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Quantum corrections to transport through a chaotic ballistic cavity are known to be universal. The univer-
sality not only applies to the magnitude of quantum corrections, but also to their dependence on external
parameters, such as the Fermi energy or an applied magnetic field. Here we consider such parameter depen-
dence of quantum transport in a ballistic chaotic cavity in the semiclassical limit obtained by sending �→0
without changing the classical dynamics of the open cavity. In this limit quantum corrections are shown to have
a universal parametric dependence which is not described by random matrix theory.
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Central to the field of “quantum chaos” is the observation
that statistical fluctuations of the spectra of quantum systems
whose classical dynamics is chaotic are universal, as well as
the relation between the universal spectral fluctuations and
random matrix theory.1 The universality not only applies to
probability distributions of energy levels, but also includes
correlations at different values of external parameters, such
as an applied magnetic field.2,3 A necessary condition for the
existence of universal spectral statistics is that the time �erg
needed for ergodic exploration of the phase space be much
smaller than the Heisenberg time �H=2�� /�, � being the
mean spacing between energy levels. Since �erg is a classical
time scale, whereas �H involves Planck’s constant �, the con-
dition �erg��H is equivalent to the semiclassical limit
�→0.4

Similar considerations apply to open quantum systems,5

for which the role of energy levels is played by the transport
coefficients �or by the scattering matrix�. A prototypical ex-
ample of an open quantum system with chaotic classical dy-
namics is an electron in a two-dimensional ballistic cavity
coupled to electron reservoirs via ballistic contacts.6,7 Such
cavities, or “quantum dots,” can be realized experimentally
in semiconductor heterostructures.8 In this context, “univer-
sality” means that the statistical fluctuations of the transport
coefficients do not depend on the shape of the cavity, as long
as the classical dynamics is chaotic.

In addition to �erg and �H, an open cavity has a third
characteristic time scale, the mean dwell time �D. The ap-
pearance of a third time scale complicates the conditions for
the applicability of random matrix theory �RMT�, as well as
the relation to the semiclassical limit �→0. The reason is
that the condition necessary for universal quantum
transport,9

�erg � �D � �H, �1�

is not sufficient for the applicability of RMT.10 The condition
for RMT involves the Ehrenfest time �E, which for a two-
dimensional cavity reads11,12

�E = �−1 ln��H/�erg� , �2�

where ���erg
−1 is the Lyapunov exponent of the cavity’s clas-

sical dynamics. The Ehrenfest time is the minimal dwell time

necessary for quantum interference,10 hence RMT applies
only if �E��D, i.e., if

�erg ln��H/�erg� � �D. �3�

The condition �3� has little impact on most experiments
on ballistic quantum dots, for which the logarithm
ln��H/�erg� is not numerically large.8 Nevertheless, since
�H/�erg is proportional to �−1, it has important consequences
for the relation between RMT and the semiclassical limit
�→0 in an open cavity. Obeying the condition �3� while
sending �→0 is possible only if the ratio �D/�erg grows at
least logarithmically with �. Since both �erg and �D are clas-
sical time scales, this means that RMT describes the cavity’s
transport coefficients in the limit �→0 only if the classical
dynamics of the open cavity is modified in the limiting pro-
cess.

The last decade has shown an increased interest in the
opposite limit, obtained by sending �→0 at fixed �erg and �D
before taking the limit �erg /�D→0.10,13–17 In this case the
Ehrenfest time �E��D. We refer to this limit as the “true
semiclassical limit,” because it involves sending �→0 with-
out changing the classical dynamics of the open cavity. Al-
though some quantum effects cease to exist in the true semi-
classical limit �examples are the shot-noise power13,18 and
the ensemble average �	G� of the quantum correction 	G to
the cavity’s conductance10,14�, not all quantum effects disap-
pear. This remarkable observation was first made for the con-
ductance fluctuations, whose mean square �	G2� remains
equal to the RMT prediction in the true semiclassical
limit.16,19 In this Rapid Communication, we consider corre-
lations between conductances at different external param-
eters, such as the Fermi energy or an applied magnetic field.
In the true semiclassical limit we find a result that is univer-
sal, but with a functional dependence on external parameters
that differs from random matrix theory.

The parametric dependence of the conductance fluctua-
tions is described by the conductance autocorrelation func-
tion �	G�
 ,b�	G�
� ,b���, where 
 and b are the properly
normalized energy and magnetic field.5 Our calculation,
which is outlined below, gives
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�	G�
,b�	G�
�,b��� = P1
2P2

2�
±

ReD±, �4�

where 	G is measured in units of 2e2 /h, P1 and P2 are the
classical probabilities that an electron in the cavity escapes
through contacts 1 or 2, respectively, and

D±
−1 = 1 − i�
 − 
�� + �1/2��b ± b��2. �5�

The RMT prediction has Re D± replaced by �D±�2. In particu-
lar, at 
=
� and �b�, �b���1, the conductance autocorrelation
in the true semiclassical limit has a Lorentzian dependence
on the magnetic-field difference b−b�, whereas RMT pre-
dicts a Lorentzian squared.7,20,21 Generalization of our result
to other parameters xj that, e.g., represent a small deforma-
tion of the cavity’s shape amounts to the replacement of Eq.
�5� by

D±
−1 = 1 − i�
 − 
�� +

1

2
�b ± b��2 +

1

2�
j

�xj − xj��
2, �6�

where it is assumed that the parameters xj do not break time-
reversal symmetry.

The derivation of Eq. �4� closely follows the calculation
of the variance of the conductance of a ballistic cavity, which
is described in Ref. 19. That calculation starts from the rela-
tion between the conductance autocorrelation function and
the cavity’s reflection coefficients R1 and R2,

�	G�
,b�	G�
�,b��� = �	R1�
,b�	R2�
�,b��� , �7�

together with an expression that relates Rj to a double sum
over classical trajectories � j and � j that begin and end at
contact j, j=1,2,7

Rj = �
�j,�j

A�j
A�j

ei�S� j
−S� j

�/�, j = 1,2. �8�

Here A and S are the stability amplitude and classical action
of the trajectories. Phase shifts from reflections off the cavity
boundary are absorbed into the definition of the action. Upon
entry and exit, the two classical trajectories � j and � j have
transverse momenta �p�,�j

�= �p�,�j
� compatible with the

quantized modes in the contacts.7

Upon using Eqs. �7� and �8�, the conductance autocorre-
lation function is expressed as a quadruple sum over classical
trajectories �1, �1, �2, and �2. Only combinations of
four trajectories for which the total action difference
S�1

−S�1
+S�2

−S�2
is of order � systematically contribute to

the autocorrelation function. Such small action differences
occur only if the trajectories �1 and �2, on the one hand, and
the trajectories �1 and �2, on the other hand, are piecewise
identical, up to classical phase-space distances of order �1/2

or less.10,22,23

There are two general classes of trajectories that meet
these criteria. They are shown schematically in Figs. 1�a� and
1�b�. Both classes of trajectories have their counterpart in the
diagrammatic theory of conductance fluctuations in disor-
dered metals.24 In Fig. 1�a�, the four trajectories have two
separate small-angle encounters. Outside the encounters, the
trajectories �1 and �1, and �2 and �2 are paired. Between the
encounters �1 is paired with �2 and �2 is paired with �1. The

duration of the encounters is long enough that the total action
difference is of order �. This is achieved if the encounter
duration, defined as the time that the phase-space distance
between the four trajectories is less than a certain classical
cutoff, is the Ehrenfest time �E or longer.10,22,23 In Fig. 1�b�,
the trajectories �1 and �1 are identical up to a closed loop,
which is in �1 but not in �1. The same closed loop is also the
difference of �2 and �2. There is a second possibility, differ-
ent from the first one by complex conjugation, in which the
closed loop is part of �1 and �2, but not �2 and �1. Only the
first possibility is shown in the figure. Although the four
trajectories shown in Fig. 1�b� represent the generic case of
interfering trajectories where the two trajectories in each pair
differ by a closed loop, for a chaotic cavity such quadruplets
contribute to �	G2� only if �1, �1, �2, and �2 meet the closed
loop in a single small-angle encounter of all four
trajectories,19 see Fig. 1�c�. In the presence of time-reversal
symmetry, two additional contributions to the conductance
autocorrelation function appear, which are obtained by time-
reversing the trajectories �2 and �2 in Figs. 1�a�–1�c�.

The external parameters enter the calculation of the con-
ductance autocorrelation function through the parameter de-
pendence of the classical actions.7 Since the actions of the
trajectory pairs ��1 ,�1� and ��2 ,�2� are taken at equal values
of the parameters, all parametric dependence must arise from
action differences accumulated when the trajectories in these
pairs are separated. For the trajectories in Fig. 1�a� this oc-
curs during the two stretches of duration �1 and �2 between
the encounters; For the trajectories in Fig. 1�c� this is during
the closed loop, the period of which is denoted �p. Since we
sum over all trajectories, it is sufficient to know the mean
and variance of these action differences,

�S�
,b� − S�
�,b��� = ��
 − 
���/�D,

��S�
,b� − S�
�,b��	2� = �2�b − b��2�/�D, �9�

where �=�1, �2, or �p is the duration of the stretch of the
trajectories over which the action difference is accumulated.
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FIG. 1. �Color online� Schematic drawing of quadruples of tra-
jectories that contribute to the conductance autocorrelation function.
The true trajectories are piecewise straight, with specular reflection
at the boundaries.
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The action difference between a trajectory and its time-
reversed is obtained by replacing b� by −b�. The rescaled
energy 
 is the energy measured in units of � /�D. Equation
�9� should be seen as the definition of the rescaled fields b
and b�; up to a numerical constant that depends on the cavity
shape one has b��e
 /�c���D/�erg�1/2, 
 being the magnetic
flux through the cavity.7

The sum over all classical trajectories, but without para-
metric dependence, has been calculated before.19 In order to
obtain the full parametric dependence we take the trajectory
sum before the final integration over the times �1, �2, and �p
from Ref. 19,

�	G2� = 2e−2�E/�DP1
2P2

2

0

� d�1d�2

�D
2 e−��1+�2�/�D

+ 2�1 − e−2�E/�D�P1
2P2

2

0

� d�p

�D
e−�p/�D. �10�

The first term, with the double integration over �1 and �2,
originates from the trajectory class of Fig. 1�a�; The second
term, with the single integration over �p, comes from Fig.
1�c�. Both terms include time-reversed contributions. The
second term also includes the complex-conjugate contribu-
tion not shown in Fig. 1�c�. Taking Eq. �10� as our starting
point, we find the parametric dependence of the conductance
autocorrelation function upon insertion of the appropriate
factors �exp�i�S /��� for each of the stretches where action
differences are accumulated. Each time integration in Eq.
�10� then gives a factor D− or D−

*, where D− is defined in Eq.
�5� above. Time integrations involving time-reversed trajec-
tories give a factor D+ or D+

*. We thus find

�	G�
,b�	G�
�,b���

= P1
2P2

2�
±

�e−2�E/�D�D±�2 + �1 − e−2�E/�D�ReD±	 .

�11�

The true semiclassical limit corresponds to the limit
�E/�D→�. In this limit, only trajectories of the type shown
in Fig. 1�c� contribute to the conductance autocorrelation
function. RMT is recovered in the opposite limit �E/�D→0.
The different parametric dependences in the two limits re-
flect the different number of time integrations involved in the
contributions of Figs. 1�a� and 1�c�.

Another noteworthy example of an observable that mea-
sures the universal parametric dependence of quantum trans-
port is the current I through a “quantum pump,” a chaotic
cavity with two parameters that are varied periodically in
time.25–27 In an experimental realization, these parameters
would be two gate voltages that determine the shape of a
semiconductor quantum dot.26 The rescaled parameters that
determine the magnitude of the pumped current are the same
as those that appear in the conductance autocorrelation func-
tion. Hence a measurement of the mean and variance of the
pumped current is a direct test of the universality of quantum
transport and involves no further scaling factors.

In the adiabatic limit �frequency ���D
−1�, the time-

averaged current Ij through contact j, j=1,2, for a cavity

with time-dependent parameters x1 and x2 can be expressed
in terms of an integral over the area A enclosed in the
�x1 ,x2� plane in one cycle;25 see Fig. 2. The integrand is
expressed in terms of classical trajectories connecting the
two contacts to the cavity in a manner very similar to Eq. �8�
above,28

Ij = 2e�

A

dx1dx2� j�x1,x2� ,

� j = �
�,�

A�A�

�2���2

�S�

�x1

�S�

�x2
sin�S� − S�

�
� . �12�

Here the trajectories � and � exit through contact j, j=1,2,
but they may enter the cavity through either contact. As in
Eq. �8�, � and � have transverse momenta �p�,��= �p�,��
upon entrance and exit that are compatible with the quan-
tized modes in the contacts. Performing the summation over
classical trajectories, one finds that the ensemble average
���x1 ,x2��=0, whereas the mesoscopic fluctuations are
given by

�� j� j� = −
P1P2

64�4� �2

�x1
2 +

�2

�x2
2��e−2�E/�D�D−�2

+ �1 − e−2�E/�D�ReD−	 , �13�

where D− is given by Eq. �6� above and the primed param-
eters refer to the second factor of the kernel �. Again, the
limit �E/�D→0 agrees with the RMT prediction,29 whereas
the true semiclassical limit �E/�D→� gives different but still
universal parametric correlations for the pumped current. For
small pumping amplitudes �variation of the dimensionless
parameters x1,2 much less than unity�, �I2� in the true semi-
classical limit is half the RMT prediction.30 However, for
large amplitudes, the pumped current in the semiclassical
limit is larger than the RMT prediction. This is illustrated in
Fig. 2, where we have shown the ratio of the mean-square
current in the true semiclassical limit and the RMT predic-
tion for a harmonic time dependence of the parameters,
x1�t�=x sin��t� and x2�t�=x cos��t�.

In conclusion, we considered the parameter dependence
of the conductance and the pumped current in an open cha-
otic cavity in the “true semiclassical limit,” defined as the

1 10 100
x

0

1

2

<
I2 >

cl
as

s/<
I2 >

R
M

T

x2

x1

FIG. 2. Ratio of mean-square pumped current in the true semi-
classical limit �I2�class and the RMT prediction �I2�RMT. Inset:
Pumping contour in the �x1 ,x2� plane. The ratio shown in the main
figure is calculated for a circular pumping contour with radius x.
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limit �→0 at fixed classical dynamics of the open cavity.
Although it was known that certain quantum interference
corrections survive in this limit,16,19,30 the parametric corre-
lations considered here manifestly show that quantum trans-
port in the true semiclassical limit is universal, but not de-
scribed by random matrix theory. Thus the true semiclassical
limit is identified as a nontrivial regime of universal quantum
transport, separate from random matrix theory. In this re-
spect, open ballistic cavities are different from closed cavi-

ties, for which spectral statistics always agree with random
matrix theory in the limit �→0.
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