on the functional field integral
technique, makes use of an ordinary Hubbard-Stratonovich transformation (HST). The transforma-
tion converts the Hamiltonian, containing contributions quartic in fermionic operators, into a new
Hamiltonian, which is quadratic in the fermionic fields. In turn, an additional bosonic field φ is intro-
duced, which couples to the fermionic degrees of freedom: Sel =

´
dτ
´
dx ψ̄(∂τ − ivF∂x + iφ)ψ (here

τ = it). In one-dimension, the coupling to this bosonic field can be incorporated into a redefinition of
the fermionic field ψ via a simple gauge transformation ψ′ = ψeiθ(x,τ), where (∂τ − iv∂x)θ = −φ. The
gauge transformation entails a non-trivial Jacobian, which influences the dynamics of the bosonic
HST-field. The crucial point is that, in the end, the action of the bosonic field turns out to be
quadratic, under the assumption of linearising the free electronic dispersion relation, reflecting the
famous results of Dzyaloshinski and Larkin [8]. One ends up with a theory which is quadratic
in the decoupled fermionic and bosonic degrees of freedom. Thus, the formal calculation of any
correlation function can be done as easy as in the standard approach. The resulting imaginary
time-ordered Green’s function Gτ ≡ −

〈
ψψ̄
〉

is a product of the free Green’s function and a fac-
tor depending only on the bosonic field φ, averaged with respect to the bosonic part of the ac-
tion: Gτ (x, τ) = −gτ (x, τ)〈e−iθ(x,τ)eiθ(0,0)〉φ (gτ denotes the non-interacting imaginary time-ordered
Green’s functions). The Keldysh-time version of the functional bosonziation was applied studying,
e.g., the zero bias anomaly in the tunnel density of states for Luttinger liquids out of equilibrium [7].
From a conceptual point of view, the functional bosonization may provide a deeper insight into the
physics of one-dimensional electron systems. Namely, it suggests that everything (there is no restric-
tion to high energies) can be understood thinking in terms of free electrons accumulating some phase
traversing its classical trajectory. But this is rather close to the interpretation of the semiclassical
approach, we introduced in Chapter 4. After an analytical continuation, the functional bosonization
reproduces the well known bosonization result for G>. Extracting, the real physics behind this, first
of all mathematical identity is a rather difficult task. The comparison of the semiclassical model
and the functional bosonization (formulated in Keldysh time) should be helpful for clarifying this
question.

In Section 5.1 we start from the formal expression for the fermionic fields ψ̂(x, t) subjected to quantum
noise derived in Section 4.4 within the equations of motion approach [31, 32, 36]. In a next step we
plug in these fields ψ̂(x, t) into the definition of G>(x, t) = −i〈ψ̂(x, t)ψ̂†(0, 0)〉, thereby introducing
the semiclassical ansatz. This ansatz is meant to reproduce the bosonization solution for any (x, t).
We argued in Section 4.1 that this is equivalent with extending the approach to arbitrary energies.
As in the previous chapter, the non-interacting Green’s function g>(x, t) is multiplied with a factor
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exp(−F (x, t)) responsible for the a suppresion of the Green’s function. In contrast to the usual
equations of motion approach dealing with quantum baths, here the main assumption is that we
can neglect any backaction effects. In close analogy to the previous chapter, everything reduces to a
calculation of the bath spectrum. In Section 5.2 we concentrate on the plasmonic bath representing
all the electrons from the Fermi sea, whose dynamics are goverened by the dispersion relation ωq (cf.
Eq. (3.12)). The semiclassical ansatz essentially is the solution of the Heisenberg equation of motion
for the fermionic fields ψ̂(x, t). Therefore, finally we have to fix the appropriate initial condition.
This turns out to be a very subtle point, which is discussed in Section 5.3.

The main result is that the semiclassical ansatz reproduces the Green’s function only under the
assumption of a rather unphysical initial condition. From this point of view it does not reproduce
the bosonization solution completly. Nevertheless, in Section 5.3 it is shown that it might be helpful
for a better understanding of the bosonization solution.

5.1 Coupling to an external quantum bath without backac-

tion

In this Section we propose an intuitive, semiclassical ansatz in order to derive the full single particle
Green’s function G>(x, t) of a chiral, one-dimensional interacting electron system. While in Chapter 4
we employed a semiclassical approach valid only in the high-energy limit, here we drop this restriction.
As an ansatz for this analysis, we start with the general expression for the fermionic fields ψ̂(x, t)
derived in Section 4.4 describing the time-evolution of an electron subjected to a quantum noise
potential V̂ (x, t):

ψ̂(x, t) = T̂ exp
[
−i
ˆ t

0

dt′ V̂ (δx+ vF t
′, t′)

]
· ψ̂(δx+ vF ti, ti), (5.1)

where we set δx ≡ x− vF t. The physical interpretation of Eq. 5.1 is rather simple. A single electron
moving ballistically with vF , represented by the fermionic field ψ̂(x, t), in the presence of a random
quantum potential collects an additional phase −

´ t
0
dt′ V̂ (δx+ vF t

′, t′). The time ordering symbol T̂
takes into account that the potentials V̂ (x, t) for different times in general do not commute. As in
the previous Chapter, we identify this external bath potential with the potential stemming from the
plasmonic excitations present in the one-dimensional electron system. This ansatz tries to map the
interaction effects on an injected electron resulting from very complicated interparticle interactions,
on a situation where this electron moves ballistically experiencing only the effect of an external
background potential.

Within the equations of motion approach due to the quantum nature of the bath potential V̂ (x, t),
in general one has to take into account the backaction of the electron onto the bath. However, in
the previous Chapter neglecting any backaction effects, we were successful in deriving the correct
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boundary e�ects
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Figure 5.1: (a) Scheme of the Keldysh contour introduced in the main text. (b) Pictorial plot of
the boundary effects emerging in the general semiclassical approach. In Chapter 4 we restricted the
consideration to the classical trajectory x = vF t. There, the electron and the hole during its time-
evolution from tito t = 0 collect exactly the same phase (with inverted signs), regardless of the specific
realization of the bath potential. Calculating the Green’s function at x = vF t this additional phase
drops out. Extending the description to arbitrary (x, t) this is not the case anylonger. As we have to
fix some initial time ti boundary effects arise. To tackle this problem we assume the fluctuations to
be fade out adiabatically (see main text), supressing these boundary effects

Green’s function from the semiclassical approach in the high-energy limit. Therefore, extending
the theoretical description to arbitrary energies, we follow the same lines. However, we note that
neglecting the backaction is equivalent with demanding that the electron is not scattered inelastically
during its propagation. To proceed further, we consider the Green’s function −i〈ψ̂(x, t)ψ̂†(0, 0)〉, but
insert the ansatz for the fermionic fields ψ̂ in Eq. (5.1):

− i
〈
ψ̂(x, t)ψ̂†(0, 0)

〉
= −i lim

ti→−∞

〈
ψ̂(δx+ vF ti, ti)ψ̂†(vF ti, ti)

〉
el
×〈(

T̂ e−i
´ t
−∞ dt′ V̂ (δx+vF t

′,t′)
)(

T̂ e−i
´ 0
−∞ dt′ V̂ (vF t

′,t′)
)†〉

Bath

≡ −i lim
ti→−∞

〈
ψ̂(δx+ vF ti, ti)ψ̂†(vF ti, ti)

〉
el
e−F (x,t). (5.2)

As in Chapter 4 we denote the factor e−F (x,t) as the coherence (but here it depends on x and t).
In the following, we assume a translational invariant, fluctuating environment, while the coupling
to the ballistically moving electron is switched on adiabatically, such that at t0 the full coupling is
achieved. This procedure is the standard way to preclude boundary effects as shown in Fig. 5.1.
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We emphasize that it is not the coupling strength α itself, which is increased but the influence of
the fluctuations on the propagating electrons. In the end we send γ to zero: γ → 0 and show the
result to become independent of t0 . This reflects the fact that the exponential suppression of the
fluctuations suffices to erase any information about the specific initial conditions. The subtle point
is that due to the adiabatic switching on of the fluctuations, some extra terms, dependent on t0,
emerge. However, for electrons subjected to potential fluctuations resulting from plasmons, it turns
out that those are suppressed due to the ’ohmic’ low-frequency spectrum of the plasmonic bath. We
discuss these additional terms in subsection 5.2.3.

The expression in the brackets can be re-expressed by introducing an appropriate Keldysh time-
contour (cf. Fig. (5.1)). In Eq. (5.3) we define the abbreviations representing the potentials acting on
the forward (V̂1) or the backward branch (V̂2):

V̂i(t′) ≡

{
i = 1 : V̂ (vF t′, t′)λ1(t′)
i = 2 : V̂ (δx+ vF t

′, t′)λ2(t′)
. (5.3)

The weight functions λi control the strength of the fluctuations which is adiabatically switched on:

λi(t′) ≡

{
i = 1 : Θ(t0 − t′)eγ(t0−t′) + Θ(t′ − t0)Θ(−t′)
i = 2 : Θ(t0 − t′) · eγ(t′−t0) + Θ(t′ − t0)Θ(t− t′)

, (5.4)

where in the end we send the rate γ to γ → 0+. In addition we define t0 such that: t0 � t. Now,
we can write the coherence e−F (x,t) in a compact form (here T̂K denotes the Keldysh time ordering
symbol, ordering the operator with the smallest Keldysh time to the right.) 1

e−F (x,t) =
〈
T̂Ke

−i
¸
K
V̂
〉
. (5.5)

At this point the fact that we are dealing with a bath of harmonic oscillators has an important
consequence. Namely, we can make use of the identity for Gaussian random variables, which holds
true even for Keldysh time-ordered exponentials:〈

T̂Ke
−i
¸
K
V̂
〉
≡ exp

[
−1

2

˛
K

dt1

˛
K

dt2

〈
T̂K V̂ (t1)V̂ (t2)

〉]
. (5.6)

5.1.1 Structure of the exponent

In a first step, one has to calculate the structure of the integrand with some care. The Keldysh time
ordering symbol moves the operators with the smallest Keldysh time to the right. Per definition,
the Keldysh times on the forward branch are always considered to be smaller than the backward

1A Keldysh time is considered to be larger than another if it is reached later traversing the Keldysh contour. In
particular, times on the forward branch in this sense are always considered to be smaller than times on the backward
branch.
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branch times. For the explicit calculation of a Keldysh contour integral, first of all one performs the
substitution

¸
K
dt′ →

´ −∞
∞ dt1 +

´∞
−∞ dt2. In the following one introduces additional indices labelling

the potentials V̂ (x, t) on the backward and on the forward branch. Making use of the definitions in
Eq. (5.3) and Eq. (5.4) F (x, t) yields (T̃ denotes the anti-time ordering symbol):

F (x, t) =
1
2

[ˆ
1

dt1

ˆ
1

dt2

〈
T V̂1(t1)V̂1(t2)

〉
+
ˆ

2

dt1

ˆ
2

dt2

〈
T̃ V̂2(t1)V̂2(t2)

〉]
−1

2

[ˆ
1

dt1

ˆ
2

dt2

〈
V̂2(t2)V̂1(t1)

〉
+
ˆ

2

dt1

ˆ
1

dt2

〈
V̂2(t1)V̂1(t2)

〉]
. (5.7)

For reasons of brevity, here we denote the integral over the forward and the backward branch with
´

1

and
´

2
, respectively. As we are dealing with a quantum potential V̂i the correlation function is sensitive

to the internal ordering of the involved operators. In general, one can express a correlation function
〈V̂iV̂j〉 by a sum of a commutator and an anti-commutator part: 〈V̂iV̂j〉 = 1

2 〈[V̂i, V̂j ]〉 + 1
2 〈{V̂i, V̂j}〉.

For the (anti)time-ordered correlation function emerging in Eq. (5.7) this translates into:〈
T V̂ (t1)V̂ (t2)

〉
=

1
2

〈{
V̂ (t1), V̂ (t2)

}〉
− sgn(t1 − t2)

1
2

〈[
V̂ (t1), V̂ (t2)

]〉
〈
T̃ V̂ (t1)V̂ (t2)

〉
=

1
2

〈{
V̂ (t1), V̂ (t2)

}〉
+ sgn(t1 − t2)

1
2

〈[
V̂ (t1), V̂ (t2)

]〉
(5.8)

Plugging in the expression Eq. (5.8) into the defining equation for the exponent F (x, t) leads to the
intermediate result

F (x, t) =
1
4

∑
j=1,2

ˆ
j

dt1

ˆ
j

dt2

({
j = 1 : sgn(t2 − t1)
j = 2 : sgn(t1 − t2)

}〈[
V̂j(t1), V̂j(t2)

]〉
+
〈{
V̂j(t1), V̂j(t2)

}〉)
−
ˆ

1

dt1

ˆ
2

dt2

〈
V̂2(t2)V̂1(t1)

〉
. (5.9)

5.1.2 Calculation of the exponent

The explicit calculation of the exponent now is a straight forward, but rather cumbersome task.
Especially, the non-trivial structure of the Keldysh contour requires an accurate book-keeping of the
three parts contributing to F =

∑3
i=1 Fi: The commutator part F1 (first term in Eq. (5.9)), the

anti-commutator part F2 (second term), and the correlator part F3 (third term). The main goal is
to express everything in terms of the Fourier transformed correlators, which are directly related to
the spectrum of the potential fluctuations. Assuming translational invariance of the fluctuations in
time and space, those can be defined as: 〈V̂ V̂ 〉ω =

´
dt eiωt〈V̂ (t)V̂(0)〉. In the following, we already

present the results of the involved integrals. For completeness the explicit calculations are shown in
C.



5.1 Coupling to an external quantum bath without backaction 63

Commutator part of F(x, t) The calculation of the commutator part in Eq. (5.9), F1(x, t), only
involves correlators with time arguments lying on the same contour. In the following, we denote
the corresponding Fourier transformed correlators as 〈[V̂ , V̂ ]〉(0)

ω . It yields (where we take the limit
γ → 0+ in the last step)

F1 + δF1 =
1
4

ˆ
(dω)

〈[
V̂ , V̂

]〉(0)

ω

∑
j=1,2

ˆ
j

dt1

ˆ
j

dt2 ×{
j = 1 : sgn(t2 − t1)
j = 2 : sgn(t1 − t2)

}
e−iω(t1−t2)λj(t1)λj(t2)

=
i

2

ˆ
(dω)

〈[
V̂ , V̂

]〉(0)

ω
×

Im
(ˆ t

0

dt2e
−iωt1

{ˆ t0

−∞
dt1 e

γ(t1−t0)+iωt1 +
ˆ 0

t0

dt1 e
iωt1

}
+
ˆ t

0

dt1

ˆ t1

0

dt2e
−iω(t1−t2)

)
= − i

2

ˆ
(dω)

〈[
V̂ , V̂

]〉(0)

ω

(
t

ω
− π

ω
δ(ω)Re

[
eiω(t0−t) − eiωt0

])
. (5.10)

Finally, we can identify a trivial phase shift in the Green’s function resulting from this contribution
(this phase is related to the energy shift resulting from the Fock diagram we discussed already in
Section 4.1)

F1 = − i

2
t

ˆ
(dω)
ω

〈[
V̂ , V̂

]〉(0)

ω
. (5.11)

The extra term Eq. (5.10) vanishes for a spectrum which fulfills (especially for ohmic spectra):
〈V̂ V̂ 〉ω ∼ O(ω0).

Anti-commutator part of F(x, t) In close analogy to the previous calculation, the anti-commutator
part F2 yields (we denote the Fourier transformed correlator of the anti-commutator with time argu-
ments lying on the same branch by 〈{V̂ , V̂ }〉0ω ):

F2 =
1
4

ˆ
(dω)

〈{
V̂ , V̂

}〉(0)

ω

∑
j=1,2

(ˆ
j

dt1

ˆ
j

dt2 e
−iω(t1−t2)λj(t1)λj(t2)

)

=
1
4

ˆ
(dω)

〈{
V̂ , V̂

}〉(0)

ω

(∣∣∣∣ˆ ∞
−∞

dt1λ1(t1)e−iωt1
∣∣∣∣2 +

∣∣∣∣ˆ ∞
−∞

dt1λ2(t1)e−iωt1
∣∣∣∣2
)
. (5.12)
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In the limit of γ → 0+, the integration yields

F2 + δF2 =
1
2

ˆ
(dω)

〈{
V̂ , V̂

}〉(0)

ω

ω2
+ lim
ω→0

([
t− 2t0

4
+O(ω)

]〈{
V̂ , V̂

}〉(0)

ω

)
. (5.13)

Here, δF2 denotes the t0-dependent extra contribution stemming from the switching-on procedure.
We will discuss this additional term in subsection 5.2.3.

Correlator part of F(x, t) Finally, the correlator part F3 can be evaluated easily. However, here
we have to introduce the Fourier transform of the correlator which involves potentials on two different
branches: 〈

V̂ V̂
〉(1)

ω
≡
ˆ
dt e−iωtλ−1

1 λ−1
2

〈
V̂2(t)V̂1(0)

〉
. (5.14)

Then the contribution gives:

F3 +δF3 = −
ˆ

(dω)
〈
V̂ V̂

〉(1)

ω

ˆ ∞
−∞

dt1

ˆ ∞
−∞

dt2e
−iω(t2−t1)λ2(t2)λ1(t1)

= −
ˆ

(dω)
〈
V̂ V̂

〉(1)

ω

[
e−iωt

ω2

]
− lim
ω→0

([
t− 2t0

2
+O(ω)

]〈
V̂ V̂

〉(0)

ω

)
. (5.15)

Summing up the three different parts of F =
∑3
i=1 Fi, the exponent finally yields:

F +δF =
ˆ

(dω)
ω2

(
1
2

〈{
V̂ , V̂

}〉(0)

ω
−
〈
V̂ V̂

〉(1)

ω
e−iωt

)
− i

2

ˆ
(dω)


〈[
V̂ , V̂

]〉(0)

ω

ω

 t
+

[t− 2t0]
2

lim
ω→0

{
1
2

〈{
V̂ , V̂

}〉(0)

ω
−
〈
V̂ V̂

〉(1)

ω

}
. (5.16)

However, resulting from the switching on procedure during the calculation some t0-dependent contri-
butions emerged: δF = δF1 + δF2 . It depends crucially on the low-frequency spectrum of the bath
of interest, whether those can be neglected or not. For our purpose it turns out that these do not
contribute to our description, even at finite temperatures, T 6= 0. A discussion of δF for an arbitrary
ohmic bath is given in 5.2.3.

In the next step we will plug in the spectrum resulting from the plasmons, whose dispersion relation
was calculated within the full bosonization of the one-dimensional electron system.
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5.2 Bath of plasmons

Equation Eq. (5.16) is a general result. It describes the coherence factor e−F (x,t) for electrons sub-
jected to some quantum bath, neglecting any backaction effects. To proceed further in this section
we identify the quantum bath with the plasmonic bath consisting of the electrons of the Fermi sea.
We end up with an expression for the coherence factor e−F and compare the semiclassical ansatz in
Eq. (5.2) to the bosonization result for the Green’s function G>(x, t).

5.2.1 Correlator of the density fluctuations

In Chapter 4 we already calculated the fluctuations of the potential stemming from a plasmonic bath
(cf. Eq. (4.13))). For this we made use of the bosonic dispersion relation ωq = vF q[1 + Uq

2πvF
]. Here,

we extend the description to paths, which are not identical to the classical trajectory of the electron
which is inserted. In the preceding calculation therefore an additional correlator showed up, 〈V̂ V̂ 〉(1)

ω ,
which contains the extra information about the spacious correlations of the fluctuations:〈

V̂ V̂
〉(1)

ω
=
ˆ
dt eiωt

〈
V̂ (δx+ vF t, t)V̂ (0, 0)

〉
=
ˆ
dt eiωt

ˆ
(dω′)

ˆ
(dq) eiq(vF t+δx)−iω′t|Uq|2 〈ρ̂ρ̂〉qω′

=
ˆ

(dq) |Uq|2eiqδx 〈ρ̂ρ̂〉q,ω+qvF
. (5.17)

Plugging in the expression for the density correlator derived in Eq. (4.10)

〈ρ̂ρ̂〉q,ω = |q| {Θq[n̄(ωq) + 1]δ(ω − ωq) + Θ−qn̄(ωq)δ(ω + ωq)} , (5.18)

where n̄(ω) denotes the Bose-Einstein distribution function for the plasmonic bosons, the calculation
of the Green’s function is a straightforward task.

5.2.2 Calculation of the single particle Green’s function

Now, we explicitly calculate the single particle Green’s function in the frame-work of the semiclassical
ansatz, which then is compared to the full bosonization solution. In the following we will calculate
every term of Eq. (5.16) separately. Finally, we show that the additional terms δF , which occured in
the derivation of the semiclassical exponent F (x, t) vanish for the special type of spectrum resulting
from the plasmonic fluctuations.

Calculation of F1 The part F1 leads only to some energy renormalization, corresponding to the
Fock contribution, which in the derivation of the Green’s function via the bosonization was incorpo-
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rated into a redefinition of the chemical potential:

F1 = − i

2
t

ˆ
(dω)
ω

〈[
V̂ , V̂

]〉(0)

ω

= − i
2
t

ˆ
(dω)
ω

ˆ
(dq)U2

q |q|
(
Θqδ(ω + qvF − ω|q|)−Θ−qδ(ω + qvF + ω|q|)

)
= −it

ˆ ∞
0

(dq)Uq = −i
[

1
2

ˆ ∞
−∞

(dq)Uq

]
t

= −i
[
U(x = 0)

2

]
t. (5.19)

Calculation of F2 Plugging in the expression for 〈{V̂ , V̂ }〉(0)
ω , which was derived in Eq. (5.13) yields

F2 =
1
2

ˆ
(dω)

〈{
V̂ , V̂

}〉(0)

ω

ω2

=
1
2

ˆ
(dω)
ω2

ˆ
(dq)U2

q coth
(
β(ω + vF q)

2

)
〈[ρ̂,ρ̂]〉q,ω+qvF

=
1
2

ˆ
(dω)
ω2

ˆ
(dq)U2

q coth
(
β(ω + vF q)

2

)
|q|
(
Θqδ(ω + qvF − ω|q|)−Θ−qδ(ω + qvF + ω|q|)

)
=

1
2π

ˆ ∞
0

(dq)U2
q q coth

(
βωq

2

)[
2π
Uqq

]2

=
ˆ ∞

0

dq

q
coth

(
βωq

2

)
. (5.20)

Calculation of F3 We proceed with the evaluation of the third contribution F3. For this we make
use of the result for 〈V̂ V̂ 〉(1)

ω in Eq. (5.17). It follows

F3 = −1
2

ˆ
(dω)
ω2

ˆ
(dq) eiqδx−iωtU2

q

(
1 + coth

(
β(ω + qvF )

2

))
×

|q|
(
Θqδ(ω + qvF − ω|q|)−Θ−qδ(ω + qvF + ω|q|)

)
= − 1

8π2

ˆ ∞
0

dq eiqx−iωqtU2
q |q|

[
2π
Uqq

]2(
1 + coth

(
βωq

2

))
+

1
8π2

ˆ ∞
0

dq e−iqx+iωqtU2
q |q|

[
2π
−Uqq

]2(
1− coth

(
βωq

2

))
= −

ˆ ∞
0

dq

q

(
cos(qx− ωqt) coth

(
βωq

2

)
+ i sin(qx− ωqt)

)
.
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Summing up all the different parts gives us the final expression for the Green’s function of an electron
subjected to a bath of plasmons, whose dynamics are governed by the dispersion relation ωq =
vF q[1 + Uq

2πvF
]. After this lengthy calculation the ansatz in Eq. (5.2) yields:〈

ψ̂(x, t)ψ̂†
〉

= −i lim
ti→−∞

〈
ψ̂(δx+ vF ti, ti)ψ̂†(vF ti, ti)

〉
el
e−F (x,t)

= −i lim
ti→−∞

〈
ψ̂(δx+ vF ti, ti)ψ̂†(vF ti, ti)

〉
el
ei[

U(x=0)
2 ]t ×

exp
[ˆ ∞

0

dq

q

{
coth

(
βωq

2

)
(cos(qx− ωqt)− 1) + i sin(qx− ωqt)

}]
. (5.21)

In order to compare this result to the full bosonization solution, there is only one last question to
answer: What are the correlations of the electrons at ti → −∞? Equivalently, one could ask for
the appropriate initial conditions of the Green’s function, which is represented by the first term in
Eq. (5.21) . Postponing the discussion of this subtle and very important point to section 5.3, first of
all, we note what the initial condition should look like in order to reproduce the bosonization result.
Namely, a comparison of Eq. (5.21) with Eq. (3.30) yields

lim
ti→−∞

〈
ψ̂(δx+ vF ti, ti)ψ̂†(vF ti, ti)

〉
=
−i
2πa

. (5.22)

Equation (5.22) states that if we start with a perfectly correlated electron system, i.e. the correlation
between the electrons for ti → −∞ is independent of its relative distance, the semiclassical calculation
gives the correct result (up to the trivial phase factor e−i[

U(x=0)
2 ]t which we already discussed in

Chapter 4, cf. Eq. (4.15)).

However, usually (coupling the electron to some external bath) one identifies the initial condition
with the non-interacting Green’s function g>(x, t). Therefore, Eq. (4.17) might indicate the failing of
the semiclassical method for arbitrary energies.

5.2.3 Discussion of the additional terms

Here we show the vanishing of the additional terms rising up in the calculations of the semiclassical
model due to the adiabatic switching on of the fluctuations. For this we discuss the contributions
related to the commutator parts of the correlators 〈V̂ V̂ 〉(0)

ω and 〈V̂ V̂ 〉(1)
ω and those which emerges

together with the corresponding anti-commutator parts, separately. The reason for this is that the
commutator part does not depend on temperature, while the symmetrised correlator does. The
temperature dependence of the latter results from the fluctuation-dissipation theorem, relating the
linear response of the bath (∼ 〈[V̂ , V̂ ]〉ω) to its fluctuations (∼ 〈{V̂ , V̂ }〉ω) at a certain temperature
T : 〈{V̂ , V̂ }〉ω = coth(βω2 )〈[V̂ , V̂ ]〉ω. The point is that, as discussed above, the ohmic spectrum at
zero temperature turns into a white-noise spectrum at low frequencies. One observes a cancellation
mechanism, suppressing the contributions even for T 6= 0.
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Additional terms coming up with Anti-commutator part Starting from Eqs. (5.13) and
(5.15) and plugging in the result for the correlation functions (see Eq. (5.17)), the calculation of the
t0-dependent terms coming up together with the anti-commutator part yields

ˆ
(dω) δ(ω)

π

2
(t− 2t0)

(〈{
V̂ , V̂

}〉(0)

ω
− e−iωt

〈{
V̂ , V̂

}〉(1)

ω

)
≈ (t− 2t0)

4
lim
ω→0+

(〈{
V̂ , V̂

}〉(0)

ω
− e−iωt

〈{
V̂ , V̂

}〉(1)

ω

)
=

(t− 2t0)
4

lim
ω→0+

(ˆ ∞
0

(dq) (1− e−iωt+iqδx)|Uq|2q coth
[
βωq

2

]
δ

(
ω − Uqq

2π

))
= −iπ(t− 2t0) lim

ω→0+

[
δx · ω

{
T = 0 : πω/U0

T > 0 : T

(vF+
U0
2π )

}]
= 0. (5.23)

Here we set ω → 0+, which is not of importance as 〈{V̂ , V̂ }〉(1)
ω = (〈{V̂ , V̂ }〉(1)

−ω)∗. Therefore, as a
result even at non-zero temperature those extra contribution vanishes.

Additional terms arising with commutator part To conclude this brief subsection we check
the contributions arising together with the commutator parts of the correlation function. Here we do
not have to care about temperature, as the commutator part is temperature independent. Realizing
that 〈[V̂ , V̂ ]〉(1)

ω→0+ = 2πωeiqδx2π/U0ω, it follows:

−
ˆ

(dω)
(
e−iωt

〈[
V̂ , V̂

]〉(1)

ω

)
= lim

ω→0+

[
− (t− 2t0)

4
e−iωt

〈[
V̂ , V̂

]〉(1)

ω

]
= 0. (5.24)

5.3 Interpretation of the results

This section is meant to give a phenomenological interpretation of the central result of this Chapter,
namely of the mathematical identity Eq. (5.22). First of all we have to discuss the appropriate
initial condition of the Green’s function, followed by a short discussion of the consequences of the
semiclassical approach.
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5.3.1 Initial condition

The comparison of the Green’s function derived within the semiclassical model Eq. (5.21) and the
bosonization solution in Eq. (3.30) shows that both coincides, assuming

lim
ti→−∞

〈
ψ̂(δx+ vti, ti)ψ̂†(vF ti, ti)

〉
=

−i
2πa

. (5.25)

At first sight, such a choice may seem to be rather unmotivated. Instead, one expects the non-
interacting Green’s function g>(x, t) to show up here. Particularly, as per construction of the semi-
classical solution at ti → −∞ the influence of the fluctuating potential vanishes. Namely, in Eqs. (5.3)
and (5.4) we multiply the potential V̂ with a factor λ(t), decaying exponentially for t < t0. As a
result the influence of the fluctuations is switched off adiabatically, while the coupling constant α
itself remains constant. It is the last statement which may be of crucial importance here.

We start the discussion expressing the Green’s function in terms of the bosonization phase field Φ̂ (
Eq. (3.30)). Setting µ = 0 leads to

G>(x, t) =
−i
2πa

〈
e−iΦ̂(x,t)eiΦ̂(0,0)

〉
. (5.26)

Most remarkably, the correlator of the bosonic field Φ̂ = −i
∑
q>0

√
2π
Lq

[
b̂qe

iqx − h.c.
]

turns out to

be identical to the correlator of the phase φ̂SC(x, t) ≡
´ t
−∞ dt′ V̂ (δx + vt′, t′) an electron collects

propagating along its classical trajectory

〈
φ̂SC φ̂SC

〉
ω,q

=

〈
V̂ V̂

〉
ω,q

[ω − qvF ]2

=
4π2

|q|
(
Θq(n̄(ωq) + 1)δ(ω − ωq) + Θ−qn̄(ωq)δ(ω + ω|q|)

)
. (5.27)

An important feature of the correlation function 〈φ̂SC φ̂SC〉qωis that the strength of the fluctuations
are not related to the coupling constant directly, but the latter only changes the dispersion relation
of the plasmons ωq. Even for α = 0 the fluctuations remains finite. A comparison with Eq. (C.4)
yields 〈

Φ̂Φ̂
〉
qω

=
〈
φ̂SC φ̂SC

〉
qω

. (5.28)

This is a very important observation confirming that the semiclassical ansatz we employ here is
closely related to the bosonization solution. The identity suggests the following interpretation of
the Green’s function within the frame-work of bosonization. The Green’s function factorizes into
two different parts. Firstly, there is constant prefactor 1

2πa ∼ ρ̄, which is directly related to the
mean electron density ρ̄ of the Luttinger liquid. This factor tells us that there are only collective
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excitations in the Luttinger liquid, i.e., initially all the electrons are perfectly correlated. Therefore
the amplitude of extracting an electron, which is coherent with the electron inserted into the liquid
at (x = 0, t = 0) is nothing but the mean electron density ρ̄. But this is not the whole story. In
addition there are fluctuations of the phase field Φ̂(x, t) leading to a decay of the coherence between
the electrons (and therefore to a decay of the Green’s function). As the bosonization remains valid
even for α = 0, it is amazing that this mechanism still works, producing the non-interacting Green’s
function g>(x, t). In the non-interacting case, the fact that 〈φ̂φ̂〉qω = [ω−qvF ]−2〈V̂ V̂ 〉ω,q seems to be
somehow counterintutitive, suggesting the need for a fluctuating potential V̂ (which itself vanishes for
α) in order to arrive at the non-interacting Green’s function. The solution to this puzzle is that the
strength of the fluctuations of 〈Φ̂Φ̂〉qωdoes not depend on α itself (see Eq. (5.27)) and the fluctuations
do not vanish at all, even for α = 0. As a result, the bosonization solution can be derived starting
from perfectly correlated electrons experiencing the fluctuations of the plasmonic bath.

In the semiclassical approach, we actually assume the fluctuations of 〈φ̂SC φ̂SC〉qω (not the coupling
strength α) to vanish in the limit ti → −∞. For an arbitrary external bath potential this does
not have any consequences for the initial Green’s function and the initial condition is given by the
non-interacting Green’s function g>(x, t). However, applying the theory to an electronic bath and
forcing the fluctuations to vanish in the limit ti → −∞, one has to be more careful. At this point the
fact that 〈φ̂SC φ̂SC〉qω = 〈Φ̂Φ̂〉qω is of crucial importance. Demanding the fluctuations 〈φ̂SC φ̂SC〉qωto
vanish, from Eq. (5.26) we get

lim
ti→−∞

〈
ψ̂(δx+ vti, ti)ψ̂†(vF ti, ti)

〉
= g(x, t)>

∣∣
〈Φ̂Φ̂〉≡0

=
−i

2πα
, (5.29)

i.e., neglecting the phase fluctuations the non-interacting Green’s function turns into g>(x, t)→ −i
2πa .

But this is exactly the required initial condition for the Green’s function in the limit ti → −∞ yielding
a coincidence of the semiclassical ansatz and the bosonization solution.

As the discussion given here is based on rather phenomenological arguments, there is still some need
for a more rigorous explanation for the mathematical identity in Eq. (5.22).

5.3.2 The semiclassical approach - an alternative point of view?

This short section is meant to consider the Green’s function G>(x, t) from the semiclassical point
of view. While, the semiclassical ansatz was shown to fail (the required initial condition seems to
be rather unphysical), nevertheless it may serve as an alternative way of understanding the physical
situation of chiral interacting electron systems. In Fig. 5.2a we pictorially show the Green’s function
evolving in time. At ti → −∞, one starts with a one-dimensional system of perfectly correlated
electrons. For t > ti the electrons start to propagate with the unrenormalized Fermi velocity vF
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collecting a random phase due to the potential background stemming from the plasmonic excitations.
At t = 0, the full fluctuations are present and the interacting single particle Green’s function has
built up. The usual interpretation of the single particle Green’s function G>(x, t) assumes that there
is no phase correlation between the electron injected at t = 0 and the electrons from the Fermi sea.
Therefore, in order to re-extract an electron at (x, t) which is phase coherent with the inserted one,
we have to annihilate exactly the same particle again. In the non-interacting case, the only influence
of the Fermi sea electrons relies on the Pauli principle. As one can insert the electron (at T = 0) only
with momenta k > 0, naturally an uncertainty in position arises. The Green’s function g>(x, t = 0)
gets broadened in x ( its absolute value decays like 1/x, rather to show a δ-peak at x = 0). Therefore,
the Pauli blocking determines the shape of the Green’s function.

In contrast, starting from the perfectly coherent electron system (this is the initial condition the
semiclassical ansatz requires to become exact), in principle there are contributions to the Green’s
function from all the electrons propagating through the one-dimensional channel. From this point of
view, the Green’s function G>(x, t) can be interpreted as a measure of how coherent two electrons,
one at (x = 0, t = 0) and the other one at (x, t), actually are.

We already mentioned in Chapter 4 that usually one considers the chiral Luttinger liquid to be
equivalent with a Fermi liquid at low energies. The only effect of the interaction shows up in a
certain velocity renormalization. Indeed, the tunnel density of states shows a dip in the close vicinity
to the Fermi edge (for repulsive interactions) (cf. Fig. 3.3). Furthermore, considering the Green’s
function G>(x, t) two peaks emerge, propagating with vF and v̄ (cf. Fig. 3.2). The most natural
interpretation (see Chapter 3) of this is given within the Fermi liquid picture. The low-energy quasi-
particles fly with v̄, while the velocity of the electrons with large energies is not effected. Therefore,
the latter give rise to the sharp peak moving with vF .

The double peak structure seems to contradict the main assumption of the semiclassical ansatz that
regardless of its particular energy all electrons fly with the bare velocity vF . However, there is a simple
way to understand the additional peak in G>(x, t) at x = v̄t without assuming the renormalization of
the velocity. The idea is shown in Fig. 5.2b. There, one assumes all electrons to move with vF feeling
the influence of the plasmonic background potential. Then we insert an electron at (x = 0, t = 0)
which is equivalent to annihilating the corresponding hole. The point is that, in the moment an
arbitrary electron crosses the line x = v̄t the phase it has accumulated is identical to the phase the
hole collected propagating from ti to t = 0 (with an inverted sign). Therefore one can oberserve a
’coherence revival’ which shows up as peak in the Green’s function, propagating with v̄.
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Figure 5.2: (a) Pictorial plot of the electrons propagating with vF over the fluctuating potential
background V̂ (x, t). The latter is switched of adiabatically for t < t0, such that the fluctuations
vanish for ti →= −∞. At ti, we assume the electrons to be perfectly phase correlated, following
the assumptions made in the main text concerning the interpretation of the semiclassical approach,
namely: limti→−∞

〈
ψ̂(δx+ vti, ti)ψ̂†(vF ti, ti)

〉
= −i

2πa . (b) Pictorial plot showing an alternative way
explaining the additional peak in G>(x, t) at x = v̄t, without assuming the velocity renormalization
at low energies. For a detailed explanation see subsection 5.3.2.



Chapter 6

Keldysh perturbation theory

In this short chapter we employ perturbation theory to discuss the behaviour of the single-particle
Green’s function at short propagation distances and weak coupling for all energies. This includes the
low energy regime, where the influence of the Fermi edge becomes important. Here, we apply Keldysh
(i.e., nonequilibrium) perturbation theory up to second order in the interaction strength α. As in
the previous chapters, with the semiclassical method we introduced an effective and transparent tool
describing the coherence properties of high-energy electrons, in this Chapter we focus especially on
the low-energy regime.

The main advantage of the perturbation theory in Keldysh time is that it applies even in a non-
equilibrium situation. The bosonization solution showed that the characteristic visibility oscillations,
the“lobe structure”can not be explained in the weak-tunneling limit between the interferometer arms.
Unfortunately, in the framework of bosonization the current can only be evaluated perturbatively. In
contrast, treating the electron-electron interactions perturbatively, in principle one is not restricted to
weakly tunnel-coupled interferometers. Therefore, the results in this Chapter may serve as a starting
point for the latter approach.

The main outcome of the perturbation theory is that the tunnel density of states is affected by
renormalization effects while the decay of the Green’s function in close vicinity of the Fermi edge
is suppressed. We will find that the suppression of decoherence is brought about by a cancellation
between two second order diagrams near the Fermi edge as well as by Pauli blocking.

After a short introduction in Section 6.1, we calculate the relevant diagrams up to second order and
compare the resulting Green’s function to the bosonization solution (Section 6.2). We end with a
short summary of the results in Section 6.3.
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6.1 Perturbation theory on the Keldysh contour

In this section we fix the notation, following the review [19]. Using the Keldysh time leads to an
additional matrix structure of the GF which reflects the fact that one has to differentiate between
points in time which lie on the backward or the forward branch of the Keldysh contour. Beyond
this additional structure, all the known Feynman rules remain exactly the same. After performing
the rotation in Keldysh space [19], the representation of the matrix GF G and the related matrix
self-energy is given by

G ≡

[
GR GK

0 GA

]
Σ ≡

[
ΣR ΣK

0 ΣA

]
, (6.1)

where we introduce the Keldysh GF, GK(x, t, x′, t′) ≡ −i〈[ψ̂(x, t), ψ̂†(x′, t′)]〉. First, we will derive
an expression for the retarded self-energy ΣR(ε.k), which will be used to calculate GR that can be
related to the single particle propagator G> in equilibrium using the fluctuation-dissipation theorem
in Eq. (2.13). Starting from the matrix Dyson equation G(ε, k) = G0(ε, k) +G0(ε, k) ·Σ(ε, k) ·G(ε, k),
one finds that the retarded Green’s function only depends on the retarded self-energy:

GR(ε, k) =
1

[ε− ε0(k) + i0+]− ΣR(ε, k)
. (6.2)

In the following, we calculate the diagrams up to second order for a linearized dispersion relation, but
for finite temperature and for an arbitrary interaction potential. In the end, we compare the results
of the perturbation theory with the results of the bosonization technique. The relevant processes are
shown in Fig. 6.1. There are two second order diagrams, which can be identified as the interaction
with a plasmonic excitation and a corresponding diagram containing an additional exchange process
(that can be viewed as a vertex correction diagram). The crucial point is that the vertex correction
counteracts the plasmonic processes in the vicinity of the Fermi edge, leading to a suppression of the
decay of the GF.

6.2 Evaluation of the diagrams

The starting point of the calculation is the evaluation of the the unperturbed electronic propagator
matrix G0. In addition to the usual retarded and advanced [Eq. (2.12)] Green’s functions of free
electrons

G
R/A
0 (ω, k) =

1
ω − vF k ± i0+

, (6.3)



6.2 Evaluation of the diagrams 75

Fock contribution

+ +=

Plasmon contribution Vertex correction

Figure 6.1: The relevant processes which contribute to the self-energy up to second order in the
coupling. The wiggly lines indicate the interaction. Note that the plasmonic diagram and the vertex
correction differ only by an additional exchange process. That produces a minus sign, such that the
diagrams tend to cancel each other at low momenta.

in equilibrium the Keldysh propagator GK0 is given by [see Eq. (B.2)]

GK0 (ω, k) = −2πi tanh(
βω

2
) · δ(ω − vF k). (6.4)

In contrast to the advanced and retarded GFs, the Keldysh propagator contains information about
the electronic spectrum as well as about the occupation of those states. Therefore, at this point
one could introduce arbitrary non-equilibrium states, which is the main advantage of working on the
Keldysh contour. However, as we are describing channels which are only weakly tunnel-coupled to
each other, here we are interested in equilibrium Green’s functions.

As in second order we explicitly include interactions with free plasmons, we also derive their propaga-
tors here. To this end we identify the bosonic field with the potential V̂ (x, t) =

´
dx′ U(x−x′)ρ̂(x′, t).

This is identical to the potential we introduced in the semiclassical description (although in the latter
case we specialized to x ≡ vF t). The bosonic propagators are defined as

DR/A(x, t) = ∓iΘ(±t)
〈[
V̂ (x, t), V̂ (0, 0)

]〉
DK(x, t) = −i

〈{
V̂ (x, t), V̂ (0, 0)

}〉
. (6.5)

A straightforward calculation yields for the retarded and advanced propagators ( the short calculation
is attached in Appendix B.1.2)

DR/A(ω, q) = |Uq|2 ·
ˆ

dk

2π
f(k)− f(q + k)

(ω + ε0(k)− ε0(k + q))± i0+
= |Uq|2

q

2π
·GR/A(ω, q). (6.6)
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As we assume the system to be in equilibrium, we use the fluctuation-dissipation theorem in Eq. (4.8)
to obtain the plasmonic Keldysh propagator:

DK(ω, q) = 2i coth(βω/2)Im[DR(ω, q)]. (6.7)

Now we can proceed calculating the various contributions to the self-energy up to O(α2). Considering
all the possible Feynman diagrams, we are left with the first order Hartree-Fock diagrams and in
second order with the plasmon diagram and the vertex correction (see Fig.6.1). Thus, we can express
the self-energy as ΣR(2) = ΣHartree + ΣFock + ΣPlasmon + ΣVertex.

These contributions can be evaluated according to the rules given in [19]. The diagrammatic cal-
culation in Keldysh time follows the ordinary Feynman rules (including additional minus signs for
electron bubbles, etc.), with the only difference that one has to take care of the additional matrix
structure of the propagator functions (cf. Fig. B.1). We use the equal-time interaction propagators
UR/A(q) ≡ Uq and set UK ≡ 0, as usual.

In the following, we already present the final results of the diagrammatic calculations. All the
calculations are attached in Appendix B.2.

6.2.1 First-order contributions: Hartree-Fock diagrams

The Hartree diagram yields a global energy renormalization ∆EHartree = U(q = 0)ρ̄. In the framework
of the Luttinger model the electron density diverges as there is no lower boundary of the electron
spectrum. However, formally one can include the energy shift into the definition of the chemical
potential (see Subsection 3.1.1). In the following we omit the Hartree contribution.

The self-energy contribution due to the Fock diagrams is

ΣRF (ω, k) = − 1
2π

ˆ
dq Uqf(k − q), (6.8)

which for zero temperature yields ΣRF,T≡0(k) = − 1
2U(x = 0) + 1

2π

´ |k|
0

dq Uq [see Fig. 6.2b].

The resulting k-dependent energy shift describes, in particular, the renormalization of the electron
velocity near the Fermi edge. This also affects the tunneling density of states, leading to a suppression
(for repulsive interactions, α > 0) or enhancement (α < 0). This can be seen in Fig.3.3. Again, the
constant shift can be incorporated in the definition of the chemical potential.

6.2.2 Second-order contributions: Plasmonic excitations and vertex cor-

rection

The electron’s coherence decays by interacting with the plasmons, i.e. the density fluctuations of the
other electrons. The plasmon diagram (see Fig. 6.1) represents one of the contributions describing
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this physics. It yields

ΣRP (ε, k) =
i

2

ˆ
(dq)
ˆ

(dω)
[
GR0 (ε− ω, k − q) ·DK

0 (ω, q) +GK0 (ε− ω, k − q) ·DR
0 (ω, q)

]
, (6.9)

where the second term contains the Fermi function, which introduces the effects of the Fermi edge
on the coherence. Inserting the propagators, the contribution can be written in a compact form

ΣRP (ε, k) =
GR0 (ε, k)

8π2
·
ˆ ∞
−∞

dq U2
q q · [coth(β~vF q/2) + tanh(β~vF (k − q)/2)] , (6.10)

which for T = 0 reduces to ΣRP (ε, k) = GR0 (ε, k) · 1
4π2

´ |k|
0

dq U2
q q. Thus, at T = 0 this contribution

vanishes for k → 0. We note in passing that the structure “coth + tanh” generically occurs in discus-
sions of dephasing, where it describes both the strength of the thermal fluctuations and the influence
of the Fermi function, i.e., the physics of Pauli blocking. In the limit of high energies, the result of
Eq. (6.10) can be rewritten in terms of the potential fluctuations at the particle position, as discussed
in Chapter 4. Specifically, we have limk→∞ ΣRP,T≡0 = GR0 · 〈V̂ (x = 0, t = 0)2〉. For a plot of the
function ΣRP,T=0, see Fig. 6.2c.

Finally, we derive the vertex correction, mentioned above, which after a rather lengthy calculation
yields

ΣRV (ε, k) =
[
GR0 (ε, k)

16π2

] ˆ ∞
−∞

dq1

ˆ ∞
−∞

dq2Uq1Uq2

×
[
tanh(

βvF (k − q1 − q2)
2

)) ·
[
tanh(

βvF ((k − q1)
2

) + tanh(
βvF ((k − q2)

2
))
]
−

− tanh(
βvF ((k − q2)

2
) tanh(

βvF ((k − q1)
2

)− 1
]

(6.11)

This expression simplifies for T = 0 to ΣRV,T=0 = −GR0 · 1
4π2

´ |k|
0

dq1

´ |k|
|k|−q1 dq2Uq1Uq2 . The con-

tribution from the vertex correction as well as the total second order correction to the self-energy
ΣRP+V ≡ ΣRP + ΣRV are shown in Fig. 6.2. The crucial feature is that up to second order in momentum
k the plasmon diagram and the vertex correction cancel exactly against each other, whereas for high
momenta [k � qc ] only the plasmon contribution remains while the vertex correction tends to zero.
In summary, when calculating up to second order in the coupling, we already see that the dephasing is
suppressed in the vicinity of the Fermi edge. As the comparison with the exact bosonization solution
shows, this conclusion holds true qualitatively to all orders. We can use the preceding expressions to
evaluate the retarded Green’s function GR and from this the propagator G>. The final results has
been evaluated numerically. The results are illustrated in Fig. 6.2. Expanding the Green’s function
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for small propagation distance x� vF

(
2
√
〈V̂ (0)2〉

)−1

yields:

|G>(ε→∞, x)|vF ≈ 1− 1
2
〈V̂ (0)2〉( x

vF
)2 + . . . , (6.12)

which coincides with the expanded exact result. The good agreement of the bosonization result
and the Keldysh perturbation theory for small |α| is shown in Fig. 6.2. However, for large x the
perturbation theory fails. For a detailed study of the spectrum of chiral interacting electrons in
(ε− k)-space, starting from the bosonization result, the reader is referred to [43].
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Figure 6.2: (a) The GF from bosonization (solid blue lines) vs. the results from second-order Keldysh
pertubation theory (dashed red lines) for different propagation distances as a function of energy. Note
the fairly good agreement. (b) Fock contribution to the self-energy ΣRF (k), which starts with a linear
slope (corresponding to the electron velocity renormalization) and then saturates for large momenta.
(c) Total second order contribution to the self-energy (dashed black line); plasmonic (solid black line)
and vertex correction (lower red line) separately. The cancellation for small momenta is discussed in
detail in the text (in all figures Uq = U0 exp(−(q/qc)2) and 2πα = U0/vF = 2).

6.3 Summary of the Keldysh perturbation theory

To summarize, the perturbation theory shows that there are two different energy regimes: In general,
the GF decays as a function of propagation distance due to the interaction with the density fluctua-
tions. This is particularly pronounced at high energies ε� vF qc, where we have also shown that the
Keldysh result and the semiclassical (or bosonization) approach coincide at short distances. For low
energies ε� vF qc, the decay is suppressed. On the other hand, at low energies the Fermi velocity is
renormalized due to virtual processes, leading to a modification of the tunneling density of states. It
is important to note that these two different energy regimes only emerge since we are dealing with
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interaction potentials of finite range.
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Chapter 7

Four-point correlation function

This chapter is meant to give an outlook on how to proceed further for a deeper understanding of
the decoherence in one-dimensional electron systems in general and in the Mach-Zehnder interfer-
ometer in particular. As the foregoing analysis showed, some of the most prominent features of the
Mach-Zehnder interferometer, e.g., the lobe-structure in the visibilty [27, 39], can not be described
by the present theory. Neither the influence of an external quantum bath [36, 32, 31], nor the in-
trinsic electron-electron interactions [6] offer an explanation of these effects. Analyzing the effect of
the electron-electron interactions in the frame-work of bosonization, the main restriction is that the
theoretical description is valid only for weakly tunnel-coupled interferometer arms (cf. Chapter 2).
As in the experiment the situation is quite the opposite, the lobe structure becomes more pronounced
increasing the tunnel coupling of the interferometer arms, an extension of the theoretical description
to higher orders in the coupling seems to be fruitful. In particular, this is motivated by the proposal
in [40, 39], where the authors investigate the influence of non-Gaussian shot noise on the interfer-
ometer visibility, while the noise has its origin in an external electron channel coupled to one of the
interferometer arms. The number of electrons in the external channel is assumed to be such small
that the corresponding random potential can not assumed to be Gaussian anylonger. The resulting
oscillations in the visibility as a function of the applied bias voltage shows a striking similarity with
the reported lobe-structure. Unfortunately, the effect of shot noise on the coherence properties can
not be described in the lowest order in tunneling, i.e., with the theory presented in this work. There
are two main approaches to proceed further. On the one hand, one can choose to take into account
the tunnel coupling exactly but treat the intrinsic interactions only perturbatively. Our perturbative
expansion in Keldysh time should be an appropriate starting point following these lines. On the other
hand, one can stay in the frame-work of bosonization but takes into account the next non-vanishing
order in the tunnel coupling (O(t4A)), contributing to the current trough the interferometer. It turns
out that in the next highest order, the current depends on two-particle Green’s functions (equiva-
lently, we refer to them as four-point correlation functions). These show up naturally in this context,
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as the stronger coupling between the interferometer arms drives them out of equilibrium. To put
it different: Now, an electron hopping into the opposite interferometer arm, knows whether there is
another electron already propagating through this arm or not. Therefore, the electron experiences
the simplest possible form of non-Gaussian shot noise.
Here we study some four-point correlation functions of particular interest, reflecting the non-equilibrium
energy- and momentum distribution of a chiral one-dimensional electron system after the injection of
an extra electron. For this we start from the formal solution via the bosonization technique. After
some general remarks on the construction scheme of four-point correlation functions in the frame-work
of bosonization (section 7.1), we proceed with the explicit calculation and the numerical evaluation
(sections 7.2 and 7.3).
Most interestingly, it turns out that after some transient behaviour there is no further energy and
momentum transfer between the injected electron and the electrons from the Fermi sea. This feature
is in agreement with the known fact that in clean Luttinger liquids, i.e., in the absence of impurities,
the scattering rates for inelastic processes, where electrons relax its energy transfering energy to the
plasmonic bath, vanish [3]. Besides these interesting physical results, the second message of this sec-
tion is that the numerical evaluation of four-point functions in principle is possible. However, one has
to increase further the numerical precision, especially to analyze reliably the non-equilibrium energy
distribution in the close vicinity to the Fermi edge.

7.1 Four-point correlators

In general, calculating observables of the system after the insertion of an extra electron leads to
the analysis of four-point correlation functions. This s due to the fact that the creation of an
electron drives the system out of equilibrium, such that we have to evaluate the expectation val-
ues of the observables of interest with respect to the excited state of the system. Thus, the ex-
pectation value of an arbitrary observable Ô after the insertion at (x = 0, t = 0) is given by
〈Ô〉excited =

[
〈vac| ψ̂(0, 0)

]
Ô
[
ψ̂†(0, 0) |vac〉

]
, where |vac〉 denotes the vacuum state of the system.

We define an arbitrary four-point correlator as

C4(r1, r2, r3, r4) ≡ 〈ψ̂(†)(r1)ψ̂(†)(r2)ψ̂(†)(r3)ψ̂(†)(r4)〉, (7.1)

with the collective coordinate r ≡ (x, t). Using the bosonization identity ψ̂R = F√
2πa

eikF xe−iφ̂R ,

where φ̂(x, t) ≡ i
∑
q>0

√
2π
Lq

(
eiqx−aq b̂q(t)− h.c.

)
, its calculation is a straight forward task. The

reason is that the correlation function can be written as a product over exponentials of the bosonic
fields φ̂ (here µ ≡ 0) :

C4 =
1

(2πa)2
· 〈
∏
j

e−iAj φ̂(rj)〉, (7.2)
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The coefficients Ai = ±1 depend on the nature of the fermionic operator ψ̂(†)
i (the minus signs

represents annihilation operators and vice versa) and we restrict the consideration to chiral (right
moving) electrons. As the electronic Hamiltonian is quadratic in the bosonic operators, the average
can be evaluated using the Baker-Hausdorff identity eAeB = eA+Be

1
2 [A,B]. Thus, we can make use

of the identity, valid for Gaussian random variables :
〈
e−iφ̂

〉
= e

1
2 〈φ̂2〉. The calculation of Eq. (7.2)

yields (for reasons of brevity we set φ̂j ≡ Aj φ̂(rj) and φij ≡
〈
φ̂iφ̂j

〉
)

〈Πje
−iAj φ̂(rj)〉 = e−

1
2 〈[φ̂1,φ̂2]〉〈e−i(φ̂1+φ̂2)

∏
j>2

e−iAj φ̂(rj)〉

= e−
1
2 〈[φ̂1,φ̂2]〉− 1

2 〈[φ̂1+φ̂2,φ̂3]〉〈e−i(φ̂1+φ̂2+φ̂3)
∏
j>3

e−iAj φ̂(rj)〉

= exp

−1
2

∑
i<j,j>2

(φij − φji)−
1
2

〈(
4∑
i=1

φ̂i

)2〉
= exp

−2
〈
φ̂2(0, 0)

〉
−

∑
i<j,j>2

AiAj

〈
φ̂(ri)φ̂(rj)

〉 . (7.3)

The emerging correlators
〈
φ̂(ri)φ̂(rj)

〉
where already discussed in Chapter 3

S̃(x, t) = 〈φ̂(x, t)φ̂(0, 0)〉 =
ˆ ∞

0

dq

q

(
(n̄q + 1)ei(qx−ωqt) + n̄qe

−i(qx−ωqt)
)
. (7.4)

To ensure a fast convergence of the momentum integrals, as in the case of the single particle Green’s
function (cf. Eq. (3.30)) we substract the non-interacting correlation function. For this we define
S(ri − rj) ≡ Sij ≡ 〈φ̂(ri)φ̂(rj)〉 − 〈φ̂0(ri)φ̂0(rj)〉, where φ̂0 denotes the non-interacting bosonic field.
Furthermore, due to the equal number of annihilation and creation operators involved in the four-
point correlation function, it can be written as a product of single particle Green’s functions:

C4 = −
∏

i<j,j>2

(G>ij)
−AiAj

= −
∏

i<j,j>2

(g>ij)
−AiAj exp

− ∑
i<j,j>2

AiAj(Sij − S0
ij)

 . (7.5)

Here we introduce the abbreviations G>(ri − rj) ≡ G>ij = −i
2πa exp[Sij − S0

ij ] and let g>ij denote
the unperturbed single particle Green’s functions, i.e., g>ij ≡ G>ij(α = 0). In addition the function
S0
ij ≡ Sij(α = 0) vanishes at zero temperature T = 0. The pole structure of the two-particle Green’s

function, whose knowledge is essentially for the numerical evaluation, is determined by the product
of non-interacting Green’s functions. Thus, the calculation of a particular four-point function always
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starts with the analysis of its pole structure, i.e., of the non-interacting case.

Density after injection of electron In order to check the consistency of expression Eq. (7.5), we
start with a simple task. Namely, one could ask how the plasmons evolve in time when an additional
electron was inserted at r = 0. For this we have to introduce the correlation function

Cρ(x, t) ≡ limε→0

〈
ψ̂(0, 0)

(
ψ̂†(x, t+ ε)ψ̂(x, t− ε)

)
ψ̂†(0, 0)

〉
(7.6)

where we explicitly denote the point splitting by the infinitesimal time-shift ε → 0. First of all, we
want to check the expression Eq. (7.5) for the non-interacting case. Dealing with non-interacting
systems in the Luttinger approximation is somehow feasible, as there is no natural length scale
besides the cutoff parameter a itself, which should be send to zero in the end (in the presence of
an interaction potential with a finite range the length scale is set by q−1

c ). Therefore, in a non-
interacting consideration we always keep a finite, realizing that it is closely connected to the inverse
Fermi momentum a ∼ k−1

F and therefore to the mean density ρ̄. Making use of Wick’s theorem
C0
ρ ≡ Cρ(α→ 0) can be calculated to yield (here for T = 0)

C0
ρ(x, t) = g>(x, t)g<(x, t) + g>(0, 0)g<(0, 0)

= 1
4π2

(
1

(x− vF t)2 + a2
+

1
a2

)
, (7.7)

where the unperturbed, zero temperature Green’s function is given by g>/<ij = 1
2π [(xi−xj)− vF (ti−

tj)± ia]−1. Alternatively, evaluating Eq. (7.5) leads to

C0
ρ (x, t) = lim

ε→0

(
−g

<(x, t+ ε)g>(x, t− ε)
g<(x, t− ε)g>(x, t+ ε)

· g>(0, 0)g>(0, 2ε)
)

=
1

4π2
lim
ε→0

(
(x− vF t)2 − ε2+
(x− vF t)2 − ε2−

· 1
a2 + 2iεa

)
=

1
4π2

(
1

(x− vF t)2 + a2
+

1
a2

)
, (7.8)

which serves as a consistency check, as the result is identical with Eq. (7.7). Clearly, C0
ρ consists

of two contributions, the equilibrium density and the part representing the response of the electron
density to the insertion of the extra electron at r = 0.

7.2 Energy relaxation

Dealing with two-particle Green’s functions provides us with the local non-equilibrium energy and
momentum distribution of the system as a function of x and t. The injection of an extra electron
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drives the system out of equilibrium. Therefore, the analysis of the corresponding four-point functions
is closely related to the question how the energy of the additional electron relaxes with increasing
propagation time. It is a known, but nevertheless amazing fact that for Luttinger liquids in the
absence of impurities, inelastic scattering processes are precluded. To be precise, in an equilibrium
situation the rate of an electron to be scattered out of its initial state turns out to be zero. However,
here we are dealing with the simplest possible non-equilibrium situation as we inject an electron on
top of the Fermi sea. As a consequence, we expect some transient behaviour where the bath electrons
and the inserted electron re-arrange thereby minimizing its energy. However, in the long-time limit
there should be no further energy transfer between the additional electron and the electrons stemming
from the Fermi sea. In the following we consider the local energy distribution after the creation of
an electron at (x = 0, t = 0).

7.2.1 Initial energy unknown

For the remainder of this chapter we restrict the analysis to T = 0, while the non-zero temperature
case is easily established following the same lines. As a starting point we consider an electron with an
arbitrary initial energy inserted into the liquid at (x = 0, t = 0) and ask for the energy distribution
for t > 0. We consider the correlation function

Wt(ε, x) ≡
ˆ
dt1 e

iεt1


〈
ψ̂(0, 0)

(
ψ̂†
(
x, t− t1

2

)
ψ̂
(
x, t+ t1

2

))
ψ̂†(0, 0)

〉
∣∣∣〈ψ̂(0, 0)ψ̂†(0, 0)

〉∣∣∣
 . (7.9)

which is purely real but can take negative values. This function, which is directly related to the
Wigner density [30], in energy and real space is a measure of the average electron number at (x, t)
with energy ε. However, as soon as Wt becomes negative this physical interpretation fails. This is a
well known problem considering quasiclassical distribution functions as the Wigner density. Usuallly,
one interprets the appearance of those negative values as the signature of purely quantum mechanical
interference phenomena. To motivate the structure of Eq. (7.9) one has to think of how to fix the
final energy of the electron? After insertion, due to the uncertainity principle, the energy of the
electron is completly undetermined, i.e., a superposition of all possible energy eigenstates builds up.
The injection of the electron preparates the system in an excited, non-equilibrium state: ψ̂†(x =
0, t = 0) |vac〉. At (x, t) we pick up an arbitrary electron and ask for its energy ε. This is done
by introducing an internal time t1 in order to test the phase of the annihilated electron. Then, the
Fourier tranformation with respect to t1 filters out those contributions where an electron with ε is
present at (x, t).

Non-interacting case To start the analysis of Eq. (7.9) we consider the non-interacting case. One
expects two main features to arise. First of all, we expect two contributions to show up in Wt(ε, x)
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stemming from the inserted electron as well as from the electrons present in the Fermi sea. Secondly,
the Pauli principle should play an important role even in the non-interacting case. Namely, after the
insertion a superposition consisting of all accessible energy eigenstates builds up. Here, the Pauli
principle comes into play as it allows the electron to tunnel only in unoccupied states.
The foregoing analysis of chiral one-dimensional electrons has shown that electrons flying high above
the Fermi sea move with the bare Fermi velocity vF . Therefore, the naive expectation is that this
single electron shows up in the local energy distribution W (ε, x, t) mainly at x = vF t, contributing
(for T = 0) essentially to energies ε > εF . However, as already mentioned the Pauli principle restricts
the initial energy of the single electron to a certain set of eigenstates. As a result the energy-time
uncertainty relation ∆ε∆t ∼ 1, even in the non-interacting case, leads to some spreading of this
single-particle peak in W , centered at x = vF t. It will turn out that an interference pattern arises
reflecting this kind of physics. The non-interacting case can easily be evaluated with help of Wick’s
theorem. At zero temperature Eq. (7.9) gives (where we set δx ≡ x−vF t and use the non-interacting
Green’s function at zero temperature g>(x, t) = 1

2π [δx+ ia]−1 )

W 0
t (ε, x) =

1
ρ̄

ˆ
dt1 e

iεt1

(
g>(x, t+

t1
2

)g<(x, t− t1
2

) + g>(0, 0)g<(0, t1)
)

=
1

4π2ρ̄

ˆ
dt1 e

iεt1
1

δx− vF t1/2 + ia

1
δx+ vF t1/2− ia

+
i

4π2a

ˆ
dt1 e

iεt1
1

vF t1 + ia

=
sin(2δx/vF ε)
πρ̄vF δx

e−2aε/vF Θ(ε)︸ ︷︷ ︸
extra electron

+
eaε/vF

vF
Θ(−ε)︸ ︷︷ ︸

Fermi sea

. (7.10)

After inserting the electron, compared to the equilibrium situation, the amplitude of extracting an
electron at (x, t) with ε > 0 is increased. The first term in the integrand of Eq. (7.10) takes care
of this contribution. Naturally, it is closely related to the single particle Green’s function g>(x, t)
itself. The first term vanishes for ε < 0 vanishes as at T = 0, in the absence of interactions, it is
not possible to create an extra electron below the Fermi edge. The oscillating prefactor in the single
particle contribution is responsible for the interference pattern resulting from the interplay between
the time-energy uncertainty relation and the Pauli principle we discussed above. In addition, there
is a contribution from the filled Fermi sea as well, represented by the second part of the integrand
(besides re-extracting the inserted electron itself, we can pick up an arbitrary electron with ε < 0
from the Fermi sea).
Fig. 7.1 shows a plot of W 0

t (ε, x). One can observe the non-interacting electron with unknown initial
energy (sharp peak) flying above the Fermi sea and the Fermi edge, while the mentioned interference
fringes show up.



7.2 Energy relaxation 87

Interacting case Now, we turn on the electron-electron interactions. For this, we only have to
multiply the integrand in Eq. (7.10) by some extra factor. Starting from the general expression in
Eq. (7.5), we derive

Wt(ε, x) =
ˆ
dt1 e

iεt1

(
g>(x, t+

t1
2

)g<(x, t− t1
2

) + g>(0, 0)g<(0, t1)
)
× eS(x,t,t1), (7.11)

with

S(x, t, t1) =
ˆ ∞

0

dq

q

(
−4i sin

(
ωqt1

2

)
cos(qx− ωqt) + eiωqt1

)
− (α = 0′) ,

where in the exponent the integral is regularized substracting the non-interacting expression (cf. the
construction of the single particle Green’s function in Chapter 3).

Discussion of the numerical results Fig. 7.1(b-d) shows Wt(ε, x) as a function of x for various
times. One can observe the two contributions, stemming from the extra particle and from the electrons
of the Fermi sea. The former shows up as a vertical line at x = vF t, while in the insets we focus on
Wt(ε, x = vF t) at the classical particle position x = vF t. The important feature is that compared
to the non-interacting result (dashed white lines) the weight of the single particle peak does not
decay significantly with increasing propagation time, i.e., obviously the inserted electron does not
thermalize. This is in agreement with the mentioned fact [3] that in the absence of impurities, in
Luttinger liquids any inelastic relaxation processes are precluded.
Injecting an electron at (x = 0, t = 0) into the liquid creates a density pulse, while the energy for
this is brought up by the electron itself. Therefore, only in the very beginning there is an energy
transfer between the inserted electron and the plasmonic bath (exciting the bosonic modes b̂q) related
to the tunnel event. After this, the deformation of the electron density propagates through the liquid
thereby shifting the energy distribution as a whole, i.e., the position of the “local” Fermi edge. This
general feature can be understood realizing that the energy of any electron at a certain position x is
affected in the same manner by a perturbation of the local liquid density. In addition, one observes
an interference pattern (including negative values of Wt(ε, x)), reflecting the interference between the
extra electron and those stemming from the Fermi sea.

7.2.2 Initial energy known

As in the previous section the initial energy of the inserted electron was unknown, in a next step one
can ask for the number of electrons at (x, t) with energy εf after the insertion of an electron with
a certain energy εi at (x = 0, t = 0). Extending the definition of Wt(ε, x) in Eq. (7.9) by a further
internal time (and the corresponding Fourier transformation) meant to fix the initial energy εi, for
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Figure 7.1: (a) Non-interacting four-point correlation function W 0
t (ε, x) for tqcvF = 5 and T = 0.

It consists of two parts stemming from the electrons of the Fermi sea ε ≤ 0 and the inserted extra
electron (ε > 0) moving with vF . One observes the interference fringes reflecting the Pauli principle
(see main text). (b-d) Interacting case: Plot of Wt(ε, x) at T = 0 with Uq = 2παvF e−(q/qc)

2
(α = 0.5)

for various times (from left to right): tqcvF = 5, 10, 15. One may note the vertical line at x = vF t
representing the extra electron inserted at (x = 0, t = 0). Insets: Interested in the momentum
distribution of the injected electron we focus on the classical particle position x = vF t, i.e., the plot
shows Wt(ε, x = vF t) (solid white lines) and the non-interacting function W 0

t (ε, x) (white dashed
lines). A comparison of both shows that the momentum distribution of the injected electron does not
thermalize.
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this purpose we propose the real function

Cε(x, t; εi, εf ) ≡ c−1

ˆ
dt1

ˆ
dt2 e

iεit1eiεf t2 ×〈
ψ̂(0,

t1
2

)
(
ψ̂†(x, t− t2

2
)ψ̂(x, t+

t2
2

)
)
ψ̂†(0,− t1

2
)
〉
, (7.12)

where c is a normalization constant which we will fix with help of the non-interacting solution.
To motivation this definition one can follow the same lines as in the case of Wt(ε, x). Comparing
Eqs. (7.12) and (7.12), the only difference is that with help of the additional Fourier transformation we
project out the arriving electrons at (x, t) with energy εf . To be precise, this definition has the status of
a first idea how to construct a correlation function with the demanded properties. The problem is that
Cε can not be interpreted without any doubt in the same fashion as the correlation functions Cρ(x, t)
and Wt(ε, x), introduced earlier. Namely, due to the additional internal time t1, distinguishing the
operators ψ̂†(0,− t12 ) and ψ̂(0, t12 ), one can not consider the operator

´
dt2 e

iεf t2 ψ̂†(x, t− t2
2 )ψ̂(x, t+ t2

2 )
to be averaged over the non-equiblibrium state after the insertion of the extra electron. Even so, the
definition of Cε seems to be reasonable enough to study this correlation function with some reservation
concerning its physical interpretation.

Non-interacting case Again, we start with the analysis considering the non-interacting function
at zero temperature, C0

ε . Wick’s theorem provides us with the pole structure of the correlation
function (here t̄ ≡ t1+t2

2 and δt ≡ t1−t2
2 ):

C0
ε =

ˆ
dt1 e

iεit1

ˆ
dt2 e

iεf t2

g>(x, t+ t̄)g<(x, t− t̄)︸ ︷︷ ︸
Extra electron

+ g>(0, t1)g<(0, t2)︸ ︷︷ ︸
Fermi sea

 . (7.13)

After inserting the electron with energy εi, compared to the equilibrium situation the amplitude of
extracting an electron at r = (x, t) with εf ≈ εi is increased. In addition, there is a contribution from
the filled Fermi sea as well. The expression yields:

C0
ε = c−1

ˆ
dt1 e

iεit1

ˆ
dt2 e

iεf t2
(
g>(x, t+ τ)g<(x, t− τ) + g>(0, t1)g<(0, t2)

)
= − 2

4π2v2
F c

ˆ
d[δt] ei(εi−εf )δt

ˆ
dt̄

ei(εi+εf )t̄

[t̄− − δx/vF ][t̄− + δx/vF ]

+
e−a/vF (εi−εf )

cv2
F

Θ(εi)Θ(−εf )

=
1
v2
F c
δ(εi − εf )Θ(εi + εf )

2 sin((εi + εf )δx/vF )e−a/vF (εi+εf )

δx/vF

+
e−a/vF (εi−εf )

cv2
F

Θ(εi)Θ(−εf ), (7.14)
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where t̄− ≡ t̄ − ia. In the first term, which is directly related to the extra electron, the ex-
pected δ-peak at εf = εi appears. However, the probability of finding an electron with εf = εi,
centered at the classical particle position x = vF t, is spreaded over the whole time axis, such
that the energy-time uncertainty relation is fulfilled. For εi < 0 the whole amplitude vanishes,
as it is not possible to create an electron in the Fermi sea for T = 0. As the integration of
the second term over all initial and final energies should give the mean electron density ρ̄, i.e.,
(2πvF )−2c−1

´∞
0
dεi
´ 0

−∞ dεf exp (−a/vF (εi − εf )) = ρ̄, for c it follows: c = ρ̄.

Interacting case Turning on the electron-electron interactions leads to

Cε =
ˆ
dt1

ˆ
dt2 e

iεit1eiεf t2{
g>(x, t+ t̄)g<(x, t− t̄) + g>(0, t1)g<(0, t2)

}
eS

S =
ˆ ∞

0

dq

q

(
2 cos(qx− ωqt)

(
e−iωq t̄ − e−iωqδt

)
+
(
eiωqt2 + e−iωqt1

))
−(α→ 0). (7.15)

We note that the numerical evaluation of Eq. (7.15) involves a double Fourier transformation with
respect to time. More importantly, for δx = 0 the integrand has a branch-cut for t̄ = 0 and for
t1, t2 = 0, and therefore does not converge to zero. Thus the numerical evaluation of Cε is rather
difficult and can only be performed to a limited numerical precision, restricted by the finite time-
integration intervall. Nevertheless it can be done, realizing that the branch-cuts are related to the step
functions (for T = 0) reflecting the Pauli principle as well as to the delta function representing the
injected particle (see Eq. (7.14)). Introducing an artificial cutoff function exp

(
−γ̃
√
t21 + t22

)
enables

the integration and only leads to some smearing of the Fermi edge and to a numerical broadening of
the sharp single particle peak. As a consequence, especially considering initial energies in the close
vicinity to the Fermi edge the numerical results have to be handled with some care.

Numerical evaluation of Cε Particularly, we are interested in the energy of the injected particle
as a function of propagation time. Therefore, in Fig. 7.2 we evaluate Cε for x = vF t, i.e., at the
classical position of the inserted electron moving with vF (in the high-energy limit this can be taken
for granted). Fig. 7.2 shows Cε at T = 0 as a function of propagation distance x and final energy
εf for various initial energies. Some obvious features can directly be observed. In agreement with
Fig. (7.1), the whole energy distribution oscillates with increasing propagation distance. The period
is approximatively given by 2πvF

ωmax
(see Fig. 7.3). Besides those oscillations the width of the main

peak, representing the injected particle oscillates with the same frequency. This can be understood
in the framework of the semiclassical picture (which gets exact for energies ε � qcvF ), taking into
account the zero point fluctuations of the plasmonic quantum bath, present even at T = 0. Due to
the fluctuations, the energy of an electron flying over the potential landscape gets smeared out. In
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Figure 7.2: Plot of |Cε(εf ; εi, δx = 0)| as a function of the final energy εf and propagation distance
x for two different initial energies εi/(qcvF ) = 1, 8 (from left to right). Here we set T = 0, δx =
x− vF t = 0 and Uq = 2παvF e−(q/qc)

2
, with 2πα = 8.0. As the integrand converges only very slowly,

the double Fourier transformation with respect to the time-arguments was done by convoluting the
integrand of Eq. (??) with an exponential e−γ̃t (here γ = 0.5). This leads to an artificial broadening
of the main peak of the order O(γ), while the Fermi edge is smeared out (the finite width of the
peak at t = 0 is only related to this numerical broadening). The whole energy distribution is shifted
periodically, but the main peak does not decay for large times. In addition, the width of the main
peak oscillates with the same period, which is approximatively given by 2πvF

ωmax
.
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Chapter 4 it was shown that in the electron frame-of-reference the effective noise spectrum
〈
V̂ V̂

〉
ω

has a square-root singularity at ω = ωmax, resulting in a nearly periodic random potential. It is a
well known fact that the coherence of a particle subjected to a periodic noise potential, shows local
maxima after propagation times which are multiples of the corresponding period. The reason for this
is that the random phases which are accumulated, integrated over a full period, tends to cancel out.
Therefore, the coherence is periodically recovered up to some amount. Note, that the single particle
Green’s function G>(ε, x) in the high-energy limit displays exactly that kind of ’echos’ as a function
of time-of-flight (cf. Fig. (4.2)).
As a measure for the energy of the injected electron we define εmax(x), so that

max (Cε(δx = 0, εi, εf )) = Cε(δx = 0, εi, εmax). (7.16)

Fig. 7.3 shows εmax(x) for various initial energies. After some transient decay, it turns into the
mentioned oscillation whose amplitude decays for x → ∞. Thus, it follows that the single electron
does not thermalize, transfering its initial energy completly to the bath, but propagates in the long-
time limit without any further perturbation. This remarkable property is in complete agreement with
[3] and with the semiclassical approach we introduced earlier. One of the most important implications
following from the corectness of the semiclassical approach (see Chapter 4) at high energies is that
the injected electron, despite of the electron-electron interactions, flys ballistically with velocity vF .
During its propagation it experiences a background potential, stemming from the density fluctuations
of all the other electrons. In Chapter 4 we were mainly interested in the fluctuations of this plasmonic
bath, leading to the decoherence of the single particle Green’s function. As we already mentioned
in subsection 7.2.1 the injection of the electron creates a density pulse in the liquid, δρcl(x) = δ(x).
For a classical liquid one would expect the δ-peak to evolve in time according to the plasmonic
dispersion relation ωq: δρcl(x, t) =

´
dq
2π e

iqx−iωqt. This propagating density pulse gives reason for a
potential Vcl, which can be obtained convoluting the plasmon density with the interaction potential
Uq: Vcl(x, t) =

´
dq
2π Uqe

iqx−iωqt In the absence of fluctuations, the electron would only experience a
capacitive energy shift due to the background potential Vcl without being scattered out of its original
state. In Fig. 7.3b we show this classical potential landscape and compare the potential evaluated at
the classical electron position Vcl(x = vF t) with the electron energy in Fig. 7.3a. As a result one can
observe that V (x = vF t) and εmax(x) qualitatively agree quite well.
Interestingly, the energy dependence of the injected electron is nearly the same, irrespective of the
particular initial energy. While this was expected for high-energy electrons (the single particle Green’s
function G>(ε, x) saturates for ε→∞, cf. Fig. 3.3) , surprisingly even for small energies like εi = qcvF

the behaviour seems to be identical. However, due to the numerical smearing of the distribution
function in energy this result has to considered with some reservation.
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Figure 7.3: (a)Plot of εmax as a measure for the energy of the injected electron, as a function of
propagation distance x for various initial energies εi = 1.0, 5.5, 10.0 (from bottom to top) and T = 0.
The interaction potential is Uq = 2πvFαe−(q/qc)

2
where α = 1.0. The solid points represent the

numerical evaluation of the correlation function Cε. The solid lines are proportional to the classical
potential Vcl(x, t = x

vF
) mentioned in the main text resulting from a pulse in a classical liquid at

(x = 0, t = 0) shifted by the particular initial energies εi (for better comparison to the numerical
results we plot πV ). Obviously, the qualitative behaviour can be understood rather well by thinking
of a single electron whose energy is modulated due to the influcence of the classical background
potential Vcl(x, t) shown in Fig. 7.3(b). One may note that the electron energy as a function of
propagation distance appears to be independent from εi (up to the difference in the initial energy εi).

7.3 Momentum distribution

To conclude this section we calculate the number of electrons at (x, t) with momentum k in a chiral
interacting system after the injection of an additional electron whose initial momentum is unknown.
For this we define

Wt(x, k) ≡
ˆ
dx′ e−ikx

′


〈
ψ̂(0, 0)

(
ψ̂†(x− x′

2 , t)ψ̂(x+ x′

2 , t)
)
ψ̂†(0, 0)

〉
∣∣∣〈ψ̂(0, 0)ψ̂†(0, 0)

〉∣∣∣
 , (7.17)

which is up to the normalization constant identical to the non-equilibrium Wigner density (see
for instance [30]). The normalization constant follows from the single particle Greens function:
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∣∣∣〈ψ̂(0, 0)ψ̂†(0, 0)
〉∣∣∣ = 1

2πa = ρ̄. The non-interacting case yields:

W 0
t (x, k) =

1
ρ̄

ˆ
dx′ e−ikx

′
(
g>(x+

x′

2
, t)g<(x− x′

2
, t) + g>(0, 0)g<(x′, 0)

)
=

1
ρ̄π

Θ(k)
sin(2kδx)e−2ak

δx
+ Θ(−k)eak. (7.18)

Switching on the coupling between the electrons turns the Wigner density into

Wt(x, k) = 1
ρ̄

ˆ
dx′ e−ikx

′
(
g>(x+

x′

2
, t)g<(x− x′

2
,+t) + g>(0, 0)g<(x′, 0)

)
×

exp
{

4i
ˆ ∞

0

dq

q
sin
(
qx′

2

)
(cos (qx− ωqt)− cos(qx− vF qt))

}
. (7.19)

The results of the numerical evaluation of Eq. (7.19) are shown in Fig. 7.4. Before we start with the
analysis of the most obvious results, we notice an important relation between the electronic distri-
bution in momentum space and the mean density. For this think of a non-interacting, homogeneous
one-dimensional electron system with Fermi momentum kF . For T = 0 the density is directly related
to the Fermi momentum, as: ρ̄ = L

´∞
−∞(dk) fk/L = kF /(2π). If the system suffers a perturba-

tion, in the present case the insertion of the extra electron, the distribution function changes to
f(k, x, t) ≡ fk + δfk(x, t), such that the average electron density ρ(x, t) ≡ ρ̄+ δρ(x, t) gets distorted,
with δρ(x, t) = 1

2π

´∞
−∞ dk δfk(x, t). If the non-equilibrium distribution function still shows some

pronounced step like behaviour, it is reasonable to introduce a local ’Fermi momentum’ kmax(x, t)
which is in this case directly related to the deviation in the electron density: δρ(x, t) ≈ 1

2πkmax(x, t).
Obviously, we can observe that while the distribution function gets distorted rather drastically, still
one can identify a sharp step. Following, the previous arguments this step, i.e., kmax(x, t) ∼ δρ(x, t)
can be interpreted as a direct measure of the deviations from the mean electron density δρ(x, t) it-
self. Thus, besides some complex interference pattern resulting from the interference between the
additional electron injected at (x = 0, t = 0) and the electrons stemming from the Fermi sea, Fig. 7.4
essentially displays the distortion of the liquid density propagating through the channel. The sharp
(red) peak at x = vF t represents the single electron. One may note that its contribution survives even
for large propagation times, reflecting the fact that there is no finite scattering rate of electrons in a
chiral interacting electron system. Once again, we point out the amazing fact that in the absence of
impurities a one-dimensional electron can not relax its energy, being scattered out of its original state.
Most naively one would expect that the electron density displays the propagation of the initial pulse,
resulting from the injection of the additional electron into the system, i.e., δρcl(x, t) =

´
dq
2π e

iqx−iωqt.
Indeed, a comparison of this propagating density pulse δρcl(x, t) with the density resulting from the
Wigner function

´
dk
2π Wt(x, k) show that they do agree quite well (inset Fig. 7.4), reflecting the fact

that up to a certain extent one can understand a chiral interacting fermion system in terms of a
classical liquid.
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Figure 7.4: (a-c) Wt(k, x) as a function of propagation distance x for various times (from a to c):
tqcvF = 5, 10, 15. The dot on top of the plot indicates the classical electron position x = vF t. Here
the interaction potential is Uq = 2παvF e−(q/qc)

2
with α = 2.0. The sharp peak at x = vF t represents

the additional electron injected at (x = 0, t = 0), which does not decay significantly for large t.
In addition, one can observe the distortion of the electron density δρ(x, t), i.e., the local shift of the
Fermi edge kmax(x, t) (in the main text we argue that δρ(x, t) ∼ kmax(x, t)). Thus, to some extent the
plot can be read as a density profile of a chiral electron system. (d) Deviation from the mean density
δρcl(x, t) =

´
dq
2π e

iqx−iωqt of a classical liquid after creation of a density pulse δρcl(x, t = 0) = δ(x)
for the same times as in (a) (dashed, red line). This is compared to the electron density resulting
from the Wigner density integrated over all momenta

´
dk
2π Wt(x, k) (solid, blue line). For better

clarity the plots are shifted vertically. Obviously, they fit rather well, except from the single particle
contribution (x = vF t) in

´
dk
2π Wt(x, k) , which is much smaller than expected. The reason for this

might lie in the finite integration intervall for positive k.
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Chapter 8

Open Luttinger liquids

Up to now, we focussed exclusively on the effect of the electron-electron interaction on the coherence
properties of a one-dimensional electron system. In this Chapter, we extend the description by taking
into account the coupling to an arbitrary harmonic oscillator bath. This includes the interaction with
a two-dimensional bath of acoustical or optical phonons, which are always present in the 2DEG’s and
lead to an additional decoherence of the electrons. However, the purpose of this Chapter is two-fold.

On the one hand, the discussion of the coherence properties of a one-dimensional electron system,
studied in the MZI is extended taking into account an external bosonic bath. For this, we analyze
the influence of the coupling on the electron’s Green’s function G>(ε, x). In passing, we consider
some interesting properties of “open” chiral electron systems, like the occurence of “polaron clouds”,
i.e., the collective movement of a pulse in the electronic density ρ̂ and a distortion of the crystal
lattice. Coupling the electrons to a two-dimensional phonon bath leads to an effective electron-
electron interaction, which can become attractive. It seems that the loss of coherence is related to the
excitation of phonons by the inserted electron, if initially its energy was large enough (here, the energy
has to be compared to the phonon energy). In contrast, the decoherence for low-energy electrons is
strongly suppressed.

On the other hand, we are interested in how Pauli blocking (PB), which becomes important for
the coherence of low-energy electrons [31, 32, 11], is included in the framework of bosonization.
Up to now, there where only a few attempts to include many-body effects, as the Pauli blocking
and renormalization effects into the description of decoherence. For instance, in [31, 32, 11] the
semiclassical equations of motion approach (see Section 4.4) was proposed to describe the influence
of an external quantum bath on the coherence of ballistically propagating electrons. There, the
decoherence is related to the spectrum of the bath fluctuations. Including the backaction of the
electron onto the bath, the PB is introduced. As a result the noise spectrum is substituted by a
“Pauli blocked” version leading to a suppression of the decoherence of low-energy electrons in the
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close vicinity to the Fermi edge. It was shown that in the context of weak localization the results
are in agreement with the corresponding second order Keldysh perturbation theory. However, up to
now all attempts to understand in more detail the influence of PB on the decoherence remained of
perturbative nature. In contrast, in this Chapter we will use the exact bosonization solution for the
electron Green’s function G> of an “open Luttinger liquid” (i.e., coupled to a quantum environment)
in order to come to a better understanding of these questions. In particular, we perform a weak-
coupling expansion of the bosonization solution and identify the decay rate of the coherence with the
expected rates resulting from a simple Fermi’s golden rule calculation.

From a technical point of view starting from standard bosonization the coupling to an harmonic
oscillator bath can be achieved rather easily. The reason for this is that the total Hamiltonian
remains quadratic in bosonic operators. In contrast to the coupling to an arbitrary linear bath, the
interaction between (chiral) Luttinger liquids and one-dimensional phonons was studied extensively,
for example in [9, 47, 38, 17]. In the present case, it turns out that the most difficult aspect is the
coupling of the chiral electron system to the non-chiral bath modes.

In Section 8.1 we introduce the Hamiltonian of a chiral interacting electron system coupled to an
arbitrary harmonic oscillator bath. Especially, we are interested in the electronic Green’s function
G>(x, t). It turns out that for this purpose we only have to calculate the plasmonic spectrum, i.e.,
the spectrum of the bosonic modes related to modulations in the electron density, in presence of
the linear bath. Two different approaches are presented to derive this plasmonic spectral density.
In Section 8.2 we bring the Hamiltonian to a quadratic form and solve the problem introducing an
appropriate resolvent [37, 35]. Then, we re-derive the plasmonic spectrum in the framework of the
functional field integral technique [22, 5] (Section 8.3). In Section 8.4 we derive the main result
of this Chapter: expanding the bosonization solution up to second order in the coupling strength
we calculate the decoherence rates of electrons subjected to an harmonic oscillator bath. Then, we
apply the developed tools on the coupling to two-dimensional phonons and evaluate numerically the
corresponding coherence G>(ε, x) (Section 8.5) and the mentioned “polaron cloud” (Section 8.6).

8.1 Hamiltonian and model

In order to couple the chiral (right-moving) one-dimensional electron system to some external quan-
tum bath, one starts with the usual bosonized Hamiltonian, which is already diagonal in the bosonic
operators related to the electronic degrees of freedom {b̂q}: Ĥel =

∑
q>0 ωq b̂

†
q b̂q. The dynamics of the

bath of harmonic oscillators is assumed to be governed by the Hamiltonian: Ĥbath =
∑
j,q Ωj,qâ

†
j,qâj,q,

where the operators {âj,q, â†j,q} correspond to the various oscillator modes with dispersion relation
Ωj,q. We assume the interaction between the chiral electron system and the harmonic oscillator bath
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to be linear, i.e., the electron density is assumed to couple to some potential V̂

Ĥ int ≡
ˆ
dx ρ̂(x)V̂ (x) =

1
L

∑
q

V̂qρ̂−q, (8.1)

where V̂ (x) = 1
L

∑
q V̂qe

iqx is hermitian and a linear function of the bosonic operators {âj,q, â†j,q}.
From the hermiticity of V̂ (x) it follows: V̂q = V̂ †−q. This condition is fulfilled by the most general
expression

V̂q =
N∑
j=1

gj,q(âj,q + â†j,−q) with gjq = g∗j,−q. (8.2)

In total, the interaction of a Luttinger liquid with some linear bath leads to the usual problem of
coupled harmonic oscillators:

Ĥ = Ĥel + Ĥbath + Ĥint

=
∑
q>0

ωq b̂
†
q b̂q +

∑
j,q

Ωj,qâ
†
j,qâj,q +

∑
j

Mj,q(âj,q + â†j,−q)b̂−q, (8.3)

where we substituted the electron density ρ̂q by the bosonic operators b̂q and introduced the effective

coupling coefficient Mj,q ≡
√
|q|

2πLgj,q . As the electronic system is coupled differently to each of
the bosonic modes it is hard to give an adequate definition of a dimensionless coupling strength
between bath and electrons. However, in the folllowing we understand the dimensionless constant
g as a parameter which is proportional to the mean coupling strength and when introducing the
explicit form of the bath and the interaction, g will be defined precisely. Our main interest is directed
towards the single particle Green’s function G>(x, t) of an electron propagating coherently through
a one-dimensional system. As the bosonization identity introduced earlier (cf. Eq. (3.26)) yields:
G>(x, t) = −i

2πa 〈e
−iΦ̂(x,t)eiΦ̂(0,0)〉 with Φ̂(x, t) = i

∑
q>0

√
2π
Lq [b̂q(t)eiqx − b̂†q(t)e−iqx], for this we only

have to calculate the plasmonic correlation functions 〈b̂q(t)b̂†q〉 and 〈b̂†q(t)b̂q〉. For later purpose, we
define the plasmonic Green’s functions for q > 0 here as

B>q (t) = −i
〈
b̂q(t)b̂†q

〉
B<q (t) = −i

〈
b̂†q b̂q(t)

〉
BRq (t) = −iΘ(t)

〈[
b̂q(t), b̂†q

]〉
. (8.4)

Fortunately, there are several techniques which enable its evaluation. In particular, the fact that
for every momentum q there is only a single harmonic oscillator which is coupled to all the others
simplifies the problem crucially. The main question is: how to calculate the correlators without
explicitly diagonalizing the problem?
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First of all, this problem can be solved by a direct calculation of the plasmonic spectral density

Bqω ≡ − 1
π

ImBRqω, (8.5)

as the plasmonic propagator functions are connected to the spectral density via the fluctuation-
dissipation theorem in Eq. (2.13). In addition, one can make use of the functional field integral
method (for instance see [2]) and trace out the bath degrees of freedom. We are not solely interested
in the single particle Green’s function, but in correlation functions involving both the electronic and
the external bath fields (e.g., for the calculation of the plasmon cloud), as well. For this purpose, the
functional field integral technique turns out to be a very powerful tool. In the whole chapter, the
bosonsic modes related to the electronic density fluctuations, {b̂q}, are denoted as plasmonic modes
in order to distinct them from the bath modes {âqj}.

8.2 Solution via the resolvent method

The purpose of this section is the calculation of the correlation functions 〈b̂q(t)b̂†q〉 and 〈b̂†q(t)b̂q〉. For
this we calculate the spectral density Bqω of the plasmonic modes. This can be done with help of a
“resolvent”, we introduce below. Before the explicit calculation of Bqω, some preliminary remarks are
in order. The Hamiltonian (Eq. (8.3)) of the one-dimensional electrons system coupled to some linear
environment is equivalent to the standard problem of a set of coupled, harmonic oscilators. To simplify
the further discussion, we introduce a compact notation: ~aq denotes a column vector whose entries
are the operators âj,q and whose zeroth component is given by b̂q. Analogously, ~a†q is defined as the
corresponding row vector with the hermitian conjugate entries. The solution of the system of coupled
harmonic oscillators provides a set of normal modes d̂j,q such that: Ĥ =

∑
q,j Ω̃j,qd̂

†
j,qd̂j,q, where

Ω̃j,q denotes the corresponding eigenfrequencies. If we already had diagonalized the Hamiltonian,
we would only have to express the operators b̂q by a linear combination of the normal modes: b̂q =∑
j λj,qd̂j,q. Then, the time evolution of the electronic, bosonic operators would become trivial,

b̂q(t) =
∑
j λj,qd̂j,qe

−iΩ̃j,qt. In terms of the normal modes we could write:〈
b̂q b̂
†
q

〉
ω

= 2π
∑
j

|λj,q|2 δ(ω − Ω̃j,q) · (1 + n̄(Ω̃j,q))

= 2π(1 + n̄(ω))
∑
j

|λj,q|2 δ(ω − Ω̃j,q). (8.6)

Equation 8.6 is nothing than the fluctuation-dissipation theorem in Eq. (2.13) and the sum emerging
in Eq. (8.6) can be identified with the plasmonic spectral density B(ω, q). However, before we can
proceed with the direct calculation of the spectral density, in a preliminary step we have to bring the
Hamiltonian into a sligthly different form.
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Hamiltonian in terms of bosonic excitations and holes The crucial point about the Hamil-
tonian in Eq. (8.3) is that is couples the chiral electronic modes to non-chiral excitations, e.g., left-
and right-moving phonons. The Hamiltonian can be re-written as follows:

Ĥ =
∑
q>0

ωq b̂
†
q b̂q +

∑
j,q

Ωj,qâ
†
j,qâj,q

+
∑
jq>0

{(
Mj,qâj,q b̂

†
q +M∗j,qâ

†
j,q b̂q

)
+
(
M∗j,qâj,−q b̂q +Mj,qâ

†
j,−,q b̂

†
q

)}
. (8.7)

Here, we made use of the identity for q > 0 : b̂q = b̂†−q. Obviously, the momentum conservation leads
to an asymmetric coupling of the electronic mode to the bath modes with q > 0 and q < 0. For chiral
moving electrons there are no processes coupling them to bath modes with opposite chirality, which
fulfill energy and momentum conservation simultaneously. Therefore, the second term (coupling
the right moving plasmons and the left moving bath modes) in Eq. (8.7) contains only “virtual
processes”, where an electronic mode and a bath mode are (de)excited at the same time. Introducing
“hole operators” ĥ†jq ≡ âj,−q and substituting

∑
j,q<0 ωjqâ

†
jqâjq ∼

∑
j,q>0 ωjqĥ

†
jqĥjq, up to a constant

the Hamiltonian can be written as

Ĥ ∼
∑
q>0

~a†qΩ̂q~aq, (8.8)

where ~aq ≡ (b̂q, â1,q, . . . , âN,q, . . . , ĥ1,q, . . . ĥN,q)T denotes a 2N + 1-dimensional column vector con-
taining all the different modes and the (2N + 1)× (2N + 1) matrix Ω̂q is given by

Ω̂q =



ωq M1,q · · · MN,q M∗1q · · ·
M∗1,q ω1,q · · · 0 0 · · ·

...
...

. . . · · · · · · · · ·
M∗N,q 0 0 ωN,q 0 · · ·
M1,q 0 0 0 ω1,q · · ·

...
...

...
...

...
. . .


. (8.9)

A diagonalization of the matrix leads to eigenmodes, which contain hole-contributions as well. At first
sight, dealing with a combination of hole and ordinary modes seems to be a difficult task: however,
it will turn out that the resolvent method takes care of this fact nearly automatically.

Introduction of the resolvent In this paragraph, with |j, q〉 we denote the j-th eigenvector of the
matrix Ω̂q and |0〉 represents the (1, 0, 0, . . . )T -vector. Furthermore, we can identify the coefficients
λj,q in Eq. (8.6) with: λj,q = 〈j, q|0〉.
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To proceed further, we consider the matrix B̂qω ≡ [ω+−Ω̂q]−1. The special matrix element 〈0| B̂qω |0〉
is also called the “resolvent”, which is nothing than the retarded plasmonic Green’s function BRqω .
Namely, it follows (cf. Eq. (8.5))

Bqω = − 1
π

Im

{
〈0| 1

ω − Ω̂q + i0+
|0〉

}
= − 1

π Im

∑
j

〈0|j, q〉〈j, q| 1
ω − Ω̂q + i0+

|0〉


= − 1

π Im

∑
j

|〈0|j, q〉|2

ω − Ω̃j,q + i0+


=

∑
j

|λj,q|2δ(ω − Ω̃j,q), (8.10)

where Ω̃jq denotes the frequencies of the eigenmodes after diagonalization of the Hamiltonian in Eq.
(8.8).

Calculation of the retarded plasmonic Green’s function Here, the fact that there is one
single harmonic oscillator, which couples to a set of bath oscillators, is of crucial importance. Before
starting the calculation, we mention that for this paragraph matrices are denoted with a hat on top
of the variable.

In a first step, we rewrite the retarded plasmonic Green’s function as BRqω = 〈0|[(ω+− Ω̂0
q)− V̂q]−1|0〉.

The matrix Ω̂0
q contains only the diagonal elements of Ω̂q while V̂ q contains the off-diagonal elements,

such that: Ω̂q = Ω̂0
q + V̂q. Furthermore, we set: Vij(q) ≡ 〈i, q; 0| V̂ |j, q; 0〉, B̂0

qω ≡ [ω+ − Ω̂0
q]
−1

and bij ≡ 〈i, q; 0| B̂0
qω|j, q; 0〉δij , where the vectors {|j, q; 0〉} denote the original basis of the free

Hamiltonian, i.e., Ĥ0 =
∑
q>0 ~a

†
qΩ̂

0
q~aq.

After these preliminary definitions, we can now expand BRqω as

BRqω = 〈0|B̂0
qω + B̂0

qωV̂ qB̂
0
qω + B̂0

qωV̂ qB̂
0
qωV̂ qB̂

0
qωV̂ qB̂

0
qω + . . . |0〉, (8.11)

where we already omit terms which are even in the operator V̂q, as due to the diagonality of bij and
the fact that Vii = 0 these terms vanish. In addition, all the matrix elements of V̂q vanish, except
from V0j and Vj0. One arrives at:

BRqω = b00

∞∑
n=0

b00

2N∑
j=1

|V0j |2 bjj

n

=
1

b−1
00 + Σqω

, (8.12)

where the self-energy Σωq = −
∑2N
j=1 |V0j |2 bjj has to be calculated carefully, as the Hamiltonian
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contains also the hole-modes ĥjq, which need some special treatment. The first part (1 ≤ j ≤ N)
of the sum treats all contributions stemming from the bath modes âj,q itself, while the second part
(N < j ≤ 2N) takes care of terms related to the hole modes ĥj,q. In the calculation of the sum
occurs the non-interacting retarded Green’s function bjj evaluated for the j-th bath mode (including
the holes as well). At this point, the fact that for j > N we are dealing with the non-interacting,
retarded Green’s function of the hole-modes becomes important. Namely, the Fourier transform of
the latter, bjj(q, ω), can be written as (for j > N):

bjj(q, ω) = −i
ˆ ∞
−∞

dt eiωtΘ(t)
〈[
ĥj−N,q(t), ĥ

†
j−N,q(0)

]〉
= i

ˆ ∞
−∞

dt eiωtΘ(t)
〈[
âj−N.q(0), â†j−N.q(t)

]〉
= − 1

ω+ + ωj−N,q
, (8.13)

while for the bath modes, the Fourier transform of the non-interacting retarded Green’s function bjj
simply gives ( j ≤ N): bjj = [ω+ − ωj,q]−1. The self-energy yields:

Σqω = −
N∑
j=1

|V0j |2 bjj −
2N∑
j>N

|V0j |2 bjj

= −
N∑
j=1

|Mj,q|2
(

1
ω+ − ωjq

− 1
ω+ + ωjq

)

= −2
N∑
j=1

|Mj,q|2
ωj,q

ω2
+ − ω2

j,q

. (8.14)

Finally, for the plasmonic propagator functions B>/<q it follows

iB>qω = 2πB(ω, q)(1 + n̄(ω))

iB<qω = 2πB(ω, q)n̄(ω)

B(ω, q) = − 1
π

Im
{

1
ω+ − ωq + Σqω

}
. (8.15)

As a result, we succesfully calculated the plasmonic spectral density of electrons coupled to an arbi-
trary linear bath. In the next section, we employ the functional field integral formalism to re-derive
the self-energy Σqω and the electronic single particle Green’s function.
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8.3 Field theoretical approach

In this section we turn to the description of the open chiral electron system, using the functional
field integral technique. While the calculation of the plasmonic Green’s functions B>qω and B<qω
could be performed straightforwardly with the resolvent method, the calculation of more complicated
correlation functions is most easily done in the framework of functional field integrals. This section
starts with a short reminder of the main ideas behind the method of functional field integrals [2].
After the re-expression of the Hamiltonian (Eq. (8.1)) in terms of coherent state amplitudes, we start
with the tracing-out procedure of the bath degrees of freedom, thereby deriving the plasmonic self-
energy Σqω. As demanded, the self-energy turns out to be identical to the one resulting from the
resolvent method, which serves as a consistency check. The following calculation of the plasmonic
Green’s functions gives the exact solution of the electronic single particle Green’s function under the
influence of an external harmonic oscillator bath.

8.3.1 General remarks

The functional field integral method is based on the description in terms of the coherent state am-
plitudes φ, which are defined as:

|φ 〉 ≡ exp

(∑
i

φiâ
†
i

)
|0 〉 ⇒ âi |φ 〉 = φi |φ 〉. (8.16)

These can be ordinary complex fields, for bosonic operators {âi}, or Grassman fields if they represent
fermionic operators. The partition sum Z can be expressed in terms of functional field integrals,
where the corresponding weight is determined by the action S[φ]. Introducing the imaginary time
τ ≡ it, and the fields φ(τ, x), it is given by:

Z ≡
ˆ
D(φ, φ̄) e−S[φ,φ̄] (8.17)

S[φ, φ̄] ≡
ˆ β

0

dτ

ˆ ∞
−∞

dx φ̄(x, τ)∂τφ(x, τ) +H[φ, φ̄]. (8.18)

Here, φ̄ denotes the conjugated field, which for bosonic fields is identical to the complex conjugated
of φ. This is in contrast to the case of Grassman fields, where the field and its conjugated are
independent of each other. Conveniently, one transforms to the Matsubara frequency and momentum
representation. For this we introduce the definitions1:

φ(τ) ≡ 1
β

∑
n

e−iωnτφ(iωn) φ(iωn) ≡
ˆ β

0

dτ eiωnτφ(τ). (8.19)

1Note that 1
β

´ β
0 dτ eiωnτ = δn0
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Here, one has to be careful, as (φ̄)−n = φ̄n and in the following we always set φ̄n ≡ (φn)∗. The
Matsubara frequencies ωn are quantized due to the finite temperature which determines the length
of the imaginary time interval. For fermionic and bosonic fields, these eigenfrequencies are given by
ωn ≡ 2π

β {2n+ 1} and ωn ≡ 2π
β {2n} respectively. The Matsubara action yields (where φ(iωn) = φn):

S[φn, φ̄n] =
1
Lβ

∑
n,q

φ̄qn(−iωn)φqn +H({φnq, φ̄n′q′}). (8.20)

The calculation of an arbitrary correlation function, initially given in its operator version, is done
substituting the operators by the corresponding fields〈

Tτ φ̂i(τ)φ̂†j
〉

=
〈
φi(τ)φ̄j

〉
=

1
Z
·
ˆ
D(φ, φ̄) e−S[φ,φ̄]φi(τ)φ̄j (8.21)

Here, one has to have in mind that evaluating a correlator with the help of the functional field
technique actually means calculating its imaginary time-ordered version. This is a direct consequence
following from the construction principle of the path integral itself. The explicit calculation of the
correlation function can in many important cases be done only by making use of the integration rules
of complex, Gaussian integrals. Finally, one has to perform the analytic continuation, which relates
the imaginary time-ordered correlator to the corresponding retarded Green’s function in real-time (or
rather to its Fourier transform).

8.3.2 Action of an open Luttinger liquid

In the framework of bosonization, one can implement any bath of harmonic oscillators, coupled
linearly to the chiral interacting electron system. The main feature is that the resulting Hamiltonian
remains quadratic in bosonic operators. Therefore, the model can be solved exactly by tracing out
the bath degrees of freedom as we will show below. Using the functional field integral technique, the
tracing-out procedure can be performed easily. For this, we translate the Hamiltonian in Eq. (8.3)
into the language of function field integrals. Starting from Eq. (8.3)

Ĥ =
∑
q>0

ωq b̂
†
q b̂q +

∑
j,q

Ωj,qâ
†
j,qâj,q

+
∑
jq>0

(
Mj,qâj,q b̂

†
q +M∗j,qâj−,q b̂q +Mj,qâ

†
j,−q b̂

†
q +M∗j,qâ

†
jq b̂q

)
(8.22)



106 8. Open Luttinger liquids

and Eq. (8.20), the corresponding action yields:

S[ϕj , φ] ≡ Sel + Sbath + Sint

=
1
β

∑
q>0,n

φ̄qn(−iωn + ωq)φqn +
1
β

∑
q,n,j

ϕ̄j,qn(−iωn + ωj,q)ϕj,qn +

1
β

∑
jq>0

(
Mj,q

[
ϕj,qnφ̄qn + ϕ̄j,−q,nφ̄q,−n

]
+ M∗j,q [ϕj,−q,nφq,−n + ϕ̄j,qnφqn]

)
(8.23)

Here, the field φ represents the plasmonic modes, while {ϕj} denote the modes of the external
bath. Obviously, the action is quadratic in the bosonic (complex) fields. This fact will be of crucial
importance when calculating the various correlation functions of interest.

8.3.3 Electron Green’s function

The electronic single particle Green’s function can be calculated by tracing out the bath degrees of
freedom. As noted above, the great advantage of the functional field integral formalism is that this
can be done easily. Starting from the bosonization identity we only have to calculate the propagator
functions B>/<qω . As we have already seen in Subsection 8.2, the fluctuation-dissipation theorem
connects the propagator function with the spectral density and thus with the retarded Green’s func-
tion. Therefore, our concern here is the calculation of the retarded Green’s function for the plasmonic
modes b̂q. As usual, first one derives the imaginary-time ordered correlation function from which the
retarded Green’s function follows via the analytical continuation iωn → ω + i0+ ≡ ω+. Making use
of the identity for complex, Gaussian integrals

ˆ
D(ϕ, ϕ̄)e−ϕ̄Aϕ+ϕ̄χ′+ϕχ̄ = det(A) · eχ̄A

−1χ′ , (8.24)

the bath modes can be integrated out. As the plasmonic fields φqn are only well defined for q > 0,
the tracing out is separately done for the left-and the right moving bath modes. The bath- and the
interacting part of the action in Eq. (8.23) can be written as a sum

1
β

∑
q>0,n,j

ϕ̄j,qn(−iωn + ωj,q)ϕj,qn +
1
β

∑
q>0,nj

(
M+
jqϕj,qnφ̄qn + (M+

jq)
∗ϕ̄qnφqn

)
+

1
β

∑
q<0,n,j

ϕ̄j,qn(−iωn + ωj,q)ϕj,qn +
1
β

∑
q<0,nj

(
(M−jq)

∗ϕ̄jqnφ̄|q|,−n +M−jqϕqnφ|q|,−n
)
, (8.25)

such that we can perform the integration over the bath fields with q < 0 and q > 0 separately. For later
purposes, we formally introduced coupling amplitudes M+and M− labeling the terms stemming from
energy (non-)conserving processes. With help of equation Eq. (8.24), the effective electronic action
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becomes

Seff = 1
β

∑
q>0,n

φ̄qn(−iωn + ωq)φqn −

1
β

 ∑
q>0,n

φ̄qn

∑
j

|M+
jq|2

−iωn + ωjq

φqn − ∑
q>0,n

φ̄q,−n

∑
j

|M−jq|2

−iωn + ωjq

φq,−n


= 1
β

∑
q>0,n

φ̄qn (−iωn + ωq − Σqn)︸ ︷︷ ︸
A−1
qn

φqn, (8.26)

where in the last line we used the identity (valid only for the plasmonic field and for q > 0) :
φ−q,−n = φ̄qn. Furthermore, we defined the self-energy as

Σqn ≡
∑
j

|M+
jq|2

−iωn + ωjq
+
∑
j

|M−jq|2

iωn + ωjq
(8.27)

=
∑
j

|Mjq|2
2ωjq

ω2
n + ω2

jq

. (8.28)

The imaginary time-ordered correlator Bτ (x, τ) ≡ −
〈
φ(x, τ)φ̄(0, 0)

〉
follows directly from the corre-

sponding matrix element in the action. It is given by

Bτqn = − 1
β

〈
φqnφ̄qn

〉
= − Aqn. (8.29)

Thus the retarded Green’s function BRqω yields

BRqω = Bτqn
∣∣
ωn→ω+

=
1

ω+ − ωq + Σqω
(8.30)

Finally, the spectral density is given by Bqω = − 1
π Im{[ω+ − ωq + Σqω]−1}, where the self-energy is

identical to that we calculated via the resolvent method in Eq. (8.14). After the standard analytic
continuation, the self-energy is given by: Σqω = −

∑
j |Mjq|22ωjq[ω2

+ − ω2
jq]
−1.

8.3.4 The bath in terms of its spectrum

For later purposes we re-write the self-energy of the plasmonic modes in terms of the spectrum of the
external bath. For this, we realize that the Fourier transform of the retarded Green’s function of the
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bath potential V̂

DR
q (t) ≡ −iΘ(t)

〈[
V̂q(t), V̂−q

]〉
(8.31)

is given by

DR
qω =

ˆ
dt eiωtDR

q (t)

= −
ˆ

(dω′)

〈[
V̂ , V̂

]〉
qω′

ω+ − ω′
. (8.32)

We not that ImDR
qω = 1

2 〈[V̂ , V̂ ]〉qω, while the correlation function 〈[V̂ , V̂ ]〉qω can be evaluated starting
from the definition of the potential V̂q in Eq. (8.59). Namely, we get〈[

V̂ , V̂
]〉

qω
=

∑
j

|gjq|2 {δ(ω − ωjq)− δ(ω + ωjq)} (8.33)

so that for the retarded Green’s function it follows: DR
qω = −

∑
j

2|gjq|2ωjq
ω2

+−ω2
jq

. A comparison to Eq.
(8.27) shows that it is directly proportional to the self-energy derived in the preceding paragraph,
DR
qω = 2πL

|q| Σqω. The imaginary part of DR
qω is asymmetric in ω, i.e., ImDR

−q,−ω = −ImDR
qω, while

the real part turns out to be a symmetric function in ω.

8.3.5 The single particle Green’s function

With the results from the preceding subsection, the single-particle Green’s function G>(x, t) of elec-
trons coupled to an external harmonic oscillator bath can be calculated formally. For this we note
that (where we omit the time-arguments for t = 0)

G>(x, t) =
−i
2πa

exp
(ˆ ∞

0

dq

q
eiqx

〈
b̂q(t)b̂†q

〉
+ e−iqx

〈
b̂†q(t)b̂q

〉
−
[〈
b̂q b̂
†
q

〉
+
〈
b̂†q b̂q

〉])
=

−i
2πa

exp
(ˆ ∞
−∞

dω

2π

ˆ ∞
0

dq

q

[
(eiqx−iωt − 1)

〈
b̂q b̂
†
q

〉
ω

+

(e−iqx−iωt − 1)
〈
b̂†q b̂q

〉
ω

])
. (8.34)
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Making use of the fluctuation-dissipation theorem in Eq.(8.15), the expression can be written in terms
of the plasmonic spectral density Bqω as well,

G>(x, t) =
−i
2πa

eS(x,t)

S(x, t) =
ˆ ∞
−∞

dω

ˆ ∞
0

dq

|q|
[
(eiqx−iωt − 1)(1 + n̄(ω))B(ω, q)+

(e−iqx+iωt − 1)n̄(ω)B(ω, q)
]

(8.35)

As an intermediate conclusion, it was shown that the whole effect of the linear coupling between
the electrons and the external bath on the single particle Green’s function G>(x, t) is encoded in
the effective plasmonic spectrum B(ω, q). Based on this result, in section 8.5 we study the influence
of a bath consisting of two-dimensional phonons on the coherence properties of the one-dimensional
electron system.

8.4 Weak coupling expansion

In this section we expand the bosonization solution Eq. (8.34), assuming the electrons and the
bath to be only weakly coupled, i.e., we consider the self-energy Σ to be a small parameter. In the
end we are interested in the decay of the Green’s function G>(ε, x), as it is a direct measure for the
coherence properties of the system. The main purpose of this section is to illustrate in more detail how
bosonization brings the Pauli blocking into play. The latter has important consequences, e.g., in the
weak-coupling limit for the decay rates of the electron’s coherence. We will show that the calculated
decay rate is in agreement with the rate resulting from a simple Fermi’s golden rule consideration and
coincides with the results derived in [31, 36, 32, 11] with help of the equations of motion approach.
For the purpose of calculatory simplicity we assume the self-energy not to depend on q, i.e., Σqω = Σω
and neglect the electron-electron interactions, i.e., ωq = vF q. Approximatively, this is the case for a
bath consisting of optical phonons, while the phonon-electron interaction is assumed to be point-like.
The expansion in the coupling strength g between the bath and the plasmonic modes is done by
expanding the spectral density itself:

B(ω, q) = − 1
π

Im
{

1
ω+ − ωq + Σωq

}
≈ − 1

π
Im
{

1
ω+ − ωq

− Σωq
(ω+ − ωq)2

+O(g4)
}

= B0(ω, q) + B1(ω, q) +O(g4). (8.36)
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Thus, the exponent in powers of g is given by S(x, t) ≈ S0(g0) + S1(g2) + O(g4), where the first
correction S1 yields:

S1 =
ˆ ∞
−∞

dω

ˆ ∞
0

dq

|q|
[
(eiqx−iωt − 1)(1 + n̄(ω))B1(ω, q)+

(e−iqx+iωt − 1)n̄(ω)B1(ω, q)
]
. (8.37)

The calculation of the first correction to S is a straightforward, but rather tedious task.

8.4.1 Calculation of S1

Before we start with the explicit calculation, we define, for the purpose of brevity, the functions
σω ≡ Σω/|q| = 1

2πLD
R
qω and Y (ω, q) ≡ σω

(ω+−vF q)2 . Furthermore, in the following we will frequently
make use of the identity: Y (ω, q) = Y ∗(−ω,−q). Then, Eq. (8.37) yields

S1 = S1
A + S1

B

S1
A ≡ 1

π

ˆ ∞
−∞

dω

ˆ ∞
0

dq
{(
eiqx−iωt(1 + n̄(ω)) + e−iqx+iωtn̄(ω)

)
×Y (ω, q)− Y (−ω,−q)

2i

}
S1
B ≡ 1

π

ˆ ∞
−∞

dω

ˆ ∞
0

dq

{
coth

[
βω

2

]
Y (ω, q)− Y (−ω,−q)

2i

}
(8.38)

Calculation of S1
A: In a first step we re-arrange the integrand so that we can extend the momentum

integration over the whole real axis,
´∞

0
dq →

´∞
−∞ dq.

S1
A =

1
π

ˆ ∞
−∞

dω

ˆ ∞
0

dq

{
cos(qx− ωt) coth

[
βω

2

]
Y (ω, q)− Y (−ω,−q)

2i
+

i sin(qx− ωt)Y (ω, q)− Y (−ω,−q)
2i

}
= − i

2π

ˆ ∞
−∞

dω

ˆ ∞
−∞

dq

{
cos(qx− ωt) coth

[
βω

2

]
Y (ω, q)+

i sin(qx− ωt)Y (ω, q)}

= − i

4πv2
F

{ˆ ∞
−∞

dω coth
[
βω

2

]
σω

ˆ ∞
−∞

dq
eiqx−iωt + e−iqx+iωt

(q − ω
vF
− i0+)2

+

ˆ ∞
−∞

dω σω

ˆ ∞
−∞

dq
eiqx−iωt − e−iqx+iωt

(q − ω
vF
− i0+)2

}
. (8.39)
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In order to evaluate the integral, one may note that the residue of the twofold pole at q = ω/vF +
i0+ can be evaluated with the help of the general formula for the residue of an n-fold pole at z0:
Res(f, z0) = 1

n! [(z − z0)nf(z)]n−1. In the following, we restrict the considerations to x ≥ 0. Then
Eq. (8.39) yields

S1
A(x > 0, t) =

xi

2v2
F

ˆ ∞
−∞

dω σωe
i ωvF

δx

{
coth

[
βω

2

]
+ 1
}

(8.40)

S1
A(x > 0, ε) =

ix

2v2
F

1
L
DR
ω e

iε x
vF

(
coth

[
βε

2

]
+ 1
)
. (8.41)

Calculation of S1
B: The third term in Eq. (8.38) vanishes, as a short calculation shows:

S1
B = − i

2π

ˆ ∞
−∞

dω coth
[
βω

2

]ˆ ∞
−∞

dq
1

(ω+ − vF q)2

= 0, (8.42)

because the momentum integral is identical to zero.

8.4.2 Decay rate and phase shift

With the results from the preceding subsection we are now in the position to evaluate the Green’s
function up to second order in the coupling strength g. The Fourier transformation of the expanded
Green’s function G>(ε, x) =

´
dt eiεt

{
g>(x, t)

(
1 + S1(x, t) +O(g4)

)}
yields

G>(ε, x) = g>(ε, x)
[
1 +
ˆ

(dω)S1(x, ω)
g>(x, ε− ω)
g>(x, ε)

+O(x2, g4)
]
, (8.43)

where the emerging convolution
´

(dω)S1(ω, x)g>(ε− ω, x) gives (for x > 0):

ˆ
(dω)S1(ω, x)

g>(ε− ω, x)
g>(ε, x)

=
ix

v2
F

ˆ
(dω)

1
L
DR
ω (n̄(ω) + 1)

[
1− f(ε− ω)

1− f(ε)

]
= −Γ(ε)

x

vF
− iϕ(ε)

x

vF
. (8.44)

Using the (a)symmetry of ReDR
qω (ImDR

qω) in ω, the decay rate Γ(ε) yields

Γ(ε) =
DOSel

[1− fε]

ˆ ∞
0

dω ImD̄R
ω {2n̄ω + 1− [n̄ω + 1]fε−ω − n̄ωfε+ω} , (8.45)

where we set D̄R
ω = 1

LD
R
ω , and the phase shift is:

ϕ(ε) = − DOSel

[1− fε]

ˆ ∞
0

dωReD̄R
ω {1− [n̄ω + 1]fε−ω + nωfε+ω} , (8.46)
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where we introduced the electronic density of states DOSel = (2πvF )−1. In order to clarify the
physical meaning of the expressions in Eqs. (8.45) and (8.46) in the next subsection we compare them
to a simple Fermi’s golden rule calculation.

8.4.3 Comparison to Fermi’s golden rule approach

The weak coupling expansion of the bosonization solution for the coherence provides us with a decay
rate and a phase shift which can be compared to the results stemming from the equations of motion
approach [11, 31, 36]. There, the authors studied the influence of decoherence due to an external
quantum bath on the weak localization of electrons and compared the resulting dephasing rate Γϕ
with a simple Fermi’s golden rule calculation. It was shown that the dephasing rate of an electron
subjected to quantum noise is not simply given by the electronic decay rate Γel. In addition, the
coherence of the electronic Green’s function is sensitive to the scattering of the corresponding holes
(Γh) as well. For a detailed explanation of this fact we refer the reader to [36, 11]. However, the main
idea is to re-express the Green’s function G>(k, t) = −i

〈
ĉk(t)ĉ†k(0)

〉
as (where we introduce the time

evolution operator Ût = exp(−i
´ t

0
dt′ Ĥ(t′)))

G>(x, k) = −i 〈vac| Û†t ĉkÛtĉ
†
k |vac〉

= −i
〈
ĉ†kÛtvac

∣∣∣ Ûtĉ†kvac
〉
. (8.47)

The overlap in the second line in Eq. (8.47) can decay by two processes: either the ket state changes
(i.e., the electron created at t = 0 can be scattered during its propagation), or the bra state changes
after time t (i.e., the hole with momentum k is annihilated). Thus, the total decay rate is a sum of
the electron and the hole scattering rates. These can be calculated with help of Fermi’s golden rule,
valid in the weak coupling limit. The rate of emmiting (absorbing) the energy ω into (from) the bath
is given by Γel(ε→ ε± ω) = 2πDOSel

〈
V̂ V̂

〉
∓ω

, where we set DOSel = (2πvF )−1. As both, emission

and absorbtion of energy leads to decoherence of the electron, the electronic scattering rate is the
sum of both Γel(ε) = Γel

↑ (ε) + Γel
↓ (ε), where

Γel
↓ (ε) = DOSel

ˆ ∞
0

dω
〈
V̂ V̂

〉
ω
· [1− fε−ω]

Γel
↑ (ε) = DOSel

ˆ ∞
0

dω
〈
V̂ V̂

〉
−ω
· [1− fε+ω]. (8.48)
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Now, with help of the fluctuation-dissipation theorem we can sum up the two contributions, yielding:

Γel(ε) = DOSel

ˆ ∞
0

dω
〈

[V̂ , V̂ ]
〉
ω

{
1 + coth(βω2 )

2
· [1− fε−ω]

−
1− coth(βω2 )

2
· [1− fε+ω]

}

= 2DOSel

ˆ ∞
0

dω ImDR
ω {2n̄ω + 1− n̄ωfε+ω − [n̄ω + 1]fε−ω} . (8.49)

The corresponding hole decay rates are given by

Γh
↑(ε) = DOSel

ˆ ∞
0

dω
〈
V̂ V̂

〉
ω
· fε+ω

Γh
↓(ε) = DOSel

ˆ ∞
0

dω
〈
V̂ V̂

〉
−ω
· fε−ω, (8.50)

and result in the total hole scattering rate

Γh(ε) = 2DOSel

ˆ ∞
0

dω ImDR
ω {[n̄ω + 1]fε+ω + n̄fε−ω} . (8.51)

Following [11, 31, 36], the total dephasing rate is given by Γϕ(ε) = Γel+Γh

2 . The factor 1
2 reflects the

fact that Fermi’s golden rule gives the probability of a scattering event per time unit. Therefore,
the decay of the Green’s function, which is the amplitude of an electron to propagate coherently, is
related to exactly the half of the rate stemming from a Fermi’s golden rule calculation. One gets:

Γϕ(ε) =
Γel(ε) + Γh(ε)

2

= DOSel

ˆ ∞
0

dω ImDR
ω {2n̄ω + 1 + fε+ω − fε−ω} . (8.52)

The dephasing rate Γϕ can now be compared to the rate Γ in Eq. (8.45) resulting from the weak
coupling expansion of the exact bosonization result (Eq. (8.34)). While at first sight the results seem
to differ crucially, a closer look shows that indeed they are identically the same. This follows from
the identity

2n̄ω + 1− [n̄ω + 1]fε−ω − n̄ωfε+ω
1− fε

= 2n̄ω + 1 + fε+ω − fε−ω

e−εβ
(
2 + n̄−1

ω − [n̄−1
ω + 1]fε−ω − fε+ω

)
= fε−ω + [n̄−1

ω + 1]fε+ω

e−εβ
(

1 + eβω − fε−ω(eβω + eεβ)− fε+ω(1 + eβ(ε+ω))
)

= 0

e−εβ
(
eβω − eβω

)
= 0. (8.53)
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Therefore, as a final result the decay rate Γ(ε) determing the decay of the single particle Green’s
function in the weak-coupling limit is given by

Γ(ε) = DOSel

ˆ ∞
0

dω ImD̄R
ω { 2n̄ω + 1︸ ︷︷ ︸

fluctuations

+ (fε+ω − fε−ω)︸ ︷︷ ︸
Pauli blocking

} . (8.54)

Equation (8.54) proofs that the bosonization solution contains the effect of Pauli blocking. This is
a non-trivial fact, as here we start from an exact solution for the Green’s function. The resulting
dephasing rate is identical to that evaluated in the framework of the semiclassical equations of motion
approach [31, 36, 32, 11]. While, the exponent in the bosonization solution for G>(ε, x) in Eq. (8.35)
only depends on the plasmonic spectrum, the Fermi functions enter the calculation via the non-
interacting Green’s function g>(ε, x) (cf. Eq. 8.43).

8.5 Coupling to two-dimensional phonons

In this section we study the coherence properties of one-dimensional electrons interacting with a
bath of two-dimensional phonons. We are particularly interested in how the influence of an external
bosonic bath compares to that of intrinsic electron-electron interaction studied in Chapter 3. In the
latter case, at least for high-energy electrons we could show that the decoherence simply relies on a
pure dephasing process. In contrast, for electrons with high energies (compared to the energy, related
to the excitation of a phonon) we expect to observe decoherence processes which rely crucially on
the scattering between electrons and phonons. In addition, at small energies, as an effect of the
electron-phonon interaction, even for non-interacting electrons there should show up some effective
electron-electron coupling mediated by the phonon field. One may note that this effective (and in
some frequency regime attractive) interaction is at the heart of the theory of superconductors.

8.5.1 Coupling between phonons and electrons

In Section 8.1 we introduced the most general coupling of the electron density to a potential V̂
resulting from the interaction with an arbitrary harmonic oscillator bath (see Eq. (8.1)). In addition,
the potential was assumed to be a linear function of the bath modes {âj,q}: V̂q =

∑N
j=1 αj,q(âj,q +

â†j,−q). For the case of electron-phonon interaction, the potential V̂ is given by a convolution between
the density of the ions ρ̂ph and the screened Coulomb potential Ũ : V̂q = Ũqρ̂ph,q. As usual, one
defines a displacement field ~u(x, t) denoting the deviations of the ion-cores from its rest position [30]:

~u~q =
−iε̂~q√

2V −1ρcω~q
·
[
â~q + â†−~q

]
. (8.55)
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Here, ε̂~q stands for the polarization vector of the phonon mode â~q, whose dispersion relation is denoted
by ω~q . V is the two-dimensional volume and ρc is the density of the ion cores. In two dimensions,
there exist two normal modes, namely the longitudinal and the transversal mode. As we assume the
phonons to be coupled to the chiral electron system via a density-density interaction, we can neglect
the transversal phonons, which do not lead to a deformation of the ion density. These deformations
are given by: ρ̂ph(x) ≡ −∇~u(x) , where ~u(x) is the Fourier transformed of ~u~q. For longitudinal
phonons the polarization vector is given by ε̂~q = ~q

q and the density operator yields

ρ̂ph,~q =
|~q|√

2V −1ρcω~q

[
â~q + â†−~q

]
, (8.56)

while the corresponding free bath Hamiltonian is given by Ĥbath =
∑
~q ω~qa

†
~qa~q. We assume the elec-

tron system to be orientated in x-direction and denote the finite width of the 2DEG in y-direction as
W . Thus, we can introduce an additional quantum number Q, labelling the perpendicular momentum
of the phonons y-direction. For this we set ~q = (q,Q). This yields an effective bath Hamiltonian of
the form we used in the previous calculations

Ĥbath =
∑
jq

ωjqâ
†
jqâjq

ω~q = ω
(√

q2 +Q2
)
. (8.57)

The density-density coupling, defined as

Ĥint =
ˆ
dx

(ˆ
dx′2 Ũ(~x′ − êxx)ρ̂ph(~x′)

)
· ρ̂(x), (8.58)

after the Fourier transformation to momentum space, yields Ĥint = 1
V

∑
~q Ũ~qρ̂ph,q̃ρ̂−q, where the

potential V̂~q follows from Eq. (8.56):

V̂q =
∑
Q

Ũ~q
|~q|√

2ρcV −1ωjq

[
âjq + â†j,−q

]
.

=
∑
Q

g~q

[
â~q + â†~q

]
. (8.59)

Electronic self-energy As we already mentioned, the effect of the coupling between electrons
and phonons on the electronic single-particle Green’s function is completely encoded in the resulting
self-energy Σqω (Eq. (8.27)). In the continuum limit, i.e., W → ∞, it follows (note that Mj,q ≡
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1
W

√
|q|

2πLαj,q):

Σqω = −
∑
Q

2ωjq|Mjq|2

ω2
+ − ω2

jq

≈ −|q|
ˆ ∞

0

dQ
Ū2
(√

q2 +Q2
)
·
(
q2 +Q2

)
ω2

+ − ω2(
√
q2 +Q2)

, (8.60)

where we included several constants into the function Ūq,Q ≡ Ũq,Q
8π2ρc

and Q denotes the momentum
perpendicular to the electronic flight-direction. As in the case of the intrinsic electron-electron in-
teraction, we assume Ū to be cutoff for q � q′c and denote the dimensionless coupling strength as
g ≡ limq,Q→0 Ūq,Q/(2πvF ). Before we start with the calculation of the Green’s function, some further
remarks are in order. Obviously, the coupling constant g is a free parameter of the theory. For
acoustical phonons, we treat the dispersion relation ω(~q) in the Debye approximation, where we as-
sume the Debye frequency ωc to be much larger than the high-energy cutoff underlying the Luttinger
approximation, i.e., vF kF � ωc. Therefore, in the following we use the linearised phonon dispersion
relation ω(~q) = vs|~q|, where vs denotes the sound velocity of the acoustical phonons. For the cou-
pling to acoustical phonons, the dimensionless ratio vs/vF is the second free parameter of theory.
Instead, considering optical phonons with the dispersion relation ω(~q) ≡ ω0 , the second dimensional
parameter is given by ω0/vF q

′
c .

Plasmonic spectrum and G>(ε, x) for electron-phonon coupling Here, we mention only the
most obvious features of the plasmonic spectrum and the corresponding Green’s function of electrons
coupled to a two-dimensional phonon bath. Fig. 8.1 shows the plasmonic spectral density for one-
dimensional electrons (in the absence of intrinsic interactions) coupled to a bath consisting of two-
dimensional, either acoustical or optical phonons. As a result of the coupling to acoustical phonons,
an attractive electron-electron interaction is mediated by the phonon-field. This follows from the
observation that at low frequencies the plasmonic velocity is lowered compared to the non-interacting
case. In Fig. 8.2 we show the corresponding Green’s function (for coupling to optical phonons).
Obviously, there are two distincy energy regimes. The decoherence of electrons with ε � ω0 is
strongly suppressed, as these can not excite optical phonons of energy ω0. This is in contrast to
high-energy electrons with ε� ω0 . These can excite phonons, thereby suffering decoherence.

8.6 Polaron cloud

As a further application of the formalism developed above, we are interested in the correlation between
the electron and the phonon density. For example, one can ask, what is the amplitude of detecting a
deformation in the two-dimensional crystal structure at position ~x = (x, y) and time t, if an electron
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Figure 8.1: (a) Plasmonic spectral density of one-dimensional electrons (in the absence of intrinsic
interactions) coupled to two-dimensional acoustical phonons with velocity vs/vF = 0.5; here the
interaction potential is Ū~q = 2πvF g exp(−(|~q|/q′c)2) with g = 0.5; Obviously, at small frequencies the
plasmon velocity is lowered indicating the effective, attractive, electron-electron interaction mediated
by the phonon field. (b) Plasmonic spectral density for one-dimensional electrons coupled to two-
dimensional optical phonons with ω0/(q′cvF ) = 1 for the same interaction potential as in (a).

was inserted at t = 0 and x, y = 0. A collective movement of a pulse in the electronic density ρ̂ and
a distortion of the crystal lattice, usually is called a “polaron”. This amplitude can be obtained by
calculating the correlation function C(x, t) ≡ 〈ρ̂ph(x, t)ρ̂(0, 0)〉. It yields (we set ~q = (qx, qy) = (q,Q)):

〈ρ̂ph(~x, t)ρ̂(0, 0)〉 = −
〈
∇~̂u(~x, t)ρ̂

〉
=

∑
~q,q′>0

ei~q~xM~q

〈(
â~q(t) + â†−~q,(t)

)(
b̂q′ + b̂†q′

)〉
, (8.61)

where M~q = |~q|
W

√
|q|

2πLU(~q)·(2V −1ρcω(~q))−1/2. From the interacting part of the action S in Eq. (8.26)
one can directly derive the selection rules for the correlation functions emerging in Eq. (8.61). As
discussed above, the action includes processes which violate the energy conservation and therefore
we call them “virtual processes”. In order to take care of those processes, we formally labelled the
corresponding coupling coefficients with M−~q and (M−~q )∗ (the coefficients, related to the energy and
momentum conserving interactions between bosons of same chirality are denoted by M+

~q and (M+
~q )∗).
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Figure 8.2: (a) Plot of the electronic Green’s function |G>(ε, x)| under the influence of optical
two-dimensional phonons with ω0/(q′cvF ) = 1 for various propagation lengths (from top to bot-
tom): xq′c = 0, 3.3, 6.6, 10, 13.3. The coupling between the electrons and phonons is given by
Ū~q = 2πvF g exp((|~q|/q′c)2) with g = 0.5 , while the internal interaction is set to zero, i.e., α = 0
and we restrict the considerations to T = 0. As the Fourier transform into frequency space in-
volves an integration with a slowly decaying integrand, we introduced an artificial exponential cutoff
(∼ e−γ|t| with γ = 0.1), leading to a certain smearing of |G>(ε, x)| in ε (e.g., near the Fermi edge this
can be seen clearly). (b) Corresponding Green’s function |G>(x, t)|.

For the correlation function C(x, t) it follows that

C(~x, t) = i
∑
Q,q>0

eiQy
{
MqQ

[
−i
〈
âqQ(t)b̂†q

〉]
eiqx +M∗qQ

[
−i
〈
â†qQ(t)b̂q

〉]
e−iqx

MqQ

[
−i
〈
â†−q,Q(t)b̂†q

〉]
eiqx +M∗qQ

[
−i
〈
â−q,Q(t)b̂q

〉]
e−iqx

}
. (8.62)

As the bosonic operators â~q and b̂q commute, we can simplify the expression by introducing the time-

ordered correlation functions CT+(~q, t) ≡ −i
〈
T â~q(t)b̂†

〉
and CT−(~q, t) ≡ −i

〈
T â†−~q(t)b̂

†
〉

, restricting
the considerations to positive times t > 0 :

C(~x, t) = i
∑
Q,q>0

eiQy
{[
MqQe

iqxCT+(q,Q, t)− c.c
]

+
[
MqQe

iqxCT−(q,Q, t)− c.c
]}

= −2
ˆ

(dQ)eiQy ×

Im
{ˆ ∞

0

(dq)
ˆ ∞
−∞

(dω) eiqx−iωtMqQ

[
CT+(q,Q, ω) + CT−(q,Q, ω)

]}
(8.63)
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8.6.1 Calculation of the time-ordered correlation functions

In a next step one has to derive the correlation function CT+ and CT− in frequency representation.
Here, the functional field integral approach shows its full power. One calculates the imaginary time-
ordered version of CT+,− , which after a analytical continuation yields the corresponding retarded
Green’s functions. The latter is related to the time-ordered correlation functions via the identity

CT+/−(~q, ω) = Re[CR+/−(~q, ω)] + i coth
[
βω

2

]
Im[CR+/−(~q, ω)], (8.64)

where CR+(~q, t) ≡ −iΘ(t)
〈[
â~q(t), b̂†q

]〉
and CR− is defined analogously. The imaginary time-ordered

correlation functions Cτ+(~q, τ) ≡ −
〈
Tτ â~q(τ)b̂†q

〉
and Cτ−(~q, τ) ≡ −

〈
Tτ â

†
−~q(τ)b̂†q

〉
can be translated

into the field theoretical description be expressing the involved operators by the corresponding fields
ϕ and φ (for brevity here we already show the correlators in the Matsubara representation ) :

Cτ+(~q, iωn) = − 1
β

〈
ϕn~qφ̄qn

〉
Cτ+(~q, iωn) = − 1

β

〈
ϕ̄−~qnφ̄q,−n

〉
. (8.65)

Now, the explicit calculation of the correlators is rather simple, realizing that

Cτ+(~q, iωn) = ∂M+
~q

lnZ

Cτ−(~q, iωn) = ∂M−
~q

lnZ, (8.66)

and remembering the fact that the self-energy emerging in the effective plasmonic action (Eq. (8.27))
is a sum of the two contributions stemming from the right- and the left-moving phonons. Then, it
directly follows

Cτ+/−(~q, iωn) = ∓ 1
2

1
iωn − Ωq + Σqn

·
M∗~q

iωn ∓ ω~q
. (8.67)

In a last step, performing the analytic continuation we derive the retarded Green’s functions: CR+/−(~q, ω) =
Cτ (~q, iωn → ω+). Finally, employing Eq. (8.64), the correlation function C(~x, t) turns out to be real
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and yields for t > 0:

C~x,t = −2
ˆ

(dQ)eiQy Im
{ˆ ∞

0

dq

2π

ˆ ∞
−∞

dω

2π
eiqx−iωtM~q

[
CT+(q,Q, ω) + CT−(q,Q, ω)

]}
= Im

{ˆ ∞
0

dq

2π

ˆ ∞
−∞

(dω) eiqx−iωt[
Re
(
C̃T+ + C̃T−

)
+ i coth

(
βω

2

)
Im
(
C̃T+ + C̃T−

)]}
, (8.68)

where in the last line we make use of the symmetry of the integrand with respect to the perpendicular
momentum Q: CT+/−(q,Q, ω) = CT+/−(q,−Q,ω) and define the functions

C̃T+/− = ± 1
ω+ − Ωq + Σqn

ˆ ∞
0

dQ

2π
2 cos(Qy)|M~q|2

ω+ ∓ ω~q
. (8.69)

8.6.2 Discussion of the numerical results

Here, we discuss the case of electrons coupled to acoustical phonons, where beside the coupling
strength g between plasmons and phonons the ratio of the sound velocity vs and the Fermi velocity
vF is as a second free parameter of the theory. The numerical evaluation of Eq. (8.68) in Fig. 8.3,
emphasizes the close analogy between a chiral Luttinger liquid and an ordinary Euler liquid. Namely,
to some extent, the behaviour of the correlation function C(~x, t) can be understood in a simple classical
picture of a liquid which is distorted by the interaction with some particle, inserted at (x = 0, t = 0).
In the classical picture, the correlation between the phonon density and the particle density should
depend crucially on the ratio vs/vF . For vs > vF , the particle creates a pulse in the phonon-density,
which follows the position of the particle such that a wave front, essentially propagating with vF ,
emerges. The phonon density is largely increased in the close vicinity to the particle, but with
increasing distance to the “epicenter” the radiated wave fronts lose coherence such that far apart from
the particle the traces of the distortion vanish. In contrast, for vs/vF < 1 a “Mach cone” with an
angle α̃ is created, i.e., a shock-front builds up which is experienced as a sonic boom. The angle α̃
is thereby given by sin α̃ = vs

vF
(for vs < vF ). Indeed, C(~x, t) shows a very similiar behaviour with

respect to a change of vs/vF .
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Figure 8.3: (a) Density-density correlation function C(~x, t) for acoustical phonons with vs/vF = 0.8
as a function of ~x = (x, y) for different times (from left to the right): tq′cvF = (0, 11.3, 17). The
electron-phonon interaction potential is Ū~q = 2πvF g exp(−(|~q|/q′c)2) with g = 0.4. Furthermore, the
intrinsic electron-electron interaction is set to zero (α = 0) and we consider the T = 0 case. The
red lines show the Mach cone with opening angle α̃ = sin−1(vs/vF ), while the red dot represents the
electron moving with vF along the one-dimensional channel in x-direction. (b) Same configuration
as in Fig.8.3a, but here vs/vF = 2.0.
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Chapter 9

Summary and outlook

In the present work, we studied dephasing of chiral one-dimensional electron systems by electron-
electron interaction as well as by coupling to an arbitrary harmonic oscillator bath. As a direct a
measure for the electrons’ coherence we considered the interference contrast of a ballistic electronic
interferometer, as the Mach-Zehnder interferometer (Chapter 2). It was shown that for weakly
tunnel-coupled interferometer arms the visibility and thus the coherence can be expressed only in
terms of the single-particle Green’s function G>(ε, x). Therefore, in the following we referred to
G>(ε, x) as the coherence of a single electron. Consequently, the main part of this work was devoted
to the analysis of the single-particle Green’s function (Chapters 3, 4 and 5). We employed the
full bosonization solution of G>(ε, x) as a reference point and re-derived the single-particle Green’s
function in the high-energy limit within a physically transparent semiclassical method. While at first
sight the physical mechanism of decoherence in strongly interacting one-dimensional electron systems
was rather unclear, the semiclassical approach showed that the decoherence of high-energy electrons
relies on a simple “pure dephasing” process, i.e., no complicated scattering processes are involved. As
a main result we proofed that the coherence of high-energy electrons in one-dimensional chiral electron
systems displays a universal power-law as a function of propagation distance: |G>(ε→∞, x)| ∼ 1/x
.

In a next step, the semiclassical approach was extended by proposing an ansatz, meant to re-derive the
Green’s function G>(ε, x) for arbitrary energies. Unfortunately, the semiclassical did not reproduce
the bosonization result to the full extent. Nevertheless, the analysis showed how to derive the exact
Green’s function, at least mathematically, starting from non-interacting electrons moving with the
bare Fermi velocity, thereby accumulating a random quantum phase due to the intrinsic fluctuations
of the plasmonic bath. In passing, we considered the functional bosonization approach, which seems
to be closely related to the semiclassical approach, however the latter might to be more transparent
and technically simpler. A further investigation of the semiclassical approach seems to be rather
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fruitful as it might provide a much more intuitive understanding for the decoherence in such systems.
As a possible next step, for instance one could think of an extension of the semiclassical approach in
order to describe the decoherence in the high-energy limit in arbitrary Luttinger liquids (instead of
chiral Luttinger liquids).

Besides these very fundamental questions, the further investigation of the Mach-Zehnder interferom-
eter seems to be of particular interest. As we mentioned in the beginning of this work, up to now
only a fraction of the observed effects are well understood. To proceed further, an extension of the
bosonization description of the interferometer to higher orders in tunneling seems to be necessary.
We pointed out that in next non-trivial order in tunneling, the current is related to complicated
convolutions of two-particle Green’s functions. However, in Chapter 7 it became clear that in prin-
ciple the numerical evaluation of the two-particle Green’s functions is possible. Furthermore, the
closer analysis of four-point functions should provide a deeper understanding of the non-equilibrium
properties of Luttinger liquids. As an alternative, one could treat the interactions perturbatively,
for instance in the framework of the presented Keldysh perturbation theory, in turn allowing for
an arbitrary tunnel coupling of the interferometer arms. For stronger tunnel-coupled interferometer
arms, these can not be conisdered to be inequilibrium any longer. However, as Keldysh perturbation
theory remains applicable even in non-equilibrium, this could be an interesting approach.

In Chapter 8, we concluded this work coupling the one-dimensional electrons to an external bath.
With help of the bosonization technique an exact solution for the electronic Green’s function was
derived. The main result of this chapter was that expanding the exact solution of G>(ε, x) to lowest
order in coupling between bath and electrons, an energy dependent dephasing rate was derived.
This dephasing rate turned out to reflect the influence of the Fermi edge, i.e., Pauli blocking effects.
Whereas this result was derived earlier in [31, 32, 36, 11], here it was obtained starting from the
exact solution for the Green’s function. This result might be only the starting point for the further
investigation of the question how the influence of the Fermi edge (e.g., Pauli blocking etc.) on the
electrons’ coherence is contained within the bosonization solution.



Appendix A

Mach-Zehnder interferometer

A.1 Current operator

The current operator Î ≡ qe
d
dtN̂1 can be calculated in terms of the single particle fields ψ̂j(x), only

using the canonical anti-commutation relations in Eq. (2.2) and the Heisenberg equation d
dtN̂1 =

−i[N̂1, Ĥ
T ]:

Î = −iqe
ˆ
dx
[
ψ̂†1(x)ψ̂1(x), tAψ̂

†
1(0)ψ̂2(0) + tBψ̂

†
1(x1)ψ̂2(x2) + h.c.

]
≡ Î1 + Î2 + h.c., (A.1)

with

Î1 ≡ −iqe
ˆ
dx [ψ̂†1(x)ψ̂1(x), tAψ̂

†
1(0)ψ̂2(0)]

Î2 ≡ −iqe
ˆ
dx [ψ̂†1(x)ψ̂1(x), tBψ̂

†
1(x1)ψ̂2(x2)].

In the following, we evaluate the two emerging contributions Î1 and Î2 separately.
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A.1.1 Î1

The first part of the current operator Î1 yields

Î1 = −iqetA
ˆ
dx
[
ψ̂†1(x)ψ̂1(x)ψ̂†1(0)ψ̂2(0)

− ψ̂†1(0)ψ̂2(0)ψ̂†1(x)ψ̂1(x)
]

= −iqetA
ˆ
dx
[
ψ̂†1(x)ψ̂1(x)ψ̂†1(0)ψ̂2(0)

+ ψ̂†1(x)(δ(x)− ψ̂1(x)ψ̂†1(0))ψ̂2(0)
]

= −iqetAψ̂†1(0)ψ̂2(0). (A.2)

A.1.2 Î2

The second part is given by

Î2 = −iqetB
ˆ
dx
[
ψ̂†1(x)ψ̂1(x)ψ̂†1(x1)ψ̂2(x2)

+ ψ̂†1(x)ψ̂†1(x1)ψ̂1(x)ψ̂2(x2)
]

= −iqetB
ˆ
dx
[
ψ̂†1(x)ψ̂1(x)ψ̂†1(x1)ψ̂2(x2)

+ ψ̂†1(x)(δ(x− x1)− ψ̂1(x)ψ̂†1(x1))ψ̂2(x2)
]

= −iqetBψ̂†1(x1)ψ̂2(x2). (A.3)

Summing up the two contributions and adding the hermitian conjugated operator, the calculation
yields

Î = −iqetAψ̂†1(0)ψ̂2(0)− iqetBψ̂†1(x1)ψ̂2(x2) + h.c. (A.4)

A.2 Calculation of the interferometer current

The calculation of the interferometer current in linear response to the tunnel operator starts from
the Kubo formula

I = i

ˆ 0

−∞
dt′
〈[
ĤT
H1

(t′), Î(0)
]〉
. (A.5)
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During the following calculations we set ( see Eq. (A.4))

Î = −iqetAψ̂†1(0)ψ̂2(0)− iqetBψ̂†1(x1)ψ̂2(x2)︸ ︷︷ ︸
B†

+ h.c.︸︷︷︸
B

.

The tunnel operator ĤT
H1

was defined in Eq. (2.3) as

ĤT
H1

= tAψ̂
†
1(0)ψ̂2(0) + tBψ̂

†
1(x1)ψ̂2(x2)︸ ︷︷ ︸

A

+ h.c.︸︷︷︸
A†

.

Using these abbreviations, the mean current can be written as

I = i

ˆ 0

−∞
dt′
〈[
A(t′) +A†(t′), B +B†

]〉
= i

ˆ 0

−∞
dt′ 〈[A(t′), B]〉+ h.c. . (A.6)

In a next step we express the integrand in terms of the single particle Green’s functions G>(x, t).
The integrand consists of four contributions

〈[A(t), B]〉 = iqe|tA|2
〈[
ψ̂†1(0, t)ψ̂2(0, t), ψ̂†2(0, 0)ψ̂1(0, 0)

]〉
+ iqe|tB |2

〈[
ψ̂†1(x1, t)ψ̂2(x2, t), ψ̂

†
2(x2, 0)ψ̂1(x1, 0)

]〉
+ iqetAt

∗
B

〈[
ψ̂†1(0, t)ψ̂2(0, t), ψ̂†2(x2, 0)ψ̂1(x1, 0)

]〉
+ iqet

∗
AtB

〈[
ψ̂†1(x1, t)ψ̂2(x2, t), ψ̂

†
2(0, 0)ψ̂1(0, 0)

]〉
. (A.7)

With the definitions for the single-particle Green’s functions Eq. (2.10) one gets

〈[A(t), B]〉 = iqe|tA|2(G<1 (0,−t)G>2 (0, t)−G>1 (0,−t)G<2 (0, t))

+ iqe|tB |2(G<1 (0,−t))G>2 (0, t)−G>1 (0,−t)G<2 (0, t))

+ iqetAt
∗
B(G<1 (x1,−t)G>2 (−x2, t)−G>(x1,−t)G<(−x2, t))

+ iqet
∗
AtB(G<1 (−x1,−t)G>2 (x2, t)−G>(−x1,−t)G<(x2, t)). (A.8)

The average current I therefore yields

I = −qe
ˆ 0

−∞
dt′
{[

(|tA|2 + |tB |2)(G<1 (0,−t)G>2 (0, t)−G>1 (0,−t)G<2 (0, t))

+tAt∗B(G<1 (x1,−t)G>2 (−x2, t)−G>(x1,−t)G<(−x2, t))

+ t∗AtB(G<1 (−x1,−t)G>2 (x2, t)−G>(−x1,−t)G<(x2, t))
]

+ c.c.
}
. (A.9)
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Now, we employ the identity G>/<(x, t) = −
[
G>/<(−x,−t)

]∗
to extend the integral to

´∞
−∞ . It

follows

I = −qe
ˆ ∞
−∞

dt
(
(|tA|2 + |tB |2)(G<1 (0,−t)G>2 (0, t)−G>1 (0,−t)G<2 (0, t))

+
[
tAt
∗
B(G<1 (x1,−t)G>2 (−x2, t)−G>(x1,−t)G<(−x2, t)) + c.c

])
. (A.10)

As an intermediate result, the current expressed in terms of the Green’s functions in time domain
yields (where we follow the notations of Chapter 2)

I0 = qe[|tA|2 + |tB |2]
ˆ ∞
−∞

dt (G>1 (0,−t)G<2 (0, t)−G<1 (0,−t)G>2 (0, t))

Icoh = qe|tAt∗B |

eiφ
ˆ ∞
−∞

dt (G>(x1,−t)G<(−x2, t)−G<1 (x1,−t)G>2 (−x2, t)) + c.c. (A.11)

Introducing the Fourier transformed Green’s functions G>/<(ε, x) one changes to frequency domain:

I0 = qe[|tA|2 + |tB |2]
ˆ
dω

2π
(G>1 (ω, 0)G<2 (ω, 0)−G<1 (ω, 0)G>2 (ω, 0))

Icoh = qe|tAt∗B |

eiφ
ˆ
dω

2π
(G>1 (ω, x1)G<2 (ω,−x2)−G<1 (ω, x1)G>2 (ω,−x2)) + c.c. . (A.12)

With help of the fluctuation-dissipation theorem the classical part of the current I0 can be re-expressed
in terms of the tunnel density of states. This leads directly to Eq. (2.19).

A.3 Visibility

Finally, here we derive the expression for the visibility vI in Eqs. (2.25) and (2.26). The visibil-
ity is defined as the ratio between the maximal coherent current and the classical current: vI ≡
Icoh(Φ)|max/I0. With Eq. (A.12) it follows

vI =
2|tAt∗B |

|tA|2 + |tB |2
×∣∣´ dω

2π (G>1 (ω, x1)G<2 (ω,−x2)−G<1 (ω, x1)G>2 (ω,−x2))
∣∣´

dω
2π (G>1 (ω, 0)G<2 (ω, 0)−G<1 (ω, 0)G>2 (ω, 0))

.

Employing the identity G
>/<
α (ω, x) = eiµαxG

>/<
µ=0 (x, ω − µα) we can rewrite everything in terms of

the Green’s function G>(ω, x). With help of the fluctuation-dissipation theorem in Eq. (2.13), the
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expression can be simplified further (with qeV = µ1 − µ2 and V > 0)

vI =
2|tAt∗B |

|tA|2 + |tB |2
×∣∣´ dωG>(ω, x1)G<(ω − |qe|V,−x2)−G<(ω, x1)G>(ω − |qe|V,−x2)

∣∣
4π2
´
dω [ν(ω)ν(ω − |qe|V )][f(ω − |qe|V )− f(ω)]

. (A.13)
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Appendix B

Keldysh perturbation theory

B.1 Propagator functions

B.1.1 Keldysh propagator for non-interacting electrons

In equilibrium, the non-interacting Keldysh propagator GK0 (x, t) = −i〈[ψ̂(x, t), ψ̂†(0, 0)]〉 function for
a linearized electron spectrum, yields:

GK0 (x, t) = −i 1
L

∑
kk′

eikx−ivF kt〈[ĉk, ĉ†k′ ]〉

= i
1
L

∑
k

eikx−ivF kt (2fk − 1)

= − i

ˆ
dk

2π
eikx−ivF kt tanh(

βvF k

2
). (B.1)

In frequency and momentum space we get

GK(k, ω) = −2πi tanh(
βω

2
)δ(ω − vF k). (B.2)
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Figure B.1: Construction rules for the diagrammatic perturbation theory in Keldysh time.

B.1.2 Plasmon propagator functions

For deriving the plasmon propagator functions DR/A(x, t) = ∓iΘ(±t)〈[V̂ (x, t), V̂ (0, 0)]〉 we start from
the definition of V̂ (x) =

´
dx′ U(x− x′)ρ̂(x′), where as usual ρ̂(x) = L−1

∑
k e

ikxρ̂k:

DR/A(x, t) = ∓iΘ(±t)L−2
∑
k

|Uk|2eikx 〈[ρ̂k(t), ρ̂−k(0)]〉

= ∓iΘ(±t)L−2
∑
k,q

|Uk|2eikx−ivF kt(fq − fq+k). (B.3)

In frequency and momentum space this yields

DR/A(q, ω) =
1

2π
|Uq|2

ω − vF q ± i0+

ˆ
dk (fk − fk+q)

=
q

2π
|Uq|2

ω − vF q ± i0+
. (B.4)

As expected the retarded Green’s function and therefore the linear response of the plasmonic bath
turns out to be temperature independent. This is a general feature of harmonic oscillator baths.

B.2 Diagrammatic calculations

Working on the Keldysh contour complicates the diagrammatic calculation due to the matrix structure
of the Green’s functions. Especially, after performing the usual rotation in Keldysh space one can
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not construct the diagrams intuitively. Therefore, in Fig. B.1we sum up the construction rules for
the diagrammatic perturbation theory as it is presented in [19]. The only subtility arises calculating
equal-time diagrams. As in the standard perturbation theory in imaginary time, here one has to
introduce a special rule. In this case on has to substitute the usual Keldysh propagator GK0 by the
slightly different propagator G̃K0 (k, ω) ≡ 4πif(ω)δ(ω − vF k).

In the following calculations we set
´

(dk) ≡
´
dk
2π and

´
(dω) ≡

´
dω
2π .

B.2.1 First order diagrams

In first order one has to calculate the usual Hartree-Fock contribution to the retarded self-energy
ΣR(k, ω).

Hartree diagram The Hartree diagram only leads to a constant energy shift due to the coupling of
the electron to the total charge in the channel. The Hartree diagram contains a closed fermion loop,
therefore an additional minus sign shows up. Applying the construction rules showed in Fig. B.1,
there is only a single diagram contributing to the self-energy

ΣH(ε, k) = − i
2
U(q = 0)

ˆ
(dq)
ˆ

(dω) G̃K0 (q, ω)

= U(q = 0)
ˆ

(dq) f(q)

= U(q = 0)ρ̄, (B.5)

where ρ̄ denotes the mean electron density and calculating the closed fermion loop we used G̃K0 instead
of the Keldysh propagator.

Fock diagram The Fock diagram described the energy renormalization of the electron as a result
of a virtual process (cf. Fig. 6.1). This virtual process happens at one single time, i.e., it is an equal-
time process. Therefore, in the single contribution to the retarded self-energy GK0 is substituted by
G̃K0 :

ΣRF (ε, k) =
i

2

ˆ
(dq)
ˆ

(dω)U(q)G̃K0 (ε− ω, k − q)

= −
ˆ

(dq)U(q)f(k − q). (B.6)

B.2.2 Second order diagrams

There are two second order processes contributing to the retarded self-energy (cf. Fig. 6.1): the exci-
tation of plasmons and a vertex correction. We start with the evaluation of the plasmonic diagrams,
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followed by the rather lengthy calculation of the vertex correction.

Excitation of plasmons Applying the rules depicted in Fig. B.1 it turns out that only two diagrams
contribute to the self-energy ΣRP :

ΣRP (ε, k) =
i

2

ˆ
(dq)
ˆ

(dω)
[
GR0 (ε− ω, k − q) ·DK

0 (ω, q) +GK0 (ε− ω, k − q) ·DR
0 (ω, q)

]
=

1
2

ˆ
(dq)
ˆ

(dω)U2
q q

[
coth(βω/2)

(ε− ω)− vF (k − q) + i0+
δ(ω − vF q)+

tanh(β(ε− ω)/2)
ω − vF q + i0+

δ((ε− ω)− vF (k − q))
]

=
GR0 (ε, k)

8π2
·
ˆ ∞
−∞

dq U2
q q · [coth(β~vF q/2) + tanh(β~vF (k − q)/2)] . (B.7)

Vertex correction The vertex correction to the retarded self-energy has the structure (compare
to the review [19]):

ΣV (ε, k) =
(
i
2

)2 1
(2π)4

´
dk1

´
dk2

´
dω1

´
dω2 Uq1Uq2 × [

GR0 (ε− ω2, k − k2)GK0 (ε− ω1 − ω2, k − k1 − k2)GK0 (ε− ω1, k − k1)

+GR0 (ε− ω2, k − k2)GA0 (ε− ω1 − ω2, k − k1 − k2)GR0 (ε− ω1, k − k1)

+GK0 (ε− ω2, k − k2)GK0 (ε− ω1 − ω2, k − k1 − k2)GR0 (ε− ω1, k − k1)

+GK0 (ε− ω2, k − k2)GA0 (ε− ω1 − ω2, k − k1 − k2)GK0 (ε− ω1, k − k1)
]
. (B.8)

The calculation of the four integrals is a straight forward task. In the following, we derive every
integral separately labelling the diagrams by the involved Green’s functions, e.g., we refer to the first
term of ΣV in Eq. (B.8) as ΣRKK .
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Diagram [RKK]

ΣRKK =
1

16π2

ˆ
dk1

ˆ
dk2

ˆ
dω1

ˆ
dω2 Uk1Uk2 ·

1
(ε− ω2)− vF (k − k2) + i0+

tanh(β(ε− ω1 − ω2)/2) · tanh(β(ε− ω1)/2)

δ((ε− ω1 − ω2)− vF (k − k1 − k2))δ((ε− ω1)− vF (k − k1))

=
1

16π2

ˆ
dk1

ˆ
dk2 Uk1Uk2 ·

1
ε− vF k + i0+

tanh[βvF (k − k1 − k2)/2] tanh[βvF (k − k1)/2]

=
GR0 (ε, k)

16π2

ˆ
dk1

ˆ
dk2 Uk1Uk2 ×

tanh[
βvF (k − k1 − k2)

2
] tanh[

βvF (k − k1)
2

]. (B.9)

Diagram [KAK]

ΣKAK =
1

4 · (2π)2

ˆ
dk1

ˆ
dk2

ˆ
dω1

ˆ
dω2 Uk1Uk2 ×

1
(ε− ω1 − ω2)− vF (k − k1 − k2)− i0+

×

tanh[β(ε− ω2)/2]δ((ε− ω2)− vF (k − k2))×

tanh[β(ε− ω1)/2]δ((ε− ω1)− vF (k − k1))

= − 1
16π2

ˆ
dk1

ˆ
dk2

ˆ
dω2 Uk1Uk2δ((ε− ω2)− vF (k − k2))[

tanh[β(ε− ω2)/2] tanh[βvF (k − k2)/2]
ω2 − vF k2 + i0+

]
= −G

R
0 (ε, k)
16π2

ˆ
dk1

ˆ
dk2 Uk1Uk2 ×

tanh[βvF (k − k2)/2] tanh[βvF (k − k1)/2] (B.10)
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Diagram [KKR]

ΣKKR =
1

4 · (2π)2

ˆ
dk1

ˆ
dk2

ˆ
dω1

ˆ
dω2 Uk1Uk2 ×

tanh[β(ε− ω2)/2]δ((ε− ω2)− vF (k − k2))

[δ((ε− ω1 − ω2)− vF (k − k1 − k2))]
[

tanh[β(ε− ω1 − ω2)/2]
(ε− ω1)− vF (k − k1) + i0+

]
=

GR0 (ε, k)
16π2

ˆ
dk1

ˆ
dk2 Uk1Uk2 ×

tanh[βvF (k − k2)/2] tanh[βvF (k − k1 − k2)/2]. (B.12)

Diagram [RAR]

ΣRAR =
i2

4 · (2π)4

ˆ
dk1

ˆ
dk2

ˆ
dω1

ˆ
dω2

Uk1Uk2
(ε− ω1)− vF (k − k1) + i0+

1
(ε− ω2)− vF (k − k2) + i0+

· 1
(ε− ω2)− vF (k − k2) + i0+

=
2πi

4 · (2π)4

ˆ
dk1

ˆ
dk2

ˆ
dω2

Uk1Uk2
ω2 − ε+ vF (k − k2)− i0+

· 1
ω2 − vF k2 + i0+

= −G
R
0 (ε, k)
16π2

ˆ
dk1

ˆ
dk2 Uk1Uk2 . (B.12)

Summing up the four contributions the vertex correction yields

ΣRV (ε, k) =
[
GR0 (ε, k)

16π2

] ˆ ∞
−∞

dq1

ˆ ∞
−∞

dq2Uq1Uq2

×
[
tanh(

βvF (k − q1 − q2)
2

)) ·
[
tanh(

βvF ((k − q1)
2

) + tanh(
βvF ((k − q2)

2
))
]
−

− tanh(
βvF ((k − q2)

2
) tanh(

βvF ((k − q1)
2

)− 1
]
.



Appendix C

Semiclassical approach and

functional bosonization

C.1 Calculation of the exponent

Here, we present the explicit calculation of the exponent emerging in Chapter 5. The calculations are
straight forward, however one has to take the limit γ → 0 in the very end leading to a large number
of terms. Therefore, the calculation is a bit cumbersome.

Calculation of F1

F1 + δF1 =
1
4

ˆ
(dω)

〈[
V̂ , V̂

]〉(0)

ω

ˆ
dt1

ˆ
dt2 e

−iω(t1−t2)sgn(t1 − t2) (λ2λ2 − λ1λ1)

=
i

2

ˆ
(dω)

〈[
V̂ , V̂

]〉(0)

ω
Im
{ˆ

dt1e
−iωt1

(ˆ t0

−∞
dt2e

iωt2+γ(t2−t0)

ˆ 0

t0

dt2 e
iωt2 +

ˆ t1

0

dt2e
iωt2

)}

= − i
2
t

ˆ
(dω)

〈[
V̂ , V̂

]〉(0)

ω

ω

+
iπ

2

ˆ
(dω) δ(ω)

〈[
V̂ , V̂

]〉(0)

ω

ω
Re
(
eiω(t0−t) − eiωt0

)
. (C.1)

Calculation of F2
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F2 + δF2 =
1
4

ˆ
(dω)

〈{
V̂ , V̂

}〉(0)

ω

(∣∣∣∣ˆ dt1λ1(t1)e−iωt1
∣∣∣∣2 +

∣∣∣∣ˆ dt2λ2(t1)e−iωt2
∣∣∣∣2
)

=
1
4

ˆ
(dω)

〈{
V̂ , V̂

}〉(0)

ω

(∣∣∣∣ˆ t0

−∞
e−iωt1+γ(t1−t0) +

ˆ 0

t0

e−iωt1
∣∣∣∣2 +

∣∣∣∣ˆ t0

−∞
e−iωt1+γ(t1−t0) +

ˆ t

t0

e−iωt1
∣∣∣∣2
)

=
1
4

ˆ
(dω)

〈{
V̂ , V̂

}〉(0)

ω

(
1
ω2

+
1
ω2

[
2− e−iω(t−t0) − eiω(t−t0)

]
e−iω(t0−t) − 1
(−iω + γ)iω

+
e−iω(t−t0) − 1
(iω + γ)(−iω)

+ (t = 0)
)

=
1
2

ˆ
(dω)

〈{
V̂ , V̂

}〉(0)

ω

ω2
+

1
4

(t− 2t0)
〈{
V̂ , V̂

}〉(0)

ω→0
. (C.2)

Calculation of F3

F3 + δF3 = −
ˆ

(dω)
〈
V̂ V̂

〉(1)

ω

ˆ
dt1

ˆ
dt2 e

−iω(t2−t1)λ2(t2)λ1(t1)

= −
ˆ

(dω)
〈
V̂ V̂

〉(1)

ω

(ˆ t0

−∞
dt2e

−iωt2+γ(t2−t0) +
ˆ t

t0

dt2 e
−iωt2

)
×
(ˆ t0

−∞
dt1e

iωt1+γ(t1−t0) +
ˆ 0

t0

dt1 e
iωt1

)
= −

ˆ
(dω)

〈
V̂ V̂

〉(1)

ω

(
e−iωt0

−iω + γ
+
e−iωt − e−iωt0

−iω

)
×
(
eiωt0

iω + γ
+

1− eiωt0
iω

)
= −

ˆ
(dω)

〈
V̂ V̂

〉(1)

ω

(
1
ω2
e−iωt

+
iπ

ω
δ(ω)(e−iω(t−t0) − 1)− iπ

ω
δ(ω)(e−iωt0 − 1)

)
= −

ˆ
(dω)
ω2

〈
V̂ V̂

〉(1)

ω
e−iωt − 1

2
(t− 2t0) ·

〈
V̂ V̂

〉(1)

ω→0
(C.3)
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C.1.1 Calculation of
〈

Φ̂Φ̂
〉
qω

Starting from the definition of the bosonic field Φ̂(x, t) = −i
∑
q>0

√
2π
Lq

(
b̂qe

iqx − h.c.
)

the correlation

function
〈

Φ̂Φ̂
〉
qω

yields

〈
Φ̂Φ̂
〉
qω

=
ˆ
dt

ˆ
dx eiωt−ikx

{∑
k>0

2π
L|k|

(〈
b̂k(t)b̂†k

〉
eikx +

〈
b̂†k(t)b̂k

〉
e−ikx

)}

=
2π
|q|

(
Θq

〈
b̂q(t)b̂†q

〉
ω

+ Θ−q
〈
b̂†−q(t)b̂−q

〉
ω

)
=

4π2

|q|
(
Θq(1 + n̄(ωq))δ(ω − ωq) + Θ−qn̄(ω|q|)δ(ω + ω|q|)

)
. (C.4)
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