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Where are the edge-states near the quantum point contacts?
A self-consistent approach
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Abstract

In this work, we calculate the current distribution, in the close vicinity of the quantum point contacts (QPCs), taking into account the
Coulomb interaction. In the first step, we calculate the bare confinement potential of a generic QPC and, in the presence of a
perpendicular magnetic field, obtain the positions of the incompressible edge states (IES) taking into account electron–electron
interaction within the Thomas–Fermi theory of screening. Using a local version of Ohm’s law, together with a relevant conductivity
model, we also calculate the current distribution. We observe that, the imposed external current is confined locally into the
incompressible strips. Our calculations demonstrate that, the inclusion of the electron–electron interaction, strongly changes the general
picture of the transport through the QPCs.
r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

At low temperatures, low-dimensional electron systems
manifest peculiar quantum-transport properties. One of the
key elements of such transport systems are the quantum
point contacts (QPCs) constructed on a two-dimensional
electron system (2DES). The wide variety of the experi-
ments concerning QPCs [1], including quantum Hall effect
(QHE) based Mach-Zehnder interferometer (MZI) [2,3],
have attracted many theoreticians to investigate their
electrostatic [4] and transport properties [5,6]. However, a
realistic modelling of QPCs that also takes into account the
involved interaction effects is still under debate. The
magneto-transport properties of such narrow constrictions
is typically based on the standard 1DES [7], which relates
the conductance through the structure to its scattering

characteristics, considering typically a hard-wall confine-
ment potential. The reliability of such non-interacting
approaches is limited, since interactions are inevitable in
many cases and plays a major role in determining the
electronic and transport properties. In order to account for
the interactions simplified models are used with some
phenomenological parameters, which is not always evident
whether such a description is sufficient to reproduce the
essential physics.
The QHE based MZI [2] has become a central interest to

the community, since it provides the possibility to infer
interaction mechanisms and dephasing [8,9] between the ES
by achieving extreme contrast interference oscillations. In
these experiments ESs [7,10–12] are assumed to behave like
optical beams, whereas QPCs simulate the semi-transpar-
ent mirror in its optical counterpart. The unexpected
behavior of interfering electrons, such as path-length-
independent visibility oscillations, is believed to be related
to long range e–e interactions. Thus, the experimental
findings present a clear demonstration of the breakdown
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of, commonly used, Landauer’s conductance picture away
from the linear regime. Here, we calculate the effective
potential in a self-consistent manner and, in addition, using
a local version of Ohm’s law within and out-of-the-linear-
response regime, we obtain the current distribution near
the QPCs. We essentially show that, in the presence of an
IES, the imposed current is confined to this region,
otherwise is distributed classically.

2. Model, results and discussion

Our aim is to calculate the distribution of the ES within
an interacting model. We start with the bare confinement
potential obtained from the lithographically defined con-
struction, following Refs. [4,13]. For a given pattern of
(metallic) gates residing on the surface and the potential
values V gðx; y; 0Þ, one can obtain the potential experienced
V extðx; yÞ by the 2DES beneath using semi-analytical
scheme [13] yielding

V extðr; zÞ ¼
1

k

Z
jzj

2pðz2 þ jr! r0j2Þ3=2
V gðr0; 0Þdr0, (1)

where k is the dielectric constant of the hetero-structure
(& 12:4 for GaAs/AlGaAs) and r ¼ ðx; yÞ. Given the
external potential in the position space, it is straightfor-
ward to calculate the screened potential in the momentum
space ðqÞ by V scrðqÞ ¼ V extðqÞ=!ðqÞ using the Thomas–Fer-
mi dielectric function, !ðqÞ ¼ 1þ 1=ða0jqjÞ, where a0=2 ¼
a%

B ¼ k̄_2=ðme2Þ (for GaAs a%

B ¼ 9:8 nm). We use this

potential to initialize the self-consistent scheme described
below, to obtain density nelðrÞ and potential distribution in
the presence of a perpendicular magnetic field, B, at a finite
temperature T , m%ðrÞ is SC’ly found. In the absence of a
fixed external current I , m%ðrÞ is position independent and is
constant all over the sample, which is in turn determined by
the average electron (surface) number density, n̄elðrÞ. In our
calculations we set n̄el ¼ 3:0' 1011 cm!2, corresponding to
a Fermi energy EF(10:7meV. Starting from V scrðrÞ one
can obtain the electron density distribution, within the
Thomas–Fermi approximation [14] (TFA), from

nelðrÞ ¼
Z

dEDðEÞf ð½E þ V ðrÞ ! m%*=kBTÞ, (2)

where DðEÞ is the Gaussian broadened (single-particle)
density of states (DOS) and f ðxÞ ¼ ½1þ ex*!1 the Fermi
function. The total potential energy of an electron,
V ðrÞ ¼ V extðrÞ þ VHðrÞ, differs from the Hartree potential
energy VHðrÞ by the contribution due to external potentials
and is calculated from

V ðrÞ ¼ V extðrÞ þ
2e2

k̄

Z

A

dr0Kðr; r0Þnelðr0Þ. (3)

For periodic boundary conditions, the kernel Kðr; r0Þ can be
found in a well-known text book [15], otherwise has to be
solved numerically.
In a classical manner, if a current is driven in y direction

in the presence of a perpendicular B field a Hall potential
develops in the x direction. Therefore the electrochemical
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Fig. 1. The color coded nðx; yÞ for O ¼ 1:4; 1:24; 1:13 (a–c) and corresponding current distribution indicated by the arrows. The calculations are done at
O=kBT & 0:025 for a fixed external current driven in the y direction ðjðrÞ ¼ j0ð0; 0:1ÞÞ, where the 1D current density is set to !0:42' 10!2 A=m. The gates
defining the QPC, are taken to be 300 nm apart and biased with !0.3V. The 2DES is 85 nm below the surface and unit cell is a square with dimensions
1500' 1500nm2.
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potential has to be modified due to external field in the y
direction with EðrÞ ¼ rm%ðrÞ=e ¼ r̂ðrÞjðrÞ, for a given
resistivity tensor and boundary conditions, in the ther-
mal-equilibrium (locally), which brings a new self-consis-
tent loop to our problem. We calculate the electric field by
solving the equation of continuity under static conditions,
rjðrÞ ¼ 0, and r ' EðrÞ ¼ 0, for a fixed total current, self-
consistently.

As mentioned above, in the single particle model it is
believed that the current is carried by the ballistic 1D
Landauer–Büttiker (LB)-ES and the conductance is ob-
tained by the transmission coefficients. Here we calculate
the electron and current density self-consistently and
observe the different distributions of the IES under
quantum Hall conditions, within the linear response
regime. We will always consider the case, where EF is
larger than the height of the barrier at the center of the
QPC, so that the conductance is finite and it is at least
equal to the first Landau energy ðO=2 ¼ _oc=2Þ ¼ eB=2m.
In Fig. 1, we selected three representative B field values,
such that (i) the system is almost compressible (a), (ii) the
IES merge at the opening of the QPC (b), and (iii) the IES
percolate through the constraint (c). From the ‘‘classical’’
current point of view we observe that, the current biased
from bottom is (almost) homogeneously distributed all
over the sample if there exists no IES inside the constraint,
the current passes through the QPC and ends at the right
top contact, mostly (d). Fig. 1e, shows us that, the current
is confined to the IES and conductance is quantized,
whereas for O ¼ 1:4 it is a bit larger than e2=h. These
results indicate that, the ESs present structures inside the
QPCs if one models them in a more realistic scheme rather
than as a single point, although the conductance quantiza-
tion remains unaffected. Since now we can calculate the
widths of the IES, depending on the magnetic field and
sample structure it is also possible within this model to
obtain the electron velocity inside IES, which may be
combined with a recent work by Neder [16]. This work is
based on non-Gaussian noise measurements at the Mach-
Zehnder interference experiments. Their main finding is
that the unexpected visibility oscillations observed, can be
explained by the interaction between the ‘‘detector’’ and
‘‘interference’’ edge channels. The essential parameters of

this work are the electron velocity at the detector edge
channel and the coupling (interaction) strength between
the detector and the interference channels. We believe that,
an extension of our present model to a realistic system
may contribute to the understanding of the mentioned
experiments.
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