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Summary

In this thesis, we will calculate the correction to the conductivity of a disordered quasi one
dimensional metallic ring in the weak localization regime, using an improved treatment of
electron-electron interactions.

After a short introduction, we will start our discussion in chapter 1 with a review of
the transport properties in this regime and explain the effect of coherent backscattering.
We will then give an introduction to the formal perturbation theory, based on the so called
Cooperon diagram, by which this effect can be described. This will allow us to connect
the conductivity correction to the return probability of a random walk of the electrons in
the disordered system.

In chapter 2 we will introduce electron dephasing in the context of this correction and
explain how thermal fluctuations of the surrounding electrons lead to decoherence.

We will then consider the case of a disordered quasi one dimensional metallic ring,
which is closely connected to the problem of the disordered infinite wire, first solved by
Altshuler, Aronov and Khmelnitsky (AAK). In their celebrated paper [1] from 1982, these
authors calculated the correction to the conductivity in the weak localization regime, due to
electron-electron interactions in the framework of Johnson-Nyquist noise. We will discuss
the basics of this correction in chapter 3 and will show that their results, in the absence of
a magnetic field, can be well approximated by a Cooperon decay function of the form:

F (t) ∼ Tt3/2.

In 2004, Ludwig and Mirlin [2] and later Texier and Montambaux [3], were able show
that in the geometry of a ring, the results are strongly modified. We will show in chapter
3 that the correction to the conductivity in a quasi one dimensional ring can be written in
the form

∆σ ∼
∞∫

0

∞∑
n=−∞

Pn(t) e−Fn(t) Pn(t) =
1√

4πDt
e−(nL)2/4Dt,

where n is the winding number of an electron trajectory and L is the size of the ring.
Then, we will calculate in the real space and time domain the function Fn(t) for classical

noise and obtain a behavior similar to AAK for trajectories which are much shorter than
L, while for trajectories that explore the system completely it is given by

Fn(t) ∼ LTt,
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confirming the known results. We will analyze this crossover in detail and calculate relevant
correction terms.

Recently, Marquardt and von Delft suggested a more evolved treatment of the electronic
noise in their papers [4] and [5] and proposed an effective replacement for the correlator of
the corresponding fields.

They calculated corrections to the Cooperon decay function in an infinite wire and
obtained a parametrically small deviation from the AAK result in the form:

F (t) ∼ Tt3/2
(

1− 1√
Tt

)
,

where, in the regime of weak localization, always Tt� 1. In chapter 4 we will confirm this
result and calculate the correction due to this improved treatment in the ring geometry.

We will find that, as long as the thermal length LT =
√
D/T stays much smaller than

the ring size L and the average length of the trajectory Lt =
√
Dt, the correction remains

parametrically small and we will give a detailed calculation of all relevant terms.
For the case of a thermal length larger than the size of the ring, on the other hand, we

find a new regime, with a different size and temperature dependence:

Fn(t) ∼ L3T 2t.

Here, the decay is strongly suppressed, since, using the improved version of the correlator,
the potential can be considered frozen on the time scale of ~/kBT , describing the onset of
strong localization. An overview of these results can be found in table 4.1.

In chapter 5 we will discuss the correction to the conductivity, obtained from the
calculated decay function. We will find that in the new regime the correction will necessarily
be too large to be treated in the framework of weak localization. Thus, we will concentrate
on the possibility to measure deviations from the the classical results. For this, we will
consider the presence of an external magnetic field and the effect of connecting the ring to
leads and recent experiments in metallic grids.



Chapter 1

Conductivity of disordered metals

In the 1980s, the anomalous transport properties of electrons in disordered systems have
been studied experimentally and theoretically in great detail. It has been found that
the quantum-interference of electrons scattering at impurities can not be neglected in
sufficiently disordered systems and gives rise to a correction to the conductivity generally
called weak localization. For original reviews of this topic, see [6] and [7]. In this chapter,
we will discuss the basic properties of this correction and the underlying concepts, which
will be the foundation of our later calculations.

1.1 Introdution

The simplest model of electrical conduction in a metal is the Drude model, where one
obtains a local isotropic current density originating from an external electric field of the
form:

j(x) = σ0E(x), σ0 =
ne2τtr
m

. (1.1)

The conductivity is here proportional to the electron charge density ne, to the ratio of the
electron charge to its mass e/m (originating from the Lorentz force) and the transport time
τtr, given by the average time during which the electron is effectively accelerated. This is
equivalent to the average time between collision of the electron with some scattering po-
tential, which is given in a metal by impurities, defects, interstitials, etc. The assumptions
on which this is based are

• Electrons behave as classical particles and do not interact with each other.

• Collisions of the electrons with impurities are instantaneous and independent events,
which occur with a probability of 1/τtr per unit time.

• The electric field E(x) is weak, so that the response can be treated in linear order,
and varies only slowly on the length of the mean free path le. Any magnetic fields
can be neglected.
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In spite of the crude simplicity of this model, it is nevertheless sufficient to adequately
describe several real systems.

One of the most remarkable features of the Drude model is that one may equally describe
it in the context of a diffusion process of the electrons through the metal impurities. In
steady state, the current is equivalent to a gradient of the electron charge density:

σ0E = −eD∇n. (1.2)

The coefficient D, called the diffusion constant, can be obtained in the Drude model by
the Einstein relation:

σ0 = 2e2ρ0D, (1.3)

where ρ0 = ∂n/∂ε|εF = 3n/4εF is the electron density of states at the Fermi surface, so
that

D =
1

3
v2
F τtr. (1.4)

There have been several successful attempts to improve this simple picture. In the con-
text of the Boltzmann equation, one is able to improve the treatment of the collision process
and calculate the transport time from a microscopic scattering theory. Band structure ef-
fects of the metal can be included in an effective electron mass and the interactions of the
electron with the surrounding Fermi-sea can be treated in the context of the Fermi-liquid
theory.

But all these improvements have in common that the electron is described as a free
(quasi-)particle, obeying some distribution function, totally neglecting the wave-like be-
havior of the electron as a quantum mechanical object. In fact, following Heisenberg’s
uncertainty relation, it follows that as long as

kF le � 1 (1.5)

the free particle description may be an adequate approximation.
But at high enough impurity concentrations, this cannot be correct any more. The

quantum nature of the electrons manifests itself by a reduction of the conductivity due to
coherent backscattering of the electron wave, interfering at the impurity positions. This
correction is what is generally called weak localization and its theory is a perturbation
theory in the small parameter 1/kF le.

In the opposite limit, when the wavelength of the electron gets comparable to its mean
free path, the electron states become localized and the metal becomes insulating. In fact, in
one or two dimensions, it has been shown that already at arbitrary small impurity densities,
the correction due to this effect necessarily leads to localization at zero temperature. This
is generally called Anderson localization.

1.2 Coherent backscattering

To describe the propagation of an electron in a disordered metal, we use a quasi-classical
picture, corresponding to the limit kF le � 1. We assume here that the electron travels on
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Figure 1.1: Two electron trajecto-
ries in a disordered metal, where
one of the scattering sequences has
been reversed. Both trajectories
pick up the same phase if they are
closed.

classical paths, but, in contrast to a particle, additionally has a phase factor that varies
with time. Points in space having the same phase can then be considered a wavefront,
similar to the rules of classical optics. In the presence of impurities, the paths may then
be viewed as a sequence of free propagations, interrupted by scattering events.

Following the rules of quantum mechanics, the probability for an electron to travel some
distance in the metal is given by the squared amplitude of two such paths. Therefore,
consider the amplitudes of two paths ψa and ψb in this metal with the same start and
end points. In a purely classical treatment, where one does not keep track of a phase, the
probability would be given simply by the incoherent sum of the individual probabilities:

|ψa|2 + |ψb|2. (1.6)

The wave-nature of the electron, on the other hand, will lead to a final probability of the
form:

|ψa + ψb|2 = |ψa|2 + |ψb|2 + ψaψ
∗
b + ψ∗aψb, (1.7)

where the last two terms depend on the phase factor and describe the effect of interference.
Since the wavelength of the electron is very short, compared to the average distance

between collisions, the interference will be very sensitive to the impurity positions. In
our treatment of the problem, we are not interested in sample specific effects, thus, we
consider an average over impurity positions. After this average has been done, the pairs
of trajectories will dominate this probability, where collisions involve exactly the same
impurities, since a variation of one impurity position (on the scale of the impurity distance)
of only one of the trajectories will change its phase drastically and, after averaging over all
impurity positions, cancel out.

As long as we only assume static, elastic scattering events, so that the system is sym-
metric with respect to time-reversing a trajectory, there are in fact two pairs of trajectories
that survive averaging. The first one is given by the pair which scatters at the same im-
purities in the same order, while for the second, the scattering sequence of one of the
trajectories is exactly reversed. The latter case is shown in figure 1.1. In fact, for the
propagation probability for a closed trajectory, both contribute equally and thus the re-
turn probability is exactly doubled. The probability from a purely classical treatment here
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Figure 1.2: The probability
density for quantum diffusion
is doubled close to the origin
in a quantum mechanical treat-
ment of diffusion. (Taken from
[8])

0

0.5

1

1.5

2

P
(r
,t

)

|r|
yields 2|ψ|2 while, because of the interference term, one obtains 2|ψ|2 + 2ψ∗ψ = 4|ψ|2 in
this semi-classical treatment. On the other hand, when the start and end points are far
away from each other, reversing one of the trajectories necessarily leads to opposite start
and end points for each of the paths and the phase accumulated can not be the same any
more. A detailed calculation of the quantum-mechanical diffusion probability density is
shown in figure 1.2. This enhancement of the return probability due to the phase factor
and due to this time-reversal symmetry of the system is called coherent backscattering.
The weak localization correction to the conductivity, which we will calculate in this thesis,
is due to this interference effect.

1.3 Weak localization

In this section we will formally derive the corrections to the conductivity, due to coherent
backscattering. Within the scope of this thesis, this can only be a short sketch of well known
results, for the reader who is not familiar with the theory of weak localization. Therefore,
at several points in the derivation, we have to refer to a more careful introduction, given
e.g. in chapter 1 of [9] or chapter 7 of [8]. Here, we will follow the argumentations of [10].

Starting from the Einstein relation (1.3), we write the (isotropic, q = 0) conductivity
as:

σ = 2e2ρ0
v2
F

3

∞∫
0

dt 〈k̂′(t)k̂(0)〉, (1.8)

where we replaced the transport time τtr by the time-integrated momentum-momentum
correlation function, describing the time an electron travels before losing its memory of
the initial direction of its velocity. (A detailed derivation of this assumption from Kubo’s
formula can be found in appendix A of [7] or in chapter 1.2.3 of [9]. We assumed here that
the wave-vectors have modulus kF , i.e. k̂ is normalized to 1.)
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If the electron is in the state ψ, then this average is given by:

〈k̂′(t)k̂(0)〉 =
∑
k′

(k̂′k̂)〈|〈k′|ψ(t)〉|2〉imp, (1.9)

where 〈. . . 〉imp denotes averaging over impurity positions, as has been discussed in the
previous section.

The modulus squared of the overlap can be written in terms of the retarded electron
Green’s function:

|〈k′|ψ(t)〉|2 = |〈k′|Û(t)|k〉|2 = |GR
k′k(t)|2, (1.10)

where Û(t) is the time-evolution operator and

GR
k′k(t) = −iθ(t)〈k′|Û(t)|k〉. (1.11)

For a free electron with dispersion relation εk, the retarded Green’s function and its Fourier
transform are given by:

G
R (0)
k′k (t) = −iθ(t)δk′ke−iεkt ⇒ G

R (0)
k′k (ω) =

δk′k
ω − εk + i0+

, (1.12)

where, generally in this thesis, we will measure energy in units of frequency. We are
interested in the impurity averaged product:

〈|GR
k′k(t)|2〉imp. (1.13)

Using an expansion in the impurity potential strength, this can be obtained using the
diagrammatic technique. A comprehensive discussion of this technique can be found in
[11]. Consider first the free retarded electron Green’s function, which is a solution to the
Schrödinger equation with δ-inhomogeneity:

i∂tG
R
k′k(t)−

∑
k̃

Hk′k̃G
R
k′k(t) = δ(t)δk′k (for t > 0)

⇒ ωGR
k′k(ω)−

∑
k̃

Hk′k̃G
R
k′k(ω) = δk′k,

(1.14)

where H is the Hamilton operator of the system. Now, in the presence of the (static) po-
tential of the impurities, V (q), the Hamiltonian is given by the free part plus the potential:

Hk′k̃ = εk′δk′k̃ + V (q = k′ − k̃). (1.15)

From this, we obtain a Dyson equation for the full retarded Green’s function (i.e. in the
presence of the impurity potential) in terms of the free Green’s function, given in (1.12):

GR
k′k(ω) = G

R (0)
k′k (ω) +

∑
q

G
R (0)
k′k′ (ω)V (q)GR

k′−q k(ω) (1.16)
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GR

=
GR (0)

+
GR (0) GR (0)

+
GR (0) GR (0) GR (0)

+ · · ·

Figure 1.3: Diagrammatic representation of (1.17).

The solution of this equation can be obtained by iterative substitution:

GR
k′k(ω) =G

R (0)
k′k (ω) +

∑
q

G
R (0)
k′k′ (ω)V (q)G

R (0)
k′−q k(ω)

+
∑
q1

∑
q2

G
R (0)
k′k′ (ω)V (q1)G

R (0)
k′−q1 k′−q1

(ω)V (q2)G
R (0)
k′−q1−q2 k(ω)

+ · · · .

(1.17)

This iteration can represented diagrammatically, see figure 1.3, where horizontal bold lines
correspond to the full retarded Green’s functions and thin horizontal lines to the free
Green’s functions, while impurity potentials are symbolized by dashed, vertical lines.

We are interested now in the impurity averaged version of this Green’s function, thus we
need an explicit model for the impurities. A particularly simple model, which is commonly
used in this context is the so-called Edwards model, which assumes that V (r) is a Gaussian
random process. Here, we assume the following form:

〈V (r)〉imp = 0 (1.18)

〈V (r)V (r′)〉imp = δ(r− r′)
1

2πρ0τ
. (1.19)

The impurity potential here is thus an example of white noise, i.e. delta correlated in
space, whose average over the whole system is vanishing. The factor 2πρ0τ is here simply
a parameter, describing the strength of the impurity potential, which can be obtained from
a microscopic theory in the limit of a high density of weak scatterers, see chapter 2.2.2 of
[8]. In k-space, the second term reads:

〈V (k)V (k′)〉imp = δkk′
1

2πρ0τV
, (1.20)

where V is the volume of our system. Gaussian processes have the very important property
that higher order correlators can always be factorized in terms of the two-point correlator,
e.g.:

〈V (k1)V (k2)V (k3)V k4)〉imp = 〈V (k1)V (k2)〉imp〈V (k3)V (k4)〉imp
+ 〈V (k1)V (k3)〉imp〈V (k2)V (k4)〉imp
+ 〈V (k1)V (k4)〉imp〈V (k2)V (k3)〉imp

(1.21)

(i.e. all possible pairings in analogy to Wick’s theorem for a bosonic, free quantum field
theory), where the probability distribution of the values V (k) evaluated at different points
k has to be Gaussian.
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= + +

+ + + · · ·

Figure 1.4: Diagrammatic representation of the impurity averaged Green’s function.

Σ = + + + · · ·

Figure 1.5: Diagrammatic representation of the irreducible self-energy Σ(k, ω) from (1.22).

The effect of the delta correlation and the gaussian factorization is best seen in the
diagrammatic representation, figure 1.4, which is the impurity averaged version of 1.3
(but, to higher order in the potential). All the impurity lines have to be connected now,
because of (1.18), in all possible ways, because of (1.21). And with each impurity line, one
has to associate the term given by (1.19).

The diagrams can be summed up using a geometric series:

〈GR
k (ω)〉imp = G

R (0)
k (ω) +G

R (0)
k (ω)Σ(k, ω)G

R (0)
k (ω)

+G
R (0)
k (ω)Σ(k, ω)G

R (0)
k (ω)Σ(k, ω)G

R (0)
k (ω)

+ · · ·

=
G
R (0)
k (ω)

1− Σ(k, ω)G
R (0)
k (ω)

,

(1.22)

where we used the shorthand notation GR
k = GR

kk, since, after averaging over impurities,
the system will be translationally invariant. Here, Σ(k, ω) is the so-called irreducible self
energy, given by all diagrams, indicated in figure 1.5, which cannot be divided into separate
pieces by cutting a single GR (0)-line.

Inserting the result for the free Green’s function (1.12) into (1.22), we obtain:

〈GR
k (ω)〉imp =

1

ω − εk + i0+ − Σ(k, ω)
. (1.23)

The self energy is a complex quantity and its real part can be absorbed into a renormal-
ization of εk, while its imaginary part is the physically important scattering rate. Since Σ
is already given by an infinite number of diagrams, one commonly only considers the first
order term, given by the first diagram of figure 1.5:

Im [Σ(k, ω)] =
1

2πV ρ0τ

∑
q

Im
[
G
R (0)
k−q (ω)

]
= − 1

2τ
, (1.24)
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〈GRGA〉imp =

GR (0)

GA (0)

+

GR (0)

GA (0)

+

GR (0)

GA (0)

+ · · ·

Figure 1.6: Averaging the product GRGA over impurity positions. Thin lines represent the
free Green’s function G(0).

since Im
[
G
R (0)
k (ω)

]
= −πδ(ω− εk). We conclude that the retarded Green’s function after

impurity averaging is given by

〈GR
k (ω)〉imp =

1

ω − εk + i
2τ

. (1.25)

The free Green’s function is thus broadened in k space, describing the fact that in a random
potential plane wave states |k〉 are no longer eigenstates of H but have finite lifetime, given
by τ , corresponding, at least for isotropic scattering events, to a scattering time.

Actually, we were interested in the impurity average of the product (1.13):

〈|GR
k′k(t)|2〉imp = 〈GR

k′k(t)GA
kk′(−t)〉imp

=

∫
dω

2π
e−iωt

∫
dε

2π
〈GR

k′k(ε+ ω)GA
kk′(ε)〉imp,

(1.26)

where we defined the advanced Green’s function:[
GR

k′k(t)
]∗

= GA
kk′(−t). (1.27)

Averaging this product can be done in the same way as for the single Green’s function,
i.e. draw the retarded and advanced electron lines (denoted diagrammatically by arrows
pointing in the opposite direction) and then connect them in all possible ways by impurity
lines. This is shown schematically in figure 1.6.

The leading contributions in this expansion are given by the diagrams of figure 1.7.
They can be put into 3 categories:

1. The Drude part, given by the first diagram of figure 1.7, which corresponds to the
replacement

〈GR
k′k(t)GA

k′k(−t)〉imp → 〈GR
k′k(t)〉imp〈GA

k′k(−t)〉imp (1.28)

The impurity lines here are connected only to one and the same electron propagator.
In the quasi-classical picture, this corresponds to the case, where both electron tra-
jectories never collide with the same impurity. Successive collisions are thus totally
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〈GRGA〉imp ≈

GA

GR

+

GA

GR

· · ·
· · ·
· · ·

+

GA

GR

· · ·

· · ·

Figure 1.7: The 3 classes of diagrams dominating the impurity averaged product GRGA.
Thick lines represent the impurity averaged Green’s functions G.

Γq

k + q/2 k′ + q/2

k− q/2 k′ − q/2 Γ = + + + · · ·

= + Γ

Figure 1.8: The diagrams corresponding to the diffuson and the structure factor.

uncorrelated. For this contribution, we obtain from (1.9), (1.10) and (1.25):∑
k′

(k̂′k̂)〈|GR
k′k(t)|2〉imp ≈

∫
dω

2π
e−iωt

∑
k′

(k̂′k̂)

∫
dε

2π
〈GR

k′k(ε+ ω)〉imp〈GA
k′k(ε)〉imp

=

∫
dω

2π
e−iωt

∑
k

k̂2

∫
dε

2π

1

ε− εk + ω + i
2τ

1

ε− εk − i
2τ

=

∫
dω

2π
e−iωt

1
1
τ
− iω

= e−t/τ ,

(1.29)

where the integral has been done using the residue theorem. Using this in (1.8) for
the conductivity, we obtain:

σ = 2e2ρ0
v2
F

3
τ, (1.30)

which coincides with the Drude result (1.3) and a posteriori identifies the parameter
τ with the transport time, here, coinciding with the elastic scattering time for our
simple model of isotropic scatterers.

2. The so called diffuson, given by the second diagram of figure 1.7. Here, the Green’s
functions correspond to two trajectories with the exact same impurity scattering se-
quences, which we already identified in the previous section as a contribution that



10 1. Conductivity of disordered metals

Γk+k′

k + q/2 k′ + q/2

k− q/2 k′ − q/2

Figure 1.9: The diagram corresponding to the Cooperon, where one electron line has been
twisted around. In this form, the structure factor of the diffuson and the Cooperon are
identical.

survives impurity averaging. This diagram can be evaluated by considering the struc-
ture factor Γ, shown on the right, which is given by a so-called ladder diagram. In the
case of the diffuson, this factor does not depend on k and k′, thus, the contribution
to the conductivity due to the diffuson vanishes, because of the factor (k̂′k̂) of (1.8).
The vector q, shown in the diagram is the spatial dependence of the conductivity
itself, thus in the case of anisotropic scattering, the diffuson plays an important role.
A detailed discussion of these results and a careful reasoning of why it does not
contribute to isotropic transport can be found in chapter 7.2.2 of [8].

3. The so called Cooperon, given by the third diagram of figure 1.7, which is given by
the sum of all, so-called, maximally crossed diagrams, first discussed by Langer and
Neal. This corresponds to trajectory pairs, where, for one of them, the sequence of
scattering processes is the exact opposite of the other. To calculate the contribution
of this diagram to the conductivity, consider figure 1.9, where one of the electron
lines has been twisted, to show that the structure factor is actually the same as for
the diffuson, but now depending on Q = k + k′. From the figure 1.8 of the structure
factor, we read off:

ΓQ(ω) =
1

2πρ0τ
+

1

2πρ0τV

∑
k

ΓQ(ω)〈GR
k (ε)〉imp〈GA

k−Q(ε− ω)〉imp (1.31)

(Such types of equations are known in the literature as Bethe-Salpeter-Equations.),
where Γ does not depend on k for fixed Q. Thus, we can calculate the value of the
sum over the Green’s functions alone:

1

2πρ0τV

∑
k

〈GR
k (ε)〉imp〈GA

k−Q(ε− ω)〉imp

=
1

2πρ0

∫
dΩρ0dη

1

ε− η + i
2τ

1

ε− ω − η + vQ− i
2τ

,

(1.32)

where we turned the sum over k into an integral over the energy variable η = εk and
angle Ω using the density of states ρ0 and linearized the dispersion relation, assuming
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Q� k:
εk−Q ≈ εk − vQ v = ∇kε. (1.33)

The integral over η can be done using the residue theorem and we obtain:

1

2πρ0τV

∑
k

〈GR
k (ε)〉imp〈GA

k−Q(ε− ω)〉imp =

∫
dΩ

1

1− iωτ + ivQτ
. (1.34)

In the so called diffusive regime (i.e. high impurity concentrations), which we are
considering here, we have

Qle � 1 ωτ � 1. (1.35)

Which means that we can expand the denominator, and using the relations∫
dΩ vQ = 0

∫
dΩ (vQ)2 =

1

d
v2
FQ

2 (1.36)

in d = 3, we obtain:

1

2πρ0τV

∑
k

〈GR
k (ε)〉imp〈GA

k−Q(ε− ω)〉imp ≈ 1 + iωτ −DQ2τ + · · · . (1.37)

From this, we obtain the structure factor:

ΓQ(ω) =
1

2πρ0τ

1

DQ2τ − iωτ , (1.38)

which can be checked by inserting (1.38) and (1.37) into (1.31). For the corrections
to the conductivity, we read off from figure 1.9 (we consider the isotropic q = 0 case):∑

k′

(k̂k̂′)

∫
dε

2π
〈GR

k′k(ε+ ω)GA
k′k(ε)〉cooperon

=
∑
k′

(k̂k̂′)

∫
dε

2π
〈GR

k (ε+ ω)〉imp〈GA
k (ε)〉impΓk+k′(ω)〈GR

k′(ε+ ω)〉imp〈GA
k′(ε)〉imp.

(1.39)

Γ diverges for backscattering, k = −k′, and ω = 0, so that

≈ −
∑
Q

ΓQ(ω)

∫
dε

2π

[〈GR
k (ε)〉imp〈GA

k (ε)〉imp〉
]2 ≈ −2τ 3 1

V

∑
Q

ΓQ(ω), (1.40)

where the integral has been calculated in the same way as in (1.29). The full con-
ductivity correction, using (1.8) and (1.26), due to the Cooperon, now gives

∆σ = −2e2ρ0
v2
F

3

∞∫
0

dt

∫
dω

2π
e−iωt 2τ 3 1

V

∑
Q

1

2πρ0τ

1

DQ2τ − iωτ

= −2e2D

π

∞∫
0

dt

∫
dω

2π
e−iωt

1

V

∑
Q

P (Q, ω),

(1.41)



12 1. Conductivity of disordered metals

with

P (Q, ω) =
1

DQ2 − iω . (1.42)

As can be easily checked, P is in fact the Fourier transform of the solution to the
diffusion equation: [

∂

∂t
−D∆r′

]
P (r, r′) = δ(r− r′)δ(t), (1.43)

where

P (r, r′, t) =
1

(4πDt)d/2
e−|r−r′|/4Dt. (1.44)

Thus, the corrections may equally be written in the form:

∆σ = −2e2D

π

∞∫
0

dt P (r, r, t). (1.45)

Note the same space arguments of P , corresponding to the probability density to
return to the origin in a diffusion process, which we will also refer to as a closed
random walk.



Chapter 2

Dephasing

2.1 Infrared cutoff for weak localization

In the previous chapter, we argued that the weak localization correction to the conductivity
in one dimension can be written in the form

∆σ = −2e2D

π

∞∫
0

dt P (r, r, t), (2.1)

where P (r, r, t) is the probability density associated with the Cooperon. For a free, one
dimensional diffusion process, we obtain from the diffusion equation (1.44):

P (r, r, t) =
1√

4πDt
. (2.2)

This probability density is obtained by the square amplitude of two time reversed random
walks in the metal. Formally, we can assume diffusive motion only for trajectories much
longer than the mean free path, which is commonly ensured by a lower cutoff at τtr. But
since the integral (2.1) is well behaved at the lower integration boundary and dominated by
large values of t, the lower cutoff may equally be set to zero, giving just a small correction.
Note that this is not the case for higher dimensions, which we do not consider here.

Having said this, the correction to the conductivity is formally diverging, which is due
to the fact that a random walk in one dimension is recurrent. The assumptions in the
last chapter that lead to this correction were that impurity collisions are elastic and that
electron-electron interactions can be neglected, leading to fully coherent propagation of the
electrons, corresponding to the case T = 0.

In a real metal though, electrons dissipate energy in numerous ways, leading to the
destruction of phase coherence and thereby regularize the integral (2.1). To be precise,
the requirement for the decoherence of the Cooperon is breaking the symmetry of time-
reversing an electron trajectory, as has been explained in the previous chapter. Thus,
generally, we assume that after some time the propagation will become incoherent and will
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not contribute to the corrections in the weak localization regime any more. In this thesis
we will write the resulting regularization in the form:

∆σ = −2e2D

π

∞∫
0

dt P (r, r, t) e−F (t) , (2.3)

defining the Cooperon decay function F (t). The typical timescale, describing the duration
of coherent transport, may then be extracted from:

F (τφ) = 1, (2.4)

where we defined the decoherence time τφ. The central goal of this thesis will be, to
calculate F (t) in the geometry of a quasi one dimensional metallic ring, using an improved
treatment of electron-electron interactions.

2.2 Cooperon in an external potential: Path integral

representation

Although a calculation of the Cooperon in the presence of external fields is possible us-
ing purely diagrammatic techniques (for a review of this in the case of electron-electron
interactions, see [12]), we will here take the path integral approach. Following Feynman
[13], the propagator of the Schrödinger equation can be written as a path integral over
the corresponding action. For a detailed introduction to this topic, see e.g. [14]. In the
presence of an external potential V , depending on space and time, the one-particle Green’s
function obeys the equation[

−i ∂
∂t
− 1

2m
∇2

r′ + V (r′, t)

]
G(r, r′, t) = δ(r− r′)δ(t). (2.5)

Feynman showed that the solution to this differential equation can be written as:

G(r, r′, t) =

r(t)=r′∫
r(0)=r

D[r] ei
R t
0 dτ L(r,ṙ,τ), (2.6)

where L(r, ṙ, t) is the Lagrangian given by

L(r, ṙ, τ) =
1

2
mṙ2 − V (r, τ). (2.7)

The relevant spatial scale associated with the action, is the Fermi wavelength. If we
assume that the potential is varying only slowly on this scale, we can make use of the
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so-called eikonal approximation to separate out the potential, assuming that the effect of
the potential can be included in an envelope function φ(r, r′, t):

G(r, r′, t) = G0(r, r′, t) eφ(r,r′,t), (2.8)

where G0 is the Green’s function in the absence of the external potential. This approxi-
mation has first been used by Gorkov in the context of superconductivity. For a detailed
discussion, see [15].

The probability density P (r, r, t) associated to the Cooperon is also a solution to a
differential equation, the diffusion equation (1.43):[

∂

∂t
−D∆r′

]
P (r, r′, t) = δ(r− r′)δ(t), (2.9)

where we require r′ → r in the end.
In the same way as for the Schrödinger equation, we can write the solution to this

equation as

P (r, r′, t) =

r(t)=r′∫
r(0)=r

D[r] e−
R t
0 dτL(r,ṙ,τ), (2.10)

but now with the Lagrangian:

L(r, ṙ, τ) =
ṙ2

4D
. (2.11)

In contrast to the one-particle Green’s function, this probability density consists of the
product of an amplitude and it’s complex conjugate. Both amplitudes correspond to mul-
tiple scattering sequences between the impurities of the metal, forming a forward and a
backward trajectory. If both sequences were exactly equal, they would both pick up the
same phase and the probability density would be unaffected by any external fields. Here,
on the other hand, P is obtained, by reversing the temporal sequence of one of the trajec-
tories, corresponding to backscattering. Thus, both trajectories effectively see a different
potential, leading to a phase difference φ, which is non-zero as long as the potential is not
invariant under the time reversal of one trajectory. This implies that a constant external
field cannot lead to decoherence.

Formally, this phase difference is due to the structure factor (1.31). If we include a
potential in the retarded and advanced Green’s functions of (1.34) and assume that the
potential is only slowly varying, so that we can apply the eikonal approximation, then we
can expand the denominator in the diffusive regime just as before and obtain a modified
differential equation for P , given now by[

∂

∂t
−D∆r′ − i (V (r′, t)− V (r′, t′))

]
P (r, r′, t, t′) = δ(r− r′)δ(t− t′). (2.12)

For a detailed derivation and discussion of this equation, see chapter A6.3 of [8]. Note the
fact that the Cooperon has a non-local temporal structure in a time-dependent field.



16 2. Dephasing

The solution of this equation may now be written as the path integral (2.10) with the
modified Lagrangian

L(r, ṙ, τ) =
ṙ2

4D
− i [V (r(τ), τ)− V (r(τ), t− τ)] . (2.13)

The phase difference, i.e. the Cooperon phase, is thus given by:

iφ = i

t∫
0

dτ [V (r(τ), τ)− V (r(τ), t− τ)] . (2.14)

Since we know the probability density of a free diffusion process, it is convenient to
write the return probability, i.e. P (r′ → r), in the form:

P (r, r, t) =

r(t)=r∫
r(0)=r

D[r]
(
eiφ
)
e−

R t
0 dt ṙ

4D (2.15)

≈ P0(r, r, t) 〈eiφ〉Rt , (2.16)

where 〈. . .〉Rt stands for averaging over all closed random walks R of duration t and
P0(r, r, t) is the probability density of a closed random walk, which is in one dimension
given by (2.2). In the last approximation, we thus used the assumption that the external
potential is varying slow enough, so that it does not affect the dynamics of the electron at
the classical level. Note that P (r, r, t) will not depend on r, if we assume translationally
invariant systems.

By comparing (2.16) with (2.3) we can express the Cooperon decay function in terms
of the external potentials:

e−F (t) = 〈ei
R t
0 dτ [V (r(τ),τ)−V (r(τ),t−τ)]〉Rt . (2.17)

2.3 Decoherence due to electron-electron interactions

As seen from (2.14), any process that destroys the time reversal symmetry of the forward
and backward trajectory gives rise to decoherence of the Cooperon.

The typical example for such a process is the effect of an external magnetic field, which
we will discuss in chapter 5.2.

In the isolated metal, the two dominating sources for decoherence are interactions be-
tween electrons and lattice vibrations (electron-phonon interactions) and between electrons
with each other (electron-electron interactions), simply because both processes correspond
to inelastic collision events (the total energy is conserved, but the energy of each electron
is modified).

At low enough temperatures, the modes of the lattice vibrations are frozen and the
dominating phase breaking mechanism is given by electron-electron interactions. We will
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see in the next chapter that the effect of this interaction can be understood as resulting
from a fluctuating electromagnetic field that dephases the forward and the backward path
of the Cooperon.

This equivalence is due to the so called Fluctuation-Dissipation-Theorem, which will
allow us to write down a potential-potential correlation function 〈V V 〉 of the fields, effec-
tively describing the effect of electron-electron collisions in the metal and depending on
the temperature of the system.

The reason why such a correlator (a two point function) will be enough to describe the
effect of the surrounding electrons is that in the standard random phase approximation,
which we shall adopt throughout, electronic noise effectively behaves like Gaussian noise.

Gaussian processes have the property that higher order correlators factorize in terms
of the two-point correlator, which we already discussed in our disorder model, see (1.21).
Another property of such a process is that the average over the exponential of a Gaussian
random variable φ is given by

〈eiφ〉 = e−
1
2
〈φ2〉, (2.18)

as long as 〈φ〉 = 0, which we can safely assume since a constant potential cannot contribute
to dephasing. The cooperon decay F (t) may thus be calculated from:

e−F (t) = 〈e− 1
2
〈φ2〉V 〉Rt , (2.19)

where

1

2
〈φ2〉V =

1

2

t∫
0

dτ1

t∫
0

dτ2 〈V (r(τ1), τ1)V (r(τ2), τ2) + V (r(τ1), t− τ1)V (r(τ2), t− τ2)

− V (r(τ1), τ1)V (r(τ2), t− τ2)− V (r(τ1), t− τ1)V (r(τ2), τ2)〉V .

(2.20)

The average 〈. . .〉V denotes averaging over different realizations of the noise potential V .
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Chapter 3

Quasi-1d systems: Classical noise

In the previous chapter we learned how to obtain the Cooperon decay function from a
potential-potential correlator for electron-electron interactions, see (2.19), which were as-
sumed to be Gaussian distributed.

In this chapter we will derive this correlator, effectively describing these interactions as
thermal noise, in the high temperature regime, which is known in the literature as Johnson-
Nyquist noise. Then we will calculate the Cooperon decay from the obtained result in quasi
one dimensional systems.

3.1 Fluctuation-Dissipation-Theorem and

Johnson-Nyquist noise

We will start here, by deriving a current-current correlator of the random thermal currents
for arbitrary metal geometries. In the next section, we will then analyze the correlator of
the corresponding potentials in the quasi one dimensional case.

Assume that we have small thermal fluctuations in the Fourier modes of the electrical
field δA(k, ω), leading to a small current δj(k, ω) of the form:

δjα(k, ω) = iωσαβ(k, ω) δAβ(k, ω). (3.1)

Then, according to Kubo’s formula (see [16]), the conductivity tensor is given by

iωσαβ(k, ω) = i

∞∫
−∞

dt eiωt 〈[δĵα(k, t), δĵβ(−k, 0)]〉 θ(t) (3.2)

and we introduced Gibbs averaging over temperature:

〈. . .〉 = Tr
[
e(Ω−H)/T . . .

]
. (3.3)

(Note that in this thesis, we will measure temperature and all other energy scales in
units of frequency.) (3.2) identifies the AC conductivity with the retarded current-current
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correlation function that governs the dissipative response of the system to the external
perturbation.

If we assume an isotropic metal in the limit of small frequencies, the conductivity is
given by

σαβ(k, ω) ≈ σ0 δαβ, (3.4)

where σ0 is the Drude conductivity of the metal, given by (1.1). Thus, (3.2) reduces here
to

∞∫
0

dt eiωt 〈[δĵα(k, t), δĵβ(−k, 0)]〉 = ω σ0 δαβ. (3.5)

Now, consider the average anti-commutator of these current densities, given by:

〈{δĵ, δĵ}〉(k, ω) =

∞∫
−∞

dt eiωt
(
〈δĵ(k, t)δĵ(−k, 0)〉+ 〈δĵ(−k, 0)δĵ(k, t)〉

)
. (3.6)

In thermodynamic equilibrium we can use the Kubo-Martin-Schwinger identity:

〈Â(t)B̂(0)〉 = Tr
[
e(Ω−H)/T eiHtÂ(0)e−iHtB̂(0)

]
= 〈Â(0)B̂(t+ i/T )〉 (3.7)

for any operators Â and B̂, not explicitly depending on time. Then we can rewrite the
anti-commutator in thermal equilibrium as

〈{δĵ, δĵ}〉(k, ω) =
(
eω/T + 1

) ∞∫
−∞

dt eiωt 〈δĵ(−k, 0)δĵ(k, t)〉. (3.8)

The same can be done for the commutator:

〈
[
δĵ, δĵ

]
〉(k, ω) =

(
eω/T − 1

) ∞∫
−∞

dt eiωt 〈δĵ(−k, 0)δĵ(k, t)〉. (3.9)

Combining these two equations we obtain

〈{δĵ, δĵ}〉(k, ω) = coth
( ω

2T

)
〈
[
δĵ, δĵ

]
〉(k, ω). (3.10)

The commutator on the right hand side is defined as

〈
[
δĵ, δĵ

]
〉(k, ω) = −

∞∫
0

dt e−iωt 〈δĵ(k, t)δĵ(−k, 0)〉+

∞∫
0

dt eiωt 〈δĵ(k, t)δĵ(−k, 0)〉, (3.11)

which is simply two times the dissipative response, given by the conductivity in (3.5).
Thus, we obtain:

〈{δĵα, δĵβ}〉(k, ω) = 2ωσ0 coth
( ω

2T

)
δαβ . (3.12)
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which is the so called Fluctuation-Dissipation-Theorem (or Callen-Welton’s formula [17])
for random currents in a metal. In the classical limit, for high temperatures, this simplifies
to:

〈δjαδjβ〉(k, ω) = 2Tσ0 δαβ , (3.13)

where we replace the non-commuting quantum-mechanical operators by their classical
equivalences:

1

2
〈{δĵα, δĵβ}〉(k, ω) −→ 〈δjαδjβ〉(k, ω). (3.14)

(3.13) is known in the literature as the classical Johnson-Nyquist-Theorem, see [18]. Note
that the expression on the right-hand side does not depend on frequency, which means that
Johnson-Nyquist-Noise is white noise, i.e. delta-correlated in time. Furthermore there is
generally no dependence on k of the current-current correlator, as long as the conductivity
is isotropic.

As can be seen from (3.12), however, a quantum mechnical treatment of the electron-
electron interactions necessarily leads to a more complicated time dependence, which we
will consider in the next chapter. Here, we will only consider the high temperature regime,
characterized by (3.13)

3.2 Classical noise correlator in a quasi-1d system

In the previous section we have derived a correlator of the random currents in an isotropic
metal. What we are really interested in, is the average correlator of the potentials 〈V V 〉V ,
induced by these currents in a quasi one dimensional system. Here we face the subtle issue
that the fluctuations are distributed randomly in all directions, but we consider only a
current flow parallel to the direction of the wire. (Our derivation of this correlator will be
along the lines of [1], but in a different gauge.)

The total current density in a wire is given (to linear order) by the response to an
electric field and by the response to a gradient in the electron density ρ (for details, see
chapter 3.7 of [19]). Therefore, we can write the total current density in our wire as

jtot = σ0E−D∇ρ+ δj, (3.15)

where δj is the additional current originating from thermal fluctuations, whose correlator
is given by (3.13). In quasi one dimension, the total current has only one component, thus
we are interested in the electric field parallel to the direction of the wire, E||. To calculate
this, we transform to Fourier space and decompose the wave vector into the sum k + q,
where k is pointing in the direction of the wire, while q is perpendicular to it. Using
Gauss’s law:

∇ · E =
ρ

ε0
, (3.16)

we obtain:

E(k,q) =
−iρ(k,q)

ε0

k + q

k2 + q2
. (3.17)
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Note that at qa� 1, a being the transverse size of the wire, ρ(k,q) does not depend on q,
meaning that in our quasi one dimensional system, we may neglect its transverse spatial
dependence. The field in the direction k of the wire, E||, is now given by

E||(k) =

∫
d2q

(2π)2
E(k,q) (3.18)

=
−iρ(k)k

2πε0

1/a2∫
0

dq
q

k2 + q2
(3.19)

≈ −iρ(k)k

2πε0
ln

(
1

ka

)
. (3.20)

In quasi one dimension we may thus follow from (3.15):

jtot(k) = σ0E(k)− iDkρ(k) + δj(k), (3.21)

with

E(k) =
−iρ(k)k

2πε0
ln

(
1

ka

)
. (3.22)

Using the continuity equation
kjtot(k) = ωρ(k), (3.23)

we obtain the charge density:

ρ(k) =
1

ω + iDk2
k (σ0E(k) + δj(k)) . (3.24)

Plugging in this result in (3.20), we find

E(k) =
ln(1/ka)

2πε0

k2

iω −Dk2
(σ0E(k) + j(k)) . (3.25)

From this, we finally obtain the field E(k) of the current fluctuations:

E(k) = −δj
(

2πε0
−iω +Dk2

k2 ln(1/ka)
+ σ0

)−1

. (3.26)

At sufficiently small k, ω, we can neglect the first term in brackets (as long as 1/ka is
large) and obtain approximately:

E(k) = −δj(k)

σ0

, (3.27)

corresponding to Ohm’s law in a real one dimensional system. For the correlator of these
fields, this becomes:

〈EE〉(k, ω) =
1

σ2
0

〈δjδj〉(k, ω). (3.28)
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In one dimension we obtain for Johanson-Nyquist noise (3.13):

〈δjδj〉(k, ω) = 2Tσ0. (3.29)

Finally we find the correlator of the fields:

〈EE〉(k, ω) =
2T

σ0

. (3.30)

For the corresponding potential, defined by

E = −1

e
gradV, (3.31)

this becomes

〈V V 〉V (k, ω) =
2Te2

σ0k2
, (3.32)

which is the form of the correlator we were interested in and which is used frequently in the
literature. (We added the index V to connect the result with our previous considerations
and to distinguish this average from the random walk average in the next sections.)

Note, that this expression, just like the current-current correlation function, does not
depend on frequency and is thus delta correlated in time.

The spatial dependence 1/k2 on the other hand, was originating from the relation of the
electric field to its potential, (3.31), and can be assumed to hold generally. This correlator
can also be interpreted as the Fourier transform of the solution to the equation

−D∆r〈V V 〉(r, ω) = δ(r) (3.33)

with D = σ0

2Te2
, in analogy to the diffusion equation (1.43). It is thus the time integrated

probability density of a diffusion process, which corresponds to the assumption that the
potential is a random walk in space.

From now on, we will conveniently and for the sake of a more transparent description
do our calculations in real space and time, where we write the correlator in the factorized
form:

〈V V 〉V (r, t) = − e
2

σ0

Q(r)W (t) . (3.34)

By comparison, we have:

Q(r) = −2
1

(2π)d

∫
dk

1

k2
eikr, (3.35)

with proper boundary conditions and

W (t) ≡ WC(t) = Tδ(t), (3.36)
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where the index C stands for ‘classical’ noise.
This factorized way of writing the correlator gives us the opportunity to calculate the

average over random walks more easily, since only Q(r) depends on the trajectory position.
In the next chapter, we will discuss how W (t) is modified at low temperatures. In this
way we will be able to take over most of the results from this chapter to the next and only
modify terms depending on W (t).

3.3 Dephasing of the Cooperon due to electron-electron

interactions

Using the factorized form of the correlator (3.34), we obtain from (2.20) an expression for
the additional phase of the Cooperon:

1

2
〈Φ2〉V = − e

2

σ0

t∫
0

dτ1

t∫
0

dτ2 (W (τ1 − τ2)−W (τ1 + τ2 − t))Q(r(τ1)− r(τ2)). (3.37)

We assumed Q(r) = Q(−r), because of translational symmetry around zero and W (t) =
W (−t), which holds for all explicit forms of the correlator we are going to consider in this
thesis.

To calculate the Cooperon decay, we now have to do the average over random walks Rt

of duration t in the form
e−F (t) = 〈e− 1

2
〈Φ2〉V 〉Rt . (3.38)

This average can be calculated exactly only for the infinite wire, see section 3.6. In this
thesis, we will instead calculate the much easier quantity

e−F (t) ≈ e−
1
2
〈Φ2〉V,Rt , (3.39)

i.e. we will lift the average into the exponent. This approximation, first used and discussed
in [20], is unfortunately not controlled by a small parameter, but is known to give very
accurate results.

Using this approximation, we can calculate the Cooperon decay from

F (t) = − e
2

σ0

t∫
0

dτ1

t∫
0

dτ2 (W (τ1 − τ2)−W (τ1 + τ2 − t)) 〈Q(r(τ1)− r(τ2))〉Rt , (3.40)

because only Q depends on the trajectory positions.

3.4 Electron-Electron interactions for quasi-1d systems

in real space

The k = 0 mode of the correlator in (3.32) diverges. This comes as no surprise, since
long-wavelength modes of the noise cost only little energy. On the other hand, it is clear,
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that this mode can not contribute to the dephasing of the Cooperon, because it gives just a
constant contribution to the potential, which is the same for the forward and the backward
path.

This can be verified by the transformation τ2 → t − τ2 in (3.40). The decay function
then becomes:

F (t) = − e
2

σ0

t∫
0

dτ1

t∫
0

dτ2 W (τ1 − τ2) (〈Q(r(τ1)− r(τ2))〉Rt − 〈Q(r(τ1)− r(t− τ2))〉Rt) ,

(3.41)
where it is evident that terms of Q which do not depend on the trajectory r(t) cancel out.
Thus, the k = 0 Fourier component of Q will be dropped henceforth.

Now, consider a quasi one dimensional system of size L with periodic boundary condi-
tions, which corresponds to the geometry of a ring (R). Then the space dependent part of
the correlator (before averaging over random walks Rt) can be written from (3.35) as:

QR(r) = −2

(
1

L

∑
k>0

1

k2
eikr + c.c

)
(3.42)

with k = 2πn
L

, n = {1, · · · ,∞} and, as discussed above, we omitted the k = 0 mode.
Evidently, QR(r) = QR(−r), hence we replace r by |r|. To perform the sum, it is

convenient to consider

∂

∂|r|QR(|r|) = − i
π

(
∞∑
n=1

e
2πi
L
|r|n

n
−
∞∑
n=1

e−
2πi
L
|r|n

n

)
(3.43)

=
i

π

(
ln

(
1− e 2πi

L
|r|

1− e− 2πi
L
|r|

))
(3.44)

=

(
1− 2|r|

L

)
, (3.45)

where we used the series expansion of the logarithm:

− ln (1− x) = x+
x2

2
+
x3

3
+
x4

4
+ · · · . (3.46)

We conclude that

QR(r) = |r|
(

1− |r|
L

)
. (3.47)

In the limit of the infinite wire (W), L→∞, this simply becomes

QW (r) = |r| . (3.48)
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3.5 Averaging over closed random walks

To calculate the decay function F (t) in the approximation (3.39), we have to average the
phase over closed random walks Rt of duration t in one dimension. This average is defined
by the path integral (2.15):

〈. . .〉Rt =

r(t)=r∫
r(0)=r

Dr(t) . . . exp

− t∫
0

dτ
ṙ(τ)

4D

 , (3.49)

where r is some arbitrary point, since the systems we are considering are translationally
invariant. Equivalently, we may write for an arbitrary function f(r):

〈f(r(τ))〉Rt =

∞∫
−∞

dr′
P (r, r′, τ)P (r′, r, t− τ)

P (r, r, t)
f(r′), (3.50)

where the probability density P (r, r′, t) that a random walk starting from r reaches point
r′ in time t is a solution of the diffusion equation (1.43). In one dimension, for an infinite
system, it is given by

P (r, r′, t) =
1√

4πDt
e−(r−r′)2/4Dt. (3.51)

The factor P (r, r, t) in (3.50) ensures the normalization condition 〈1〉Rt ≡ 1.
Note that the phase we have to average over depends not only on the position of the

random walk at some time τ , but also at the time t − τ from the backward path of the
Cooperon, making our problem non-local in time.

Thus, consider a function f , depending on the coordinate difference of a random walk
taken at different times:

〈f(r(τ1)− r(τ2))〉Rt , (3.52)

where we assume 0 < τ1 < τ2 < t. Then this average can be calculated in the infinite
system by

〈f(r(τ1)− r(τ2))〉Rt =

∞∫
−∞

dr1

∞∫
−∞

dr2
P (r, r1, τ1)P (r1, r2, τ2)P (r2, r, t− τ1 − τ2)

P (r, r, t)
f(r1− r2).

(3.53)
As an example for this prescription, we calculate the closed random walk average of (3.48).
Using (3.53) and performing the double integral, one readily finds:

〈|r(τ1)− r(τ2)|〉Rt =

√
4D(τ2 − τ1)

tπ
(t− (τ2 − τ1)). (3.54)

For future reference, it is useful to note that the calculation of a double integral can be
avoided using the following trick: Since the point r was chosen arbitrarily, we can exploit
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r(τ = 0) = r

r(τ = t) = r

r(τ = τ1) = r1

r(τ = τ2) = r2
r(τ = τ2 − τ1) = r′

Figure 3.1: After averaging over
all possible closed random walks,
the distances |r−r′| and |r1−r2|
are equivalent.

the symmetry of problem. Instead of calculating the average distance between two points
of the closed random walk, located at times τ1 and τ2, we can equally well just calculate
the average distance covered by a closed random walk after time τ21 = τ2 − τ1, see Figure
3.1. Using (3.50), we obtain:

〈|r(τ1)− r(τ2)|〉Rt ≡ 〈|r(τ21)|〉Rt =

√
4Dτ21

tπ
(t− τ21). (3.55)

in agreement with (3.54). We will show later that a similar replacement can be done in the
ring. In fact, in all translationally invariant systems, 〈|r(τ1)−r(τ2)|〉Rt is always a function
of τ2 − τ1 only.

Note that the expression (3.55) is vanishing for τ21 = 0 and τ21 = t, corresponding to a
closed random walk. For τ21 � t it is ∼ √Dτ21 corresponding to an unrestricted random
walk in one dimension. Also note for further reference that the integral over all times τ21

has the same dependence on the total time t, independent of whether the random walk is
closed or unrestricted:

t∫
0

dτ21

√
4Dτ21

tπ
(t− τ21) ∼

√
Dt3/2 ∼

t∫
0

dτ21

√
Dτ21. (3.56)

Only the prefactor is changed.

3.6 Exact results in an infinite quasi-1d wire

In an infinite wire and using classical Johnson-Nyquist noise (3.13), it is possible to cal-
culate the corrections to the conductivity including an external magnetic field exactly, i.e.
without the need of approximation (3.39). The effect of the magnetic field is characterized
by the additional decoherence time τB, which we will explain in more detail in chapter
(5.2).
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This calculation has been done first by Altshuler, Aronov and Khmelnitsky (AAK), see
[1]. They were able to decouple the forward and backward trajectories r(τ) and r(t−τ) by
a coordinate transform in a path integral representation, thus making the problem local in
time and derived an exactly solvable differential equation for the Cooperon. They obtained:

∆σ = −e
2

π

√
DτN

Ai(τN/τB)

Ai′(τN/τB)
. (3.57)

where the Nyquist time τN is defined by:

τN =

(
σ0

e2T
√
D

)2/3

. (3.58)

In this thesis, we are actually only interested in the effect of the fluctuating environment,
characterized by the phase φ, in which case we can write the left hand side of (3.57) as
follows:

∞∫
0

dt P0(r, r, t)〈eiφ〉V,Rt e−t/τB = −1

2

√
τN
D

Ai(τN/τB)

Ai′(τN/τB)
, (3.59)

where we assumed that the magnetic field accounts for an independent exponential decay.
It has been shown in [21] that 〈eiφ〉V,Rt can be extracted from (3.59) by an inverse Laplace
transform. Using an approximation formula for the zeros of the Airy function, the decay
due to electron-electron interactions can then be approximated:

〈eiφ〉V,Rt ≈ e−
√
π/4(t/τN )3/2 . (3.60)

For the Cooperon decay function this implies:

F (t) =
e2

σ0

√
πD

4
Tt3/2. (3.61)

We will see below that this result is recovered by using approximation (3.39).

3.7 Calculation of the Cooperon decay function in a

quasi-1d ring

3.7.1 Diffusion on a ring and winding numbers

Diffusive motion on a ring is substantially different from the infinite medium. Electron
trajectories can be classified by a winding number n, counting the number of closed loops
around the ring. In this way, the position along a trajectory may be represented by the
tuple (n, r), where r is measured clockwise around the ring. Given a specific length L of
the ring we have r ∈ [0, L].
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To proceed further, we start by calculating the probability density P (r, r′, t) of free
diffusive motion on a ring. We have to solve the diffusion equation(

∂

∂t
−D∇2

r′

)
P (r, r′, t) = δ(r − r′)δ(t), (3.62)

implying periodic boundary conditions

P (r, r′, t) = P (r + L, r′ + L, t). (3.63)

For this, consider the equation

−D∆ψn(r) = Enψn(r), (3.64)

for which we assume a full set of solutions ψn to be known. We can then construct a
general solution for (3.62) simply by:

P (r, r′, t) = θ(t)
∑
n

ψn(r)†ψn(r′)e−Ent. (3.65)

A full set of solutions to (3.64), implementing the boundary conditions (3.63), is given by

ψq(r) =
1√
L
eiqr, (3.66)

where q = 2πn
L

, n ∈ Z and Eq = Dq2. Thus,

P (r, r′, t) =
1

L
θ(t)

∑
q

e−Dq
2te−iq(r−r

′) (3.67)

=
1

L

∞∑
n=−∞

e−
4π2n2Dt

L2 e
2πin(r−r′)

L . (3.68)

Using the Poisson transform, (C.1), we obtain:

P (r, r′, t) =
1

L

∞∑
n=−∞

∞∫
−∞

dy e−
4π2Dty2

L2 e
2πi(r−r′)y

L e2πimy (3.69)

=
1√

4πDt

∞∑
n=−∞

e−
1

4Dt
(r−r′+mL)2 , (3.70)

which should be compared to the result (3.51) of the infinite system.
Instead of calculating the sum over all winding numbers together, we will conveniently

consider each mode separately:

Pn(r, r′, t) =
1√

4πDt
e−

1
4Dt

(r−r′+nL)2 . (3.71)
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and do the sum in the very end:

P (r, r′, t) =
∞∑

n=−∞

Pn(r, r′, t). (3.72)

Because of the obvious translational invariance, we define the probability with only one
space-argument as

Pn(r − r′, t) =
1√

4πDt
e−

1
4Dt

(r−r′+nL)2 , (3.73)

which we will use in later formulas.
Since the probability is now a sum over winding numbers, the correction to the con-

ductivity (2.1) becomes

∆σ = −2e2D

π

∞∑
n=−∞

∞∫
0

dt Pn(r, r, t)e−Fn(t) , (3.74)

where, using approximation (3.39), we defined

Fn(t) =
1

2
〈φ2〉V,Rt,n . (3.75)

The average has to be done now with respect to closed random walks Rt,n of duration t
and winding number n.

3.7.2 Averaging over closed random walks on a ring

Recalling (3.47), we will now calculate the average

〈QR(r(τ1)− r(τ2))〉Rt,n =

〈
|r(τ1)− r(τ2)|

(
1− |r(τ1)− r(τ2)|

L

)〉
Rt,n

(3.76)

over closed random walks Rt,n having duration t and winding number n on a ring of size
L, following [3].

The probability for a random walk of winding number n to cover the distance r in time
t is given by (3.71). Doing the average in the same way as in section 3.5, compare (3.53),
we obtain for 0 < τ1 < τ2 < t:

〈QR〉Rt,n =

L∫
0

L∫
0

dr1dr2

(
|r1 − r2|

(
1− |r1 − r2|

L

))

×
∑

i+j+k=n

Pi(r0 − r1, τ1)Pj(r1 − r2, τ2 − τ1)Pk(r2 − r0, t− τ2)

Pn(0, t)
.

(3.77)



3.7 Calculation of the Cooperon decay function in a quasi-1d ring 31

The sum
∑

i+j+k=n has the following meaning: take the sum over all possible products of
functions Pi, Pj, Pk with winding numbers i, j and k, which constitute a random walk of
total winding number n, over which we have to average.

Note, that the case τ1 > τ2 can be calculated similarly, by interchanging r0 − r1 with
r2 − r0 in the arguments of the diffusion probabilities.

Now, take 1
L

∫ L
0

dr0 on both sides of (3.77) and use the semi-group property of the
probabilities on a ring:

L∫
0

dr2

∑
m

Pm(r1 − r2, t1)
∑
n

Pn(r2 − r3, t2) =
∑
m

Pm(r1 − r3, t1 + t2), (3.78)

which can be verified by inserting (3.71). One readily obtains for all τ1 and τ2:

〈QR〉Rt,n =
1

2L

L∫
−L

dr12

L+(L−|r12|)∫
L−(L−|r12|)

dr̄12

(
|r12|

(
1− |r12|

L

))

×
∞∑

m=−∞

Pm(r12, |τ12|)Pn−m(r12, t− |τ12|)
Pn(0, t)

,

(3.79)

where we introduced τ12 = τ1−τ2 and r12 = r1−r2, r̄12 = r1 +r2. The physical transparent
picture of this transformations is same as explained in Figure 3.1, but now applied to the
ring geometry. Doing the r̄12 integral, we obtain:

〈QR〉Rt,n =

L∫
−L

dr12

(
|r12|

(
1− |r12|

L

)2
)

∞∑
m=−∞

Pm(r12, |τ12|)Pn−m(r12, t− |τ12|)
Pn(0, t)

. (3.80)

Because Pm(r, t) = P−m(−r, t), the integral can be split into two parts:

〈QR〉Rt,n =

L∫
0

dr12 L Ω
( r
L

) ∞∑
m=−∞

Pm(r12, |τ12|)Pn−m(r12, t− |τ12|)
Pn(0, t)

+
P−m(r12, |τ12|)P−n+m(r12, t− |τ12|)

Pn(0, t)
.

(3.81)

where we introduced the function

Ω(x) = x (1− x)2 . (3.82)

To do the sum over m, we define the function Ω̃ as the periodic continuation of Ω:

Ω̃(x) = Ω(x̃), x = x̃+ k ∈ R (3.83)
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where k ∈ Z is chosen, such that always x̃ ∈ [0, 1]. (Some properties of the function Ω̃(x)
are summarized in appendix D.1) Using this, we can extend the integral in (3.81) to ±∞:

∞∫
−∞

dr12 L Ω̃
(r12

L

) P0(r12, |τ12|)Pn(r12, t− |τ12|) + P0(r12, |τ12|)P−n(r12, t− |τ12|)
Pn(0, t)

, (3.84)

because Pm(r, t) = P0(r −mL, t). Inserting (3.71), we get:

〈QR〉Rt,n(τ12) =
L√
π

(
4D
|τ12|
t

(t− |τ12|)
)− 1

2

×
∞∫

−∞

dr12 Ω̃
(r12

L

) exp

−
(
r12 − nL |τ12|t

)2

4D |τ12|
t

(t− |τ12|)

+ (n→ −n)

 .

(3.85)

With (3.85), we have recovered a result of [3].

Limit of the infinite wire:
√
Dt� L

Because of (3.71), in the limit
√
Dt � L only the decay function for the n = 0 mode

will give a non-zero contribution to the conductivity corrections. Since inside the integral
r12
L
� 1 for

√
Dt� L, we can approximate Ω̃ using (D.3), and do the integral:

〈QW 〉Rt,n=0(τ12) =

√
4D|τ12|
πt

(t− |τ12|). (3.86)

As anticipated, this expression coincides with (3.55) for an infinite wire.

3.7.3 Results for the Cooperon decay function

The full Cooperon decay function is now given by (3.40) with (3.85) averaged over random
walks having winding number n, as explained in (3.75). Inserting and going to sum and
difference coordinates τ12 = τ1 − τ2 and τ̄12 = τ1 + τ2, we obtain:

Fn(t) =− e2

σ0

t∫
0

dτ12

2(t− τ12)W (τ12)−

 +(t−τ12)∫
−(t−τ12)

dτ̄12 W (τ̄12)




× 1√
π

(
4D
|τ12|
t

(t− |τ12|)
)− 1

2

×
∞∫

−∞

dr12 L Ω̃
(r12

L

)exp

−
(
r12 − nL |τ12|t

)2

4D |τ12|
t

(t− |τ12|)

+ (n→ −n)

 ,

(3.87)



3.7 Calculation of the Cooperon decay function in a quasi-1d ring 33

because the integrant is symmetric in τ12. To simplify this expression, we introduce the
dimensionless variables x = τ12/t and y = r12/L and obtain:

Fn(t) =
1

g(L)

lt
l2T

1∫
0

dx
z(x)√

πx(1− x)

∞∫
−∞

dy Ω̃(y)
1

2

[
exp

(
− 1

l2t

π

4

(y − nx)2

πx(1− x)

)
+ (n→ −n)

]
,

(3.88)
where the time kernel z(x) is given by:

z(x) = − t

T

2(1− x)W (xt)−
+(1−x)∫
−(1−x)

dx̃ W (x̃t)

 . (3.89)

In (3.88), we introduced the ratio of the relevant length scales: the diffusive length of the
trajectory Lt =

√
Dt, the thermal length LT =

√
D/T and the length of the ring L:

lt =
Lt
L

=

√
Dt

L
lT =

LT
L

=

√
D/T

L
. (3.90)

Furthermore, we introduced the dimensionless conductance on the length L in the form:

g(L) =
σ0

e2L
. (3.91)

In the metallic regime, which we consider here, we can always assume g(L)� 1.
It is convenient to use a Fourier representation of the function Ω̃(x), given by (D.6),

and insert it into (3.88). Since terms antisymmetric in y give zero, we obtain:

Fn(t) =
1

g(L)

lt
l2T

1∫
0

dx
z(x)√

πx(1− x)

×
∞∫

−∞

dy

(
1

12
− 1

2

∞∑
k=1

cos(2πky) cos(2πknx)

(πk)2

)
exp

(
− 1

l2t

π

4

y2

πx(1− x)

)
.

(3.92)

Now, we can do the integral over y using (C.2):

Fn(t) =
1

g(L)

l2t
l2T

1∫
0

dx z(x)

(
1

6
−
∞∑
k=1

cos(2πknx)

(kπ)2
e−(πk)2(2lt)2x(1−x)

)
. (3.93)

This formula will be the basis for all our further calculations.
For classical noise (C), the time dependence of the correlator, W (t), is given by a delta

function, see (3.36), hence:
zC(x) = 1− 2(1− x)δ(x) (3.94)
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From this we obtain:

FC
n (t) =

1

g(L)

l2t
l2T

1

6
−

1∫
0

dx

(
∞∑
k=1

cos(2πknx)

(kπ)2
e−(πk)2(2lt)2x(1−x)

) . (3.95)

Note, that the only parameters affecting the form of this function are lt and n. We will
now evaluate its asymptotic limits and compare the results to a straightforward numerical
evaluation.

3.7.4 Asymptotic behavior of the Cooperon decay function

Expected behavior

For classical Johnson-Nyquist noise we obtained in (3.36) a delta correlation for the tempo-
ral dependence of the correlator: W (t) = Tδ(t). Thus, in formula (3.40) for the Cooperon
decay, we can replace the double integral by a single one:

Fn(t) ∼ T

t∫
0

dτ〈Q〉Rt,n(τ). (3.96)

We expect here two different regimes depending on lt and n:

1. The long ring regime:
√
Dt � L implies lt � 1 and n = 0: Here, the average

trajectories are shorter than the system size and we expect a behavior for Q similar
to the infinite wire, which has been calculated in (3.86). Qualitatively, the average
over closed random walks can be replaced by an unrestricted random walk, which
has been discussed in (3.56). Thus, we expect here:

Fn=0(t) ∼ T

t∫
0

dτ
√
Dτ ∼

√
DTt3/2. (3.97)

For n > 0 on the other hand, the trajectories explore the system completely, by
definition of n. Thus we replace the random walk average over Q, defined in (3.47),
by its spacial average, giving:

1

L

L∫
0

dx x
(

1− x

L

)
∼ L. (3.98)

For the decay, we conclude:

Fn>0(t) ∼ T

t∫
0

dτL ∼ LTt. (3.99)
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2. The short ring regime: L� √Dt implies 1� lt: Here, the average trajectories are
always longer than the ring size, regardless of the winding number. With the same
arguments as before we expect

Fn(t) ∼ LTt (3.100)

for all n.

Results

A detailed calculation of the asymptotic behavior of the Cooperon decay function is given
in appendix A.1. The results are:

n = 0 mode: We obtain for the long ring, i.e. lt � 1, see (A.2):

FC
n=0(t)lt�1 =

1

g(L)

√
π

4

l3t
l2T

(
1− 4lt

3
√
π

)
. (3.101)

In the original variables, this reads:

FC
n=0(t)√Dt�L =

e2

σ0

√
Dπ

4
Tt3/2

(
1− 4

3
√
π

√
Dt

L2

)
. (3.102)

The leading term coincides with the result (3.57) for the infinite wire. For increasing lt,
we see a crossover to the short ring regime, i.e. at 1� lt, see (A.5):

FC
n=0(t)1�lt =

1

g(L)

1

6

l2t
l2T

(
1− 1

30l2t

)
(3.103)

or

FC
n=0(t)L�

√
Dt =

e2

σ0

1

6
LTt

(
1− 1

30

L2

Dt

)
. (3.104)

This crossover is shown in figure 3.2.

n > 0 modes: The leading behavior for the long and the short ring is identical, but the
first correction term is different. We obtain for the long ring regime, i.e. at lt � 1, see
(A.4):

FC
n>0(t)lt�1 =

1

g(L)

1

6

l2t
l2T

(
1− 2

l2t
n2

)
(3.105)

or

FC
n>0(t)√Dt�L =

e2

σ0

1

6
LTt

(
1− 2

Dt

n2L2

)
, (3.106)

and for the short ring regime, i.e. at 1� lt, see (A.8):

FC
n>0(t)1�lt =

1

g(L)

1

6

l2t
l2T

(
1− 1

30l2t

)
. (3.107)
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Figure 3.2: Numerical evaluation of the Cooperon decay function for the n = 0 mode and
classical noise. For comparison, we show the asymptotic expressions (3.101) and (3.103).
A crossover between the long and the short ring regime is clearly visible.

or

FC
n>0(t)L�

√
Dt =

e2

σ0

1

6
LTt

(
1− 1

30

L2

Dt

)
. (3.108)

This behavior is shown in figure 3.3. The dependence on n is weak.

3.7.5 Summary

We obtained a change in the time dependence of the decay function from non-exponential
(∼ t3/2) in the infinite system to exponential (∼ t) when trajectories are longer than the
size of the ring, thus agreeing with our expectations and confirming the results of [2] and [3].
Additionally, we calculated the leading correction terms at the crossover point. Recently,
this dimensional crossover has been measured in metallic square networks, see [22]. We
will review this experimental situation in more detail in chapter 6.
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Figure 3.3: Numerical evaluation of the Cooperon decay function for the modes n > 0 and
classical noise. For comparison, we show the asymptotic expressions (3.105) and (3.107).
We obtain no crossover between the long and the short ring regimes. Essentially, there is
no dependence on n at all, except for small deviations close to lt = 1 for small n.
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Chapter 4

Quasi-1d systems: Quantum noise

4.1 Quantum noise correlator including the Pauli prin-

ciple

In the last chapter we used the noise obtained from the Fluctuation-Disspiation-Theorem,
in the high temperature limit, cf. (3.13), (3.32) and (3.36). This correlator had no depen-
dence on frequency and the noise was assumed white in time. As has been anticipated in
our derivation of Johnson-Nyquist noise, a full quantum-mechanical treatment is possible,
by replacing the correlation function by the anti-commutator:

〈V V 〉(k, ω)→ 1

2
〈{V, V }〉(k, ω) = coth(ω/2T )

1

2
〈[V, V ]〉(k, ω) (4.1)

and by taken into account a finite temperature, thus obtaining a factor of coth(ω/2T ) =
2n(ω) + 1 (where n is the Bose function) instead of the linear temperature dependence.

However, this is not the full story. The derivation of this correlator describes the motion
of a single electron in the presence of quantum noise, but in the absence of the Fermi sea
of the metal.

The most striking physical difference in the metal is the effect of Pauli blocking. While
a single electron (e.g. propagating in a vacuum), having energy ε, may loose its energy by
spontaneous emission at any time as long as ε > 0, in a metal, the phase space for such
a transition is reduced by the lack of available final states, occupied by the surrounding
electrons. As the temperature increases, the number of free states increases and the block-
ing effect is reduced. In the limit T →∞ one should recover the behavior discussed in the
previous chapter.

Recently, von Delft, Marquardt et al. were able to include the effect of the Fermi sea
in an effective correlator, which they presented in a series of two papers: [4] and [5]. They
based their argumentation on a Feynman-Vernon influence functional approach, backed
up by a careful diagrammatic calculation in Keldysh space (see also [23], for a detailed
calculation. For an introduction to the influence functional approach, see [24], where the
authors derive the classical Johnson-Nyquist theorem).
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Their main result, was to propose an effective noise correlator in the presence of the
Fermi sea, which they checked against available exact results and obtained only small
corrections due to quantum noise at low temperatures.

They proposed replacing the coth factor by

2n(ω) + 1→ 2n(ω) + 1 + f(ε+ ω)− f(ε− ω). (4.2)

Here, f is the Fermi function and ε is the average energy, measured with respect to the
fermi energy εF , of the pair of propagating electron trajectories. This combination ensures
that processes which would violate the Pauli principle (ω � max(T, ε)) are suppressed.

For the correlator, this replacement leads to

〈V V 〉(k, ω)→ [2n(ω) + 1 + f(ε+ ω)− f(ε− ω)]
1

2
〈[V, V ]〉(k, ω). (4.3)

Thus we may retain our factorized form of the correlator (3.34):

〈V V 〉(r, ω) =
2e2

σ0

Q(r)WQ(ω), (4.4)

since the new factor affects the energy dependence of the correlator, W (ω), but leaves
the spacial dependence Q(r) unchanged. The energy dependence is now given by WQ(ω),
defined by

WQ(ω, ε) =
ω

2
[2n(ω) + 1 + f(ε+ ω)− f(ε− ω)] . (4.5)

(The factor ω
2

originates from the Fluctuation-Disspipation-Theorem, compare with (3.12).)
The correlator is now a function of the average energy ε of the forward and backward

electron trajectories. Following the steps of Marquardt et al., we average over this energy
using the usual derivative of the Fermi function f(ε):

〈. . .〉ε =

∫
dε [−f ′(ε)] . . . . (4.6)

The integral over the correlator occurs in the decay function in the exponent. Again,
following Marquardt et al., we lift this average into the exponent:

〈e−F (t)〉ε ' e−〈F (t)〉ε , (4.7)

then we can evaluate the ε-integral and obtain:

WQ(ω) = 〈WQ(ω, ε)〉ε = T

(
ω/2T

sinh(ω/2T )

)2

. (4.8)

Fourier transforming yields

WQ(t) = πT 2 w(πTt), w(x) =
x coth(x)− 1

sinh(x)2
, (4.9)
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Figure 4.1: The function w(x), defined by (4.9): A positive, peak-shaped function, and its
integral u(x) =

∫ x
−x dy w(y), which tends to 1 for x→∞.

instead of the classical form WC(t) = Tδ(t), which we obtained for Johnson-Nyquist noise.
Note that WQ equals T times a broadened delta function of width 1/T , since w(x) is

a positive, peak-shaped function with weight 1, see Figure 4.1. Thus, in the limit T →∞
we recover the classical results.

The diffusive length scale of thermal fluctuations is given by the thermal length: LT =√
D/T . It has been shown in [4], that if the average length of the trajectory, Lt =

√
Dt,

is shorter than this scale, the corrections to the conductivity cannot be in the regime
of weak localization any more. Interaction effects become dominant and the results are
fundamentally different, since different diagrams become important. Thus, in the following,
we will require:

Lt � LT ⇔ Tt� 1 . (4.10)

4.2 Cooperon decay and quantum noise

The Cooperon decay function is still given by (3.93):

Fn(t) =
1

g(L)

l2t
l2T

1∫
0

dx z(x)

(
1

6
−
∞∑
k=1

cos(2πknx)

(kπ)2
e−(πk)2(2lt)2x(1−x)

)
, (4.11)

but now the function z(x), defined in (3.89), is given by

zQ(x) = u(α(1− x))− 2α(1− x)w(αx). (4.12)

where α = πTt = πl2t /l
2
T ,

w(x) =
x coth(x)− 1

sinh2(x)
and u(x) =

x∫
−x

dy w(y) = coth(x)− x

sinh(x)2
. (4.13)
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Figure 4.2: The function zQ(x) defined by (4.12): In the limit T → ∞ it approaches the
classical result (3.94).

Note that because of the symmetry of the integrand in (4.11), we may replace 1− x by x
in the first term of (4.12) and thus replace z(x) by z̃(x), defined by:

z̃Q(x) = u((πl2t /l
2
T )x)− 2(πl2t /l

2
T )(1− x)w((πl2t /l

2
T )x). (4.14)

Some of the properties and integrals of this function are given in (D.2)

4.3 Calculation of the Cooperon decay function in a

quasi-1d ring

The Cooperon decay function is given by:

FQ(t) = − 1

g(L)

l2t
l2T

1∫
0

dx z̃Q(x)

(
∞∑
k=1

cos(2πknx)

(kπ)2
e−(πk)2(2lt)2x(1−x)

)
, (4.15)

where z̃Q is given by (4.14).
We will now directly continue with an evaluation of its asymptotic behavior and com-

pare the results to a numerical evaluation. For details on the latter, see appendix B. Note
that in contrast to the case of classical noise, lT now directly affects its form, instead of
being just a prefactor, since z̃(x) depends on it in a non-trivial way.

4.3.1 Asymptotic behavior of the Cooperon decay function

Expected behavior

In (4.10), we argued that the thermal length LT should always be shorter than the average
trajectory length Lt. Thus, as long as the thermal length of the system is also much
shorter than the system size L, our improved treatment of the noise should give small
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correction terms due to the smeared delta function, depending on temperature. However,
modified behavior can be expected for the case of very low temperatures and a very short
ring: LT � L. Here, the decay should be much weaker than predicted using classical noise,
since the potential can be considered frozen during the the scale 1/T . Therefore, we expect
3 regimes:

1. The long ring regime:
√
D/T � √Dt � L implying lT � lt � 1: Just like in

section 3.7.4, we expect for the n = 0 mode:

Fn=0(t) ∼ Tt3/2 (4.16)

and

Fn>0(t) ∼ LTt (4.17)

for n > 0.

2. The short ring regime:
√
D/T � L � √Dt implying lT � 1 � lt: Also, just like

in section 3.7.4, we expect:

Fn(t) ∼ LTt, (4.18)

for all n.

3. The very short ring regime: L � √
D/T � √Dt implying 1 � lT � lt: Here,

just like in the short ring regime, the trajectories are much longer than the ring size
L, thus we expect no dependence on n, with the same arguments as in section 3.7.4.

Furthermore, the potential is effectively frozen during the time τT = 1/T . Since this
time is already much longer than the average time an electron needs for encircling
the ring once, which is given by the Thouless time τTh = L2/D, we can assume from
Q(r(τ)) ∼ L and W (τ) ∼ T 2 for some fixed time τ < τT :

〈V (τ)V (0)〉 ∼ T 2L. (4.19)

Now, since during the time τT , the trajectories already explore the system completely,
we can write the the phase accumulated during the time τT as an integral over the
ring size:

δϕ = τT

L∫
0

dx V (x)(pL(x)− pR(x)), (4.20)

where p(x)dx is the fraction of time spent by the particular realization of the tra-
jectory in the interval [x, x + dx]. Here, for the Cooperon phase, we need the phase
difference of two trajectories and therefore the difference pL(x)−pR(x) enters. pR/L(x)
generally differs from the simple constant 1/L, since we are considering the finite in-
terval τT < t. Generally, in the simple picture of convergence of the empirical mean
to its expectation value, the standard deviation scales like ∼ 1/

√
N where N is the
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number of samples. In our case, this number is proportional to the time τT , as can
also be confirmed in a more detailed derivation. We follow for the Gaussian average:

〈δϕ〉 ∼ τ 2
T (T 2L)

L2

τT
∼ τTT

2L3. (4.21)

For the total phase of the Cooperon, which is then given by t
τT

segments of length
τT :

Fn(t) ∼ t

τT
τTT

2L3 ∼ L3T 2t. (4.22)

Also note that the crossover from the short to the very short regime might also be
interpreted as a transition from a quasi one dimensional to a zero dimensional system.
The latter has been described in [25].

Results

A detailed calculation of the asymptotic limits of the Cooperon decay function for quantum
noise can be found in appendix A.2. The results are:

long ring regime lT � lt � 1: We obtain for the n = 0 mode, see (A.14):

FQ
n=0(t)lT�lt�1 =

1

g(L)

√
π

4

l3t
l2T

(
1− 23/2

π
|ζ(1/2)| lT

lt
− 4lt

3
√
π

)
. (4.23)

The numerical factor of the first correction term is given by 23/2

π
|ζ(1/2)| ≈ 1.3. Expressed

in the original variables this is given by:

FQ
n=0(t)lT�lt�1 =

e2

σ0

√
Dπ

4
Tt3/2

(
1− 23/2

π
|ζ(1/2)| 1√

tT
− 4

3
√
π

√
Dt

L2

)
. (4.24)

The first two terms of (4.24) reproduce the results obtained by Marquardt et al. ([4], Eq.
12a) for the case of an infinitely long wire. The first relative correction is ∼ 1/

√
Tt and

thus, parametrically small, see (4.10). The last term is the correction already obtained for
classical noise, see (3.101) at the crossover to the short ring regime. The corrections have
been checked numerically, see figures 4.3 (upper) for the dependence on lT and 4.4 (upper
left) for the dependence on lt.

For modes n > 0, we find, see (A.18) (, for n� l2T/l
2
t ):

FQ
n>0(t)lT�lt�1 =

1

g(L)

1

6

l2t
l2T

(
1− 6

π

nl2T
l2t
− 2

l2t
n2
− 12

π
l2T

)
, (4.25)

or expressed in the original variables:

FQ
n>0(t)√

D/T�
√
Dt�L =

e2

σ

1

6
LTt

(
1− 6

π

n

tT
− 2

Dt

n2L2
− 12

π

D

TL2

)
. (4.26)
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Figure 4.3: The decay function for quantum noise FQ in comparison to classical noise FC of
the parameter lT for n = 0. Upper figure: lt = 0.1: the long ring regime and its asymptotic
formula (4.23). Lower figure: lt = 10: the short and very short ring regimes, shown with
(4.27) and (4.29).

The second correction term has already been found for classical noise, see (3.105). The first
term is the leading correction due to quantum noise. It depends on the winding number n
and is proportional to 1/T t and thus also parametrically small. The last term is smaller
than the first as long as n/l2t > 2 and is only required for small n and relatively large
lt � 1. For a numerical evaluation of this regime, see figures 4.5 for the dependence on lT
and 4.7 (left) for the dependence on lt. As it was the case for classical noise, we confirm
the result that in the long ring regime, the curve for n = 0 and the curves for n > 0 are
fundamentally different, as can be seen when comparing figures 4.4 and 4.7. For higher
modes, the crossover to the short ring regime is essentially absent.
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asymptotic formula (4.29).

short ring regime lT � 1 � lt: Here, the results for the n = 0 and n > 0 modes are
identical, see (A.22) and (A.26):

FQ
n (t)lT�1�lt =

1

g(L)

1

6

l2t
l2T

(
1− 6√

2π
|ζ(1/2)|lT − 1

30

1

l2t

)
. (4.27)

with 6√
2π
|ζ(1/2)| ≈ 3.5. Or in the original variables:

FQ
n (t)√

D/T�L�
√
Dt

=
e2

σ

1

6
LTt

(
1− 6√

2π

√
D

TL2
− 1

30

L2

Dt

)
. (4.28)

The last correction term coincides with the classical correction (3.107). The leading quan-
tum correction is proportional to lT , which is the ratio of the thermal length to the system
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for modes n > 0. Shown in comparison to the asymptotic expression (4.25).

size. Note that this correction does not depend on the winding number n, as it has been
the case for the long ring. Instead this correction marks the onset to the very small ring
regime. For the n = 0 mode, the decay function in this regime is shown in figure 4.3 (lower
left) as a function of lT and in 4.4 (upper right) as a function of lt. For modes n > 0, see
figures 4.6 (left) and 4.7 (right) respectively. In fact, one sees that the results for the zero
mode and higher modes coincide.

very short ring regime 1� lT � lt: We obtain, also for all n, see (A.29):

FQ
n (t)1�lT�lt =

1

g(L)

l2t
l4T

π

540

(
1− 3

2π

l2T
l2t

)
. (4.29)

or

FQ
n (t)

L�
√
D/T�

√
Dt

=
e2

σ

π

540

1

D
L3T 2t

(
1− 3

2π

1

Tt

)
. (4.30)

This regime was totally absent in the classical calculation. The decay in this regime is
drastically reduced, as can be seen in figures 4.3 (lower right) and 4.4 (lower). Also note
the small prefactor π/540, which accounts for a further reduction of the decay. In the
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Figure 4.6: The decay function of the parameter lT for lt = 10, i.e. the short and very
short ring regimes for modes n > 0. Shown in comparison to the asymptotic expressions
(4.27) and (4.29).

latter plot, only the decay function calculated with quantum noise has been shown since
the corresponding function using classical noise would be more than 3 orders of magnitude
larger. In fact, it is given by the constant value (l2T/l

2
t )g(L)FC

n (lt) = 1/6, see (3.107). In
the first plot, the transition from the small to the very small ring regime can be seen. Note
the early onset of the new regime and the strong reduction of the decay in comparison to
the classical calculation. The same is true for figures 4.6 (right) and 4.8, which show the
dependence of the decay function in this regime on lT and lt, respectively, for modes n > 0.
These figures confirm the result, that the winding number n is irrelevant in this regime.
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Figure 4.7: The decay function of the parameter lt for lT = 0.01, i.e. the long and the
short ring regimes for modes n > 0. Shown in comparison to the asymptotic expressions
(4.25) and (4.27).

4.3.2 Summary and results for the dephasing length

For completeness of our presentation we will extract here the dephasing length of the
Cooperon due to electronic quantum noise. We define the decoherence time τφ and the
relative decoherence length lφ simply by requiring:

Fn(τφ) ≡ 1 lφ =
Lφ
L

=

√
Dτφ

L
. (4.31)

It’s behavior may easily be extracted from the asymptotic expressions in the last section
and is summarized in Table 4.1.

It shall be emphasized though, that the time corresponding to this decoherence length
τφ = L2

φ/D is not the decoherence time of the Cooperon in the traditional sense, since it
applies only to one specific winding number. We cannot simply use this time as an infrared
cutoff for the conductivity integral. Instead, the summation over n has to be done first.
Nevertheless, this quantity is accessible to the experimentalist using magneto-conductance
measurements, which we will discuss in the next chapter.

The relative dephasing length is shown in figure 4.9 for several values of g(L)� 1 and
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Figure 4.8: The decay function of the parameter lt for lT = 10, i.e. the very short ring
regime for modes n > 0. Shown in comparison to the asymptotic expression (4.29).

for the zeroth and first mode. As it has been shown in the previous section, higher modes
will behave similar to n = 1.

The figure 4.10 for n = 0 shows all 3 regimes, obtained in the last section. Note that
the crossover point from the long to the short ring regime is now given at lφ = 1 while the
crossover point from the short to the very short regime is at lT = 1.
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Condition Decay function Relative correction Dephasing length

long ring LT � Lt � L F (t) ∼ Tt3/2 ∼ −1/
√
tT Lφ ∼ T−1/3

(n = 0) lT � lt � 1 F (lt) ∼ 1
g(L)

l3t
l2T

∼ −lT/lt lφ ∼ 3
√
g(L)l2T

long ring LT � Lt � L F (t) ∼ LTt ∼ −n/tT Lφ ∼ (TL)−1/2

(n > 0) lT � lt � 1 F (lt) ∼ 1
g(L)

l2t
l2T

∼ −nl2T/l2t lφ ∼
√
g(L)l2T

short ring LT � L� Lt F (t) ∼ LTt ∼ −√1/TL2 Lφ ∼ (TL)−1/2

(all n) lT � 1� lt F (lt) ∼ 1
g(L)

l2t
l2T

∼ −lT lφ ∼
√
g(L)l2T

very short ring L� LT � Lt F (t) ∼ L3T 2t ∼ −1/T t Lφ ∼ (T 2L3)−1/2

(all n) 1� lT � lt F (lt) ∼ 1
g(L)

l2t
l4T

∼ −l2T/l2t lφ ∼
√
g(L)l4T

Table 4.1: The 3(+1) regimes obtained from the Cooperon decay function in dimensionfull
and dimensionless units. (The dimensionfull expressions are missing factors of [D] = m2/s
and [e2/σ0] = 1/m.)
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Chapter 5

Corrections to the conductivity

5.1 Weak localization correction to the conductivity

in a quasi-1d ring

The total correction to the conductivity is given by (3.74):

∆σ = −2e2D

π

∞∑
n=−∞

∞∫
0

dt Pn(r, r, t)e−Fn(t). (5.1)

where

Fn(t) =
1

2
〈φ2〉V,Rt,n (5.2)

is the Cooperon decay function, given by the phase difference of two time reversed random
walks, averaged over electronic noise and random walks with winding number n, which we
calculated for classical noise and quantum noise, including the Pauli principle, in the last
two chapters. Pn(r, r, t) is given by (3.71):

Pn(r, r, t) =
1√

4πDt
e−(nL)2/4Dt (5.3)

and corresponds to the probability density of a random walk on the ring with winding
number n to return to its origin at time t. We have to sum over all n and integrate over
all times t, since all trajectories contribute. 1

It is convenient to express this formula in terms of the relative length scales and the
dimensionless conductance, defined in (3.90) and (3.91). Then we can write the corrections
as

∆g(L) =
∆σ

e2L
= − 2

π3/2

∞∫
0

dlt

∞∑
n=−∞

e−(n/2lt)2e−Fn(lt,lT ,g(L)) . (5.4)

1Taking into account all times in the integral, we automatically include trajectories which violate the
condition Tt � 1. Thus, in the following, we have to make sure that the integral over t from 0 to 1/T
gives only a small contribution.
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Figure 5.1: The full correction to the conductance without a magnetic field, given by (5.1)
for different values of g(L). Solid lines are calculated using quantum noise, dashed lines
using classical noise.

Note that in the metallic regime, we always have g(L)� 1. Inserting into this formula our
expressions FC from (3.95) and FQ from (4.11), and plotting against the inverse relative
temperature length 1/lT ∼

√
T , we obtain figure 5.1. The difference between the classical

and our improved treatment of electronic noise is clearly visible for low temperatures.
From the figure we identify again three regimes:

• The long ring regime: If lφ � 1, we have lT � 1, see table 4.1. Trajectories lt � 1
contribute most to the conductance integral, here the n = 0 mode is dominating,
thus we obtain, using (C.9):

−∆g(L) ≈ 2

π3/2

∞∫
0

dlt exp

(
− 1

g(L)

√
π

4

l3t
l2T

)

=
4

9

√
3

π

1

Γ(2/3)
3

√
g(L)

4√
π
l2T ∼ 3

√
g(L)l2T .

(5.5)

Note that since lφ = 3
√
g(L)l2T , see table 4.1, this is equivalent to the known result:

−∆σ ∼ e2Lφ. (5.6)

• The short ring regime: If lφ � 1 and still lT � 1, trajectories with lt � 1 dominate
and we have to sum over all n, since higher modes are not neglectable any more. We
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Figure 5.2: The full correction to the conductance for quantum noise (Q) and classical
noise (C) without a magnetic field, given by (5.1) for g(L) = 100. Shown in comparison
to the asymptotic expressions (5.5), (5.7) and (5.8). Already at lT < 1 the correction is
larger than g(L) itself, thus, the very small ring regime cannot be reached.

obtain:

−∆g(L) ≈ 2

π3/2

∞∫
0

dlt

∞∑
n=−∞

exp

(
− n2

(2lt)2

)
exp

(
− 1

g(L)

1

6

l2t
l2T

)

=

√
6g(L)l2T
π

coth

(
1

2
√

6g(L)l2T

)
∼ g(L) l2T

. (5.7)

(The integral has been done using (C.10) and then the sum using (C.16).)

• The very short ring regime: If lφ � 1 and lT � 1, we obtain:

−∆g(L) ≈
∞∫

0

dlt

∞∑
n=−∞

exp

(
− n

2

2l2t

)
exp

(
− 1

g(L)

π

540

l2t
l4T

)

=

√
540g(L)l4T
π3/2

coth

( √
π

2
√

540g(L)l4T

)
∼ g(L) l4T

(5.8)

The 3 regimes are identified and compared to the asymptotic expressions in figure
5.2. We see that the absolute value of the corrections to the conductivity become larger
than the conductivity itself, when we approach the quantum regime, i.e. lT � 1, at low
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temperatures. Indeed, from (5.7) or (5.8) we obtain:

∆σ

σ0

≡ ∆g(L)

g(L)
� 1 ⇒ lT � 1 . (5.9)

Requiring that the corrections stay small thus means that we cannot have a thermal length
larger than the system length. Thus, the very short ring regime cannot be reached in a
weak localization experiment.

Another way of understanding this is the following: In the long ring regime or, equiva-
lently, the infinite system, the corrections can be written in the general form:

− ∆σ

σ0

∼ 1

ρ0

∞∫
0

dt
1√
Dt

e−t/τφ ∼ 1

g(Lφ)
, (5.10)

since ρ0D ∼ σ0/e
2, see (1.3). Thus, a common requirement for the validity of weak-

localization is
g(Lφ)� 1 for the infinite system. (5.11)

For the short (or very short) ring on the other hand we obtain:

∆σ

σ0

=
∞∑

n=−∞

∆σn
σ0

∼
∞∑

n=−∞

e2L

σ0

∞∫
0

dlt e
∼−(n/lt)2e−(lt/lφ)2

∼ 1

g(Lφ)

∞∑
n=0

exp

(
−|n|
lφ

)
,

(5.12)

since we have to do the sum over all winding numbers here. We may thus require in analogy
to the infinite system:

g(Lφ)� lφ = Lφ/L for the ergodic system, (5.13)

where the term ‘ergodic system’ stands for systems where the electron trajectories, on
average, explore the system completely.

g(Lφ) = g(L)/lφ may now be obtained from the usual condition

Fn(lφ, lT , g(L)) ≡ 1. (5.14)

The results for this are summarized in table 5.1.
Plugging in the result for g(Lφ) of the short or very short ring regimes into (5.14),

we necessarily obtain lT � 1, implying that the very short ring regime is incompatible
with the condition that the corrections to the conductivity in the weak localization regime
are small. Nevertheless, it may be expected that our new results may be of relevance for
understanding the onset of the regime of strong localization, or the transition to a zero
dimensional system. We will investigate these possibilities in the near future.

In this thesis we will now focus on possibilities how the small corrections in the long or
short ring regime can be verified experimentally.
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Condition Dominating decay function −∆g(L) g(Lφ)

long ring lφ � 1, lT � 1 Fn(t) ∼ 1
g(L)

l3t
l2T

∼ 3
√
g(L)l2T l2φ/l

2
T

short ring lφ � 1, lT � 1 Fn(t) ∼ 1
g(L)

l2t
l2T

∼ g(L)l2T lφ/l
2
T

very short ring lφ � 1, lT � 1 Fn(t) ∼ 1
g(L)

l2t
l4T

∼ g(L)l4T lφ/l
4
T

Table 5.1: The 3 regimes of the conductance. The very short ring regime cannot be reached,
since it would necessarily lead to ∆g(L) > g(L).

5.2 Magneto-conductance measurements

The most common method for extracting the weak localization correction from the total
conductivity is to use magneto-conductance measurements, i.e. measuring the conductance
against the magnetic field strength of an external field. Since the weak-localization correc-
tion is quickly destroyed by any mechanism that destroys the time reversal symmetry, the
corrections will vanish for high enough magnetic fields and thus giving us the opportunity
to subtract the constant background from the total conductance.

An external magnetic field enters our setup, described by equation (5.1), in two ways:

1. by destroying the phase coherence of the Cooperon and thus providing another in-
frared cutoff,

e−t/τB , (5.15)

where τB = 2/(DL2
Se

2B2) for a wire of circular cross section with radius LS, for
details, see [26]. (In fact, the Cooperon decay due to this effect is not exactly expo-
nential, but can be well approximated by it, see Eq. (1.141) of [9] and the following
discussion.)

2. by the flux of the magnetic field through the ring, i.e. the Aharonov-Bohm effect,

einθ (5.16)

where θ = 4πφ/φ0 is the reduced flux (φ0 = 2π/e). The reason for this is sim-
ple: If the vector potential is azimuthal to the wire and we assume that LS � L,
then it is constant inside the ring and we have no Lorentz force. Then the eikonal
approximation becomes exact and the phase picked up by the Cooperon is simply
given by 2eBπL2 (The factor of 2 originates from the forward and backward path of
the Cooperon and πL2 is the area penetrated by the flux.) The oscillations in the
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Figure 5.3: Plots of the dimensionless magneto-conductance for g(L) = 10 and lS = 0.5.
Dotted lines are calculated using classical noise, solid lines using quantum noise.

conductivity due to this effect are known as Altshuler-Ahoronov-Spivak oscillations,
see [27].

We conclude that the conductivity correction in a magnetic field can be written as:

∆σ = −2e2D

π

∞∑
n=−∞

∞∫
0

dt Pn(r, r, t)e−Fn(t)e−t/τBeinθ. (5.17)

Using the dimensionless variables from (3.90) and (3.91) and introducing:

lB =

√
DτB
L

and lS =
LS
L
, (5.18)

we can write the correction to the dimensionless conductance, depending on a magnetic
field (lB ∼ 1/B), as:

∆g =
∆σ

e2L
= − 2

π3/2

∞∫
0

dlt

∞∑
n=−∞

e−(n/2lt)2e−(lt/lB)2e−Fn(lt) cos(23/2πn/lBlS) . (5.19)

This function is shown in figure 5.3, for reasonable parameters. One clearly observes
the zero mode as the envelope of this function and the first mode as the visible oscillations.
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Figure 5.4: The n = 0 and n = 1 mode of the magneto-conductance in comparison to
formula (5.21) and (5.22) for g(L) = 100. Dotted lines are calculated using classical noise,
solid lines using quantum noise.

Higher modes give an exponentially smaller contribution to the corrections and are sup-
pressed, as long as lφ is smaller than 1. For the opposite case lφ � 1, all winding numbers
play a role. Using this setup, it might be possible to subtract the background and the
envelope from the experimental data and obtain a curve only for one specific mode of the
corrections.

5.3 Possible experimental realization

Since the regime of the very small ring is not experimentally accessible, we consider the
first correction to the small ring regime, given by (4.27):

FQ
n (t) =

1

g(L)

1

6

l2t
l2T

(
1− 6√

2π
|ζ(1/2)|lT

)
. (5.20)

for all n and where we kept only the leading correction due to quantum noise, i.e. low
temperature. Using magneto-conductance measurements we can now extract a specific
winding number form the total conductance. In this regime the correction to the n = 0
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harmonic of the magneto-conductance is given from (5.4) by:

−∆g0(L) =
1

π

√√√√ 6g(L)l2T(
1− 6√

2π
|ζ(1/2)|lT

)
≈ 1

π

√
6g(L)l2T

(
1 +

3√
2π
|ζ(1/2)|lT

)
,

. (5.21)

while for the n > 0 harmonics, we obtain:

−∆g1(L) ≈ 1

π

√
6g(L)l2T

(
1 +

3√
2π
|ζ(1/2)|lT

)
exp

−|n|
√√√√(1 + 3√

2π
|ζ(1/2)|lT

)
6g(L)l2T


≈ 1

π

√
6g(L)l2T

(
1 +

3√
2π
|ζ(1/2)|lT − |n|√

6g(L)l2T

)
.

.

(5.22)

A comparison of these results to a numerical evaluation is given in figure 5.4.
To first order, the corrections are the same for all modes n individually. The prefactor

of this correction is given by 3√
2π
|ζ(1/2)| ≈ 1.75. We see that the relative correction

of the conductance is here directly proportional to lT , which is the ratio of the thermal
length to the system size. This should be checked experimentally for a ring, where electron
trajectories explore the system completely, which requires a relatively small size and low
temperatures. Note though that until now, we considered only an isolated ring, which
obviously does not correspond to a real transport experiment.

5.3.1 The effect of connecting wires

To carry out a transport experiment with a metallic ring, we have to connect the ring to
wires, through which a current can be injected. Even classically, the conductance of the
whole system becomes here non-local and has to be obtained from Kirchhoff laws. The
Cooperon must then be weighted properly in the conductance integral over all possible
trajectories, see [3].

But more importantly, the Cooperon is itself a non-local object, which depends on
the geometry of the system. In particular, the spatial dependence of the correlator for
electron-electron interactions, (3.47), is modified and does not obey the convenient sym-
metry properties of a ring any more, which lead us to our results in chapter 3.7.

In the regime where we expect large corrections due to quantum noise, i.e. for a
very small ring, where the decoherence length is larger than the system size, we expect
the connected wires to strongly affect our previous results. A detailed calculation of the
corrections in this case seems difficult.

However, there is the possibility of connecting a very small ring to leads via tunneling
contacts. Then, as long as the dwelling time τd (i.e. the inverse tunneling probability
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6

Figure 5.5: Some orbits contributing to the magneto-conductance in a grid. Left: Con-
tributing to the first harmonic, Right: Contributing to the second harmonic. (Taken from
[28])

per time) in the ring is much larger than the decoherence time, a measurement of the
decoherence length in the regimes where quantum noise plays an important role might be
possible. We will study this setup in more detail elsewhere.

5.3.2 Recent experiments in a grid

Ferrier et al. describe in [28] a method to extract the decoherence length Lφ form the
magneto-conductance oscillations of a grid fabricated from a GaAs/GaAlAs 2D electron
gas (2DEG). In such a grid setup, different kinds of electron trajectories contribute to weak
localization, but since the frequency of the oscillations of the conductance depends on the
area enclosed by the trajectories, only specific classes of trajectories correspond to each
Fourier mode of the corrections, see for example figure 5.5. Still, the contribution of this
classes of trajectories add up in a non-trivial way and a detailed analysis of their results
would go beyond the scope of this thesis.

In [22] these authors were able to measure for the first time a geometrical dependence of
the decoherence length Lφ in this setup. They looked at the oscillating part of the magneto-
conductance, i.e. modes n > 0 and extracted Lφ for different temperatures. When the
temperature was high enough, so that Lφ ∼< L, where L is the circumference of a grid cell,
they obtained a temperature dependence of the form

Lφ ∼ T−1/2. (5.23)

In this regime the trajectories are on average shorter than the circumference of a grid cell,
thus the oscillating part of the conductance will be dominated by trajectories which enclose
one grid cell exactly once, corresponding to a well-defined ring, thus, this corresponds to
the long ring regime and n = 1, see table 4.1.

For lower temperatures, the behavior they obtained for the oscillating part was similar
to the long ring regime with n = 0:

Lφ ∼ T−1/3. (5.24)
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We assume, that this is due to the fact, that trajectories with large tails (e.g. the second
trajectory of 5.5) dominate the decoherence and thus the result is equivalent to an infinite
wire here.

For both of these cases we have shown that our improved treatment of the electronic
noise leads only to small corrections to the decoherence length. We thus conclude that
magneto-conductance measurements in a grid are unsuitable to demonstrate variations
due to quantum noise.



Chapter 6

Conclusions

We calculated in detail the decoherence of the Cooperon by electron-electron interactions
in a disordered quasi one dimensional metallic ring in all relevant regimes including first
order correction terms. The results have been summarized in table 4.1. We were able to
confirm the results of Ludwig and Mirlin [2] for a ring in the case of classical noise and
Marquardt and von Delft [4] for an infinite wire in the case of quantum noise and bring
them together.

Using our improved treatment of electronic noise, we could show that previous calcu-
lations should be modified at low temperatures and small system sizes. When the thermal
length approaches the ring size, new quantum corrections to the Cooperon decay function
have to be taken into account. It should be noted that these corrections cannot domi-
nate without leaving the regime of weak localization (that is the regime of validity of our
theory).

An interesting challenge for future work consists in devising experimental setups where
these corrections are significant enough to be observed.



64 6. Conclusions



Appendix A

Asymptotic evaluation of the
Cooperon decay function

A.1 Classical noise

The Cooperon decay function for classical noise is given by (3.95):

FC
n (t) =

1

g(L)

l2t
l2T

1

6
−

1∫
0

dx

(
∞∑
k=1

cos(2πknx)

(kπ)2
e−(πk)2(2lt)2x(1−x)

) . (A.1)

lt and n are the only parameters modifying the form of this function.

A.1.1 The long ring lt � 1:

n = 0 mode:

In (A.1), we can expand the second term using (C.19) and then do the integral over x
using (C.3) and obtain:

FC
n=0(t)lt�1 =

1

g(L)

√
π

4

l3t
l2T

(
1− 4lt

3
√
π

)
. (A.2)

n > 0 modes:

Here we can simply expand the exponential in the second term since the sum converges
for k ∼ 1. Then the first term of the expansion vanishes, because the x integral is over n
full periods of cosine. For the next term we can use the delta representation of the infinite
sum over cosine in the form (C.14) and obtain:

FC
n>0C(t)lt�1 =

1

g(L)

1

6

l2t
l2T

(
1− 2l2t

(
1− 6

n

n∑
k=1

(
k

n
− k2

n2

)))
. (A.3)



66 A. Asymptotic evaluation of the Cooperon decay function

The sum can be done using (C.11) and (C.12). We obtain:

FC
n>0(t)lt�1 =

1

g(L)

1

6

l2t
l2T

(
1− 2

l2t
n2

)
. (A.4)

A.1.2 The short ring 1� lt:

n = 0 mode:

Here, we do the integral over x using (C.4) and then use the asymptotic expansion (C.17)
and obtain:

FC
n=0(t)1�lt =

1

g(L)

1

6

l2t
l2T

(
1− 1

30l2t

)
. (A.5)

n > 0 modes:

Since lt � 1, the exponential function will be non-negligibly small only for x ∼< 1/l2t � 1/2,
thus we can replace x(1− x) by x in the exponent, extend the integral to ∞ and scale by
the factor kπ:

FC
n>0(t)1�lt =

1

g(L)

1

6

l2t
l2T

1− 12

∞∫
0

dx
∞∑
k=1

cos(2nx)

(kπ)3
e−(kπ)(2lt)2x

 . (A.6)

Now, we can do the integral over x using (C.6) and then the sum over k using (C.15):

FC
n>0(t)1�lt =

1

g(L)

1

6

l2t
l2T

[
1− 2l4t

n4

(
n2

l2t
+ 12l2t − 6n coth

(
n

2l2t

))]
. (A.7)

For n� 2l2t we can expand coth(x) = 1/x+ x/3− x3/45 to third order and obtain

FC
2l2t�n>0(t)1�lt =

1

g(L)

1

6

l2t
l2T

(
1− 1

30l2t

)
, (A.8)

independent of n and in agreement with (A.5). In the opposite case, n � 2l2t , we replace
coth by 1 and obtain

FC
n�2l2t

(t)1�lt =
1

g(L)

1

6

l2t
l2T

(
1− 2

l2t
n2

)
. (A.9)

Since large winding numbers are not accessible to the experimentalist anyways, this small
correction is of no physical relevance.
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A.2 Quantum noise

The Cooperon decay function for quantum noise is given by (4.15):

FQ(t) = − 1

g(L)

l2t
l2T

1∫
0

dx z̃Q(x)

(
∞∑
k=1

cos(2πknx)

(kπ)2
e−(πk)2(2lt)2x(1−x)

)
, (A.10)

where z̃Q(x) is given by (D.7). FQ(t) depends on lT , lt and n non-trivially.

A.2.1 The long ring lT � lt � 1

n = 0 mode:

Since lt � 1, we can use (C.19) to expand the sum. The first order in the expansion vanishes
because of (D.12)). The leading term from third order is given by the first correction term
of the classical result, see (A.2). Altogether, we obtain:

FQ
n=0(t)lT�lt�1 =

1

g(L)

2√
π

l3t
l2T

 1∫
0

dxz̃(x)
√
x(1− x)−

√
π

6
lt +O

(
l2T
lt

) . (A.11)

Now, we may write z̃(x) = (z̃(x) − 1) + 1. Then, the +1 term can be evaluated using
(C.3). For the z̃ − 1 term we can expand

√
x(1− x) ≈ (x1/2 − x3/2/2) since the integrand

is non-negligible only for x ∼< 1/α = πl2T/l
2
t � 1:

FQ
n=0(t)lT�lt�1 =

1

g(L)

l3t
l2T

√π
4

+
2√
π

1∫
0

dx [z̃(x)− 1]
(
x1/2 − x3/2/2

)− 1

3
lt +O

(
l2T
lt

) .
(A.12)

The second integral can now be evaluated using (D.11):

FQ
n=0(t)lT�lt�1 =

1

g(L)

√
π

4

l3t
l2T

(
1− 23/2

π
|ζ(1/2)| lT

lt
− 4

3
√
π
lt −O

(
l3T
l3t

)
+O

(
l2T
lt

))
.

(A.13)
The leading result is given by:

FQ
n=0(t)lT�lt�1 =

1

g(L)

√
π

4

l3t
l2T

(
1− 23/2

π
|ζ(1/2)| lT

lt
− 4

3
√
π
lt

)
. (A.14)

n > 0 modes:

We use the same trick as in the last chapter and write z̃(x) = (z̃(x)− 1) + 1. The integral
over the +1 term has already been calculated for classical noise, see (A.4). In the z̃(x)− 1
term we can replace the upper border of integration by 1/n, assuming n � l2t /l

2
T . The
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contribution from modes n larger than this will be negligibly small since l2t /l
2
T � 1. Now

we expand exp(−x) ≈ 1− x and obtain:

FQ
n>0(t)lT�lt�1 =− 1

g(L)

l2t
l2T

1/n∫
0

dx [z̃Q(x)− 1]

(
∞∑
k=1

cos(2πknx)

(kπ)2

(
1− (πk)2(2lt)

2x(1− x)
))

− 1

g(L)

1

6

l2t
l2T

(
2
l2t
n2

)
.

(A.15)

For the first term of the expansion, we can do the sum over k using (C.13) while for the
second we use (C.14) and observe that the integral over the delta functions vanishes. Thus
we are left with:

FQ
n>0(t)lT�lt�1 =− 1

g(L)

l2t
l2T

1/n∫
0

dx [z̃(x)− 1]
(
1/6− nx+ n2x2

)

− 2

g(L)

l4t
l2T

1∫
0

dx [z̃(x)− 1]
(
x− x2

)
− 1

g(L)

1

6

l2t
l2T

(
2
l2t
n2

)
.

(A.16)

Now we use (D.11):

FQ
n>0(t)lT�lt�1 =

1

g(L)

1

6

l2t
l2T

(
1− 6

π

nl2T
l2t

+O
(
n2l4T
l4t

))
− 1

g(L)

2

π

l4t
l2T

(
l2T
l2t
−O

(
l4T
l4t

))
− 1

g(L)

1

6

l2t
l2T

(
2
l2t
n2

)
.

(A.17)

Finally, we obtain:

FQ
n>0(t)lT�lt�1 =

1

g(L)

1

6

l2t
l2T

(
1− 6

π

nl2T
l2t
− 2

l2t
n2
− 12

π
l2T

)
. (A.18)

A.2.2 The short ring lT � 1� lt

n = 0 mode:

Like in the previous section, we write z̃Q(x) = (z̃Q(x)− 1) + 1 and obtain:

FQ
n=0(t)lT�1�lt =− 1

g(L)

l2t
l2T

1∫
0

dx [z̃Q(x)− 1]
∞∑
k=1

1

(kπ)2
e−(kπ)2(2lt)2x(1−x)

− 1

g(L)

1

6

l2t
l2T

(
1

30

1

l2t

)
,

(A.19)
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where we used the classical result for the +1 term, see (A.5). Now we can use the fact that
l2t /l

2
T � l2t , thus we can again use (C.19) to second order:

FQ
n=0(t)lT�1�lt =

1

g(L)

1

6

l2t
l2T

+
1

g(L)

2√
π

l3t
l2T

1∫
0

dx [z̃Q(x)− 1]
√
x− x2

− 1

g(L)

1

6

l2t
l2T

(
1

30

1

l2t

)
.

(A.20)

The remaining integral can be evaluated using (D.11) and we obtain:

FQ
n=0(t)lT�1�lt =

1

g(L)

1

6

l2t
l2T

(
1− 6√

2π
|ζ(1/2)|lT − 1

30

1

l2t
−O

(
l3T
l2t

))
. (A.21)

The leading term is given by:

FQ
n=0(t)lT�1�lt =

1

g(L)

1

6

l2t
l2T

(
1− 6√

2π
|ζ(1/2)|lT − 1

30

1

l2t

)
. (A.22)

n > 0 modes:

Using the same arguments as in the previous section, we obtain

FQ
n>0(t)lT�1�lt =− 1

g(L)

l2t
l2T

1∫
0

dx [z̃Q(x)− 1]
∞∑
k=1

cos(2πknx)

(kπ)2
e−(kπ)2(2lt)2x(1−x)

− 1

g(L)

1

6

l2t
l2T

(
1

30

1

l2t

)
,

(A.23)

where we assumed n < 2l2t for the last term, see (A.6). In the remaining integral, as long
as n < l2t , the argument of cosine is the smallest, thus we expand and then use (C.18) and
(C.19):

FQ
n>0(t)lT�1�lt =− 1

g(L)

l2t
l2T

1∫
0

dx [z̃Q(x)− 1]

(
1

6
− 2lt√

π

√
x(1− x) + 2l2tx(1− x)

)

− 1

g(L)

l2t
l2T

1∫
0

dx [z̃Q(x)− 1]

(
n2x2

lt
√
π
√
x(1− x)

)

− 1

g(L)

1

6

l2t
l2T

(
1

30

1

l2t

)
.

(A.24)
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Selecting the largest terms using (D.11), we obtain:

FQ
n>0(t)lT�1�lt =

1

g(L)

1

6

l2t
l2T

(
1− 1

30

1

l2t
− 6√

2π
|ζ(1/2)|lT +O(l2T )−O

(
n2l3T
l4t

))
. (A.25)

The dependence on n is very weak, thus we have the same results as for the n = 0 mode,
(A.22):

FQ
n>0(t)lT�1�lt =

1

g(L)

1

6

l2t
l2T

(
1− 6√

2π
|ζ(1/2)|lT − 1

30

1

l2t

)
. (A.26)

A.2.3 The very short ring 1� lT � lt

Here we can calculate all modes at the same time. The exponential function is much
more strongly peaked than z̃C , thus we can Taylor expand z̃C and the argument of the
exponential, change the upper boundary of the integral to ∞ and scale by a factor of kπ:

FQ
n (t)lt�lT�1 =

1

g(L)

l2t
l2T

∞∫
0

dx

[
2πl2t
3l2T
− 1

] ∞∑
k=1

cos(2nx)

(kπ)3
e−(kπ)(2lt)2x. (A.27)

Now, we can do the integral over x, using (C.6) and then evaluate the sum, using (C.15):

FQ
n (t)lt�lT�1 =

1

g(L)

l2t
l2T

[
2πl2t
3l2T
− 1

](
l4t

6n4

(
n2

l2t
+ 12l2t − 6n coth

(
n

2l2t

)))
, (A.28)

just like in (A.7). As long as n� 2l2t , we obtain, independent of n:

FQ
n (t)1�lT�lt =

1

g(L)

l2t
l4T

π

540

(
1− 3

2π

l2T
l2t

)
. (A.29)
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Comments on the numerical
evaluation of the Cooperon decay
function

The full Cooperon decay function is given by:

F (t) = − 1

g(L)

l2t
l2T

1∫
0

dx z(x)

(
∞∑
k=1

cos(2πknx)

(kπ)2
e−(πk)2(2lt)2x(1−x)

)
. (B.1)

A direct numerical evaluation of the integral and the sum is difficult, because z(x) is peaked
at the borders of integration and not negligible in-between.

Instead, it is easy to show that (B.1) can written in the form

F (t) =
1

g(L)

lt
l2T

∞∑
k=1

[
1

(kπ)3

√
π

2
Im

[
w

(
n

2lt
+ iπklt

)]
+

lt
(kπ)2

q(lt, lT , k, n)

]
(B.2)

where w(z) is the complex error function, also known as the Faddeeva function, defined by

w(z) = e−z
2

erfc(−iz). (B.3)

Several algorithms for a fast evaluation of this function exist. In this thesis a modified
version from the Matpack library 1 has been used, which is freely available under the GNU
Public License (GPL) 2.

The function q is equal to 1 for classical noise and for quantum noise we obtain:

q(lt, lT , k, n) = −
1∫

0

dx (z̃Q(x)− 1) cos(2πkn) e−(πk)2(2lt)2 x(1−x). (B.4)

1http://users.physik.tu-muenchen.de/gammel/matpack/
2http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
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Since (z̃Q(x) − 1) is strongly peaked around zero, the integral can be cut appropriately,
then the integrand is smooth and can be evaluated numerically without any problems. In
this thesis the integration algorithm QAWO from the GNU Scientific Library 3 has been
used, which is also freely available under the GPL.

After integration, the sum over k can be done straightforwardly and cut when the
desired precision has been reached.

3http://www.gnu.org/software/gsl/
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Mathematical Formulas

C.1 Table of integrals and sums

∞∑
n=−∞

f(n) =
∞∑

m=−∞

∞∫
−∞

dy f(y)e2πimy. (C.1)

∞∫
−∞

dy cos(2πky) e−αy
2

=

√
π

α
e−k

2π2/α (C.2)

1∫
0

dx
√
x(1− x) =

π

8
(C.3)

1∫
0

dx e−α
2x(1−x) =

√
π

α
e−(α2 )

2

erfi
(α

2

)
(C.4)

1∫
0

dx x2 e−α
2x(1−x) =

1

2

1

α2
+

√
π

4

1

α
e−(α2 )

2

erfi
(α

2

)
−
√
π

2

1

α3
e−(α2 )

2

erfi
(α

2

)
(C.5)

∞∫
0

dx cos(αx) e−βx =
β

β2 + α2
(C.6)
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∞∫
0

x coth(x)− 1

sinh(x)2
xs =



1/2 s = 0

√
2π

8
|ζ(1/2)| s = 1/2

1/2 s = 1

π2/12 s = 2

(C.7)

∞∫
0

dx
1√
x
e−αx−β/x =

√
π

α
e−2
√
αβ (C.8)

∞∫
0

dx e−αx
3

=
2
√

3π
3
√
α Γ(2/3)

(C.9)

∞∫
0

dx e−α/x
2−βx2

=
1

2

√
π

α
exp

(
−2
√
αβ
)

(C.10)

n∑
k=1

k =
n(n+ 1)

2
(C.11)

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
(C.12)

∞∑
k=1

cos(2πkx)

(kπ)2
=

1

6
− x+ x2 x ∈ [0, 1] (C.13)

∞∑
k=1

cos(2πkx) =
1

2
(δ(x+m)− 1) m ∈ Z (C.14)

∞∑
k=1

1

(kπ)2

1

α2(kπ)2 + β2
=

3α2 + β2 − 3αβ coth(β/α)

6β4
(C.15)

∞∑
k=1

e−αk =
1

eα − 1
(C.16)
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C.2 Asymptotic expansions

e−x
2

erfi(x) ≈ 1√
πx

x� 1 (C.17)

∞∑
k=1

e−k
2πx ≈ 1

2
√
x
− 1

2
x� 1 (C.18)

with exponential accuracy, see [29]; and by integration, we also have:

∞∑
k=1

1

(kπ)2
e−k

2πx ≈ 1

6
−
√
x

π
+

x

2π
x� 1 (C.19)
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Appendix D

Special functions

D.1 The function Ω̃(x)

The function Ω(x) is given by:

Ω(x) = x(1− x)2 x ∈ [0, 1]. (D.1)

Now, we define

Ω̃(x) = Ω(x̃), x = x̃+ k ∈ R, (D.2)

where k ∈ Z is chosen such that always x̃ ∈ [0, 1], making it a periodic function for all
x ∈ R. The function is shown in Figure D.1. Note that for small x, we have:

Ω̃(x) = xθ(x) x� 1 (D.3)

and that it’s average value is given by:

1∫
0

Ω̃(x) =
1

12
. (D.4)

Because of Ω̃’s periodicity, we may use the discrete Fourier transform:

Ω̃(k) =

1∫
0

dx Ω̃(x) e2πikx (D.5)

to write it as a sum:

Ω̃(x) =
1

12
− 1

2

∞∑
k=1

3 sin(2πkx) + πk cos(2πkx)

(kπ)3
. (D.6)
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Figure D.1: The function Ω̃(x).
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Figure D.2: The function z̃Q(x)− 1 for different values of α = πTt > 1.
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D.2 The function z̃Q(x)

Defined by:
z̃Q(x) = u(αx)− 2α(1− x)w(αx), (D.7)

where

w(x) =
x coth(x)− 1

sinh(x)2
, u(x) = coth(x)− x2

sinh(x)2
(D.8)

and
α = πTt = πl2t /l

2
T � 1, (D.9)

because of (4.10). This function is shown in Figure D.2.
We are interested in the limit α � 1. Here, z̃(x) approaches 1 exponentially fast for

x > 1/α. Thus, in integrals of the type

1∫
0

dx [z̃Q(x)− 1] f(x), (D.10)

we can extend the upper border of integration to∞ as long as f(x) is increasing much slower
that ex. This allows us to do the following integrals using (C.7) and d/dx [u(x)] = 2w(x),
for α� 1:

1∫
0

dx [z̃Q(x)− 1]xs =



−1 s = 0

− 1√
α

√
2π

4
|ζ(1/2)|+O

(
1

α3/2

)
s = 1/2

− 1

α
+
π2

12

1

α2
s = 1

−O
(

1

α3/2

)
s = 3/2

−π
2

6

1

α2
+O

(
1

α3

)
s = 2,

(D.11)

to obtain an expansion in 1/α for f(x) being a polynomial of order < 3. Note that the
first equation implies:

1∫
0

dx z̃Q(x) = 0, (D.12)

which actually holds for all α.
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