
Universal Dephasing in a Chiral 1D Interacting Fermion System

Clemens Neuenhahn and Florian Marquardt

Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience,
Ludwig Maximilians Universität München, Theresienstrasse 37, 80333 Munich, Germany

(Received 1 August 2008; published 28 January 2009)

We consider dephasing by interactions in a one-dimensional chiral fermion system (e.g., a quantum

Hall edge state). For finite-range interactions, we calculate the spatial decay of the Green’s function at

fixed energy, which sets the contrast in a Mach-Zehnder interferometer. Using a physically transparent

semiclassical ansatz, we find a power-law decay of the coherence at high energies and zero temperature

(T ¼ 0), with a universal asymptotic exponent of 1, independent of the interaction strength. We obtain the

dephasing rate at T > 0 and the fluctuation spectrum acting on an electron.
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Studying the loss of quantum coherence is important
both for fundamental reasons (quantum-classical transi-
tion, measurement process, equilibration) and with regard
to possible applications of quantum mechanics (interfer-
ometry, quantum information processing).

Dephasing of electrons in Luttinger liquids is interesting
as an example of a nonperturbative, strongly correlated
model case [1–6]. In contrast, the situation for (spinless)
chiral interacting fermion systems, such as edge states in
the integer quantum Hall effect, seems to be clear. Within
the standard ansatz of pointlike interactions, an interacting
chiral model is only a Fermi gas with a renormalized
velocity. Recently though it was realized that such models
may present interesting physics if finite-range interactions
are considered [7] (cf. also [8]). This research is motivated
by recent studies of dephasing in quantum Hall effect
Mach-Zehnder interferometers, both by intrinsic interac-
tions [7,9–14] and external baths [11,15–19]. Remarkable
experiments [19–23] have revealed novel effects at high
bias voltages, which is the regime we are going to study.

At low energies and temperatures, chiral interacting
fermions form a Fermi liquid and are fully coherent at T ¼
0 and � ¼ �F. It was found that the features at intermediate
energies depend on the details of the interaction potential
[7,8,24]. However, here we study the coherence of inter-
acting chiral fermions at high energies (higher than the
cutoff for the interaction potential). Our central result is
that (at T ¼ 0) there is a universal power-law decay of
coherence with propagation distance, where the exponent
is independent of interaction strength. This is in contrast to
physical expectation, where decoherence should grow with
increasing coupling. We identify the reason behind this as a
subtle cancellation between increasing interaction strength
and decreasing density fluctuations in the sea of other
electrons. We will derive this first within a semiclassical
ansatz that is later shown to be exact at high energies,
comparing it to bosonization. We will discuss deviations
from the leading behavior and the situation at T > 0. The
result is particularly remarkable since usually universal
behavior is confined to the low-energy regime.

Model.—We consider fermions in one dimension, prop-
agating chirally at speed vF and interacting via a potential
Uðx� x0Þ:
Ĥ ¼ X

k

vFkĉ
y
k ĉk

þ 1

2

Z
dxdx0 ĉ yðxÞĉ yðx0ÞUðx� x0Þĉ ðx0Þĉ ðxÞ; (1)

where ĉ ðxÞ ¼ L�1=2
P

kĉke
ikx are the fermion operators,

the normalization volume L tends to infinity in the end,
k 2 2�L�1Z, and k � kc, with a cutoff kc that drops out of
the results. We have set @ ¼ 1. After bosonization, the
Hamiltonian is diagonal:

Ĥ ¼ X
q>0

!ðqÞb̂yq b̂q þ�N̂: (2)

The bosonic operators b̂q of Eq. (2) describe the density

fluctuations �̂ðxÞ � ĉ yðxÞĉ ðxÞ � ��, where �� is the mean
density:

�̂ðxÞ ¼ X
q>0

ffiffiffiffiffiffiffiffiffiffi
q

2�L

r
ðb̂qeiqx þ H:c:Þ: (3)

The plasmonic dispersion relation depends on the inter-
action potential’s Fourier transform, Uq ¼

R
dxe�iqxUðxÞ:

!ðqÞ ¼ vFq

�
1þ Uq

2�vF

�
: (4)

Here vF is the velocity at q ! 1 and we define ~v � vF þ
Uq!0=ð2�Þ ¼ vFð1þ �Þ. The dimensionless interaction

strength is � � U0=ð2�vFÞ. Uq is assumed to decay be-

yond some scale qc.
Interferometry.—To probe the electrons’ coherence, we

imagine an electronic Mach-Zehnder interferometer
[Fig. 1(b)] [9,20], i.e., two chiral wires connected by small
tunnel couplings ta and tb at two ‘‘beam splitters’’ (quan-
tum point contacts). This permits us to express the current
to leading order in the tunnel coupling [7,12], via the
single-particle Green’s functions (GF) in the wires. This
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is possible under the assumption that there are no inter-
actions between the wires (and therefore no vertex correc-
tions in the result), which is reasonable due to their spatial
separation. The quantity of interest is the visibilityV , i.e.,
the contrast of the current interference pattern that is dis-
played when changing the magnetic flux �. We define
V � ðImax � IminÞ=ðImax þ IminÞ, where Imax ¼
max�Ið�Þ. In contrast to [7], we write V in terms of the

GF in energy space: G>ðx; �Þ is the Fourier transform of

G>ðx; tÞ ¼ �ihĉ ðx; tÞĉ yð0; 0Þi. It gives the amplitude for
an electron injected at energy � to propagate coherently a
distance x. This yields (at T ¼ 0)

V ¼ 2jtat�bj
jtaj2 þ jtbj2

jR��
0 d�G>

L ðxL; �ÞG<
R ð�xR; �� ��Þj

ð2�Þ2 R��
0 d��Lð�Þ�Rð�� ��Þ :

(5)

There are contributions from all electrons inside the volt-
age interval, � ¼ 0 . . .��, where �� ¼ �L ��R ¼
qeV > 0 is the bias between the left (L) and the right (R)
interferometer arm. GL;R are the bulk GFs [at � ¼ 0] for
particles (>) and holes (<), where G<ðx; �Þ ¼
G>�ðx;��Þ. At T ¼ 0 one obtains the tunneling density
of states from 2��ð�Þ ¼ jG>ðx ¼ 0; �Þj þ jG<ð0; �Þj. For
xL ¼ xR ¼ x, the decay of visibility is thus determined by
the GF decay to be discussed in the following.

Decoherence of a high-energy electron.—We employ a
physically intuitive semiclassical ansatz for the GFs, that
becomes exact in the limit of high energies, as we will
confirm later by comparing it to bosonization. Electrons at
high energies � � vFqc propagate at the speed vF.
Scattering by a few multiples of qc will not bring them
near the Fermi energy, so Pauli blocking is unimportant.
The visibility at high bias voltage is dominated by these
electrons. The sea of other electrons produces a fluctuating

potential V̂ðtÞ acting on such a high-energy electron at its
classical position x ¼ vFt. It is obtained by convoluting
the density with the interaction potential [Fig. 1(a)]:

V̂ðtÞ ¼
Z

dx0Uðx0 � vFtÞ�̂ðx0; tÞ: (6)

As known from bosonization, the fluctuations of �̂ are
purely Gaussian. The ansatz assumes the electron to pick

up a random phase from the potential fluctuations V̂ðtÞ. As
a result, its noninteracting GF G>

0 is multiplied by the

average of the corresponding phase factor: G>ðx; �Þ ¼
G>

0 ðx; �Þ expð� FðxÞÞ, where

e�FðxÞ �
�
T̂ exp

�
�i

Z x=vF

0
dt0V̂ðt0Þ

��

¼ exp

�
� 1

2

Z x=vF

0
dt1dt2hT̂ V̂ðt1ÞV̂ðt2Þi

�
(7)

depends on the propagation distance x, but turns out to be
energy-independent in the high-energy limit discussed
here. A related approach was introduced both for electron
dephasing in 1D ballistic wires by an external quantum
environment [16,18], and for describing two coupled (non-
chiral) Luttinger liquids [3] or 1D systems with a nonlinear

dispersion relation [25,26]. The form of e�FðxÞ is exactly
the same as that for pure dephasing of a qubit by quantum
noise [11,16,18]. The decay is determined by the fluctua-
tion spectrum in the electron’s frame of reference,

hV̂ V̂i! ¼ R
dtei!thV̂ðtÞV̂ð0Þi. The magnitude of the GF

(i.e., the electron’s coherence) turns out to decay as

jG>ðx; �Þj
jG>

0 ðx; �Þj
¼ exp

�
�

Z þ1

�1
d!

2�

sin2ð!x=2vFÞ
!2

hfV̂; V̂gi!
�
;

(8)

where hfV̂; V̂gi! ¼ hV̂ V̂i! þ hV̂ V̂i�! denotes the symme-
trized spectrum and jG>

0 ðx; �Þj is constant in the high-

energy regime. From Eq. (6), we obtain for the potential
spectrum

hV̂ V̂i! ¼
Z dq

2�
jUqj2h�̂ �̂iq;!þvFq; (9)

which derives from the Galileo-transformed spectrum of
the density fluctuations. We first focus on T ¼ 0, where
h�̂ �̂iq;! ¼ 	ðqÞq�ð!�!ðqÞÞ. The spectrum has two dis-

tinct features [cf. Fig. 1(c)].
At high frequencies, we obtain a singularity

hfV̂; V̂giT¼0
! / 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!max � j!jp

at the cutoff frequency
!max ¼ maxð!ðqÞ � vFqÞ, which is the maximum fre-
quency in the Galileo-transformed plasmon dispersion re-
lation. This singularity arises since !ðqÞ � !ðq�Þ þ
!00ðq�Þðq� q�Þ2=2 in the vicinity of q�, where !ðq�Þ ¼
vFq

� þ!max.
At low frequencies ! � vFqc, the spectrum increases

linearly in !, corresponding to ‘‘Ohmic’’ noise, which is
ubiquitous in many contexts [27]. Here, it derives from the
interaction with 1D sound waves (plasmons). For poten-
tials that are smooth in real space (i.e., all the moments of
jUqj are finite), the leading low-! behavior is determined
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FIG. 1 (color online). (a) A single electron propagating at high
energies feels a fluctuating potential V̂ðtÞ, as it interacts with the
sea of other electrons. (b) Scheme of the Mach-Zehnder inter-
ferometer setup. (c) The fluctuation spectrum (at T ¼ 0 and �>
0). Inset: Plasmonic dispersion relation.
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by small q in Eq. (9). The result is

hfV̂; V̂giT¼0
! ¼ U2

q!0

ð~v� vFÞ2
j!j
2�

¼ 2�j!j: (10)

The prefactor of the spectrum turns out to be independent
of the coupling strength �. This is in contrast to nonchiral
Luttinger liquids, where an Ohmic spectrum has been
found with an interaction-dependent prefactor [3]. An in-
crease in interaction strength is canceled by stiffening the
density fluctuations, i.e., shifting them to higher frequen-
cies in the comoving frame, and thereby decreasing their
magnitude. This translates into a universal power-law de-
cay for the GF at large x:

jG>ðx; �Þj / 1

x1
: (11)

More precisely, we claim that asymptotically the exponent
becomes 1: limx!1 � lnjG>ðx; �Þj= lnx ¼ 1. While here
the cancellation of � is unexpected, a similar effect is
known for Nyquist noise, where the electron charge can-
cels at low ! due to screening. Note the contrast to
dephasing by an external bath, where the decay gets
weaker for lower coupling, and also to the coupling-
dependent exponents in a Luttinger liquid. This central
result is illustrated in Fig. 2, based on Eq. (8). The
power-law decay reflects the Anderson orthogonality ca-
tastrophe, where the many-body state of the ‘‘other’’ elec-
trons evolves depending on the path of the given electron.

The oscillations are due to the cutoff in hV̂ V̂i!. Its ampli-
tude depends on � (see below), but it vanishes for large x.
These oscillations can be understood as ‘‘coherence reviv-
als,’’ where the entanglement with the environment is

partly undone at certain times, in the manner of ‘‘quantum
eraser’’ experiments.
In order to understand how the noninteracting limit is

recovered [� ¼ 0, where jG>ðx; �Þj is constant as a func-
tion of x], we have to discuss its range of validity. As the
linear slope in the spectrum applies only at j!j � !max,
we must require!maxx=vF � 1. Since!max vanishes with
�, the limiting regime is reached at ever larger values of x
for � ! 0.
We now discuss the deviations from the leading

low-! behavior in hfV̂; V̂gi!. These are due to the
contributions from large q in (9). For example, a poten-

tial Uq ¼ U0e
�ðjqj=qcÞs yields a subleading contribution

hfV̂; V̂giðsubÞ! ¼ 2�j!j=½s lnðj�jvFqc=j!jÞ�. This turns
into a term s�1 lnð lnðj�jqcxÞÞ in FðxÞ, yielding a slow
logarithmic decay of the prefactor in Eq. (11) that can
be understood as an asymptotically vanishing correc-
tion s�1 lnð lnðj�jqcxÞÞ= lnðxÞ ! 0 to the exponent 1.
The subleading oscillatory contribution to F is

�Cs sinð!maxx=vF þ �=4Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�j�jqcx

p
, with a numerical

prefactor Cs (e.g., C1 ¼ 2�
ffiffiffi
e

p
). In contrast, consider a

potential that is nonsmooth (i.e.,
R
dqjUqjqn does not

converge for some n). If Uq ¼ uq�n for large q, then we

find an additional contribution 2�j!jðn� 1Þ�1 (n > 1). It

modifies the leading behavior of hfV̂; V̂gi! and changes the

decay into jG>ðx; �Þj / 1=x1þ1=ðn�1Þ. The universal expo-
nent is recovered as n ! 1.
For T > 0, the large-x limit yields an exponential decay

jG>ðx; �Þj / exp½��’x=vF�, with

�’ ¼ �T

��������1�
vF

~v

��������¼ �Tj1þ ��1j�1: (12)

For � ! 0, this rate vanishes as �’ ¼ �Tj�j; i.e., it is
nonanalytic in U0 / �. Dephasing rates linear in T have
also been found in nonchiral Luttinger liquids [3–5]. At
large repulsion, U0 ! þ1, we have the universal result
�’ ! �T. For attractive interaction, �’ diverges at the

instability for � ! �1, where ~v ! 0 gives rise to ther-
mally excited low-frequency modes.
Contrast this behavior against pure dephasing of a qubit

by Nyquist noise. There, a power-law decay t�
 at T ¼ 0
implies a decay rate �’ ¼ �
T for T > 0. In the present

case, the Galileo transformation turns the lab-frame tem-
perature T into Teff in the comoving frame. We find Teff ¼
Tj1� vF=~vj enters in the fluctuation-dissipation theorem

relation hfV̂; V̂giT! ¼ ð2Teff=j!jÞhfV̂; V̂giT¼0
! . Only for large

repulsion, we get Teff ! T, and the universal power law for
T ¼ 0 turns into a universal decay rate for T > 0.
Green’s function from bosonization—.We employ the

standard connection [28,29] between the bosonic phase

field �̂ðxÞ ¼ i
P

q>0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=Lq

p
e�aq½b̂qðtÞeiqx � H:c:� and

the fermion operators ĉ ðxÞ ¼ ðF̂= ffiffiffiffiffiffiffiffiffi
2�a

p ÞeikFxe�i�̂ðxÞ

[where b̂qðtÞ ¼ b̂qð0Þe�i!qt, F̂ is the Klein factor, and a !
0 provides the regularization at short distances]. This
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FIG. 2 (color online). The coherence of an electron propagat-
ing at high energies in an interacting chiral system, as a function
of propagation distance. The noninteracting case would be
vFjG>ðx; �Þj � 1. The asymptotic exponent for the power-law
decay is universally given by 1 (see dashed line). At T > 0, one
obtains an exponential decay for large x, with a decay rate �’

(inset). The potential was Uq ¼ U0e
�jq=qcj with U0=vF ¼

2�� ¼ 20, and T=qcvF ¼ 0:01.
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yields the GF

G>ðx; tÞ ¼ �i

2�a
e�i�ðt�x=vFÞ exp½h�̂ðx; tÞ�̂ð0; 0Þi

� h�̂ð0; 0Þ2i�: (13)

A numerical Fourier transform produces G>ðx; �Þ (see
Fig. 3). The dip near � ¼ 0 in the tunneling density
/jG>ðx ¼ 0; �Þj is due to the renormalization of the ve-
locity. The decay of the GF with increasing x is due to
interaction-induced decoherence. Most importantly, the
decay at high energies (i.e., ��� � vFqc, !max) is re-
produced exactly by the semiclassical approach (see
Fig. 3). This may be understood as follows: Evaluation of
(13) produces a broad, dispersing peak [7] moving with the
renormalized velocity ~v. There is another, sharp peak at
x ¼ vFt. This is due to contributions from high frequencies
in the plasmon dispersion, and the evolution of its weight
determines the decay of G>ðx; �Þ at high energies. That
weight can be obtained from bosonization (13), evaluated
at x ¼ vFt, which turns out to be identical to the semiclas-
sical ansatz in Eq. (8).

In interferometry, these universal results determine the
visibility V for high bias voltage. At T ¼ 0 we obtain a
decayV / 1=x2 independent of �� at high bias (note that
V ! 1 for �� ! 0, as expected [7]), and the exponential
decay for T > 0 is transferred to V as well.

Conclusions.–The coherence of an electron moving in a
chiral system obeys a universal asymptotic power-law
decay at T ¼ 0, with an exponent 1 independent of inter-
action strength, for energies above the scale set by the
interaction range. For T > 0, the decay rate becomes
coupling-dependent except in the limit of high couplings,
where it reduces to a universal decay rate �’ ¼ �T. These

results were derived by a physically transparent semiclas-
sical approach that is exact in the high-energy limit.
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FIG. 3 (color online). The evolution of the Green’s function
with energy � of the injected electron at T ¼ 0, for various
propagation distances, according to bosonization [Eq. (13)]. The
curve at the right corresponds to the semiclassical ansatz
[Eq. (8)], which is exact for high energies, as is evident in the
figure. The potential was Uq ¼ U0e

�ðq=qcÞ2 with U0=vF ¼
2�� ¼ 2.
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