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We consider the classical dynamics of a particle in a (d ! 2; 3)-dimensional space-periodic potential
under the influence of time-periodic external fields with zero mean. We perform a general time-space
symmetry analysis and identify conditions, when the particle will generate a nonzero averaged transla-
tional and vortex currents. We perform computational studies of the equations of motion and of
corresponding Fokker-Planck equations, which confirm the symmetry predictions. We address the
experimentally important issue of current control. Cold atoms in optical potentials and magnetic traps
are among possible candidates to observe these findings experimentally.
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The idea of directed motion under the action of an
external fluctuating field of zero mean goes back to
Smoluchowski and Feynman [1]. It has been intensively
studied in the past decades again [2]. It is believed to be
connected with the functioning of molecular motors, and
can be applied to transport phenomena which range from
mechanical engines to an electron gas (see [3,4] and refer-
ences therein).

The separation of the fluctuating fields into an uncorre-
lated white noise term and a time-periodic field was used to
perform a symmetry analysis of the most simple case—a
pointlike particle moving in a one-dimensional periodic
potential [5]. It allowed to systematically choose space and
time dependencies of potentials and ac fields such, that a
nonzero dc current is generated. Various studies of the
dynamical mechanisms of rectification have been reported
(e.g., [6]). Among many experimental reports, we mention
the successful testing of the above symmetry analysis using
cold atoms in one-dimensional optical potentials [7]. By
use of more laser beams, experimentalists can already
fabricate two- and three-dimensional optical potentials,
with different symmetries and shapes [8], with the aim of
even more controlled stirring of cold atoms in these setups.

A particle which is moving in a d ! 2, 3-dimensional
periodic potential may contribute to a directed current
along a certain direction. At the same time, the particle
can perform vortex motion (which is not possible in a one-
dimensional setting) generating a nonzero average of the
angular momentum. Directed translational currents are
supported by unbounded trajectories while vortex currents
may be localized in a finite volume. The question is then,
how can we control a type of the directed motion? To
answer this question, we use the symmetry analysis which
allows us to predict an appearance of certain directed
currents. Namely, we identify the symmetries which ensure
that either translational- or vortex components of the di-
rected current are strictly zero. Breaking these symmetries

one by one allows us to control the particle motion gen-
erating either directed, or vortex, currents, or both simul-
taneously. This is the main result of the present Letter.

We consider the dynamics of a classical particle (e.g., an
atom of a cold dilute atom gas, loaded onto a proper optical
lattice) exposed to an external potential field:

 !!r# " _r ! g$r; t% # !$t%; g$r; t% ! "rU$r; t%: (1)

Here r ! fx; y; zg is the coordinate vector of the particle,
the parameter " & 0 characterizes the dissipation strength,
and ! & 0 defines the strength of the inertial term [9]. The
force g$r; t% ! fg#$r; t%g, # ! x, y, z, is time and
space periodic:

 g $r; t% ! g$r; t# T% ! g$r#L#; t%; # ! x; y; z:

(2)

Here L# are the components of the basis of the unit cell.
The absence of a dc bias implies

 hg$r; t%iL;T '
Z T

0

Z
L
g$r; t% dt dx dy dz ! 0 (3)

where the spatial integration extends over one unit cell.
The fluctuating force is modeled by a $-correlated

Gaussian white noise, !$t% ! f%x; %y; %zg, h%#$t%%&$t0%i !
2"D$$t" t0%$#& (#, & ! x, y, z). Here D is the noise
strength. The statistical description of the system (1) at
! ! 1 is provided by the Fokker-Planck equation (FPE)
[10]:

 f@t # rr ( v" rv ( )"v" g$r; t%* " "D"vgP$r; v; t% ! 0;
(4)

where v ! _r. The respective FPE for ! ! 0 reads

 "@tP$r; t% ! ")rr ( g$r; t% "D"r*P$r; t%: (5)

Each of the linear equations (4) and (5) has a unique
attractor solution, P̂ which is space and time periodic [10].

PRL 100, 224102 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
6 JUNE 2008

0031-9007=08=100(22)=224102(4) 224102-1  2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.224102


Directed transport.—Let us consider the dc component
of the directed current in terms of the attractor P̂:

 J ! hv ( P̂$r; v; t%iT;L; ! ! 1; (6)

 J ! ""1hg$r; t% ( P̂$r; t%iT;L; ! ! 0: (7)

The strategy is now to identify symmetry operations which
invert the sign of v, and, at the same time, leave Eq. (1)
invariant. If such symmetries exist, the dc current J will
strictly vanish. Sign changes of the current can be obtained
by either inverting the spatial coordinates, or time (simul-
taneously allowing for shifts in the other variables). Below
we list all operations together with the requirements the
force g and the control parameters have to fulfill:

 Ŝ 1: r ! "r# r0; t ! t# '; Ŝ1$g% ! "g; (8)

 Ŝ2: r ! r##; t ! "t# t0;

Ŝ2$g% ! g $if " ! 0%; Ŝ2$g% ! "g $if! ! 0%:
(9)

Here t0 and r0 depend on the particular shape of g$r; t% [11].
The system must be invariant under a spatial translation by
the vector 2! in space and 2' in time, respectively. The
vector ! is therefore given by ! ! P

#n#L#=2, n# ! 0,
1, while ' ! 0, T=2. By a proper choice of g all relevant
symmetries can be broken, and one can then expect the
appearance of a nonzero dc current J [12].

To be more precise, we consider the case of a particle
moving in a two-dimensional periodic potential and being
driven by an external ac field: g$r; t% ! "rV$r% # E$t% '
f$r% #E$t%. The symmetry Ŝ1 holds if the potential force is
antisymmetric, f$"r# r0% ! "f$r%, and the driving func-
tion is shift-symmetric, E$t# T=2% ! "E$t%. The symme-
try Ŝ2 holds at the Hamiltonian limit, " ! 0, if the driving
force is symmetric, E$"t# t0% ! E$t%.

Finally, the symmetry Ŝ2 holds at the overdamped limit,
! ! 0, if the potential force is shift-symmetric, f$r#

!% ! "f$r% and the driving force is antisymmetric, E$t#
t0% ! "E$"t%.

In order to break the above symmetries, we choose

 V$r% ! V$x; y% ! cos$x%)1# cos$2y%*; (10)

 Ex;y$t% ! E$1%
x;y sint# E$2%

x;y sin$2t# (%: (11)

The potential (10) is shift-symmetric, ! ! f+); 0g. The
symmetry Ŝ1 is broken since E is not shift-symmetric.
Therefore in general we expect J ! 0.

In Fig. 1 we show the computational evaluation of
equations (4) and (5). We confirm the presence of a non-
zero dc current. Applying operations Ŝ1 and ( ! (# )
we conclude J$(# )% ! "J$(%, which allows for an easy
inversion of the current direction, as also confirmed by the
data in Fig. 1(a). In the overdamped limit ! ! 0, Ŝ2 is
restored for ( ! 0, +), and therefore J$"(% ! "J$(%
[thick lines in Fig. 1(a)]. Upon approaching the
Hamiltonian limit, " ! 0, the points where J ! 0 shift
from ( ! 0, ) to ( ! +)=2 where the symmetry Ŝ2 is
restored [thin lines in Fig. 1(a)]. In the underdamped
regime, the dc current can be approximated as J# /
J$0%# sin)(" ($0%# $"%*, # ! x, y. The phase lag is equal to
($0%x;y ! )=2 and ($0%x;y ! 0 in the Hamiltonian and over-
damped limits, respectively [Fig. 1(c)] [13].

Even more control over the current direction is possible,
by imposing the symmetry conditions (8) and (9) on each
component g#$r; t% independently. For (10) and (11) with
E$2%
x ! E$1%

y ! 0, ( ! 0 the symmetry transformation Ŝc:
x ! "x, y ! y, t ! t# ) implies that the current along
the x direction is absent, Jx ! 0, and directed transport is
happening along the y axis [see Fig. 1(b), curve (i)]. We
may conclude, that the symmetry analysis turns out to be a
powerful tool of predicting and controlling directed cur-
rents of particles which move in d ! 2, 3-dimensional
potentials under the influence of external ac fields. Note
that dynamical mechanisms of current rectification of a
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FIG. 1 (color online). (a) Dependence of the current components, Jx(solid line) and Jy(dashed line), on ( for (1), (10), and (11) with
D ! 1, E$1%

x ! "E$2%
x ! 2, E$1%

y ! "E$2%
y ! 2:5. Data are for the overdamped (! ! 0, " ! 1 thick lines) and underdamped (! ! 1,

" ! 0:1 thin lines) cases, respectively; (b) the time evolution of the mean particle position, $r$t% ! R
rP$r; v; t%dr dv, for ( ! 0. The

trajectories are superimposed on the contour plot of the potential (10). Curve (i) corresponds to E$1%
x ! 3, E$2%

x ! E$1%
y ! 0, E$2%

y ! 3:5
and curve (ii)—to the parameters of panel (a). The other parameters are D ! ! ! 1, " ! 0:1; (c) the phase lag ($0%x as a function of the
dissipation strength ".
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two-dimensional deterministic tilting ratchet were dis-
cussed in Ref. [14].

Vorticity.—At variance to the one-dimensional case,
particles in two and three dimensions can perform vortex
motion, thereby generating ring currents, or nonzero an-
gular momentum. First of all we note that the particle
dynamics is not confined to one spatial unit cell of the
periodic potential U$r; t%. Even in the case when a directed
current is zero due to the above symmetries, J ! 0, the
particle can perform unbiased diffusion in coordinate
space. In order to distinguish between directed transport
and spatial diffusion on one side, and rotational currents on
the other side, we use the angular velocity [15]

 " $t% ! ) _r$t% , !r$t%*= _r2$t%; J" ! h"$t%it; (12)

as a measure for the particle rotation, where h. . .it !
limt!1

1
t

Rt
0 . . . dt

0. "$t% is invariant under translations in
space and time. It describes the speed of rotation with
which the velocity vector _r [the tangential vector to the
trajectory r$t%] encompasses the origin.

Using the above strategy, we search for symmetry op-
erations that leave the equations of motion invariant, but do
change the sign of the angular velocity. If such symmetries
exist, rotational currents strictly vanish on average. The
sign of " can be inverted by either (i) time inversion t !
"t together with an optional space inversion r ! +r, or
(ii) the permutation of any two variables, e.g., P̂ xy:
fx; y; zg ! fy; x; zg. That leads to the following possible
symmetry transformations:

 R̂ 1: r ! P̂ r# r0; t ! t# '; R̂1$g% ! g; (13)

 R̂ 2: r ! +r#!; t ! "t# t0;

R̂2$g% ! g $if " ! 0%;
R̂2$g% !" g $if ! ! 0%:

(14)

Here P̂ stands for any of the following operations: P̂ xy,
P̂ yz, or P̂ zx and t0 and r0 again depend on the particular
shape of g$r; t%.

To be concrete, we will again consider a particle moving
in a two-dimensional periodic potential and being driven
by an external ac field: g$r; t% ! "rV$r% # E$t% ' f$r% #
E$t%. For d ! 2 there is an additional transformation due to
a mirror reflection at any axis, %̂x: fx; yg ! fx;"yg or %̂y:
fx; yg ! f"x; yg,

 R̂ 3: r ! %̂r; t ! t# T=2; R̂3$g% ! g: (15)

Symmetry R̂1 can be satisfied for the Hamiltonian, under-
damped, and overdamped cases if P̂ f$P̂ r# r0% ! f$r% and
P̂E$t# t0% ! E$t%. The symmetry R̂2 apply for the same
cases as their counterparts Ŝ2 if there is no space inversion.
In the presence of space inversion they can be satisfied both
in the Hamiltonian [if f$"r% ! "f$r% and E$t# t0% !
"E$"t%] and overdamped [if f$"r% ! f$r% and E$t#

t0% ! E$"t%] limits. The symmetry R̂3 is relevant if %̂x
can be applied: fx$x;"y% ! fx$x;"y%, fy$x;"y% !
"fy$x;"y%, Ex$t# T=2% ! Ex$t%, and Ey$t# T=2% !
"Ey$t%. Similar conditions can be found for %̂y.

We performed numerical integrations of the equation of
motion (1) with the following potential and driving force:

 V$x; y% ! )"3$cosx# cosy% # cosx cosy*=2; (16)

 Ex$t% ! E$1%
x cost; Ey$t% ! E$1%

y cos$t# (%: (17)

Averaging was performed over N ! 105 different stochas-
tic realizations [16]. Figure 2 shows the dependence of the
rotational current (12) on the relative phase (. The system
is invariant under the transformation Ŝ1 (8), therefore the
directed current J ! 0. However, for the underdamped
case, " ! 0, all the relevant symmetries (13)–(15) are
violated, and the resulting rotational current (12) is non-
zero, and depends on the phase ( [Fig. 2(a)]. Note that
symmetry R̂2 is restored when ( ! 0, +), thus the current
disappears in the Hamiltonian and overdamped limits for
these values of the phase. The left upper inset in Fig. 2
shows the actual trajectory of a given realization, confirm-
ing that the particle is acquiring an average nonzero angu-
lar momentum, while not leaving a small finite volume due
to slow diffusion and absence of directed currents.

The exact overdamped limit, ! ! 0, is singular for the
definition (12) since the velocity of a particle, _r$t%, is a
nowhere differentiable function. The overdamped limit
can be approached by increasing " at a fixed ! ! 1.
Alternatively, one may remove the restriction on ! allow-
ing for an infinitesimal value 0<! - 1 at a fixed dis-
sipation strength " ! 1. Both parameter choices equally
regularize (12). Numerical simulations for the former way
of regularization show that if "=! & 5 then the rotational
current completely reflects the symmetries corresponding
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FIG. 2 (color online). (a) Dependence J&$(%, Eq. (12), for (1),
(16), and (17), with ! ! 1, D ! 0:5, E$1%

x ! 0:4, E$1%
y ! 0:8 and

" ! 0:2 (solid line), " ! 0:05 (dashed line), and " ! 2 (dash-
dotted line). Insets: the trajectory (left inset) and the correspond-
ing attractor solution, $r$t%, (right inset) for the case " ! 0:2 and
( ! )=2. We have used N ! 105 independent stochastic real-
izations to perform the noise averaging; (b) the phase lag (0 as a
function of the dissipation strength ".
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to the overdamped case [see dependence (0$"% in
Fig. 2(b)].

Let us discuss the relation of our results to the case of
multidimensional stochastic tilting ratchets under the in-
fluence of a colored noise studied previously [17]. Since
equivalent (in a statistical sense) stochastic processes, !$t%,
have been used as driving forces, the symmetry R̂1 (13) can
be violated only by an asymmetric potential. But all po-
tentials considered in Refs. [17] are invariant under the
permutation transformation P̂ . As a consequence, vortex
structures for a local velocity field presented in Refs. [17]
are completely symmetric (clockwise vortices are mapped
into counterclockwise ones by P̂ ) and, therefore, the av-
erage rotation for any trajectory equals zero.

The phase space dimension is five for d ! 2 and seven
for d ! 3. Therefore, in the Hamiltonian limit (" ! 0),
Arnold diffusion [18] takes place. The particle dynamics is
no longer confined within chaotic layers of finite width.
That leads to unbounded, possibly extremely slow, diffu-
sion in the momentum subspace via a stochastic web [18].
Therefore a direct numerical integration of the equations of
motion may lead to incorrect conclusions.

Our method of directed current control can be applied to
a rich variety of physical settings, such as cold atoms in
two- and three-dimensional potentials (optical guiding)
[19], colloidal particles on magnetic bubble lattices [20],
ferrofluids [21], and vortices in superconducting films with
pinning sites [22], to name a few. We also expect that our
theory can lead to an enhancement of particle separation in
laser beams of complex geometry [23].

To conclude, we formulated conditions for the absence
of both translational and rotational components of the
directed current generated by particles moving in spatially
periodic potentials, under the influence of external ac
fields. Proper choices of these potentials and fields allow
us to break the above symmetries, and therefore provide
necessary conditions for a generation of certain directed
currents. As long as the symmetry conditions for the
absence of translational and vortex currents are indepen-
dent one can tune the experimental setup to obtain either
translational or rotational currents. Numerical studies
supplement the symmetry analysis and confirm the
conclusions.
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[12] Note that the symmetry Ŝ2 is not present in the corre-
sponding overdamped FP equation (5). Indeed, the trans-
formation (9) involves time inversion, thus it maps stable
manifolds (attractors) into unstable ones (repellers). In the
presence of a heat bath, an attractor and its symmetry-
related image, a repeller, acquire different statistical
weights. However, it was shown that the symmetry Ŝ2 is
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