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Abstract

Julia Brunkert1

1) Ludwig-Maximilians-Universität and TU München
jbrunkert@yahoo.de

The pseudogap phase, which occurs in high temperature superconductors, is an
unconventional metallic phase with unusual properties. For example, it exhibits
Fermi liquid like transport, but an anomalously low carrier density, which is not in
accordance with Luttinger’s theorem. Interestingly, a phase with similar properties
has recently been found in twisted bilayer graphene, a material with a vastly different
microscopic structure. In this thesis we will pursue two different strategies to model
the behavior of these so-called pseudogap metals.
First, starting from an exactly solvable dimer model for the description of pseudogap
metals we add a magnetic field and compute the corresponding energy spectrum.
The so obtained Hofstadter butterfly plot gives a prediction of the magnetic response
of magic angle twisted bilayer graphene.
Second, by developing a novel slave boson construction for the t-J model we will
show that this description (at the saddle point) omits four different phases: Fermi
liquid, superconducting phase and U(1) and Z2 fractionalized Fermi liquid. This
slave boson description is able to describe the small Fermi surfaces of the pseudogap
metal. Also in a certain parameter regime this description maps to the more general
dimer model introduced in the beginning.
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1 Introduction
In the last decades high TC superconductors have become of high interest for
researchers, since for applications it is easier to use super conductivity at higher
temperatures instead of having to cool the system down to temperatures below
77K [1]. Materials that show such super-conducting behavior at high temperatures
are most prominently cuprates, but recent research shows that also magic angle
twisted bilayer graphene seems to be superconducting at high temperatures relative
to the microscopic Fermi energy scale as well [2]. Apart from the high temperature
superconductivity cuprates also show other interesting phases like the strange metal
and pseudogap phase (see also Fig. 1), which are not fully understood yet.
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Fig. 1: Schematic phase diagram for cuprates. At half filling and close to half-filling
cuprates show anti ferromagnetic (AFM) behavior. Other phases occuring are: the
superconducting state (SC), the pseudogap state (PG) and the strange metal (SM). For
strong dopings cuprates show Fermi liquid (FL) behavior (based on Ref. [3])

It has been shown that some of the phenomena that happen within the CuO2 planes
of the cuprates can be captured by the t-J model on the square lattice. So one can
make use of the basic Hubbard model or its limit the t-J model to investigate the
behavior of cuprates (or other high TC superconductors). Even though those models
are very basic in their idea, there is still a lot of ongoing research especially for the
states close to the Mott insulator state at half filling. In the strongly interacting
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2 1 Introduction

regime there are a lot of different possible ground states depending on, for example,
the choice of hopping parameters [4, 5].
To better understand these ground states progress has been made using dynamical
mean-field theory [6, 7] and diagrammatic Monte-Carlo methods [8]. Both of those
methods were able to show that there is a pseudogap at the edges of the Brillouin
zone for a two dimensional square lattice below half filling [9, 10].
There have been approaches to further investigate the properties of the pseudogap
state using a dimer model, since the the resonating valence bond (RVB) state [11]
seems to be the energetically favorable state for small dopings. In the pseudogap
metal excitations carrying both spin and charge cannot be localized on a single
lattice site. Therefore, a dimer description is the simplest possibility to describe
it [12].
The dimer model is able to capture some of the properties which were experimentally
found in pseudogap metals. For example it is able to reproduced the experimentally
observed Fermi arcs [13–15]. Furthermore, it is able to reproduce the broken
Luttinger relation for pseudogap metals [16].
Another possible approach to get a better understanding of the pseudogap phase
is the slave boson approach, which has been shown to be a powerful analytical
tool [17, 18]. In the slave boson method the electron operator is represented in
terms of a fermionic spinon carrying the electron spin and a slave boson keeps track
of the missing charge relative to half-filling, if the system is doped with holes [19].
This separation of spin and charge is not conform with experiments [14, 20]. To
circumvent this problem, spinons and holons will be put together to two-particle
bound states which carry both spin and charge [21]. There have been introduced
two separate ways to achieve these bound states, both being in better agreement
with experiments as the treatment without the bound states [22,23].
The first part of this thesis deals with the magnetic response of magic angle twisted
bilayer graphene, which was quite recently found to have superconducting behavior
for high temperatures (relative to the microscopic Fermi energy scale) [2]. Its
properties have, for example, been investigated in Ref. [24]. We will show that at
least some of the effects occurring in twisted bilayer graphene can be explained
through the dimer model proposed in Ref. [12] modified for a triangular lattice.
While it has already been shown that the dimer model directly induces a small
Fermi surface [25], there are other effects like the band splitting when introducing a
magnetic field which will be derived in this work. The method used for this will be
similar to the one that was used for the famous Hofstadter butterfly plot [26].
In the next part of this thesis the focus will be more on the general understanding
of the different phases observed in cuprates. Starting from a slave boson description
we will try to obtain a description of the strange metal and pseudogap phase in
terms of dimers on a square lattice. Those phases can be described by a so called
fractionalized Fermi liquid (FL∗) which can be either a U(1)-FL∗ or a Z2-FL∗. This
description is able to capture the small Fermi surface of the pseudogap phase.
The remaining thesis is structured as follows: In Chap. 2 the theoretical background,
namely the dimer description, will be described in depth, so that in Chap. 3 that
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description can be used to obtain the band structure of electrons close to half
filling on a triangular lattice. In Chap. 4 a slave boson description will be used to
investigate the different phases for the t-J model on a square lattice.



2 Dimers on the square and the
triangular lattice

To describe electrons on a lattice one usually uses the the fermionic operators
c†x,σ/cx,σ (with the usual commutation relations) which create/annihilate an electron
with spin σ on the site x of the lattice. Their dynamics is often described by a
simple Hubbard Hamiltonian (see Ref. [27]) which takes a two particle interaction
with strength U at each lattice site into account and allows for hopping between
neighboring sites (associated with the parameter J). The Hamiltonian of the
Hubbard model reads:

H = −J
∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

c†i,↑ci,↑c
†
i,↓ci,↓ (1)

where 〈i, j〉 denotes nearest neighbors. In the second part of this thesis we focus
on this model on the square lattice in two spatial dimensions close to half filling,
i.e. close to the anti ferromagnetic state. For this one takes the limit of strong
correlations U � J and U positive to obtain the t-J model (see Ref. [28]). If one
takes the number of electrons per site to 1, i.e. half filling, the t-J model reduces
to a Heisenberg model, which features an antiferromagnetic ground state on the
square lattice. The t-J model will be used for the slave boson description in Sec 4,
but in the following sections we will first introduce an alternative description of the
problem using dimers.

2.1 Bosonic Dimers
To describe and understand high TC superconductors the description of electron
creation and annihilation operator is not very useful, since the occurring problems
can become difficult or even impossible to solve. Therefore we will switch to a
dimer description, in which the configuration of two neighboring lattice sites will be
described by one dimer. This change in description helps to simplify the calculations.
It is based on Anderson’s model of resonating valence bond (RVB) state, for which
two neighboring electrons form a valence bond (see also Ref. [29]). At half filling
this model is not able to describe the antiferromagnetic state, it only features
short distance anti ferromagnetic correlations. But: In this theory when doping
the half filled system the electrons form Cooper pairs and the RVB state becomes
energetically more favorable than the anti ferromagnetic state. Therefore, the dimer
description at half filling is introduced by using bosonic dimers in this section, while

4



2.1 Bosonic Dimers 5

in Section 2.2 fermionic dimers will be added to the system to introduce doping
from the half filled case.

2.1.1 Introduction and naming
Even though the resonating valence bond state is not able to explain the anti
ferromagnetic at half filling, the description with dimers at half filling is a good
starting point before adding doping. For this we define the dimers in accordance
with Anderson’s RVB state using the following considerations:
At half filling the there is on average one electron per site. So a dimer will be
defined as two neighboring sites occupied by two electrons in total. Two electrons
on neighboring sites are spin paired to lower their energy which leads to the dimer
being bosonic and free of spin. The dimer creation operator can then be written as
(see also Ref. [12]):

D†i,η = 1√
2

(c†i,↑c
†
i+η,↓ − c

†
i,↓c
†
i+η,↑) (2)

which carries a charge of 2e−. Instead of an index (i, j) with i and j nearest
neighbors the indices i, η are used corresponding to the points (i, i+ η), where η is
the vector between the two neighboring sites. For simplicity the lattice constant
is chosen to be 1. For a square lattice the allowed vectors for η are ~ex and ~ey. To
prevent double counting the allowed vectors for ~η on a triangular lattice are (see
Fig. 2):

~a = (1, 0)T (3)
~b = (−1/2,+

√
3/2)T (4)

~c = (−1/2,−
√

3/2)T (5)

i (i,a)

(i,b)

(i,c)

(a) Plaquette on a triangular lattice(red)
and the the vectors spanning the lattice:
~a = (1, 0)T , ~b = (−1/2,+

√
3/2)T and

~c = (−1/2,−
√

3/2)T

i (i,x)

(i,y)

(b) Plaquette on a square lattice and the
vectors spanning the plaquette: ~ex = (1, 0)T

and ~ey = (0, 1)T .
Fig. 2: The structure and naming of the vectors spanning the lattice. One plaquette is
marked in red, in the triangular lattice two other plaquettes can be obtained by rotating
the red plaquette by 120◦ clockwise or counterclockwise. If the original bond vector is η
the vector one obtains through a clockwise rotation of 120◦ will be denoted by η+. For
the counterclockwise rotation the notation η− will be used.
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Since only short range interactions will be considered, breaking the system into
so called plaquettes which contain four neighboring lattices sites occupied by two
dimers is helpful. For the square lattice such a division of the lattice is trivial. For
the triangular lattice one has to note that there are three possible plaquettes with
different orientations, which are needed to describe the whole lattice in terms of
plaquettes (see also Fig. 2).
Checking the commutation relations for the dimers shows that there is the problem
that the defined dimer operators are not fully bosonic, since the commutation
relation

[Dx,y, D
†
x′,y′ ] = δxx′,yy′ + δxy′,yx′ + restterm (6)

is not the wished for commutation relation (see also Ref. [30]). The exact form of
the rest term is not of big importance here, but it is small compared to the first
two term, so that it will be neglected and the dimer operator will from now on be
considered a bosonic operator.
Since we want to describe the system at half filling we need a way to enforce
half filling. To achieve this a hard core constraint will be imposed on the dimers
forbidding them to overlap. Otherwise the condition for half- filling would be less
obvious to incorporate and the hard core constraint can also easily be pictured.

2.1.2 RK Hamiltonian

The dimers introduced in the previous section will now be used to describe the
behavior of the electrons on the lattice. The most general Hamiltonian which can
be obtained from the dimers defined above would be one that considers all possible
transitions from any one state into any other state.
Even though such a Hamiltonian would be the complete description it is easier to
work with the Rokhsar-Kievelson Hamiltonian (also RK-Hamiltonian, see Ref. [31])
which allows only local interaction on a plaquette. It takes into account a repulsion
term for each plaquette and a flip of the dimers on the plaquette. For the square
lattice it is:

HRK = −t
∑
i

(| 〉 〈 |+ | 〉 〈 |) + v
∑
i

(| 〉 〈 |+ | 〉 〈 |) (7)

The RK-Hamiltonian on the triangular lattice is:

HRK = −t
∑
i,η

(| 〉 〈 |+ | 〉 〈 |) + v
∑
i,η

(| 〉 〈 |+ | 〉 〈 |) (8)

The state the system is in strongly depends on the choice of the parameters v and t.
Therefore, we will look at the possible choices for these parameters in the following
subsection to get an overview of the most important possible states.
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2.1.3 The different phases depending on v and t
Depending on the choice of the parameters v and t in Eq. 8 and Eq. 7 we have
different phases (see Fig. 3). The most prominent phases occurring both on the
square and the triangular lattice are (see also Ref. [32]):

• staggered phase: For v > |t| one has the so called staggered phase which has
a ground state without any flippable plaquettes.

• columnar phase: For v < −|t| one has the so called columnar phase which has
as a ground state the state with the most flippable plaquettes possible.

• RVB state: For v = ±t, which is also called Rokhsar-Kievelson (RK) point
(or RK line), one has the resonating valence bond (RVB) state as ground
state which is degenerate. On the square lattice the RVB state occurs only at
the RK point , but on the triangular lattice the RVB state extends to other
regions close to the RK-point as long as the gauge symmetry of the system is
not broken.

v=t

v=-t

v

t staggered phase
columnar phase
RVB state
other phases

Fig. 3: Phase diagram for the RK model on a triangular lattice for the different choices of
v and t. For the square lattice the RVB state only occurs exactly at the RK line v = ±t.
Apart from the staggered and columnar phase and the RVB state the other phases strongly
depend on the lattice symmetry. For a square lattice one has the plaquette state, while
for a triangular lattice one has the so called

√
12×

√
12 state and possibly other states as

well [32].

In the following section we will look at the RK point, since it is the best understood
case, and will add some doping to the system. Later on also a perturbation from
the RK point will be added (see Sec 2.2.2).

2.2 Doping
To the description at half filling some doping will be added now, since this will
allow us to reach a description of the superconducting phase and other interesting
phases. To achieve a description away from half filling the system will be doped by
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exchanging the bosonic dimers for fermionic dimers which are a superposition of
a hole and an electron. The fermionic dimer operator can be written as (see also
Ref. [12]):

F †(i,η),σ = 1√
2

(c†i,σ + c†i+η,σ) (9)

and fulfils the usual anti commutator relations.
Now the system of bosonic dimers at the RK point will be doped with few fermionic
dimers. At the RK point v = t the RK-Hamiltonian in Eq. 8 can be simplified
and can be written as a sum of projectors. For the doping an interaction term
between the bosonic and fermionic operators will be added to the system. Similar
to the undoped RK Hamiltonian all possible flips and swaps on a plaquette with
one fermionic and one bosonic dimer ( , , and with red = fermionic
dimer and black = bosonic dimer) will be taken into account. Since it is difficult to
work with all those terms we will start from the exactly solvable Hamiltonian,which
is just a sum of projectors, and then add a perturbation, such that it is physical.
Since the treatment in Chap. 3 is only on the triangular lattice the corresponding
Hamiltonian is given here:

H = HRK +Hint (10)
HRK = v

∑
(| 〉 − | 〉)(〈 | − 〈 |) (11)

Hint = v
∑

(| 〉+ | 〉 − | 〉 − | 〉)(〈 |+ 〈 | − 〈 | − 〈 |) (12)

We only look at small dopings therefore we do not consider a term with fermion-
fermion interactions on a plaquette, since the probability of two fermionic dimers
being on the same plaquette is negligible.
In this Hamiltonian the prefactors of all the terms have the same value, which is
easy to work with but is not completely physical, since this case does not coincide
with the Hubbard model as dimer swaps and plaquette flips do not happen with
the same amplitude. Therefore, a perturbation will be added later on in Sec. 2.2.2
to adjust the dimer model to be the same as the Hubbard model. But for now it is
useful to look at the problem for Eq. 10 because then the Hamiltonian is a sum of
projectors which implies that all eigenvalues have to be null or larger, which means
that the ground state energy is 0.

2.2.1 Ground state
We are interested in the ground state of the Hamiltonian in Eq. 10, which has an
energy of 0 due to the Hamiltonian being a sum of projectors. The the ground
state for two fermionic dimers in a background of bosonic dimers itself has been
determined by Brin Verheijden in his thesis (see Ref [30]) as:

|p1, p2〉 =
∑

i1,η1,i2,η2

Cη1(p1)Cη2(p2)ei(p1.i1+p2.i2) |(i1, η1), (i2, η2)〉 (13)
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with:
Cη(p) = q√

N

1 + eip.η∑
η |1 + eip.η|2

(14)

Note that q = 6 and N is the number of lattice points. This is the ground state
for 2 fermionic dimers in the system, but it can easily be extended to N fermionic
dimers (N holes). In that case one has:

|p1, ...pN〉 =
∑

i1,η1,...iN ,ηN

N∏
j=1

(
Cηj(pj)eiηj .ij

)
|(i1, η1), ..., (iN , ηN)〉 (15)

In the following section a small perturbation will now be added to this ground state
to better take into account the different transition amplitudes of a plaquette flip
and a dimer swap.

2.2.2 Deviations from ground state
Up to now we only looked at the system at the RK-point, since then the Hamiltonian
has the convenient feature of being a sum of projectors. Therefore, it is easy to
work with, but the assumption that all the terms in the interaction have the same
prefactor is not valid, since the flipping of the plaquette and the dimer swap do not
happen with the same amplitude, as will be shown now:
When allowing only nearest neighbor hopping the amplitudes for a dimer swap and
and plaquette flip are not the same on a triangular lattice. The amplitude for a
dimer swap is −3/4t, while the plaquette flip happens with an amplitude of 1/2t,
where t is the hopping amplitude for a single electron.
Therefore one has to add a perturbation to the ground state. For this the following
perturbation is added to the Hamiltonian:

∆H = −δu
∑
j,η

∑
�={+,−}

F †
j+η�,ηD

†
j,ηDj+η�,ηFj,η (16)

with δu = −1/2v so that it takes into account the larger amplitude for the dimer
swap. Here η+ and η− indicate the orientation of the lattice vector compared to
the orientation of η, i.e. η+(η−) is η rotated by 120◦ clockwise (counter clockwise).
Adding this perturbation to the Hamiltonian induces a new ground state energy
(see also Ref [25]):

∆E =
∑
p

ε(p) (17)

with
ε(p) = −δu6

∑
η

2 cos(η+.p) + 2 cos(η−.p)∑
η′ |1 + eiη′.p|2

(18)

Note that the ground state energy is a sum of energies each associated with one
momentum. Therefore, in the next section a quasiparticle description will be
introduced in which each quasi particle is associated with a momentum p.
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2.2.3 Quasi particles
After now having obtained a ground state energy for the problem, we would like to
switch to a quasi particle description by defining quasi particles which are associated
with a momentum p (see also Ref. [30]). This treatment seems useful, since the
ground state energy is a sum of separate energies each corresponding to a momentum
p. One can define:

|p1, p2, ..., pn〉 =
∏
i

f †pi |0
∗〉 (19)

f †p = Cη(p)ei~p.
~iF †iηDiη (20)

Hp |p1...pn〉 =
n∑
i=1

ε(pi) (21)

where |0∗〉 is the ground state of the RK Hamiltonian without any fermionic dimers
in the system and Cη(p) as in Eq. 14. It would be nice to be able to write:

Hp =
∑
p

ε(p)f †pfp (22)

but for this to makes sense the quasi particle operator has to be perfectly fermionic.
This is not for all momenta the case, therefore this description is only valid for
the momentum space where the quasiparticle operator is perfectly fermionic. In
this space one can also relate the quasi particle operator to electron annihilation
operator with:

f †p = K(p)c−p (23)

with
K(p) = 6∑

η |1 + ei~p.~η|
(24)

This is a very useful result to link our quasiparticles to the electronic operators.



3 Band structure of the dimer model
After having introduced the idea of the dimer model on a triangular lattice, we now
can start working with it. The reason we focussed on the triangular lattice is that
in magic angle twisted bilayer graphene, which is super conducting at relatively
high temperatures, the two graphene sheets form a triangular super lattice (see Fig.
4).

Fig. 4: Two sheets of graphene placed on each other and twisted in by the magic angle
of about 1.1◦ form a triangular superlattice. This triangular super lattice will be used
to explain the magnetic response of the twisted bilayer graphene.(Source of the figure:
Ref. [33])

Since this triangular super lattice is the main feature of twisted bilayer graphene,
we will use it as a starting point for better understanding the physics happening
in the material. For this the dimer description introduced in Chap. 2 will be
used. The energy spectrum of a triangular lattice has already been determined
by Brin Verheijden in his thesis (see also Ref. [25]) and we will now deepen our
understanding of the problem. For this we will focus here on the magnetic response
of the system and are especially interested in the energy spectrum when introducing
a magnetic field. Since the same method as Hofstadter used to obtain his famous
butterfly plot be used to achieve this, it will be briefly described in the next section
before it is then applied on a triangular lattice using the dimer description.

3.1 Energy bands on a square lattice
Before starting with the calculations it makes sense to briefly remind the reader of
the Hofstadter butterfly and how it was originally obtained in Ref. [26].

11



12 3 Band structure of the dimer model

Hofstadter wanted to investigate Bloch electrons on a square lattice in a magnetic
field and found a trick for solving the problem by solving it for specific rational
magnetic fields and then deducing the complete energy spectrum from it.
To achieve this he started from Bloch electrons with energy function:

W (~k) = 2E0(cos kxa+ cos kya) (25)
and replace k by using a Peierls substitution:

~~k → ~p− e

c
~A (26)

where ~A is the magnetic field which has been chosen in the Landau gauge with
~A = Bx~ey. He used this in the time independent Schrödinger equation which he
simplified by assuming plane wave behavior of the eigenfunction ϕ in one spatial
dimension. He then obtained a problem of the form:

~Vn+1 = Mn
~Vn (27)

where ~V is (ϕn, ϕn−1)T and

Mn =
(
E − 2 cos(2πnφ− l) −1

1 0

)
(28)

where E is the eigenenergy of the Hamiltonian, φ and l are constants. Note that φ
depends on the strength of the magnetic field. Hofstadter then used the fact the
M was periodic to draw some conclusions for the eigenvalues of Q = ∏

iMn+i for φ
being a fraction. He obtained that the sum of the absolute values of the eigenvalues
of Q has to fulfill:

Tr(|Q|) ≤ 2 (29)
Using this condition allowed him to plot the physical energies for fractional choices
of φ, which resulted in the energy spectrum called the Hofstadter’s butterfly (see
Fig. 5).

Fig. 5: Hofstadter’s butterfly. Plot of the energy bands for fractional values of φ. Through
analytic continuation the band structure can be extended to all values of φ.



3.2 The energy dispersion 13

The plot Hofstadter obtained showed the energy bands for different choices of the
magnetic field (since φ contains the magnetic field strength). Due to the shape, the
plot is called Hofstadter’s butterfly.
In the following we will use the similar proceeding for our problem on the triangular
lattice.

3.2 The energy dispersion

(a) 3D plot (b) Contour plot
Fig. 6: Energy dispersion for the quasiparticles (Eq. 18)

After now having obtained a basic understanding of the Hofstadter’s butterfly
method, we can start to apply and adapt it to our own problem. The starting point
is the quasiparticle Hamiltonian in Eq. 22 and the dispersion relation in Eq. 18
and see how the quasiparticles behave on introducing a magnetic field. The energy
dispersion is displayed in Fig. 6 using a 3D plot and a contour plot.

Fig. 7: The energy dispersion from Eq. 18 (orange) has been fitted to an equation of the
form of Eq. 30 (red dots) around the minimum at ~p = (0, 2π√

3)T
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The energy dispersion in Eq. 18 is of a quite complicated form, which makes analytic
treatment difficult. Therefore, we will try to approximate it by a tight-binding
dispersion with nearest, and next-nearest neighbor terms with a function of the
form:

ε(p) ≈ δu

t0 + t1
∑
η

cos(η.p) + t2
2
∑
η 6=η′

cos(η.p)cos(η′.p)
 (30)

The energy dispersion omits several minima, but it is symmetric so we will just
choose the minimum at ~p = (0, 2π√

3)T . Around the other minima at (π, π√
3)T ,

(−π, π√
3)T , (π,− π√

3)T , (−π,− π√
3)T and (0, 2π√

3)T the energy dispersion has the same
form (up to a rotation around the origin). Fitting Eq. 30 to the energy dispersion
at the chosen minimum yields the following fitting parameters:

t0 = −0.124586 (31)
t1 = −0.479846 (32)
t2 = −0.296818 (33)

The fit is displayed in Fig. 7 and one sees that the actual energy dispersion (orange)
is well in accordance with the fit (red dots).
After this simplification it is now possible to go on with the same proceeding as for
the original Hofstadter’s butterfly. In the following sections the simplified energy
dispersion will now be used for the analytical treatment. A magnetic field will now
be added to the system to understand the magnetic response, before the problem
will be plotted in the end of this chapter.

3.3 Analytical preparations
To be able to plot the energy bands for the triangular lattice in a Hofstadter butterfly
like plot the Hamiltonian, eigenfunctions and eigenvalues have to be manipulated
accordingly. For this the Hamiltonian from Eq. 22 will be combined with the
approximated energy dispersion in Eq. 30.
Using this the Hamiltonian will now be Fourier transformed. This yields the
following Hamiltonian in position space:

H = δu
∑
l

[t0f †l fl + t1
2
∑
η

(f †l fl+η + f †l fl−η)

+ t2
8
∑
η 6=η′

(f †l fl−η−η′ + f †l fl−η+η′ + f †l fl+η−η′ + f †l fl+η+η′)]
(34)

In the following we will now add a magnetic field to this Hamiltonian using a
Peierls substitution and then take a look at the eigenvalue problem arising from
the Schrödinger equation. This can then be used in Sec. 3.4 to make a Hofstadter
butterfly like plot.
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3.3.1 Peierls substitution
After obtaining the Hamiltonian in position space, a magnetic field perpendicular
to the lattice plane is now added to the system, so that the magnetic response can
be surveilled. To keep the calculations simple the following gauge for the vector
potential ~A is chosen:

~A = By~ex. (35)

It fulfils the Landau gauge, which breaks translational symmetry in y- direction,
but does not change the underlying physics. Using a Peierls substitution [34] this
magnetic field changes each of the terms in the Hamiltonian by a factor

exp
(
− e
~

∫ l

j

~A.d~r

)
(36)

where j and l denote the different positions and d~r denotes a line segment. Evaluating
the integral in the line integral gives:

∫ l

j

~A. ~dr = B
[
(~l −~j).~ex

] ~l +~j

2

 .~ey
 (37)

It is important to note, that ~l and ~j are the cartesian coordinates of the lattice
points. It makes sense to parametrize the lattice points in terms of two of the
vectors spanning the lattice (here ~a and −~c have been chosen). Then one can write
the lattice point ~l as:

~l = nx~a− ny~c = (nx + 1
2ny)~ex +

√
3

2 ny~ey (38)

To avoid long equations later on it makes sense to already take a look at all the
terms which occur for a given ~l. For ~j = ~l one does not have to a factor, but one
obtains one in the cases:

~j = ~l ± ~a θlj = ±2πBe
h

ny

√
3

2 nx ± 1, ny

~j = ~l ±~b θlj = ∓2πBe
h

1
2

√
3

2 (ny ±
1
2) nx ∓ 1, ny ± 1

~j = ~l ± ~c θlj = ∓2πBe
h

1
2

√
3

2 (ny ∓
1
2) nx, ny ∓ 1

~j = ~l±~a±~b θlj = −2πBe
h

(∓1±1
2)
√

3
2 (ny±

1
2) nx±1∓1, ny±1

~j = ~l±~a±~c θlj = −2πBe
h

(∓1±1
2)
√

3
2 (ny∓

1
2) nx±1, ny∓1

~j = ~l±~b±~c θlj = −2πBe
h

(±1
2±

1
2)
√

3
2 (ny∓

1
2∓

1
2) nx∓1, ny±1∓1

(39)
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where the last column gives the the coordinates of~j with respect to the reparametrized
vector ~l.
After having determined all the relevant factors we can now add this to the Hamilt-
nian and go on to look on the eigenvalue equation.

3.3.2 Manipulations of the Hamiltonian
After now having determined the prefactors which have to be added for the Peierls
substitution it is time to look at the eigenvalue problem. Applying the modified
Hamiltonian to an eigenfunction now yields:

Eψmx,my = δu

{
t0ψmx,my

+
(
t1
2 e

i 2πB
φ0

my
√

3
2 + t2

4 e
i 2πB
φ0

2 1
2

√
3

2 my
)
ψmx+1,my

+
(
t1
2 e
−i 2πB

φ0
my

√
3

2 + t2
4 e
−i 2πB

φ0
2 1

2

√
3

2 my
)
ψmx−1,my

+
(
t1
2 e
−i 2πB

φ0
1
2 (my+ 1

2 )
√

3
2 + t2

4 e
−i 2πB

φ0
(1− 1

2 )(my+ 1
2 )

√
3

2

)
ψmx−1,my+1

+
(
t1
2 e

i 2πB
φ0

1
2 (my− 1

2 )
√

3
2 + t2

4 e
i 2πB
φ0

(1− 1
2 )(my− 1

2 )
√

3
2

)
ψmx+1,my−1

+
(
t1
2 e
−i 2πB

φ0
1
2 (my− 1

2 )
√

3
2 + t2

4 e
−i 2πB

φ0
(1− 1

2 )(my− 1
2 )

√
3

2

)
ψmx,my−1

+
(
t1
2 e

i 2πB
φ0

1
2 (my+ 1

2 )
√

3
2 + t2

4 e
i 2πB
φ0

(1− 1
2 )(my+ 1

2 )
√

3
2

)
ψmx,my+1

+
(
t2
4 e

i 2πB
φ0

(1+ 1
2 )

√
3

2 (my+ 1
2 )
)
ψmx+1,my+1

+
(
t2
4 e
−i 2πB

φ0
(1+ 1

2 )
√

3
2 (my− 1

2 )
)
ψmx−1,my−1

+
(
t2
4 e

i 2πB
φ0

(1+ 1
2 )

√
3

2 (my− 1
2 )
)
ψmx+2,my−1

+
(
t2
4 e
−i 2πB

φ0
(1+ 1

2 )
√

3
2 (my+ 1

2 )
)
ψmx−2,my+1

+ t2
4 ψmx+1,my−2

+ t2
4 ψmx−1,my+2

}

(40)

where B
√

3
4φ0

will be replaced by φ. Since the exponential prefactors only depend on
the y-position we can write the eigenfunction as

ψ = eikxmxϕ(my) (41)

In the original paper by Hofstadter [26] from this now a matrix was constructed and
through a condition on its trace the physical energies have been found. This is not
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feasible in this case due to the fact that the trace as well as its bound are dependent
on kx. To avoid this problem we will use the approach introduced by Langbein
in Ref. [35], which also has been used to find the band structures of several other
lattices (e.g. see Ref. [36] or Ref. [37] ).
The approach proposed by Langbein also uses the fact that for rational choices of
φ = p/q the eigenvalue equation is the same for the mth and the (m+q)th lattice
point, so that one has:

ϕm = ei2πlϕm+q (42)

This means that for each q we have q different eigenvalue equations, which will be
written in matrix form:

M


ϕm
...

ϕm+q−1

 = 0 (43)

with

M =


Cm Dm Em . . . Ame

−i2πl Bme
−i2πl

Bm+1 Cm+1 Dm+1 Em+1 . . . Am+1e
−i2πl

... ...
Dm+q−1e

i2πl Em+q−1e
i2πl . . . Am+q−1 Bm+q−1 Cm+q−1

 (44)

where

Am = t2
4 e

ikx

Bm = t1
2 e

i2π p
q

(m− 1
2 )+ikx + t1

2 e
−i2π p

q
(m− 1

2 )

+ t2
4 e
−i2π p

q
(m− 1

2 ) + t2
4 e

i2π p
q

3(m− 1
2 )+i2kx

+ t2
4 e

i2π p
q

(m− 1
2 )+ikx + t2

4 e
−i2π p

q
3(m− 1

2 )−ikx

Cm = −E
δu

+ t0 + t1 cos
(

2π2p
q
m+ kx

)
+ t2

2 cos
(

2π2p
q
m+ kx

)

Dm = t1
2 e
−i2π p

q
(m+ 1

2 )−ikx + t1
2 e

i2π p
q

(m+ 1
2 )

+ t2
4 e

i2π p
q

(m+ 1
2 ) + t2

4 e
−i2π p

q
3(m+ 1

2 )−ikx2

+ t2
4 e
−i2π p

q
(m+ 1

2 )−ikx + t2
4 e

i2π p
q

3(m+ 1
2 )+ikx

Em = t2
4 e
−ikx

(45)

and horizontal dots indicate zeros. In the following section this matrix will be used
to obtain a plot of the energy bands.
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3.4 Numerical treatment and plot

One is interested in the case where the determinant of M is 0. So in fact one would
test if for each choice of energy and p/q, there is a possible choice for kx and l
such that the determinant is zero. This is quite challenging numerically, so instead
for each choice of p/q the values of kx and l for which the determinant is minimal
and maximal will be determined and it will be checked for each energy if using the
minimal values for kx and l the determinant is smaller than 0 (or larger than 0
for the maximal values respectively). The energies and φs for which this condition
is fulfilled are part of the energy bands. This now gives a proceeding to find the
energy bands for different magnetic field strengths φ = p/q.
Using this proceeding we are now able to plot the energy bands for different magnetic
fields at the energy minimum, which is displayed in Fig. 8.

Fig. 8: Energy bands for different magnetic field strengths (φ = B
√

3
4φ0

) for momenta close
to the minimum of the energy dispersion at ~p = (0, 2π√

3)T

Before taking a closer look, if this plot gives interesting physical results, it makes
sense so shortly check if this result is actually plausible or not. This can firstly be
done by checking if the number of bands at 1/n is n. While for n = 3 and n = 4
this is clearly valid, there seem to be no bands for φ = 1/2, but this is probably
only due to the lack of accuracy of the plot. If there are just two energy points (not
ranges) for φ = 1/2 it is unlikely to find them due to numerical rounding.
Another way to check if the plot is plausible to take a look at similar problems and
see if the energy bands are indeed similar. For a triangular lattice at ~p = 0 the
band structure has been plotted several times, e.g. in Ref. [36] or Ref. [38], and is
displayed in Fig. 9. To obtain the band structure the following parameters were
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chosen:

t0 = 0.129683
t1 = −0.30947
t2 = 0

(46)

since those parameters are able to fit the dispersion relation (Eq. 18) around ~p = 0
using the same proceeding as in Sec. 3.2. One sees that this plot is similar to
the band structure at the minimum but not quite the same. Therefore, it can be
concluded, that the obtained band structure in Fig. 8 indeed makes sense. Due
to the large unit cells in magic angle twisted bilayer graphene, it might now be
possible to check these results in experiments.

Fig. 9: Hofstadter butterfly plot for a triangular lattice at ~p = (0, 0)T allowing only
nearest neighbor interactions



4 Slave bosons
To get a better understanding of high TC superconductors we will use a slave boson
description, which will simplify the calculations and will therefore give a better
understanding of the different phases within a high TC superconductor(see Ref. [19]
Sec.VIII). Since more work has been done on the square lattice we will look at the
slave boson description on the square lattice, so that we can easily compare our
results to already existing results. For this we will start from the t-J Hamiltonian
which reads

H =
∑
<i,j>

J
(
~Si · ~Sj −

1
4ninj

)
−
∑
i,j,σ

tij(c†iσcjσ + h.c.) (47)

where ciσ and c†iσ are so called Gutzwiller projected operators in which double
occupancy is forbidden. This is used to induce strong Coulomb interactions. The
t-J Hamiltonian was derived from the Hubbard model by Jozef Spalek in 1977
(see Ref. [28]) and is still the best description for the anti-ferromagnetic state at
half-filling (or close to half-filling). Firstly we will rewrite this Hamiltonian using
the slave boson construction and then we will use Hubbard Stratonovich decoupling
to deduce the physical behavior of the system. After the Hubbard Stratonovich
decoupling the system omits several different phases depending on the decoupling
parameters. These phases will be looked upon in detail in the following sections.
The focus will be on the not yet well understood states like the pseudogap metal
and the strange metal, which can both be described by a fractionalized Fermi liquid
as we will see in Sec. 4.5.

4.1 Slave boson construction
The idea of a slave boson description is to rewrite the electron operators c†iσ and ciσ
in a way that easily allows for the constraint of forbidden double occupation to be
taken into account(see Ref. [39]). One rewrites the electron operator as:

c†iσ = f †iσbi + εσσ′fiσ′d†i (48)

where ε↑↓ = −ε↓↑ = 1 is the antisymmetric tensor. In this representation f †iσ/fiσ are
fermion operators which carry a spin (therefore now called spinons). bi and d†i are
the so called slave bosons. While bi describes the destruction of a hole on site i(also
holon), d†i represents the creation of an electron pair. Adding the constraint∑

σ

f †iσfiσ + b†ibi + d†idi = 1 (49)

20
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for each lattice site i reproduces the correct algebra of the electron operators and
ensures that at each site there is zero, one or two electrons. In this representation
it is easily possible to forbid double occupancy: one just deletes di/d†i from the last
two equations which then leads to:

c†iσ = f †iσbi (50)

and the constraint then becomes:

∑
σ

f †iσfiσ + b†ibi = 1 (51)

The constraint will later on be enforced through Lagrange multipliers λi, which will
add a term of:

∫
dλ exp

{∫
dτ

(
−i
∑
i

λi(
∑
σ

f †iσfiσ + b†ibi − 1)
)}

(52)

to the partition function. This term integrated out, will enforce the constraint, so
that we do not have to worry about it any longer.
After having introduced the idea of the slave boson description it will now be
applied and the t-J Hamiltonian will be rewritten in terms of the spinon (fermionic)
operators f †iσ/fiσ and the holon (boson) operators b†i/bi. To achieve this Si · Sj and
ninj have to be rewritten to obtain the t-J Hamiltonian from Eq. 47 in terms of f
and b. The number of electrons on site i ni is just 1 minus the number of holes on
that site which can be written as:

ni = 1− b†ibi (53)

For the product of ninj the nearest neighbor holon-holon interaction b†ibib
†
jbj will

be neglected, since it is small in low doping, i.e. the probability of two holes next
to each other is very low, so that it can be neglected.
If one now wants to rewrite ~Si · ~Sj, one first has to take a look at the definition of
~Si which is given by

~Si = 1
2c
†
iα~σαβciβ (54)

From this definition a straight forward, but slightly tedious calculation then yields

~Si · ~Sj = −1
4f
†
iαfjαf

†
jβfiβ −

1
4(f †i↑f

†
j↓ − f

†
i↓f
†
j↑)(fj↓fi↑ − fj↑fi↓) + 1

4f
†
iαfiα (55)
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(see also Ref. [40]). Having now rewritten all terms, we obtain the following
Hamiltonian:

H =
∑
i

µbb
†
ibi

− J

4
∑
<i,j>

∑
α,β={↑,↓}

f †iαfjαf
†
jβfiβ

− J

4
∑
<i,j>

(f †i↑f
†
j↓ − f

†
i↓f
†
j↑)(fj↓fi↑ − fj↑fi↓)

−
∑
i,j

∑
σ={↑,↓}

tijf
†
iσbib

†
jfjσ

(56)

Note that some terms, like the constant term and the terms with f †f and b†b, have
been canceled here using the constraint in Eq.51. The term with the µbb†b is the
term one cannot cancel, when using the constraint. The prefactor µb here takes a
value of 1

4JN , where N = 6 is the number of nearest neighbors.
Looking at this Hamiltonian in Eq. 56 one realizes that most terms are in fourth
order in fermionic operators which makes it difficult to obtain physical quantities
like the partition function from it. Therefore, in the next section we will use a
Hubbard Stratonovich decoupling to simplify the problem.

4.2 Hubbard Stratonovich transformation
Having now obtained the Hamiltonian of the problem we want to simplify it due
to the higher order terms in fermionic operators. For this we first write down the
partition function, which then will be decoupled using a Hubbard Stratonovich
transformation. Using the Hamiltonian from Eq. 56 one can write the partition
function of the system as:

Z =
∫
dfdf ∗dbdb∗dλe−

∫
dτL (57)

with

L =
∑
i

b†i (∂τ + µb)bi +
∑
i,σ

f †iσ∂τfiσ

− i
∑
i

λi(
∑
σ

f †iσfiσ + b†ibi − 1)

− J

4
∑
<i,j>

f †iαfjαf
†
jβfiβ

− J

4
∑
<i,j>

(f †i↑f
†
j↓ − f

†
i↓f
†
j↑)(fj↓fi↑ − fj↑fi↓)

−
∑
ijσ

tijf
†
iσbib

†
jfjσ

(58)
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where in the second line the constraint of the forbidden double occupation (see Eq.
51) was introduced using a Lagrange multiplier λi. This partition function will now
be decoupled in three different channels:
• Spinon hopping χ

• Spinon pairing ∆

• Holon spinon interaction F
The decoupling in these channels then yields a more manageable partition function
which allows us to better understand the underlying physics. Also the decoupling
helps to switch from a monomer description to a dimer description, which makes
it possible to compare the results with other research, which tries to explain the
different phases of this system in terms of dimers (see e.g. Ref [12]).

4.2.1 Spinon hopping χ
The first decoupling will be performed by introducing a spinon hopping χ, this
arises when decoupling the following term:

exp
− ∫ β

0
dτ − J

4
∑
<i,j>

f †iαfjαf
†
jβfiβ

 (59)

This can be straightforwardly decoupled by just using the formula for the Hubbard
Stratonovich decoupling, which then yields:

exp
− ∫ β

0
dτ − J

4
∑
<i,j>

f †iαfjαf
†
jβfiβ


=
∫
Dχ exp

− ∫ β

0
dτ
J

4
∑
<i,j>

(|χij|2 − χ∗ij(
∑
σ

f †iσfjσ) + h.c.)
 (60)

The decoupling parameter χij is here of the form
∑
σ f
†
iσfjσ and describes the hopping

of a spinon between two neighboring sites. From the formulation of the decoupling
operator one directly sees that χijχ†ji which will have important implications in the
following sections.

4.2.2 Spinon pairing ∆
Next a spinon pairing will introduced to decouple the next term, which then using
a Hubbard Stratonovich transformation is decoupled as follows:

exp
∫ β

0
dτ
J

4
∑
<i,j>

(f †i↑f
†
j↓ − f

†
i↓f
†
j↑)(fj↓fi↑ − fj↑fi↓)


=
∫
D∆ exp

− ∫ β

0
dτ
J

4
∑
<i,j>

(|∆ij|2 + ∆ij(f †i↑f
†
j↓ − f

†
i↓f
†
j↑) + h.c.)

 (61)
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The decoupling field ∆ describes the spinon pairing and is of the form fi↑fj↓−fi↓fj↑.
It is bosonic and describes a spin singlet dimer.

4.2.3 Holon-spinon interaction F

The last term which needs to be decoupled is the holon spinon interaction term. But
before doing that it makes sense to symmetrize the term to simplify the calculations
later on:

exp
∫ β

0
dτ
∑
ijσ

tijbib
†
jf
†
iσfjσ


= exp

∫ β

0
dτ
∑
ijσ

tij
2 (f †iσb

†
jbifjσ + f †jσb

†
ibjfiσ)


= exp

∫ β

0
dτ
∑
ijσ

tij
2 [(f †iσb

†
j + f †jσb

†
i )(fiσbj + fjσbi)− b†ibi − b

†
jbj + ...]


(62)

Here the dots refer to holon holon interactions and can be neglected with the same
reasoning as before. The first term can now be decoupled which yields:

exp
∫ β

0
dτ
∑
ijσ

tij
2 [(f †iσb

†
j + f †jσb

†
i )(fiσbj + fjσbi)]


= exp

− ∫ β

0
dτ
∑
ijσ

tij(F ijσFijσ + 1√
2
F ijσ(fiσbj + fjσbi) + h.c.)

 (63)

The Hubbard Stratonovich field F is fermionic and carries both spin and electric
charge. The field represents a hole like bound state and one has that

Fijσ = 1√
2

(fiσbj + fjσbi) (64)

which can be identified with a dimer representing a spinon-holon bound state.

After now having performed all three decouplings the terms can be combined and
we arrive at the following partition function:

Z =
∫
DbDb∗DfDf †DλDχD∆DFe

∫ β
0 dτL1 (65)



4.3 Different phases 25

with

L1 =
∑
i

b†i (∂τ + µb − iλi)bi +
∑
i,σ

f †iσ(∂τ − iλi)fiσ

+
∑
ijσ

tij(F ijσFijσ + 1√
2
F ijσ(fiσbj + fjσbi) + h.c.)

+ J

4
∑
<i,j>

(|∆ij|2 + ∆ij(f †i↑f
†
j↓ − f

†
i↓f
†
j↑) + h.c.)

+ J

4
∑
<i,j>

(|χij|2 − χ∗ij(
∑
σ

f †iσfjσ) + h.c.)

(66)

It is important to note that µb now has another value as before due to the terms b†b
in Eq. 62. The exact value is not of great importance here and strongly depends on
the choice of tij , but it is constant as long as tij is not position dependent (it could
depend on the distance between i and j though).
The partition function is neither shorter than before nor does it seem easier at first,
but now it allows us to integrate out b and f which means that we switched from
a problem formulated through f and b to a problem formulated in terms of the
bosonic dimers ∆, fermionic dimer F and spinon hopping χ.

4.3 Different phases
Having now a Lagrangian in terms of F, ∆ and χ it makes sense to look at the
possible different behaviors of the system, i.e. if there are different phases depending
on the different parameters. 〈χ〉 6= 0 is the case which corresponds to the resonating
valence bond states in the undoped case and using it will lead to the translationally
and rotationally invariant states. For 〈χ〉 6= 0 we have 4 different phases depending
on 〈∆〉 and 〈b〉. The four phases one has are (see also Fig.10):

• Fermi liquid: 〈b〉 6= 0, 〈∆〉 = 0

• super conductor: 〈b〉 6= 0, 〈∆〉 6= 0

• U(1) fractionalized Fermi liquid: 〈b〉 = 0, 〈∆〉 = 0

• Z2 fractionalized Fermi liquid: 〈b〉 = 0, 〈∆〉 6= 0

While it intuitively makes sense that one has different phases for a different choice of
parameters, i.e. setting them 0 or not, it is not directly obvious why a specific phase
arises for each choice of parameters. For the Fermi liquid and the superconducting
state already a lot explanation has been given by others which will just be shortly
teased here, while the fractionalized Fermi liquid states are quite new compared to
that and will be looked at in detail in the next sections.
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FL SC

U(1)-FL* Z2-FL*
〈b〉 = 0
〈∆〉 = 0

〈b〉 = 0
〈∆〉 6= 0

〈b〉 6= 0
〈∆〉 6= 0

〈b〉 6= 0
〈∆〉 = 0

Fig. 10: There are four different phases: the Fermi liquid and the superconductor and
U(1) and Z2 fractionalized Fermi liquid (FL*). Especially, the latter two are of interest in
this thesis, since they are not as well understood yet.

If the holons are condensed which corresponds to 〈b〉 6= 0, one has c† = 〈b〉 f †, i.e.
c† ∼ f † and the f fermions describe the full electron, not just its spin. In this case
one has a Fermi liquid or a superconducting state:

• The Fermi liquid which arises, when 〈∆〉 = 0, is similar to that which arises
the heavy-fermion problem (see Ref. [41]). Its properties have been examined
by Grilli and Kotliar in Ref. [42].

• The superconducting phase has already been explained in 1987 by Anderson
(see Ref [11]) who predicted that the spin singlets of the RVB state become
charged superconducting Cooper pairs for large doping. This has later been
shown to be correct by Kotliar and Liu [43], who also made predictions on
the phases that exist, but without further analyzing them.

4.4 Gauge invariances
Since as described above the Fermi liquid and the superconducting state are already
well understood, we will focus now on the state with 〈b〉 = 0 which are the
fractionalized Fermi liquid states and will analyze their properties.
One now aims to work with the partition function by integrating out the operators
b†i/bi and f †iσ/fiσ, but this is quite a tedious calculation. To avoid this, we will
"guess" the solution of this calculation from gauge invariance and charge conservation
arguments. The original Lagrangian in Eq. 58 is U(1) gauge invariant, i.e. it is
invariant under transformations of b and f like:

fiσ → fiσe
iφi and (67)

bi → bie
iφi (68)

These transformations imply how λ has to transform for gauge invariance:

λi → λi + ∂τφi (69)
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Now taking the definitions of the decoupling fields yields that the effective Lagrangian
has to be invariant under transformations like:

∆ij → ∆ije
i(φi+φj) (70)

χij → χije
i(−φi+φj) (71)

Fij → Fije
i(φi+φj) (72)

One sees that the spinon pairing field ∆ij and the fermionic field Fij both come
with a gauge charge of two and they both stay the same under the exchange of
indices: Fij = Fji and ∆ij = ∆ji. On the other hand χij has no net gauge charge
and one also directly sees that χij 6= χji. Writing the lowest orders of all terms
which fulfill this gauge invariance and electric charge conservation gives:

Leff =
∑
ij

{χij[∂τ − i(−λi + λj)]χij + aχ1 |χij|2 + aχ2 |χij|4}+ aχ3
∑
i,j,k,l

χijχjkχklχli

+
∑
ij

{∆ij[∂τ − i(λi + λj)]∆ij + a∆
1 |∆ij|2 + a∆

2 |∆ij|4}+ a∆
3
∑
i,j,k,l,

∆ij∆jk∆kl∆li

+
∑
ijσ

{F ijσ[∂τ − i(λi + λj)]Fijσ + aF1 F ijσFijσ}

+
∑
ijklσ

{aFχ1 F ijσFjkσχklχli + aFχ2 F ijσχjkFklσχli

+
∑
ijklσ

aF∆
1 F ijσFjkσ∆kl∆li + aF∆

2 F ijσ∆ij∆klFklσ}

+
∑
ijkl

a∆χ
1 ∆ij∆jkχklχli + a∆χ

2 ∆ijχjk∆klχli + . . .

(73)

where the coefficients a�1/2 are real. The terms not written out are symmetry related
terms and terms that encircle more than one plaquette at a time.The λs have to
look like this due to the gauge transformation of λ which was given in Eq. 69.
While most of these terms can be explained with the gauge invariance condition,
for the time dependent terms a bit more reasoning has to be done:
To understand how the time derivative terms arise one can take a look at the self
interaction diagrams of ∆ and F . One can show that in the first order the term is
proportional to iωk.

k
q

k-q

k

(a) self interaction of ∆∑
q Gf (k − q)Gf (q)

k
q

k-q

k

(b) self interaction of F∑
q Gf (k − q)Gb(q)

Fig. 11: One loop order terms for |∆|2 and |F |2. The diagram was drawn using: a line
for f , a dotted line for b, a double dashed line for F and a double line for ∆.
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When looking on the first order and therefore one loop interaction of |∆|2 or |F |2
as displayed in Fig. 11, one is looking at:∑

q

Gf (k − q)Gf (q) for the |∆|2 term and (74)∑
q

Gf (k − q)Gb(q) for the |F |2 term. (75)

Since one has:

Gf (~i, ω) = −i
λi − iω

and (76)

Gb(~i, ω) = −i
iµb + λi − iω

(77)

one can calculate and simplify this terms by Taylor expanding for small ω. The
terms in Eq. 74 and Eq. 75 are then proportional to iω. Hence, the first order time
derivative.

Also due to gauge invariance also terms containing an odd number of χ (like χ3)
are theoretically allowed in Eq. 73, but we restrict ourselves to the square lattice
and therefore end up only with terms encircling a full plaquette.
One also has to note that there is no forth order term in F, which is again due
to the fact that then we have a term of the forth order in b, which is negligible.
Intuitively this can been seen through the fact that we are close to half filling so
the probability of two holes on the same plaquette is low.

4.5 Saddle point
The Lagrangian in Eq. 73 still looks quite complicated, but now we can actually
draw some conclusions from it. First, we will look at the saddle point solution for
χ = χ0 with χ0 ∈ R. Then the problem simplifies a lot and depending on the choice
of 〈∆〉 one then obtains a U(1) or Z2 fractionalized Fermi liquid.

ciσ

fiσ

fjσ

bi

F ijσ

∆ij

Fig. 12: The electron operator ciσ can be written as the diagram above, which makes it
possible to switch between the dimer description in terms of the dimers ∆ij and Fijσ and
the electron operator ciσ.
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The description in terms of dimers is nice to draw conclusions about the physical
behavior of the system, but in the end we would like to transfer the description back
to a description in terms of the electron operator, since the electric properties can
be compared with experiments. In the saddle point approximation we can express
the electron field as (see Fig.12):

ciσ ∼
∑
j

F ijσ∆ij (78)

where the bar over the σ indicates that it is the opposite spin of σ.

4.5.1 U(1) fractionalized Fermi liquid

For 〈∆〉 = 0 we have a so called "strange metal". It can be described by a U(1)
fractionalized Fermi liquid. As we look at the problem at the saddle point 〈χ〉 = χ0
the terms which capture the interactions in Eq. 73 are:

a∆
3
∑
i,j,k,l,

∆ij∆jk∆kl∆li

+aF∆
1

∑
ijklσ

F ijσFjkσ∆kl∆li

+aF∆
2

∑
ijklσ

F ijσ∆ij∆klFklσ

(79)

These terms are displayed in Fig. 13 and correspond to switching a fermionic and a
bosonic dimer or turning a plaquette with either two bosonic dimers or one bosonic
and one fermionic dimer. These terms are exactly the same as the Hamiltonian
which has been derived in Ref. [12](see also Sec. 2.2). This is further evidence that
the method used is self-consistent. It is important to note, that there are no terms
quadratic in F or ∆ from the terms ∼ a∆χ and ∼ aFχ in Eq. 73 due to the hardcore
constraint. The hardcore constraint is ensured in this model through the constraint
on the particle number (Lagrange multiplier).
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a∆
3

a∆
1

a∆
2

Fig. 13: The important interaction on a plaqutte in a U(1) fractionalized Fermi liquid
(see also Eq. 79). The bosonic dimer ∆ is represented through an empty oval, while the
fermionic dimer is shown through a black filled oval.

The fact that Eq. 79 and the Hamiltonian in Ref. [12] are the same also implies
that all the findings about the U(1) fractionalized Fermi liquid state in other papers
are valid in this description, too. One has that the creation operator of a bosonic
spin singlet is given by

∆†j,η = 1√
2

(f †j↑f
†
j+η↓ − f

†
j↓f
†
j+η↑) (80)

and that F creates a fermionic dimer representing a spinon holon bound state with:

F †j,η,σ = 1√
2

(f †jσb
†
j+η + f †j+ησb

†
j) (81)

Also it has been shown in Ref [44] that this state has a small sharp electronic Fermi
surface, which has also been found in experiments on cuprates. Those small Fermi
surfaces appear close to the momenta k = (±π/2,±π/2) and in this case the Fermi
volume is proportional to the doping away from half filling, which is different to the
usual Fermi liquid, where the Fermi surface is proportional to 1 + p, where p is the
doping.
In this theory one also has sharp quasiparticle excitations. From Eq. 78 we have
that the electronic operator is a convolution of F and ∆, so this is not very intuitive,
but this is due to the hardcore constraint which keeps ∆ and F local. The electron
spectral function shows Fermi arc like features due to the anisotropically distributed
electronic quasi-particle weight.

4.5.2 Z2 fractionalized Fermi liquid
For 〈∆〉 6= 0 we have a so called "pseudogap" state. In this case though it is a
Z2 fractionalized Fermi liquid. In this case one can conclude from Eq 78 that the
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electronic operator can be written as:

ciσ ∼
∑
j

F ijσ (82)

this also implies that the electronic Fermi surface coincides with the Fermi surface
of the fermionic operator F , which is fixed by the hole density (depends on the
operator b). This implies that the Fermi surface is small and also explains the
change in the Luttinger relation: instead of being proportional to 1 + p, where p is
the doping, as it would be for a Fermi liquid, the Luttinger count is proportional to
F and therefore directly proportional to the doping p.
Depending on the sign of the coefficient a∆

3 in Eq. 73 one can choose the following
translationally invariant saddle point solutions for ∆:

• for a∆
3 < 0: 〈∆i,x〉 = 〈∆i,y〉 = ∆

• for a∆
3 > 0: 〈∆i,x〉 = ∆ and 〈∆i,y〉 = i∆

We will focus on the first point here and since both cases are quite similar, just
remark on the second point in the end. The effective Hamiltonian is given by:

HZ2 = −t1
∑
j,σ

F †j+y,x,σFj,x,σ − t2
∑
j,σ

F †j,y,σFj,x,σ − t3
∑
j,σ

F †j+y,y,σFj,x,σ + ... (83)

where t1 = −aF∆
2 |∆|2 − a

Fχ
2 |χ|2 and t2 = −aF∆

1 |∆|2 − a
Fχ
1 |χ|2. As always the dots

represent the symmetry related terms. These terms are displayed in Fig. 14. Note
that t3 arises from terms comprising a process of two (or even more) plaquettes, so
it comes from higher order terms, which were not explicitly written down in Leff
(Eq. 73). One could argue that those processes happen a lot less than the processes
on a single plaquette, but including this term makes it better comparable to other
findings (e.g. in Ref. [12] terms comprising two plaquettes have been treated).
Rewrite electron operator (see Eq.78) as

ckσ ∼ ∆
∑
η

F †−k,η,σ(1 + eikη) (84)

with the help of a Fourier transformation.
For a∆

3 > 0 the saddle point is at ∆i,x = ∆ and ∆i,y = i∆. This leaves the terms in
Eq. 83 with t1 and t2 unchanged. The term with t3 changes the sign in this case.
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t1

t2

t3

Fig. 14: The important interactions on a plaqutte in a Z2 fractionalized Fermi liquid (see
also Eq. 83).

4.5.3 Notes on π - flux state
Up to now we only discussed the simplest choice for χij with 〈χij〉 = χ0, but there
is also another choice which has been of high scientific interest (see e.g. Ref. [19]
Chapter VI or Ref. [45]): the π flux state, which corresponds to the following choice
of χij:

〈χij〉 = χ0 exp
{
i
π

4 (−1)ix+jy
}

(85)

This would change all the calculations performed before, but that it does not change
the underlying physics of the system will be shown here. One can make plausible
that the change of the choice of χ does not change much by looking at the gauge
charge of the F fermions: The F fermions have a gauge charge of 2 therefore they
pick up an Aharonov Bohm phase (see Ref. [46]) of 2π when encircling a plaquette.
In a more explicit manner one can show that not much changes with this choice of
χ by looking at the following terms in the Lagrangian:∑

ijkl

(
aFχ1 F ijσFjkσχklχli + aFχ2 F ijσχjkFklχli

)
(86)

One can directly note that the second term is for the π flux state and the constant
χ, since both χ and χ pick up phases with opposite signs which cancel each other.
One has to have χij = χji due to the gauge transformation χ has. Paired with the
fact that when encircling a plaquette the phases induced by χ all have the same
sign this explains why the term ∼ aFχ2 stays the same for the different choices of χ.
One is usually interested in energy dispersion in terms of momenta. Therefore, we
will Fourier transform the terms from above and at the same time plug in the χs.
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For the π flux state it is easier to work with a bigger unit cell, since the sign of the
phase depends on the sites of the dimer i and j having even or odd indices. The
new unit cell is diplayed in Fig. 15 and solves this problem.

1

43

2
Fig. 15: Unit cell in the π flux state. It has to be bigger than in the case χ = χ0 since
the sign of the phase attributed to each dimer depends on the sites having even or odd
indices. The arrows here indicate the direction of χs that are associated with a phase of
+π/4, e.g. χ1,x gives a phase of +π/4 while χ1,y gives a phase of −π/4. It is important
to note that in the π flux state one has χij = χji.

From the position dependent form with the new unit cell we will switch to the
momentum description by using a Fourier transform. This then means that the
terms of the Lagrangian will be rewritten as:

(F 1,x, F 1,y, F 2,x, F 2,y, F 3,x, F 3,y, F 4,x, F 4,y)M



F1,x
F1,y
F2,x
F2,y
F3,x
F3,y
F4,x
F4,y


(87)

As mentioned above, for the comparison it is sufficient to look only at the term
proportional to aFχ1 , since it is the only term which changes between both state.
For this term we obtain M to be:

M = aFχ1 ei
π
2



0 1 0 −1 0 eiky 0 −eiky
−1 0 −eikx 0 1 0 eikx 0
0 e−ikx 0 −1 0 eiky−ikx 0 −eiky
1 0 1 0 −1 0 −1 0
0 −1 0 1 0 −1 0 1

−e−iky 0 −eikx−iky 0 1 0 eikx 0
0 −e−ikx 0 1 0 −e−ikx 0 1

e−iky 0 e−iky 0 −1 0 −1 0


(88)

All the additions to the state with χ = χ0 have been marked in red. If one now
looks at the ground state energy, which corresponds to the lowest eigenvalue of the
matrix M, one can see that it is the same for both cases (see Fig. 16). These plots
only differ at an order of 10−15 which is due to computational rounding.
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(a) π flux state (b) χ const
Fig. 16: For the different choices of χ the ground state is the same. The plots differ only
at an order of up to 10−15 which is probably only due computational rounding.

So one can conclude that the dispersion of the F fermions for the π flux state is
indeed the same as for the case χ = χ0.

4.6 Gauge fluctuations
Having now looked at the mean field solutions it makes sense to allow now small
deviations from the saddle point solution for χ. For this phase fluctuations for χ on
nearest neighbor bonds will be allowed. Here is it crucial to remember: χij = χji.
From this we will derive a theory for F and ∆ coupled to a U(1) gauge field A.
This gauge field will be introduced by allowing the following fluctuations for χ:

χiη = χ0e
iAηi (89)

where Aηi parametrizes the phase fluctuation of χi,η on the bond starting from lattice
site i in direction η, which can be x or y on the square lattice. This will now be
used to simplify the Lagrangian in Eq. 73. The most important terms to consider
are the term ∼ aχ3 and the terms ∼ aFχ1,2 and ∼ a∆χ

1,2 .
The term ∼ aχ3 then takes the form:

aχ3χ
4∑

j

exp (Axj + Ayj+x − Axj+y − A
y
j ) + h.c. (90)

From this now takes the continuum limit such that Axj −Axj+y becomes ∂yAx and the
sum over all lattice points ∑j becomes an integral

∫
d2x. This leads to a Maxwell

term for a compact U(1) gauge theory in 2+1 dimensions:

2aχ3χ4
∫
d2x cos(∂xAy − ∂yAx) (91)
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The next step is to look at the interactions between the gauge field and F/∆ are
the terms ∼ aFχ1,2 and ∼ a∆χ

1,2 :

aFχ1 χ2∑
iσ

F iyσFixσe
i(Ayi+x−A

x
i+y) + aFχ2 χ2∑

iσ

F i,xσFi+y,xσe
i(Ayi+x−A

y
i ) + ...

+ a∆χ
1 χ2∑

i

∆iy∆ixe
i(Ayi+x−A

x
i+y) + a∆χ

2 χ2∑
i

∆i,x∆i+y,xe
i(−Ayi+x−A

y
i ) + ...

(92)

where the dots indicate symmetry related terms. Since the terms for ∆ and F have
completely the same form it is enough to do the calculation once and the deduce
the result for the other variable (or the other spin in the case of F). The term will
now be rewritten by taking the continuum limit, e.g. rewriting

Fi+η,η′ = (1 + ∂η + 1
2∂

2
η)Fi,η′ (93)

The spin index has been omitted, since there is no term containing different spins
and will be added again in the final result. Then the first line of Eq. 92 can be
rewritten as

(Fix, Fiy)
(
mxx mxy

mxy myy

)(
Fix
Fiy

)
(94)

with

mxx = aFχ2 χ2((1− ∂y + 1
2∂

2
y)ei(A

y
i +Ayi+x) + e−i(A

y
i +Ayi+x)(1 + ∂y + 1

2∂
2
y)) (95)

mxy = aFχ1 χ2(ei(−A
y
i−A

x
i+y)(1 + ∂x + 1

2∂
2
x) + (1− ∂y + 1

2∂
2
y)ei(A

x
i +Ayi+x)

+ ei(A
x
i+y−A

y
i+x) + (1− ∂y + 1

2∂
2
y)ei(−A

x
i +Ayi )(1 + ∂x + 1

2∂
2
x)

(96)

To obtain myx and myy one just simply has to exchange all x and y in the equations
above. Next one diagonalizes M which leads to the eigenvalues:

λ1,2 = mxx +myy

2 ±
√(

mxx −myy

2

)2
+myxmxy (97)

The lower eigenvalue corresponds to the ground state energy. Tayloring the expo-
nentials and carefully rewriting everything leads to the following term:

(aFχ2 − a
Fχ
1 )(4 + 1

2(∇− 2i ~A)2) (98)

where ~A = (Ax, Ay)T . This term is proportional to (∇− 2iA)2. So, this leads to a
complete Lagrangian of :

L =
∑
σ

F σ[(∂τ − i2Aτ )− (∇− i2 ~A)2 − µF ]Fσ

+ ∆[(∂τ − i2Aτ )− (∇− i2 ~A)2 + a∆
1 ]∆

+ a∆
2 |∆|4 + SMaxwell[Aµ]

(99)
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The time component of the gauge field was introduced by defining it as the Lagrange
multiplier term: Aτi ≡ λi.
Looking at this Lagrangian we can again see the different types of fractionalized
Fermi liquid occuring here:

• For 〈∆〉 = 0 one obtains a U(1) fractionalized Fermi liquid, where the F
fermions are coupled to a U(1) gauge field ~A.

• If the spinon pair field gets condensed by setting a∆
1 < 0, one has spontaneous

symmetry breaking, which results in the in the U(1) field being gapped out
via the Higgs mechanism (see Ref. [47]). This then leads to a Z2 fractionalized
Fermi liquid.



5 Conclusion and outlook
In this thesis two different approaches have been used to get a better understanding
of the pseudogap state occurring in high TC superconductors and materials like
twisted bilayer graphene. While the first part of this thesis focused on a very specific
property of twisted bilayer graphene, the second part more focused on getting a
better understanding of the different phases occurring in hole-doped Mott insulators
in general.
In the first half of this thesis we started from a dimer description of a triangular
lattice by introducing bosonic and fermionic dimer operators. The physics of
those dimer can be described by the RK Hamiltonian with added boson-fermion
interactions. Looking at the exactly solvable point for this Hamiltonian and adding
some small perturbation my predecessor Brin Verheijden was able to find the
dispersion relation for the ground state.
Starting from there we took a look at the band structure of this ground state at
the pseudogaps when inducing a magnetic field. By introducing a magnetic field
through a Peierls substitution we looked at the eigenvalue equation for the problem.
The eigenvalue equation is only solvable for certain fractional choices of the magnetic
field, but the results can be extended by analytic continuation. The band structure
was found and plotted by solving the eigenvalue equation using some constraints.
This led us to a Hofstadter butterfly like plot giving predictions for experiments.
In the second half the slave boson method was applied to get a better understanding
of the different phases that occur for the t-J model on the square lattice. To achieve
this the slave boson version of the t-J Hamiltonian was Hubbard Stratonovich
decoupled in three different channels: the spinon hopping, the spinon pairing and
the holon spinon interaction. The latter was decoupled using a fermionic HS field
on the lattice bonds to account for spinon-holon bound states. This model omits
four different phases:

• Fermi liquid

• superconductor

• U(1) fractionalized Fermi liquid

• Z2 fractionalized Fermi liquid

The latter two states have been further investigated, since they might be able to
explain the behavior of the pseudogap metal phase observed in experiments. For
both of these phases the results at the saddle point coincide with other findings for

37
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the dimer model. It is noteworthy that the spinon pairing operator and the holon
spinon interaction operator take the same role as the bosonic and fermionic dimer
respectively. It has also been looked at the Lagrangian for small deviations from the
saddle point, for which one again recovers the two different types of fractionalized
Fermi liquid: one with U(1) gauge invariance and one with Z2 gauge invariance.
Our approach can be used as a starting point to study interesting quantum phase
transitions between ordinary Fermi liquids and fractionalized Fermi liquids. More-
over, a generalization to SU(2) slave-boson descriptions is possible as well and might
provide insight into recent SU(2) gauge theories for cuprates (see Ref. [48]).
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