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We investigate macroscopic dynamical quantum tunneling (MDQT) in the driven Duffing oscillator,
characteristic for Josephson junction physics and nanomechanics. Under resonant conditions between
stable coexisting states of such systems we calculate the tunneling rate. In macroscopic systems coupled to
a heat bath, MDQT can be masked by driving-induced activation. We compare both processes, identify
conditions under which tunneling can be detected with present day experimental means and suggest a
protocol for its observation.

DOI: 10.1103/PhysRevLett.99.137001 PACS numbers: 85.25.Cp, 03.65.Xp, 05.45.�a, 85.85.+j

The phase space of a classical system can have forbid-
den areas even in the absence of potential barriers, e.g., in
the presence of external driving. Quantum mechanically,
these areas can be crossed in a process called dynamical
tunneling [1,2]. So far, dynamical tunneling has been
observed experimentally in microscopic systems, i.e.,
cold atoms [3] with very low damping. Recent experimen-
tal progress has demonstrated many basic quantum fea-
tures in macroscopic systems such as Josephson junctions
or nanomechanical oscillators, overcoming the limitations
posed by their coupling to the environment. Important for
this success was the ability to reduce noise and cool to very
low temperatures.

In this Letter we discuss the possibility of macroscopic
dynamical tunneling (MDQT), i.e., involving a macro-
scopic degree of freedom, like the phase difference across
a driven Josephson junction. Classically, for certain pa-
rameters, this system has two stable coexisting oscillations
with different amplitudes. This driven system will feel the
influence of its dissipative environment strongly even at
temperature T � 0. We demonstrate that under experimen-
tally accessible conditions the tunneling between the two
classical states can indeed occur and be singled out from
the background of thermal activation events. We suggest an
experiment where MDQT can be directly observed. Our
result can be applied to verify quantum physics in systems
with weak nonlinearity such as nanomechanical oscilla-
tors. Quantum tunneling it is also a potential dark count
error process in the Josephson bifurcation amplifier. Here
the classical switching between the two driving-induced,
coexisting states in a Josephson junction was used for high
resolution dispersive qubit state detection [4–7].

Dynamical tunneling (in the absence of an environment)
has been studied using the WKB approximation in the
parametric driven oscillator [8]. Activation rates in the
presence of an environment have been studied in bistable
systems [9,10]. Dynamical tunneling with dissipation has
been described numerically [11] and multiphoton reso-
nances have been studied perturbatively [12].

We study a harmonically driven Duffing oscillator, as an
approximate description of a wide range of macroscopic
physical systems ranging Josephson junctions [4,13] and
nanomechanical oscillators [14,15]. The driven Duffing
oscillator is described by the Hamiltonian

 Ĥ�t� �
p̂2

2m
�
m�2

2
x̂2 � �x̂4 � F�t�x̂; (1)

where F�t� � F0�e
i�t � e�i�t� is the driving field with fre-

quency �. For subresonant driving, � <�, and below a
critical driving strength F0 <Fc two classical oscillatory
states with different response amplitudes coexist. Consid-
ering a Josephson junction with capacitance C, critical cur-
rent Ic, and driving current amplitude I we can identify x as
the phase difference across the junction, m � �@=2e�2C,
� �

���������������������
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p
, F0 � @I=�2e�, and � � m�2=24.

Following the Caldeira-Leggett approach, we assume an
Ohmic environment and describe it as a bath of harmonic
oscillators
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We transform this Hamiltonian using the unitary opera-

tor Û � exp�i�t�âyâ�
P
ib̂
y
i b̂i� similar to Ref. [9], where

â and b̂i are the annihilation operators for the system and
bath oscillators. Dropping the fast rotating terms in the
rotating wave approximation (RWA), we obtain
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where, up to a constant we have
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We thus obtain a time independent Hamiltonian at the
expense of a form that is not separable in p̂ and x̂. This
transformation reduces the frequency ~� � �� and in-
creases the mass ~m � m=� of the oscillators by �i �
�!i � ��=!i in the case of the bath and � � ��� ��=��
�!c=���2� for the main oscillator, where the second term
describes a deterministic force induced by dragging the
system through its environment.

We concentrate at first on quantum tunneling in the
absence of bath fluctuations and study the system in phase
space. The classical Hamilton function H���0 �x; p� is por-
trayed in Figs. 1(b) and 1(c) for a subcritical driving
strength F0 <Fc � 2=9�2 ~m3 ~�6=��1=2. It has three ex-
tremal points: saddle (s), minimum (m), and maximum
(M) with phase space coordinates (xe, pe), where e 2

fm; s;Mg. The curves of constant quasienergy H���0 �x; p� �
E represent classical trajectories. In the bistability region
E 2 �Em; Es� where Ee � H���0 �xe; pe� there are always
two periodic classical trajectories, around the two stable
points (m) and (M), with a small and large amplitude,
respectively.

Using this phase space, we outline an experiment to
observe MDQT during the transient evolution of the sys-
tem. Without driving, the system relaxes to its ground state
centered around (m). Then, after turning on the driving
field, one records the time needed for a transition to the
large orbit as a function of a parameter of the drive, e.g.,
frequency �. When two quantized levels pertaining to the
two oscillatory states are close in quasienergy, tunneling
can occur, and enhance the total switching rate.

We describe tunneling using the semiclassical WKB
approximation which is an expansion in @ close to the
least-action path. To find that path we solve the equation
H���0 �x; p� � E and obtain four coexisting momentum
branches �pL;S�x; E� where

 pS;L�x; E� � ~m ~�

����������������������������������������������������������
2 ~m ~�2

3�
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��������
8F0

3�

s �������������
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p
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with X � E=F0 � � ~m ~�2�2=�6F0��. This configuration is
reminiscent of Born-Oppenheimer surfaces in molecular
physics where dynamical tunneling has also been studied
[1]. A real-valued pS;L corresponds to a classically allowed
area with an oscillating WKB wave function, a complex-
valued one to a classically forbidden area with a decay-
ing wave function. At x � X, both trajectories have the
same momentum and position and connect. Here _x �

@pH
���
0 �x; p� � 0 but p � 0 such that the motion changes

direction and continues on a different momentum branch.
For all x < X both pS;L�x; E� are complex. The tunneling
least-action trajectory which connects the two allowed
regions only passes through the region x > X. Here the
pS;L are either real or purely imaginary, i.e., �p2

S;L 2 R.
Thus the forbidden area with x < X does not influence the
quantization rules within the WKB approximation. To
study the region where x > X, we mirror the solution
pL�x; E� around the X point as shown in Fig. 1(a) and
obtain a double well ‘‘potential.’’ The small and large
amplitude oscillation states are localized in the right- and
left-hand wells, respectively, and are separated by a ‘‘po-
tential barrier’’ where the momentum is purely imaginary.
We apply the WKB theory in this ‘‘potential’’ in order to
determine the tunnel splitting in the limit of a low trans-
mission through the forbidden region. The classical turning
points xi are given by pS;L�xi; E� � 0; see Fig. 1(a). The
bound state energies at zero transmission are given by the
Sommerfeld energy quantization rules

 S12�E���n��=2; S4030 �E���m��=2; n;m2Z;

(5)

where Sij�E� �
Rxj
xi sgn�x� X�jp�x; E�jdx=@ and the nega-

tive sign on the left-hand side of X is due to mirroring.
Whenever a pair of energies from either well is degenerate,
resonant tunneling through the barrier can occur. This
induces coupling between the two wells and lifts the de-
generacy. The level crossings become avoided crossings at
finite transmission and the full WKB condition reads

 cotS12�E� cotS4030 �E� � exp�� 2S301�E��=4: (6)

We expand the quasienergy E and the actions Sij in a series
of � � 1=4 exp��2S301� around the level crossings with
quasienergy E0 where Eqs. (5) are simultaneously satis-
fied. The first energy correction E1� is obtained straight-
forwardly from @ES12jE0

@ES4030 jE0
�E1��

2 � �, and the
tunneling rate is obtained directly from the energy splitting

FIG. 1 (color online). Illustration of the Hamilton function and
the potential landscape. (a) �p2

S;L�x; E�: the potential changes
with E; classical turning points are found at p�xi; E� � 0.
(b),(c) H���0 �x; p�; in (b) white corresponds to high, black to
low quasienergy; (b) white lines corresponds to the L, black ones
to the S branch; continuous lines correspond to real and dashed
ones to imaginary valued momentum.
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at the avoided level crossings

 �t �
2E1�
@�

�
exp��S301�

@�
��������������������������
@ES12@ES4030
p

��������E0

: (7)

This can be evaluated in closed form involving elliptic
integrals for Sij and we obtain the exact expressions

 @ES12jm � @ES4030 jm � �=�@�m�;

@ES12js � @ES301jm � 1; @ES301js � �=�@j�sj�;

where �e �
��������������������������������
@2
xxH

���
0 @2

ppH
���
0

q
je and e 2 fm; s;Mg. Thus,

for S12 at (m) and S301 at (s) we reproduce the harmonic
oscillator result. The saddle point ‘‘frequency’’ �s is
imaginary as expected.

We simplify Eq. (7) by locally approximating H���0 close
to the extremal points by harmonic oscillators, i.e., assum-
ing that Sij are linear functions of E. This approximation
holds for all Sij simultaneously when E is far enough from
both extremal points Es;m, as it is the case for the ground
state Em � @�m=2 of the small amplitude well. In this
approximation S301�E� � ��Es � E�=�@j�sj� and thus we
find a compact approximation

 �t �
�m

�2 exp
�
�
��Es � Em � @�m=2�

@j�sj

�
: (8)

Our calculations rely on a series of assumptions. To test
them, we compare the results to a full numerical diagonal-
ization of Ĥ���0 taking a basis of the first 2N Fock states. At
F0 � 0, the number of levels that cover the bistability
region is N � @��2m��2=�6�@2�. As shown for a repre-
sentative set of data in Fig. 2, we find good agreement
between these numerically exact results and the predictions
of Eqs. (5) and (7) and also (8).

Quantum tunneling is significant only close to level
crossings. It always competes with the activation over the
barrier, which occurs at all energies and is based on clas-
sical fluctuations due to coupling to a heat bath. A rather
detailed treatment of a similar process has been given in
Refs. [10]. We now estimate these effects and compare
them to the quantum tunneling rate. When modeling acti-
vation, it is crucial to consider that we are working in a
frame rotating relative to the heat bath, which is fixed in the
laboratory.

We start from Eq. (2). As we will adopt the mean-first-
passage time approach [16], it is sufficient to approximate
the system Hamiltonian close to its minimum in phase
space by Ĥ���0 � p̂2=�2meff� � V�x̂� where the effective
mass is determined by the curvature of the Hamilton
functionm�1

eff � @2
ppH

���
0 �x; p�jm and the effective potential

is V�x� � H���0 �x; pm�. In this approximation we obtain a
quantum Langevin equation
 

meff �x� @xV�x�

� x
Z 1

0
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2J�!�
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�meff

Z t

0
~��t� s� _x�s�ds � ��t�;
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~��t� is peaked on a short time scale !�1
c . Its magnitude is

characterized through the effective friction constant

 �eff �
Z 1

0
~��t�dt � 2�

�
��

3�x2
m

2m�2

�
�1�O��=!c��:

The factor of 2 difference between �eff and the damping
constant of the undriven harmonic system accounts for the
fact that in the rotating frame there are bath modes above
and below ! � 0 [see Eq. (2)] whereas for the undriven
case the frequencies are strictly positive. Thus oscillators
with frequency ! have the spectral density J�!� �� and
modes with negative frequencies have significant contri-
bution to noise even at low temperatures. We use a detailed
balance condition to determine the effective temperature of
the bath as seen by a detector in the rotating frame, e.g., a
two level system with level separation @�m

 P��m; T�=P���m; T� � exp�@�m�eff�: (9)

Here P�!; T� � J�!� ���1� n�!� �; T�� is the proba-
bility for a quantum @! to be emitted to the bath in the
rotating frame. The effective temperature is enhanced at
low T and finite even at t � 0. This accounts for the fact
that what a detector in the rotating frame regards as (quasi-
energy) absorption can actually be (energy) emission in the
lab frame. In the case of constant acceleration in relativistic
context this behavior is known as the Unruh effect [17].
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FIG. 2 (color online). (a) Quantized energies: eigenvalues
(EV) of Ĥ���0 versus WKB. Ĥ���0 was represented in the number
state basis considering 2N levels. (b) Tunneling-induced energy
splittings at level crossings. Frequency sweep at m�=@ � 2,
� � m�2=24, �!c=�2 � 0:1, and F0 � 0:5Fc���.
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The barrier crossing problem for systems described by a
quantum Langevin equation is well studied in the context
of chemical reactions. For low damping, �eff 	 �m mean-
first-passage time theory predicts the activation rate

 ��1
a �

�eff

�eff

Z S�Es�

0
dSe��effE�S�

Z Es

E�S�
dE0

e��effE0

S�E0�
; (10)

where S�E� �
H
p�x; E�dx. In the traditional low tempera-

ture limit �effS�Es� 	 kBTeff 	 Es � Em the activation
rate becomes

 �a � �eff�eff
�m

2�
exp�� �Es � Em��eff�S�Es�: (11)

In our case, the noise temperature kBTeff can be larger than
the barrier height Es � Em. In this limit we obtain from
Eq. (10)

 �a � �eff
F��eff�Es � Em���
�1 (12)

where F�x� �
R
dx� exp�x� � 1�=x � Ei�x� � log�x�.

Summarizing, in the rotating frame, as a consequence of
driving, the bath appears with a quality factor �m=�eff

reduced by approximatively a factor of 2 and an enhanced
effective temperature Teff . Moreover, the bath shifts the
detuning �. We show that experimental observation of
MDQT could still be possible. At the level anticrossings
we calculate the WKB tunneling rate from the ground state
and the activation rate from Eq. (12), see Fig. 3(a) where
we have considered a Josephson junction with � �
10�4�, the temperature T � 10 mK, shunt capacitance
C � 2
 10�12 F, and � � m�2=24. The values of �
where these anticrossings occur are found by minimizing
j cot�S4030 �Em��j and are in agreement with the weak driving
result [12], � � 3�n=�2m2�3�, n 2 N. We observe that
the quantum tunneling rate can be one order of magnitude
larger than the activation rate in the limit of relatively small
detuning � and low damping. By increasing the value of
	 � m�=@, we observe a reduction of the ratio �t=�a as
expected, since 	 measures the number of quantized levels
in the system and thus the ‘‘classicality’’ of its behavior. In
Fig. 3 we have 	 2 �2; 20�, while in the experiment of
Ref. [13] 	 was larger than 100, at higher temperature and
smaller quality factor, such that MDQT was probably
masked by thermal activation. We expect that at the values

of Fig. 3 the experiment we propose should produce direct
evidence for MDQT.

In conclusion we have investigated macroscopic dy-
namical tunneling by mapping it onto tunneling between
two potential surfaces. We compared this process with the
activation over the barrier using the mean-first-passage
time approach. The values obtained suggest that dynamical
tunneling can be singled out from the background of
activation processes. We have proposed an experiment
realizable within existing technology to demonstrate dy-
namical tunneling by monitoring the switching rate be-
tween the two dynamical states while tuning a parameter of
the external driving.
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FIG. 3. (a) The ratio of tunneling and
activation rates from the small well at the
avoided level crossings. (b) Correspond-
ing tunneling rates compared to �eff

(where �t=�a > 1). Driving frequency
sweep at F0 � 0:7Fc���; values of �
(in GHz): 1(�), 2(�), 3(�), 4(4),
5(�), 6(�), 7(+), 8(
), at parameters
specified in text.
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